

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

MoCap Toolbox - A Matlab toolbox for computational analysis of movement data

Burger, Birgitta; Toiviainen, Petri

Burger, B., & Toiviainen, P. (2013). MoCap Toolbox - A Matlab toolbox for
computational analysis of movement data. In R. Bresin (Ed.), Proceedings of the
Sound and Music Computing Conference 2013, SMC 2013, Logos Verlag Berlin,
Stockholm, Sweden (pp. 172-178). Logos Verlag Berlin. Proceedings of the Sound and
Music Computing Conferences.
http://smcnetwork.org/system/files/MOCAP%20TOOLBOX%20%E2%80%93%20A%2
0MATLAB%20TOOLBOX%20FOR%20COMPUTATIONAL%20ANALYSIS%20OF%20MOV
EMENT%20DATA.pdf

2013

MOCAP TOOLBOX – A MATLAB TOOLBOX FOR
COMPUTATIONAL ANALYSIS OF MOVEMENT

DATA

Birgitta Burger Petri Toiviainen
Finnish Centre of Excellence in Interdisciplinary Music Research, Department of Music,

University of Jyväskylä, Jyväskylä, Finland
birgitta.burger@jyu.fi petri.toiviainen@jyu.fi

ABSTRACT
The MoCap Toolbox is a set of functions written in
Matlab for analyzing and visualizing motion capture data.
It is aimed at investigating music-related movement, but
can be beneficial for other research areas as well. Since
the toolbox code is available as open source, users can
freely adapt the functions according to their needs. Users
can also make use of the additional functionality that
Matlab offers, such as other toolboxes, to further analyze
the features extracted with the MoCap Toolbox within the
same environment. This paper describes the structure of
the toolbox and its data representations, and gives an in-
troduction to the use of the toolbox for research and anal-
ysis purposes. The examples cover basic visualization
and analysis approaches, such as general data handling,
creating stick-figure images and animations, kinematic
and kinetic analysis, and performing Principal Compo-
nent Analysis (PCA) on movement data, from which a
complexity-related movement feature is derived.

1. MOTIVATION AND OVERVIEW
The MoCap Toolbox is a Matlab1 toolbox dedicated to the
analysis and visualization of motion capture (MoCap)
data. It has been developed for the analysis of music-
related movement, but is potentially useful in other areas
of studies as well. It is open source, distributed under
GPL license, and freely available for download at:

www.jyu.fi/music/coe/materials/mocaptoolbox.
The MoCap Toolbox is mainly intended for working

with recordings made with an infrared marker-based op-
tical motion capture system. Such motion capture systems
are based on an active source emitting pulses of infrared
light at a very high frequency, which is reflected by
small, usually spherical markers attached to the tracked
object (e.g., a participant dancing or playing an instru-
ment). With each camera capturing the position of the
reflective markers in two-dimensional, a network of sev-
eral cameras can be used to obtain position data in three

1 www.mathworks.com

2 www.c-motion.com/products/visual3d/

dimensions. Besides optical motion capture, the MoCap
Toolbox can also be used for analyzing data captured
with other tracker technologies, such as inertial or mag-
netic trackers. However, some features of the toolbox will
be limited, since such trackers do not produce position
data, but derivative data, (e.g., acceleration). Further-
more, the toolbox is optimized for the use of 3-
dimensional position data, so using data with six degrees
of freedom (position and rotation) might require custom-
ized adjustments of functions.

There are proprietary (closed source) software solutions
available for motion capture analysis and visualization,
such as Visual3D2 or MotionBuilder3, and applications
that are primarily used for recording data (such as Qual-
isys Track Manager4 or Vicon Nexus5). However, such
applications are usually either too limited in their func-
tionality, too focused on visualization and/or too restric-
tive to adapt to the needs of the researcher, such as devel-
oping new movement features useful for their individual
research questions. To overcome these issues, we imple-
mented this toolbox in Matlab, a generic scientific com-
puting environment, and made it available to other re-
searchers to be used in favor of their needs. The Mocap
Toolbox is not the only Matlab toolbox available for mo-
tion capture analysis; one other toolbox worth mentioning
is the toolbox created by Charles Verron [1]. This toolbox
is more limited than the MoCap Toolbox, but offers a
graphical user interface (GUI).

