This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Author(s):
Korpela, Katri; Helle, Pekka; Henttonen, Heikki; Korpimäki, Erkki; Koskela, Esa;
Ovaskainen, Otso; Pietiäinen, Hannu; Sundell, Janne; Valkama, Jari; Huitu, Otso

Title: \quad Predator-vole interactions in northern Europe: the role of small mustelids revised

Year: 2014

Version:

Please cite the original version:

Korpela, K., Helle, P., Henttonen, H., Korpimäki, E., Koskela, E., Ovaskainen, O., Pietiäinen, H., Sundell, J., Valkama, J., \& Huitu, O. (2014). Predator-vole interactions in northern Europe: the role of small mustelids revised. Proceedings of the Royal Society B: Biological sciences, 281(1797), Article 20142119. https://doi.org/10.1098/rspb.2014.2119

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Predator-vole interactions in northern Europe: the role of small mustelids revised

Katri Korpela ${ }^{\text {a }}$, Pekka Helle ${ }^{\text {b }}$, Heikki Henttonen ${ }^{\text {c }}$, Erkki Korpimäki ${ }^{\text {d }}$, Esa Koskela ${ }^{\text {a }}$, Otso Ovaskainen ${ }^{\text {e }}$, Hannu Pietiäinen ${ }^{\text {e }}$, Janne Sundell ${ }^{\mathrm{f}}$, Jari Valkama ${ }^{\text {g }}$, Otso Huitu ${ }^{\text {h }}$
${ }^{\text {a }}$ Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Finland
${ }^{\mathrm{b}}$ Finnish Game and Fisheries Research Institute, FI-90014 University of Oulu, Finland
${ }^{\mathrm{c}}$ Vantaa Research Unit, Finnish Forest Research Institute, FI-01301 Vantaa, Finland
${ }^{\mathrm{d}}$ Department of Biology, FI-20014 University of Turku, Finland
${ }^{e}$ Department of Biosciences, FI-00014 University of Helsinki, Finland
${ }^{f}$ Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
${ }^{\mathrm{g}}$ Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
${ }^{\text {h }}$ Suonenjoki Research Unit, Finnish Forest Research Institute, FI-77600 Suonenjoki, Finland

Corresponding author:
Otso Huitu, otso.huitu@metla.fi, +358503914917

Keywords: population cycles; population dynamics; population growth rate; density dependence

Summary

The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986-2011, we analyse the spatiotemporal variation in the interactions between populations of voles and specialist, generalist, and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predatorprey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles.

Key index words: population cycles; population dynamics; population growth rate; density dependence

1. Introduction

Trophic interactions have a profound impact on population dynamics (1). Population cycles, in particular, are commonly thought to arise from trophic interactions, which can introduce a delay in the regulation of population growth (1). Boreal voles of Eurasia are a well-studied example of species in which predation can cause delayed density dependence of population growth, and cyclic population dynamics $(2,3)$. Voles are often the most abundant mammals in boreal and subarctic regions, and an indispensable food source for numerous avian and mammalian predators $(4,5)$. The interaction between the vole and the predator communities, and the cyclic population dynamics observed in both, are key phenomena in northern Eurasian ecosystems.

During recent years there have been reports of collapsing rodent cycles with potentially detrimental effects on the predator community $(6,7)$. The loss of cyclicity has been attributed to milder and shorter winters, which are thought to increase densityindependent winter mortality, and decrease the influence of delayed density dependence $(6,7)$. However, we recently showed that mild winters are not associated with collapsing cyclicity among boreal vole populations (8). Furthermore, it is not known how the interactions between voles and predators vary temporally and geographically, so the attribution of causality to altered predator-vole interactions is far from clear.

Practically all terrestrial carnivores in northern Europe consume voles at least occasionally, and the following predators show a clear preference for voles: the small mustelids (9), the red fox (10), the pine marten (11) and several owl and raptor species $(12,13)$. The small mustelids, the least weasel, Mustela nivalis nivalis, and the stoat,

Mustela erminea, are key predators in the boreal vole cycle (2). They are small and highly adapted to prey on voles even in their nests and under the snow cover, and can be the main cause of mortality in vole populations (14). They depend almost exclusively on voles (9), but have a much lower intrinsic growth rate than their prey, and hence a strong but delayed numerical response to vole densities, resulting in delayed density-dependent predation pressure on vole populations $(9,15)$. Of the two species, the stoat is considered to be more of a generalist than the least weasel (9).

Generalist predators, exploiting a variety of food sources, are thought to have a stabilizing effect on the prey populations, preying on voles during the peak phase of the cycle, and switching to alternative prey when vole densities are low (16, 17). Because of this, the generalists have the ability to transmit the cyclic population dynamics of voles to their alternative prey populations $(18,19)$. According to diet analyses, the red fox (Vulpes vulpes) and the pine marten (Martes martes) are generalist predators in Fennoscandia (10, 11). They are thus expected to have a cycle-dampening effect (17).

Birds of prey may dampen or enhance cyclicity in their prey. Nomadic species are able to travel long distances and nest where vole densities are high, i.e. have a direct numerical response and dampen the vole cycle $(13,20)$; on the other hand, migratory birds are not able to survey vole densities during the winter, and may rely on last season's information to decide where to nest (21). The reproductive effort and success of the resident raptors is dependent on current vole densities (22, 23). Therefore, avian predators might respond to vole densities of the previous autumn (decision on where to nest, recruitment of last year's young), spring (reproductive effort) or the current summer (survival of fledglings).

The interactions between the vole and the predator communities of northern Europe have been studied with mechanistic models and phenomenological time-series analyses (e.g. 2, 17, 24) and large-scale, yet local, manipulative experiments (reviewed by 25, 26), but they are not well described on a large temporal and geographic scale, let alone using observational data. Predator-vole interactions are likely to depend on environmental conditions and may thus be subject to spatial and temporal variation: e.g. snow cover may influence the availability of voles to avian and larger mammalian predators (23), temperatures may affect the energy requirements of predators (23, 27); and food availability to voles will influence the relative contribution of predation on vole population growth rates (28).

In the present study we aim to characterize the interactions between voles and the specialist mammalian, the generalist mammalian, and the avian predators using animal population monitoring data collected throughout Finland during 23 years. We will estimate the time lags in the predator responses to vole densities as well as the predator effects on vole population growth rates. Specifically, we test the hypothesis that weakening vole-specialist predator interactions during winters are associated with the collapse of the vole cycle. Finally, we use the data-derived parameter estimates to simulate vole population dynamics under a number of scenarios to gauge the roles of different predators in the boreal vole cycle.

Methods

Vole population data

Vole populations were censused using biannual snap trapping [in spring before the reproductive season of voles in mid-March to mid-June, and in autumn after the reproductive season in mid-August to mid-October (both times dependent upon geographic location and seasonal phenology)] in forest and old-field habitats in 32 locations during 1986-2011 (Fig. 1, Fig. S1). Voles of the genera Microtus and Myodes were included in the analyses. On average each trapping session included 289 trap nights (range 30-1800). Trapping was conducted with standard metal mouse snap traps. At each location, a mean of 50-100 traps were set either a) in a line, in clusters of three traps with an inter-trap distance of $1-2 \mathrm{~m}$ and an inter-cluster distance of $10-20 \mathrm{~m}$, or b) according to the small quadrat method (29). Traps were set for 1-4 nights and checked and re-set if necessary once a day. Regardless of the number of traps used per session, or the number of consecutive trap nights, each trap effectively traps a standard-size area. Since the density of traps (traps per unit area) does not change between sites or over time, our trapping indices from different areas and times are comparable.

