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ABSTRACT 
The MoCap Toolbox is a set of functions written in 
Matlab for analyzing and visualizing motion capture data. 
It is aimed at investigating music-related movement, but 
can be beneficial for other research areas as well. Since 
the toolbox code is available as open source, users can 
freely adapt the functions according to their needs. Users 
can also make use of the additional functionality that 
Matlab offers, such as other toolboxes, to further analyze 
the features extracted with the MoCap Toolbox within the 
same environment. This paper describes the structure of 
the toolbox and its data representations, and gives an in-
troduction to the use of the toolbox for research and anal-
ysis purposes. The examples cover basic visualization 
and analysis approaches, such as general data handling, 
creating stick-figure images and animations, kinematic 
and kinetic analysis, and performing Principal Compo-
nent Analysis (PCA) on movement data, from which a 
complexity-related movement feature is derived. 

1. MOTIVATION AND OVERVIEW 
The MoCap Toolbox is a Matlab1 toolbox dedicated to the 
analysis and visualization of motion capture (MoCap) 
data. It has been developed for the analysis of music-
related movement, but is potentially useful in other areas 
of studies as well. It is open source, distributed under 
GPL license, and freely available for download at: 

www.jyu.fi/music/coe/materials/mocaptoolbox. 
The MoCap Toolbox is mainly intended for working 

with recordings made with an infrared marker-based op-
tical motion capture system. Such motion capture systems 
are based on an active source emitting pulses of infrared 
light at a very high frequency, which is reflected by 
small, usually spherical markers attached to the tracked 
object (e.g., a participant dancing or playing an instru-
ment). With each camera capturing the position of the 
reflective markers in two-dimensional, a network of sev-
eral cameras can be used to obtain position data in three 
                                                             
1 www.mathworks.com 
 
 
 
 
 
 
 
2 www.c-motion.com/products/visual3d/ 

 
 
 
 
 
 
 

dimensions. Besides optical motion capture, the MoCap 
Toolbox can also be used for analyzing data captured 
with other tracker technologies, such as inertial or mag-
netic trackers. However, some features of the toolbox will 
be limited, since such trackers do not produce position 
data, but derivative data, (e.g., acceleration). Further-
more, the toolbox is optimized for the use of 3-
dimensional position data, so using data with six degrees 
of freedom (position and rotation) might require custom-
ized adjustments of functions. 

There are proprietary (closed source) software solutions 
available for motion capture analysis and visualization, 
such as Visual3D2 or MotionBuilder3, and applications 
that are primarily used for recording data (such as Qual-
isys Track Manager4 or Vicon Nexus5). However, such 
applications are usually either too limited in their func-
tionality, too focused on visualization and/or too restric-
tive to adapt to the needs of the researcher, such as devel-
oping new movement features useful for their individual 
research questions. To overcome these issues, we imple-
mented this toolbox in Matlab, a generic scientific com-
puting environment, and made it available to other re-
searchers to be used in favor of their needs. The Mocap 
Toolbox is not the only Matlab toolbox available for mo-
tion capture analysis; one other toolbox worth mentioning 
is the toolbox created by Charles Verron [1]. This toolbox 
is more limited than the MoCap Toolbox, but offers a 
graphical user interface (GUI). 

Matlab offers pre-built visualization opportunities and 
gives access to a large range of other functionality. Some 
functions included in the MoCap Toolbox use, for exam-
ple, the Signal Processing Toolbox provided by Math-
Works, or the FastICA package6, a freely available third-
party toolbox for Independent Component Analysis. Fur-
thermore, the users themselves can make immediate use 
of the additional functionality and toolboxes provided by 
Matlab, for example the Statistics Toolbox, to further 
analyze features extracted with the MoCap Toolbox with-
out the need to switch between different applications. 
MoCap Toolbox code is written using the generic Matlab 
syntax and is openly assessable, so users can add and 
adapt functions to their own needs. 

                                                             
2 www.c-motion.com/products/visual3d/ 
3 www.autodesk.com/motionbuilder 
4 www.qualisys.com/products/software/qtm/ 
5 www.vicon.com/products/nexus.html 
6 www.cis.hut.fi/projects/ica/fastica/ 

Copyright: © 2013 Burger et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License 3.0 Unport-
ed, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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The MoCap Toolbox supports various motion capture 
data formats, in particular the .c3d7 file format (which, 
e.g., Vicon8 or OptiTrack9 optical motion capture systems 
can produce), the .tsv format and the .mat format, both 
produced by the Qualisys motion capture system10, and 
the .wii data format produced by the WiiDataCapture 
software11.  

