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ABSTRACT

Kurki, Matti
The Stress-Strain State and Stabilization of Viscoelastoplastic, Imperfect Moving
Web Continuum
Jyväskylä: University of Jyväskylä, 2014, 78 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 198)
ISBN 978-951-39-5855-8 (nid.)
ISBN 978-951-39-5856-5 (PDF)
Finnish summary
Diss.

Successful handling of different web-like materials is the key issue in their
production industry. The thesis completes the area of moving web research by
introducing a continuation, where cross-scientific web handling issues are pre-
sented.

A fundamental aspect in all moving webs is their stress-strain behavior. A
new theory for moving, viscoelastic web continuum is introduced. A system
of third-order partial differential equations is developed modelling the moving
solid continuum. The results show that strain distribution of the viscoelastic web
is no longer constant. The two-dimensional solution is always nonlinear since the
contraction couples the in-plane velocities Ux and Uy.

The effects of stress state to the divergence velocity limit of orthotropic mov-
ing web is presented. The minimal eigenvalue and the corresponding out-of-
buckling mode and velocity are found. The buckling modes are localized at the
edge areas of the web depending on the level of orthotropic properties. A new
model of a coupled web-fluid environment utlizing steady-state potential fluid
flow is also presented giving good results compared to the wind tunnel tests.

The thesis includes the effects of web edge imperfections on production ef-
ficiency. A new model for the fatigue life of a moving elastic web is introduced.
An optimization procedure for web stress has been developed in order to find the
optimum for maximizing the production performance of the web handling line.

In practice, the utilization of the web’s stress-strain capability is limited by
the web strength and the amount of irrecoverable strains. Additionally, a stress
relaxation occurs in web materials. A measurement method for viscoelastic mate-
rials is introduced. Results show that relaxation of the web increases the irrecov-
erable strain of the web decreasing the strain potential for upcoming processes.

An example of an adaptive web stabilization using specialized roll is in-
cluded in thesis. The air flow forming boundary layers to roll and fabric surfaces
are utilized creating a underpressurizing suction through the fabric. This type of
the roll enables a more simple web supporting arrangements.

Keywords: modelling, solid mechanics, moving continuum, continuum mechan-
ics, viscoelasticity, stability, fluid-structure, runnability
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PREFACE

The scientific activities presented in this work were conceived during the au-
thor’s employment at VTT Jyvãskylã and continued in Valmet AIR unit and later
in Metso Paper Inc. between 1996 and 2007. One of the first tasks in Valmet
Corp. was the speeding up the development of the runnability components for
Valmet AIR for high-speed paper machines. At that time, the Valmet’s Web Han-
dling Competence Group (WHCG) was formed to improve the research of vari-
ous kinds of web handling problems and to distribute that knowledge within the
company. The group, lead by the author, included selected specialists throughout
the Valmet Corp. Their expertise covered entire web handling line: from the raw
materials and furnish optimization, through web elasticity enhancement, to the
efficiency studies of different high speed printing machines.

During that time, new material measurement methods for web rheology
were developed along with the extensive usage of different numerical tools, es-
pecially the CFD (Computational Fluid Dynamics). In several projects the nu-
merical models developed increased the fundamental understanding of moving
web behavior thus shortening significantly the development work for physical
products. In several cases, the results given by the models allowed a complete
realization of selected paper machinery components without the traditional (and
expensive) physical prototype testing.

The topic of this research is motivated by a desire to understand better the
basics of viscoelastic stress-strain behavior and to create a contribution to effi-
cient production of various kinds of flat, web-like materials, where both the me-
chanical stability and the efficient use of raw materials play an important role.
This thesis extends the previous work of the research group on web handling
continuance, where different cross-scientific web handling items are thematically
connected together by using their common contributor, the web stress state.

New insights to the questions of stress-strain state of the moving viscoelastic
web, web stability, imperfectness, its viscoelastoplastic properties and adaptive
stabilization technology are generated. These items are the building blocks of a
thematic web handling continuance, which includes some of the most important
items for successful, high-efficiency web production.
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NOMENCLATURE

Notation

L(w): = D1
∂4w
∂x4 + 2D3

∂4w
∂x2∂y2 + D2

∂4w
∂y4

flexural stiffness of the orthotropic plate.
∂u
∂x

: partial derivative of u with respect to x

du(x, t)
dt

: =
∂u(x, t)

∂t
+

dx
dt

∂u(x, t)
∂x

total (material, Lagrange) derivative of u(x, t) with respect to t,
here often dx/dt = V0 is constant

∇: = ∂
∂x i + ∂

∂y j + ∂
∂z k, gradient

ΔT: (small) change of T, variation of T
(...)T: matrix transpose

Latin symbols

A: area. Unit [A] = m2

A1: area at the begin state. Unit [A1] = m2

A2: area at the end state. Unit [A2] = m2

a: length of edge crack. Unit [a] = m
a0: initial length of edge crack. Unit [a0] = m
acr: critical length of edge crack. Unit [acr] = m
b: width of panel or half-width of plate. Unit [b] = m
C11: elasticity coefficient in x-direction. Unit [C11] = N/m2

C22: elasticity coefficient in y-direction. Unit [C22] = N/m2

C12: orthotropic elasticity coefficient. Unit [C12] = N/m2

C21: orthotropic elasticity coefficient. Unit [C21] = N/m2

C66: shear elasticity coefficient. Unit [C66] = N/m2

D: flexural stiffness. For panel, D = Eh3/(12(1 − ν2)). Unit [D] = N m
D1: flexural stiffness in x-direction. Unit [D1] = N m
D2: flexural stiffness in y-direction. Unit [D2] = N m
D3: flexural shear stiffness in xy-plane. Unit [D3] = N m
E: Young’s modulus of isotropic plate or panel. Unit [E] = N/m2

E11: Young’s modulus of orthotropic plate in x-direction. Unit [E11] = N/m2

E22: Young’s modulus of orthotropic plate in y-direction. Unit [E22] = N/m2

F (x): functional describing out-of-displacement. Unit [F (x)] = m
Fx: body force in x-direction. Unit [Fx] = N/m3

Fy: body force in y-direction. Unit [Fy] = N/m3

G12: in-plane shear modulus of orthotropic plate in xy plane.
Unit [G12] = N/m2



GH: in-plane shear modulus of orthotropic plate in xy plane
(geometric mean from E1 and E1). Unit [GH] = N/m2

H1: nondimensional flexural stiffness in x-direction.
H2: nondimensional flexural stiffness in y-direction.
H3: nondimensional flexural shear stiffness in xy-plane.
h: thickness. Unit [h] = m
K: stress intensity factor. Unit [K] = Pa

√
m

KC: fracture toughness. Unit [K] = Pa
√

m
K11: viscosity coefficient in x-direction. Unit [K11] = Pa · s
K12: orthotropic viscosity coefficient. Unit [K12] = Pa · s
K21: orthotropic viscosity coefficient. Unit [K21] = Pa · s
K22: viscosity coefficient in y-direction. Unit [K22] = Pa · s
K66: shear viscosity coefficient. Unit [K66] = Pa · s
k: material constant in Paris law
�: free span length parameter. For the panel submerged in flowing fluid,

the free span is taken to be x ∈ (−�, �).
Otherwise, as x ∈ (0, �). Unit [�] = m

M: bending moment per unit length or total mass or critical mass.
Unit for bending moment [M] = N m/m.
Unit for mass [M] = kg

m: mass per unit area. Unit [m] = kg/m2

N: normal for out-of-plane direction
n: number of loading cycles
ncr: critical number of loading cycles due to fatigue fracture
nx: unit normal in x-direction. Unit [nx] = m
ny: unit normal in y-direction. Unit [ny] = m
n: unit normal vector. Unit [n] = m
qf: aerodynamic reaction pressure. Unit [qf] = N/m2

T: tension. Unit [T] = N/m
T0: constant (homogeneous) tension. Unit [T0] = N/m
Txx: tension in x-direction. Unit [Txx] = N/m
Tyy: tension in y-direction. Unit [Tyy] = N/m
Txy: shear tension in xy-plane. Unit [Txy] = N/m
t: time. Unit [t] = s
U: longitudinal transport velocity. Unit [U] = m/s
U1: transport velocity at beginning state. Unit [U1] = m/s
U2: transport velocity at end state. Unit [U2] = m/s
U: velocity vector. Unit [U] = m/s
Ux: velocity in x-direction. Unit [Ux] = m/s
Uy: velocity in y-direction. Unit [Uy] = m/s
V: volume. Unit [V] = m3



V0: axial velocity of panel or plate or initial volume.
Unit [V0] = m/s for velocity.
Unit [V0] = m3 for volume

Vcr
0 : critical velocity of elastic instability of travelling panel or plate

V∞: free-stream velocity of surrounding fluid. Unit [V∞] = m/s
w: z-directional, out-of-plane displacement. Unit [w] = m
x: x-coordinate. Unit [x] = m
y: y-coordinate. Unit [y] = m
z: z-coordinate. Unit [z] = m

Greek symbols

α: nondimensional variable for calculating the root γ2
0 or

nondimensional web velocity for fluid-structure calculation.
β: nondimensional flexural stiffness in fluid-structure calculation.
β1: Poisson ratio β1 = ν12 or

nondimensional flexural stiffness in fluid-structure calculation or
geometric factor for edge crack.

β2: modified Poisson ratio. β2 = ν12 +
4 G12

E2
(1 − ν12ν21)

γ: nondimensional fluid mass in fluid-structure calculation.
γxy: shear strain. γxy = −2z(∂2w/∂x∂y) or γxy = εxy + εyx

γxy: shear strain. γxy = −2z(∂2w/∂x∂y) or γxy = εxy + εyx

Γ: edge of the domain.
εT: total strain applied.
εxx: x-directional component of strain. εxx = −z(∂2w/∂x2) or εxx = ∂u/∂x
εxy: xy-shear strain component in xy-plane. εxy = ∂u/∂y
εyx: yx-shear strain component in xy-plane. εxy = ∂v/∂x
εyy: y-directional component of strain. εyy = −z(∂2w/∂y2) or εyy = ∂v/∂y
εzz: z-directional component of strain. εww = ∂w/∂z
η11: viscous damping coefficient in x-direction.

Unit [η11] = N s/m2 = Pa · s
η22: viscous damping coefficient in y-direction.

Unit [η22] = N s/m2 = Pa · s
θ: nondimensional fluid velocity for fluid-structure calculation.
κ: nondimensional variable for calculating eigenfunction.
λ: nondimensional bending stiffness parameter.
Π: viscous shear constant. Unit [Π] = N s/m2 = Pa · s
ρ: density. Unit [ρ] = kg/m3

ρ f : density of fluid. Unit [ρ f ] = kg/m3

ρ0: density at initial state. Unit [ρ0] = kg/m3

ρ1: density at the begin state. Unit [ρ1] = kg/m3

ρ2: density at the end state. Unit [ρ2] = kg/m3



ν: Poisson ratio of isotropic plate or panel (nondimensional).
ν12: Poisson ratio for orthotropic material. When stretched along axis 1 (x),

ν12 is the contraction factor along axis 2 (y).
ν13: Poisson ratio for orthotropic material. When stretched along axis 1 (x),

ν13 is the contraction factor along axis 3 (z).
ν21: Poisson ratio for orthotropic plate. When stretched along axis 2 (y),

ν21 is the contraction factor along axis 1 (x).
σxx: normal stress in x-direction. Unit [σxx] = N/m2

σyy: normal stress in y-direction. Unit [σyy] = N/m2

τxy: shear stress in xy-plane. Unit [τxy] = N/m2

φ: continuous test function (vector).
ϕ12: viscous Poisson ratio for orthotropic material. When stretched along

axis 1 (x), ν12 is the contraction factor along axis 2 (y).
ϕ21: viscous Poisson ratio for orthotropic material. When stretched along

axis 2 (x), ν21 is the contraction factor along axis 1 (y).
Φ: nondimensional variable for calculating eigenfunction.
Ψ: continuous function for describing out-of-plane displacement or

nondimensional variable for calculating eigenfunction.
Ω: domain of the governing equation (connected open set).
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1 INTRODUCTION

The fundamental stress-strain behavior of continuous moving webs forms an in-
teresting area, which is relatively well- studied, but still includes aspects which
are not well-understood. Axially moving materials, such as strings, belts, beams,
membranes and plates have many applications in industry, e.g. in paper produc-
tion, and their out-of-plane mechanics have been studied widely. In processing
of different kinds of thin, laterally moving solid webs, challenges such as the ef-
ficiency of production and effects due to instability caused by high velocity are
being met. These challenges are tightly connected to the overall behavior of the
stresses and strains appearing in moving solid continua. [36, 32, 33, 59, 117].

This thesis aims to give comprehensive insight to the different sections of
web handling continuation, including theoretical stress-strain behavior of mov-
ing webs, the stabilization criteria for coupled web-air systems, the significance
of the web imperfections and edge cracks, the effects and nature of viscoelasto-
plastic materials and the principles of external stabilization applications for high
velocities. This approach will give a new, distinctive and cross-scientific structure
to this thesis, as it takes account both the theoretical and practical aspects of the
web handling in different velocity and efficiency environments.

1.1 Structure of the Thesis

The structure of this thesis is based on the cross-scientific approach described in
the introduction in Chapter 1. The principle of this thesis is to create thematic
continuance for web handling (Figure 1). Mathematical theory is followed by
the modelling of the constitutive physical features, stabilization principles and
the fatigue life of the web, this leads to the investigation of the effects of the
viscoelastoplastic material properties, which contribute to the web’s behavior,
and finally the process is concluded with a web handling application in a high-
velocity web transport environment.

These stages include essential components, which cover the creation of the
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FIGURE 1 Web handling continuance: the structure and cross-scientific nature of this
thesis including the publications PI - PVII thematically located along the
continuance.

stress state inside the web thickness due to relative velocity differences used in
various continuous web handling environments. Further, the stress-strain model
for viscoelastic moving web continuum connetcs both viscous and velocity prop-
erties in moving web [52, 57]. These properties provide additional features to the
physics of the moving web: both velocity and viscoelasticity are contributing to
the in-plane stress distribution and thus also to the planar stress distribution of
the moving medium [59].

The great majority of moving webs in different practical environments are
arranged, unsupported, between the rollers that are usually the only supporting
surfaces along the web handling line. In a situation of this kind, web stress plays
an essential role in web stabilization [52, 75, 85, 3, 106].

The quality of the final fibrous product, during process the moving web, is
tightly connected to the production efficiency. The effect of the sharp geometrical
shapes to the stress concentrations of the structures is well known [105]. In practi-
cal web handling environments, these geometrical disturbances at the web edges
are common contributors to the efficiency. All geometrical disturbances appear-
ing on the edges of the web will increase the stress peaks around the disturbances.
Further, this will increase the probability of web breaks when the tension values
and fracture stiffness values are approaching the critical limit values of the mate-
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rial itself [95, 94, 39, 105, 34, 40, 5].
In practical high-velocity web handling, one very likely web instability con-

tributor is the viscous behavior of the air. To prevent the web detachment from
supporting or guiding surface at the closing pocket area of the contacting web
and roll, the excess, over-pressurized air must be removed [22, 27, 61, 53].

This thesis introduces a more recent adaptive air-control method, where air
removal is handled using special groove geometry in the roll mantle. The ge-
ometry of the grooves is designed so that the flow at both closing and opening
pockets create an active closures at the both ends of the web-roll contact (wrap)
area. The stabilizing, contact-ensuring negative pressure (suction) is adaptive:
the self-adjusting process depends on roll surface velocity, which, when increas-
ing, increases both the sealing and the suction effect with velocity increase. This
property is useful especially at places where the web stabilization is essential. The
alignment of the application space and roll alignment are tightly controlled and
can be difficult to realize with traditional web stabilizing methods using external
suction fan installation.

The structure of this thesis presented in Figure 1 illustrates only one possible
path starting from the theoretical foundation of the web’s stress-strain behavior
and leading to the actual application of web stabilization by using external forces
directed against the web. Especially at the latter part of the path there exist many
different web handling applications for the needs of the web material and web
handling process [53]. The creation of the stress inside the moving web, however,
is a common contributor in all web handling applications.

1.2 Objectives

The main objective of this thesis is to create and demonstrate a conceptual web
handling continuance using mathematical modelling approaches for moving vis-
coelastic, possibly imperfect web continuum. The common contributor of this
continuance is web stress σ (or web tension T).

In Figure 2, an exemplary web tension level Tweb is created using the relative
speed difference. This usage for the purpose of stability is mandatory in open,
unsupported web spans, but if uncontrolled, this method can cause decreased
efficiency. Therefore, a new adaptive web stabilizing application is introduced to
supported web handling environments to reduce the dependence from the web
stress.

The benefit of this cross-scientific approach is to bring front the develop-
mental path from theory to practice forwarded by finding how theoretical con-
siderations and practical applications are affecting in real-life web handling envi-
ronments. Additionally, with the help of new principles of continuum modelling,
it is possible to find similarities between other transport phenomena where fluid
is the transport medium.
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FIGURE 2 The creation of web tension in MD (Machine Direction) in wet LWC paper
with 1.0% strain. Redraw from PVI .



2 LITERATURE REVIEW AND CONTRIBUTION OF

THE PUBLICATIONS

2.1 Stress-strain relations of viscoelastic moving web continuum

The origin and structure of the in-plane tension distribution in a moving solid
web seems to be an area of which very little is known. The models that are often
used with the heterogenous web materials are based on assumptions of isotropic
or orthotropic material properties [24, 69, 86, 82]. Also, the web materials are
often considered as viscoelastic or viscoplastic but there is no coupling between
in-plane strain and web velocity effects.

The building up of the stress and strain in moving solids is closely related to
the advance of the strain waves inside the solids. In this area, valuable work has
been performed by Mann et al. who studied the advance of waves in fibrous ma-
terials. In their case, the main focus was in the determination of elastic constants
of the fibrous materials [69]. Time-dependent, in-plane vibrations of a moving
continuous membrane were studied by Shin et al. [96]. In their work, in-plane vi-
bration modes of an isotropic web were studied between the traction lines. Also
Guan et. al. have studied viscoelastic web behavior in both steady-state and
unsteady-state cases [32, 33].

Usually, in the viscoelastic constitutive relations, instead of the material
derivative the partial time derivative is used. The first applications using the
material derivatives with the in-plane moving web continuum were presented
by Kurki [52]. Later, Mockensturm and Guo suggested that the material deriva-
tive should be used [72]. In their work, non-linear, out-of-plane vibrations and
dynamic response of axially moving viscoelastic strings was studied. Kurki and
Lehtinen suggested, independently, that the material derivative in the constitu-
tive relations should be used in their study concerning the in-plane displacement
field of a travelling viscoelastic plate [59] which is also one of the main themes
in PI and PII. In the study by Chen et al., the material derivative was used in
the viscoelastic constitutive relations [14]. They studied parametric, out-of-plane
vibration of axially accelerating viscoelastic strings. Chen and Ding studied the
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stability of axially accelerating viscoelastic beams using the method of multiple
scales and the material derivative in the viscoelastic constitutive relations [16].
Chen and Wang the studied stability of axially accelerating viscoelastic beams us-
ing asymptotic perturbation analysis and the material derivative in the viscoelas-
tic relations [17]. In a recent research by Chen and Ding, the material derivative
was also used to study the dynamic response of vibrations of axially moving vis-
coelastic beams [16]. In their study, a non-linear model was used and the coupling
of the transverse displacement with the longitudinal (in-plane) displacement was
taken into account. However, their main focus was on the out-of-plane bending
behavior of the beam.

2.2 Stabilization criteria of the tensioned web in high-speed envi-
ronment

Studies performed on the area of web handling are usually connected with the
time-dependent behavior of out-of-plane displacements of the moving webs. Re-
search on vibrations of travelling elastic materials goes back to 1890’s when Skutch
made the first models dealing with tensioned, ideal strings [99]. In the 1950’s,
Sack [88] as well as Archibald and Emslie [3] studied transverse vibrations in a
traveling string. In the 1960’s and 70’s, many researchers continued studies on
moving strings and beams concentrating mainly on various aspects of free and
forced transverse vibrations [71, 106, 74, 73, 109].

Stability of small, out-of-plane vibrations of travelling two-dimensional rect-
angular membranes and plates has been studied by Ulsoy and Mote [114]. When
the web is advancing through its various processes without an external support,
the inertial forces depending on the web velocity are coupled with web tension
[88, 3]. Pramila et. al. showed that the transverse behavior of the web and the
response in the flowing fluid (air) surrounding the web are coupled if the density
of the web material is low (see e.g. [85, 12]). Lin and Mote studied an axially
moving membrane in a 2D formulation, predicting the equilibrium displacement
and stress distributions under transverse loading [66]. Later, the same authors
studied the wrinkling of axially moving rectangular webs with a small flexural
stiffness [67].

One of the first studies on transverse vibration of travelling viscoelastic ma-
terial was carried out by Fung et al. using a string model [29]. Extending their
work in their later research, they studied the effects of viscous damping [30].
Viscoelastic strings and beams have recently been studied extensively, see e.g.
[19, 14, 15]. Using the spectral element method, Oh et al. studied critical ve-
locities, eigenvalues and natural modes of the transverse displacement of axially
moving viscoelastic beams [78, 63].

Chen and Zhao [20] presented a modified finite difference method to sim-
plify a non-linear model of an axially moving string. They studied numerically
the free transverse vibrations of both elastic and viscoelastic strings. Chen and
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Yang studied free vibrations of viscoelastic beams travelling between simple sup-
ports with torsion strings [18]. They studied the viscoelastic effect by perturbing
a similar elastic problem and using the method of multiple scales. Recently, Yang
et al. have studied vibrations, bifurcation, and chaos of axially moving viscoelas-
tic plates using finite differences and a non-linear model for transverse displace-
ments [21].

2.3 Production Efficiency with Moving, Imperfect Tensioned Web

Production efficiency has been and still is very important item in different web
handling environments and becomes emphasized when web velocities are high.
This is closely linked with the tension levels used in order to improve the web sta-
bility. Essentially, the core of the efficiency problem is often with the edges of the
web. After web forming, the edges are corrected first time with edge trimming,
high-pressure water jets are cutting a narrow strips from the edges. This, largely
unstudied area gives rise to one of the many edge handling problems, especially
in paper- and board making. These problems become even more apparent later
at the production line when the paper dries and advances to the finishing stage.

Problems in the edge trimming are usually visible only with the use high-
speed imaging together with an appropriate lighting system [103]. Edge trim-
ming can have significant effect in the creation of edge cracks leading to possible
fractures and web breaks. Figure 3 clearly reveals these effects often unseen with
bare eyes. One of the main items contributing on this is the web’s stress behav-
ior at the roll contact areas, especially where roll friction prevents the web from
contracting in cross direction, thus creating stress peaks in longitudinal transport
direction at the roll-web detachment area [37].

The field of fracture mechanics was developed by Irwin [43], whose research
was based on the early papers of Inglis, Griffith, and Westergaard [42, 31, 120].
Linear elastic fracture mechanics was first applied to paper materials by Seth and
Page, who measured fracture toughness for different paper materials [94]. Swine-
hart and Broek determined the fracture toughness of paper with the help of both
the stress intensity factor and the strain energy release rate [105]. They found that
the measured crack length and fracture toughness were in a good agreement with
the LEFM theory.

Wathén has discussed how paper that has undergone damage affects the
web breaks in paper making [119]. Tryding has studied crack growth evolution in
paper material using experiments and a cohesive crack model with finite element
analysis [112]. Fatigue of wood-pulp fibers on micro-structural level has been
studied by Hamad [35, 34].

Various analyses of vibrations and stability of stationary beams and plates
exists in the literature. An extensive review of fractures in cracked materials and
of challenges in such models was carried out by Dimarogonas [23]. Finite element
analysis has often been applied to analyze the vibrations and stability of cracked
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FIGURE 3 Edge trimming quality photographed with long exposure time a) and using
high-speed imaging b) [103].

rectangular plates in the case centre- or edge-located cracks. Bachene et al. used
the extended finite element method and Liew et al. developed an efficient decom-
position method to study vibrations of cracked plates [4, 64]. Brighenti examined
buckling failure of cracked plates for different crack orientations with the help of
finite element analysis [9]. Both buckling and vibration analysis were covered in
the finite element studies of cracked plates by Prabhakara and Datta [83, 84].

With the help of dual series equations, Stahl and Keer studied vibrations
and stability of rectangular plates [102]. Vafai et al. studied parametric instability
of plates having one crack at an edge [115]. They considered simply supported
rectangular plates under periodic loadings using an integral equation method.
Effects of cracks on the eigenfrequencies and eigenmodes of axially moving beams
at sub-critical transport velocities was studied by Murphy and Zhang [76].

Hristopulos and Uesaka studied the variations in web velocity that cause
fluctuations in the relative velocity difference responsible for creating the strain
and stress to the web. These were found to be important for web breaks and
production efficiency where the high strain fluctuations appear due to large out-
of-roll deformations [40].



25

2.4 Viscoelastoplasticity in Fibrous Web Materials

Many real-life amorphous materials do not behave according to linear elasticity,
and depending on the level of the loading, the degree of nonlinear elasticity in-
creases. Especially with fibrous materials such as paper, the nature of the elasto-
plasticity depends both of the connections between the fibers, i.e. the bonds, and
on the fiber elasticity itself [1].

Generally, different possibilities to the topochemical modification of fibers
using different mechanical or chemical aids are myriad and will not be discussed
here. Briefly we can state that both paper elasticity and strength are based on
fibrillar structure of fiber cell wall, which is essentially a structure of cellulose
chains. These chains are linear polymers of D-glucose residues bound together
with beta-(1,4) glycosidic linkages and these are also responsible for the attach-
ments (bonds) between the fiber surfaces [48, 118].

Strength and elasticity properties are further modified by the fiber network
structure. Vainio studied both fiber segments between the bonding areas and
their alignment which are contributing to the overall elastoplastic behavior of the
paper through a fiber activation process [116].

Both nonlinear elasticity and viscoelasticity of different polymers have been
known for a long time. First known studies on paper viscoelasticity has made
Andersson et al. who measured basic viscoelastic properties of paper using dif-
ferent strain rates [2]. Basic studies on nonlinear plasticity in fibrous, wood-based
materials have been carried out by Sanborn [91]. Skowronski et al. continued the
research of irrecoverable strains and in their study one of the important findings
was the coupling between the time-dependent creep and the increase of plastic
irrecoverable strain in material [98]. Additionally, the modelling of nonlinear or-
thotropic behavior of the fibrous materials has been studied by Ostoja-Starzewski
et al. However, the models developed by several authors do not include the ir-
recoverable properties of the material. [113, 108, 46, 10, 101, 89]. From the mod-
elling point of view, an important finding was reported by Subramanian et al.
showed that geometrical mean of in-plane orthotropic moduli of elasticity does
not change even if the anisotropy of the paper changes [104].

An important connection between the viscoelasticity and stress behavior is
brought up in PV and PVI. The emphasis of the research was on fast, step-like
straining of the fibrous, paper structures. During the production, a paper web un-
dergoes different velocity increase steps in order to create the adequate strain and
stress levels for web stability. In these occasions, viscoelastic stress response has a
significant effect on stress levels that appear in different web handling processes
[37]. A special emphasis in these studies was on the determination of viscoelasto-
plastic properties of a paper web when which had not been dried completely
and the strength of which in wet state was only 15...30% of the final dried paper
[68, 56, 53, 26].
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FIGURE 4 Air flows at closing and opening pockets [57, 77].

2.5 Adaptive web stabilization

Aerodynamical over- and underpressure effects in the paper machine are one of
the key contributors to the development of runnability disturbances at high web
velocity levels. The origin of these effects is the viscosity of the surrounding air
which further causes the formation of turbulent boundary layers [93, 22, 27, 49,
61].

Web forms both closing and opening pockets with different types of rolls
throughout the web processing line. Due to transported air by the boundary lay-
ers, an excess air flows out from the closing pockets, which causes overpressure
effects (see Figure 4). At the opening pocket area, the detachment of the web from
the roll forms a closed, sharp pocket area, from where the forming boundary lay-
ers transport air away, creating an underpressure. Furthermore, these pressures
cause web displacements, which can be divergent, apparently steady-state -type
stable deflections or unstable time-dependent web flutter [22, 75, 107, 13].

Web stabilization is always needed in fast web handling environments when-
ever the elasticity or the strength of the web is at low level. Moreover, in the case
of paper making, low elasticity leads to high strain levels which further can cause
the quality degradation to finished, dry paper [39, 53]. In paper making, web ve-
locities were increasing over 1000 m/min at the end of 1980’s [107, 11, 49]. At
that time, web detachment and runnability disturbances were becoming more
common restricting the increase of production velocities.