The vole data comprise the following species: Microtus agrestis (28\%), M. levis (5\%) and M. oeconomus (6\%), and Myodes glareolus (57\%), M. rutilus (3\%), and M. rufocanus (1\%). Density indices were calculated as $N=\log$ [(total number of voles trapped +1) / trap nights * 100]. Seasonal vole population growth rates were calculated as $S_{\mathrm{t}}-A_{\mathrm{t}-1}$ (winter) and $A_{\mathrm{t}}-S_{\mathrm{t}}$ (summer), where S denotes spring vole density, A autumn vole density and t denotes year. Each vole time series was standardized to mean $=0$ to
correct for potential trapping-site quality bias. We decided the pool all vole species despite the ecological differences between Myodes and Microtus voles. We have analysed the variation in the spatiotemporal dynamics separately for Microtus voles in their principal habitat (old fields) and for Myodes voles in forests. The spatiotemporal patterns in the population dynamics of the different genera parallel each other, and those obtained with the pooled vole densities [see Table 1 in (8)]. Furthermore, the different species are known to fluctuate in synchrony $(8,30)$ and be subject to predation by the same predators (e.g. 31, 32). Therefore, the pooled data allow us to answer the study questions more clearly than the genus-specific results would.

Mammalian predator data

We obtained density indices for the mammalian predators from the Finnish Game and Fisheries Research Institute (33). Mammalian predator densities were monitored by counting snow tracks on previously marked transects in winter (mid-January to midMarch) during 1989-2011. Triangles consisting of three 4-km transects were surveyed and all mammal tracks crossing the transect were counted and identified to species one or two days after a pre-check or snowfall. Annually ca. 800 triangles are monitored (Fig. 1 and S 1). As weather conditions could influence the visibility of the snow tracks, the protocol set by the Finnish Game and Fisheries Research Institute rigorously defines the environmental circumstances under which the snow track counts may be conducted. Firstly, the transect must be walked or skied twice - first to mark all existing tracks, then at least 24 hours later to count all new tracks. This time of track accumulation cannot include extreme cold temperatures, heavy winds or snowfall. Alternatively, tracks may be
counted without a preliminary marking round, 24-48 hours after a snowfall. In both cases, the snow cover must be fine and soft enough to enable the smallest recordable animals, least weasels, to leave identifiable tracks. These strict guidelines ensure that the weather conditions during the snow track count are geographically and temporally consistent. The degree of detectability of tracks is thus unlikely to differ between geographic areas.

The density index for a given species is calculated as $\log \left[\left(n_{i, t}+n_{\min }\right) / d\right]$, where the $\mathrm{n}_{\mathrm{i}, \mathrm{t}}$ is the number of tracks observed per 10 km of survey route at location i and year $\mathrm{t}, \mathrm{n}_{\text {min }}$ is the minimum observed non-zero n , and d is the number of days during which the tracks accumulated. We included the densities of four mammalian predators and aggregated the predator species into two groups based on their behaviour and morphology: the small mustelids (the least weasel and the stoat) formed the specialist predator group, and the larger mammalian predators (the red fox and the pine marten) the generalist predator group (17). Density indices of both groups were calculated for each vole trapping location by distance-weighted averaging (using all data points, with weight decreasing by distance ${ }^{2}$). The mammalian predator data were globally standardized to mean $=0$ to render the values of the different predator groups comparable.

Avian predator data

The data for avian predators were obtained from the Finnish Museum of Natural History (34). The monitoring scheme is organized in 25 areas (Fig. 1, Fig. S1), which together cover all of Finland. In each area, all known raptor territories are visited each spring and summer, and checked for nests from which eggs and later the chicks are counted. Raptor monitoring data were available from 1986 to 2011. We included data on the following
species, which prey on voles and which are relatively abundant in our study area: the nomadic or migratory species Asio flammeus, Asio otus, Aegolius funereus, Glaucidium passerinum, Falco tinnunculus, Circus cyaneus, and Buteo lagopus; and the resident species Strix uralensis, Strix aluco, Bubo bubo, and Buteo buteo. Although it is known that these species react slightly differently to vole abundances and differ in their specialization in voles, their densities showed strong correlations ($\mathrm{r}>0.8$), which justified the calculation of a total avian predator density index as $\log \left[\frac{n_{i, t} c_{i, t}+2 n_{i, t}}{s_{i, t}}\right]$, where $n_{i, t}$ refers to the number of nesting pairs in area i and year $\mathrm{t}, c_{i, t}$ to the average number of chicks per nest in area i and year t , and $s_{i, t}$ to the number of territories surveyed in area i and year t . The avian predator density index was calculated for each vole-trapping site by averaging over all raptor-monitoring areas within a 50 km distance. Prior to combining the avian time series, they were de-trended, as some showed potentially artificial increasing trends due to increased nest-box availability. The avian predator density was calculated for each vole-trapping site by averaging over all raptor-monitoring areas within a 50 km distance.

Influence of predators on vole population growth rates

To estimate the spatial and temporal variation in the impact of the different predator groups on vole populations, we modelled vole population growth rates during winter (Model 1) and summer (Model 2) as a function of vole and predator indices. Mammalian predator indices were measured in winter, and avian predator indices in summer. We assumed the linear models

$$
\begin{aligned}
& Y_{1, t}=S_{t}-A_{t-1}=a_{1}+b_{1} A_{t-1}+c_{1} A_{t-2}+d_{1} P_{1, t}+e_{1} P_{2, t}+f_{1} P_{3, t-1}+\varepsilon_{1, t} \text { (Model 1) } \\
& Y_{2, t}=A_{t}-S_{t}=a_{2}+b_{2} S_{t}+c_{2} S_{t-1}+d_{2} P_{1, t}+e_{2} P_{2, t}+f_{2} P_{3, t}+\varepsilon_{2, t} \text { (Model 2) }
\end{aligned}
$$

where P_{1} refers to the density index of the small mustelids, P_{2} to the generalist mammalian predators, and P_{3} to the avian predators.

Because we had no a priori knowledge of the geographic and temporal variation in predator-vole interactions, we began with a very flexible model, and then simplified the model based on the data. Initially, we allowed the parameters $a-f$ to vary with time and space by including a latitude*longitude*(year + year 2) interaction. After fitting these models, we simplified the models using AIC (Akaike Information Criterion, 35): all terms whose elimination would have resulted in an increase in AIC were retained in the final model.

We validated the models by dividing the data set randomly into a training set (50\% of the data points) and a test set (50\%), refitting the models to the training data, and using these models to predict the test data; this was repeated 50 times (Fig. S2). In addition, we assessed the performance of the models by simulating vole and predator dynamics using parameter estimates from the models; adequate models should be able to create realistic dynamics.