Matlab offers pre-built visualization opportunities and
gives access to a large range of other functionality. Some
functions included in the MoCap Toolbox use, for exam-
ple, the Signal Processing Toolbox provided by Math-
Works, or the FastICA package6, a freely available third-
party toolbox for Independent Component Analysis. Fur-
thermore, the users themselves can make immediate use
of the additional functionality and toolboxes provided by
Matlab, for example the Statistics Toolbox, to further
analyze features extracted with the MoCap Toolbox with-
out the need to switch between different applications.
MoCap Toolbox code is written using the generic Matlab
syntax and is openly assessable, so users can add and
adapt functions to their own needs.

2 www.c-motion.com/products/visual3d/
3 www.autodesk.com/motionbuilder
4 www.qualisys.com/products/software/qtm/
5 www.vicon.com/products/nexus.html
6 www.cis.hut.fi/projects/ica/fastica/

Copyright: © 2013 Burger et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License 3.0 Unport-
ed, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

172

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

The MoCap Toolbox supports various motion capture
data formats, in particular the .c3d7 file format (which,
e.g., Vicon8 or OptiTrack9 optical motion capture systems
can produce), the .tsv format and the .mat format, both
produced by the Qualisys motion capture system10, and
the .wii data format produced by the WiiDataCapture
software11.

The MoCap Toolbox provides 64 functions for analyz-
ing and visualizing motion capture data. The main cate-
gories can be summarized as data input and edit func-
tions, coordinate transformation and coordinate system
conversion functions, kinematic and kinetic analysis
functions, time-series analysis functions, visualization
functions, and projection functions. Furthermore, it uses
three different data structures, the MoCap data structure,
the norm data structure, and the segm data structure. To
convert between the different data representations and
enable certain visualizations, three different parameter
structures are used, the m2jpar, the j2spar, and the anim-
par structures. Both the data and the parameter structures
will be discussed and explained in the next section.

2. DATA REPRESENTATIONS
The MoCap Toolbox uses three different data structures,
the MoCap data structure, the norm data structure, and
the segm data structure. A MoCap data structure in-
stance is created when mocap data is read from a file to
the Matlab workspace using the function mcread. A
MoCap data structure contains the 3-dimensional loca-
tions of the markers (in the .data field) as well as basic
information, including the type of structure, the file
name, number of frames of the recording, the number of
cameras used for the recording, the number of markers in
the data, the frame rate, the names of the markers, and the
order of time differentiation of the data. Additionally, the
MoCap data structure contains fields for data captured
with analog data, such as EMG. Finally, the time stamp
of the recording and the data type (e.g., 3D) can be add-
ed.

A MoCap data structure instance is also created when
the function mcm2j is used. This function transforms a
marker representation to a joint representation. These two
representations use the same data structure, although they
are conceptually different: the marker representation re-
flects the actual marker locations, whereas the joint rep-
resentation is related to locations derived from marker
locations. A joint can consist of one marker, but it can
also be derived from more than one markers. It can, for
example, be used for calculating the location of a body
part where it is impossible to attach a marker. The mid-
point of a joint, for instance, can be then derived as the
centroid of four markers around the joint.

The norm data structure, created by the function
mcnorm, is similar to the MoCap data structure, except
that its .data field has only one column per marker.
This column contains the Euclidean norm of the vector

7 www.c3d.org
8 www.vicon.com
9 www.naturalpoint.com/optitrack/
10 www.qualisys.com
11 www.jyu.fi/music/coe/materials/mocaptoolbox

data from which it was derived. If, for instance, mcnorm
is applied to velocity data, the resulting norm data struc-
ture holds the magnitudes of velocities, or speeds, of each
marker.