The MoCap Toolbox provides 64 functions for analyz-
ing and visualizing motion capture data. The main cate-
gories can be summarized as data input and edit func-
tions, coordinate transformation and coordinate system 
conversion functions, kinematic and kinetic analysis 
functions, time-series analysis functions, visualization 
functions, and projection functions. Furthermore, it uses 
three different data structures, the MoCap data structure, 
the norm data structure, and the segm data structure. To 
convert between the different data representations and 
enable certain visualizations, three different parameter 
structures are used, the m2jpar, the j2spar, and the anim-
par structures. Both the data and the parameter structures 
will be discussed and explained in the next section. 

2. DATA REPRESENTATIONS 
The MoCap Toolbox uses three different data structures, 
the MoCap data structure, the norm data structure, and 
the segm data structure. A MoCap data structure in-
stance is created when mocap data is read from a file to 
the Matlab workspace using the function mcread. A 
MoCap data structure contains the 3-dimensional loca-
tions of the markers (in the .data field) as well as basic 
information, including the type of structure, the file 
name, number of frames of the recording, the number of 
cameras used for the recording, the number of markers in 
the data, the frame rate, the names of the markers, and the 
order of time differentiation of the data. Additionally, the 
MoCap data structure contains fields for data captured 
with analog data, such as EMG. Finally, the time stamp 
of the recording and the data type (e.g., 3D) can be add-
ed. 

A MoCap data structure instance is also created when 
the function mcm2j is used. This function transforms a 
marker representation to a joint representation. These two 
representations use the same data structure, although they 
are conceptually different: the marker representation re-
flects the actual marker locations, whereas the joint rep-
resentation is related to locations derived from marker 
locations. A joint can consist of one marker, but it can 
also be derived from more than one markers. It can, for 
example, be used for calculating the location of a body 
part where it is impossible to attach a marker. The mid-
point of a joint, for instance, can be then derived as the 
centroid of four markers around the joint. 

The norm data structure, created by the function 
mcnorm, is similar to the MoCap data structure, except 
that its .data field has only one column per marker. 
This column contains the Euclidean norm of the vector 
                                                             
7 www.c3d.org 
8 www.vicon.com 
9 www.naturalpoint.com/optitrack/ 
10 www.qualisys.com 
11 www.jyu.fi/music/coe/materials/mocaptoolbox 

data from which it was derived. If, for instance, mcnorm 
is applied to velocity data, the resulting norm data struc-
ture holds the magnitudes of velocities, or speeds, of each 
marker. 

The third data structure, the segm data structure, is not, 
like the other two, related to points in space (markers or 
joints), but to segments of the body (see, e.g., [2]). The 
function mcj2s performs a transformation from a joint 
representation to a segment representation and produces 
as output a segm data structure instance. Most fields of a 
segm data structure are similar to the ones of a MoCap 
data structure, however, the .data field is replaced by 
four other fields. The .parent field contains infor-
mation about the kinematic chains of the body, i.e., how 
the joints are connected to form segments, and how seg-
ments are connected to each other. The fields 
.roottrans and .rootrot store the location and 
orientation of the center of the body, the root. The 
.segm field consists of several subfields that store the 
orientation of the body segments in several ways. The 
.eucl subfield contains for each segment the Euclidean 
vector pointing from the proximal to the distal joint of the 
segment. The length of each segment is stored in the .r 
subfield. The .quat subfield includes the rotation of 
each segment as a quaternion representation (see, e.g., [3] 
and [4]). Finally, the .angle subfield contains the an-
gles between each segment and its proximal segment. 

To convert between the different representations and to 
enable certain visualizations, the MoCap Toolbox offers 
three different parameter structures: m2jpar, j2spar, and 
the animpar structures.  

The m2jpar structure is used by the function mcm2j 
and contains the information needed to perform the trans-
formation from marker to joint representation. Besides 
fields holding the number of joints and the names of the 
joints, it includes a field with the numbers of the markers 
defining the location of each joint.  

The j2spar structure is used by the function mcj2s and 
contains the information needed to perform the transfor-
mation from joint to segment representation. Besides the 
fields containing the segment names and the number of 
the root (center of the body) joint, it includes fields with 
the numbers of the three joints that define the frontal 
plane of the body and a vector indicating the number of 
the parent segment (the segment that is proximal in the 
kinematic chain) for each segment. 

The animpar structure is used by the functions 
mcplotframe and mcanimate and contains the in-
formation needed to create frame (stick figure) plots and 
animations. The structure includes fields for the screen 
size, limits of the plotted area, viewing angles, marker 
sizes, plotting colors, connection line configurations and 
widths, and plotting of marker and frame numbers. Addi-
tionally, the structure contains fields related to creating 
animations, such as the frames per second, a substructure 
for perspective projection parameters, and settings for 
plotting marker traces. 
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3. USING THE TOOLBOX 
In what follows, we will give an introduction to the use of 
the toolbox for research and analysis purposes. 

The MoCap Toolbox manual, provided with the down-
load of the toolbox, offers an example chapter with elev-
en demos explaining the basic usage of the toolbox. Ad-
ditionally, a demo data set called mcdemodata, includ-
ing motion capture data and associated parameter struc-
tures, is provided with the download. The MoCap data 
structures dance1 and dance2 used below are availa-
ble in the mcdemodata data set. 

3.1 Reading Data and Filling Gaps 

Recorded motion capture files can be imported into 
Matlab using the function mcread storing the content of 
the file as a MoCap data structure, i.e.,  
 
d = mcread('file.tsv'); 
 

An essentially useful first step is usually to check for 
missing frames in the recording. Taking the mocap data 
structure d, we can use 

 
mcmissing(d) 

 
to detect missing frames in the recording. In case of 

missing data, we can fill them using linear interpolation 
with the function mcfillgaps: 

 
d = mcfillgaps(d); 

 
From this point onwards, we will use the two MoCap 

data structures dance1 and dance2 from the 
mcdemodata. Since they are already available as 
MoCap data structures and do not contain missing data, 
both importing and gap filling are not required anymore. 

3.2 Visualizing and Animating Data 

A good approach to get an overview of the data is to vis-
ualize and animate data. Using the MoCap Toolbox, 
mocap data can be plotted in different two ways: as a 
time series or as single frames. As a function of time, 
marker location data can be plotted with the function 
mcplottimeseries, e.g., 

 
mcplottimeseries(dance1,[1 20 28], 
'dim',3)  
 
which plots the third/vertical dimension of markers 1, 

20, and 28 (left front head, right hand, and right foot) (see 
Fig. 1). 

Marker locations as single frames can be plotted using 
the function mcplotframe (using the (x,y) projection 
of the markers): 

 
mcplotframe(dance1,450); 
 

 
Figure 1. Marker location data plotted as function 
of time using mcplottimeseries.  

 
This call, plotting the 450th frame of the recording (see 

Fig 2a), uses the default animation parameter structure. 
However, if a customized animpar structure is used, we 
can, for instance, set the connection lines between the 
markers to obtain a visualization that is easier to under-
stand and that looks more human-like (see Fig. 2b): 

 
ap = mcinitanimpar; 
ap.conn = [1 2; 2 4; 3 4; 3 1; 5 6; 9 
10; 10 12; 11 12; 11 9; 8 9; 8 10; 8 
5; 8 6; 5 9; 5 11; 6 10; 6 12; 7 11; 
7 12; 7 5; 7 6; 5 13; 13 15; 13 16; 
16 19; 15 19; 6 14; 14 17; 14 18; 17 
20; 18 20; 9 21; 11 21; 10 22; 12 22; 
21 23; 23 25; 23 26; 25 26; 22 24; 24 
27; 24 28; 27 28]; 

mcplotframe(dance1,450,ap); 
 

In case users collected the data with a Qualisys motion 
capture system and created a bone structure during the 
labeling process in the Qualisys software, they can export 
the so-called label list (which contains the marker con-
nections) and use this file to create the connection matrix 
by employing the function mccreateconnmatrix. 

We can change the general color scheme and the colors 
of individual markers, connector lines, traces, and num-
bers by adjusting the values of the respective fields of the 
animpar structure, for example (see Fig. 2c): 

 
ap.colors = 'wrbgy'; 
ap.markercolors = 'bmgyrrrrrrrrkk'; 
mcplotframe(dance1,450,ap); 

 

 
Figure 2. Marker location data plotted as frame 
using mcplotframe: a) using the default pa-
rameters; b) using a connection matrix; c) chang-
ing colors; d) joint transformation. 
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The function mcanimate is used to create animations: 
 

mcanimate(dance1,an); 
 
The MoCap Toolbox produces the single animation 

frames as .png files. They have to be compiled into a 
movie using other software, such as QuickTime Pro on 
Mac, or MovieMaker on Windows.  