Based on the models, we calculated the relative contributions of the different predator groups and of the non-predation-attributable density dependence to the variation in vole population growth rates for each trapping site and year as a fraction of the total variation. To do so, we decomposed the total variance (example for Model 1) as

$$
\begin{aligned}
& \operatorname{Var}\left(Y_{1, t}\right)=b^{2} \operatorname{Var}\left(A_{t-1}\right)+c^{2} \operatorname{Var}\left(A_{t-2}\right)+d^{2} \operatorname{Var}\left(P_{1}\right)+e^{2} \operatorname{Var}\left(P_{2}\right)+f^{2} \operatorname{Var}\left(P_{3}\right) \\
&+2 b c \operatorname{Cov}\left(A_{\mathrm{t}-1}, A_{t-2}\right)+2 b d \operatorname{Cov}\left(A_{t-1}, P_{1}\right)+2 b e \operatorname{Cov}\left(A_{t-1}, P_{2}\right) \\
&+2 b f \operatorname{Cov}\left(A_{t-1}, P_{3}\right)+2 c d \operatorname{Cov}\left(A_{t-2}, P_{1}\right)+2 c e \operatorname{Cov}\left(A_{t-2}, P_{2}\right) \\
&+2 c f \operatorname{Cov}\left(A_{t-2}, P_{3}\right)+2 \operatorname{de} \operatorname{Cov}\left(P_{1}, P_{2}\right)+2 d f \operatorname{Cov}\left(P_{1}, P_{3}\right) \\
&+2 e f \operatorname{Cov}\left(P_{2}, P_{3}\right)+\sigma^{2},
\end{aligned}
$$

where the variances and co-variances are calculated from the whole data set, σ^{2} is the variance of the residual term ε, and the model parameter values $a-f$ depend on sampling location and year.

To simplify the interpretation of the results, rather than considering the relative contributions of co-variances separately, we decided to treat the co-variances by assigning half of the co-variances to each of the terms involved. As an example, the variance explained by the small mustelids was calculated as

$$
\begin{gathered}
\operatorname{Var}_{\mathrm{P} 1}=\left(d^{2} \operatorname{Var}\left(P_{1}\right)+b d \operatorname{Cov}\left(A_{t-1}, P_{1}\right)+c d \operatorname{Cov}\left(A_{t-2}, P_{1}\right)+d e \operatorname{Cov}\left(P_{1}, P_{2}\right)\right. \\
\left.+d f \operatorname{Cov}\left(P_{1}, P_{3}\right)\right) / \operatorname{Var}\left(Y_{1, t}\right)
\end{gathered}
$$

These values were summarized to represent three regions by averaging over the trapping locations in each: northern Finland (above the $66^{\text {th }}$ latitude), southwestern $\left(<64^{\text {th }}\right.$ latitude and $<25^{\text {th }}$ longitude) and eastern ($>27^{\text {th }}$ longitude) Finland (Fig. 1).

Influence of vole population densities on predator abundance indices

Using the same initial spatiotemporal structure as in Models 1 and 2, we modelled the predator indices as a function of current and past vole densities to determine the magnitude of and the time lags in the predators' responses:

$$
\begin{aligned}
& Y_{3, t}=a_{3}+b_{3} A_{t-1}+c_{3} S_{t-1}+d_{3} A_{t-2}+\varepsilon_{3, \mathrm{t}}, \text { (Model 3a: Mammalian predators) } \\
& Y_{3, t}=a_{3}+b_{3} S_{t}+c_{3} A_{t-1}+d_{3} S_{t-1}+\varepsilon_{3, \mathrm{t}}(\text { Model 3b: Avian predators })
\end{aligned}
$$

We did not include previous predator densities in the predator models because after accounting for the vole-cycle-attributable autocorrelation, no temporal autocorrelation was left in the predator time series. AIC-determined model reduction was performed as explained above. The relative contributions of vole densities at different time lags to the predator densities were calculated as

$$
\begin{aligned}
& \operatorname{Var}_{A_{t-1}}=\left(b^{2} \operatorname{Var}\left(A_{t-1}\right)+b c \operatorname{Cov}\left(A_{t-1}, S_{t-1}\right)+b d \operatorname{Cov}\left(A_{t-1}, A_{t-2}\right)\right) /\left(b^{2} \operatorname{Var}\left(A_{t-1}\right)\right. \\
&+c^{2} \operatorname{Var}\left(S_{t-1}\right)+d^{2} \operatorname{Var}\left(A_{t-2}\right)+2 b c \operatorname{Cov}\left(A_{t-1}, S_{t-1}\right) \\
&\left.+2 b d \operatorname{Cov}\left(A_{t-1}, A_{t-2}\right)+2 c d \operatorname{Cov}\left(S_{t-1}, A_{t-2}\right)+\sigma^{2}\right)
\end{aligned}
$$

The values were summarized to regions (Fig. 3) as explained above.
$\underline{\text { Roles of the different predators in the boreal vole cycle: simulation }}$
We used the parameter estimates from models 1-3 to simulate vole and predator population dynamics. The simulations were used both for model validation, i.e. to
confirm that the models were capable of reproducing the population dynamics observed in different locations and time points, and for scenario simulations, i.e. to investigate the roles of the different predators in vole population dynamics. We focused on three geographic regions, which we had previously discovered to exhibit distinctly different vole population dynamics: the north, the southwest, and the east (8). Using the parameter estimates for the geographic locations and the year 2011 (the last available year with full data records), we simulated 1000 years of vole and predator time series under eight different scenarios in which one, two or all predator groups were removed by setting their density to the minimum observed value in the data set.

We estimated the direct and delayed density dependence of vole population growth rates in the simulated time series by regressing the seasonal vole population growth rates against the current and the 1-year-lagged vole densities (8). To assess the variability in the model predictions, we divided the 1000-year time series into 25 -year sections, and fitted autoregressive models to each section. Consensus density dependence values were obtained by averaging over the results from the 40 sections, and annual density dependence was calculated from the seasonal density dependence values as in (8). From each 25-year section, we calculated the standard deviation of the population densities (sindex) as an index of amplitude, and seasonality as the difference between the average summer and average winter population growth rates, and averaged these over all sections. The type of population dynamics was inferred from the density dependence values, autocorrelation values, and from visual inspection of the time series. All statistical analyses were conducted with R (36).

Results

Model validation

Our models performed well in model validation: they produced realistic predator-vole dynamics capturing the spatial and temporal variation in vole population dynamics (compare Fig. 4 to ref. 8). When refitted with 50% of the data points, they predicted the remaining 50% fairly well (Fig. S2). Only the small mustelid model's performance was somewhat unsatisfactory, as the correlation between the observed and the predicted small mustelid indices was only 0.42 . The final best models based on the model selection are presented in Tables S1-S4.

Spatiotemporal variation in predator-vole interactions

The relative influences of the different predator groups on vole population growth rates showed substantial variation over the years and regions (Fig. 2). In the north, the influence of the small mustelids on vole populations showed an increasing temporal trend during both seasons, and they are currently estimated to be the strongest force affecting the winter population growth rates of voles (Fig. 2a, b). According to our models, the generalist predators influenced vole populations only during summers in the north, and the relative impact of the avian predators was declining, particularly during winters (Fig. $2 \mathrm{a}, \mathrm{b}$).