The third data structure, the segm data structure, is not,
like the other two, related to points in space (markers or
joints), but to segments of the body (see, e.g., [2]). The
function mcj2s performs a transformation from a joint
representation to a segment representation and produces
as output a segm data structure instance. Most fields of a
segm data structure are similar to the ones of a MoCap
data structure, however, the .data field is replaced by
four other fields. The .parent field contains infor-
mation about the kinematic chains of the body, i.e., how
the joints are connected to form segments, and how seg-
ments are connected to each other. The fields
.roottrans and .rootrot store the location and
orientation of the center of the body, the root. The
.segm field consists of several subfields that store the
orientation of the body segments in several ways. The
.eucl subfield contains for each segment the Euclidean
vector pointing from the proximal to the distal joint of the
segment. The length of each segment is stored in the .r
subfield. The .quat subfield includes the rotation of
each segment as a quaternion representation (see, e.g., [3]
and [4]). Finally, the .angle subfield contains the an-
gles between each segment and its proximal segment.

To convert between the different representations and to
enable certain visualizations, the MoCap Toolbox offers
three different parameter structures: m2jpar, j2spar, and
the animpar structures.

The m2jpar structure is used by the function mcm2j
and contains the information needed to perform the trans-
formation from marker to joint representation. Besides
fields holding the number of joints and the names of the
joints, it includes a field with the numbers of the markers
defining the location of each joint.

The j2spar structure is used by the function mcj2s and
contains the information needed to perform the transfor-
mation from joint to segment representation. Besides the
fields containing the segment names and the number of
the root (center of the body) joint, it includes fields with
the numbers of the three joints that define the frontal
plane of the body and a vector indicating the number of
the parent segment (the segment that is proximal in the
kinematic chain) for each segment.

The animpar structure is used by the functions
mcplotframe and mcanimate and contains the in-
formation needed to create frame (stick figure) plots and
animations. The structure includes fields for the screen
size, limits of the plotted area, viewing angles, marker
sizes, plotting colors, connection line configurations and
widths, and plotting of marker and frame numbers. Addi-
tionally, the structure contains fields related to creating
animations, such as the frames per second, a substructure
for perspective projection parameters, and settings for
plotting marker traces.

173

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

3. USING THE TOOLBOX
In what follows, we will give an introduction to the use of
the toolbox for research and analysis purposes.

The MoCap Toolbox manual, provided with the down-
load of the toolbox, offers an example chapter with elev-
en demos explaining the basic usage of the toolbox. Ad-
ditionally, a demo data set called mcdemodata, includ-
ing motion capture data and associated parameter struc-
tures, is provided with the download. The MoCap data
structures dance1 and dance2 used below are availa-
ble in the mcdemodata data set.

3.1 Reading Data and Filling Gaps

Recorded motion capture files can be imported into
Matlab using the function mcread storing the content of
the file as a MoCap data structure, i.e.,

d = mcread('file.tsv');

An essentially useful first step is usually to check for
missing frames in the recording. Taking the mocap data
structure d, we can use

mcmissing(d)

to detect missing frames in the recording. In case of

missing data, we can fill them using linear interpolation
with the function mcfillgaps:

d = mcfillgaps(d);

From this point onwards, we will use the two MoCap

data structures dance1 and dance2 from the
mcdemodata. Since they are already available as
MoCap data structures and do not contain missing data,
both importing and gap filling are not required anymore.

3.2 Visualizing and Animating Data

A good approach to get an overview of the data is to vis-
ualize and animate data. Using the MoCap Toolbox,
mocap data can be plotted in different two ways: as a
time series or as single frames. As a function of time,
marker location data can be plotted with the function
mcplottimeseries, e.g.,

mcplottimeseries(dance1,[1 20 28],
'dim',3)

which plots the third/vertical dimension of markers 1,

20, and 28 (left front head, right hand, and right foot) (see
Fig. 1).

Marker locations as single frames can be plotted using
the function mcplotframe (using the (x,y) projection
of the markers):

mcplotframe(dance1,450);

Figure 1. Marker location data plotted as function
of time using mcplottimeseries.

