

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Kesäniemi, Jenni; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, Emily

Title: Temporal genetic structure in a poecilogonous polychaete: the interplay of

developmental mode and environmental stochasticity

Year: 2014

Version:

Please cite the original version:

Kesäniemi, J., Mustonen, M., Boström, C., Hansen, B. W., & Knott, E. (2014). Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity. BMC Evolutionary Biology, 14(12). https://doi.org/10.1186/1471-2148-14-12

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Additional file 3. Genetic variation in the temporal samples after the removal of full-sib individuals

Genetic variation in the temporal samples after the removal of full-sib individuals (all samples are included but samples in bold have full-sibs removed). Observed (H_O) and expected (H_E) heterozygosity, inbreeding coefficient (F_{IS} , with significant values underlined) are reported.

Sample	H_{O}	H_{E}	F _{IS OLD}	FIS no
Sample	110	11E	- 18 OLD	full-sibs
-				1011 5105
FIA2008	0.57896	0.65804	0.116	0.115
FIA2009	0.56272	0.66314	0.140	0.140
FIA2010	0.68795	0.71434	0.015	0.015
FIF2008	0.53108	0.64313	0.153	0.153
FIF2009	0.47757	0.61436	0.202	0.202
FIF2010	0.56730	0.65473	0.128	0.128
DKR2009	0.59758	0.69896	<u>0.146</u>	<u>0.126</u>
DKR2010	0.60993	0.68942	0.092	0.089
DKV2008	0.65147	0.76540	<u>0.126</u>	<u>0.114</u>
DKV2009	0.71428	0.77757	<u>0.076</u>	0.067
DKV2010	0.69450	0.72946	0.030	0.022
DKH2008	0.59607	0.67679	0.099	0.099
DKH2010	0.56731	0.72006	<u>0.189</u>	<u>0.187</u>
	0.70202	0.50050	0.4.60	0.450
NET2009	0.58282	0.70370	0.169	0.173
NET2010	0.60589	0.68921	0.124	0.122
NET2011	0.61595	0.75168	0.182	<u>0.182</u>
111/2000	0.60600	0.70027	0.242	0.242
UK2009	0.60609	0.79936	0.242	0.242
UK2010	0.66405	0.79743	<u>0.165</u>	<u>0.165</u>