Predators were estimated to have a modest impact on the winter population growth rates of voles in the southwest (Fig. 2c). However, the relative contribution of the small
mustelids on the summer population growth rates of voles appeared to have increased considerably (Fig. 2d). The generalist predators were estimated to have very little impact on vole populations in the southwest, and the avian predators to have a modest, and possibly declining, impact during both seasons (Fig. 2c, d).

The factors affecting the winter population growth rates of voles in the east were similar to those in the north: a strong avian predator influence substituted in the recent years by a rapidly increasing small mustelid influence (Fig. 2e). However, during summers the generalist and avian predators were estimated to be a stronger force than the small mustelids (Fig. 2f).

The dependence of the predator indices on vole population densities tended to be strongest, and the delays longest, in the north (Fig. 3). Particularly in the north and southwest, there appeared to be a temporal trend of shortening delays in the numerical responses of the predators. The small mustelids responded to all vole densities measured during the previous 18 months, the longest delay being the weakest. The larger mammalian predators responded to vole densities with a 10-month delay in the north, and with a 5-month delay in the south. The avian predators responded to vole densities with a time lag of 2-10 months.

Is predation necessary for cyclic vole population dynamics?

Our model correctly predicted a regular, high-amplitude 5-year cycle in the North for the year 2011 (Fig. 4a,b black symbol; Fig. S3). Removing either the small mustelids or the avian predators weakened the delayed density dependence (Fig. 4a, pink and lightblue
symbols) and amplitude (Fig. 4b), and weakened the cycle (Fig. S3). The seasonality disappeared in the absence of the small mustelids, regardless of which predators remained (Fig. 4c, pink, orange, darkblue and gray symbols), suggesting that the major cause of winter mortality in the north is predation by the small mustelids (Fig. 2a). Removing both the avian predators and the small mustelids, with or without the larger mammalian predators, weakened the delayed density dependence to the extent that the vole cycle collapsed (Fig. 4a, orange and gray symbols; Fig. S3), and the amplitude was clearly reduced (Fig. 4b). The generalist mammalian predators did not influence vole population dynamics to a great extent in the north (Fig. 4a, b, c, yellow symbols).

The model predicted a 3-to-4-year cycle in southwestern Finland (Fig. 4d, black symbol; Fig. S4), with a lower amplitude than in the north (Fig. 4e). The removal of the small mustelids had a strong impact on vole population dynamics, regardless of whether the predators remained present: both direct and delayed density dependence were weakened to the extent that the vole cycle collapsed (Fig. 4d, pink, orange, darkblue, and gray symbols; Fig. S4) into completely seasonal (Fig. 4f), high-amplitude dynamics (Fig. $4 \mathrm{e})$. The small mustelids were capable of maintaining cyclic vole population dynamics in the absence of the other predators: removing the generalist and the avian predators increased the cycle period (Fig. 4d, red symbols; Fig. S4) and weakened the seasonality (Fig. 4f).

The model predicted irregular dynamics in eastern Finland (Fig. 4g; Fig. S5). Predator removal had no effect on the density dependence (Fig. 4g). Removing the small mustelids reduced, and removing the generalist mammals increased the seasonality and
the amplitude (Fig. 4h, i, pink and yellow symbols); removing the avian predators had no influence on vole population dynamics (Fig. 4h, i, lightblue symbols).

Changes within the predator community

A high relative abundance of the stricter vole specialist, the least weasel, in relation to the semi-generalist stoat, coincided with cyclic vole dynamics (Fig. S6). In western Finland, with continuously cyclic vole dynamics, the least weasel has been more abundant than the stoat; in northern Finland the relative abundance of the least weasel was very low during the non-cyclic period, and is currently increasing together with the strengthening cycle. Most impressively, the relative abundance of the least weasel peaked in synchrony with the vole density peaks in the north: the stoat dominated during cyclic lows, and the least weasel when voles were abundant. A similar pattern was observed in the east, althought there the increasing relative abudance of the least weasel was evidently not sufficient to strengthen the vole cycle. One possible explanation is the relative abundance of the generalist mammalian predators, which in eastern Finland was in favor of the pine marten, while the red fox was relatively more abundant in western Finland.

Discussion

We analysed predator-vole interactions comprehensively over a large geographic area (ca. $300000 \mathrm{~km}^{2}$) and a long time period (26 years), capturing the return of the highamplitude vole cycle in the north as well as the collapse of the cycle in the east. Our
results show that the predator-vole interactions vary temporally and geographically, and that this variation explains many of the observed changes in vole population dynamics.

Not surprisingly, our model identified the small mustelids as key players in the boreal vole cycle: their numerical response was estimated to be delayed and sufficiently strong to cause negative delayed density dependence in vole populations, supporting earlier results (e.g. 9, 15, 24). Earlier mechanistic modelling studies on vole-predator interactions have suffered from the lack of predator time series to confirm the results. The fact that very different approaches, based on different types of data and models, all lead to the same conclusion offers strong support for the specialist predator hypothesis.

In the north, the small mustelids were estimated to be currently the strongest force affecting the winter population growth rates of voles. However, their influence on vole populations appears not to be restricted to the winter season, but occurs, increasingly, during summers, as well. The increase in summer impact coincides with increasing summer precipitation in the north (8). In the coastal southwest, where winters are milder and shorter than in the more continental east and in the north, the small mustelids appear to exert their influence on vole populations mainly during summers. Hence, mild winters appear not to weaken the overall impact of the specialist predators on vole populations. Furthermore, as the vole cycle has collapsed in the east despite a strong relative influence of the small mustelids during winters, it appears that predation by the small mustelids in winter is alone not sufficient to create cyclic vole dynamics. Rather, a sufficient impact of the small mustelids during summers may be an elemental part of the vole cycle, contributing to the summer declines which characterize cyclic, but not non-cyclic, vole populations ($3,37,38$). In addition to the small mustelids, the avian predators were found
to influence vole population dynamics, and to be an important source of delayed density dependence in vole populations (see also 21).

Generalist predators are usually thought to dampen or inhibit cyclic dynamics in their prey populations (17). However, the red fox is also considered strongly dependent on voles, to the extent that the red fox game bag index has been used as a surrogate for vole density (e.g., 39). Yet another view is that vole populations are not influenced by the generalist predators, as previously shown for the red fox (18). According to our data, the generalists did not depend strongly on voles, nor did they markedly influence vole populations, especially in southern Finland. In the north, however, where alternative food is scarce and where the climate is unfavourable for the red fox (27), the generalist predator index responded occasionally quite strongly to the spring densities of voles and influenced their summer population growth rates. This suggests that in unfavourable environments, voles form a significant food source to fox cubs in their early life. However, the overall impact of the generalists on vole population dynamics was weak.