This call, plotting the 450th frame of the recording (see

Fig 2a), uses the default animation parameter structure.
However, if a customized animpar structure is used, we
can, for instance, set the connection lines between the
markers to obtain a visualization that is easier to under-
stand and that looks more human-like (see Fig. 2b):

ap = mcinitanimpar;
ap.conn = [1 2; 2 4; 3 4; 3 1; 5 6; 9
10; 10 12; 11 12; 11 9; 8 9; 8 10; 8
5; 8 6; 5 9; 5 11; 6 10; 6 12; 7 11;
7 12; 7 5; 7 6; 5 13; 13 15; 13 16;
16 19; 15 19; 6 14; 14 17; 14 18; 17
20; 18 20; 9 21; 11 21; 10 22; 12 22;
21 23; 23 25; 23 26; 25 26; 22 24; 24
27; 24 28; 27 28];

mcplotframe(dance1,450,ap);

In case users collected the data with a Qualisys motion
capture system and created a bone structure during the
labeling process in the Qualisys software, they can export
the so-called label list (which contains the marker con-
nections) and use this file to create the connection matrix
by employing the function mccreateconnmatrix.

We can change the general color scheme and the colors
of individual markers, connector lines, traces, and num-
bers by adjusting the values of the respective fields of the
animpar structure, for example (see Fig. 2c):

ap.colors = 'wrbgy';
ap.markercolors = 'bmgyrrrrrrrrkk';
mcplotframe(dance1,450,ap);

Figure 2. Marker location data plotted as frame
using mcplotframe: a) using the default pa-
rameters; b) using a connection matrix; c) chang-
ing colors; d) joint transformation.

174

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

The function mcanimate is used to create animations:

mcanimate(dance1,an);

The MoCap Toolbox produces the single animation

frames as .png files. They have to be compiled into a
movie using other software, such as QuickTime Pro on
Mac, or MovieMaker on Windows.

Animations can be created as 2D projections in two
ways, either orthographic (default) or perspective, the
latter one by including the perspective projection parame-
ter:

mcanimate(dance1,an,1);

3.3 Kinematic Analysis

Kinematic variables, such as velocity and acceleration,
are estimated using the time-derivative function
mctimeder:

d1v = mctimeder(dance1,1); %vel.
d2v = mctimeder(dance2,1);
d1a = mctimeder(dance1,2); %acc.
d2a = mctimeder(dance2,2);

To analyze such time series, we can calculate their

means and standard deviations using mcmean and
mcstd (ignoring eventual missing frames). For this
sample analysis, we will take the norm data, that is, the
magnitudes of the 3-dimensional data of velocity and
acceleration. To simplify the approach, we first combine
the data from marker 1 (left front head) of the four
MoCap data structures using mcconcatenate:

dva = mcconcatenate(d1v,1,d1a,1,d2v,1,
d2a,1);

dva_mean = mcmean(mcnorm(dva));
dva_std = mcstd(mcnorm(dva));

The results (see Table 1) show that both mean and

standard deviation of velocity and acceleration of the left
front head marker are higher for dance2 than for
dance1, so the dancer in dance2 moved faster and at a
wider range of speeds and also used more and larger di-
rectional changes.

 mean SD

velocity dance1 235.85 110.79
dance2 520.24 192.27

acceleration dance1 2233.66 1326.55
dance2 3347.21 1423.19

Table 1. Means and standard deviations of veloci-
ty and acceleration (magnitudes) of the left front
head marker data of dance1 and dance2.

The cumulative distance travelled by a marker can be

calculated with the function mccumdist (returning a
norm data structure):

d1dist = mccumdist(dance1);
d2dist = mccumdist(dance2);

We use the Matlab function barh for plotting markers
1 (left front head), 20 (right finger), and 28 (right foot)
(see Fig. 3):

figure, barh([d1dist.data(1500,[1 20
28]); d2dist.data(1500,[1 20
28])],'b');

Figure 3. Cumulated distance travelled by mark-
ers 1, 20, and 28 of mocap data dance1 and
dance2 (labels and title were added separately).

We can see in Figure 3 that the three markers, especial-

ly the right hand marker, travelled more for dance2 than
for dance1, so we can assume that the amount of
movement was higher in dance2.

