JYVASKYLA STUDIES IN COMPUTING
187

Michal Nagy

Self-Management in
Distributed Systems

Smart Adaptive Framework for
Pervasive Computing Environments

¢
|

JYVASKYLAN YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 187

Michal Nagy

Self-Management in
Distributed Systems

Smart Adaptive Framework for
Pervasive Computing Environments

Esitetddn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 3
joulukuun 19. paivéana 2013 kello 12.

Academic dissertation to be publicly discussed, by permission of

the Faculty of Information Technology of the University of Jyvaskyld,
in building Agora, Auditorium 3, on December 19, 2013 at 12 o’clock noon.

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2013

Self-Management in
Distributed Systems

Smart Adaptive Framework for
Pervasive Computing Environments

JYVASKYLA STUDIES IN COMPUTING 187

Michal Nagy

Self-Management in
Distributed Systems

Smart Adaptive Framework for
Pervasive Computing Environments

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2013

Editors

Timo Mannikko

Department of Mathematical Information Technology, University of Jyvaskyla
Pekka Olsbo, Ville Korkiakangas

Publishing Unit, University Library of Jyvaskyla

URN:ISBN:978-951-39-5554-0
ISBN 978-951-39-5554-0 (PDF)

ISBN 978-951-39-5553-3 (nid.)
ISSN 1456-5390

Copyright © 2013, by University of Jyvaskyla

Jyvidskyld University Printing House, Jyvaskyld 2013

ABSTRACT

Nagy, Michal

Self-Management in Distributed Systems. Smart adaptive framework for pervasive
computing environments.

Jyvaskyla: University of Jyvaskyld, 2013,[192]p.

(Jyvéskyla Studies in Computing

ISSN 1456-5390; 187)

ISBN 978-951-39-5553-3 (nid.)

ISBN 978-951-39-5554-0 (PDEF)

Finnish summary

Diss.

Nowadays, majority of the population has access to various powerful mobile
devices such as smartphones or tablets. On the other hand, these devices are
becoming increasingly complex and soon we might become overwhelmed by this
situation.

There is a need for a new type of software that would be able to manage itself
with very little human involvement, or none at all. We call it self-managed (or
adaptive) software. In order to make this vision possible, several years ago a new
middleware platform has been created as a part of the Ubiware project. The plat-
form introduces a novel approach to Agent-oriented Software Engineering based
on a declarative semantic agent programming language called S-APL (Semantic
Agent Programming Language).

This work introduces three improvements to the S-APL language and the
Ubiware platform — utility functions, belief safeguards and agent’s ability to plan.
Moreover, the dissertation proposes a framework for self-management called SAF
(Smart adaptive framework). The framework follows a hybrid approach based on
a three-layered model for adaptive software and a closed planning loop.

SAF is built as an extension of the Ubiware middleware platform. The frame-
work introduces a new set of tools and techniques that allow the developer to
describe the goals, policies, data structures or plans of the software being devel-
oped. Based on these descriptions, SAF takes care of software management in an
autonomous or semi-autonomous way. With the help of newly introduced S-APL
improvements, each module of the framework is described. Also, the software and
framework configuration techniques are provided. Moreover, a formal ontology
for the operating knowledge is described. Lastly, a sample scenario from the
medical area is described, where SAF is used to manage the environment of a
ward patient and the nursing staff. SAF aids the nurse by performing certain
actions automatically or semi-automatically based on high-level goals and policies
specified by various stakeholders.

Keywords: autonomic computing, self-management, Semantic Web, agent-based
system, pervasive computing, ubiquitous computing

Author

Supervisors

Reviewers

Opponent

Michal Nagy

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Dr. Vagan Terziyan

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Dr. Timo Tiithonen

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

Associate Professor Dr. Vadim Ermolayev
Department of Information Technologies
Zaporozhye National University

Ukraine

Associate Professor Dr. Michal Zabovsky
Deptartment of Informatics

University of Zilina

Slovakia

Dr. Ilkka Seilonen

Department of Automation and Systems Technology
Aalto University

Finland

ACKNOWLEDGEMENTS

There are many people in my life that have influenced me in some way and thus
directly or indirectly affected this work. The most important influence were my
parents Robert and Iveta. I am very grateful for their support through all these
years. My thanks also go to my sister Jana, my grandparents and the rest of the
family for providing me with a peaceful family environment, both in my childhood
and in the later years.

I would like to thank my supervisors, Prof. Vagan Terziyan and Prof. Timo
Tiihonen, for guiding me through this process. Our common discussions always
provided me with additional stimuli that perpetuated this work forward. Also,
despite being very busy, they always responded to my questions with haste.

Moreover, many thanks go to my colleagues from the Industrial Ontologies
Group, namely (in alphabetical order) Michael Cochez, Artem Katasonov, Olena
Kaykova, Joonas Kesédniemi, Oleksiy Khriyenko, Sergiy Nikitin and Michat Szy-
dtowski. Our numerous (and often long) discussions helped me to improve my
theories and provided me with new thoughts.

Furthermore, I would like to thank the reviewers, Assoc.Prof. Vadim Ermo-
layev and Assoc.Prof. Michal Zabovsky, for their quick review. Their comments
were very constructive and really helped me improve the manuscript. Moreover, 1
want to thank Dr. Ilkka Seilonen for being my opponent.

My gratitude also goes to the Agora Center, the Department of Mathematical
Information Technology and the COMAS graduate school who all financially
supported this research.

Last, but not least, I would like to thank my girlfriend Fotini for her psycho-
logical support and for proofreading the manuscript draft.

Goteborg
December 2013

Michal Nagy

ACL
ACM
AML
AMS
AQOP
AOSE
API
APL
Aml
BDI
DF
DNS
FIPA
GPS
GUI
HCI
HTML
HTTP
HW
IEEE
IETF
I1I0G
IPC
IPS
IoT
JADE
LAN
MAS
NIST
010)
OOSE
ORB
(O]
OWL
OWL-DL
PAN
PARC
PDDL
PES
PerComp
QoS
RAB

LIST OF ACRONYMS

Agent Communication Language
Association for Computing Machinery
Agent Modeling Language

Agent Management System
Agent-oriented programming
Agent-oriented Software Engineering
Application Programming Interface
Agent Programming Language
Ambient Intelligence

Beliefs, Desires and Intentions
Directory Facilitator

Domain Name System

Foundation for Intelligent Physical Agents
Global Positioning System

Graphical User Interface
Human-Computer Interaction
HyperText Markup Language
Hypertext Transfer Protocol
Hardware

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
Industrial Ontologies Group
International Planning Competition
Indoor positioning systems

Internet of Things

Java Agent DEvelopment Framework
Local Area Network

Multi-Agent System

National Institute of Standards and Technology
Object Oriented Programming
Object-oriented Software Engineering
Object Request Broker

Operating system

Web Ontology Language

Description Logic profile of OWL
Personal Area Network

Xerox Palo Alto Research Center
Planning Domain Definition Language
Physical environmental sensor
Pervasive computing

Quality of Service

Reusable Atomic Behavior

RDF
RDFS
RFC
RFID
RMI
S-APL
SAC
SMS
SOA
SPARQL
SQL

SW
SWRL
TCP
UBIWARE
Ul

UML
URI
UbiComp
VES
W3C
WAN
WLAN
WWW
XML
XSD

Resource Description Framework

RDF Schema

Request for Comments

Radio-Frequency IDentification

Remote Method Invocation

Semantic Agent Programming Language
Situated and Autonomic Communications
Short Message Service

Service-Oriented Architecture

SPARQL Protocol and RDF Query Language
Structured Query Language

Software

Semantic Web Rule Language
Transmission Control Protocol

Smart Semantic Middleware for Ubiquitous Computing
User Interface

Unified Modeling Language

Uniform Resource Identifier

Ubiquitous Computing

Virtual environmental sensor

World Wide Web Consortium

Wide Area Network

Wireless Local Area Network

World Wide Web

eXtensible Markup Language

XML Schema

LIST OF FIGURES

[FIGURE1 “Smartphone Ownership 2013” study|...............ccooooiiiiinnn 24
[FIGURE 2 Various research visions and their relationship|........................ 30
[FIGURE 3 Scheme of a typical agent|.......................... 33
[FIGURE 4 FIPA abstract agent platform|.......................... 35
[FIGURE 5 Original web structure|.................oooooi 37
[FIGURE6 HTML fragment]..............oooiiiiiiiiii 37
[FIGURE 7 W3C standards’” dependency|.............ccccooooiiiiiiiniiin . 40
[FIGURE 8 The relationship between URI, URL and URN]......................... 41
[FIGUREY9 An example of an RDF graph|...................cooo, 42
[FIGURE 10 An example of an RDF/XML document]................................. 43
[FIGURE 11 An example of an RDF document in N-Triples notation|............ 44
[FIGURE 12 An example of an RDF document in Turtle notation|................. 46
[FIGURE 13 An example of an RDF document in Notation3|........................ 46
[FIGURE 14 The relationship between various serialization methods........... 46
[FIGURE 15 An RDEFS example — class hierarchy|......................... 47
[FIGURE 16 An RDFS example — property definition|................................ 47
[FIGURE 17 A SPARQL example|...........cccooooiiiiii 51
[FIGURE 18 A SPARQL construct example].................... 51
[FIGURE 19 Visualization of a sample ontology together with a legend |....... 55
[FIGURE 20 self=* Hierarchyl............ccoooviiiiiiiiiiiiiiiiicciccccceecee 58
[FIGURE 21 Internal vs. external approach to self-management.................. 60
[FIGURE 22 The three layered model for self-management]......................... 61
[FIGURE 23 GUN research roadmap|.............cccoeeiiiiiiiiiniiiiin 63
FIGURE 24 GUN OVEILVIEW]uuuiiiiiiiiieiiiiiiiee e 64
[FIGURE 25 The three layered model of Ubiware|........................oo 66
[FIGURE 26 An example of a Ubiware platform deployment]...................... 67
[FIGURE 27 A fragment of S-APL code]................c..oooi 69
[FIGURE 28 An example of an S-APL container hierarchy|........................... 69
[FIGURE 29 A ditferent perspective to the three layered model of Ubiware|.. 70
[FIGURE 30 Ubiware agent’s lifecycle|...................oooo, 71
[FIGURE 31 Execution of a conditional commitmenti............cocccoeviinii 72
[FIGURE 32 Execution of a rule and its effects on the belief structurel........... 73
[FIGURE 33 A typical pervasive computing environment |.......................... 76
[FIGURE 34 Dynamicity of the environment]........................ooo 81
[FIGURE 35 Two closed loop examples|................c..ccooo 83