All predators appear to be responding to vole densities with shortening time lags, which may contribute to increasing direct, and weakening delayed density dependence in vole populations. However, this may not unequivocally be the case. The predator populations are monitored only once a year, which makes it difficult to estimate the time lags in their responses and the timing of their impact on the vole populations. It is possible for e.g. the small mustelids to be dependent on the spring densities of voles, while influencing the vole populations during the following winter, or to be dependent on the autumn densities of voles and to influence vole populations during the following summer. In both cases, the impact on the density dependence of vole population growth
rates would be the same. The changes in the time lags of the predators' numerical responses may also be due to temporal variations in the relative abundances of the different species. Different raptor species respond to vole densities with different time lags (40), and the stoat responds to vole densities with a shorter time lag than the least weasel (15). Furthermore, the ability of the predators to track vole abundances and to adjust their reproductive effort accordingly may depend on weather conditions, which could lead to the observed temporal variation in the responses.

The reliability of the snow track indices is a matter of debate, especially with respect to the small mustelids (discussed recently in 15,42), Our results indicate a marked amount of measurement error in the small mustelid index, as only ca. 50% of variation in the index was attributable to the vole abundances, although these predators are known to rely heavily on voles (9). Furthermore, a large fraction of the variation in vole population growth rates was unexplained by the predator indices, although predation has been shown to be a major cause of mortality in vole populations (14). The generalist and avian predator indices are likely to be more accurate than the small mustelid index: both indices behaved in our analyses as expected based on earlier studies, the generalists cannot move under the snow cover, and the avian predator index is derived from counts of the animals themselves. Measurement error in the predator indices is likely to weaken, but not strenghten, the estimated interactions between voles and the predators; our estimates are therefore conservative and the interactions may be stronger in reality. Because of the unknown amount of measurement error in the predator indices, some of the unexplained density dependence in vole population growth rates is most likely
attributable to predation, although undoubtedly other factors, such as food supply (28), also influence vole populations.

According to our results, predation, by the small mustelids in the southwest and by the whole predator guild in the north, is a necessary contributor to the regular, highamplitude vole cycle in northern Europe. The small mustelid-vole interaction is not restricted to winters, confirming our previous finding that mild winters do not necessarily lead to a collapse of the vole cycle (8). The observed strengthening of delayed density dependence in vole populations coincided with strengthening small mustelid influence on the summer population growth rates of voles. A strong impact of the small mustelids during summers appears important to cyclic vole dynamics.

Acknowledgements

We thank all field assistants who contributed to collecting the data and Mari Lyly for the illustrations in Figure 1. The study was financially supported by the Academy of Finland (grant no. 133495 to OH, 250709 to EKor, 218107 and 257340 to EKos, and 250243 and 250444 to OO); EU grant FP7-261504 EDENext (HH); European Research Council, ERC Starting Grant 205905 (OO).

Data accessibility

Data are archived in Dryad (doi:10.5061/dryad.h3bt7).

References

1. Berryman A, ed (2002) Population cycles: The case for trophic interactions (Oxford University Press, NewYork).
2. Hanski I, et al. (2001) Small-rodent dynamics and predation. Ecology 82:1505-1520.
3. Korpimäki E, et al. (2005) Vole cycles and predation in temperate and boreal zones of Europe. J Anim Ecol 74:1150-1159.
4. Sundell J, et al. (2004) Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J Anim Ecol 73:167178.
5. Henden J, Bardsen B, Yoccoz NG, Ims RA (2008) Impacts of differential prey dynamics on the potential recovery of endangered arctic fox populations. J Appl Ecol 45:1086-1093.
6. Ims RA, Henden J, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79-86.
7. Cornulier T, et al. (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340:63-66.
8. Korpela K, et al. (2013). Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Change Biol 19:697-710.
9. Korpimäki E, Norrdahl K, Rinta-Jaskari T (1991) Responses of stoats and least weasels to fluctuating food abundances - is the low phase of the vole cycle due to mustelid predation. Oecologia 88:552-561.
10. Dell'Arte GL, Laaksonen T, Norrdahl K, Korpimäki E (2007) Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecol 31:276-281.
11. Helldin J (2000) Seasonal diet of pine marten Martes martes in southern boreal Sweden. Acta Theriol 45:409-420.
12. Korpimäki E, Sulkava S (1987) Diet and breeding performance of Ural Owls Strix uralensis. Ornis Fennica 64:57-66.
13. Korpimäki E, Norrdahl K (1991) Numerical and functional responses of kestrels, short-eared owls, and long-eared owls to vole densities. Ecology 72:814-826.
14. Norrdahl K, Korpimäki E (1995) Mortality factors in a cyclic vole population. Proc R Soc Lond B 261:49-53.
15. Sundell J, et al. (2013) Numerical response of small mustelids to vole abundance: delayed or not? Oikos 122:1112-1120.
16. Erlinge S, Agrell J, Nelson J, Sandell M (1991) Why are some microtine populations cyclic while others are not. Acta Theriol 36:63-71.
17. Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60:353-367.
18. Lindström ER, et al. (1994) Disease reveals the predator: sarcoptic mange, red fox predation, and prey populations. Ecology 75:1042-1049.
19. Kjellander P, Nordström J (2003) Cyclic voles, prey switching in red fox, and roe deer dynamics-a test of the alternative prey hypothesis. Oikos 101:338-344.
20. Korpimäki E, Norrdahl K (1991) Do breeding nomadic avian predators dampen population fluctuations of small mammals. Oikos 62:195-208.
21. Norrdahl K, Korpimäki E (2002) Seasonal changes in the numerical responses of predators to cyclic vole populations. Ecography 25:428-438.
22. Karell P, et al. (2009) Population dynamics in a cyclic environment: consequences of cyclic food abundance on tawny owl reproduction and survival. J Anim Ecol 78:1050-1062.
23. Lehikoinen A, et al. (2011) The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia 165:349355.
24. Hanski I, Korpimäki E (1995) Microtine rodent dynamics in northern Europe parameterized models for the predator-prey interaction. Ecology 76:840-850.
25. Korpimäki E, Brown PR, Jacob J, Pech RP (2004). The puzzles of population cycles and outbreaks of small mammals solved? BioScience 54:1071-1079.
26. Sundell J (2006) Experimental tests of the role of predation in the population dynamics of voles and lemmings. Mamm Rev 36:107-141.
27. Barton KA, Zalewski A (2007) Winter severity limits red fox populations in Eurasia. Global Ecol Biogeogr 16:281-289.
28. Huitu O, et al. (2003) Winter food supply limits growth of northern vole populations in the absence of predation. Ecology 84:2108-2118.
29. Myllymäki A, Paasikallio A, Pankakoski E, Kanervo V (1971) Removal experiments on small quadrats as a means of rapid assessment of the abundance of small mammals. Ann Zool Fenn 8:177-185.
30. Huitu O, Norrdahl K, Korpimäki E (2004) Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27:197-206.
31. Korpimäki E (1992) Diet composition, prey choice and breeding success of longeared owls: effects of multiannual fluctuations in food abundance. Can J Zool 70:2373-2381.
32. Sundell J, Eccard J, Tiilikainen R, Ylönen H (2003) Predation rate, prey preference and predator switching: experiments on voles and weasels. Oikos 101:615-623.
33. Lindén H, Helle E, Helle P, Wikman M (1996) Wildlife triangle scheme in Finland: methods and aims for monitoring wildlife populations. Finnish Game Res 49:4-11.
34. Saurola P (2008) Monitoring birds of prey in Finland: A summary of methods, trends, and statistical power. Ambio 37:413-419.
35. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33:261-304.
36. R Development Core Team (2011) R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria).
37. Hansson L, Henttonen H (1985). Gradients in density variations of small rodents the importance of latitude and snow cover. Oecologia 67:394-402.
38. Hansson L, Henttonen H (1988) Rodent dynamics as community processes. Trends Ecol Evol 3:195-200.
39. Henden J, Ims RA, Yoccoz NG (2009) Nonstationary spatio-temporal small rodent dynamics: evidence from long-term Norwegian fox bounty data. J Anim Ecol 78:636-645.
40. Korpimäki E (1994) Rapid or delayed tracking of multiannual vole cycles by avian predators. J Anim Ecol 63:619-628.
41. Hellstedt P, Sundell J, Helle P, Henttonen H (2006) Large-scale spatial and temporal patterns in population dynamics of the stoat, Mustela erminea, and the least weasel, M. nivalis, in Finland. Oikos 115:286-298.