A measure related to the amount of movement is the ar-
ea covered by the movement, which can be calculated
using mcboundrect. If we want to calculate the bound-
ing rectangle of the four hip markers, we do:
br1 = mean(mean(mcboundrect(dance1,[9
10 11 12])));

br2 = mean(mean(mcboundrect(dance2,[9
10 11 12])));12

The bounding rectangle value for dance1 equals .1806

and for dance2, it equals .9724. Since the value for
dance2 is higher, dance2 not only had a higher
amount of movement, but also used more space than
dance1. The bounding rectangle measure was found to
be a relevant movement feature in [5] and [6].

We can also calculate distances between markers using
mcmarkerdist. The standard deviation of the distance
between left and right finger,

md1 = std(mcmarkerdist(dance1,19,20));
md2 = std(mcmarkerdist(dance2,19,20));

gives us information about the variability of the marker

distance. The standard deviation of the finger marker
distance for dance1 equals 49.0 and for dance2
175.65, so the fingers in dance2 exhibited more varia-
ble distances.

Periodicity of movement can be estimated using the
function mcperiod. It is based on autocorrelation, and

12 mcboundrect uses window decomposition. The function output
here is averaged across the windows and the four markers.

175

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

either the first or highest peak of the autocorrelation func-
tion is taken as periodicity estimation dependent on the
parameter input. With

d1m1 = mcgetmarker(d1a,20);
d2m1 = mcgetmarker(d2a,20);
[per1 ac1 eac1] = mcperiod(d1m1,2,
'highest');

[per2 ac2 eac2] = mcperiod(d2m1,2,
'highest');

we calculate the periodicity of the acceleration of the

right finger marker. mcperiod resulted in a periodicity
estimate for each dimension being [1.04, 0.53, 0.52] for
dance1 and [1.04, 1.01, 1.06] for dance2. While the
first dimension is similar, the second and third dimen-
sions are roughly half for dance1, suggesting that in this
case the finger moved in double tempo in y and z direc-
tions.

A more accurate periodicity analysis can be performed
using windowed autocorrelation:

[per1 ac1 eac1] = mcwindow(@mcperiod,
d1m1,2,0.25);

[per2 ac2 eac2] = mcwindow(@mcperiod,
d2m1,2,0.25);

To allow visual inspection of the time development of

the periodicity, the enhanced autocorrelation (eac) matrix
can be plotted as an image (see Fig. 4). The colors indi-
cate the regularity of periodic movement, with warm col-
ors corresponding to regions of regular periodic move-
ment in the period-time plane:

figure, imagesc(eac1(:,:,3)), axis xy
set(gca, 'XTick',0:4:46, 'XTickLabel',
0.5*(0:4:46), 'YTick',[0 30 60 90
120], 'YTickLabel',[0 0.5 1 1.5 2.0])

figure, imagesc(eac2(:,:,3)), axis xy
set(gca, 'XTick',0:4:46, 'XTickLabel',
0.5*(0:4:46), 'YTick',[0 30 60 90
120], 'YTickLabel',[0 0.5 1 1.5 2.0])

Figure 4. Enhanced autocorrelation function of
the vertical components of the right finger accel-
eration in dance1 and dance2.

We can see in Figure 4 that the vertical component of

the right finger acceleration of dance1 shows quite clear
periodic movement with a period of about 500 millisec-
onds, whereas the periodicity for dance2 is weaker and
more irregular.

3.4 Kinetic Analysis

The MoCap toolbox offers the possibility to calculate
kinetic variables using Dempster’s body-segment model
[7]. To make our present data compatible with Demp-
ster’s model, we first have to reduce the amount of mark-
ers from 28 to 20. We will accomplish this with a marker-
to-joint transformation, implemented in the function
mcm2j. The m2jpar parameter structure required for this
transformation is created like this:

m2j = mcinitm2jpar;
m2j.nMarkers = 20;
m2j.markerNum = {[9 10 11 12],[9 11],
21,23,26,[10 12],22,24,28,[7 8 7 8 9
10 11 12],[5 6],[1 2 3 4],5,13,[15
16],19,6,14,[17 18],20};

m2j.markerName = {'root', 'lhip',
'lknee','lankle','ltoe','rhip',
'rknee','rankle','rtoe','midtorso',
'neck','head','lshoulder','lelbow',
'lwrist','lfinger','rshoulder',
'relbow','rwrist','rfinger'};