Animations can be created as 2D projections in two 
ways, either orthographic (default) or perspective, the 
latter one by including the perspective projection parame-
ter: 

 
mcanimate(dance1,an,1); 

3.3 Kinematic Analysis 

Kinematic variables, such as velocity and acceleration, 
are estimated using the time-derivative function     
mctimeder: 

 
d1v = mctimeder(dance1,1); %vel. 
d2v = mctimeder(dance2,1);  
d1a = mctimeder(dance1,2); %acc. 
d2a = mctimeder(dance2,2);  

 
To analyze such time series, we can calculate their 

means and standard deviations using mcmean and 
mcstd (ignoring eventual missing frames). For this 
sample analysis, we will take the norm data, that is, the 
magnitudes of the 3-dimensional data of velocity and 
acceleration. To simplify the approach, we first combine 
the data from marker 1 (left front head) of the four 
MoCap data structures using mcconcatenate: 

 
dva = mcconcatenate(d1v,1,d1a,1,d2v,1, 
d2a,1); 

dva_mean = mcmean(mcnorm(dva)); 
dva_std = mcstd(mcnorm(dva)); 

 
The results (see Table 1) show that both mean and 

standard deviation of velocity and acceleration of the left 
front head marker are higher for dance2 than for 
dance1, so the dancer in dance2 moved faster and at a 
wider range of speeds and also used more and larger di-
rectional changes. 

 
  mean SD 

velocity dance1 235.85 110.79 
dance2 520.24 192.27 

acceleration dance1 2233.66 1326.55 
dance2 3347.21 1423.19 

Table 1. Means and standard deviations of veloci-
ty and acceleration (magnitudes) of the left front 
head marker data of dance1 and dance2. 

 
The cumulative distance travelled by a marker can be 

calculated with the function mccumdist (returning a 
norm data structure): 

 
d1dist = mccumdist(dance1); 
d2dist = mccumdist(dance2); 

We use the Matlab function barh for plotting markers 
1 (left front head), 20 (right finger), and 28 (right foot) 
(see Fig. 3): 

 
figure, barh([d1dist.data(1500,[1 20 
28]); d2dist.data(1500,[1 20 
28])],'b'); 

 

 
Figure 3. Cumulated distance travelled by mark-
ers 1, 20, and 28 of mocap data dance1 and 
dance2 (labels and title were added separately). 

 
We can see in Figure 3 that the three markers, especial-

ly the right hand marker, travelled more for dance2 than 
for dance1, so we can assume that the amount of 
movement was higher in dance2.  

A measure related to the amount of movement is the ar-
ea covered by the movement, which can be calculated 
using mcboundrect. If we want to calculate the bound-
ing rectangle of the four hip markers, we do: 
br1 = mean(mean(mcboundrect(dance1,[9 
10 11 12]))); 

br2 = mean(mean(mcboundrect(dance2,[9 
10 11 12])));12  
 
The bounding rectangle value for dance1 equals .1806 

and for dance2, it equals .9724. Since the value for 
dance2 is higher, dance2 not only had a higher 
amount of movement, but also used more space than 
dance1. The bounding rectangle measure was found to 
be a relevant movement feature in [5] and [6]. 

We can also calculate distances between markers using 
mcmarkerdist. The standard deviation of the distance 
between left and right finger, 

 
md1 = std(mcmarkerdist(dance1,19,20)); 
md2 = std(mcmarkerdist(dance2,19,20)); 

 
gives us information about the variability of the marker 

distance. The standard deviation of the finger marker 
distance for dance1 equals 49.0 and for dance2 
175.65, so the fingers in dance2 exhibited more varia-
ble distances. 
 

Periodicity of movement can be estimated using the 
function mcperiod. It is based on autocorrelation, and 
                                                             
12 mcboundrect uses window decomposition. The function output 
here is averaged across the windows and the four markers. 
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either the first or highest peak of the autocorrelation func-
tion is taken as periodicity estimation dependent on the 
parameter input. With 

 
d1m1 = mcgetmarker(d1a,20); 
d2m1 = mcgetmarker(d2a,20); 
[per1 ac1 eac1] = mcperiod(d1m1,2, 
'highest'); 

[per2 ac2 eac2] = mcperiod(d2m1,2, 
'highest'); 
 
we calculate the periodicity of the acceleration of the 

right finger marker. mcperiod resulted in a periodicity 
estimate for each dimension being [1.04, 0.53, 0.52] for 
dance1 and [1.04, 1.01, 1.06] for dance2. While the 
first dimension is similar, the second and third dimen-
sions are roughly half for dance1, suggesting that in this 
case the finger moved in double tempo in y and z direc-
tions.  