Figure captions

Figure 1. Data collection locations: vole trapping locations (map a), mammalian predator snow-track-monitoring locations (map b), and avian predator monitoring areas (map c). Letters in map a denote the three regions from which results were summarized ($\mathrm{N}=$ north, $\mathrm{SW}=$ southwest, $\mathrm{E}=$ east).

Figure 2. Relative contributions of predators and non-predation-attributable density dependence ("Delayed DD" and "Direct DD") to the summer and winter population growth rates of voles, estimated with Models 1 and 2 and averaged to northern, southwestern and eastern Finland, as in Figure 1.

Figure 3. Relative contributions of vole densities at different time lags to predator densities, estimated with Models 3a (mammalian predators) and 3b (avian predators) and averaged to northern, south-western and eastern Finland, as in Figure 1. Mammalian predator densities were monitored in winter, and therefore the time lags presented are ca. 5 months (vole density in autumn n_{t-1}), ca. 10 months (vole density in spring ${ }_{t-1}$), and ca. 17 months (vole density in autumn $\mathrm{t}_{\mathrm{t}-2}$). Avian predator densities were monitored in summer, and the time lags are ca. 2 months (vole density in spring ${ }_{t}$), ca. 9 months (vole density in autumn $_{t-1}$), and ca. 14 months (vole density in spring $_{t-1}$).

Figure 4. Results of simulations. Parameter estimates from Models 1-3 were used to simulate vole (shown in figure) and predator (not shown) population dynamics under different predation scenarios. The Full model scenario refers to a simulation with all
parameters included in the model, as thus represents the model prediction for current population dynamics. In the different predation scenarios, the densities of the different predator groups were set to the minimum observed value. Panels a-c show the simulated vole time series in density dependence space. Multiannual cycles exist under the parabola with cycle length increasing from left to right, and irregular dynamics above the parabola. Panels d-f show the s-indices (averages $\pm \mathrm{sd}$) and panels g-i show the seasonality in vole population growth rates, calculated as the difference between average summer and average winter population growth rates.

Appendices

Supplementary Figure Legends

Supplementary Figure S1. Average densities of vole (spring and autumn) and predator (one annual density) populations in northern (above the $66^{\text {th }}$ latitude), south-western ($<64^{\text {th }}$ latitude and $<25^{\text {th }}$ longitude), and eastern Finland ($>27^{\text {th }}$ longitude).

Supplementary Figure S2. Model-predicted vs. observed values. The data were randomly divided (50 times) into a training set (50\%), to which the models were fitted and which was used to predict the values in the remaining 50%. (a) Winter population growth rates of voles. (b) Summer population growht rates of voles. (c) Small mustelid index. (d) Generalist predator index. (e) Avian predator index.

Supplementary Figure S3. Sections of simulated time series and the autocorrelation plots calculated based on the simulated time series. The simulations were based on parameter values from Models 1-3 for northern Finland.

Supplementary Figure S4. Sections of simulated time series and the autocorrelation plots calculated based on the simulated time series. The simulations were based on parameter values from Models 1-3 for southwestern Finland.

Supplementary Figure S5. Sections of simulated time series and the autocorrelation plots calculated based on the simulated time series. The simulations were based on parameter values from Models 1-3 for eastern Finland.

Supplementary Figure S6. Relative abundances of species within the small mustelid (top row) and the generalist predator (bottom row) groups in the different regions (black lines), and autumn vole densities (red lines).

Supplementary Tables

Supplementary Table 1. Best model (in AIC-based model selection) for the winter population growth rate of voles (year t). Latitude, longitude, and year were scaled to vary between -1 and 1 . A = autumn vole density; $\mathrm{P}_{1}=$ small mustelid density (winter); $\mathrm{P}_{2}=$ generalist mammalian predator density (winter); $\mathrm{P}_{3}=$ avian predator density (summer).

Parameter	Estimate	Std. Error	t-value	p-value
Intercept	-0.51	0.12	-4.30	<0.0001
$A_{\text {t-1 }}$	-0.78	0.09	-8.28	<0.0001
A_{t-2}	-0.33	0.05	-6.10	<0.0001
$P_{1, \mathrm{t}}$	-0.09	0.07	-1.15	0.25
$P_{2, t}$	0.08	0.08	1.10	0.27
$P_{3, t-1}$	-0.86	0.24	-3.62	<0.001
Year	-0.36	0.20	-1.84	0.07
Year ${ }^{2}$	-0.15	0.27	-0.57	0.57
Latitude	-0.46	0.20	-2.33	0.02
Longitude	0.28	0.26	1.05	0.29
Year: A_{t-1}	0.42	0.13	3.25	<0.01
Year ${ }^{2} A_{\text {t-1 }}$	0.44	0.28	1.59	0.11
Year: A_{t-2}	0.18	0.10	1.87	0.06
Year: $P_{1, \mathrm{t}}$	-0.31	0.12	-2.61	0.01
Year ${ }^{2} \cdot P_{1, \mathrm{t}}$	0.01	0.21	0.04	0.97
Year: $P_{3, \mathrm{t}}$	0.85	0.48	1.78	0.08
Latitude: $A_{\mathrm{t}-1}$	-0.02	0.14	-0.14	0.89
Latitude: $P_{1, \mathrm{t}}$	0.21	0.13	1.63	0.10
Latitude: $P_{3, t-1}$	0.44	0.31	1.43	0.15
Year:Latitude	0.30	0.31	0.95	0.34
Year ${ }^{2}$:Latitude	-0.66	0.45	-1.47	0.14
Longitude: $A_{\text {t-1 }}$	-0.47	0.25	-1.88	0.06
Longitude: $A_{\text {t-2 }}$	0.00	0.09	-0.05	0.96
Longitude: $P_{1, \mathrm{t}}$	0.24	0.15	1.65	0.10
Longitude: $P_{2,1}$	0.19	0.11	1.63	0.10
Longitude: $\mathrm{P}_{3, \mathrm{t}-1}$	-0.13	0.45	-0.30	0.77
Year:Longitude	-0.72	0.40	-1.81	0.07
Year ${ }^{2}$:Longitude	-0.94	0.68	-1.39	0.16
Latitude:Longitude	0.72	0.49	1.48	0.14
A_{t-1} :Year:Latitude	0.12	0.19	0.62	0.54
$A_{t-1}:$ Year 2 :Latitude	0.97	0.42	2.29	0.02
$P_{1, \text { t }}$:Year:Latitude	-0.28	0.19	-1.50	0.13
$P_{1, t}$: Year 2 :Latitude	-0.77	0.36	-2.14	0.03
$P_{3, t-1}$:Year:Latitude	-0.35	0.58	-0.61	0.54
$A_{\text {t-1 }}$:Year:Longitude	0.67	0.34	1.96	0.05
A_{t-1} :Year ${ }^{2}$:Longitude	1.11	0.75	1.49	0.14
$A_{\text {t-2 }}$: Year:Longitude	0.30	0.17	1.76	0.08
$P_{1, \mathrm{t}}$:Year:Longitude	-0.42	0.26	-1.60	0.11
$P_{1, \text { t, }}$ Year ${ }^{2}$:Longitude	-1.14	0.33	-3.42	<0.001
$P_{3, t-1}$:Year:Longitude	-0.67	0.90	-0.74	0.46
A_{t-1} :Longitude:Latitude	-0.62	0.46	-1.35	0.18
$P_{1, \mathrm{t}}$:Latitude:Longitude	-0.18	0.23	-0.77	0.44
$P_{3,-1}$:Latitude:Longitude	0.85	0.66	1.29	0.20
Year:Latitude:Longitude	-0.76	0.67	-1.14	0.25
Year²:Latitude:Longitude	-1.67	1.28	-1.31	0.19
A_{t-1} :Year:Latitude:Longitude	0.85	0.63	1.34	0.18
$A_{\text {t- }-1}$:Year ${ }^{2}$:Latitude:Longitude	2.08	1.38	1.51	0.13
$P_{1, t}$:Year:Latitude:Longitude	-0.66	0.44	-1.49	0.14
$P_{3, t-1}$:Year:Latitude:Longitude	-2.40	1.28	-1.87	0.06

Supplementary Table 2. Best model (in AIC-based model selection) for the summer population growth rate of voles (year t). Latitude, longitude, and year were scaled to vary between -1 and $1 . \mathrm{S}=$ spring vole density; $\mathrm{P}_{1}=$ small mustelid density (winter); $\mathrm{P}_{2}=$ generalist mammalian predator density (winter); $\mathrm{P}_{3}=$ avian predator density (summer).

Parameter	Estimate	Std. error	t-value	p-value
Intercept	0.58	0.11	5.36	<0.0001
$S_{\text {t }}$	-0.47	0.08	-5.92	<0.0001
$\mathrm{S}_{\mathrm{t}-1}$	-0.26	0.04	-6.59	<0.0001
$P_{1, \mathrm{t}}$	-0.08	0.05	-1.82	0.07
$P_{2, \mathrm{t}}$	-0.23	0.10	-2.18	0.03
$P_{3, \mathrm{t}}$	0.01	0.30	0.02	0.99
Year	-0.10	0.19	-0.54	0.59
Year ${ }^{2}$	0.02	0.31	0.06	0.95
Latitude	0.33	0.21	1.63	0.10
Longitude	0.20	0.22	0.93	0.35
Year:S ${ }_{\text {t }}$	-0.02	0.08	-0.24	0.81
Year ${ }^{2}$ S S_{t}	-0.02	0.22	-0.09	0.93
Year: $P_{1, \mathrm{t}}$	-0.13	0.08	-1.74	0.08
Year: $P_{2,1}$	-0.20	0.12	-1.67	0.10
Year ${ }^{2}: P_{2, \mathrm{t}}$	0.35	0.24	1.46	0.14
Year: $P_{3, \mathrm{t}}$	0.18	0.51	0.36	0.72
Year ${ }^{2}$: $P_{3,1}$	0.18	0.90	0.20	0.85
Latitude: $S_{\text {t }}$	0.48	0.14	3.50	<0.001
Latitude: $P_{1, \mathrm{t}}$	0.24	0.08	3.00	<0.005
Latitude: $P_{2, \mathrm{t}}$	-0.36	0.13	-2.80	0.01
Latitude: $P_{3, \mathrm{t}}$	-0.46	0.40	-1.16	0.25
Year:Latitude	0.04	0.32	0.11	0.91
Year ${ }^{2}$ Latitude	-0.48	0.54	-0.90	0.37
Longitude: $S_{\text {t }}$	0.53	0.20	2.59	0.01
Longitude: $\mathrm{S}_{\mathrm{t}-1}$	0.13	0.07	1.90	0.06
Longitude: $P_{1, \mathrm{t}}$	0.30	0.10	2.95	<0.01
Longitude: $P_{2,1}$	-0.61	0.17	-3.54	<0.001
Longitude: $P_{3,1}$	0.90	0.59	1.53	0.13
Year:Longitude	-0.46	0.31	-1.46	0.15
Year ${ }^{2}$ Longitude	0.38	0.56	0.67	0.50
Latitude:Longitude	0.63	0.42	1.50	0.14
S_{t} : Year ${ }^{2}$:Latitude	-0.86	0.37	-2.35	0.02
$P_{3, t}$:Year:Latitude	-0.55	0.62	-0.89	0.37
$P_{3,1}$:Year ${ }^{2}$:Latitude	2.99	1.15	2.60	0.01
$S_{\text {t-1 }}$: Year:Longitude	-0.28	0.14	-1.95	0.05
S_{t-1} : Year 2 :Longitude	-1.12	0.51	-2.21	0.03
$P_{1,1}$: Year:Longitude	0.57	0.12	4.61	<0.0001
$P_{3, t}$:Year:Longitude	-0.66	0.86	-0.77	0.44
$P_{3,1}$: Year 2 :Longitude	1.47	1.61	0.91	0.36
$S_{\text {t }}$:Latitude:Longitude	1.28	0.39	3.27	<0.01
$P_{1, \text { t }}$: Latitude:Longitude	0.34	0.19	1.83	0.07
$P_{2,1}$: Latitude:Longitude	-1.18	0.30	-3.98	<0.0001
$P_{3,1}$: Latitude:Longitude	0.47	0.87	0.54	0.59
Year:Latitude:Longitude	-0.62	0.55	-1.14	0.26
Year ${ }^{2}$:Latitude:Longitude	-0.19	1.03	-0.19	0.85
$S_{\text {t }}$:Year ${ }^{2}$:Latitude:Longitude	-2.76	0.90	-3.06	<0.01
$P_{3, t}$: Year:Latitude:Longitude	-1.62	1.17	-1.38	0.17
$P_{3, t}$:Year ${ }^{2}$:Latitude:Longitude	3.90	2.48	1.58	0.12

Supplementary Table 3. Best model (in AIC-based model selection) for the winter density index of the small mustelids (year t). Latitude, longitude, and year were scaled to vary between -1 and 1 . A = autumn vole density; S = spring vole density.