IGURE AF archi T | ot 85
[FIGURE 37 SAF 1n pervasive computing environments | 88

IGURE nsor classification |o.ooiiii 88

I I Hication |........ooeiiii 89
[FIGURE 40 _Incident classification |.....................oo 90
[FIGURE 41 An example of a utility function description|............................ 96
[FIGURE 42 Conversion of a utility function|........................... 96

[FIGURE 43 The evaluation of a utility function|......................... 97
[FIGURE 44 Result of the utility function execution on top particular data|... 97

[FIGURE 45 Visualization of the utilify function ontology|.......................... 98
[FIGURE 46 A variation of the utility function result|................................ 99
[FIGURE 47 Meta-function example in S-APL |................. 100
[FIGURE 48 An example of two sateguards|............ccc.ccoeiiiiiin . 102
[FIGURE 49 State diagram of safeguard ticket states|.........................ooo 102
[FIGURE 50 Example of a sateguard ticket in the blocked state|................... 103
[FIGURE 51 Visualization of the safeguard ontology | 104
[FIGURE 52 Overview of the planning process in Ubiware|......................... 106
[FIGURE 53 Visualization of the planning ontology |............................ 107
[FIGURE 54 An example of a S-APL action|.............ccooooooiin, 109
I[FIGURE 55 An example of a S-APL plan | ... 110
[FEIGURE 56 Conversion of a S-APL action into PDDLT........ccoviiiiiininiennn. 111
[FIGURE 57 The effect expansion|................ccccoviiiiiiiiiiii 112
[FIGURE 58 An example of a PDDL domain file|.......................... 112
[FIGURE 59 An example of a PDDL problem file|........................... 114
IFIGURE 60 Conversion of a PDDL plan into S-APL |.........ooiiiiin. 115
[FIGURE 61 Example of a Sensor assertion |...........c.eeeeerriiieeeenniiieeeennnnee. 117
[FIGURE 62 Example of an actuator assertion |.............cc.oocceeviiiiniii 118
[FIGURE 63 Contiguration class hierarchy |...................co. 119
[FIGURE 64 External component annotation |................ccoocoo, 120
IFIGURE 65 Example of a policy in S-APL ... 120
[FIGURE 66 An example of a platform configuration file |................cccocueee. 121
[FIGURE 67 An example of a software structural profile|............................ 122
[FIGURE 68 An example of a software adaptation profile|........................... 123
[FIGURE 69 The trust development of a newly discovered agent................. 126
I[FIGURE 70 Provider-consumer relationship|.....................co 128
[FIGURE 71 Trust evaluation tablel..............cocoovoiiiiiiiiiiieccc, 130
[FIGURE 72 Example of a utility function|.....................ooo 131
[FIGURE 73 Recommendation-based trust modeling|................................ 132
[FIGURE 74 Sample of sensory data |.............ccooeiiiiiiiii . 133
IFIGURE 75 Example of an incident |..............ccccoooonii 134
[FIGURE 76 The spatial setting of the ICU ward |.........ccoocvviieinniiiiieinnnne. 138
[FIGURE 77 Example of a door event |.............cc.ooooiiiiiii 140
[FIGURE 78 PDDL version of the find component action |........................... 141
[FIGURE 79 Visual representation of a plan|...................... 142
[FIGURE 80 Modification of the incident condition h............ooovniiiiiinniiii. 143

[FIGURE 81 Sample bed event|..................ooooi 145

LIST OF TABLES

[TABLE 1 Answers to research questions|....................coooiin, 19
TABLE2 Weiser’s three device types|..........cccoovviiiiiiniiiiiiinniiicccn, 22
[IABLE 3 Agent’s properties|...........o.cooiiiiiiiiii 32
(TABLE 4 A comparison between various RDF serializations|................... 45
(TABLE 5 Suitability of various ontology visualization techniques|........... 53
[TABLE 6 Synonyms for “context” ... 59
TABLE7 The most commonly used implication types in S-APL|............. 74
(TABLE 8 Requirements for self-managed software|oooo. 84
(TABLE 9 Summary of SAF processing elements’ roles |........................... 87
(TABLE10 Types of S-APL query statements |ccooooviiiiiinn. 110
[TABLE11 ~ Summary of trust metric components |...........cccccoeeviiiiiiiiinnnn. 129
TABLE12 Types of improvements that Ubi-SAF introduces]..................... 137

ABLE 1 Translation table for action

CONTENTS

ABSTRACT]
ACKNOWILEDGEMENTS

LIST OF FIGURES
LIST OF TABLES
.. 17
1.1 Problem INENE. o ceec 17
(1.2 Research approach|...................ccooo 18
[L.3__Structure of the thesisl............cccoeiviiiiiiiii i, 20
.. 21
2.1 Ubiquitous computing|.............cccoeeiuiiiiiiiiiiiiiinin, 21
2.1.1 The original vision|.................ccoooiiiii 21
2.1.2 Ubiquitous computing today]|............ccecoeviiiiiiniiinni. 24
[2.2 Pervasive computing|............cocoeiiiiiiiiiiiiii 24
2.3 Ambient intelligence|..................... 26
[2.3.1 HIStOry|...coooiii 26
2.32 Aml Scenarios|.........coooviiiiiiiiiiiii 26
2.3.3 Criticism of Amll............coooooiii 27
2.3.4 Ambient Intelligence 2.0|....................oooo 28
2.4 The Internet of Things|...............c..ooii 28
241 Theoriginalideal...................... 28
R.4.2 Auto ID project|...............o 29
2.5 The relationship between the visions|......................... 30
2.6 Agents and agent-based systems|...................coooiiL 31
2.6.1 Whatisanagent?|............ccoooiiiiiiiiiiii 31
2.6.2 Agents and their influence on programming.................... 33

2.7.4.3 RDF serializations].........cccceveueeieniiniiiiicieiene, 44
.. 46
2725 OWI ..o, 47
2726 OWLD.....coooiiiiiiiiiiiiccccce e, 49
R.747 SPARQL......cooiiiiiiiieiiccce 50

2.8 Ontology visualization|....................c.o 51

[2.8.1 Requirements|..................oooo 51

2.8.2 Analysis and evaluation of visualization techniques| 52

2.8.3 Proposed visualization technique|............................ 54

2.9 Self-managed software|...................... 55
2.9.1 The vision of Autonomic computing|.............ccccccoueiiinnn. 55

2.9.2 Self-* properties|.............ccooiiiiiiiiiiiiii 57

NSOrs an ES |oviniii i 58

2.9.4 Classification of adaptive systems|..................c...oeeeiii. 59

2.9.5 Control Ioop|.........cooiiiiiiiiii 59

9.6 Autonomic archi res and frameworks|....................... 60

.10 UDIWALEL ... e 62
2.10.1 Introductionl..........cooooviiiiiiiiiiiiii 62

10.2 iware and GUN|............. 63
2.10.3 Ubiware architecturel..................ccccooiiiiii 65
[2.10.4 Semantic Agent Programing Language)............................ 68
2.10.5 Agent’s lifecycle|.............ooooooi 70
2.10.6 Belief types|........ccoooviiiiiiiiii 71

2.11 Short summary of terms|.................coceiiiiiiiiii 74
MART ADAPTIVE FRAMEWORK (SAF)[cccvvuuiiiiiiiiiiiiiiiiiiiiiniie, 75
3.1 Various aspects of pervasive computing environments|................. 75
B3.1.1 A pervasive computing environment|............................... 75

3.1.2 Properties of pervasive computing environments............. 76

3.1.3 Conlflicting goals and various stakeholders...................... 77
3.1.4 Device heterogeneity|..............ccooeeiiiiiiiii . 78

3.1.5 Dynamicity of the environment]..................ccoocoiinn. 79

3.2 Self-adaptive software in pervasive computing environments,....... 81
3.2.1 Requirements|.................ooo 81

(3.2.2 APProachf.........ccooeiiiiiiiiiiiiiiiii 82

3.3 Smart Adaptive Framework]....................... 84
B.3.1 Conceptual architecture|..........................oo 84
B.3.2__Sensors and actuatorsl..............ccooeviiiiiiiiiiii 87
B.3.3 _Incident classification]...............ccocueriiiiiiiiii 89

3.3.4 Configurations and profiles|....................... 91
13.3.4.1 Software profile|...............cooooooi 91

13.3.4.2 Plattorm profile|....................oooo 91

B.4 Self-* properties|..........cccoeeiiiiiiiiiiiiiiiii 92
3.5 Ubiware as a candidate for SAF implementation|......................... 92
... 94
.1 Utility functions|............ccoooiiii 94
B11 Motivationl.........oovviiiiiiiiii 94

412 Implementation]..............cooooiiiiii 95

4.1.3 Other improvements|..............ccoooiiiiiiiiiin . 99

4.2 Belief safeguards|..............cccooeiiiiii 100

M2.1 Motivation].......cooeiniiiiiii 100

@4.2.2 Implementation|...................o.ooo 101

M3 Plans and actions].........cc.ooeuriiiiiiiiiiii 105
3.1 IVAtiON]. ..., 105

.32 OVEIVIEW.....ooiiiiiiiiiiiiii 105

4.3.3 Plan ontology|............coooooiiii 106
4.3.4 Action descriptionin S-APL|.................... 108

4.3.5 Plan description in S-APL|.................. 108
4.3.6 SAPL-PDDI domain transformationl...........c.cccooeeenneene. 108

.1 Ontologies|............coooiiiiiiii 116
B.1.1 Sensor ontology |..........ccocevuiiiiiiiiiiiiiiii 116
.1.2 Actuator ontologyl.............cooooiiii 117
B.1.3 Incident ontology|...........cccooiiiiiiiii 118
B.1.4 Configuration ontology|............cccocoiiiiiiiiii . 118

©.1.4.1 Structural configuration|.................ccoooiil. 118
©.1.4.2 Adaptation configuration|..................cceeeiiinn 119
PO Summary|........oooooiii 120

.2 Configurations|............oviiuiiiiiiiiiiiiii 121
B.2.1 Platform configuration|...................coooeiiii . 121
.22 Software configuration|.................cooceiiiiiiiiiin. 121

©.2.2.1 Software structural profile|........................L 121
.2.2.2 Software adaptation profile|...........................o 122

.3 Service facilitator — trust and resource discovery |......................... 124
0.3.1 Approach|.........cccceiiiiiiiiiiiiiiiii 124
p.3.2 Composite trust metricl................ocooi 126
B.3.3 Reputation building process|................cc.coooooii 130

.4 SAF processing elements|.....................ooo 132
.41 Knowledgebase|..............coooiiiiiii 132
D42 MONIOT ...t 133
B.43 Detectorl.......cooooiiiiiiiiiii 133
B.44 Deliberator.........coovvuiiiiiiiiiiiiiiiiii i 134
£.45 Planner........cooviiiiiiiiiiiiii 134
B.4.6 Plan executor]oooveiiiiiiiiii 135
B.47 Actionexecutor............oooviiiiiiiiiiiiiii 135

6 SMART HOSPITAL SCENARIOL....ciitviiiiiiiiiiiiiiiiiiiiiiiiinceeiiicceenen, 136

(6.1 Case desCription]............coeeiiiuiiiiiiiiiiiiii 137

1.1 Human s 137
(6.1.2 Spatial setting..............ccoooooviiii 138

(6.2 Scenario: Anna checking on Charles|......................... 139

(6.2.1 Configurations|............ccoviiiiiiiiiiiiiiii 139
16.2.1.1 Room controller configuration|............................. 139

16.2.1.2 Tablet contiguration|....................oooi 139

2.2 Situation 1: Identification of Annal..............ccoeiiiiiiii. 140
6.2.2.1 Initial statel............coooiiiiiiiii 140

6.2.2.2 Chain of events|...........ccoooiviiiiiiiin . 140

6.2.2.3 Scenario modification...............oooviiiiiiiiiiiiin, 142

16.2.2.4 Comparison between Ubi-0 and Ubi-SAH,.............. 142

[6.2.3 Situation 2: Anna’s tablet autonomously connects to pa- |
I tient’sbed|..........coooiiii 144
6.2.3.1 Initial statel............oooiiiiii 144

[/.2.1 Answer to QI|.........oooiiii 150

[/.2.2 Answer to Q2|........coooiiiiiiiiiii 151

[/.2.3 Answer to Q3|cooiiiiiiiiii 152

7.3 Limitations and future research|............c...ccooeeiiiiiiiiiiiin 152

[YHTEENVETO (FINNISH SUMMARY)|.....uuutteiiinuieeeiniinneeeinnnnneeenmmneeees 154

REFERENCESL..oietieie e, 155

APPENDIXT OWL ONTOLOGIES|....ccvvieiiiiiiiiiiiiiii, 170

(1.1 Utility function ontology|............c.ccoeiiiii 170

(1.2 Sateguard ontology|..............coooiiii 172

(1.3 Plan ontology|.........coooiiiiii 174

[I.4 Sensor ontology|...........coooiiiiiiiiiii 176

(1.5 Actuator ontology|..........ccoooiiiiiiii 178

(1.6 Incident ontology|...........ccoevviiiiiiiiiiiiiii 179

[I.7 Configuration ontologyl.............ccoevviiiiiiiiiiiiiiiii, 180
APPENDIX 2 S-APL CODE FRAGMENTS

2.1 Safeguard metarules|....................... 184

2.2 Sensory data garbage collection |....................coooo 184

APPENDIX3 ONTOLOGY VISUALIZATIONS]

8.1 Visualization of the sensor ontology |.......................oo 186
3.2 Visualization of the actuator ontology |....................... 187

3.3 Visualization of the incident ontology |............................ 188
3.4 Visualization of the configuration ontology |................................ 189

APPENDIX4 SMARIT HOSPITAL SCENARIO!

4.2 Room controller’s configuration|.......................ooo 190
4.3 Tablet’s configuration].............ccocuvteeriiieiniiieiiiiieiiiceeeee e 191

1 INTRODUCTION

1.1 Problem statement

We arrived to the point in history, where computers are becoming an everyday
part of our lives. According to Smith! (2013) over 90% of US inhabitants own a
phone and most of them own a smartphone. While the price and size of today’s
computers is decreasing rapidly, their computing power and memory size is
increasing. With respect to their computational capabilities, today’s smartphones
are on par with personal desktop computers from 10 years ago. In the last years,
new device types have been introduced, such as tablets and smart watches. With
this kind of development, the vision of Ubiquitous computing (Weiser, 1991) might
soon become a reality.