A more accurate periodicity analysis can be performed 
using windowed autocorrelation: 
 
[per1 ac1 eac1] = mcwindow(@mcperiod, 
d1m1,2,0.25); 

[per2 ac2 eac2] = mcwindow(@mcperiod, 
d2m1,2,0.25); 

 
To allow visual inspection of the time development of 

the periodicity, the enhanced autocorrelation (eac) matrix 
can be plotted as an image (see Fig. 4). The colors indi-
cate the regularity of periodic movement, with warm col-
ors corresponding to regions of regular periodic move-
ment in the period-time plane: 

 
figure, imagesc(eac1(:,:,3)), axis xy 
set(gca, 'XTick',0:4:46, 'XTickLabel', 
0.5*(0:4:46), 'YTick',[0 30 60 90 
120], 'YTickLabel',[0 0.5 1 1.5 2.0]) 

figure, imagesc(eac2(:,:,3)), axis xy 
set(gca, 'XTick',0:4:46, 'XTickLabel', 
0.5*(0:4:46), 'YTick',[0 30 60 90 
120], 'YTickLabel',[0 0.5 1 1.5 2.0]) 

 

 
Figure 4. Enhanced autocorrelation function of 
the vertical components of the right finger accel-
eration in dance1 and dance2. 

 
We can see in Figure 4 that the vertical component of 

the right finger acceleration of dance1 shows quite clear 
periodic movement with a period of about 500 millisec-
onds, whereas the periodicity for dance2 is weaker and 
more irregular.  

3.4 Kinetic Analysis 

The MoCap toolbox offers the possibility to calculate 
kinetic variables using Dempster’s body-segment model 
[7]. To make our present data compatible with Demp-
ster’s model, we first have to reduce the amount of mark-
ers from 28 to 20. We will accomplish this with a marker-
to-joint transformation, implemented in the function 
mcm2j. The m2jpar parameter structure required for this 
transformation is created like this: 
 
m2j = mcinitm2jpar; 
m2j.nMarkers = 20; 
m2j.markerNum = {[9 10 11 12],[9 11], 
21,23,26,[10 12],22,24,28,[7 8 7 8 9 
10 11 12],[5 6],[1 2 3 4],5,13,[15 
16],19,6,14,[17 18],20}; 

m2j.markerName = {'root', 'lhip',   
'lknee','lankle','ltoe','rhip',   
'rknee','rankle','rtoe','midtorso', 
'neck','head','lshoulder','lelbow', 
'lwrist','lfinger','rshoulder',  
'relbow','rwrist','rfinger'}; 

 
The joint 'root', for example, is obtained by calcu-

lating the centroid of markers 9, 10, 11, and 12. The 
marker-to-joint transformation is carried out as follows: 

 
d1j = mcm2j(dance1,m2j); 
d2j = mcm2j(dance2,m2j); 

 
Figure 2d visualizes frame 450 of the joint representa-

tion of dance1. The next step is to do the joint-to-
segment transformation. The j2spar parameter structure 
required for the transformation is created like this: 

 
j2s = mcinitj2spar; 
j2s.rootMarker = 1; 
j2s.frontalPlane = [6 2 10]; 
j2s.parent = [0 1 2 3 4 1 6 7 8 1 10 
11 11 13 14 15 11 17 18 19]; 

j2s.segmentName = {'lhip','lthigh', 
'lleg','lfoot','rhip','rthigh', 
'rleg','rfoot','ltorso','utorso', 
'neck','lshoulder','luarm','llarm', 
'lhand','rshoulder','ruarm','rlarm', 
'rhand'}; 
 
The joint-to-segment transformation is accomplished 

using the function mcj2s: 
 
d1s = mcj2s(d1j,j2s); 
d2s = mcj2s(d2j,j2s); 
 
In order to calculate kinetic variables, such as energy, 

each body part has to be associated to its parameter (i.e., 
masses and lengths) specified by the Dempster model. 
Therefore, a variable is created specifying the types of the 
segments13: 

 

                                                             
13 For a list of the segment types, see the MoCap Toolbox manual. 
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s_ind = [0 0 8 7 6 0 8 7 6 13 12 10 11 
3 2 1 11 3 2 1]; 
 
This variable associates each joint with a segment type. 