To overcome these difficulties, several different inventions were made to
ensure the attachment between the web and the roll. Kankaanpãã et. al. made the
first approach to eliminate the effect of overpressurizing closing the pocket area;
they created an additional space for the excess air by grooving the roll surface
[50, 11].

The development of the overpressure in the closing pocket area is approxi-
mately quadratically dependent on the web velocity, and therefore an additonal
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stabilization technique was needed for web velocities approaching 1200 m/min
[51, 49]. The next step in the development was the implementation of active air
removal from the pocket area by using an external, blower-assisted vacuum sys-
tem, which is still the most common web stabilization installation in high veloc-
ity paper and board machines. This air removal is made possible by a drilled roll
mantle or a grooved roll with the drillings at the bottom of the grooves. Suction
can be arranged through the axle of the roll or with the help of a separate suc-
tion box attached in the immediate vicinity of the roll [50, 11]. However, since
the overpressure levels in the pocket areas between the roll and the web are in-
creasing quadratically with respect to web velocity, also the fan power used for
creating the necessary suction increases rapidly.

The first application of the adaptive, self-underpressurizing roll was devel-
oped during 1990’s. In that construction, the special feature was the arrangement
of parallel discs and the hollow center area of the roll so that the opening area for
air penetration in the closing pocket to groove volume area is high enough. This
roll was capable of creating its own underpressure when used with permeable
dryer fabric but the groove structure of the roll was not optimized [87].



3 STRESS-STRAIN RELATIONS OF A

VISCOELASTIC MOVING WEB CONTINUUM

3.1 The continuum of the moving web

A continuous, moving web creates a solid continuum which can be treated as a
flowing medium. In this derivation, the web continuum is assumed to be under
a stress state, which is caused by a strain state and can be expressed in terms
of the velocity difference between supporting rollers, by the means of a mass
conservation law.

Let us consider an orthotropic material with initial (i.e. in the undeformed
state) constant density ρ0, undergoing steady-state longitudinal transport at ve-
locity U = (Ux, 0, 0), depicted in Figure 5. Let us assume that the material axes 1,
2 and 3 are aligned with the x, y and z axes, respectively. The continuity equation,
in the Eulerian frame, is

∂ρ

∂t
+∇ · (ρU) = 0 , (1)

which, in a steady state, reduces to

∇ · (ρU) = 0 . (2)

Mass conservation requires that the flow rates at the incoming and outgoing flow
control areas are equal; this requirement is readily obtained from equation (2).
Let us consider a stationary control volume

Ω = { (x, y, z) : 0 < x < � , 0 < y < b , 0 < z < h }
where � is the length of the span between the rollers, b is the width of the span,
and h is the thickness of the sheet of material. Integrating equation (2) over the
control volume Ω, applying the divergence theorem, and noting that ρ is a scalar,
we have ∫

Ω
∇ · (ρU) dΩ =

∫
∂Ω

ρ (n · U) dΓ . (3)

Material flows in and out of the control volume only occur at the surfaces A1
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FIGURE 5 Schematic representation of the setup for modelling a moving viscoelastic
web, stressed at the traction lines represented by the rollers form PI. The
arrows depict axial motion.

and A2 (see Figure 6). Let us assume that ρ and U are constant across these inflow
and outflow surfaces, but that their values may change between these surfaces.
In practice, there always are small variations in the velocity at the outlet due to
technical difficulties of realizing accurate velocity, but for small strains and high
velocity, constant velocity along these surfaces is a reasonable approximation [40].
Under these assumptions, the mass balance becomes

−ρ1A1U1 + ρ2A2U2 = 0 . (4)

The subscripts 1 and 2 for ρ and U refer to the (constant) values on the surfaces A1
and A2, respectively. Note the form of the velocity field, U = (Ux, 0, 0). Finally, it
is convenient to rewrite (4) as

U1 (ρ1/ρ2) (A1/A2)− U2 = 0 . (5)

In order to manipulate equation (5) further, we must consider the ratios of the
densities and the cross-sectional areas. When subjected to a small-displacement
deformation u = (u, v, w), the volume V of a differential element initially (in the
undeformed state) having volume V0 becomes

V = V0
[
1 +∇ · u

] ≡ V0
[
1 + εxx + εyy + εzz

]
, (6)

as is known from the theory of elasticity. Because the total mass M of the differ-
ential element is conserved in the small deformation, it follows for the density ρ
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FIGURE 6 Solid web continuum flowing between the incoming and outgoing flow con-
trol areas (two-dimensional surfaces) A1 and A2 at longitudinal velocities U1

and U2 at the beginning and ending traction lines respectively (from PI) .

that
ρ ≡ M

V
=

1
V0

M
V/V0

=
M
V0

1
V/V0

= ρ0
[
1 + εxx + εyy + εzz

]−1 , (7)

where (6) and the definition ρ0 ≡ M/V0 have been used. Let us assume that the
material is subjected to pure axial stress. This induces an axial strain εx, and via
the Poisson effect, also the strains εy and εz in the two orthogonal directions:

εyy = −ν̌12εxx , εzz = −ν̌13εxx . (8)

where ν̌12 and ν̌13 are Poisson parameters including both elastic and viscoelastic
effects. The cross-sectional area of the web is

A = (1 + εzz)h(1 + εyy)b ≈ bh ( 1 + εyy + εzz ) , (9)

where second-order small terms have been neglected. Combining (8) and (9), we
have

A ≈ bh ( 1 − (ν̌12 + ν̌13)εxx ) ≡ bh ( 1 − ν1Aεxx ) , (10)

where the effective Poisson ratio for change of cross-sectional area, when stretched
along material axis 1, is defined as

ν1A ≡ ν̌12 + ν̌13 . (11)
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Note that it also follows from (6) and (8) that

V = V0
[
1 + (1 − ν1A)εxx

]
. (12)

The effective Poisson ratio contains the material parameters ν̌12 and ν̌13. Finally,
for the density, by combining (7), (8) and (11), we obtain

ρ = ρ0
[
1 + (1 − ν1A)εxx

]−1
= ρ0

[
εxx + (1 − ν1Aεxx)

]−1 , (13)

where ρ0 is the density in the initial (unstressed) state.
In the following, we will assume that the material, subjected to constant ax-

ial tension at the rollers (traction lines), has zero strain at A1, and experiences
some nonzero axial strain εxx at A2, due to the applied axial stress. Preliminary
one-dimensional results indicate that such a strain state occurs at least for an ax-
ially travelling Kelvin–Voigt viscoelastic material (see the section concerning the
one-dimensional case further below). By (10), the cross-sectional areas become

A1 = bh , A2 = bh(1 − ν1Aεxx) , (14)

and by (14), the densities are:

ρ1 = ρ0 , ρ2 =
ρ0[

1 + (1 − ν1A)εxx
] . (15)

By inserting (14) and (15) into the mass balance (4), simplifying, and solving for
εxx, we obtain the result

εxx =

U2

U1
− 1

1 +
[

U2

U1
− 1

]
ν1A

. (16)

Equation (16) can be used for setting up a strain-based boundary condition (at
the traction line at x = �) for the problem of in-plane (visco-)elastic deformation,
corresponding to given roller velocities U1 and U2. Obviously, in order for the
model to remain valid, the given velocities must be such that the strain according
to (16) remains in the small-deformation range.

The transport velocity of the flowing solid continuum in the above case
is assumed to be controlled only in the x (longitudinal) direction; all in-plane
deformations in the y (widthwise) direction are determined by the viscoelastic
response. It should also be kept in mind that equation (16) only applies in a
steady-state flow, i.e. when the web flows smoothly without time-dependent dis-
turbances [33].

The traction lines at the cross-sectional areas A1 and A2 affect only the sur-
faces of the web, which implies that stress and strain waves advancing inside the
web thickness can cross the traction lines. Therefore in the boundary conditions
of moving continuous webs, in reality, one should consider rather complicated
friction-based force transmission phenomena at web-roll contact areas [57].
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3.2 Constitutive equations

In this section we will define the stresses and strains, deformations, material as-
sumptions and velocity dependent in-plane inertial forces for moving web. This
leads to both one- and two-dimensional equations for the moving viscoelastic
continuum.

A usual approach for describing structural deformations is the Lagrangean
description. However, longitudinally moving in-plane deformations are more
challenging. One possibility is to actually move the medium at the desired veloc-
ity, and update the boundary conditions at each timestep [100]. Another possibil-
ity is to use an ’Eulerian’ flow description, and then the actual deformation of the
moving continuum can be handled using a mixed Lagrange–Euler description
[54]. The Eulerian description is a standard approach in fluid dynamics where
the observer is ’watching’ a control volume, where possible deformations will
appear [100, 62].

In this thesis, we consider two-dimensional in-plane membrane behavior.
Based on Figure 7, one can derive the following well-known force balance [110]:

∂σx

∂x
+

∂τyx

∂y
− Fx = 0 in Ω (17)

∂σy

∂y
+

∂τxy

∂x
− Fy = 0 in Ω (18)

where Ω is an open, connected set in R2. The linear Cauchy strains are

εxx =
∂u
∂x

, εyy =
∂v
∂y

, εxy =
∂u
∂y

, εyx =
∂v
∂x

, γxy =

(
∂u
∂y

+
∂v
∂x

)
. (19)

In the mixed Lagrange–Euler description, the strains

εij = εij (x, y, t) (20)

are written as

dεij

dt
=

∂εij

∂t
+

∂εij

∂x
dx
dt

+
∂εij

∂y
dy
dt

(21)

=
∂εij

∂t
+

∂εij

∂x
Ux +

∂εij

∂y
Uy ,

where (Ux, Uy) is the velocity field and the indexes i and j refer to spatial coor-
dinates. We will use the material assumption of orthotropic viscoelasticity. With
fibrous, composite-type materials, the elastic properties are the result of compli-
cated material preprocessing, which further results in orthotropic anisotropy and
material time-dependency (see e.g. [69, 113, 46, 82, 10, 116]).
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FIGURE 7 Differential parallelepiped and assumed stresses acting in the in-plane direc-
tions x and y, from PI.

It is possible to derive a vast number of different rheological models for
time-dependent material behavior, but the fundamental behavior of continuous
flow of a solid viscoelastic web can be analyzed using the simple Kelvin–Voigt
model shown in Figure 8. More complicated rheological models rapidly increase
the complexity of the continuum model without additional benefit.

The stress-strain behavior of one-dimensional Kelvin-Voigt material (see e.g.
[28]) is:

σ = Eε + η
dε

dt
. (22)

Based on observations mentioned in previous chapters of fibrous web materials,
we will apply a two-dimensional, orthotropic plane stress extension of the above
model [108, 113]:

σx =
E11

1 − ν12ν21

(
εxx + ν21εyy

)
+

η11

1 − ϕ12ϕ21

(
dεxx

dt
+ ϕ21

dεyy

dt

)
(23)

σy =
E22

1 − ν12ν21

(
εyy + ν12εxx

)
+

η22

1 − ϕ12ϕ21

(
dεyy

dt
+ ϕ12

dεxx

dt

)
(24)

τyx = τxy = G12γxy + Π
dγxy

dt
(25)
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FIGURE 8 Schematic representation of the classical Kelvin-Voigt rheological model in
one dimension. E is Young’s modulus, η is the material viscosity, from PI.

Here ϕ12 and ϕ21 are the viscous analogues of the orthotropic in-plane Poisson
ratios ν12 and ν21, and Π is the shear viscosity of the material. We assume for
simplicity, that the main axes of the orthotropic material coincide with the main
axes of the control volume Ω.

Often, plane stress applications are written using only an elastic model, in-
volving the moduli of elasticity E11 and E22, and the strain variables εxx and εyy.
However, in practice all the elastic-related material properties are measured with
some definite velocity, and therefore apparent elasticity includes both elastic and
viscous material properties [28]. Fundamentally, all materials exhibit some form
of viscoelasticity, typically measured by normal and complex moduli E and E′,
respectively. It should also be pointed out that the viscoelastic Poisson ratios ϕ12
and ϕ21 cannot be calculated using compliances from the theory of elasticity [38].

The force balance equations (17) and (18) include also the body forces Fx
and Fy, which are important especially with fibrous cellulose-based materials.
Moisture-dependent dimension changes can be significant: they generate stresses
in addition to those related to the strains based on external velocity differences,
as was presented in equation (16) [44].

According to the D’alembert’s principle, time-dependent kinematic behav-
ior always includes inertial forces. Two-dimensional force balance in in-plane
membrane behavior can be presented with the following equilibrium equations
(see e.g. [97]):

∂σx

∂x
+

∂τyx

∂y
− Fx = ρ

d2u
dt2 (26)

∂σy

∂y
+

∂τxy

∂x
− Fy = ρ

d2v
dt2 (27)

Note that the operator d2/dt2 describes the inertial behavior in the Lagrangean
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reference frame. Thus the inertial terms depending on the displacements u and
v, in the Eulerian frame, must be presented by using the material derivative:

du
dt

=
∂u
∂t

+ ∑
i=1,2

∂u
∂xi

dxi

dt
(28)

dv
dt

=
∂v
∂t

+ ∑
j=1,2

∂v
∂xj

dxj

dt
(29)

In above equations 28 and 29 above, both i and j are indexes referring to spatial
coordinates. The second material derivatives of the displacements u and v are

d2u
dt2 =

∂2u
∂t2 + 2Ux

∂2u
∂x∂t

+ 2Uy
∂2u
∂y∂t

+ U2
x

∂2u
∂x2 + 2UxUy

∂2u
∂x∂y

+ U2
y

∂2u
∂y2 + (30)

∂u
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+

∂u
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

d2v
dt2 =

∂2v
∂t2 + 2Ux

∂2v
∂x∂t

+ 2Uy
∂2v
∂y∂t

+ U2
x

∂2v
∂x2 + 2UxUy

∂2v
∂x∂y

+ U2
y

∂2v
∂y2+ (31)

∂v
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+

∂v
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

By substituting (30) – (31) and (23) – (25) into equations (26) and (27), we will ob-
tain the final, time-dependent two-dimensional equations for the in-plane, plane
stress membrane behavior of the moving viscoelastic web:

(
C11 − ρU2

x

) ∂2u
∂x2 +

(
C66 − ρU2

y

) ∂2u
∂y2 + C12

∂2v
∂x∂y

+ C66
∂2v

∂x∂y
+ (32)

K11Ux
∂3u
∂x3 + K11Uy

∂3u
∂x2∂y

+ K11
∂3u

∂x2∂t
+ (K12 + K66)Uy

∂3v
∂x∂y2+

K66Uy
∂3u
∂y3 + (K12 + K66)Ux

∂3v
∂x2∂y

+ (K12 + K66)
∂3v

∂x∂y∂t
+ K66Ux

∂3u
∂x∂y2+

K66
∂3u

∂y2∂t
− Fx = ρ

∂2u
∂t2 + 2ρUxUy

∂2u
∂x∂y

+ 2ρUx
∂2u
∂x∂t

+ 2ρUy
∂2u
∂y∂t

+

ρ
∂u
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂u
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
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and:

(
C22 − ρU2

y

) ∂2v
∂y2 +

(
C66 − ρU2

x

) ∂2v
∂x2 + C21

∂2u
∂x∂y

+ C66
∂2v

∂x∂y
+ (33)

K22Uy
∂3v
∂y3 + K22Ux

∂3v
∂x2∂y

+ K22
∂3v

∂x2∂t
+ (K21 + K66)Ux

∂3u
∂x2∂y

+

K66Ux
∂3v
∂x3 + (K21 + K66)Uy

∂3u
∂x∂y2 + (K21 + K66)

∂3u
∂x∂y∂t

+ K66Uy
∂3v

∂x2∂y
+

K66
∂3v

∂y2∂t
− Fy = ρ

∂2v
∂t2 + 2ρUxUy

∂2v
∂x∂y

+ 2ρUx
∂2v
∂x∂t

+ 2ρUy
∂2v
∂y∂t

+

ρ
∂v
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂v
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
,

The orthotropic coefficients are:

C11 =
E11

1 − ν12ν21
, C22 =

E22

1 − ν12ν21
, (34)

C12 = C11ν21 = C22ν12 = C21 , C66 = G12 , (35)

K11 =
η11

1 − ϕ12ϕ21
, K22 =

η22

1 − ϕ12ϕ21
, (36)

K12 = K11ϕ21 = K22ϕ12 = K21 , K66 = Π . (37)

Equations (32) and (33) are nonlinear. Nonlinearity appears in the velocity
Uy, which is dependent on the contraction controlled by both elastic and viscous
Poisson’s ratios. There are also nonlinear Navier–Stokes type convection terms,
the significance of which is small if the strains defined in the equation (19) can be
considered small Cauchy strains.

The steady-state solution describing the movement of smooth, undisturbed
web is possible to obtain by omitting the time-dependent terms from equations
(32) and (33):

(
C11 − ρU2

x

) ∂2u
∂x2 +

(
C66 − ρU2

y

) ∂2u
∂y2 + C12

∂2v
∂x∂y

+ C66
∂2v

∂x∂y
+ (38)

K11Ux
∂3u
∂x3 + K11Uy

∂3u
∂x2∂y

+ (K12 + K66)Uy
∂3v

∂x∂y2 + K66Uy
∂3u
∂y3 +

(K12 + K66)Ux
∂3v

∂x2∂y
+ K66Ux

∂3u
∂x∂y2 − Fx =

2ρUxUy
∂2u

∂x∂y
+ ρ

∂u
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy

)
+ ρ

∂u
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy

)



37

and: (
C22 − ρU2

y

) ∂2v
∂y2 +

(
C66 − ρU2

x

) ∂2v
∂x2 + C21

∂2u
∂x∂y

+ C66
∂2v

∂x∂y
+ (39)

K22Uy
∂3v
∂y3 + K22Ux

∂3v
∂x∂y

2

+ (K21 + K66)Ux
∂3u

∂x2∂y
+ K66Ux

∂3v
∂x3+

+ (K21 + K66)Uy
∂3u

∂x∂y2 + K66Uy
∂3v

∂x2∂y
− Fy =

2ρUxUy
∂2v

∂x∂y
+ ρ

∂v
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy

)
+ ρ

∂v
∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy

)
.

Often a good understanding of the basic physical behavior of the mod-
eled system can be achieved by one-dimensional approach. Using (32), one-
dimensional, time-dependent equation for viscoelastic moving web in x-direction
is: (

C11 − ρU2
x

) ∂2u
∂x2 + K11Ux

∂3u
∂x3 + K11

∂3u
∂x2∂t

− Fx = (40)

ρ
∂2u
∂t2 + 2ρUx

∂2u
∂x∂t

+ ρ
∂u
∂x

(
∂Ux

∂x
Ux +

∂Ux

∂t

)

Further, the steady-state form of the above equation is:

(
C11 − ρU2

x

) ∂2u
∂x2 + K11Ux

∂3u
∂x3 − Fx − ρ

∂u
∂x

∂Ux

∂x
Ux = 0 (41)

The interpretation of displacements u and v in equations (32) and (33) are a in
vital part of understanding of the nature of the displacements in a moving web.
Displacements should be understood as instantaneous snapshots of a specific sit-
uation in an Eulerian coordinate system. They are changing the magnitude at
each situation according to the transfer velocities Ux and Uy.

3.3 Solution and results of the in-plane equations

As mentioned earlier, the presented in-plane equations are nonlinear since there
exist in certain terms velocity Uy, which is further dependent on the y-directional
displacement v. An analytical solution is presented in PI. It is possible to achieve
that solution with a linearized, one-dimensional equation formed with the help
of equation (42):

(
C11 − ρU2

x

) ∂2u
∂x2 + K11Ux

∂3u
∂x3 − Fx = 0 (42)

This is a third-order linear differential equation, with a convective nature, includ-
ing an internal body force Fx.
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3.3.1 Analytical solution of 1-D viscoelastic equations

Recall (19), which states that εxx = ∂u/∂x. The form of the equation (42) without
the body force term Fxwill be:

η11Ux
∂2εxx

∂x2 +
(

C11 − ρU2
x

) ∂εxx

∂x
= 0 . (43)

Equation (43) can be solved with analytical methods. First, as a special case, if
only pure elasticity is present (η11 = 0), the solution is of the form:(

C11 − ρU2
x

)
εxx = C . (44)

In this case the solution describes Hookean behavior, i.e., the strain εxx is con-
stant along the whole span regardless of the magnitude of the transport velocity
Ux. Now, consider the general case with nonzero viscosity η11, which is the more
natural case since majority of solid materials possess viscous properties. Equa-
tion (43) becomes,

∂2εxx

∂x2 +

(
C11 − ρU2

x
η11Ux

)
∂εxx

∂x
= 0 . (45)

With the boundary conditions εxx(0) = 0 and εxx(�) = εT, the analytical solution
of equation (46) is [57, 59]:

εxx(x) = εT
1 − e−kx

1 − e−k� , where k =
E11 − ρU2

x
η11Ux

. (46)

That is, for a moving viscoelastic material loaded only by tension at the ends of
the span, the strain is not constant, but grows logarithmically along the span.
Finally, let us find the corresponding x-directional stress field.

The stress is a superposition of elastic and viscous stress components:

σx = C11εxx + η11
dεxx

dt
. (47)

A straightforward analytical solution of the stress is easy to obtain only in a the
linearized, one-dimensional, steady-state case. Using equations (20) and (22), the
time derivative of the strain, in mixed Lagrange–Euler form, can be written for
the steady-state solution as follows:

dεxx

dt
=

∂εxx

∂x
Ux . (48)
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FIGURE 9 Stresses of the one-dimensional, viscoelastic web with span length � = 1.0m
and with applied strain εT, from PI.

Using (46) in (48), and then inserting (47), we obtain the stress field as

σx = C11εT
1 − e−kx

1 − e−k� + η11UxεT
ke−kx

1 − e−k� . (49)

Expanding the k in the second term of (49) by using (46) obtains

σx =
εT

1 − e−k�

(
E11 − ρU2

xe−kx
)

. (50)

An example solution of equation (50) is presented in Figure 9. Total stress appear-
ing in the web (span length = 1.0 m) is due to elastic and viscous components.
Even though the stress appears to be constant, it has slightly increasing tendency
(not visible in Figure 9) due the acceleration from velocity increase between start-
ing and ending points (see also Equation (17)).

A numerical FEM solution of the nonlinear equation (42) is presented in PI.

3.3.2 Numerical solution of 2-D elastic equations

A numerical solution for the two-dimensional, orthotropic, elastic moving contin-
uum plane stress problem was realized with the help of the finite element method
(FEM). Although the above treatment was extremely useful for handling the one-
dimensional case, a correct derivation requires tensor derivation in a Cartesian
coordinate system.

Starting from (32) and (33) in a Cartesian tensor form we will get:
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ρ
d2u

dt2 −∇ · σT = F , (51)

where (. . . )T denotes the transpose of a rank-2 tensor. The second material deriva-
tive expands as:

d2u

dt2 =
d
dt

(
∂u

∂t
+ U · ∇u

)
=

∂2u

∂t2 + 2U · ∇
(

∂u

∂t

)
+ (U · ∇)(U · ∇u) . (52)

In steady state, only the last term remains. Hence (51), for a steady state, becomes

ρ (U · ∇)(U · ∇u)−∇ · σT = F . (53)

Next, we will use the principle of virtual work. Let us take the dot product of
(53) with a vector-valued test function (virtual displacement) φ, and integrate
the equation over the two-dimensional domain

Ω ≡ { (x, y) : 0 < x < � , 0 < y < b } . (54)

Assuming that ρ can be approximated as a constant (i.e. that the small strains do
not significantly affect the density), we obtain:

ρ
∫

Ω
φ · (U · ∇)(U · ∇u) dΩ −

∫
Ω

φ · [∇ · σT] dΩ =
∫

Ω
φ · F dΩ . (55)

In order to integrate by parts in (55), we make use of the following two identities:∫
Ω

φ · [∇ · σT] dΩ =
∫

∂Ω
φ · (n · σT) dΓ −

∫
Ω
∇φ : σ dΩ , (56)∫

Ω
φ · (U · ∇)(U · ∇u) =

∫
∂Ω

n · [(U · ∇u) · (φ ⊗ U)] dΓ (57)

−
∫

Ω
(U · ∇u) · [∇ · (U ⊗ φ)] dΩ .

where n is the outer unit normal, and the notational conventions are

(∇a)ij ≡ ∂iaj , (∇ · A)j ≡ ∂i Aij (a ⊗ b)ij = aibj , A : B ≡ AijBji . (58)

Here a and b are vectors, and A and B are rank-2 tensors. The summation conven-
tion for repeated indices applies. The integration-by-parts formula (56) is stan-
dard in the theory of elasticity, but the formula (57) is new and must be handled
in the following manner:

Observe that for any differentiable vector fields a, b and c,

∇ · (a · (b ⊗ c)) = b · (c · ∇a) + a · (∇ · (c ⊗ b)) . (59)

By integrating (58) over Ω, applying the divergence theorem to the left-hand side,
and choosing a = (U · ∇u), b = φ, and c = U, relation (57) follows. Using (56)
and (57) in (55), we obtain

− ρ
∫

Ω
(U · ∇u) · [∇ · (U ⊗ φ)] dΩ +

∫
Ω
∇φ : σ dΩ

+ ρ
∫

∂Ω
n · [(U · ∇u) · (φ ⊗ U)] dΓ −

∫
∂Ω

φ · (n · σT) dΓ =
∫

Ω
φ · F dΩ . (60)
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By using the identity

∇ · (U ⊗ φ) = (∇ · U)φ + U · ∇φ (61)

we will obtain the final form:

− ρ
∫

Ω
(U · ∇u) · [(∇ · U)φ + U · ∇φ] dΩ +

∫
Ω
∇φ : σ dΩ

+ ρ
∫

∂Ω
n · [ (U · ∇u) · (φ ⊗ U)

]
dΓ −

∫
∂Ω

φ (n · σT) dΓ =
∫

Ω
φ · F dΩ . (62)

Note that (62) also gives the natural boundary conditions, when the boundary
terms are gathered under one integral sign.

When expanded to the component form, (62) gives following two equations:

∫
Ω

[
−σx + ρU2

x
∂u
∂x

+ ρUyUx
∂u
∂y

]
∂φ

∂x
dΩ

+
∫

Ω

[
−τxy + ρUxUy

∂u
∂x

+ ρU2
y

∂u
∂y

]
∂φ

∂y
dΩ

+ρ
∫

Ω

{[
Ux

∂u
∂x

+ Uy
∂u
∂y

][∂Ux

∂x
+

∂Uy

∂y
]}

φ dΩ

+
∫

∂Ω
nx

[
σx − ρU2

x
∂u
∂x

− ρUyUx
∂u
∂y

]
φ dΓ

+
∫

∂Ω
ny

[
τxy − ρUxUy

∂u
∂x

− ρU2
y

∂u
∂y

]
φ dΓ

+
∫

Ω
Fxφ = 0 . (63)

and

∫
Ω

[
−τyx + ρU2

x
∂v
∂x

+ ρUyUx
∂v
∂y

]
∂ψ

∂x
dΩ

+
∫

Ω

[
−σy + ρUxUy

∂v
∂x

+ ρU2
y

∂v
∂y

]
∂ψ

∂y
dΩ

+ρ
∫

Ω

{[
Ux

∂v
∂x

+ Uy
∂v
∂y

][∂Ux

∂x
+

∂Uy

∂y
]}

ψ dΩ

+
∫

∂Ω
nx

[
τyx − ρU2

x
∂v
∂x

− ρUyUx
∂v
∂y

]
ψ dΓ

+
∫

∂Ω
ny

[
σy − ρUxUy

∂v
∂x

− ρU2
y

∂v
∂y

]
ψ dΓ

+
∫

Ω
Fyφ = 0 , (64)

where the outer unit normal n has the components n = ( nx , ny ). We now have
moved all terms to the left-hand side and multiplied each equation by −1.
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Equations (63) and (64) represent the two-dimensional steady-state equation
of any moving Lagrangian-Euler continuum. Applying pure orthotropic elastic-
ity we will get the following equations in a weak form:∫

Ω

[
−

[
C11

∂u
∂x

+ C12
∂v
∂y

]
+ ρU2

x
∂u
∂x

+ ρUyUx
∂u
∂y

]
∂φ

∂x
dΩ

+
∫

Ω

[
−

[
C66(

∂u
∂y

+
∂v
∂x

)

]
+ ρUxUy

∂u
∂x

+ ρU2
y

∂u
∂y

]
∂φ

∂y
dΩ

+ρ
∫

Ω

{[
Ux

∂u
∂x

+ Uy
∂u
∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
φ dΩ

+
∫

∂Ω
nx

[[
C11

∂u
∂x

+ C12
∂v
∂y

]
− ρU2

x
∂u
∂x

− ρUyUx
∂u
∂y

]
φ dΓ

+
∫

∂Ω
ny

[[
C66(

∂u
∂y

+
∂v
∂x

)

]
− ρUxUy

∂u
∂x

− ρU2
y

∂u
∂y

]
φ dΓ

+
∫

Ω
Fxφ dΩ = 0

(65)

and ∫
Ω

[
−

[
C66(

∂u
∂y

+
∂v
∂x

)

]
+ ρU2

x
∂v
∂x

+ ρUyUx
∂v
∂y

]
∂ψ

∂x
dΩ

+
∫

Ω

[
−

[
C21

∂u
∂x

+ C22
∂v
∂y

]
+ ρUxUy

∂v
∂x

+ ρU2
y

∂v
∂y

]
∂ψ

∂y
dΩ

+ρ
∫

Ω

{[
Ux

∂v
∂x

+ Uy
∂v
∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
ψ dΩ

+
∫

∂Ω
nx

[[
C66(

∂u
∂y

+
∂v
∂x

)

]
− ρU2

x
∂v
∂x

− ρUyUx
∂v
∂y

]
ψ dΓ

+
∫

∂Ω
ny

[[
C21

∂u
∂x

+ C22
∂v
∂y

]
− ρUxUy

∂v
∂x

− ρU2
y

∂v
∂y

]
ψ dΓ

+
∫

Ω
Fyφ dΩ = 0 .