The joint 'root', for example, is obtained by calcu-

lating the centroid of markers 9, 10, 11, and 12. The
marker-to-joint transformation is carried out as follows:

d1j = mcm2j(dance1,m2j);
d2j = mcm2j(dance2,m2j);

Figure 2d visualizes frame 450 of the joint representa-

tion of dance1. The next step is to do the joint-to-
segment transformation. The j2spar parameter structure
required for the transformation is created like this:

j2s = mcinitj2spar;
j2s.rootMarker = 1;
j2s.frontalPlane = [6 2 10];
j2s.parent = [0 1 2 3 4 1 6 7 8 1 10
11 11 13 14 15 11 17 18 19];

j2s.segmentName = {'lhip','lthigh',
'lleg','lfoot','rhip','rthigh',
'rleg','rfoot','ltorso','utorso',
'neck','lshoulder','luarm','llarm',
'lhand','rshoulder','ruarm','rlarm',
'rhand'};

The joint-to-segment transformation is accomplished

using the function mcj2s:

d1s = mcj2s(d1j,j2s);
d2s = mcj2s(d2j,j2s);

In order to calculate kinetic variables, such as energy,

each body part has to be associated to its parameter (i.e.,
masses and lengths) specified by the Dempster model.
Therefore, a variable is created specifying the types of the
segments13:

13 For a list of the segment types, see the MoCap Toolbox manual.

176

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

s_ind = [0 0 8 7 6 0 8 7 6 13 12 10 11
3 2 1 11 3 2 1];

This variable associates each joint with a segment type.

Each component indicates the type of body segment for
which the respective joint is a distal joint. Joints that are
not distal to any segment have zero values.

The parameters for each body segment can be then ob-
tained using the function mcgetsegmpar:

spar = mcgetsegmpar('Dempster',s_ind);

With this body-segment representation we can estimate

kinetic variables for each segment individually. The time-
average of the kinetic energy of the whole body, for ex-
ample, can be calculated like this:

[trans1 rot1] = mckinenergy(d1j,d1s,
spar);

[trans2 rot2] = mckinenergy(d2j,d2s,
spar);

kinEn1 = sum(mcmean(trans1)) +
sum(mcmean(rot1));

kinEn2 = sum(mcmean(trans2)) +
sum(mcmean(rot2));

The value for the overall kinetic energy of dance1

equals 2.21, and the value for dance2 is 11.37, thus
more energy was used in dance2, which supports our
argumentation drawn earlier, that there is more move-
ment in dance2 than in dance1.

3.5 Principal Component Analysis (PCA)

Principal component analysis can be used to decompose
motion capture data into components that are orthogonal
to each other. By using

[pc1 p1] = mcpcaproj(d1j,1:5);
[pc2 p2] = mcpcaproj(d2j,1:5);

we calculate the first five principle component projec-
tions of the position data (as joint representations) of d1j
and d2j. p1.l and p2.l contain the amount of vari-
ance explained by each component. From these vari-
ances, we can derive, for instance, a measure of move-
ment complexity, defined as the cumulative sum of the
proportion of explained variance contained in the first
five PCs (see, e.g., [5] and [8]):

pcapropvar1 = cumsum(p1.l(1:5));
pcapropvar2 = cumsum(p2.l(1:5));

The results, presented in Table 2, indicate that, in case

of pcapropvar1, most movement is already explained
with the first component, and the first five components
explain almost all movement. In case of pcapropvar2,
however, only about 50% of the movement is explained
with the first component, and the first five components
explain less than the first five components of
pcapropvar1, so more components are needed to fully
explain the movements of dance2. Such a movement

would be characterized as complex, since a high number
of PCs is needed to explain the movement sufficiently,
whereas a low proportion of unexplained variance
(dance1 case) implies a simpler movement.

 pcapropvar1 pcapropvar2
cumsum(1) 0.79 0.48
cumsum(1:2) 0.90 0.78
cumsum(1:3) 0.95 0.85
cumsum(1:4) 0.97 0.90
cumsum(1:5) 0.98 0.93

Table 2. Cumulative variances of the first five principle
components for dance1 (pcapropvar1) and
dance2 (pcapropvar2).