Each component indicates the type of body segment for 
which the respective joint is a distal joint. Joints that are 
not distal to any segment have zero values.  

The parameters for each body segment can be then ob-
tained using the function mcgetsegmpar: 

 
spar = mcgetsegmpar('Dempster',s_ind); 

 
With this body-segment representation we can estimate 

kinetic variables for each segment individually. The time-
average of the kinetic energy of the whole body, for ex-
ample, can be calculated like this: 

 
[trans1 rot1] = mckinenergy(d1j,d1s, 
spar); 

[trans2 rot2] = mckinenergy(d2j,d2s, 
spar); 

kinEn1 = sum(mcmean(trans1)) + 
sum(mcmean(rot1)); 

kinEn2 = sum(mcmean(trans2)) + 
sum(mcmean(rot2)); 

 
The value for the overall kinetic energy of dance1 

equals 2.21, and the value for dance2 is 11.37, thus 
more energy was used in dance2, which supports our 
argumentation drawn earlier, that there is more move-
ment in dance2 than in dance1.  

3.5 Principal Component Analysis (PCA) 

Principal component analysis can be used to decompose 
motion capture data into components that are orthogonal 
to each other. By using 

 
[pc1 p1] = mcpcaproj(d1j,1:5); 
[pc2 p2] = mcpcaproj(d2j,1:5); 
 

we calculate the first five principle component projec-
tions of the position data (as joint representations) of d1j 
and d2j. p1.l and p2.l contain the amount of vari-
ance explained by each component. From these vari-
ances, we can derive, for instance, a measure of move-
ment complexity, defined as the cumulative sum of the 
proportion of explained variance contained in the first 
five PCs (see, e.g., [5] and [8]):  
 
pcapropvar1 = cumsum(p1.l(1:5)); 
pcapropvar2 = cumsum(p2.l(1:5)); 

 
The results, presented in Table 2, indicate that, in case 

of pcapropvar1, most movement is already explained 
with the first component, and the first five components 
explain almost all movement. In case of pcapropvar2, 
however, only about 50% of the movement is explained 
with the first component, and the first five components 
explain less than the first five components of 
pcapropvar1, so more components are needed to fully 
explain the movements of dance2. Such a movement 

would be characterized as complex, since a high number 
of PCs is needed to explain the movement sufficiently, 
whereas a low proportion of unexplained variance 
(dance1 case) implies a simpler movement. 

 
 pcapropvar1 pcapropvar2 
cumsum(1) 0.79 0.48 
cumsum(1:2) 0.90 0.78 
cumsum(1:3) 0.95 0.85 
cumsum(1:4) 0.97 0.90 
cumsum(1:5) 0.98 0.93 

Table 2. Cumulative variances of the first five principle 
components for dance1 (pcapropvar1) and 
dance2 (pcapropvar2). 

 

4. CONCLUSION 
The MoCap Toolbox is a Matlab toolbox dedicated to the 
analysis and visualization of motion capture data. It has 
been developed for the analysis of music-related move-
ment, but is potentially useful in other areas of studies as 
well. It has attracted researchers’ attention working in 
various fields and has been downloaded for being used in 
a wide range of different research purposes; music-
related, but also, for instance, face recognition, sports, 
gait, or biomechanics research. It has also gained attrac-
tion in artificial intelligence research, such as robotic 
motion, human-robot interaction, and machine learning.  

The MoCap Toolbox has continuously been developed 
further since its first launch in 2008 by both the authors 
and the users, whose bug reports and suggestions for new 
functionality has greatly helped to improve and extend it.  

In the future error handling will be improved, for in-
stance, when wrong data structures are used. Toolbox 
functions usually recognize the mistake, but in the pre-
sent version, some functions do not return sufficiently 
clear error messages. 

Furthermore, some functions will be adapted to stand-
ard Matlab conventions, as it is already done in, for in-
stance, mcplottimeseries (specifying the plotting 
parameters as a strings-value combination). 

Individual functions will be improved, such as 
mcfillgaps, that would benefit from the implementa-
tion of more advanced gap-filling methods than linear 
filling, for example spline interpolation. Additionally, 
more body segment models besides Dempster’s model 
will be included, such as models proposed in [9] or [10]. 

As commercial tools (e.g., Visual3D) commonly pro-
vide GUIs instead of operating on a command-line basis, 
a graphical user interface could also be implemented for 
the MoCapToolbox. It would make the toolbox more us-
er-friendly – for example, connection matrices of stick 
figures could be drawn in the GUI, or gap filling could be 
graphically supported. 
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