(66)

For the results presented, we use the numerical finite element method. In
the examples, the simulation area is 1.0 m × 1.0 m and Dirichlet boundary condi-
tions u = 0 and u = 0.03 are applied at the vertical incoming and outgoing edges
respectively; upper and lower edges are assumed to be free (zero Neumann con-
dition).

In the case of isotropic material assumption, the modulus of elasticity is
E = E11 = E22 = 2.5 · 107 N/m2 and ν = ν12 = ν21 = 0.3 describing the properties
of isotropic wet paper. The basis weight of the wet paper is m = 0.18 kg/m2 and
the thickness of the web is 0.2 mm.

With orthotropic assumption, the Maxwell law of orthotropic materials is
assumed to be apply here even though it is known that paper or board does not
satisfy this rule completely [57]:

ν12

E11
=

ν21

E22
(67)
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FIGURE 10 Setup for the two-dimensional numerical investigation. Elastic material
flows in from the left at velocity Uin. From PII.

Thus, the orthotropic material values here are chosen so that the geometric
mean of the values E11 and E22 is equal with isotropic material values. If the
elasticity ratio E11/E22 = 4.0, then E11 = 5.0 · 107 N/m2, E22 = 1.25 · 107 N/m2 at
the x- and y-direction respectively. The Poisson’s ratios, ν12 = 0.6 and ν21 = 0.15,
are following same Maxwell law of orthotropic materials.

The two-dimensional setup for numerical analysis is presented in Figure 10.
Web flows in at speed Uin from the left side through traction line A1, where the
Dirichlet boundary conditions u = v = 0 are assigned. Since the area under
observation is open, unsupported, two-dimensional web span, both upper and
lower edges are free.

The coupling between the Eulerian displacements and velocity field can be
presented using the Cauchy strains. In this case, we obtain for velocities Ux and
Uy:

UX = (1 +
∂u
∂x

)Ux +
∂u
∂y

Uy ,

UY =
∂v
∂x

Ux + (1 +
∂v
∂y

)Uy .
(68)

At the outflow edge, edge contraction in y-direction must be allowed since
the transport velocity ‖U‖ affecting in the area contributes not only to the web
contraction along the normal in-plane contraction, but also constantly regener-
ates the web material in the span. The web, therefore, is capable to perform v-
directional displacements.
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FIGURE 11 Reference behavior of 2-dimensional, unsupported web with Uin = 0. As-
pect ratio b/� = 5. From left to right: Displacement u, displacement v,
strain ∂u/∂x and strain ∂v/∂y.

FIGURE 12 Displacement v, normalized to uf, along the free edge 0 < x < �, y = b.
Left: isotropic. Right: orthotropic. Line style indicates inflow velocity Uin,
darkness indicates span width b. From PII.

The numerical results are presented in Figures 11 – 14. In Figure 11 typical
displacements and strain fields become apparent with the boundary conditions
used; the computed values are (must be) symmetrical according to the x-axis at
the centerline of the web height.

Figure 12 shows the effect of the inflow velocity: the contraction of the web
in y-direction increases with a higher web width, but also the velocity accelerates
this contraction. This effect is easy to understand since the also the y-directional
velocity component Uy increases with contraction levels through increased cen-
trifugal force appearing on the web plane.

The consequences of the increased centrifugal force are visible in Figure 13.
The velocity-assisted contraction decreases web stress in y-direction, softening
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FIGURE 13 Stress σy in orthotropic web with aspect ratio b/� = 5. Left: Uin = 0 m/s.
Right: Uin = 25 m/s. From PII.
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FIGURE 14 Relative velocity field Urel as vector plot, normalized to Uin = 50 m/s. As-
pect ratio b/� = 5. Left: Isotropic. Right: Orthotropic. From PII.

the web, thus slightly increasing the low-stress areas at web edges.
Finally, the velocity field appearing in the moving continua is presented

in Figure 14. The highest relative velocity values are reached at the corner ar-
eas where the contraction gradient is highest. A small difference exists between
isotropic and orthotropic material assumptions; lower y-directional elasticity with
orthotropic material is contributing to higher contraction but also slightly higher
relative velocity values towards the centerline of the web.



4 STABILIZATION AND PRODUCTION EFFICIENCY

OF THE TENSIONED IMPERFECT WEB IN HIGH

VELOCITY ENVIRONMENT

One of the most fundamental web handling problem arises from the stressing of
the web. By applying the relative velocity difference to the extremes of an open
web span, one can increase the tension, thus improving the stability of the web.
However, this tensioning has an upper limit. Web break probability increases
rapidly as a function of this straining [40]. In this chapter we discuss two im-
portant but severely contradictory items related to web stability and production
efficiency of the web.

4.1 Stability of a tensioned, orthotropic web in high velocity envi-
ronment

Moving, low-grammage webs in high velocity board and paper making are sus-
ceptible to stability loss. Web behavior in unsupported, open draws is well known
but often the studies have focused on coupled, time-dependent air-web frequency
behavior [85, 12]. In PIII, the main focus is on the primary limit velocity analysis
of stability loss of an orthotropic web. Additionally, the importance of the fluid
coupling with the web and its effects to the buckling speed are brought up [58].

Consider an elastic, orthotropic web moving with constant velocity V0 in
the x-direction supported by the rollers located at x = 0 and x = � in cartesian
coordinate system presented in Figure 15:

Ω ≡ {(x, y) ∈ R2 : 0 < x < �, −b < y < b} (69)

The web is represented by a rectangular elastic orthotropic plate with bend-
ing rigidities D1, D2 and D3, or by a rectangular orthotropic membrane with zero
bending rigidities. The ”1” axis of the orthotropic material is aligned with the x
direction, while the ”2” axis is aligned with the y direction (see Figure 15). The
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FIGURE 15 Axially moving elastic orthotropic web under homogenous tension from
PIII.

web is subjected to homogeneous tension, acting in the x direction. The sides of
the band x = 0, −b ≤ y ≤ b and x = �, −b ≤ y ≤ b are simply supported, and
the sides y = −b, 0 ≤ x ≤ � and y = b, 0 ≤ x ≤ � are free of tractions.

The transverse displacement of the travelling band is described by the deflection
function w, which depends on the coordinates x and y and time t. The differential
equation for small transverse vibrations has the form

m

(
∂2w
∂t2 + 2V0

∂2w
∂x∂t

+ V2
0

∂2w
∂x2

)
= Txx

∂2w
∂x2 + 2Txy

∂2w
∂x∂y

+ Tyy
∂2w
∂y2 −L(w) (70)

where

L(w) = D1
∂4w
∂x4 + 2D3

∂4w
∂x2∂y2 + D2

∂4w
∂y4 , (71)

in the case of a plate. For the bending rigidities in (71), we have the expres-
sions [111]

D1 =
h3

12
C11 , D2 =

h3

12
C22 , D3 =

h3

12
(C12 + 2 C66) , (72)

where Cij are the elastic moduli. These can be expressed in terms of the Young
moduli E1, E2 and Poisson’s ratios ν12, ν21 (see also equations (34) - (35)).

C11 =
E1

1 − ν12ν21
, C22 =

E2

1 − ν12ν21
, C12 = C21 =

ν12E2

1 − ν12ν21
, C66 = G12 . (73)

We assume that the deflection function w and its partial derivatives are small,
and that they satisfy the boundary conditions corresponding to simply supported
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boundaries at x = 0, −b ≤ y ≤ b and x = �, −b ≤ y ≤ b, and free boundaries
at −b ≤ y ≤ b, 0 ≤ x ≤ �. In the case of an orthotropic plate, the boundary
conditions read

(w)x=0,� = 0,
(

∂2w
∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (74)

(
∂2w
∂y2 + β1

∂2w
∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (75)

(
∂3w
∂y3 + β2

∂3w
∂x2∂y

)
y=±b

= 0, 0 ≤ x ≤ � , (76)

where β1 and β2 are mechanical parameters defined as

β1 = ν12 , β2 = ν12 +
4 G12

E2
(1 − ν12ν21) . (77)

As is well known, in the isotropic case we have E1 = E2 = E, ν12 = ν21 = ν,
G12 = G = E/(2(1 + ν)) and, consequently, β1 = ν and β2 = 2 − ν.

If the material is orthotropic, then the shear modulus G12 is possible to ap-
proximate using the geometric average GH developed by Huber [41]:

GH ≡
√

E1E2

2(1 +
√

ν12ν21)
, (78)

The in-plane stresses in PIII are the same as in PII, namely, σxx, τxy and σyy and
they are assumed to satisfy the standard equilibrium equations (17) - (18) where
body forces Fx and Fy are assumed to be zero:

Now the boundary conditions are:

(σxx)x=0, � = T0 ,
(
τxy

)
x=0, � = 0 , −b ≤ y ≤ b , (79)(

σyy
)

y=±b = 0 ,
(
τxy

)
y=±b = 0 , 0 ≤ x ≤ � , (80)

where tension T0 creating the stabilizing stress in the web is:

T0 = h
u0

�

(
C11 − C2

12
C22

)
= h

u0

�
E1 . (81)

The equation for solving the minimal eigenvalue problem of the moving,
steady-state plate (from PIII) is:

(
mV2

0 − T0

) ∂2w
∂x2 + D1L0(w) = 0. (82)

Using the boundary conditions (74) - (76), the minimal eigenvalue is [7]:
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λ = γ2 =
�2

π2D1

(
mV2

0 − T0

)
. (83)

The corresponding eigenfunction can be found by assuming that the solu-
tion for (82) is:

w = w(x, y) = f (y) sin
(πx

�

)
, (84)

where f (y) is an unknown function.
The root of the nondimensional form of the (82) is (see PIII):

γ2
0 =

1
2

(
(β2 − β1) α + 2 H1 −

(
β1

2 − 4 β1 β2 + β2
2
)

H2 − 4 β1 H3

)
. (85)

where

α ≡
√

8 β1 H2 H3 +
(

β1
2 − 6 β1 β2 + β2

2
)

H2
2 . (86)

and
H1 =

D1

D1
, H2 =

D2

D1
, H3 =

D3

D1
. (87)

The numerical solution process is based below Equations depending on the na-
ture of the eigenfunctions (symmetric or antisymmetric):

Φ − Ψ = 0 or Φ − 1
Ψ

= 0 (88)

where

Φ = tanh
κ−
μ

coth
κ+
μ

, (89)

Ψ =
κ+(κ2

+ − β2)(κ
2− − β1)

κ−(κ2
+ − β1)(κ

2− − β2)
, (90)

and

κ2± =
H3

H2

(
1 ±

√
1 − H2(1 − λ)

H2
3

)
, (91)

Finally, the shape of the eigenfunction is found by using the nondimensional
form of (84).

Results showing the effect of the orthotropic material properties one the
shape of the web are presented in Figures 16 and 17.
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FIGURE 16 Symmetric buckling shape for isotropic material, E = 5 GPa and ν = 0.2.
Aspect ratio �/2b = 0.01, from PIII.

FIGURE 17 Shape of the profile on the bold line of the Figure 16. The solid line cor-
responds to the picture on the left. The dotted lines show the shape of the
resulting profile if the isotropic material is replaced with an orthotropic one,
while keeping E1 = 5 GPa and ν12 = 0.2, from PIII.
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The free, unsupported edges are the basis of the shape of the buckled web;
the buckling displacements are concentrating at the edges even though the length-
width aspect ratio of the two-dimensional web is quite small, �/2b = 0.01. The
increase of the elasticity E1 using the same strain εx (see equation (81)) results in
higher web stress in x-direction and thus in lower absolute w(x, y) displacement
field.

If the coupling effect with the fluid surrounding the moving web is included
to the buckling analysis, fundamental stability studies use one-dimensional ten-
sioned web. The web’s tension is assumed to be constant and the effect of the
surrounding air during out-of-plane movement is described as reaction force q f
[8]. Now the problem can be simplified using equation (82) [58, 45]:

(
mV2

0 − T
) ∂2w

∂x2 + D
∂4w
∂x4 = q f , (92)

where D is the flexural rigidity of the web:

D =
E11h3

12 (1 − ν2)
. (93)

Reaction force q f can be further presented as aerodynamic lift:

q f = −ρ f V2
∞

∂F (x)
∂x

= −ρ f V2
∞

∂

∂x

∫ 1

−1
N (ξ, x)

dw (ξ)

dx
dξ. (94)

In equation (94) N (ξ, x) is a kernel function describing local aerodynamic force
directed to the web. Combining (92) and (94) we will get [8, 58, 45]:

(
mV2

0 − T
) ∂2w

∂x2 + D
∂4w
∂x4 = −ρ f V2

∞
∂

∂x

∫ 1

−1
N (ξ, x)

dw (ξ)

dx
dξ. (95)

Equation (95) describes a situation, where a web moving with velocity V0 is im-
mersed in fluid with the density of ρ f and velocity V∞. The lift force q f is quadrat-
ically proportional to fluid velocity V∞. Basically, the right side of the (95) is a
Bernoulli-type dynamical fluid pressure, where functional F(x) in (95) takes into
account the local shape of the web. Thus, equation (95) predicts a local lift force
using N (ξ, x) for pressure effect at a local slope of the web dw/dx.

Equation (95) can not be solved analytically. One solution possibility is to



52

apply the Galerkin numerical method by assuming that the shape of the web is
some continuous function Ψn [8, 58, 45]:

w (x) =
n

∑
1

fnΨn (x) , (96)

where

Ψn (x) = sin
(nπ

2
(x + 1)

)
. (97)

If we scale the solving area according to (95) to −1 ≤ x ≤ 1, substitute (96) and
(97) to (95) and perform the integration, we will obtain:

(
S + β K − γ θ2N

)
f =

((
S + γ N) α2

)
− 2 γ θ N α

)
f , (98)

where matrices S, K and N are:

Sjn =
∫ 1

−1

dΨj

dx
dΨn

dx
dx =

(
jπ
2

)2

δjn (99)

Kjn =
∫ 1

−1

d2Ψj

dx2
d2Ψn

dx2 dx =

(
jπ
2

)4

δjn (100)

Njn =
∫ 1

−1
dx

∫ 1

−1

dΨn (ξ)

dx
N (ξ, x)

dΨj (x)
dx

dξ. (101)

In equations (99) – (101) δjn is the Kronecker delta and indexes j and n are refer-
ring to the usage of the delta value (0 or 1). The nondimensional parameters in
(98) α, β, γ and θ are:

α =
V0√

T
m

, β =
D

T�2 , γ =
� ρ f

m
, θ =

V∞√
T
m

(102)

The applicability of (98) was tested with wind tunnel measurements carried out
by Chang et. al. in [12]. In Figure 18 presents a comparison between the experi-
mental results and the two theories.
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FIGURE 18 Wind tunnel test results of limit divergence velocity Vdiv, and thoretical pre-
dictions from [12] and Equation (98) [58, 45].

4.2 Efficiency optimization of moving, imperfect tensioned web

Successful web handling creates contradictory demands to the controlling vari-
ables of the we handling environment. On one hand, there must be a high enough
stress (tension) level enough to stabilize the web but, on the other, the level must
be optimized according to the web breaks. Depending on the parameters to be
used, there are many different means to overcome this problem [57, 53, 90, 79].
When seeking the optimal value of tension while having opposing objectives, we
encounter a multi-objective optimization problem, which usually has no unique
optimal solution but a set of "equally optimal", Pareto optimal solutions. In this
optimization analysis, we may apply the solutions from stability analysis for the
critical velocities.

The critical velocity corresponding to the loss of stability of the transverse
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vibrations of the web is analyzed here by the linearized Kirchhoff plate theory,
in which we assume that the transverse vibrations are small [111]. The critical
velocity can be found by solving the buckling problem for dynamic transverse
deflections of the plate [65]. Each span Ωi is defined as

Ωi = { (x, y) : i� < x < (i + 1)� ,−b < y < b }, i = 1, 2, 3, . . . (103)

Consider an axially moving elastic isotropic plate, travelling at a constant
velocity V0 and having an initial crack, between a system of subsequent supports
(rollers). The plate undergoes open draws between the supports, the open draws
being assumed to be equal in length.

For each span there are tensions T acting at simply supported sides in x-
direction:

Γi,� = { x = i� ,−b ≤ y ≤ b } and (104)
Γi,r = { x = (i + 1)� ,−b ≤ y ≤ b }

In y-direction, the span edges are assumed to be free:

Γi,− = { y = −b , i� ≤ x ≤ (i + 1)� } and (105)
Γi,+ = { y = b , i� ≤ x ≤ (i + 1)� }

For the problem setup, see Figure 19. Stationary equations describing the
behavior of the web with applied boundary conditions form the following eigen-
value problem (a buckling problem):

(mV2
0 − T0)

∂2w
∂x2 + D

(
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
= 0 , in Ωi (106)

w = 0 ,
∂2w
∂x2 = 0 , on Γi,� and Γi,r ,

∂2w
∂y2 + ν

∂2w
∂x2 = 0 , on Γi,− and Γi,+ ,

∂3w
∂y3 + (2 − ν)

∂3w
∂x2∂y

= 0 , on Γi,− and Γi,+ ,

where D = Eh3/(12(1 − ν2)), and we denote the eigenvalue

λ = γ2 =
�2

π2D
(mV2

0 − T0) . (107)

The traveling plate subjected to a constant tension experiences divergence insta-
bility at a critical velocity [6]:

(Vcr
0 )2 =

T0

m
+

γ2∗
m

π2D
�2 , (108)



55

FIGURE 19 An axially moving plate having an initial crack and supported by a system
of rollers delivering force balance for each web spans (from PIV).

where γ2∗ = λ∗ is the minimal eigenvalue of problem (4.2).
Assume that the value of tension is constant T = T0 and that the plate has

small surface cracks that arise at the free boundaries of the plate and have length
a with upper bound a∗, i.e.

a ≤ a∗ � 2 b , (109)

The stress intensity factor K can be expressed as (see [43], [94] or [120])

K = βσ
√

πa = β
T
h
√

πa . (110)

Here β = 1.12 is a geometric factor for a small edge crack (a/2b is small) and
σ = σx is a component of a stress tensor. We express the brittle fracture condition
as

K = KC , (111)

where KC is the fracture toughness of material. If we define the biggest admissible
crack length as a critical crack length acr, based on (110) we can write the critical
value for tension:

Tcr
0 ≡ (T0)a=acr =

KCh
β
√

πacr
. (112)

Consequently, we can now combine (108) and (112) to obtain a safe velocity
limit where web divergence limit coincides at critical web tension Tcr:

0 < V0 < V∗
0 ≡

√
γ∗

π2D
m�2 +

KCh
βm

√
πacr

. (113)
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Next we assume that the travelling plate is subjected to small cyclic tension
variations during the process. For one cycle, the tension increases from T = Tmin
up to T = Tmax (the loading process) and then decreases from T = Tmax down
to T = Tmin (the unloading process) depending on some external contributor
such as edge contraction of the web near the detachment rollers [37]. We suppose
quasi-static processes meaning that the dynamic effects are excluded.

We define parameters T0 (average tension) and ΔT (small tension variation)
such that

Tmin = T0 − ΔT and Tmax = T0 + ΔT , Tmin ≤ T ≤ Tmax , (114)

and
T0 − ΔT > 0 and

ΔT
T0

� 1 . (115)

Using these assumptions (112) can be rewritten:

acr =
1
π

(
KCh

βTmax

)2

≈ 1
π

(
KCh
βT0

)2

. (116)

The process of fatigue crack growth under cyclic tension (loading) can be de-
scribed by the Paris’ law [81]. The describing equation and initial condition are

da
dn

= C(ΔK)k , (a)n=0 = a0 , (117)

where the variation ΔK of the stress intensity factor K can be expressed as

ΔK =
2β

√
πa

h
ΔT . (118)

In equation (117), C and k are material constants and n is the number of cycles.
The critical number of stress cycles ncr can be found out by solving n from (117)
and applying (116):

ncr = (n)a=acr = A

[
1

a(k−2)/2
0

−
(√

πβT0

KCh

)k−2
]

. (119)

The process optimization of the cracked, imperfect web can be done using above
parameters by finding solution to the following multi-optimization problem:

J∗ = J(T∗
0 ) = max

T0
J(T0) , (120)

where:

J(T0) =

⎧⎨
⎩

JV(T0)
JN(T0)
JM(T0)

⎫⎬
⎭ ≡

⎧⎨
⎩

Vcr
0 (T0)

ncr(T0)
Mcr(T0)

⎫⎬
⎭ , (121)
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where:

Mcr = m0Vcrtf , m0 = 2bm . (122)

Equations (120) – (122) state, that we are maximizing web stress (tension) T0 find-
ing a Pareto optimum using the critical velocity Vcr

0 , longevity ncr and process
effectiveness Mcr.

To solve this multi-objective optimization problem, we apply the weighting
method, which is one of the most relevant substitutes for vector optimization
problems. The preference function is formulated as a sum of the single objective
functions JV, JN, JM associated with the weighting factors CV, CN, CM:

JC = CV JV + CN JN + CM JM , (123)

where we suppose that

CV ≥ 0, CN ≥ 0, CM ≥ 0 ,
CV + CN + CM = 1 . (124)

If we assume that the process engineering is "fixed", i.e. the number of the
critical stress changes that the web must withstand is ncr = 100, we can per-
form web tension maximization according velocity criteria J̃V (critical velocity
criterion) and J̃M (process effectiveness criterion). Based on (123) the weighting
method problem is

J̃2 ≡ CV J̃V + CM J̃M ,
CV + CM = 1 , (125)

so that we study

max
0≤T̃0≤1

CV(T̃0 + d)1/2 + CM(T̃0 + d)1/2(1 − T̃0) . (126)

where nondimensional values T̃0 and d are:

T̃0 =
β
√

πa0

KCh
T0 , d =

γ2∗π2Dβ
√

πa0

l2KCh
, 0 < T̃0 < 1 . (127)

Using process parameter and paper property values ν = 0.3, E = 109 Pa, m =
0.08 kg/m2, h = 10−4 m, � = 0.1 m, 2b = 10 m, β = 1.12, and KC = 2.8 ·
106 Pa

√
m (see [94], and [121]) we can present a Pareto front according web ten-

sion T0 in Figure 20.
Results show that weighting of the CM results in very steep dependence

between web tension and the initial crack length, i.e. all the cracks appearing at
the web edges should be eliminated with high web tension (stress) levels if high
production efficiency is sought. The weighting of the CV = 1 − CM gives slightly
more freedom to maximize the production speed according to the web tension if
the web stability limit is not violated.
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FIGURE 20 Dependence of the optimal tension T0 on the initial crack length a0 and the
weight CM, from PIV



5 VISCOELASTOPLASTICITY IN FIBROUS,

TENSIONED WEB MATERIALS

Viscous properties of fibrous web materials have great significance in the creation
of web stress. Production of the web material in paper and board industry is still
water-oriented. Water removal in the process is realized at several different pro-
cess stages, where the free, unbound water inside the fiber network is removed
(in the forming and pressing sections) followed by paper drying, which removes
the majority of the bound water inside the fiber walls.

The development of the web’s strength on and along the production line
must be taken into account in designing the runnability machinery for a specific
paper or board making machine. It is notable that the strength of the web at the
end of the free water removal stage (press section) is still only 10...15% of the
final dry paper [68, 36, 56, 90]. However, as pointed out in PV, the production
velocity is still essentially the same throughout the line. This means that both the
viscoelastic and viscoelastoplastic properties of the wet paper web are in essential
position in creating the web tension needed for ensured production efficiency.

The creation of the needed web stress (or web tension) is based on the cre-
ation a relative velocity difference between the starting and ending points of the
web span to be stressed (see chapter 3.1). With the assumption of ideally elastic
material assumption, the modulus of the elasticity is assumed to be constant, but
with the fibrous materials, there is usually only small of elastic strain in the ma-
terials. At this elastic strain area, also the behavior of the fibrous webs is close to
the viscoelastic behavior [55].

The straining of the wet, undried fibrous material presents different tensile
results compared to dry paper. Elasticity of the wet paper is only 10% compared
to dry paper and therefore the stress response with strain used is always signif-
icantly lower compared to dry paper. This is one of the greatest web handling
challenges in paper and board making. Also, viscoelastic stress relaxation plays
an increasingly important role because even a small decrease of stress loss can
deteriorate the web stability in high velocity production environment [55, 53, 90].
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FIGURE 21 Tension relaxation appearing in paper machine press section, from PV.

Figure 21 illustrates the importance of the relaxation phenomena in the wet end
of the papermaking. At this stage (the ending of wet pressing stage), the water
content of the paper is still approximately 50%, and the straining between points
A and B creates the tension to the web (see also Figure 9). At point B, the web
enters to the lower surface of the drying fabric, where it is advancing, supported,
to the dryer section. However, the strain (and velocity) does not change after the
point B, and the fibrous web starts to lose its stress through relaxation [53].

Relaxation of the wet fibrous material generally is not measured from the
pulp or paper samples. The measurement procedure, which is described in PV,
is more demanding, when compared to standard tensile measurement, due to
rapid drying tendency of the wet samples. A special measurement device and
method were developed in order to study this rheological bottleneck of the paper
production line.

In the laboratory measurement, a fibrous wet sample is attached between
the jaws, and a desired strain is produced in the sample very rapidly in order to
get realistic viscoelastoplastic response from the sample. The transform between
the straining in moving web environment and static strain can be calculated by
applying (48):

dεstatic

dt
=

∂εvelocity di f f erence

∂xdraw length
Uweb . (128)

Since the wet tensile properties are usually exponentially dependent on the amount
of water in the sample (i.e. dry solids content, see Figure 21 a), this measurement
was always carried out at least with two dry solids content levels.

One important finding was that the raw material -based dependencies be-
tween wet and dry paper elasticity and strength are different. This was giving
valuable information for the designing of a machine with different paper grades
and production velocities [56, 90] .
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FIGURE 22 The development of stress relaxation in wet paper as a function of strain
rate applied with different absolute strains from PVI.

Fibrous web travelling along a production line must be strained multiple
times due to the mentioned tension relaxation phenomenon. Therefore, the web
goes through several re-straining sequences, where the negative straining caused
by drying shrinkage is possible [80].

One of the main findings in PVI was the significance of the tensile relax-
ation. Even though the phenomenon of the increased irrecoverable straining due
to relaxation was known, wet fibrous material is mostly viscoelastoplastic, since
both the amount of the relaxation and the straining velocity dε/dt increase the
amount of the plasticity not only of the wet web but also the final dried paper
[2, 55].

These findings further directed the development of the paper and board
production lines to the direction where the stabilization of the web at the wet state
becomes more benefical with external, supporting devices equipped with suitable
underpressure which further stabilize the web against a supporting, permeable
surface [47, 53].



6 ADAPTIVE WEB STABILIZATION

The basis of the adaptive web handling is the creation and optimization of phys-
ical, surface-dependent fluid drag effect on the roll surface. This is possible by
utilizing the viscous properties of the air, which further are responsible for the
boundary layer behavior in fluid flow [93].

Without roll grooving, boundary layers create the undesired overpressure
effects especially to the closing pocket area. This is further emphasized by the
rough surfaces of felts or fabrics [27, 61]. Due to this, the web will lose its contact
with the roll if the web velocity is high enough. This can be avoided by grooving
the roll surface in the optimized manner presented in PVII.

The fundamental principle in an adaptive, self-underpressurizing roll is to
optimize roll geometry in a manner where the boundary layers attached to the
groove walls are transporting exactly the right amount of the air forward, as the
roll rotates. In the optimization, the groove volume is essential. On one hand,
boundary layer air must have enough space to go to the grooves, but on the other,
the groove walls must be close enough to each other to prevent air leakage from
the wrap zone to become underpressurized.

FIGURE 23 The adaptive, self-underpressurizing roll after manufacturing a) and draw-
ing from the cross section of roll surface b) [60].
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FIGURE 24 Rotational pressure curves measured from the bottom of the groove with
and without the web [60].

FIGURE 25 Measured rotational underpressure levels stabilizing the web during roll
wrap area at three different web velocity levels [60].

During the wrap area stage, underpressure along the wrap slightly increases.
When the point of rotation is approaching the opening pocket area (point B), air
flow velocity increases as the opening pocket geometry is forming boundary lay-
ers starting from the detachment point which amplifies the underpressurization
effect by removing the air from the grooves.

Optimal functioning of the roll demands that there exists a pocket geome-
try where a permeable fabric is in contact with the roll forming a wrap zone (see
Figure 24, length A → B around the roll surface). When permeable, dryer sec-
tion fabric is used, the boundary layers in the closing pocket area create a vortex,
which improves sealing zone, partially preventing air from penetrating to the
grooves. The air arriving to the grooves is accelerated by the boundary layers of
the groove walls. This acceleration area is the starting point of the underpressur-
ized area (see point A in Figure 24) [60]. If the rotational velocity (surface velocity)
is increased, all these effects are amplified, causing increases in underpressure at
the roll wrap zone. The effect of machine velocity (surface velocity) is shown in
Figure 25.
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With this roll configuration, it is possible to overcome the energy increase
coming from external web stabilization arrangements. The adaptive roll applica-
tion considered further helps to stabilize the web at areas where permeable fab-
rics are used. Also, with the adaptive technology makes it possible to minimize
the stress needed in web and to optimize the raw materials used in improving
the production economy.



7 CONCLUSION

Moving, viscous web continuum forms a physical entity, the research of which is
typically divided into different subareas. Depending on the needs or ideas pre-
sented to the researchers, these subareas concern usually external surroundings
of the web, i.e. the physical forces directed to the web and changing its visible
behavior, or the contribution of different material components in the production
of the web.

Suprisingly, modelling of the flow phenomenon of the in-plane solid con-
tinuum web has received limited interest. The traditional method to study the
stress-strain behavior is the Lagrangian formulation, where material is stationary
(no transport velocity) and the web model is completed using Dirichlet, Neu-
mann or Robin boundary conditions. The Euler-Lagrangian formulation com-
pletes this modelling approach. Assuming the web to be a moving web contin-
uum with material flow properties, it is possible to extend new features to the
model.

The solution of a two-dimensional, viscoelastic third-order system of partial
differential equations creates additional challenges. The nature of the third-order
terms is convective, and therefore a numerical solution should be carefully de-
signed. If a finite element method is applied, streamline upwinding methods
should be used in order to avoid instabilities during numerical solution [25].

In modelling, special emphasis should be placed on the boundary condi-
tions. The Dirichlet boundary condition is actually suitable in a stationary La-
grangian formulation, i.e. no information is going through the Dirichlet con-
straint. With the continuous moving web model, boundary conditions should be
effective only at the surfaces, i.e. information flow should be allowed outside the
area under observation. From the modelling point of view, the third-order par-
tial differential equations developed give a new perspectives to this stress-strain
formulation and solution of a continuum with convection created by transport
velocity.

One of the more active research area concerns the effects of out-of-plane be-
havior of one- or two-dimensional moving web models. Especially challenging
is the behavior of the thin webs with a large, unsupported surface area where the
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thickness and density are low. In these cases, the modelling approach should be
multiphysical, coupled fluid-structure model where tension is the main stabiliz-
ing contributor in the model. It should be noted that this same phenomenon is
present in the vibration of stationary plate and should be paid careful attention
to, in order to get reliable results based on the object’s vibration characteristics
[70, 92].

In a practical web handling environment, observable web handling items
can be very different compared to the research. The first observable stability lim-
its appearing in different positions in web handling processes are usually the
formations of the out-of-plane deflections. This unwanted phenomenon occurs
especially at the pocket areas near web-roll contact area and usually those are
not accepted since those are prone to change their nature to time-dependent web
vibration or unstable flutter. For this reason, both the modelling of the web di-
vergence limits and effects of edge cracks on the fatigue strength of moving web
are valuable.

Different models for fibrous-based materials are numerous. The primary
motivation for the modelling is the finding the most economically benefical raw
material components for the production of the web. Unfortunately, the connec-
tion between the dynamical, moving web behavior and material elasticity under
study is often limited. The need of cheaper raw materials means in practise of-
ten lower web elasticity, tensile strength and decreased sustainability to strains
applied during the production.

From this viewpoint, in design of the machinery for web handling, we al-
ways aim to the elimination of all steady-state or time-dependent deflections and
out-of-plane disturbances. The reason for this is the need for efficiency and higher
productivity. If the daily production of the machine including the moving web
is high, then even very complex web handling techniques can be economically
justified since few web breaks during one day can cause remarkable economical
losses. It should be noted that this applies to the situation even when the web
velocities are not at their highest level. One of the most important connection
to be notified is between the web handling and raw material used. Essentially
those two are the sides of the same coin: almost all engineered web handling
improvements can utilized in raw material optimization for the production and
vice versa. If possible, the physical environment itself should be utilized to en-
sure good web stability. In this sense, adaptive stability should be studied more
carefully in order to minimize the external disturbances affecting the web.

Regardless of the subject under study, the tensile behavior of the moving
web is always one of the essential items to be included. In this thesis, the stress-
strain theme is considered from different viewpoints along the web handling con-
tinuation. Thus the mentioned different subareas of the web handling research
are combined. By combining these areas further, possibilities arise to optimize
the performance of the web handling line as a single multiphysical entity.
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YHTEENVETO (FINNISH SUMMARY)

Suurella nopeudella liikkuvien, eri materiaaleista valmistettavien rainojen hallin-
ta ja sen avulla saavutettava tuotantotehokkuus on yksi tärkeimmistä tekijöistä
niitä valmistavassa teollisuudessa. Riippumatta käytetystä materiaalista (pape-
rit, kartongit, muovit, kuljettimet, hihnat, kuitukankaat jne.), fysikaalinen mallin-
nusympäristö on kaikille sama. Muista vastaavista tutkimuksista poiketen täs-
sä väitöskirjassa käsitellään sekä liikkuvan rainan fysikaalista ympäristöä että
itse rainan materiaalia kokonaisuudessaan temaattisena jatkumona jossa uusia,
poikkitieteellisesti teoreettisia ja käytännöllisiä rainan hallinnan tutkimustulok-
sia tuodaan esille.

Yhteisenä nimittäjänä esitetylle jatkumolle on rainaan vaikuttava jännitys-
venymä käyttäytyminen, joka on keskeisessä asemassa kaikissa rainan hallin-
nan tilanteissa. Väitöskirjassa esitetään uusi, liikkuvan viskoelastisen kontinuu-
min teoria. Materiaalin viskoottisuudesta johtuen tuloksena saadaan kolmannen
asteen osittaisdifferentiaaliyhtälöryhmä, jossa materiaaliderivaattaa hyödyntäen
on mahdollista luoda Lagrange-Euler -tyypin liikkuva materiaalikontinuumi. Joh-
detut viskoottiseen Kelvin-Voigt materiaalimalliin pohjautuvat yhtälöt ratkais-
taan ensin yhdessä ulottuvuudessa, jossa sekä analyyttinen että numeerinen ele-
menttimenetelmän antama ratkaisu ovat yhtenevät lineaarisessa tapauksessa. Kak-
siulotteinen ratkaisu on aina epälineaarinen koska sekä elastinen että viskootti-
nen kuroutuminen kytkeytyy rainan kulkutasossa esiintyviin x- ja y-suuntaisiin
nopeuksiin.

Yleisenä teemana viskoelastisessa ratkaisussa on se, ettei liikkuvan rainan
venymä ole vakio välin pituudella. Tällöin jännitystila syntyy elastisen venymän
ja viskoottisen venymänopeuden yhdistelmästä. Esitetty kolmatta astetta oleva
yhtälöryhmä sisältää myös ensimmäisen asteen Navier-Stokes -yhtälöiden kal-
taiset konvektiotermit jotka ovat merkittäviä vain suurten siirtymien tapaukses-
sa.

Esitetyssä temaattisessa jatkumossa rainan jännitystilalla on suuri merkitys
rainan stabiiliudelle. Keskeisenä tekijänä on rainan divergoitumisen rajanopeus,
jossa stabiilius menetetään. Suuressa osassa teollisesti valmistettuja rainoja ma-
teriaaliominaisuudet x- ja y-suunnissa poikkeavat toisistaan. Tällöin usein mal-
linnuksessa sovelletaan ortotrooppista materiaalioletusta, jolloin sen matemaat-
tinen käsittely helpottuu. Tulosten mukaan ortotrooppisen materiaalin stabiili-
suuden menetys poikkeaa isotrooppisesta materiaalista siten, että isotrooppisen
materiaalin epästabiili muoto keskittyy enemmän radan reunaosiin.

Kytkettyä potentiaalivirtaus-rakennemallia hyödyntäen esitetään tässä työs-
sä ratkaisu yksidimensionaalisen liikkuvan rainan rajanopeudelle. Kun oletetaan
rainaa ympäröivan virtauksen olevan samansuuntainen rainan liikkeen kanssa,
kytketty ongelma voidaan ratkaista numeerisesti Galerkinin menetelmällä. Mal-
lin tulokset osoittavat mallin antavan tarkkoja tuloksia sovellettaessa niitä testei-
hin, joissa käytettiin tuulitunneliin asetettua, kiristettyä stationääristä rainaa.

Liikkuvien rainojen reunat muodostavat tärkeän, mutta harvoin mallinnuk-



68

sen avulla tutkitun rainan hallinnan osa-alueen. Murtumismekaniikkaa sovel-
taen esitetään Paris’n lakia hyödyntämällä liikkuvan rainan kestoiälle malli, jon-
ka avulla rainassa esiintyvien reunasäröjen vaikutusta ratakatkoherkkyyteen voi-
daan tarkastella. Kehitettyä mallia on sovellettu monitavoiteoptimointiin, jossa
rainan kireydelle on mahdollista muodostaa Pareto-optimaali tuotantotehokkuu-
den, rainan kestoiän ja sen nopeuden avulla.

Käytännön rainan hallinnassa materiaalin jännitys-venymä -ominaisuuksia
voidaan hyödyntää vain rajallisesti johtuen materiaaliin syntyvistä palautumat-
tomista, rainan laatua heikentävistä venymistä. Kuitenkin suurissa nopeuksissa
rainaan kohdistuu toisaalta ulkoisia voimavaikutuksia, joista aiheutuva stabiiliu-
den menetys heikentää tuotantotehokkuutta. Lisäksi kaikissa viskoelastisissa ma-
teriaaleissa tapahtuu sisäistä jännityksen laskua, relaksaatiota, jota esiintyy myös
liikkuvassa radassa aina kun se ei ole aktiivisen kiristyksen kohteena. Tätä silmäl-
läpitäen on kehitetty mittausmenetelmä, jonka avulla materiaalien nopeaa relak-
saatiota on mahdollista mitata myös käytännössä. Tulosten mukaan tilanteissa,
joissa aktiivisen venymän avulla rainan jännitystilaa on kohotettu, alkaa erittäin
nopea jännitystilan lasku sen saavuttua tuetulle rainanvientiosuudelle jossa rataa
ei ole mahdollista kiristää. Relaksaation seurauksena materiaalin oma, palautu-
mattoman venymän suhteellinen osuus myös kasvaa. Mikäli tuotantonopeuksia
kasvatetaan, tämä johtaa rainaa kiristettäessä myöhemmän relaksaation aikana
entistä suurempien palautumattomien venymien muodostumiseen, mikä voi vai-
keuttaa rainan hallintaa myöhemmissä mahdollisissa rainan käsittelyissä lisäten
täten ratakatkojen todennäköisyyttä.

Tilanteissa, joissa rainaa ei voida kiristää, se on stabiloitava liikkuvaa, tu-
kevaa pintaa vasten ulkoisia voimavaikutuksia apuna käyttäen. Stabiloitava, al-
haisen kireyden rata voidaan tukea läpäisevää kudosta vasten hyödyntämällä
adaptiivista alipaineen muodostusta. Tässä työssä esitelty, omasta pyörimisliik-
keestään alipaineen muodostava tela on mahdollista toteuttaa optimoimalla te-
lan pinnan urarakenne niin, että urien muodostaman tilavuuden on mahdollista
ottaa vastaan rajakerrosten mukaan tuoma ilma ja samalla kuljettaa se kudok-
sen muodostaman peittoalueen läpi siten, että kudoksen läpi tapahtuu virtausta
telan pinnan urarakenteeseen. Alipaineen tuottoa vahvistaa edelleen kudoksen
ja telan välinen avautuva taskutila, jossa syntyvä alipainevaikutus poistaa ilmaa
uratilavuudesta. Yhdessä nämä tekijät saavat aikaan sen, että optimoidulla urara-
kenteella telan alipaine tehostuu nopeuden funktiona saaden aikaan adaptiivisen
stabiloinnin.
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Abstract. In this paper, we address to the problem of the origin of in-plane stresses in contin-
uous, high-speed webs. In the case of thin, slender webs a typical modeling approach is the
application of static in-plane stress approximation without considering the effects of in-plane
velocity field. In the case of one-dimensional equations, we will study the effects of material
viscoelasticity and Eulerian non-linearity of the transport velocity. Finite element solutions of
the non-linear equation are presented with both elastic and viscoelastic material assumptions.
Despite the limitations of the Kelvin-Voigt material assumption, fundamental coupling effects
between viscoelasticity and velocity are visible. The strain behavior in the span under study is
examined, and from both analytical and numerical results it is seen that the web strain is not
constant during the span length. Results also indicate that the viscous properties of the material
are closely connected to the overall tension level behavior in the stretched web span. Material
time-dependency changes the web stress behavior: the span length, material viscosity and the
web velocity cause significant effects, which are observed in the in-plane dynamics of the web.
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1 Introduction

In the handling of continuous, high-speed webs the origin of in-plane stresses creates a sci-

entific problem, which is not yet completely understood. Especially, the type of the web ma-

terial has a significant effect on both qualitative and quantitative characteristics of the in-plane

stresses. Web tension in the moving continuous web systems can usually be controlled in the

direction of the transport velocity, the tension being generated by a velocity difference between

the starting and ending lines of the span. With high transport velocities, both web stress and

web stability are under concern not only in this longitudinal direction but also in the direction

perpendicular to the velocity in the plane of the web.

Since axially moving materials, such as strings, belts, beams, membranes and plates, have

many applications in industry, e.g. in paper production, their mechanics have been studied

widely. In processing of different kinds of thin, laterally moving solid webs, such challenges as

efficiency of production and effects caused by high processing speed are met.

Research history of vibrations of travelling elastic materials goes back to the 1950’s, when

Sack [40] and Archibald and Emslie [1] studied transverse vibrations in a traveling string. In the

1960s and 70’s, many researchers continued studies on moving strings and beams concentrating

mainly on various aspects of free and forced transverse vibrations [31, 33, 34, 35, 43, 46].

Stability of small transverse vibrations of travelling two-dimensional rectangular membranes

and plates have been studied by Ulsoy and Mote [51], and Lin [26]. When the web is advancing

through processes without an external support, the inertial forces depending on the web speed

are coupled with web tension. Also the transverse behavior of the web and the response in the

flowing fluid (air) surrounding the web are coupled (see e.g. [7, 38]).

Lin and Mote studied an axially moving membrane in a 2D formulation, predicting the equi-

librium displacement and stress distributions under transverse loading [27]. Later, the same

authors studied the wrinkling of axially moving rectangular webs with a small flexural stiffness

[28]. They predicted the critical value of the non-linear component of the edge loading after

which the web wrinkles and the corresponding wrinkled shape of a web. It is also known, that

lack of web tension will result in loss of stability in the moving web, which from the applica-

tion viewpoint, disturbs required smooth advancing of the web (see e.g. [3, 4]). From the other

hand, web tension too high may cause web breaks, which deteriorate production efficiency and

the strength properties of the processeed material (see e.g. [2, 39, 41, 44]).

Considering wet paper material, the viscoelastic properties play an important role in the

behavior of the web and, thus, are to be included in the model. The first study on transverse

vibration of travelling viscoelastic material was carried out by Fung et. al. using a string model

[15]. Extending their work, they studied the material damping effect in their later research [16].

Viscoelastic strings and beams have been studied recently exceedingly, see e.g. [30, 53].

Oh et al. studied critical speeds, eigenvalues and natural modes of the transverse displacement

of axially moving viscoelastic beams using the spectral element model [25, 36]. Chen and

Zhao [12] represented a modified finite difference method to simplify a non-linear model of an

axially moving string. They studied numerically the free transverse vibrations of both elastic

and viscoelastic strings. Chen and Yang studied free vibrations of viscoelastic beams travelling

between simple supports with torsion strings [11]. They studied the viscoelastic effect by per-

turbing the similar elastic problem and using the method of multiple scales. Very recently, Yang

et al. studied vibrations, bifurcation, and chaos of axially moving viscoelastic plates using finite

differences and a non-linear model for transverse displacements [52].

Marynowski and Kapitaniak studied differences between the Kelvin-Voigt and Bürgers mod-
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els in modeling of internal damping of axially viscoelastic moving beams. They found out that

both models gave accurate results with small damping coefficients, but with a large damping

coefficient, the Bürgers model was more accurate [29]. In 2007, they compared the models with

the Zener model studying the dynamic behavior of an axially moving viscoelastic beam [30].

They found out that the Bürgers and Zener model gave similar results for the critical transport

speed whereas the Kelvin-Voigt model gave a greater transport speed compared to the other two

models.

The origin and structure of the tension distribution in a moving solid web seems to be an

exceptionally unknown area. The often used models with the web materials are based on as-

sumptions of isotropic or orthotropic material properties (see e.g. [5, 48]). Also, the web

materials are often considered as viscoelastic or viscoplastic but there is no coupling between

in-plane strain and web velocity effects (see e.g. [19, 37, 50]). Time-dependent, in-plane vibra-

tions of a moving continuous membrane were studied by Shin et al. [42]. In their work, in-plane

vibration modes of an isotropic web were studied between the traction lines. Also Guan et. al.

have studied viscoelastic web behavior in both steady state and unsteady state cases [17, 18].

Usually, the partial time derivative has been used instead of the material derivative in the

viscoelastic constitutive relations. Mockensturm and Guo suggested that the material deriva-

tive should be used [32]. They studied non-linear vibrations and dynamic response of axially

moving viscoelastic strings. Kurki and Lehtinen suggested, independently, that the material

derivative in the constitutive relations should be used in their study concerning the in-plane dis-

placement field of a travelling viscoelastic plate [23]. In the study by Chen et al., the material

derivative was used in the viscoelastic constitutive relations [8]. They studied parametric vi-

bration of axially accelerating viscoelastic strings. Chen and Ding studied stability of axially

accelerating viscoelastic beams using the method of multiple scales and the material derivative

in the viscoelastic constitutive relations [13]. Chen and Wang studied stability of axially accel-

erating viscoelastic beams using asymptotic perturbation analysis and the material derivative in

the viscoelastic relations [10]. In a recent research by Chen and Ding, the material derivative

was also used to study dynamic response of vibrations of axially moving viscoelastic beams [9].

In their study, a non-linear model was used taking into account the coupling of the transverse

displacement with the longitudinal (in-plane) displacement. However, the transverse behavior

of the beam was their main focus.

In this paper, we will represent a study where the effects of material viscoelasticity and Eule-

rian non-linearity of the transport velocity U in are considered in the following one-dimensional

equation:

ηU
∂3u

∂x3
+ (E − ρU2)

∂2u

∂x2
− ρU

∂U

∂x

∂u

∂x
= 0 (1)

where η is viscosity, ρ is density of material, x is axial coordinate and u is the in-plane displace-

ment. One fundamental observation of this study is the significance of strain-based boundary

conditions; in the case on one-dimensional model, the strain (Dirichlet) boundary condition af-

fects throughout the web thickness isolating the span under observation from other preceding

or succeeding web spans.

2 Continuous web flow phenomenon

Continuous, moving web creates a flow continuum, which may be considered as a solid flow

medium. Due to its solid nature, web continuum is always under the stress state, which is caused

3
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by the strain state. Using the conservation of mass, we get the following equation:

∂ρ

∂t
+ ρ∇U = 0 . (2)

with web density ρ and longitudinal velocity U .

Assuming the density ρ to be constant, using Eq. (2) we may construct the mass conservation

law for the situation described in Figure 1. Because there is a longitudinal strain component ε
in the web span under observation, Eq. (2) can be represented as follows:

ρA1U1 − ρA2U2 = 0 , (3)

where

A2 =
A1

1− εT
(4)

and εT is the strain at the end of the span, i.e at the area A2 in Figure 1. From Eqs. (3) and (4),

we obtain

εT =
U2

U1

− 1 . (5)

Flowing solid continuum in the case above is assumed to be controlled only in the direction

of the transport speed, i.e. in the longitudinal x-direction. Note that Eq. (3) can be applied only

in the steady-state situation of the flow, i.e. the web is assumed to flow smoothly and without

time-dependent disturbances [18]. Also, the traction lines at the cross-sectional areas A1 and A2

are assumed to affect only at the surfaces of the web, i.e. the stress and strain waves advancing

inside the web thickness can cross the traction lines. Therefore the boundary conditions of

the moving continuous webs in reality are consisting rather complicated friction-based force

transmission phenomena at web-roll contact areas [22].

3 One-dimensional viscoelastic in-plane moving continuum equations

In this article, material assumption of the web continuum is based on viscoelasticity. With

fibrous, composite-type materials, the elasticity properties are result of complicated material

pre-processing, which further results in orthotropic anisotropy with material time-dependency

(see e.g. [6, 20, 37, 50]). One can derive a vast number of different rheological models for

the time-dependent material behavior but fundamental behavior of continuous flow of the solid

viscoelastic web can be analyzed by using the simple Kelvin-Voigt model. The principle of the

Kelvin-Voigt model is described in Figure 2.

Stress-strain behavior of one-dimensional Kelvin-Voigt material is (see e.g. [14])

σ = Eε+ η
dε

dt
, (6)

where σ denotes the stress, ε the strain, E the Young’s modulus, and η the viscosity coefficient.

In the following, we represent a description of the strains and deformations. A standard

method to describe the structural deformations is to use material assumption with static medium

according to the placement of observer. Longitudinal movement of material creates in-plane

deformations, the modelling of which is a real challenge, since the actual deformation is to be

handled using spatial or mixed Lagrange-Euler description[24, 45]. This description is standard
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Figure 1: Solid web continuum flowing between the incoming and outgoing flow control areas A1 and A2 with

longitudinal speeds U1 and U2 between the beginning and ending tractions lines, respectively.
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Figure 2: Kelvin-Voigt rheological model.

in fluid dynamics where the observer is watching a control volume where possible deformations

will appear [21]. Using the same principle, we may construct a constitutive flow model for

solid, anisotropic viscoelastic moving continuum. Therefore the strain ε is to be written in the

Lagrange-Euler form:

ε = ε(x, t) . (7)

The material derivative of strain ε is then

dε

dt
=

∂ε

∂x

dx

dt
+

∂ε

∂t
= U

∂ε

∂x
+

∂ε

∂t
. (8)

For time-dependent solid continuum flow, the following equation may be derived:

ρ
∂2u

∂t2
+ 2ρU

∂2u

∂x∂t
+ ρU2∂

2u

∂x2
+ ρ

(
∂U

∂t
+ U

∂U

∂x

)
∂u

∂x
=

E
∂2u

∂x2
+ η

(
∂3u

∂x2∂t
+ U

∂3u

∂x3

)
. (9)

If we assume that there is no time-dependent fluctuation in x-directional displacement u, we can

represent a steady-state equation for ideal, undisturbed axial narrow web flow in the following

form:

ηU
∂3u

∂x3
+ (E − ρU2)

∂2u

∂x2
− ρU

∂U

∂x

∂u

∂x
= 0 . (10)

With the assumption of linear Cauchy strains states

ε = ∂u/∂x (11)

and based on the linearized form of Eq. (10) ,we will get the equation

ηU
∂2ε

∂x2
+ (E − ρU2)

∂ε

∂x
= 0 . (12)

The similarity between Eq. (12) and the heat convection equation

kT
∂2T

∂x2
− ρcpU

∂T

∂x
= 0 (13)

in one dimension is apparent. In Eq. (13), T is temperature, U the spatial motion of the media

surrounding the object under heat transfer, cp the specific heat of the object, and kT the heat

diffusion coefficient [47].
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4 Algebraic solution of the linearized steady-state case

The solution of Eq. (12) can be achieved using algebraic methods. If only pure elasticity is

present, solution is of the form:

(E − ρU2)ε = C , (14)

where C is constant. Thus, the solution obeys Hookean behavior, i.e. the strain ε is constant

regardless of the level of the transport velocity U .

However, with nonzero viscosity, Eq. (12) becomes

∂2ε

∂x2
+

(
E − ρU2

ηU

)
∂ε

∂x
= 0 . (15)

With the boundary conditions ε(0) = 0, ε(�) = εT, the algebraic solution of Eq. (15) is [22]

ε(x) = εT
1− e−kx

1− e−k�
, (16)

where

k =
E − ρU2

ηU
(17)

and � is the length of the span under observation.

Analytical solution of the strain can be obtained only for the linearized one-dimensional

case. Based on Eq. (8), we define the spatial strain in the steady-state case:

dε

dt
= U

∂ε

∂x
. (18)

Now the x-directional stress σ appearing in the moving viscoelastic span based on the strain in

Eq. (16) is a superposition of the elastic and viscous stress components:

σ = EεT
1− e−kx

1− e−k�
+ ηUεT

ke−kx

1− e−k�
. (19)

Substitution of (17) into (19), one gets

σ =
εT

1− e−k�
(E − ρU2e−kx) . (20)

5 Numerical results by FEM

Numerical solution of the viscoelastic moving continuum problem is realized using the finite

element method (FEM). The derivation of the FEM matrices is performed using the principle

of virtual work. Virtual work δW can be calculated using the virtual strain δεT as follows [54]:

δW =
∫
V
δεT σ̄ dV . (21)

In the finite element method, the connection between the strain vector ε and displacements

ue in the element nodes are defined by using strain-displacement approximation in a matrix B

ε = Bue where B =
∂

∂x
Ne . (22)

7
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In Eq. (22), Ne is a shape function matrix defining the displacement approximations inside the

element. If the element is undergoing a virtual displacement δue, we can write using Eq. (21)

(see e.g. [54]):

δW = δue

∫
V
BT σ̄ dV . (23)

However, the stress σ̄ inside the volume is calculated using the stress strain behaviour of the

viscoelastic in-plane moving continuum model. One-dimensional non-linear equation (10) will

be solved using the finite element method.

While the velocity U is a function of x, the terms in Eq. (10) may be regrouped as follows:

∂

∂x

[
ηU

∂2u

∂x2
+ (E − ρU2)

∂u

∂x

]
+ ρU

∂U

∂x

∂u

∂x
− η

∂U

∂x

∂2u

∂x2
= 0 . (24)

We denote

σ̄ = ηU
∂2u

∂x2
+ (E − ρU2)

∂u

∂x
. (25)

Using the finite element method approximation presented in Eq. (22), the displacement

operators in Eq. (25) can be written as

σ̄ =
[
ηUB2 + (E − ρU2)B1

]
ue , (26)

where

B1 =
∂

∂x
N and B2 =

∂2

∂x2
N. (27)

On the other hand, σ̄ can be expressed with the help of strains (see Eq. (11))

σ̄ =
[
ηUB1 + (E − ρU2)N

]
εe , (28)

where εe are the strains in the element nodes.

The substitution of Eq. (28) to Eq. (23) will result in

δW = δue

[∫
V
BT

[
ηUB1 + (E − ρU2)N

]
dV

]
εe . (29)

However, inside the element area the virtual energy δW = δueFe, where Fe is the force

vector, affecting on the element. The forces affecting the element can be represented as

Fe = Keεe ,

where Ke is the following element stiffness matrix:

Ke = A
∫ �e

0

[
BTηUB1 +BT (E − ρU2)N

]
dx . (30)

The element used in the analysis is a 3-node quadratic rod element with three axial degrees

of freedom. See Figure 3.
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Figure 3: Quadratic 3-node rod element and its corresponding shape functions.

The final global finite element equation is

F = Ku . (31)

Vector u includes the displacements based on the boundary conditions presented in the Section

4. Boundary conditions for the axial system of Figure 1 are

ux=0 = 0 and ux=� = εT� =
(
U2

U1

− 1
)
� . (32)

The solution of Eq. (31) is now realized by substituting the displacements of Eq. (32) to

appropriate places in the displacement vector u. The corresponding forces are calculated to

force vector F by using elimination. Finally, the rest unsolved displacements are computed

using u = K−1F . The non-linear term in Eq. (24) is handled as a body force applied to the

element nodes. By this, the effect of the non-linear term can be solved as a non-linear force

FBe =
∫
V
NTFnl dV . (33)

The force Fnl originating from the non-linear term, will be calculated for each element:

Fnl = ρU
∂U

∂x
ε− η

∂U

∂x

∂ε

∂x
. (34)

The final nodal forces FBe for each element are individual and take into account the current

displacement, velocity and velocity gradient inside of each element. The problem with these

body forces is solved via the Newton–Raphson method.

Using Eqs. (16), (18), and (19), the strain and stress states of the one-dimensional viscoelas-

tic beam can be calculated.We have used parameter values E = 2.5 · 107 N/m2, η = 4.0 · 105
Ns/m2, U = 10 m/s, span length � = 1.0 m and strain εT = 0.03. The cross-directional area,

which is under draw, is A = 2.0 m2, and the web density is 0.16 kg/m3.

For the exemplary parameter values above, the results obtained are shown in the Figures 4

– 7. The analytical solution (with a constant velocity U ) is obtained from Eq. (12), and the

FEM solutions from the discretized form of Eq. (10) with velocity depending on x. For the first

Newton–Raphson iteration, the U was set constant, but U was updated during the iteration with

the help of nodal strains. The number of nodal points used in the FEM was 600.

The strain distribution during the draw differs from the constant-strain presented in theory

of elasticity [49]. See Figure 4. In this figure, one may also notice a slight difference between

the analytical solution with constant U and the numerical iterated solution where the velocity U
depends on x. However, the FEM solution from the first iteration (having constant U ) and the

analytical solution coincided as desired.
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Figure 4: Analytical and numerical (FEM) solution of strain distribution during the length of the span.
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Figure 5: Analytical (left) and numerical (FEM) (right) solution of the stress distribution during the length of the

span.
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Figure 6: Effect of the span length to the web stress with different web speed levels.
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Figure 7: Strain distribution in the span and the effect of non-linearity. The strain at the end of the span is εT = 0.1.

On the right-hand side, the Newton–Raphson iteration is shown for some values of x.
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Even though the strain distribution is not constant, the stress distribution is a combination of

elastic and viscous forces based on Eq. (6) and it is almost constant. See Figure 5 and compare

with the analytical solution in Eq. (20). The stress increases very slightly towards the traction

line A2.

The effect of the span length on the web stress state is visible in Figure 6. As seen, the shorter

the processing time of the viscoelastic span, the higher the response of the time-dependent

viscous force component. The effect of non-linearity is seen in Figure 7. However, the effect of

non-linearity is relatively small.

In Table 1, numerical data in the case εT = 0.1 is shown for some numbers of iterations. The

value of the strain ε is collected for x = 0.25 m, 0.50 m, and 0.75 m (when the length of the

span is � = 1 m). Also here, it is seen that the first iteration with constant velocity gives results

that coincide with the analytical solution. This shows the accuracy of the FEM solution. When

U is not constant, the strains seems to be slightly smaller than in the case when U is constant.

See also Figure 7.

Table 1: Numerical data from the Newton–Raphson iteration. The value of the strain ε for some selected values

of x and numbers of iterations (Iter.). At the first row, the analytical solution for the case of constant velocity is

shown. The strain at the end of the span is εT = 0.1. Compare with Figure 7.

Iter. x (m)

0.25 0.50 0.75

Anal. 7.9082·10−2 9.5768·10−2 9.9266·10−2

1 7.9081·10−2 9.5768·10−2 9.9266·10−2

4 7.7957·10−2 9.5119·10−2 9.9076·10−2

16 7.7683·10−2 9.4955·10−2 9.9026·10−2

64 7.7615·10−2 9.4914·10−2 9.9014·10−2

6 Conclusions

In this paper, we presented models for handling of continuous, high-speed webs. We also

took into consideration the type of the web material, which has a significant effect on both

qualitative and quantitative characteristics of the in-plane stresses.

In this study, the effects of the material viscoelasticity and the Eulerian non-linearity were

considered as a function of the transport velocity. Solutions of the one-dimensional non-linear

equation were presented both with elastic and viscoelastic material assumptions. Finite element

method (FEM) was used in the solution of the group of the second order PDEs.

Despite the limitations of the Kelvin-Voigt material assumption, fundamental coupling ef-

fects between viscoelasticity and the velocity field were visible. From the numerical solutions,

the effect of the strain behavior in the span under study was seen: the web strain is not con-

stant during the span length. In the case of pure elastic web material, the non-linear Euler term

seemed to cause a qualitatively similar effect. The strain being non-constant originates from the

velocity difference and the longitudinal strain wave velocity in the elastic material.

One fundamental observation on the significance of the strain-based boundary conditions

was made. In the case of an one-dimensional model, the strain (Dirichlet) boundary condition

affects throughout the web thickness isolating the span under observation from the (possibly)

preceeding or succeeding web spans. Based on the Figure 1, this, however, is not the situation

in reality. Even if the web was considered as slender, there would always be a possibility of the

time-dependent strain waves advancing through the control areas A1 and A2. Therefore, one
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of the future challenges in developing realistic in-plane moving web models are the boundary

conditions applied.
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[14] Wilhelm Flügge. Viscoelasticity. Springer-Verlag, New York, 2nd edition, 1975.

[15] R.-F. Fung, J.-S. Huang, and Y.-C. Chen. The transient amplitude of the viscoelastic

travelling string: An integral constitutive law. Journal of Sound and Vibration, 201(2):153

– 167, 1997. DOI: 10.1006/jsvi.1996.0776.

[16] R.-F. Fung, J.-S. Huang, Y.-C. Chen, and C.-M. Yao. Nonlinear dynamic analysis of the

viscoelastic string with a harmonically varying transport speed. Computers & Structures,

66(6):777 – 784, 1998. DOI: 10.1016/S0045-7949(98)00001-7.

[17] X. Guan, M. S. High, and D. A. Tree. Viscoelastic effects in modeling web handling

systems: Steady-state analysis. ASME Journal of Applied Mechanics, 62(4):908–914,

1995. DOI: 10.1115/1.2789031.

[18] X. Guan, M. S. High, and D. A. Tree. Viscoelastic effects in modeling web handling

systems: Unsteady-state analysis. ASME Journal of Applied Mechanics, 65(1):234–241,

1998. DOI: 10.1115/1.2789031.

[19] E. G. Hauptmann and K. A. Cutshall. Dynamic mechanical properties of wet paper webs.

Tappi Journal, 60(10):106 – 108, 1977.

[20] M. Johnson and T. Urbanik. A nonlinear theory for elastic plates with application to

characterizing paper properties. Journal of Applied Mechanics, 51(3):146–152, 1984.

[21] H. Koivurova and E.-M. Salonen. Comments on non-linear formulations for travelling

string and beam problems. Journal of Sound and Vibration, 225(5):845–856, 1999.

[22] M. Kurki. Modeling of kinematical and rheological web line behavior in a papermaking
environment. Licentiate thesis, Lappeenranta University of Technology, Department of

Mechanical Engineering, 2005. Lappeenranta, Finland.

[23] M. Kurki and A. Lehtinen. In-plane strain field theory for 2-d moving viscoelastic webs.

In Papermaking Research Symposium 2009 (Kuopio, Finland). PRS, 2009.

[24] M. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics. Butterworth &

Heinemann, third edition edition, 1999.

[25] U. Lee and H. Oh. Dynamics of an axially moving viscoelastic beam subject to axial

tension. International Journal of Solids and Structures, 42(8):2381 – 2398, 2005.

[26] C. C. Lin. Stability and vibration characteristics of axially moving plates. International
Journal of Solids and Structures, 34(24):3179–3190, 1997.

[27] C. C. Lin and C. D. Mote. Equilibrium displacement and stress distribution in a two-

dimensional, axially moving web under transverse loading. ASME Journal of Applied
Mechanics, 62:772–779, 1995.

14



Matti J. Kurki, Juha M. Jeronen, Tytti J. Saksa, and Tero T. Tuovinen

[28] C. C. Lin and C. D. Mote. Eigenvalue solutions predicting the wrinkling of rectangu-

lar webs under non-linearly distributed edge loading. Journal of Sound and Vibration,

197(2):179–189, 1996.

[29] K. Marynowski and T. Kapitaniak. Kelvin-voigt versus bürgers internal damping in mod-

eling of axially moving viscoelastic web. International Journal of Non-Linear Mechanics,

37(7):1147 – 1161, 2002. DOI: 10.1016/S0020-7462(01)00142-1.

[30] K. Marynowski and T. Kapitaniak. Zener internal damping in modelling of axially mov-

ing viscoelastic beam with time-dependent tension. International Journal of Non-Linear
Mechanics, 42(1):118 – 131, 2007. DOI: 10.1016/j.ijnonlinmec.2006.09.006.

[31] W. L. Miranker. The wave equation in a medium in motion. IBM Journal of Research and
Development, 4:36–42, 1960.

[32] E. M. Mockensturm and J. Guo. Nonlinear vibration of parametrically excited, viscoelas-

tic, axially moving strings. ASME Journal of Applied Mechanics, 72(3):374–380, 2005.

DOI: 10.1115/1.1827248.

[33] C. D. Mote. Divergence buckling of an edge-loaded axially moving band. International
Journal of Mechanical Sciences, 10:281–195, 1968.

[34] C. D. Mote. Dynamic stability of axially moving materials. Shock and Vibration Digest,
4(4):2–11, 1972.

[35] C. D. Mote. Stability of systems transporting accelerating axially moving materials. ASME
Journal of Dynamic Systems, Measurement, and Control, 97:96–98, 1975.

[36] H. Oh, J. Cho, and U. Lee. Spectral element analysis for an axially moving viscoelastic

beam. Journal of Mechanical Science and Technology, 18(7):1159–1168, 2004. DOI:

10.1007/BF02983290.

[37] M. Pecht and M. Johnson. The strain response of paper under various constant regain

states. TAPPI Journal, 68(1):90–93, 1985.

[38] A. Pramila. Sheet flutter and the interaction between sheet and air. TAPPI Journal,
69(7):70–74, 1986.

[39] Robertson. The physical properties of wet webs. Svensk Papperstidning, 66(1):477–497,

1963.

[40] R. A. Sack. Transverse oscillations in traveling strings. British Journal of Applied Physics,

5:224–226, 1954.

[41] I. B. Sanborn. A study of irreversible, stress-induced changes in the macrostructure of

paper. TAPPI Journal, 45(6):465–474, 1962.

[42] Changho Shin, Wonsuk Kim, and Jintai Chung. Free in-plane vibration of an axially

moving membrane. Journal of Sound and Vibration, 272(1–2):137–154, 2004.

[43] A. Simpson. Transverse modes and frequencies of beams translating between fixed end

supports. Journal of Mechanical Engineering Science, 15:159–164, 1973.

15



Matti J. Kurki, Juha M. Jeronen, Tytti J. Saksa, and Tero T. Tuovinen

[44] J. Skowronski and A. A. Robertson. A phenomenological study of the tensile deformation

properties of paper. Journal of Pulp and Paper Sciences, 11(1):J21–J28, 1985.

[45] S. Smith and Stolle D. A comparison of eulerian and updated lagrangian finite element

algorithms for simulating film casting. Finite Elements in Analysis and Design, 38:401–

415, 2002.

[46] R. D. Swope and W. F. Ames. Vibrations of a moving threadline. Journal of the Franklin
Institute, 275:36–55, 1963.

[47] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher. Computational Fluid Mechanics and
Heat Transfer. Series in Computational and Physical Processes in Mechanics and Thermal

Sciences. Taylor & Francis, 2nd edition, 1997.

[48] J. L. Thorpe. Paper as an orthotropic thin plate. TAPPI Journal, 64(3):119–121, 1981.

[49] S. Timoshenko and J. Goodier. Theory of Elasticity. McGraw-Hill, second edition edition,

1951.

[50] T. Uesaka, K. Murakami, and R. Imamura. Two-dimensional linear viscoelasticity of

paper. Wood Science and Technology, 14:131–142, 1980.

[51] A. G. Ulsoy and C. D. Mote. Vibration of wide band saw blades. ASME Journal of
Engineering for Industry, 104:71–78, 1982.

[52] Xiao-Dong Yang, Wei Zhang, Li-Qun Chen, and Ming-Hui Yao. Dynamical analysis of

axially moving plate by finite difference method. Nonlinear Dynamics, 67(2):997–1006,

2012.

[53] N.-H. Zhang and L.-Q. Chen. Nonlinear dynamical analysis of axially moving vis-

coelastic strings. Chaos, Solitons & Fractals, 24(4):1065 – 1074, 2005. DOI:

10.1016/j.chaos.2004.09.113.

[54] O. Zienkiewicz and R. Taylor. The Finite Element Method Volume 1: The Basis. Fifth

edition edition, 2000.

16



PII

ON DISPLACEMENT-VELOCITY COUPLING AND THE
ORIGIN OF IN-PLANE STRESSES IN ORTHOTROPIC

MOVING CONTINUA

by

Matti Kurki, Juha Jeronen, Tytti Saksa and Tero Tuovinen 2014

Reports of the Department of Mathematical Information Technology Series B,
Scientific Computing, ISBN 978-951-39-5742-1, ISSN 1456-436X



Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing
No. B 4/2014

On displacement-velocity coupling and the

origin of in-plane stresses in orthotropic

moving continua

Matti Kurki Juha Jeronen

Tytti Saksa Tero Tuovinen

University of Jyväskylä
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Abstract

In this paper, we address the problem of the origin of in-plane stresses in
continuous, two-dimensional high-speed webs. In the case of thin, slender
webs, a typical modeling approach is the application of a stationary in-plane
model, without considering the effects of in-plane velocity field. However, for
high-speed webs this approach is insufficient, because it neglects the coupling
between the total material velocity and the deformation experienced by the ma-
terial. By using a mixed Lagrange–Euler approach in model derivation, the
solid continuum problem can be transformed to solid a continuum flow prob-
lem. Mass conservation in the flow problem, and the behaviour of free edges
in the two-dimensional case, are both seen to influence the velocity field. We
concentrate on the steady-state solutions of the model, and study briefly the
coupled nature of material viscoelasticity and transport velocity in one dimen-
sion. Analytical solutions of the one-dimensional equation are presented with
both elastic and viscoelastic material assumptions. Numerical solution of the
two-dimensional elastic problem is also presented. Due to the nature of the
velocity-dependent contraction, a nonlinear FEM solution procedure is used.
The results indicate that inertial effects produce an additional contribution to
elastic contraction in unsupported, free webs.

Keywords: axially moving, orthotropic, viscoelastic, elastic, one-dimensional, two-
dimensional, free edges

1 Introduction

In the handling of continuous, high-speed webs the origin of in-plane stresses cre-
ates a scientific problem, which is not yet completely understood. Especially, the

∗This research was supported by the Finnish Cultural Foundation.
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type of the web material has a significant effect on both qualitative and quantitative
characteristics of the in-plane stresses. Web tension in the moving continuous web
systems can usually be controlled in the direction of the transport velocity, the ten-
sion being generated by a velocity difference between the starting and ending lines
of the span. At high transport velocities, both web stress and web stability are of
concern, not only in this longitudinal direction, but also in the direction perpendic-
ular to the main transport velocity in the plane of the web.

Axially moving materials have many applications in industry, e.g. in paper pro-
duction, and their mechanics have been studied widely. In the processing of dif-
ferent kinds of thin, laterally moving solid webs, challenges are met, such as the
efficiency of production and effects caused by the high processing speed. The first
studies of the vibrations of travelling elastic materials date back to the end of the
19th century (Skutch, 1897 [62]) and to the middle of the 20th century (Sack, 1954
[56]; Archibald and Emslie, 1958 [1]). A string model for the moving material was
used in all of these studies. Later on, in the 1960s and 1970s, many researchers con-
tinued studies on moving strings and beams, concentrating mainly on various as-
pects of free and forced transverse vibrations (e.g. Miranker [45], Swope and Ames
[65], Mote et. al. [47, 48, 49] and Simpson [60]).

The stability of small transverse vibrations of travelling two-dimensional rectan-
gular membranes and plates have been studied by Ulsoy and Mote [70], and Lin
[39]. When the web is advancing through a process without external support, the
inertial forces depending on the web speed are coupled with web tension. Also the
transverse behaviour of the web and the response of the fluid (air) surrounding the
web are coupled (see e.g. [9, 53]). Studies modelling the moving web coupled with
the surrounding air have been made by Pramila et al. [50, 54, 32]. In their stud-
ies, it was found that the surrounding air significantly reduces the eigenfrequencies
and critical velocities of the web, when compared to the vacuum case. Chang and
Moretti [9] studied membranes using potential flow theory, and Banichuk et al. [5, 6]
used the flat panel model coupled with potential flow. This research was extended
by Jeronen [30], where the eigenfrequency spectra were investigated for this model
and for the moving string with damping. In Watanabe et al. [71], two different
methods of analysis were developed for the phenomenon of paper flutter. One of
these was a flutter simulation using a Navier–Stokes code, and the other method
was based on a potential flow analysis of an oscillating thin airfoil.

Lin and Mote studied an axially moving membrane in a 2D formulation, predict-
ing the equilibria of the displacement and the stress distribution under transverse
loading [40]. Later, they continued studying the wrinkling of axially moving rect-
angular webs with a small flexural stiffness [41]. They predicted the critical value of
the non-linear component of the edge loading after which the web wrinkles, and the
corresponding wrinkled shape of the web. It is also known that the lack of web ten-
sion will result in a loss of stability of the moving web, which from the application
viewpoint, disturbs the required smooth advancing of the web (see e.g. [4, 3]). On
the other hand, high tension may cause web breaks, which deteriorates production
efficiency (see e.g. [2, 55, 57, 61]).
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Paper has often been modelled as an orthotropic elastic solid. Elastic constants
have been measured for some paper-like materials by Mann, Baum and Habeger
[42]; and Baum, Brennan and Habeger [7]. Recently, for anisotropic solids, Erkkilä et
al. [17] have studied competent parameters based on modeled stress-strain curves
for further construction of a material model. Out-of-plane Poisson ratios, specifi-
cally, have been recently studied by Stenberg and Fellers [64], who reported that
paper is an auxetic material: stretching in the machine direction will cause the pa-
per web to thicken in the out-of-plane direction. The relevant Poisson ratio, ν13, is
negative, and |ν13| may be as large as 3.0. Incompressible and slightly compressible
orthotropic and transversely isotropic materials have been investigated by Itskov
and Aksel [29], who discovered nontrivial conditions that the elastic constants must
satisfy in order to obtain incompressible or slightly compressible behaviour.

Considering wet paper material, the viscoelastic properties play an important
role in the behaviour of the web, and thus, need to be included in the model. The
first study on transverse vibration of travelling viscoelastic material was carried out
by Fung et. al. using a string model [19]. Extending their work, they studied the vis-
cous damping effect in their later research [20]. Viscoelastic strings and beams have
recently been studied extensively, see e.g. [44, 73]. Oh et al. studied critical speeds,
eigenvalues and natural modes of the transverse displacement of axially moving
viscoelastic beams using the spectral element method [38, 51]. Chen and Zhao [14]
presented a modified finite difference method to simplify a non-linear model of an
axially moving string. They studied numerically the free transverse vibrations of
both elastic and viscoelastic strings. Chen and Yang studied free vibrations of vis-
coelastic beams travelling between simple supports with torsion strings [13]. They
studied the viscoelastic effect by perturbing the similar elastic problem and using
the method of multiple scales. Very recently, Yang et al. studied vibrations, bifur-
cation, and chaos of axially moving viscoelastic plates using finite differences and a
non-linear model for transverse displacements [72].

Marynowski and Kapitaniak studied differences between the Kelvin-Voigt and
Burgers models in the modelling of the internal damping of axially moving vis-
coelastic beams. They found out that both models gave accurate results with small
damping coefficients, but with a large damping coefficient, the Burgers model was
more accurate [43]. In 2007, they compared the models with the Zener model study-
ing the dynamic behaviour of an axially moving viscoelastic beam [44]. They found
out that the Burgers and Zener models gave similar results for the critical transport
speed whereas, the Kelvin-Voigt model gave a greater critical speed compared to
the other two models.

The origin and structure of the in-plane stress and strain distribution in a moving
solid web seems to be an exceptionally unknown area. The models used with web
materials are often based on assumptions of isotropic or orthotropic material prop-
erties (see e.g. [7, 67]). The material is considered as viscoelastic or viscoplastic, but
in the models, there is usually no coupling between the in-plane strain and the web
velocity effects (see e.g. [23, 52, 69]).

Time-dependent, in-plane vibrations of a moving continuous membrane were
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studied by Shin et al. [58]. In their work, in-plane vibration modes of an isotropic
web were studied between the traction lines. Also Guan et. al. have studied vis-
coelastic web behaviour in both steady state and unsteady state cases [21, 22].

Traditionally, the partial time derivative has been used instead of the material
derivative in the viscoelastic constitutive relations, but Mockensturm and Guo sug-
gested that the material derivative should be used [46]. They studied non-linear
vibrations and the dynamic response of axially moving viscoelastic strings. Kurki
and Lehtinen also independently suggested that the material derivative should be
used in the constitutive relations, in their study concerning the in-plane displace-
ment field of a travelling viscoelastic plate [36, 34].

In a study by Chen et al., the material derivative was used in the viscoelastic
constitutive relations [10]. They studied parametric vibration of axially accelerat-
ing viscoelastic strings. Chen and Ding studied the stability of axially accelerating
viscoelastic beams using the method of multiple scales, and the material deriva-
tive was used in the viscoelastic constitutive relations [15]. Chen and Wang studied
the stability of axially accelerating viscoelastic beams using asymptotic perturba-
tion analysis and the material derivative in the viscoelastic relations [12]. The ma-
terial derivative was also used in a recent paper by Chen and Ding, where the dy-
namic vibration response of axially moving viscoelastic beams was studied [11]. A
non-linear model was used, taking into account the coupling of the transverse dis-
placement with the longitudinal (in-plane) displacement. However, the transverse
behaviour of the beam was their main focus.

In this paper, we propose to modify the classical two-dimensional model of a
moving viscoelastic web by accounting for the coupling between the velocity field
and the in-plane strain. A two-dimensional, thin open loop (non-conservative sys-
tem) made of orthotropic membrane is stretched using a relative speed difference
between the traction lines. The orthotropic viscoelastic material assumption is ap-
plied, using a viscoelastic model of the Kelvin–Voigt type. An originally Lagrange-
based ”material” deformation formulation is used as the control volume, to which
the mixed Lagrange-Euler-based ”spatial” formulation is then applied (see e.g. [66,
33]). With this method it is possible to handle solid, moving web behaviour using
a control volume approach similar to the treatment of fluid flows. Preliminary one-
dimensional studies have been reported in the paper [35]. In the present paper, the
steady state of the two-dimensional moving continuum, in the pure elastic case, is
solved using the nonlinear finite element method.

2 Strain generated by velocity difference of subsequent

rollers

A continuous, moving web creates a flow continuum which is possible to consider
as a solid medium experiencing flow. Due to its solid nature, the web continuum is
always under a stress state, which is caused by a strain state, which further can be
expressed in terms of the velocity difference between subsequent supporting rollers,
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Figure 1: Schematic representation of the setup for modelling a moving viscoelastic
web, stressed at the traction lines represented by the rollers. The arrows depict axial
motion.

by the means of a mass conservation argument.
Consider an orthotropic material having initially (i.e. in the undeformed state)

constant density ρ0, undergoing steady-state longitudinal transport at velocity U =
(Ux, 0, 0), depicted in Figure 1. Let us assume that the material axes 1, 2 and 3 are
aligned with the global coordinate axes x, y and z, respectively. The continuity
equation, as expressed in the Eulerian frame, is

∂ρ

∂t
+∇ · (ρU) = 0 , (1)

where ρ is density of the material, and ∂/∂t is the partial time derivative in the
Eulerian frame. In a steady state, the equation reduces to

∇ · (ρU) = 0 . (2)

Mass conservation requires that the flow rates at the incoming and outgoing flow
control areas match; this requirement is readily obtained from equation (2). Let us
consider a stationary control volume

Ω = { (x, y, z) : 0 < x < � , 0 < y < b , 0 < z < h } ,

where � is the length of the span between the rollers, b is the width of the span, and
h is the thickness of the sheet of material. Integrating equation (2) over the control
volume Ω, applying the divergence theorem, and noting that ρ is a scalar, we have∫

Ω

∇ · (ρU) dΩ =

∫
∂Ω

ρ (n ·U) dΓ , (3)
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Figure 2: Solid web continuum flowing between the incoming and outgoing flow
control areas (two-dimensional surfaces) A1 and A2, at longitudinal speeds U1 and
U2 at the beginning and ending traction lines (respectively).

where ∂Ω is the closed surface delimiting the control volume Ω, and n represents
outer unit normal vector. The differential dΓ refers to integration over a surface.

As is shown in Figure 2, flows in and out of the control volume occur only at
the surfaces A1 and A2. Let us assume that ρ and U are constant across these in-
and outflow surfaces, but that their values may change between these surfaces. In
practice, there may exist small variations in the velocity at the outlet due to mate-
rial straining, but for small strains and high velocity, constant velocity along these
surfaces is a reasonable approximation.

Under these assumptions, the mass balance in the equation (3) becomes

−ρ1A1U1 + ρ2A2U2 = 0 . (4)

The subscripts 1 and 2 for ρ and U refer to the (constant) values on the surfaces A1

and A2, respectively. Note the form of the velocity field, U = (Ux, 0, 0). Finally, it is
convenient to rewrite (4) as

U1
ρ1A1

ρ2A2

− U2 = 0 . (5)

In order to manipulate equation (5) further, we must consider the ratios of the
densities and the cross-sectional areas. When subjected to a small-displacement
deformation u = (u, v, w), the volume V of a differential element initially (in the
undeformed state) having volume V0 becomes

V = V0

[
1 +∇ · u] ≡ V0

[
1 + εx + εy + εz

]
, (6)

as is known from the theory of elasticity. Here εx, εy and εz are the axial strains with
respect to x, y and z -directions. Because the total mass M of the differential element
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is conserved in the small deformation, it follows for the density ρ that

ρ ≡ M

V
=

1

V0

M

V/V0

=
M

V0

1

V/V0

= ρ0
[
1 + εx + εy + εz

]−1
, (7)

by (6) and the definition ρ0 ≡ M/V0.
Let us assume that the material is subjected to pure axial stress. This induces

an axial strain εx, and via the Poisson effect, also the strains εy and εz in the two
orthogonal directions:

εy = −ν12εx , εz = −ν13εx , (8)

where ν12 and ν13 are the (orthotropic) Poisson ratios for stretching in the direction
of the material axis 1, describing the resulting contraction on material axes 2 and 3,
respectively. This purely elastic approximation neglects all viscous effects, but since
a steady state is being considered, this is reasonable. The cross-sectional area of the
web is

A = (1 + εz)h(1 + εy)b ≈ bh ( 1 + εy + εz ) , (9)

where second-order small terms have been neglected. Combining equations (8) and
(9), we have

A = bh ( 1− (ν12 + ν13)εx ) ≡ bh ( 1− ν1Aεx ) , (10)

where the effective Poisson ratio for the change in cross-sectional area, when stretched
along material axis 1, is defined as

ν1A ≡ ν12 + ν13 . (11)

As was noted in the introduction, for paper materials, it is known (see e.g. the
study by Stenberg and Fellers [64]) that ν13 < 0, and that |ν13| may be as large as
3.0. Typically, we will thus have ν1A < 0: the cross-sectional area may actually
increase under tension, because the thickness increases. Even though the thickness
itself is typically small, it may undergo a large relative change, and therefore must
be considered when calculating the area of the cross-section.

It also follows from equations (6), (8) and (11) that

V = V0

[
1 + (1− ν1A)εx

]
. (12)

It should be pointed out that if for some particular material ν1A = 1, then V = V0,
and such a material behaves incompressibly when stretched along material axis 1.
The effective Poisson ratio contains the directional Poisson ratios ν12 and ν13. The
only requirement for incompressibility under uniaxial stretching is that the sum of
ν12 and ν13 is unity; unlike the isotropic case, neither of them needs to be 0.5.

Furthermore, the values of ν23, ν21, ν31 and ν32 still remain free. Elastic com-
patibility is required, but this brings in additional free parameters, because elastic
compatibility involves not only the Poisson ratios, but also the Young moduli; e.g.
E1ν21 = E2ν12. Depending on the set of parameter values chosen, it is possible that
an orthotropic material behaves incompressibly in axial stretching only when the
deformation is applied along some particular axis.
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It is thus evident that the conditions of incompressibility for anisotropic materials
are more complicated than for isotropic materials, where the only requirement is
ν = 0.5. For a more thorough consideration of incompressibility in orthotropic and
transversely isotropic materials, see the study by Itskov and Aksel [29].

By combining equations (7), (8) and (11), we obtain

ρ =
ρ0

1 + (1− ν1A)εx
. (13)

In the following, we shall assume that the material, subjected to constant axial
tension at the rollers (traction lines), has zero strain at A1, and experiences some
nonzero axial strain εx at A2, due to the applied axial stress. Preliminary one-
dimensional results [35] indicate that such a strain state occurs at least for an axi-
ally travelling Kelvin–Voigt viscoelastic material; see also the treatment of the one-
dimensional case further below, where we will show this briefly. By equation (10),
the cross-sectional areas at the inflow and outflow surfaces A1 and A2 become

A1 = bh , A2 = bh(1− ν1Aεx) , (14)

and by equation (13), the material densities on these surfaces are

ρ1 = ρ0 , ρ2 =
ρ0

1 + (1− ν1A)εx
. (15)

By inserting equations (14) and (15) into the mass balance equation (5), simplifying,
and solving for εx, we obtain the result

εx =

U2

U1

− 1

1 +

[
U2

U1

− 1

]
ν1A

. (16)

Equation (16) gives the axial strain, at the traction line at x = �, for the problem of
in-plane (visco-)elastic deformation, corresponding to given roller speeds U1 and U2.
Obviously, in order for the model to remain valid, the given velocities must be such
that the strain according to (16) remains in the small-deformation range.

The transport velocity of the flowing solid continuum in the above case is as-
sumed to be controlled only in the x (longitudinal) direction; all in-plane deforma-
tions in the y (widthwise) direction are determined by the (visco-)elastic response.
It should also be kept in mind that equation (16) only applies in a steady-state flow,
i.e. when the web flows smoothly without time-dependent disturbances.

The traction lines at the cross-sectional areas A1 and A2 affect only the surfaces of
the web, which implies that stress and strain waves advancing inside the web thick-
ness can cross the traction lines. Therefore in the boundary conditions of moving
continuous webs, in reality, one should consider rather complicated friction-based
force transmission phenomena at web-roll contact areas [34].
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Figure 3: Roller-induced axial strain εx as a function of velocity ratio U2/U1, based
on equations (16)–(18). Left: Overall behaviour of the functions, showing their cur-
vature (only the line for ν1A = 0 is straight). Right: Zoomed-in view. Location of the
zoomed area is shown by the dashed box in the left subfigure.

In the special case of a material which behaves incompressibly when stretched
along axis 1, we have ν1A = 1. By inserting this into (16) and simplifying, we obtain

εx = 1− U1

U2

, (17)

which holds only when ν1A = 1.
In the limit ν1A → 0, equation (16) simplifies to

εx =
U2

U1

− 1 . (18)

This corresponds to cork-like materials, which do not exhibit the Poisson effect.
Note, however, that if the material is an auxetic orthotropic one, it is possible that
ν13 = −ν12, also leading to ν1A = 0.

The result (18) also arises in the case of a one-dimensional string model. Consider
a compressible travelling string, undergoing steady-state flow through the span 0 <
x < �. Mass conservation now requires

R1U1 −R2U2 = 0 , (19)

with similar definitions for the subscripts as above. Here R is the linear density,
[R] = kg/m, and the cross-sectional area of the string is assumed constant. As the
string becomes stretched or compressed, the linear density changes as

R =
R0

1 + εx
, (20)
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Figure 4: Differential parallelepiped and forces acting in the in-plane directions x
and y.

where R0 is the (constant) linear density in the initial (unstretched) state. Equation
(20) follows directly from equation (7) and the assumption that the cross-sectional
area is constant (whence εy = εz = 0).

As before, let as assume that at x = 0 the strain in the string is zero, and at x = �,
the string experiences some nonzero strain εx due to axial tension applied at the
ends of the span. As was noted above, this is consistent for a travelling Kelvin–Voigt
viscoelastic string. Hence R1 = R0, and R2 is given by equation (20). By combining
equations (19) and (20), and solving for εx, the equation (18) is obtained.

The behaviour of equations (16)–(18) is illustrated in Figure 3.

3 The governing equations

In this section we will define the stresses and strains, deformations, material as-
sumptions and velocity-dependent in-plane inertial forces for the moving web. This
leads to both one- and two-dimensional models, and equations for the viscoelastic
moving web continuum application.

The standard approach for describing structural deformations is the Lagrangean
description. However, longitudinal in-plane deformations in axially moving mate-
rials are more challenging. One possibility is to actually move the medium at the
desired speed, and update the boundary conditions at each timestep [63]. Another
possibility is to use an ’Eulerian’ flow description, and by this the actual deforma-
tion of the moving continuum can be handled using a mixed Lagrange–Euler de-
scription [33]. The Eulerian description is a standard approach in fluid dynamics
where the observer is ’watching’ a control volume, where possible deformations
will appear [63, 37].
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Figure 5: Schematic representation of the classical Kelvin-Voigt rheological model
in one dimension. E is Young’s modulus, η is the material viscosity.

In this paper, we consider two-dimensional in-plane membrane behaviour. Based
on Figure 4, one can derive the following well-known force balance [68]:

∂σx

∂x
+

∂τyx
∂y

+Fx = 0 , (21)

∂τxy
∂x

+
∂σy

∂y
+Fy = 0 , (22)

where τyx and τxy are shear stresses and Fx and Fy are (external) body forces. The
linear Cauchy strains are

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εxy =

∂u

∂y
, εyx =

∂v

∂x
, γxy =

(
∂u

∂y
+

∂v

∂x

)
. (23)

We will use the material assumption of orthotropic viscoelasticity. In the mixed
Lagrange–Euler description, the strains

εij = εij (x, y, t) (24)

lead to the time derivatives

dεij
dt

=
∂εij
∂t

+
∂εij
∂x

dx
dt

+
∂εij
∂y

dy
dt

=
∂εij
∂t

+
∂εij
∂x

Ux +
∂εij
∂y

Uy , (25)

where (Ux, Uy) is the velocity field and d/dt is the material derivative.

With fibrous, composite-type materials, the mechanical deformation response
properties are the result of complicated material preprocessing, which results in
orthotropic anisotropy and material time-dependence (see e.g. [69], [31], [52] and
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[8]). It is possible to derive a vast number of different rheological models for time-
dependent material behaviour, but the fundamental behaviour of continuous flow
of a solid viscoelastic web can be analyzed using the simple Kelvin–Voigt model
shown in Figure 5. The singular stress response to a step strain does not matter,
because we are considering a steady state where no rapidly changing strains occur;
hence the Kelvin–Voigt model is sufficient for the present application.

The stress-strain behaviour of one-dimensional Kelvin-Voigt material (see e.g.
[18]) is simply

σ = Eε+ η
dε
dt

, (26)

where E is Young’s modulus and η is the material viscosity. We will apply a two-
dimensional, orthotropic plane stress extension of the above model, based on prac-
tical observations of fibrous web materials [67, 69]:

σx =
Ex

1− ν12ν21
(εxx + ν21εyy) +

ηx
1− ϕ12ϕ21

(
dεxx
dt

+ ϕy
dεyy
dt

)
(27)

σy =
Ey

1− ν12ν21
(εyy + ν12εxx) +

ηy
1− ϕ12ϕ21

(
dεyy
dt

+ ϕx
dεxx
dt

)
(28)

τyx = τxy = Gγxy +Π
dγxy
dt

(29)

Here ϕ12 and ϕ21 are the viscous analogues of the orthotropic in-plane Poisson ratios
ν12 and ν21, G is a shear modulus, γ is a shear strain and Π is the viscous shear
modulus.

Often, problems considering the in-plane behaviour of a continuous material are
written using only an elastic model, involving the moduli of elasticity Ex and Ey,
and the strain variables εxx and εyy. However, in practice all the elastic-related ma-
terial properties are measured with some definite speed, and therefore apparent
elasticity includes both elastic and viscous material properties [18]. Fundamentally,
all materials exhibit some form of viscoelasticity, typically measured by normal and
complex moduli E and E ′, respectively. It should also be pointed out that the vis-
coelastic Poisson ratios ϕ12 and ϕ21 cannot be calculated using compliances from the
theory of elasticity [24].

The force balance equations (21) and (22) include also the body forces Fx and Fy,
which are important especially with fibrous cellulose-based materials. Moisture-
dependent dimension changes can be significant, which generates stresses in addi-
tion to those related to the strains based on external velocity differences (equation
(16)).

Next, let us consider the dynamic equilibrium. According to Newton’s second
law, time-dependent dynamical behaviour always includes inertial forces. Two-
dimensional inertial forces in in-plane membrane behaviour can be accounted for
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using the following dynamic equilibrium equations (see e.g. [59]):

∂σx

∂x
+

∂τxy
∂y

+ Fx = ρ
d2u

dt2
(30)

∂σy

∂y
+

∂τyx
∂x

+ Fy = ρ
d2v

dt2
(31)

Note that the operator d2/dt2 describes the inertial behaviour in the Lagrangean
reference frame. Thus the inertial terms depending on the displacements u and v, in
the Eulerian frame, must be presented using the material derivative:

du
dt

=
∂u

∂t
+

∑
i=1,2

∂u

∂xi

dxi

dt
(32)

dv
dt

=
∂v

∂t
+

∑
i=1,2

∂v

∂xi

dxi

dt
(33)

The second material derivatives of the displacements u and v are

d2u

dt2
=

∂2u

∂t2
+ 2Ux

∂2u

∂x∂t
+ 2Uy

∂2u

∂y∂t
+ U2

x

∂2u

∂x2
+ 2UxUy

∂2u

∂x∂y
+ U2

y

∂2u

∂y2
(34)

+
∂u

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+

∂u

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

d2v

dt2
=

∂2v

∂t2
+ 2Ux

∂2v

∂x∂t
+ 2Uy

∂2v

∂y∂t
+ U2

x

∂2v

∂x2
+ 2UxUy

∂2v

∂x∂y
+ U2

y

∂2v

∂y2
(35)

+
∂v

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+

∂v

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
By substituting the equations (34) – (35) and (27) – (29) into the equations (30) and
(31), we obtain the following time-dependent two-dimensional equations for the
in-plane, plane stress membrane behaviour of the moving viscoelastic web:

(C11 − ρU2
x)

∂2u

∂x2
+

(
C66 − ρU2

y

) ∂2u

∂y2
+ C12

∂2v

∂x∂y
+ C66

∂2v

∂x∂y
+K11Ux

∂3u

∂x3

+K11Uy
∂3u

∂x2∂y
+K11

∂3u

∂x2∂t
+ (K12 +K66)Uy

∂3v

∂x∂y2
+K66Uy

∂3u

∂y3

+(K12 +K66)Ux
∂3v

∂x2∂y
+ (K12 +K66)

∂3v

∂x∂y∂t
+K66Ux

∂3u

∂x∂y2
+K66

∂3u

∂y2∂t
+ Fx

= ρ
∂2u

∂t2
+ 2ρUxUy

∂2u

∂x∂y
+ 2ρUx

∂2u

∂x∂t
+ 2ρUy

∂2u

∂y∂t

+ρ
∂u

∂y

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂u

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
(36)
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and

(
C22 − ρU2

y

) ∂2v

∂y2
+ (C66 − ρU2

x)
∂2v

∂x2
+ C21

∂2u

∂x∂y
+ C66

∂2v

∂x∂y
+K22Uy

∂3v

∂y3

+K22Ux
∂3v

∂x∂y

2

+K22
∂3v

∂x2∂t
+ (K21 +K66)Ux

∂3u

∂x2∂y
+K66Ux

∂3v

∂x3

+(K21 +K66)Uy
∂3u

∂x∂y2
+ (K21 +K66)

∂3u

∂x∂y∂t
+K66Uy

∂3v

∂x2∂y
+K66

∂3v

∂y2∂t
+ Fy

= ρ
∂2v

∂t2
+ 2ρUxUy

∂2v

∂x∂y
+ 2ρUx

∂2v

∂x∂t
+ 2ρUy

∂2v

∂y∂t

+ρ
∂v

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂v

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
,

(37)
where the coefficients are

C11 =
Ex

1− ν12ν21
, C22 =

Ey

1− ν12ν21
, (38)

C12 = C11ν21 = C22ν12 = C21 , C66 = G , (39)

K11 =
ηx

1− ϕ12ϕ21

, K22 =
ηy

1− ϕ12ϕ21

, (40)

K12 = K11ϕ21 = K22ϕ12 = K21 , K66 = Π . (41)

The equations (36) and (37) are nonlinear. Nonlinearity appears in the velocities Ux

and Uy, which are dependent on the deformation. There are also nonlinear Navier–
Stokes type convection terms, the significance of which is small if the strains defined
in the equation (23) can be considered small.

4 Steady state of one-dimensional viscoelastic moving

continuum

One-dimensional application of the equations (36) and (37) will lead to the following
time-dependent solid continuum flow equation [35]:

ρ
∂2u

∂t2
+ 2ρUx

∂2u

∂x∂t
+ ρU2

x

∂2u

∂x2
+ ρ

∂u

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂t

)

= Ex
∂2u

∂x2
+ ηx

(
∂3u

∂x2∂t
+ Ux

∂3u

∂x3

) (42)
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In a steady state, where there is no time-dependent fluctuation in the displacement,
we can write the following equation for ideal, undisturbed axial narrow web flow:

ηxUx
∂3u

∂x3
+

(
Ex − ρU2

x

) ∂2u

∂x2
− ρ

∂u

∂x

(
∂Ux

∂x
Ux

)
= 0 . (43)

In general, equation (43) is nonlinear due to the dependence of Ux on ∂u/∂x. To
see how this arises in the one-dimensional case, recall equation (16) and its one-
dimensional specialization (18), which were obtained via a mass conservation argu-
ment. There are now two possibilities. The strain εxx = ∂u/∂x (equation (23)) either
depends on x, or is constant along the span.

Let us first investigate the case where the strain depends on x. This was a starting
assumption in the derivation of (18); if it holds, then also (18) holds. Let the velocity
U1 at the beginning of the span be fixed. By rearranging, (18) becomes

U2 = U1[1 + εxx] , (44)

where we now use the notation εxx for the strain.
Because mass conservation must hold for any value of x, equation (44) is valid

along the whole span, and we have Ux(x) = U2(x). However, because εxx = εxx(x) =
(∂u/∂x)(x) appears on the right-hand side of (44), actually U2 = U2(εxx). Thus, if the
strain varies along the span, mass conservation implies that a linear relationship
exists between the strain and velocity fields.

Because Ux is now a linear function of εxx, all terms of (43) involving factors
of Ux and its derivatives become nonlinear with respect to the unknown u and its
derivatives. Using U2 from (44) as Ux in (43), we see that the nonlinearity is of a
polynomial form; up to cubic terms are present. Numerical FEM solution of the
nonlinear equation has been presented in [35].

The other possibility is that the strain is a constant along the whole span, in which
case the starting assumption leading to (18) does not hold. On the other hand, a
constant value for εxx = ∂u/∂x implies ∂2u/∂x2 = ∂3u/∂x3 ≡ 0. Let us investigate
the nontrivial case where εxx �= 0. The first and second terms in equation (43) vanish.
Dividing by the nonzero constant strain ∂u/∂x and the material density ρ �= 0, all
that remains is

∂Ux

∂x
Ux = 0 . (45)

Equation (45) must hold pointwise at any x. Thus for each fixed x, either ∂Ux/∂x = 0
or Ux = 0. More interesting of the two is ∂Ux/∂x = 0, which leads to Ux = constant.

We conclude that if a constant strain is observed, this implies that the velocity
must also be constant. However, the reverse is not true, as we will see below. The
value of the constant strain is determined by the boundary conditions, which were
not analyzed here.

For the rest of this section, we again let εxx vary along the span, concentrating on
the special case where Ux is approximately constant:

Ux(x) = U0 + φ(x) . (46)
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Here U0 is a constant, and the arbitrary function φ(x) and its derivatives are con-
sidered small. If the strain variable and its derivatives are small, and the velocity
field is of the form (44), this representation is applicable. Inserting (46) into (43) and
dropping second-order small terms leads to a linear equation, namely

ηxU0
∂2εxx
∂x2

+
(
Ex − ρU2

0

) ∂εxx
∂x

= 0 . (47)

To obtain this form, it is not sufficient that φ itself is small; also ∂φ/∂x must be
small to avoid an additional term −ρεxx[∂φ/∂x]U0 on the left-hand side. Observe
that equation (47) is exact in the case where Ux is (an exact) constant. Thus any con-
clusions will apply to cases with exactly constant as well as approximately constant
transport velocities.

By comparing the equation (47) and the heat equation in presence of convection
(see e.g. [66]):

kT
∂2T

∂x2
− ρcpU

∂T

∂x
= 0 , (48)

where T is the temperature and U is the velocity of the medium, cp is the specific heat
of the object and kT the heat diffusion coefficient, one can observe great similarity
between the two.

The equation (47) can be solved using analytical methods. First, as a special case,
if only pure elasticity is present (ηx = 0), the solution is of the form [35](

Ex − ρU2
0

)
εxx = C . (49)

In this case the solution describes Hookean behaviour, i.e., the strain εxx is constant
along the whole span regardless of the magnitude of the constant transport velocity
U0. The corresponding stress field, from equation (26) with ηx = 0 and (49), is also
constant:

σx = Exεxx =
ExC

(Ex − ρU2
0 )

≡ C ′ . (50)

The values of the constants C and C ′ are determined by the boundary conditions.
Because (49) is a first-order ordinary differential equation with respect to εxx, for
this variable we may set only one boundary condition. Choosing this boundary
condition as εxx(�) = εT , from (49) we have C = (Ex − ρU2

0 ) εT , which leads to
εxx(x) = εT (for all x), and for the stress σx = ExεT . This may seem trivial, but it
provides an important point of comparison for the following case.

Consider a material with viscosity ηx �= 0. Equation (47) becomes, after division
by ηxU0,

∂2εxx
∂x2

+

(
Ex − ρU2

0

ηxU0

)
∂εxx
∂x

= 0 . (51)

The differential equation is of the second order in εxx, hence two boundary con-
ditions are required. With the choices εxx(0) = 0 and εxx(�) = εT , the analytical
solution of the equation (51) is [34, 36]:

εxx(x) = εT
1− e−kx

1− e−k�
, where k =

Ex − ρU2
0

ηxU0

. (52)
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We have thus obtained the following result: for a Kelvin–Voigt viscoelastic material
moving at a constant or an approximately constant transport velocity, loaded only
by a prescribed strain at the ends of the span, the strain grows logarithmically along
the span. This is unlike the case of purely elastic material, where the strain along
the span is constant.

As x → �, the strain approaches the same value it had in the elastic case, εT .
Additionally, if � is large, the exponential terms approximately vanish in most of the
domain, and the strain approximately obtains its elastic value everywhere except
in a short boundary layer at the start of the span. The larger k is, the shorter is the
boundary layer. Especially, the boundary layer vanishes in the limits ηx → 0 and
U0 → 0, where k → ∞ (see definition of k in equation (52)). This agrees with the
elastic solution.

The physical conclusion is that the strain εxx depends on x only if both the vis-
cosity ηx and the transport velocity U0 are nonzero. In other words, in the context of
this analysis, the effect appears only if the material is both viscoelastic and subjected
to axial motion.

Finally, let us find the corresponding stress field. The stress, which is based on
the strain in the equation (52), is a superposition of elastic and viscous stress com-
ponents ([35]; see also equation (26)):

σx = Exεxx + ηx
dεxx
dt

. (53)

Straightforward analytical solution of the stress is easy to obtain only in the lin-
earized, one-dimensional, steady-state case having constant transport velocity [35].
Using equations (24) and (25), the time derivative of the strain, in mixed Lagrange–
Euler form, can be written for the steady-state solution as follows:

dεxx
dt

=
∂εxx
∂x

Ux . (54)

Inserting (54) into (53), using (46) for Ux, noting that both ∂εxx/∂x and φ(x) are small,
and then using the analytical solution (52), we obtain the stress field as

σx = ExεT
1− e−kx

1− e−k�
+ ηxU0εT

ke−kx

1− e−k�
. (55)

where the elastic and viscous contributions are apparent. Both contributions follow
a logarithmic curve. By expanding the multiplicative factor k in the second term of
the equation (55) (using again (52)), the result simplifies to

σx =
εT

1− e−k�

(
Ex − ρU2

0 e
−kx

)
, (56)

which shows the total stress more clearly. Equation (56) is valid for ηx �= 0, U0 �= 0.
We observe that also the total stress follows a logarithmic curve.

Unlike the strain, the stress remains always slightly smaller than its elastic value
ExεT , even near the end of the span as x → �. Physically, this observation can be
interpreted as a viscous relaxation effect.
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For large �, the exponentials again approximately vanish in most of the domain,
and the stress approximately obtains its elastic value, except in a short boundary
layer at the start of the span. The previous observations regarding k apply also here.

We have thus seen that for a narrow strip of Kelvin–Voigt material moving at a
constant or an approximately constant transport velocity, both the strain and stress
fields follow a logarithmic shape along the span. This effect appears only if the
material is both viscoelastic and subjected to axial motion.

5 The weak form and the natural boundary conditions

In the following, we will concentrate on the two-dimensional, steady-state, purely
elastic case. This is obtained from the equations (36) – (37) by omitting time-dependent
terms and setting the viscous coefficients to zero.

The aim in the rest of this paper is to numerically study the two-dimensional,
orthotropic, elastic moving continuum plane stress problem using the finite element
method (FEM). The above approach was extremely useful for the one-dimensional
analysis that was performed, but it is difficult to correctly derive the weak form by
starting from the equations (36) – (37).

The difficulty arises because the equations contain terms with mixed derivatives,
∂2u/∂x∂y and ∂2v/∂x∂y. It is not immediately clear how these terms should be
considered when applying integration by parts in the component-form equations.
Each such mixed term can be integrated by parts in either the x or the y direction,
and each such choice will produce different contributions to the natural boundary
conditions of the weak problem. Most combinations of choices lead to boundary
conditions which make no physical sense, and the correct combination of choices is
not obvious.

Hence, we will derive the weak form in cartesian tensor notation. Although in
the present study only a rectangular sheet will be studied, this approach provides
the additional advantage of arbitrary domain shape. We start with the general dy-
namic equilibrium equations (30) – (31), rewritten in tensor notation, and then ex-
pand the second material derivative. The dynamic equilibrium reads

ρ
d2u

dt2
−∇ · σT = F , (57)

where (. . . )T denotes the transpose of a rank-2 tensor. In the case where U is not
time-dependent, the second material derivative expands as

d2u

dt2
=

d
dt

(
∂u

∂t
+U · ∇u

)
=

∂2u

∂t2
+ 2U · ∇

(
∂u

∂t

)
+ (U · ∇)(U · ∇u) . (58)

Applying (58), the steady-state form of equation (57) becomes

ρ (U · ∇)(U · ∇u)−∇ · σT = F . (59)
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Next, we will use the principle of virtual work. Let us take the dot product of the
equation (59) with a vector-valued test function (virtual displacement) φ, and inte-
grate the equation over the two-dimensional domain

Ω ≡ { (x, y) : 0 < x < � , 0 < y < b } . (60)

We assume that the material density ρ can be approximated as a constant and obtain

ρ

∫
Ω

φ · (U · ∇)(U · ∇u) dΩ−
∫
Ω

φ · [∇ · σT] dΩ =

∫
Ω

φ · F dΩ . (61)

In order to integrate by parts in the equation (61), we make use of the following two
identities: ∫

Ω

φ · [∇ · σT] dΩ =

∫
∂Ω

φ · (n · σT) dΓ−
∫
Ω

∇φ : σ dΩ , (62)∫
Ω

φ · (U · ∇)(U · ∇u) =

∫
∂Ω

n · [(U · ∇u) · (φ⊗U)] dΓ (63)

−
∫
Ω

(U · ∇u) · [∇ · (U⊗ φ)] dΩ .

where n is the outer unit normal, and the notational conventions are

(∇a)ij ≡ ∂iaj , (∇ ·A)j ≡ ∂iAij (a⊗ b)ij = aibj , A : B ≡ AijBji . (64)

Here a and b are vectors, and A and B are rank-2 tensors. The summation conven-
tion for repeated indices applies. Note the ordering of indices in the gradient.

The integration-by-parts formula (62) is standard in the theory of elasticity; only
the formula (63) requires explanation. Observe that for any differentiable vector
fields a, b and c,

∇ · (a · (b⊗ c)) = b · (c · ∇a) + a · (∇ · (c⊗ b)) . (65)

By integrating the equation (65) over the domain Ω, applying the divergence theo-
rem to the left-hand side, and choosing a = (U · ∇u), b = φ, and c = U, relation
(63) follows.

Using equations (62) and (63) in (61), we obtain

− ρ

∫
Ω

(U · ∇u) · [∇ · (U⊗ φ)] dΩ +

∫
Ω

∇φ : σ dΩ

+ ρ

∫
∂Ω

n · [(U · ∇u) · (φ⊗U)] dΓ−
∫
∂Ω

φ · (n · σT) dΓ =

∫
Ω

φ · F dΩ . (66)

By using the identity

∇ · (U⊗ φ) = (∇ ·U)φ+U · ∇φ (67)

and rearranging
φ · (n · σT) = (n · σT) · φ = n · (σT · φ) , (68)
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we have

− ρ

∫
Ω

(U · ∇u) · [(∇ ·U)φ+U · ∇φ] dΩ +

∫
Ω

∇φ : σ dΩ

+

∫
∂Ω

n · [ρ (U · ∇u) · (φ⊗U)− σT · φ]
dΓ =

∫
Ω

φ · F dΩ . (69)

We may simplify (69) with

(U·∇φ)·(U·∇u) = Ui(∂iφj)Uk(∂kuj) = (∂iφj)(UiUk∂kuj) = ∇φ :
(
U⊗U·∇u

)T
, (70)

which allows us to combine some terms on the first line:

− ρ

∫
Ω

φ · (U · ∇u)(∇ ·U) dΩ +

∫
Ω

∇φ :
[
σ − ρ

(
U⊗U · ∇u

)T] dΩ

+

∫
∂Ω

n · [ρ (U · ∇u) · (φ⊗U)− σT · φ]
dΓ =

∫
Ω

φ · F dΩ . (71)

Finally, observing that

n · [ (U · ∇u) · (φ⊗U)
]
= (U · ∇u) · (φ⊗U) · n =

(
(U · ∇u) · φ)

(U · n)
= (n ·U)

(
(U · ∇u) · φ)

= (niUi)
(
(Uj∂juk)φk

)
= ni

(
UiUj∂juk

)
φk

= n · (U⊗U · ∇u
) · φ = φ · (U⊗U · ∇u

)T · n (72)

we obtain the result

− ρ

∫
Ω

φ · (U · ∇u)(∇ ·U) dΩ +

∫
Ω

∇φ :
[
σ − ρ

(
U⊗U · ∇u

)T] dΩ

+

∫
∂Ω

φ · [−σ + ρ (U⊗U · ∇u)T
] · n dΓ =

∫
Ω

φ · F dΩ . (73)

Equation (73) holds for the steady-state in-plane equilibrium of any sheet of trav-
elling material, as long as ρ is approximately constant. We will apply the material
model later.

We see from the equation (73) that if ∇ · U = 0, then the first term vanishes.
In such a case, the equations have the same form as those of a stationary mem-
brane, but now the stresses obtain contributions (both inside the domain and on the
traction boundaries) from the additional term involving velocity. However, if the
velocity field has nonzero divergence, then no such analogy can be drawn.

The boundary term of the equation (73) gives the natural boundary conditions
for this problem. The natural quantity to be prescribed is the normal component of
the following rank-2 tensor:

σeff ≡ σ − ρ (U⊗U · ∇u)T . (74)

This can be interpreted as an effective stress tensor, where the apparent stress (in
laboratory coordinates) is modified by the centrifugal inertial effect.
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6 Component form of the weak form

For convenience of software implementation, let us split equation (73) into compo-
nent form. Let us denote the components of the virtual displacement as φ ≡ (φ, ψ).
In the two-dimensional case being investigated in the present study, equation (73)
gives the two equations∫

Ω

[
−σx + ρU2

x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫
Ω

[
−τxy + ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂u

∂x
+ Uy

∂u

∂y

][∂Ux

∂x
+

∂Uy

∂y

]}
φ dΩ

+

∫
∂Ω

nx

[
σx − ρU2

x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫
∂Ω

ny

[
τxy − ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫
Ω

Fxφ = 0 . (75)

and ∫
Ω

[
−τyx + ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫
Ω

[
−σy + ρUxUy

∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂v

∂x
+ Uy

∂v

∂y

][∂Ux

∂x
+

∂Uy

∂y

]}
ψ dΩ

+

∫
∂Ω

nx

[
τyx − ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫
∂Ω

ny

[
σy − ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫
Ω

Fyψ = 0 , (76)

where the outer unit normal n has components n = (nx , ny ). We have moved all
terms to the left-hand side and multiplied each equation by −1.

Equations (75) – (76) represent the steady state in-plane equilibrium for any sheet
of moving material. We obtain the equations for the orthotropic Kelvin–Voigt mate-
rial by inserting the viscoelastic stress-strain relations (27) – (29). Then, we insert the
mixed Lagrange–Euler representations (25) for the material derivative in the viscous
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terms, and restrict the inserted terms to the steady state (∂/∂t → 0). The result is∫
Ω

[
−

[
C11εxx +K11(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C12εyy +K12(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

+ρU2
x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫
Ω

[
−

[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
+ ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
φ dΩ

+

∫
∂Ω

nx

[[
C11εxx +K11(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C12εyy +K12(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

−ρU2
x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫
∂Ω

ny

[[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫
Ω

Fxφ dΩ = 0

(77)
and ∫

Ω

[
−

[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
+ ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫
Ω

[
−

[
C21εxx +K21(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C22εyy +K22(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

+ρUxUy
∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
ψ dΩ

+

∫
∂Ω

nx

[[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫
∂Ω

ny

[[
C21εxx +K21(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C22εyy +K22(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

−ρUxUy
∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫
Ω

Fyψ dΩ = 0 .

(78)
Finally, by inserting into (77) and (78) the definitions of the Cauchy strains from
(23), the weak form component equations for FEM implementation are obtained.
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The final result is∫
Ω

[
−

[
C11

∂u

∂x
+K11(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C12

∂v

∂y
+K12(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

+ρU2
x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫
Ω

[
−

[
C66(

∂u

∂y
+

∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+

∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

+ρUxUy
∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
φ dΩ

+

∫
∂Ω

nx

[[
C11

∂u

∂x
+K11(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C12

∂v

∂y
+K12(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

−ρU2
x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫
∂Ω

ny

[[
C66(

∂u

∂y
+

∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+

∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

−ρUxUy
∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ +

∫
Ω

Fxφ dΩ = 0

(79)
and ∫

Ω

[
−

[
C66(

∂u

∂y
+

∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+

∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

+ρU2
x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫
Ω

[
−

[
C21

∂u

∂x
+K21(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C22εyy +K22(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

+ρUxUy
∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
ψ dΩ

+

∫
∂Ω

nx

[[
C66(

∂u

∂y
+

∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+

∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

−ρU2
x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫
∂Ω

ny

[[
C21

∂u

∂x
+K21(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C22

∂v

∂y
+K22(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

−ρUxUy
∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ +

∫
Ω

Fyψ dΩ = 0 .

(80)
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Equations (79) – (80) represent the weak form of the classical strong form equations
(36) – (37), when consideration is restricted to the steady state.

We see that the weak form contains second derivatives in the viscous terms.
Thus, to enforce integrability (see e.g. [28]), C1 continuity of basis functions across
element boundaries is required in the viscoelastic case.

The corresponding pure elastic equations are obtained by setting K11 = K12 =
K21 = K22 = K66 = 0. Explicitly, we have∫

Ω

[
−

[
C11

∂u

∂x
+ C12

∂v

∂y

]
+ ρU2

x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫
Ω

[
−

[
C66(

∂u

∂y
+

∂v

∂x
)

]
+ ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
φ dΩ

+

∫
∂Ω

nx

[[
C11

∂u

∂x
+ C12

∂v

∂y

]
− ρU2

x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫
∂Ω

ny

[[
C66(

∂u

∂y
+

∂v

∂x
)

]
− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫
Ω

Fxφ dΩ = 0

(81)

and ∫
Ω

[
−

[
C66(

∂u

∂y
+

∂v

∂x
)

]
+ ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫
Ω

[
−

[
C21

∂u

∂x
+ C22

∂v

∂y

]
+ ρUxUy

∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫
Ω

{[
Ux

∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+

∂Uy

∂y

]}
ψ dΩ

+

∫
∂Ω

nx

[[
C66(

∂u

∂y
+

∂v

∂x
)

]
− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫
∂Ω

ny

[[
C21

∂u

∂x
+ C22

∂v

∂y

]
− ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫
Ω

Fyψ dΩ = 0 .

(82)

Equations (81) and (82) are the basis of the two-dimensional solutions presented in
this article. Only first derivatives of the displacements are needed. Hence, C0 finite
elements are sufficient.

Once a basis is chosen for u and v, it is straightforward to insert the Galerkin
representation of both displacement variables into (81) and (82). Then, considering
that the virtual displacement φ is arbitrary, we use the basis functions of u as the test
functions φ and the basis functions of v as the test functions ψ, obtaining the discrete
equation system for the classical Galerkin method. Essential and natural boundary
conditions are then applied as usual.
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If the velocity field is divergence-free, we may omit the third line in both equa-
tions, and the velocity can be allowed to have finite discontinuities across element
boundaries. In all other cases, the velocity field must have C0 continuity across el-
ement boundaries, in order to enforce integrability of (81) – (82). This is because
the terms on the third line of both equations follow directly from the weak form of
the problem, and thus cannot be applied only in element interiors (as is done e.g.
when second derivatives appear in certain numerical stabilization schemes for flow
problems; see e.g. [16]).

7 Coupling between drive velocity and in-plane dis-

placement

If some edges of the domain are free, the velocity field driving the material may
cause them to move. Each free edge will move until the velocity field becomes tan-
gential to it. For small deformations, it is possible to avoid deforming the mesh, and
still account for the slightly changed direction of the free edges by using approxi-
mate methods.

When free edges are present, the effective velocity field in the material is a priori
unknown. In a sense, the driving velocity field modifies itself when the free edge
deformations are taken into account. Thus, instead of taking U as a prescribed ex-
ternal velocity, this quantity may be redefined to fulfill two tasks. First, it will still
be based on the driving velocity field, but secondly, the modified U will also take
into account the small deformations in the free edges, including the effect that the
free edge deformations have on the effective velocity field inside the domain.

We will use a deformation-based approach. Consider the differential plane el-
ement in the small-displacement regime. See Figure 6. The original, undeformed
edges are given by the vectors x = (dx, 0) and y = (0,dy). After deformation by
a displacement field u = (u, v), these edges become (with the help of a first-order

Figure 6: Small deformation of a differential plane element.
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two-dimensional Taylor expansion of each of the fields u and v)

x̃ =

(
(1 +

∂u

∂x
)dx,

∂v

∂x
dx

)
, ỹ =

(
∂u

∂y
dy, (1 +

∂v

∂y
)dy

)
. (83)

The projection
uX = M · ux , (84)

that is, [
uX

uY

]
=

[
x̂ · X̂ ŷ · X̂
x̂ · Ŷ ŷ · Ŷ

] [
ux

uy

]
, (85)

transforms any vector field u given in x = (x, y) components into X = (X, Y ) com-
ponents. Here x̂ and ŷ (respectively X̂ and Ŷ) are the unit vectors giving the direc-
tions of the axes of the (x, y) (respectively (X, Y )) coordinate systems. The boldface
subscript denotes which coordinate system the quantity is given in, and the plain
subscripts denote components.

We choose
X̂ := (1, 0) , Ŷ := (0, 1) , (86)

and take x̂ and ŷ as the unit vectors corresponding to the edges of the deformed
differential element:

x̂ := x̃/ ‖x̃‖ , ŷ := ỹ/ ‖ỹ‖ . (87)

Here ‖. . . ‖ denotes the euclidean norm.
Now, instead of prescribing the velocity field UX, we prescribe Ux (along the

deformed coordinate directions), and then project it to the capital-X axes using (85).
Then we set U = UX in equations (81) – (82).

Using (85) – (87), we obtain the corrected velocity components as

UX = (x̂ · X̂)Ux + (ŷ · X̂)Uy = x̂1Ux + ŷ1Uy ,

UY = (x̂ · Ŷ)Ux + (ŷ · Ŷ)Uy = x̂2Ux + ŷ2Uy .
(88)

Here x̂j denotes the jth component of the vector x̂, and we have used (86).
If consider not only direction changes, but also length changes, of the reference

vectors (that were originally unit vectors), it is possible to use

x̂ := x̃/dx , ŷ := ỹ/dy . (89)

instead of (87), using the fact that the original lengths of the sides of the differential
element were dx and dy. In this case, we obtain

UX = x̂1Ux + ŷ1Uy = (1 +
∂u

∂x
)Ux +

∂u

∂y
Uy ,

UY = x̂2Ux + ŷ2Uy =
∂v

∂x
Ux + (1 +

∂v

∂y
)Uy .

(90)
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Then, up to first order, the deformed reference vector lengths (squared) are

‖x̂‖2 = (1 +
∂u

∂x
)2 + (

∂v

∂x
)2 ≈ 1 + 2

∂u

∂x
,

‖ŷ‖2 = (
∂u

∂y
)2 + (1 +

∂v

∂y
)2 ≈ 1 + 2

∂v

∂y
.

(91)

In case of pure axial input flow, Ux = Uin and Uy = 0, we have

UX = (1 +
∂u

∂x
)Uin ,

UY =
∂v

∂x
Uin .

(92)

In the present study, equations (92) have been used for computing the velocity field
UX.

Note that the corrections (88) and (90) make the effective velocity field UX space-
dependent, even if the original input Ux is not, due to the space dependence of u.
Hence, we cannot assume U to be constant; terms involving its derivatives must
thus be retained in the equations.

Regardless of whether one uses (88) or (90), the corrected velocity field will vio-
late mass conservation, because the calculation is based on geometric considerations
only. Thus, a correction is required to preserve mass. We will need two different ap-
proaches depending on whether the material is compressible.

For a compressible material, we may use the mass conservation equation (1) to
compute the velocity field inside the domain, using in boundary conditions the
edge data for the normal component (in (X, Y ) coordinates) of the proposed ve-
locity given by (88) or (90).

To do this, one can view the mass conservation equation as diffusion of velocity
potential. Assume that the velocity field is irrotational (∇×v = 0); this is reasonable
for steady state flow of a solid. In a steady state, ∂ρ/∂t = 0. We have

∇ · (ρv) = 0 . (93)

After multiplication by a test function χ, integrating over the domain Ω, and apply-
ing the divergence theorem, we have the weak form∫

∂Ω

(n · v) ρχ dΓ−
∫
Ω

ρ∇χ · v dΩ = 0 . (94)

Note that here ρ does not need to be constant. Next, let us use the fact that an
irrotational vector field has a scalar potential:

v = ∇V , (95)

where V is a scalar-valued function. Inserting (95) into (94) obtains∫
∂Ω

(n · ∇V ) ρχ dΓ−
∫
Ω

ρ∇χ · ∇V dΩ = 0 . (96)
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which is a steady-state diffusion equation (Poisson equation) for the velocity poten-
tial V . The natural boundary condition is

(n · ∇V )ρ = q , (97)

i.e. one can prescribe the normal component of mass flow as a known function q.
Hence, if the density at the edge is known, it is possible to prescribe the normal
component of velocity there, via use of the natural boundary condition.

Recall equation (7), which gives density in terms of the axial strains, which in
turn are easily obtained from the displacements via equations (23). Thus the density
field can be computed once the displacements are known. Any C0 elements can be
used for representing V .

By computation of the scalar potential V , the tangential velocity component at
the edges will adjust itself such that mass balance is satisfied. Furthermore, the
computed velocity field ∇V inside the domain will also satisfy mass balance.

Because we have a Poisson problem with purely natural boundary conditions,
the solution V is unique only up to an arbitrary additive constant. This can be reme-
died by standard techniques. One that is easy to implement is to add a small reac-
tion term

∫
Ω
ε χ V dΩ to the left-hand side of (96), where ε is a small constant (e.g.

ε = 10−8).
In the case of an incompressible material, in the steady state the mass conserva-

tion equation (1) becomes simply ∇·v = 0, i.e., the velocity field of an incompressible
material must be divergence-free.

Therefore, in this case we simply compute the divergence-free projection of the
proposed velocity field (88) or (90). The projection can be obtained using the stan-
dard trick based on Helmholtz decomposition. For completeness, let us review this
briefly. Let Ue be the expected velocity field before the correction for mass conser-
vation. Define a scalar potential p such that

Δp = ∇ ·Ue . (98)

Since the laplacian Δ(. . . ) ≡ ∇ · ∇(. . . ), equation (98) is equivalent with

∇ · ∇p = ∇ ·Ue . (99)

By rearranging terms, we have

∇ · (Ue −∇p) = 0 , (100)

i.e. the difference Ue −∇p is divergence-free. Define the final velocity field as

U = Ue −∇p . (101)

Then U is the divergence-free projection of Ue. As the boundary conditions, one
may require

n · ∇p = 0 (102)
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on all boundaries. This ensures that the normal component of the correction ∇p
vanishes at the boundaries. The solution will then adjust the tangential component
at the boundaries to enforce the divergence-free property there; in the interior of the
domain, both components are allowed to change.

Again, we have a Poisson problem with purely natural boundary conditions, and
thus the solution p is unique only up to an arbitrary additive constant. This can be
worked around as above. Let ε be a small constant, e.g. ε = 10−8. The final weak
form of the projection problem is

−
∫
Ω

∇p · ∇χ dΩ + ε

∫
Ω

p χ dΩ +

∫
∂Ω

(n · ∇p)χ dΓ =

∫
Ω

(∇ ·Ue)χ dΩ , (103)

where χ is a test function. Any C0 elements can be used for representing p.
Strictly speaking, if u is represented by C0 elements, the divergence of Ue (which

depends on the second derivatives of u) is not integrable due to singularities at the
element boundaries. However, the right-hand side of (99) is basically arbitrary, as is
also the velocity field U when viewed as input to (81) – (82). The only requirement
is that either ∇ · U ≡ 0, or alternatively, that ∇ · U is integrable. Thus, we may
choose to omit the singularities when defining the auxiliary quantity p by (99); any
practical solver code will then see U = Ue −∇p as a divergence-free velocity field.

This also has implications for the compressible case treated further above. There,
nonzero divergence was allowed for the velocity field (via local variations in den-
sity). Now, however, the divergence of the velocity field is present in the original
equations (81) – (82) themselves, and we cannot ignore singularities if we are to
represent the problem correctly. If the presented free-edge approximation is used,
then u and v must be represented using elements having C1 continuity across the
element edges. In the present study, we have chosen to ignore this issue by using
a divergence-free velocity field, allowing us to omit the problematic terms in (81) –
(82).

There is one final issue that must be accounted for. The presented free-edge ap-
proximation will make the equations (81) – (82) nonlinear, since the effective ve-
locity field U depends on the displacement u. Thus an iterative process must be
introduced to find the solution.

8 Numerical results

In this section, we will present numerical results from both the one- and two dimen-
sional models. In the one-dimensional case, the full viscoelastic model is used. The
two-dimensional study is focused on the inertial contribution in the pure elastic
case.

In the one-dimensional model, the strain and stress states can be calculated an-
alytically using the equations (52) and (56). Using the parameter values Ex = 2.5 ·
107 N/m2, ηx = 4.0 · 105 Ns/m2, Ux = 10 m/s, span length L = 1.0 m and strain
εT = 0.03, the results shown in Figures 7 – 9 are obtained. The numerical solutions,
also shown in Figures 7 and 8, are reproduced from the previous study [35].
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Figure 7: Analytical and numerical finite element solution of strain distribution
along the length of the web span [35].

As was pointed out in the analysis, the strain distribution along the travelling vis-
coelastic span differs from the traditional constant strain that is observed for purely
elastic materials [68]. However, even though the strain distribution is not constant,
the stress distribution is a combination of elastic and viscous forces based on the
equation (21), and it is almost constant. The stress increases very slightly towards
the traction line A2; this is a consequence of the acceleration of the web due to higher
outlet velocity, U2 > U1 [35]. The effect of the span length on the web stress state
is visible. Basically, the shorter the processing time of the viscoelastic span is, the
higher is the response of time-dependent viscous force component.

In case of the two-dimensional model, a purely elastic travelling two-dimensional
sheet was investigated numerically using finite elements. See Figure 10. The un-
knowns were the displacements u and v. The element type used was Q2 (quadratic
and quadrangular). Isoparametric mapping (i.e. also Q2) was used for the coordi-
nates. The auxiliary potential p for divergence-free velocity projection was repre-
sented using Q1 (bilinear quadrangular) elements. The classical Galerkin method
was used; for each unknown quantity, its own basis functions were used as the test
functions.

The mesh was set up as a uniform cartesian grid with 16 × 16 elements for each
of the unknowns. Discretizations were produced automatically from equations (81)
– (82) and (103). Dirichlet boundary conditions, prescribing displacements, were
enforced by the elimination technique. Homogeneous natural (i.e. zero Neumann)
boundary conditions required no action on part of the implementation. The dis-
cretization lead to 32895 global degrees of freedom in the linear problem (u and v
only), and 37120 in the nonlinear problem (u, v and auxiliary potential p).

The solution of the corresponding linear problem for the stationary elastic sheet
(U = 0) was used as the initial guess for u, and fixed-point iteration was used to
refine the solution of the nonlinear problem of the moving sheet. At each fixed-
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Figure 8: Analytical (left) and numerical (right) finite element solution of stress dis-
tribution along the length of the span [35].

Figure 9: Effect of web span length on the web stress [35].
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Figure 10: Setup for the two-dimensional numerical investigation. Elastic material
enters from the left at velocity Uin, and flows through the domain at a velocity deter-
mined by the interaction of Uin and the approximated behaviour of the free edges.

point iteration, the linear equation system was solved by a direct solver. The velocity
field U was computed starting from a purely axial inflow, as described above. See
equations (92), (101) and (103).

A common desktop computer with 4 CPU cores was used for the finite element
computations. With MPI-parallelized matrix assembly, each nonlinear problem took
about one minute of wall time. The implementation was based on the scientific
Python software stack.

Problem parameter values used in the study are listed in Table 1. The shear mod-
ulus based on the geometric average,

G =

√
E1E2

2(1 +
√
ν12ν21)

, (104)

was used for both the isotropic and orthotropic materials. Equation (104) is some-
times known as the Huber value for the shear modulus, after M. T. Huber who
proposed this relation for orthotropic materials [25, 26, 27].

The boundary conditions for the displacements u and v were

u(y) = v(y) = 0 at x = 0, 0 < y < b , (105)
u(y) = uf at x = �, 0 < y < b , (106)

and zero Neumann for v at x = �, 0 < y < b. In (106), uf is a prescribed constant value
for the displacement. Note that at the outflow edge, only u is fixed; v is determined
by the zero Neumann condition.
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Table 1: Parameter values used in the two-dimensional numerical study. All 24
combinations resulting from the choices of Uin (4 values), b (3 values) and the two
materials were investigated. The shear modulus based on the geometric average
(equation (104)) was used for both the isotropic and orthotropic materials. Note
elastic compatibility E1ν21 = E2ν12 (see e.g. [37]).

Uin [m/s] � [m] b [m] ρ [kg/m3] uf [m]

0 0.5 0.1 800 0.03 · �
15 0.5
25 2.5
50

E1 [10
7 Pa] E2 [10

7 Pa] ν12 ν21
Isotropic 2.5 2.5 0.3 0.3

Orthotropic 5.0 1.25 0.6 0.15

On the free edges, 0 < x < �, y = 0 and 0 < x < �, y = b, the zero Neumann con-
dition was used for both u and v. The zero Neumann condition (weakly) prescribes
zero normal component for the effective stress tensor (74), i.e.

σeff · n ≡ [
σ − ρ(U⊗U · ∇u)T

] · n = 0 . (107)

Explicitly, accounting for our geometry and spelling out the component form, from
equation (82) we can read the following condition corresponding to v at the outflow
boundary:

C66(
∂u

∂y
+

∂v

∂x
)− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y
= 0 at x = �, 0 < y < b , (108)

and from equations (81) and (82), the following conditions corresponding to u and
v (respectively) on the free boundaries:

C66(
∂u

∂y
+

∂v

∂x
)− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y
= 0 at 0 < x < �, y = {0, b} , (109)

C21
∂u

∂x
+ C22

∂v

∂y
− ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y
= 0 at 0 < x < �, y = {0, b} . (110)

The boundary conditions for the auxiliary potential p were (102) on all bound-
aries. As was mentioned, this requires that the normal component of the velocity
correction vanishes at the boundaries.

The problem was solved numerically for all 24 input value combinations result-
ing from the choices of Uin (4 values), b (3 values) and the two materials, as listed in
Table 1. The quantities studied were u, v, εxx, εyy, γxy, σxx, σyy and τxy. In addition,
when Uin > 0, the relative velocity field defined as

Urel ≡ (Ux − Uin , Uy ) (111)
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Figure 11: Displacement v, normalized to uf , along the free edge 0 < x < �, y = b.
Left: isotropic. Right: orthotropic. Line style indicates inflow velocity Uin, darkness
indicates span width b.

was also studied.
Figure 11 shows the y-directional displacement profile (displacement v) along the

free edge 0 < x < �, y = b for representative isotropic and orthotropic cases for both
stationary and moving materials.

Figures 12–28 display contour plots of all studied quantities for a stationary ma-
terial (linear reference case), and material moving at Uin = 50 m/s (representative
example of nonlinear case).

For all investigated cases, it was observed that for each quantity studied, the dif-
ference between the nonlinear and linear solutions is small, when compared to the
maximum value of the linear solution. While varying the magnitude of Uin changed
the magnitude of this difference, the shape of the difference field (nonlinear minus
linear) for each quantity studied remained the same. See Figures 29 – 36 for repre-
sentative examples of the difference fields.

All effects were observed to become more pronounced for small aspect ratios �/b,
i.e. spans that are wide and short. The span length � was kept constant, and the
width b was varied; hence in the figures, large values of b correspond to small aspect
ratios.

In all investigated cases, inertial effects caused additional elastic contraction of
the travelling span, on top of the contraction already observed for a stationary ma-
terial. This effect can be seen especially clearly in the y-directional displacement
profile, Figure 11, and the shape of the relative velocity field Urel, Figure 12.
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Figure 12: Relative velocity field Urel, normalized to Uin = 50 m/s (representative).
Left: isotropic. Right: orthotropic. Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 13: Displacements u and v, normalized to uf . Isotropic, Uin = 0 (linear refer-
ence). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 14: Displacements u and v, normalized to uf . Isotropic, Uin = 50 m/s (repre-
sentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 15: Displacements u and v, normalized to uf . Orthotropic, Uin = 0 (linear
reference). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 16: Displacements u and v, normalized to uf . Orthotropic, Uin = 50 m/s
(representative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 17: Axial strains εxx and εyy. Isotropic, Uin = 0 (linear reference). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 18: Axial strains εxx and εyy. Isotropic, Uin = 50 m/s (representative). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 19: Axial strains εxx and εyy. Orthotropic, Uin = 0 (linear reference). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 20: Axial strains εxx and εyy. Orthotropic, Uin = 50 m/s (representative). Top
to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 21: Axial stresses σxx and σyy. Isotropic, Uin = 0 (linear reference). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 22: Axial stresses σxx and σyy. Isotropic, Uin = 50 m/s (representative). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 23: Axial stresses σxx and σyy. Orthotropic, Uin = 0 (linear reference). Top to
bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 24: Axial stresses σxx and σyy. Orthotropic, Uin = 50 m/s (representative).
Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 25: Shear strain γxy and shear stress τxy. Isotropic, Uin = 0 (linear reference).
Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 26: Shear strain γxy and shear stress τxy. Isotropic, Uin = 50 m/s (representa-
tive). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 27: Shear strain γxy and shear stress τxy. Orthotropic, Uin = 0 (linear refer-
ence). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).

50



0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5
ε
xy
=u

,y
+v

,x

-0.037

-0.0288

-0.0206

-0.0123

-0.00411

0.00411

0.0123

0.0206

0.0288

0.037

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5
τ
xy

[Pa]

-350000

-272000

-194000

-117000

-38900

38900

117000

194000

272000

350000

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
ε
xy
=u

,y
+v

,x

-0.032

-0.0249

-0.0178

-0.0107

-0.00356

0.00356

0.0107

0.0178

0.0249

0.032

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
τ
xy

[Pa]

-310000

-241000

-172000

-103000

-34400

34400

103000

172000

241000

310000

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10
ε
xy
=u

,y
+v

,x

-0.024

-0.0187

-0.0133

-0.008

-0.00267

0.00267

0.008

0.0133

0.0187

0.024

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10
τ
xy

[Pa]

-230000

-179000

-128000

-76700

-25600

25600

76700

128000

179000

230000

Figure 28: Shear strain γxy and shear stress τxy. Orthotropic, Uin = 50 m/s (repre-
sentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 29: Nonlinear contribution to displacements, normalized to uf . Isotropic,
Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 30: Nonlinear contribution to displacements, normalized to uf . Orthotropic,
Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 31: Nonlinear contribution to axial strains. Isotropic, Uin = 50 m/s (repre-
sentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).

54



0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5
ε
nonlin
xx

=(u−ulin),x

-0.0012

-0.00078

0

0.0009

0.00174

0.00258

0.003

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5
ε
nonlin
yy

=(v−vlin),y

-0.0017

-0.00146

-0.000992

-0.00052

-0.000048

0.000424

0.00066

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
ε
nonlin
xx

=(u−ulin),x

-0.00042

-0.000076

0.000268

0.000612

0.000956

0.0013

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
ε
nonlin
yy

=(v−vlin),y

-0.0012

-0.000904

-0.000608

-0.000312

0

0.00028

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10
ε
nonlin
xx

=(u−ulin),x

-0.00032

-0.000227

-0.000041

0.000145

0.000331

0.000517

0.00061

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10
ε
nonlin
yy

=(v−vlin),y

-0.0012

-0.00106

-0.000792

-0.00052

-0.000248

0.000024

0.00016

Figure 32: Nonlinear contribution to axial strains. Orthotropic, Uin = 50 m/s (repre-
sentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 33: Nonlinear contribution to axial stresses. Isotropic, Uin = 50 m/s (repre-
sentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 34: Nonlinear contribution to axial stresses. Orthotropic, Uin = 50 m/s (rep-
resentative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 35: Nonlinear contribution to shear strain and shear stress. Isotropic, Uin =
50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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Figure 36: Nonlinear contribution to shear strain and shear stress. Orthotropic, Uin =
50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (�/b = 1/5, 1, 5).
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9 Conclusion

The analysis performed gives new insights to the modelling of axially moving con-
tinuous materials. Fundamentally, the model used is comparable to fluid flow mod-
els (Navier–Stokes), where the velocity is the main variable to be calculated. Simi-
larly, the fundamental variable here, displacement, can be understood as a steady-
state ”Eulerian snapshot” from the moving continuum. It must be noted that the
velocity levels used in the model are assumed to affect the in-plane flow of the ma-
terial ”as such”, without the loss of stability or deflections in the out-of-plane di-
rection [4, 9, 53]. The full time-dependent model also includes terms comparable
with Newtonian viscosity. Standard viscosity of Newtonian fluids is defined using
viscosity and velocity gradient (in the x-direction):

τ = μ
∂Ux

∂y
, (112)

where μ is fluid viscosity. Studying the equations (36) and (37), there are terms
dependent only on the web material viscosity Π. It is possible to write following for
partial shear stresses τ1 and τ2:

∂τ1
∂y

= Π
∂3u

∂y2∂t
and

∂τ2
∂x

= Π
∂3v

∂x2∂t
(113)

Equation (113) can be rewritten as an ’Eulerian’ viscosity law for shear stress
dependent on the web viscosity, displacement gradient and time:

τ1 = Π
∂

∂t

∂u

∂y
and τ2 = Π

∂

∂t

∂v

∂x
(114)

It is noticeable that equation (113) does not include the transport velocity itself
and must be defined separately in both in-plane directions.

The presented two-dimensional model makes possible to study elastic two-dimen-
sional strain distribution of moving continua. One key finding is that inertial effects
cause additional contraction on top of the contraction already observed for a sta-
tionary material.

The model presented is always nonlinear. The reason for this is that due to mass
conservation and the behaviour of free edges, the total material velocity U is de-
pendent on the displacement u, which further is dependent on the same in-plane
velocity.

If the material is assumed ideal linear-elastic, the one-dimensional moving web
model will produce constant strain, similarly to linear elastic stationary models.
However, in reality, there is always some degree of viscous properties in all materi-
als, and therefore with moving webs, the constant strain approach is not possible.

The limitations of the present study are also apparent. The model was stud-
ied in a steady state, which does not allow for temporal variations in the flowing
medium preceding the observation span under study. To include such effects, a
time-dependent formulation must be used.
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Also, from a physical viewpoint, the use of Dirichlet boundary conditions in two-
dimensional web handling models is problematic. In a two-dimensional model,
there is no dimension in the thickness direction. Thus, the Dirichlet boundary con-
ditions affect the whole thickness of the web, even though in reality all web han-
dling systems are based on surface traction. In the interior of the web, the actual
axial displacement will differ from the value set by the Dirichlet boundary condi-
tion, which in physical terms represents a prescribed displacement at the surface.
Therefore, more realistic two-dimensional web continuum models should be based
on Neumann or Robin boundary conditions with finite thickness modelling.

A logical future step to continue along the present line of study would be to
consider the effects viscoelasticity also in the two-dimensional case, since the web
velocity and viscous properties are closely connected with each other [35].
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analysis for travelling membranes and plates interacting with axially moving
ideal fluid. Journal of Fluids and Structures, 26(2):274–291, 2010.

61



[6] N. Banichuk, J. Jeronen, P. Neittaanmäki, and T. Tuovinen. Dynamic behaviour
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In the second part of the series we further 
link wet paper results of fast tensile test rig 
IMPACT with paper machine runnability. 
This paper presents the effects of filler and 
Kraft content, refining level, jet/wire ratio, 
and strain rate on the tensile and relaxation 
properties of a wet web. Since relaxation oc-
curs in all papers subjected to a constant strain 
increase, the key item is the tension holding 
capacity of paper. It depends naturally on 
draw levels, but also greatly on properties of 
furnish, including its numerous modification 
possibilities at different raw material handling 
and stock preparation stages.

The effect of the filler content on hand-
sheets in-plane tensile and relaxation prop-
erties were shown to be strongly dependent 
on dry solids content. Filler content level 
was shown to affect more wet web tensile 
than relaxation properties. The relationship 
between density and tensile strength of dry 
paper was shown to be linear. Wet paper 
tensile strength and residual tension were 
not developed linearly by increasing density. 
In order to evaluate wet web runnability, 
both residual tension and dry solids content 
of paper should be observed.

The effect of the jet/wire ratio was simi-
lar on both wet and dry MD/CD tensile 
strength ratios, whereas at constant jet/wire 
ratio the MD/CD ratio of residual tension 
was significantly higher. This was mainly 
due to low elasticity of wet web in CD. 
Strain rate were shown to have significant 
effect on stress relaxation percentage as well 
as the maximum tension of wet paper. 

Kirjoittajat! Tähän suomenkielinen 
otsikko!
IMPACT nopean vedon mittalaitetta esitte-
levän julkaisusarjan toisessa osassa jatkamme 
märän paperin mittaustulosten ja paperiko-
neen ajettavuuden välisen yhteyden tarkas-
telua. Tässä julkaisussa esitetään täyteaine- ja 

1. Jarmo Kouko, Kristian Salminen, VTT Technical Re-
search Centre of Finland, PO Box 1603, FI-40101 
Jyväskylä, Finland.

2. Matti Kurki, Metso Paper, PO Box 587, FI-40101, 
Jyväskylä, Finland. Present address: Oy Metsä 
Botnia Ab, Äänekoski Mill, FI-44100 Äänekoski, 
Finland.

pitkäkuitusellun osuuden, massan jauha-
tuksen, suihkuviirasuhteen ja vetonopeu-
den vaikutuksia märän rainan vetolujuus- ja 
relaksaatio-käyttäytymiseen. Relaksaatiota 
tapahtuu kaikissa papereissa venytyksen jäl-
keen, joten olennaista on paperin kireyden-
pitokyky (kireyden relaksaation nopeus). 
Kireydenpitokyky riippuu vedon määrästä, 
mutta myös massaseoksen koostumuksesta 
mukaan lukien lukemattomat muutosmah-
dollisuudet raaka-aineen ja massan valmis-
tuksen eri vaiheissa.

Täyteainepitoisuuden vaikutus tason-
suuntaisiin vetolujuus- ja relaksaatio-omi-
naisuuksiin havaittiin laboratorioarkeilla 
riippuvan voimakkaasti kuiva-ainepitoisuu-
desta. Täyteainepitoisuus vaikuttaa märän 
rainan vetolujuusominaisuuksiin voimak-
kaammin kuin relaksaatio-ominaisuuksiin. 
Kuivan paperin ja tiheyden välillä havaittiin 
lineaarinen riippuvuus, kun taas märän pa-
perin vetolujuus ja jäännöskireys kehittyivät 
epälineaarisesti tiheyden funktiona. Märän 
rainan ajettavuutta arvioitaessa tulisi tarkas-
tella sekä märän rainan jäännöskireyttä että 
kuiva-ainepitoisuutta.

Kuivan ja märän paperin vetolujuussuh-
teet kehittyivät samalla tavalla suihku/viira-
suhteen muuttuessa. Sen sijaan vakioidulla 
suihku/viira-suhteella märän rainan jään-
nöskireyssuhde oli selvästi suurempi kuin 
vetolujuussuhde. Tämä oli seurausta märän 

rainan alhaisesta poikkisuuntaisesta elasti-
suudesta. Vetonopeudella osoitettiin olevan 
suuri merkitys märän rainan maksimikirey-
teen vedossa, sekä kireyden relaksaatioon. 

In this article we address further the natu-
ral rheological behavior of paper from the 
viewpoint of paper machine runnability 
/1/. The nature of the moving web and its 
tensioning on the paper machine with the 
help of speed differences constitute a very 
different environment compared to normal 
paper applications and functional demands 
in the end-user environment. The main dif-
ference in papermaking is processing speed. 
Papermaking line processes are usually very 
fast, and processing time decreases as pro-
duction speed increases. For this reason, 
viscoelastoplastic paper properties will be 
increasingly important as time-dependent 
features are emphasized. This article will 
provide deeper insight into the implications 
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of strain rate based rapid paper testing re-
sponses and some other key paper machine 
process variables.

Paper machine speeds have continued to 
increase at the rate noted in Fig. 1 /1/. For 
the most part, this development is based 
on more stable and better-controlled proc-
ess parameters and raw material utilization, 
but runnability component technology has 
also improved web stability. It is clear that 
this area will gain added emphasis as exter-
nal forces continue to increase faster than 
speed.

According to Perkins, the most common 
form of elasticity to be assumed is linear 
elasticity. The linear elastic model of paper 
behavior is commonly used in many ap-
plications. It is considered to be an accu-
rate model when environmental conditions 
are constant, when the duration of loading 
or strain is relatively short, and when the 
stresses and strains are maintained at a low 
level. /2/

The elastic strain level of paper is not 
easy to determine, and it may be as low as 
0.15%–0.30%. Linear elastic behavior, as 
determined in Hooke’s law, requires that 
the relationship between stress and strain is 
linear, and that strain is zero when stress is 
removed /2/. These requirements and the 
behavior of paper are inconsistent, and pa-
per is therefore not linearly elastic.

Linear viscoelasticity (time-dependent) 
is a proper assumption if the environmen-
tal conditions of temperature and relative 
humidity are constant over time and their 
values are moderate, and if the levels of 
applied stress or imposed strain are small 
/2, 3/. However, these stresses and strains 
are unfortunately not on a practical scale, 
which means that this theory is not accu-
rate enough to describe the behavior of 
paper even in relatively simple situations. 
According to Craven, stress relaxation and 
the superposition behavior of paper are hard 
to explain by any linear viscoelastic theory 
/4/. 

Relaxation phenomenon is known to 
exist for paper and other materials, but be-
cause time-dependent stress and strain anal-
ysis methods have not been standardized for 
paper, relaxation properties are not com-
monly used for major control parameter in 
papermaking. The absence of a valid general 
theory of short time scale paper web stress-
strain behavior increases lack of knowledge, 
and the importance of stress relaxation is not 
properly understood. 

The phase lengths of runnability-related 
paper machine disturbances are typically 

100–500 ms, which reflect, for example, the 
rotating speed of rolls. The paper web dwell 
time in a press-nip is 1–30 ms, and its dwell 
time in open draws is 5–20 ms. The time 
scales used in the mechanical testing of pa-
per should theoretically match those found 
on the paper machine /5/. Many different 
analytical models of disturbances on and in 
the web have been published /6–9/.

Because web handling is based on a step-
wise increase of consecutive strains, stress 
relaxation provides a more sophisticated in-
dicator than tensile testing. Because creep 
is stress-generated, it is not as useful as re-
laxation. Velocity differences generate draw, 
which is suddenly applied to the paper web 
on the paper machine. Draw first generates 
strain in the web, and this strain is followed 
by an increase in stress. A number of equa-
tions have been presented for the calcula-
tion of relative speed differences on a paper 
machine /10–12/. 

Due to the nature of the relaxation 
phenomenon, especially the straining time 
should be shorter than the time constants 
of paper relaxation /5/. At large time scale, 
stress relaxation is linear in proportion to 
the common logarithm of time according to 
Craven /4/. Craven was aware of the limi-
tations of his model and the difficulty of 
setting parameters for short and long-term 
relaxation. Similar models have also been 
introduced before and after Craven /4, 13, 
14/. 

)log()( 0ttFconstt   (1)

Craven’s formula introduces the constant 
t

0
 = 2 s. This constant, t

0
, fixed nonlinearity 

at short relaxation times. Relaxation times 
that matter for paper machine runnabil-
ity are typically less than 0.5 s. Because the 
shortest relaxation time in Craven’s study 
was 0.5 s, stress behavior related to shorter 
than 0.5 s relaxation times was left unclear. 

We have made our stress relaxation 
measuring method as similar to the real 
papermaking process as possible in terms 
of strain. The strain rate of the IMPACT 
tester is 1,000%/s and paper samples are 
tested at their initial dry solids content, 
typically 30%–70%. For simplification of 
the method, laboratory sheets are tested in 
order to exclude the effects of orientation 
on results /1/.

Standardized in-plane strength proper-
ties (tensile strength, tear strength, etc…) 
are typically poor predictors of paper ma-
chine runnability. The majority of runnabil-
ity problems on a paper machine occurs at 
low web dry solids contents (30%–70%) at 
the press section and dryer section. The lack 

of a general relationship between the time-
dependence of stress, strain and the dry sol-
ids content of paper forces one to conduct 
experimental studies, especially when pulp 
properties are studied in order to improve 
paper machine runnability.

The strain rate of in-plane tensile tests 
has been standardized since the 1960s. Some 
standards have fixed the rate of loading, but 
fixing the strain rate has been more typical. 
This means that the ratio of strip length and 
strain speed is fixed. In recent standards the 
strain speed is typically 100 mm/min, but 
the strip length in not necessarily fixed. 

Tensile testing methods are static and 
the paper sample is stationary, whereas the 
real process is dynamic and the paper web is 
moving. On a paper machine the strain rate 
is considerably higher 100–10,000%/s. The 
strain rate used in the test methods of the 
1960s was low due to data recording limita-
tions /15/. By 1953, Andersson and Sjöberg 
had already tested paper samples and re-
corded data at strain speeds over 100 mm/s 
/3/. Now, in the 21st century, there are no 
technical limitations for increasing the strain 
rate to 100%/s, for example. 

The strain rate has been noted to have 
an affect on tensile strength, work-at-rup-
ture and elasticity /3, 13–19/. The strain 
rate has not been proven to affect strain at 
break. Göttshing found that the strain rate 
had no effect on strain-to-rupture /17/. 
Davidson, on the other hand, noticed that 
the strain rate had an effect on strain-to-
rupture /18/. The results of Andersson and 
Sjöberg showed slight variation in strain-
to-rupture values /15/. Stress-strain models 
give no proper explanation of strain rate or 
strain-to-rupture. Meanwhile, even the sim-
plest dash-pot and spring models typically 
explain the effect of strain rates on tensile 
strength /13/. 

Stress relaxation increases with increased 
strain rate /3, 13/. Stress relaxation is not ex-
plained by linear viscoelastic theory because 
stress curves generated at different strains 
will not coincide even after a long time. 
According to Jantunen, the viscoelastic com-
ponent of stress relaxation, which depends 
on strain rate, will disappear at a given stress 
level. The plastic component of stress relaxa-
tion has no equilibrium, and it therefore 
continues to relax slowly /5/. The viscoelas-
tic component rules when fast relaxation is 
studied and the plastic component of stress 
relaxation is negligible.

The moisture content of paper increases 
stress relaxation rapidly /5/. Few studies 
have been published on the stress relaxation 
of wet paper at high strain rates. 
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Experimental
Detailed description of experimental meth-
od is published earlier /1, 20/. Main target is 
to measure rheological properties of wet fur-
nishes. Both tensile strength and relaxation 
properties of wet and dry paper were inves-
tigated. The term ‘dynamic tensile property’ 
is used here because the average strain rate in 
the tensile and relaxation tests was 1000%/s 
(1 m/s) with IMPACT /1/. This article in-
cludes results also from advanced tensile 
tester C-IMPACT /20/. 

Furnish mixture of fine pilot samples 
were approximately hardwood 70% soft-
wood 30%, but filler content was varied. 
Fine paper type handsheets were studied 
with varied filler content and pulp combi-
nations.

Furnish components of LWC-type hand-
sheets were Nordic thermomechanical pulp 
(TMP) and two Nordic pressure ground-
wood pulps (PGW) of the LWC and SC 
type. These mechanical pulps were blended 
with chemical softwood (Kraft) reinforce-
ment pulp. The mechanical pulps examined 
were decker pulps from Nordic paper mills 
made out of Norway spruce. Combinations 
of the pulps are presented in /21/.

Wet handsheets
The increase of filler content is known to 
decrease the tensile properties of dry paper 
due to lowered density and RBA /22, 23/. 
Flocs of filler, fines and fibers cover fiber-fib-
er crossings in the web structure, and these 
flocs prevent the development of hydrogen 
bonds between fibers. Due to intensive 
flocculation, poor formation may enhance 
the development of stress peaks in the web 
during strain and therefore decrease tensile 
strength. The tensile strength of dry and wet 
handsheets as a function of filler content is 
presented in Figs. 2 and 3. Handsheets were 
formed in accordance with the SCAN stand-
ard, except that the wet sheets were pressed 
at two different pressure levels (50 kPa and 
350 kPa) in order to reach two different dry 
solids content levels. 

Filler content had a bigger effect on dry 
paper tensile strength than on wet paper. 
The mechanical properties of dry paper are 
determined mainly by fiber-to-fiber bonds, 
which are blocked by filler particles. In wet 
paper, the main parameters determining the 
mechanical properties of the web are the av-
erage distance between fibers, the amount 
of free water, and the surface tension of the 
water. The effect of filler content on residual 
tension after 0.475 s at 1% strain is present-
ed in Figs. 4 and 5.

The residual tensions of dry and wet 

handsheets decreased rapidly when the 
amount of filler was increased. The higher 
the filler content, the smaller the effect of 
filler increase. The increase of filler content 
from 25% to 30% had only a minor effect 
on residual tension. Even though increased 
filler content lowered residual tension signif-
icantly, relative differences between furnish-
es remained the same. These results indicate 
that the effects of filler content variations are 
crucial in controlling web behavior on a pa-
per machine, especially with magazine paper 
grades based on recycled pulps. 

Differences between wet and dry  
paper strength properties
Kouko et al. presented various properties of 
LWC pulps at 40% dry solids content and at 
dry state. Detailed handsheet combinations 
and properties are tabulated in the refer-
ence /21/. Density had a different effect on 

wet and dry paper tensile strength in Figs. 6 
and 7. Dry paper tensile strength depended 
linearly on density, which was affected by 
mechanical pulp type and BSK content 
(bleached softwood kraft). A linear relation-
ship between density and tensile strength 
seemed to be a typical property of dry paper. 
Wet paper tensile strength depended on me-
chanical pulp type, BSK content and also on 
the degree of BSK refining, but the relation-
ship with density was not linear.

In Fig. 6 the arrow labeled “Kraft” stands 
for the direction in which tensile strength 
changes as a function of density when the 
proportion of BSK is increased. The arrow 
labeled “Refining” stands for the direction 
in which tensile strength changes as a func-
tion of density when the refining of BSK is 
increased. Density thus reflects the changing 
proportion of BSK and the degree to which 
it is refined. The density of blended pulp 
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is increased by an increase in BSK refining 
and an increase in the relative proportion 
of BSK.

Apparent density increases clearly in 
mechanical pulp-based handsheets as the 
proportion of BSK in the blend is increased. 
Fig. 6 shows that the degree of refining in-
creases apparent density the more the greater 
the proportion of BSK in the blend. Both 
PGW blends have similar apparent densi-
ties, which are higher than the apparent 
densities of the TMP blends. 

Density had a different effect on residual 
tension and tensile strength in Figs. 8 and 
9. Dry paper residual tension depended 
on the degree of BSK refining, as well as 
mechanical pulp type and BSK content. 
Increased refining gave bigger differences 
in wet paper residual tension than in tensile 
strength. Residual tension in wet handsheets 
decreased with increased BSK content.

The residual tension of paper can be 
determined through some other variable, 
depending on whether the paper is wet or 
dry (see Figs. 10 and 11). Dry paper residual 
tension typically had a stronger linear rela-
tionship with tensile strength than wet pa-
per residual tension.

Dry paper tensile strength had linear 
relationships with dry paper maximum and 
residual tensions in Fig. 10. However, the 
same is not true for wet paper /1/. Wet pa-
per residual tension after 0.475 s at 1% 
strain had a nearly linear relationship with 
wet paper maximum tension at 1% strain in 
Fig. 11. However, apparent correlation de-
pends strongly on pulp type and strain rate 
and therefore relative amount of apparent 
elasticity and plasticity changes.

In Figs. 12 and 13, different levels of dry 
solids content were applied at 50 kPa and 
350 kPa wet pressing pressures. Wet paper 
residual tension after 0.475 s at 1% strain 
correlated with dry paper maximum or re-
sidual tension after 0.475 s at 1% strain. 
However, the slopes and R2 correlations are 
low in Fig. 12 and 13 and therefore high dry 
maximum tension or residual tension after 
9.5 s at 1% strain does not necessarily lead 
to high wet residual tension after 0.475 s. 
There is typically weak relationship between 
dry maximum tension or residual tension 
and paper machine wet runnability.

Oriented wet web results for fine paper
The maximum production speed of fine pa-
per grades is limited by high bulk and the 
quality demands of the market. In order to 
prevent moisture-induced cockling and curl, 
high bending stiffness and uniform struc-
ture are usually required /24/. Because of 
these requirements, fine paper is often pro-

duced using a low jet/wire ratio and reduced 
nip loads on the press section. The tensile 
strength of dry and wet paper, and residual 
tension as a function of the jet/wire ratio, 
are presented in Figs. 14 and 15. 

The MD/CD ratio of tensile strength is 
similar for dry and wet samples as a function 

of the jet/wire ratio. If the MD/CD ratio is 
increased from 2.5 (typical for fine paper) to 
3.8 (typical for LWC), MD residual tension 
is increased only by 15%. The production 
speeds of paper grades do not determine 
their respective MD/CD ratios. In prior 
studies mechanical pulps gave 100% high-
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er residual tension in wet handsheets than 
chemical pulps /1, 21/.

Fig. 16 shows the effect of the jet/wire 
ratio on residual tension, online web tension 
and the tensile strength of wet web. Online 
web tension in open press-to-dryer transfer 
and residual tension were affected in the 

same manner by the jet/wire ratio. However, 
it was a pure coincidence that online web 
tension and residual tension were at same 
level in Fig. 16. 

Web tension was only 30%–35% of the 
tensile strength of a wet web in Fig. 16, and 
runnability problems are therefore not typi-

cally related to the tensile strength of the wet 
web. Defects in wet paper web increases rap-
idly the probability of web breaks. Problems 
occur in an open draw, but also after the 
draw due to the relaxation. 

The effects of the jet/wire ratio on the 
stress relaxation percentages of wet samples 
(MD and CD) at 1% strain are presented 
in Fig. 17. A higher degree of fiber orienta-
tion in the loading direction decreased the 
stress relaxation percentage. MD/CD ratio 
for fine was 2.5 with jet/wire ratio 1.06. At 
this orientation level, 55% of the web ten-
sion was lost in 0.475 seconds. By increasing 
the jet/wire ratio to 1.08, MD/CD ratio was 
3.8, and the stress relaxation percentage was 
lowered to 53%. The CD relaxation per-
centage was also significantly higher than 
the MD percentage. This can be explained 
by the fact that the CD stiffness of the web 
is actually generated during the web shrink-
age on the dryer section. 

The effects of relative wet pressing line 
loads on online web tension and stress re-
laxation percentages are presented in Figs. 
18 and 19. Stress relaxation percentage is 
the lost component of stress during the re-
laxation. Web tension increased by 30% 
when the dry solids content was increased 
through wet pressing from 41% to 47%. 
Adhesion between the wet web and center 
roll is known to increase with increased line 
load. Both adhesion and dry solids content 
have a strong effect on wet web behavior. 

Increased filler content with constant 
wet pressing gave higher apparent wet web 
dry solids contents (Fig. 18). Higher dry 
solids content will not always improve wet 
web tensile properties. Fibers absorb water 
whereas filler particles do not, and therefore 
dry solids content is increased (the dry solids 
content of filler particles is close to 100%). 
In fact, the consolidation of the wet web 
may be reduced by increased filler content 
because the removal of free water residing 
between fibers is reduced. 

The change of filler content changed 
both dry solids content and mechanical 
properties of samples. The effect of filler 
content on mechanical properties is shown 
in Figs. 20 and 21. The dashed lines in Figs. 
20 and 21 represent the estimated values, if 
only dry solids content would have changed 
(estimated from Fig. 18).

The maximum tensile strength was 
achieved with 15% filler content, and the 
maximum residual tension with 20% filler 
content (see Figs. 20 and 21). Residual ten-
sion values are closer to calculated values 
than tensile strength values.
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Strain rate
The MD and CD effect of strain was studied 
with dry and wet LWC base paper (initial 
dry solids contents 45%, TMP 60%, kraft 
40%, filler content 14%) /21/. Samples were 
dried with shrinkage control. MD tension 
was 5 to 6-fold compared to CD tension. 
The strain rates in Figs. 22 and 23 were (A) 
100 mm/s, (B) 10 mm/s and (C) 1 mm/s. 
The higher the strain rate, the higher the 
tension in Figs. 22 and 23.

Tensile strength of wet paper at 45% 
dry solids content was about 10% of the 
tensile strength of dry paper (Figs. 22 and 
23). A wet web runs on the paper machine 
at the same speed as a dry web even though 
the strength of the wet web is significantly 
lower. 

Maximum tension after draw increased 
linearly in relation to the common loga-
rithm of the strain rate (Fig. 24, arrow A). 
On the other hand, the stress relaxation 
percentage also increased linearly against 
the logged strain rate (Fig. 24, arrow B). The 
strained paper both gained more tension at 
a higher strain rate and also lost more ten-
sion over the same relaxation period. The 
ultimate level of residual tension that en-
sures runnability depends strongly on the 
relaxation time. After a very short relaxation 
time (<< 0.5 s), residual tension was higher 
at higher strain rates, but the difference was 
smaller with longer relaxation times.

The stress relaxation percentage was 
decreased by increased strain at any given 
strain rate (Fig. 24, arrow B). This means 
that at smaller strains a bigger percentage 
of tension was lost during stress relaxation. 
The absolute value of stress relaxation was, 
of course, increased by increased strains 
(and tension) and higher maximum tension. 
The higher values of stress relaxation at low 
strains (tension levels) may be the result of 
fiber activation.

Essential in Fig. 24 are the paper grade 
and fiber orientation. Wet fine paper typi-
cally has lower maximum tension at the 
same amount and rate of strain than wet 
wood containing paper. At higher fiber ori-
entation, the stress relaxation percentage is 
lower (see Fig. 17). 

This paper machine runnability study exam-
ined the effects of filler and Kraft content, 
refining level, the jet/wire ratio, and strain 
rate on the tensile and relaxation properties 
of a wet web. 

The effect of the filler content of hand-
sheets on in-plane tensile and relaxation 
properties was shown to be strongly de-
pendent on dry solids content. Dry paper 

was affected more by filler content than wet 
paper. The distance between particles and 
the amount of free water determines the 
mechanical properties of wet paper /25/. 
Despite this, increased filler content radi-
cally lowers the residual tension of wet paper 
and general wet web runnability proper-
ties.

It was also shown that filler content af-
fects more wet web tensile than relaxation 
properties. Maximal tensile strength and 
residual tension were gained at a filler con-
tent level of 10%–20% with constant press 
section parameters. These maximum values 
were probably reached with the minimum 
amount of free water in the wet web. The 
optimal amount of filler depends on filler 
and pulp type, as well as fiber orientation, 
and on paper machine running parameters 
at the forming and press sections. 

Reinforcement pulp content is typi-
cally increased when wet web runnabil-
ity problems occur on a paper machine. 
Reinforcement pulp is increased because 
dry paper strength is known to increase with 
higher reinforcement pulp content, and also 
because appropriate running parameter ad-
justments to address the problem are not 
known. We have shown here that the wet 
and dry tensile strength of paper and resid-
ual tension of wet paper were affected dif-
ferently by apparent paper density and pulp 
composition (reinforcement pulp content).

The proper way to evaluate runnability 
would be to observe both residual tension 
and dry solids content. Wet web runnabil-
ity can sometimes be improved by adding 
reinforcement pulp. However, improved 

runnability is brought about by increased 
press solids content, not by the properties 
of the reinforcement fiber. 

The residual tension of pure reinforce-
ment pulp at a 40%–60% dry solids con-
tent is typically low compared to pure 
mechanical pulps. The increased refining 
of reinforcement pulp improved the tensile 
strength and residual tension of dry and wet 
paper (mechanical and chemical pulp mix). 
Reinforcement pulp refining is limited by 
increased energy consumption and worse 
optical properties.

The effect of the jet/wire ratio was simi-
lar on both wet and dry MD/CD tensile 
strength ratios, whereas the MD/CD ratio 
of residual tension was significantly higher. 
This result further indicates the significance 
of drying and drying shrinkage control for 
the development of the CD elasticity prop-
erties of paper. 

The increase of relative line load in-
creased web tension and decreased the stress 
relaxation percentage after draw. However, 
this is also known to increase the adhesion 
force between the center roll and the web, 
which may neutralize the effect of a higher 
dry solids content /26/. 

The indicated effects of strain rate on 
stress relaxation are not valid for all paper 
grades. Stress relaxation over short relaxa-
tion times may depend on fiber properties. 
The indicated effects of strain rate on ten-
sile properties do apply to all paper grades, 
dry solids contents (30%...90%), and fiber 
orientations. 

Wet end runnability and dry end runna-
bility generally represent two different con-
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siderations that cannot be addressed in the 
same manner. The probability of web breaks 
relates to the runnability of dry paper, where 
different types of flaws appearing in the web 
pretty much dictate break sensitivity. This is 
easy to understand, as the tensile strength of 
dry paper is typically 2.0–6.0 kN/m but web 
tensions on the paper machine are typically 
150–400 N/m. In other words, only 10%–
20% of web’s total strength potential is used 
at the dry end of a paper machine.

In the case of the wet end, web tensions 
in open draw areas are on the order of 70–
180 N/m, which is actually the same as the 
wet tensile strength of oriented paper! Based 
on this, it is clear that flaws appearing on 
the web are very important, but that web 
tension itself and its dynamic behavior are 
also relevant. 

Given this, it is important to under-
stand the nature of the relative speed differ-
ences (draws) that create web tension. The 
basic system employed in a modern paper 
machine is to create enough tension with 
wet strain for stable web travel while still 
limiting wet strain to a level where final dry 
paper properties are at an acceptable level. 
The wet web is attached to a supporting 
fabric surface after draws without any slip-
page, typically using external negative pres-
sure. Since relaxation occurs in all papers 
subjected to a constant strain increase, the 
key item is the paper’s tension preservation 
capability. This depends on draw levels, but 
most importantly on furnish and final pulp 
composition, including its numerous modi-
fication possibilities at different raw material 
handling and stock preparation stages.
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