4. CONCLUSION
The MoCap Toolbox is a Matlab toolbox dedicated to the
analysis and visualization of motion capture data. It has
been developed for the analysis of music-related move-
ment, but is potentially useful in other areas of studies as
well. It has attracted researchers’ attention working in
various fields and has been downloaded for being used in
a wide range of different research purposes; music-
related, but also, for instance, face recognition, sports,
gait, or biomechanics research. It has also gained attrac-
tion in artificial intelligence research, such as robotic
motion, human-robot interaction, and machine learning.

The MoCap Toolbox has continuously been developed
further since its first launch in 2008 by both the authors
and the users, whose bug reports and suggestions for new
functionality has greatly helped to improve and extend it.

In the future error handling will be improved, for in-
stance, when wrong data structures are used. Toolbox
functions usually recognize the mistake, but in the pre-
sent version, some functions do not return sufficiently
clear error messages.

Furthermore, some functions will be adapted to stand-
ard Matlab conventions, as it is already done in, for in-
stance, mcplottimeseries (specifying the plotting
parameters as a strings-value combination).

Individual functions will be improved, such as
mcfillgaps, that would benefit from the implementa-
tion of more advanced gap-filling methods than linear
filling, for example spline interpolation. Additionally,
more body segment models besides Dempster’s model
will be included, such as models proposed in [9] or [10].

As commercial tools (e.g., Visual3D) commonly pro-
vide GUIs instead of operating on a command-line basis,
a graphical user interface could also be implemented for
the MoCapToolbox. It would make the toolbox more us-
er-friendly – for example, connection matrices of stick
figures could be drawn in the GUI, or gap filling could be
graphically supported.

Acknowledgments

This study was supported by the Academy of Finland
(project 118616).

177

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

5. REFERENCES
[1] C. Verron, Traitement et Visualisation de Vonnées

Gestuelles Captées par Optotrak. IDMIL Report,
2005.

[2] D.G.E. Robertson, G.E. Caldwell, J. Hamill, G.
Kamen, and S.N. Whittlesey, Research Methods in
Biomechanics. Human Kinetics, 2004.

[3] P. Kelland, Introduction to Quaternions, with
Numerous Examples. Rarebooksclub.com, 2012.

[4] A.J. Hanson, Visualizing Quaternions. Morgan
Kaufmann Publishers, 2005.

[5] B. Burger, S. Saarikallio, G. Luck, M.R. Thompson,
and P. Toiviainen, “Relationships between perceived
emotions in music and music-induced movement,”
in Music Perception 30, 2013, pp. 519-535.

[6] G. Luck, S. Saarikallio, B. Burger, M.R. Thompson,
and P. Toiviainen, “Effects of the Big Five and
musical genre on music-induced movement,” in
Research in Personality 44, 2010, pp. 714-720.

[7] W.T. Dempster, Space Requirements of the Seated
Operator: Geometrical, Kinematic, and Mechanical
Aspects of the Body with Special Reference to the
Limbs. WADC Technical Report 55-159, Wright-
Patterson Air Force Base, 1955.

[8] S. Saarikallio, G. Luck, B. Burger, M.R. Thompson,
and P. Toiviainen, “Dance moves reflect current
affective state illustrative of approach-avoidance
motivation,” in Psychology of Aesthetics, Creativity,
and the Arts, in press.

[9] C.E. Clauser, J.T. McConville, and J.W. Young,
Weight, volume and center of mass of segments of
the human body. AMRL Technical Report 69-70,
Wright-Patterson Air Force Base, 1969.

[10] C.L. Vaughan, B.L. Davis, and J.C. O’Connor,
Dynamics of Human Gait. Human Kinetics, 1992.

178

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden

