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Abstract. A mathematical model for fibrous structures using a direction dependent scaling
law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based
on the curvelet transform. The curvelet-based orientation analysis has been tested successfully
on real data from paper samples: the major directions of fibrefibre orientation can apparently
be recovered. Similar results are achieved in tests on data simulated by the new model, allowing
a comparison with ground truth.

1. Introduction
The quality of paper and also other fibre-based products depends essentially on how wood fibres
are distributed in a more or less random network of predominantly planar orientation. For this
reason, it would be important to be able to measure and control orientation and other properties
of the fibre network already during the manufacturing process.

The formation of paper has traditionally been inspected visually and later by analysing
in different ways its optical transmission image [1]. However, there are artefacts in optical
transmission images due to strong scattering of visible electromagnetic radiation in paper-like
fibrous structures. Also, it is not certain as yet from which part of the paper structure an optical
transmission image contains information. Therefore, it is of utmost importance to properly
calibrate the information gained from optical images. There are two especially suitable methods
of calibration: x-ray tomography and simulated networks with precisely known properties.

A method to transform an optical transmission image to one that fairly closely resembles that
of x-ray transmission has already been formulated [2]. In this work we present a mathematical
model for simulating simple fibre nets using a direction dependent scaling law. The orientation
of simulated data is analysed with a method based on the curvelet transform [3, 4], which has
been successfully tested in analysing real data from paper samples [5]. The aim of the work is
to design an algorithm that simulates a fibrous system from a given orientation distribution.
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2. Theory
2.1. Analysing orientation with curvelets
The orientation of complex patterns has traditionally been analysed by applying the Fourier
transform [6] or gradient-based methods like the structure tensors [7, 8]. However, more
sophisticated methods, especially the wavelet transform, [9] have become popular in the last
two decades. Furthermore, in recent years transforms like the curvelet, contourlet and shearlet
transform have been developed and proved to be well-suited for some applications [3, 4, 10, 11].

The curvelet transform is tightly localised in both space and frequency domain, and has in
addition an angle parameter that makes it an optimal tool for orientation analysis. The mother
curvelet is defined at each scale 0 < a < a0 in the frequency domain as

γ̂a00(r cos(ω), r sin(ω)) = a
3
4W (ar)V (ω/

√
a),

where r ≤ 0 and 0 ≤ ω ≤ 2π, the radial window W is a non-negative, infinitely smooth real-
valued function supported inside the interval (12 , 2), and the angular window V is a non-negative,
infinitely smooth real-valued function supported on the interval [−1, 1] (see Figure 1). The whole
curvelet is achieved as

γabθ(x) = γa00(R−θ(x− b)),

where 0 ≤ θ ≤ 2π is a rotation parameter, b ∈ R2 is a translation parameter, and Rθ is the matrix
of planar counter-clockwise rotation by the angle θ. The curvelet transform is then defined by

Γf (a, b, θ) := 〈γabθ, f〉 =

∫
R2

f(x)γabθ(x) dx,

for all 0 < a < a0, b ∈ R2 and 0 ≤ θ ≤ 2π.
Curvelets follow the parabolic scaling law in the aspect ratio of the area that contains most

of their energy. If we take a piece of smooth curve (corresponding to an edge of a fibre) with a
length of about a, then the whole piece will fit into a rectangle with the side lengths a and

√
a.

We can think of γabθ as a sensor that tries to detect if there is a fibre with orientation θ in the
neighbourhood of b. If f denotes a fibrous image, then the inner product 〈γabθ, f〉 presents the
response of sensor γabθ. A small value of parameter a means we focus into a part of a fibre, while
its larger values can embed a whole fibre. If there is no fibre with the orientation angle θ located
at point b, the value of |〈γabθ, f〉| is very small.

1 2 3 4 5

1
2

3 4 5

Figure 1. Schematic illustration of curvelet functions, left: curvelet functions of one angle θ in
frequency domain, right: the same curvelet functions in spatial domain.

2.2. The H model for fibrous systems
The statistics of physical parameters (e.g. density) of fibrous structures measured on lines depend
on the line direction. If we assume that the physical parameters on a line follow the fractional
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Brownian motion statistics, then the Hurst index models the order of the fractional Brownian
motion [12]. We create a random model for objects of controllable lengths, where a greater value
of the Hurst index means larger features in the object.

Assume now that Y (x) is a stationary two-dimensional Gaussian random field with zero
mean, which satisfies a non-standard scaling law for the covariance operator. Here, a Gaussian
random field Y (x) is stationary if the covariance function KY (x, y) = E (Y (x)Y (y)) satisfies
KY (x+a, y+a) = KY (x, y). We consider two one-dimensional stationary Gaussian processes p1
and p2 having covariances

E (p1(t)p1(s)) ∼ 1− |t− s|2H1 and E (p2(t)p2(s)) ∼ 1− |t− s|2H2 as t→ s,

and zero mean, E pj = 0. This means that p1 and p2 are independent fractional Brownian motions
with Hurst indicesH1 andH2. The random field Y (x) is obtained by taking oriented fibres having
one end point at (y1, y2), i.e. the functions (x1, x2) 7→ Ky1,y2(x1, x2) = k1(x1 − y1)k2(x2 − y2),
and summing such functions with all possible (y1, y2) together with random weights

Y (x1, x2) =

∫
R2

k1(x1 − y1)k2(x2 − y2)W (y1, y2) dy1dy2,

whereW (y1, y2) is a 2D Gaussian white noise. The Fourier transform of the function K(x1, x2) =
k1(x1)k2(x2) satisfies

K̂(ξ1, ξ2) = k̂1(ξ1)k̂2(ξ2) ∼ c1c2(1 + |ξ1|)−1/2−H1(1 + |ξ2|)−1/2−H2 as ξ →∞.

3. Results and discussion

Figure 2. Left: fibre net with Hurst indices H1 = 0.3 and H2 = 0.5, right: fibre net with Hurst
indices H1 = 0.5 and H2 = 0.3.

The H model gives us fibre nets with two perpendicular orientations. Two samples of fibre
nets simulated with the model are shown in Figure 2. A common example of this type of fibre
net is newsprint. The simulated fibre nets can then be transformed to change the orientation of
the fibres. Examples of the transformed fibre nets are shown in Figure 3. Note that the vertical
fibres are turned to the same orientation in both transformations, but the horizontal fibres are
transformed differently in rotation and shearing. The orientation analysis of these fibre nets is
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Figure 3. Left: the left fibre net of Figure 2 rotated 30◦ clockwise, right: the same fibre net
sheared horizontally 30◦ clockwise and vertically 10◦ counter-clockwise.

0 30 60 90 120 150 180
0

5

0 30 60 90 120 150 180 0 30 60 90 120 150 180 0 30 60 90 120 150 180

(a) (b) (c) (d)

Figure 4. (a): orientation analysis of the left fibre net of Figure 2, (b): orientation analysis of
the left rotated fibre net of Figure 3, (c): orientation analysis of the right sheared fibre net of
Figure 3, (d): orientation curves (a)-(c) shifted to match the strongest orientation.

shown in Figure 4. The strongest orientations are found in the expected positions, although the
transformations vary the orientation strengths.

The numerical evidence shows that we get the desired orientations in the fibre nets simulated
with the H model. A further goal is to analyse the orientations in real fibre data and then
simulate data with the exact same orientations.
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