Parameter	Estimate	Std. error	t-value	p-value
Intercept	0.01	0.11	0.08	0.94
$A_{\mathrm{t}-1}$	0.19	0.10	1.88	0.06
$S_{\text {t-1 }}$	0.10	0.10	1.07	0.28
A_{t-2}	0.22	0.08	2.82	<0.01
Year	-0.59	0.10	-5.76	<0.0001
Year ${ }^{2}$	0.50	0.28	1.76	0.08
Latitude	0.50	0.12	4.34	<0.0001
Longitude	-0.59	0.20	-2.90	<0.01
Year ${ }^{2}$:Longitude	1.61	0.45	3.56	<0.001
Latitude:Longitude	0.24	0.24	1.02	0.31
$A_{\text {t- }-1}$:Year	0.35	0.10	3.38	<0.001
$A_{t-1}:$ Year 2	-0.43	0.24	-1.74	0.08
A_{t-1} :Latitude	-0.13	0.10	-1.23	0.22
$A_{\text {t-1 }}$:Longitude	0.31	0.19	1.63	0.10
$\mathrm{S}_{\mathrm{t}-1}$:Year	-0.17	0.10	-1.72	0.09
$S_{\text {t-1 }}$:Year ${ }^{2}$	0.58	0.24	2.39	0.02
$\mathrm{S}_{\mathrm{t}-1}$:Latitude	0.22	0.10	2.22	0.03
$\mathrm{S}_{\mathrm{t}-1}$:Longitude	-0.32	0.15	-2.19	0.03
$A_{\text {t-2 }}$: Year 2	-0.31	0.20	-1.54	0.12
$A_{\text {t- } 2}$:Longitude	0.30	0.13	2.24	0.03
A_{t-1} :Year ${ }^{2}$:Longitude	-0.97	0.35	-2.74	0.01
A_{t-1} : Latitude:Longitude	-0.42	0.25	-1.67	0.10
$S_{\text {t-1 }}$:Year ${ }^{2}$:Longitude	0.95	0.34	2.78	0.01
A_{t-2} :Year ${ }^{2}$:Longitude	-0.66	0.35	-1.89	0.06

Supplementary Table 4. Best model (in AIC-based model selection) for the winter density index of the generalist mammalian predators (year t). Latitude, longitude, and year were scaled to vary between -1 and 1 . $\mathrm{A}=$ autumn vole density; $\mathrm{S}=$ spring vole density.

Parameter	Estimate	Std. error	t-value	p-value
Intercept	0.06	0.09	0.64	0.52
$A_{\mathrm{t}-1}$	-0.05	0.05	-0.90	0.37
$\mathrm{S}_{\mathrm{t}-1}$	0.09	0.04	2.09	0.04
Year	-0.31	0.12	-2.50	0.01
Year ${ }^{2}$	-0.30	0.24	-1.25	0.21
Latitude	-0.22	0.14	-1.59	0.11
Longitude	0.26	0.18	1.41	0.16
Year ${ }^{2}$:Latitude	0.28	0.33	0.87	0.38
Year ${ }^{2}$:Longitude	-1.28	0.47	-2.74	0.01
Latitude:Longitude	1.00	0.29	3.48	<0.001
A_{t-1} :Year	0.17	0.06	2.78	0.01
$A_{\text {t-1 }}$:Latitude	-0.14	0.07	-1.90	0.06
$A_{\text {t- }-1}$:Longitude	0.12	0.05	2.29	0.02
$S_{\text {t-1 }}$:Year	-0.12	0.05	-2.24	0.03
$\mathrm{S}_{\mathrm{t}-1}$:Latitude	0.16	0.07	2.23	0.03
$\mathrm{S}_{\mathrm{t}-1}$:Longitude	0.03	0.08	0.36	0.72
Year ${ }^{2}$:Latitude:Longitude	-1.41	0.76	-1.86	0.06
$\mathrm{S}_{\mathrm{t}-1}$:Latitude:Longitude	-0.03	0.15	-0.22	0.82

Supplementary Table 5. Best model (in AIC-based model selection) for the summer density index of the avian predators (year t). Latitude, longitude, and year were scaled to vary between -1 and 1 . A = autumn vole density; S = spring vole density.

Parameter	Estimate	Std. error	t-value	p -value
Intercept	-0.18	0.03	-6.36	<0.0001
$S_{\text {t }}$	0.05	0.02	2.54	0.01
A_{t-1}	0.06	0.03	2.31	0.02
$\mathrm{S}_{\mathrm{t}-1}$	-0.02	0.02	-0.90	0.37
Year	0.00	0.02	0.21	0.84
Year ${ }^{2}$	-0.02	0.07	-0.28	0.78
Latitude	-0.49	0.05	-10.73	0.00
Longitude	0.01	0.07	0.07	0.94
Year ${ }^{2}$:Latitude	0.24	0.11	2.11	0.04
Year ${ }^{2}$:Longitude	0.13	0.16	0.83	0.41
Latitude:Longitude	0.38	0.13	2.95	<0.0001
$S_{\text {t }}$:Year	0.04	0.02	2.31	0.02
$S_{t}:$ Year 2	-0.01	0.05	-0.29	0.77
S_{t} :Latitude	-0.03	0.03	-0.86	0.39
$S_{\text {t }}$:Longitude	-0.02	0.05	-0.38	0.71
$A_{t-1}:$ Year 2	0.11	0.07	1.66	0.10
$A_{\text {t-1 }}$:Latitude	0.01	0.04	0.20	0.84
$A_{\text {t-1 }}$:Longitude	-0.01	0.07	-0.18	0.85
S_{t-1} : Year 2	-0.08	0.05	-1.53	0.13
$\mathrm{S}_{\mathrm{t}-1}$:Latitude	-0.04	0.04	-0.88	0.38
S_{t-1} :Longitude	-0.02	0.06	-0.27	0.79
Year ${ }^{2}$:Latitude:Longitude	0.18	0.29	0.61	0.54
S_{t} :Year ${ }^{2}$:Latitude	0.07	0.08	0.84	0.40
$S_{\text {t }}$:Year ${ }^{2}$:Longitude	0.04	0.12	0.31	0.75
$S_{\text {t }}$:Latitude:Longitude	-0.01	0.10	-0.11	0.91
$A_{t-1}:$ Year ${ }^{2}$:Latitude	-0.02	0.11	-0.20	0.84
A_{t-1} :Year ${ }^{2}$:Longitude	-0.14	0.15	-0.93	0.35
$A_{\mathrm{t}-1}$:Latitude:Longitude	0.05	0.12	0.45	0.65
$S_{\text {t-1 }}$:Year ${ }^{2}$:Latitude	0.02	0.10	0.18	0.86
S_{t-1} Year ${ }^{2}$:Longitude	0.12	0.12	1.01	0.31
$\mathrm{S}_{\mathrm{t}-1}$:Latitude:Longitude	-0.13	0.11	-1.16	0.25
S_{t} :Year ${ }^{2}$:Latitude:Longitude	0.23	0.22	1.03	0.30
$A_{\text {t-1 }}$:Year ${ }^{2}$:Latitude:Longitude	-0.27	0.26	-1.05	0.30
$\mathrm{S}_{\mathrm{t}-1}$:Year ${ }^{2}$:Latitude:Longitude	0.27	0.22	1.20	0.23

Predicted winter population growth rate

Predicted summer population growth rate

Only small mustelids

Generalists removed

Only generalists

Avian predators removed

Only avian predators

Only small mustelids

Generalists removed

Only generalists

Avian predators removed

West

year
West

North

year
North

East
位