Moreover, several single-board microcontrollers such as Arduino are avail-
able for the public at very low prices. Various companies have started to invest
in the area of smart home solutions. Not only hardware producers, but also the
consumers have now access to various sensors and actuators that can be used
for personal automation projects. The advancements in the area of low-energy
wireless transmission make the interconnection of small battery-powered devices
possible. Moreover, the capacity of batteries has risen due to strong emphasis on
research in this area. It seems that also the visions of Ambient Intelligence and the
Internet of Things might soon become possible.

Despite this positive development in the computing hardware area, these
visions are still not the reality. The devices, sensors, actuators, microcontrollers
and other components exist. Naturally, one must ask, why are we not in the era of
Ubiquitous computing? The available hardware is only one prerequisite. There
are social- and software-related issues as well (Lyytinen and Yoo, 2002). This
dissertation is trying to address the later. The complexity of devices is increasing
and so is the software that operates them. Moreover, the devices are capable of
interaction with each other, their environment and humans. Pervasive computing
environments are inherently open, dynamic and complex (Zhang and Hansen,
2008b). There is a need for a new kind of software that is able to deal with changing

18

conditions with very little human intervention or none at all (Kephart and Chess,
2003). We present the following 3 research questions:

Q1: What are the key elements of a middleware for adaptive software?
Q2: How can such a middleware be implemented?
Q3: How can such a middleware be used in the domain of pervasive computing?

The question Q1 is answered in Chapter 3, where a self-management framework
called Smart Adaptive Framework (SAF) is introduced. The framework uses a
hybrid approach based on a modified MAPE-K cycle (Oreizy et al., 1999; Kephart
and Chess, 2003) and the three-layered architecture by Kramer and Magee (2007).
Later in the chapter, we elaborate on the requirements for such a framework.

The answer to the second question is provided in Chapters 4 and 5. We
chose Ubiware (Katasonov et al., 2008; Katasonov and Terziyan, 2008) as the
implementation platform for the SAF framework. Despite the fact that Ubiware
already has many of the required capabilities, it is still missing some features. In
Chapter 4 we introduce 3 new concepts into the Ubiware platform — safeguards,
utility functions and the planning ability. For each improvement, we discuss the
motivation and implementation. In Chapter 5 we show how the SAF framework
is implemented in terms of Ubiware and S-APL concepts, including the newly
introduced ones.

Finally, Chapters 5 and 6 provide an answer to the question Q3. Chapter 5
describes the proper use of SAF and software built on top of it. We show how
the developer can use S-APL to describe the information about policy definitions,
sensor and actuator configuration, software configuration, action descriptions, etc.
In Chapter 6, a scenario from the area of healthcare is described. This scenario
shows a hospital with self-managed software based on the SAF framework. By
using such software, the hospital staff can divert more of their attention to the
interaction with their patients instead of the interaction with their devices. Table
summarizes the answers to the research questions.

1.2 Research approach

In this work we are investigating the possibilities of semantic and agent tech-
nologies in the area of self-managed software. This has been partially done as
a part of the Ubiware project, which is an intermediate step towards the GUN
vision (Terziyan, 2003; Kaykova et al., 2005; [Ierziyan, 2011). One of the results of
the Ubiware project and its predecessors was the Semantic Agent Programming
Language (5-APL) (Katasonov and Terziyan, 2008).

This work started with a literature review of the domains in question. Based
on the review we concluded that even though there have been some attempts
to use the semantic technology in the area of autonomic computing, S-APL and
the Ubiware platform had a feature that did not seem to be used anywhere else —
S-APL was used not only to describe the data, but also to describe the behavior

19

TABLE1 Answers to research questions

Question Answer
Where \ How

Q1 Chapter 3 | We introduce a concept of an adaptive middleware
called Smart Adaptive Framework (SAF). We pro-
vide the motivation, requirements and general de-
scription of the framework.

Q2 Chapter 4 | We provide Ubiware platform improvements
needed for a Ubiware-based implementation of SAF.
Chapter 5 | We provide a Ubiware-based implementation of
SAF.

Q3 Chapter 5 | We describe how SAF can be used to develop self-
managed applications

Chapter 6 | We provide a sample SAF-based scenario from the
area of healthcare.

of the agent. Even though the literature review has become crucial to finding the
solution to the problem, it was also often a source of frustration in the later phase.
Due to a large number of scientific publications being published every year and the
broad nature of the problem, it was impossible to read all the relevant publications.
Sometimes, when we came up with a seemingly new approach or technique, we
discovered that it has been introduced in some previously published article.

During the last several years, the Ubiware platform and S-APL were being
improved and as a result new versions of the platform were released. By taking
part in the platform development process, we were able to understand the ben-
efits and limitations of the Ubiware-based approach. By implementing various
prototypes for the industrial members of the Ubiware consortium we learned new
S-APL programming techniques. These were later tested and improved in other
projects such as the SCOPE projectﬂ and the Tivit SHOK Cloud Software programﬂ

The research group members were meeting regularly and trying to solve
various problems related to the objectives of the projects being solved at the time.
Such meetings were a good place for brainstorming. Also, group discussions
have proven to be an effective tool to evaluate one’s hypotheses.

Finally, interviews with the members of the industry contributed to our
understanding of the problem by showing us the practical point of view. This
helped us improve the prototypes and in the end SAF as well.

The Ubiware platform has been used in the teaching process as a part of
two courses — Semantic Web and Ontology Engineering and Agent-oriented Software
Engineering. Traditionally, teaching has not been considered a research method,
therefore mentioning it as part of the research approach might be disputable.

More information available at http:/ /www.cs jyu.fi/ai/OntoGroup/projects.htm
More information available at http:/ /www.cloudsoftwareprogram.org/

http://www.cs.jyu.fi/ai/OntoGroup/projects.htm
http://www.cloudsoftwareprogram.org/

20

However, it provided us with new challenges for the design and implementation
of Ubiware-based systems and thus it contributed to this work as well.

1.3 Structure of the thesis

This thesis is divided into seven chapters. Chapter 1 introduces the scope of the
work and three research questions. For each question, a short answer is provided
together with a reference to a chapter containing a more comprehensive answer.

Chapter 2 discusses the theoretical background. Firstly, four scope-relevant
research visions are introduced — Ubiquitous computing, Pervasive computing,
Ambient intelligence and the Internet of Things. A historical view is provided as
well, since it helps the reader to understand the context in which these visions
were conceived. Secondly, a concise overview of research in the area of agent-
based systems is presented. We describe a typical multi-agent system in terms
of its components and their interactions. We also discuss the role of an agent in
software engineering process. Thirdly, Semantic Web technologies are introduced.
We provide a general overview and elaborate on the related standards. Moreover,
the research related to self-managed software is introduced. We describe the
properties and architecture of such systems. Lastly, we provide the description of
the Ubiware platform and the S-APL language.

Chapter 3 provides a conceptual description of a middleware for self-man-
aged systems called Smart Adaptive Framework (SAF). Firstly, we elaborate on
the nature of typical pervasive computing environments. Consequently several
requirements on adaptation in such environments are presented. Moreover, we
introduce a general approach to adaptation based on SAF. Finally, we discuss the
use of the Ubiware platform as an implementation candidate for SAF.

Chapter 4 introduces three new Ubiware platform improvements. Firstly,
utility functions and their evaluation are described. Secondly, belief safeguards
are defined and situations when they are broken are described. Lastly, a generic
approach to planning is introduced, including the S-APL constructs for plan
descriptions and action descriptions.

Chapter 5 presents a Ubiware-based implementation of SAF. Firstly, formal
OWL ontologies for each of the platform components are introduced. Secondly,
platform and software configurations are described, including their effects on
the adaptation. Lastly, each of the SAF elements is described in terms of their
implementation.

Chapter 6 provides a sample scenario from the area of healthcare. This
scenario shows how SAF can be used by the hospital personnel to improve their
work efficiency.

Chapter 7 concludes the thesis. Firstly, it compares the SAF approach to
other self-management approaches. Secondly, it discusses the future research
topics in this area.

2 THEORETICAL BACKGROUND

2.1 Ubiquitous computing

21.1 The original vision

The vision of ubiquitous computing was firstly introduced in 1988 in Xerox Palo
Alto Research Center (PARC) (Weiser, 1993). This term is associated with an
influential paper titled “The computer for the 21st century” written by Mark
Weiser in 1991 (Weiser, 1991). Weiser presents a vision where computers become
an integral part of everyday lives to such extent that they become indistinguishable
from it. An example of a ubiquitous technology could be electricity. When one
turns on the light switch, one does not think of the way the electric energy is made,
transported and distributed. One does not have to. Another way of identifying a
ubiquitous technology is that people will not realize its presence, but will realize
the lack of it. In other words they will take it for granted. According to the
UbiComp vision, the same should happen to computers. They should become
invisible and unnoticeable.

indistinguishable indistinguishable

Depending on their size, Weiser suggests three types of devices that could
carry out this functionality — tabs, pads and boards (Table [2). Tabs represent
inch-scale devices that can be attached to people and things. They can for example
provide the location of the object and other basic functions. Pads are foot-scale
devices that are compared to scrap paper. They are not personalized (thus do not
belong to anybody) and they are not carried with the user’s laptops. The user
can grab a pad, use it and then just return it back. They can be physically used
to display different types of activities same as windows on a modern computer
desktop. Boards are yard-scale devices and they act as whiteboards and bulletin
boards. A typical room may contain approximately a hundred tabs, ten pads and
one board.

There are three technical milestones that must be reached. Firstly, computers
should become cheap enough to be used in every aspect of human lives. These

22

TABLE 2 Weiser’s three device types

Name | Size Example Amount per
room

tab ~ linch (= 2,5 cm) | active badge ~ 100

pad ~ 1foot (=30 cm) | scrap paper ~ 10

board | ~ 1 yard (=91 cm) | white board, bulletin board ~1

computers should have low energy consumption, be lightweight and still able
to display all necessary information. Secondly, the software for ubiquitous ap-
plications must be easily reconfigurable and capable of adapting to the current
situation. Lastly, computer networks must provide wired and especially wireless
access among the devices. The speed, spatial range and low energy consumption
of transceivers are the challenges.

Weiser argues that “personal” computers did not yet reach this point and
the user of such a device still requires a complex jargon to interact with it (Weiser,
1991). He believes that it is not only a problem of the graphical user interface (GUI)
or the display capabilities of computers. He argues that the problem is about a
new relationship between people and computers and as such it is a very complex
problem (Weiser, (1993).

In 1990s Weiser and his team identified several research areas that needed to
be explored in order to make this vision possible. Among these areas there were:

hardware components

network protocols

interaction substrates (e.g. software for screens and pens)
applications

privacy

computational methods

Firstly, there was the issue of hardware components. There was a need for a high-
speed wireless network capable of connecting several hundreds of devices, but still
requiring only very little energy to run. Also, smaller and more energy-efficient
microprocessors were needed.

Secondly, new wireless network protocols were required. At that time there
was no common wireless network protocol such as IEEE 802.11 (also known
as WiFi™). Since the UbiComp environment is very dynamic and devices can
join and leave the network at any time, there was a need for a very dynamic
media access wireless network protocol. Wired media access techniques were not
applicable to UbiComp environment, due to the inherently different nature of
wireless communication and media access control. Other network-related issues
involved high-speed wired and wireless networks.

The third problem addressed by Weiser and his team was the problem of
interaction substrates. Tabs, pads and boards each required a different way of

23

human-computer interaction (HCI). Tabs were small and therefore it was impos-
sible to use a keyboard. Voice commands are not always possible due to the
situation (e.g. during a concert) or the nature of the commands (e.g. some private
information). Boards, for example, had the opposite problem. They were too large
for traditional window-based GUISs, because the user would be required to walk
around the whole room to perform an action.

Applications represent the next problem. Since devices and their users can
freely move, one of the new aspects of UbiComp applications is the location-
awareness. The application changes its behavior depending where the device
and/or user is located. Another issue related to UbiComp is the issue of human-
computer interaction. In such environments, users and devices are interacting
with each other more often than in typical computer usage scenarios.

The next problem is the privacy, especially the privacy of location. For
example in cellular wireless networks it is possible to track user’s movement by
determining his or her connection to a particular cell. These issues are not only
related to technological solutions, but they have a social dimension as well.

Lastly, the issue of computational methods is addressed. The problem of
resource caching is pointed out. If a relatively slow wireless network is used, then
data has to be cached on a device in order to reduce the amount of remote data
transferred.

Some of the problems mentioned in the original work by Weiser and his
team are completely or partially solved. Wireless computer networks have become
more reliable and can achieve better quality of service (QoS). They can easily
be used for such QoS-sensistive applications as videotelephony. It appears that
even the problem of interaction substrates has been partially solved. Nowadays
even tab-sized devices feature color touch screens, powerful enough speaker
and even haptic feedback capabilities. As an example of an inch-size device we
could mention 6th generation of Apple iPod Nano that has 1.54 inch multi-touch
screen (Apple, 2011). Tablets (pad-size devices) are even more sophisticated. Also,
the location-awareness problem has been partially solved by incorporating GPS
modules into devices. However, in some places (e.g. indoors) the GPS signal
might not be available. There are techniques, where publicly broadcast wireless
data from wireless access points is used to determine an approximate position
of the device. This approach is used by for example Google (Google, 2011). The
problem of privacy still persists, but as Weiser mentiones, it is not only a technical
problem, but also a social one. It seems that many problems have been solved.
Naturally a question arises: So why aren’t we in the era of Ubiquitous computing?

Lyytinen and Yoo (2002) argue that apart from technical issues, there are also
social and organizational challenges. This is due to the fact that the realization of
ubiquitous computing leads to the creation of a sociotechnical system. According
to Jessup and Robey| (2002), ubiquitous computing will introduce new social
actions or change the existing ones. This might be met with a resistance by public.

24

100% -
80% -
60% - 56%
46% 48%
41%
40% ~ 35% 35%
17
20% - ® 12%
9%
o5 | | B
Smartphone Other cell phone No cell phone

|:|May 2011 |:|May 2012 .May 2013

FIGURE1 “Smartphone Ownership 2013” study

2.1.2 Ubiquitous computing today

Devices such as smartphones and tables became a part of our lives. According
to Pew Research Center’s Internet & Life American project surveys conducted
between April 2010 and May 2013 (Smith, 2013), 91% of the adults in the United
States own a phone (Figure [I). More than half of the US adult population owns a
smartphone and over a third owns a feature phone H The number of smartphone
users has increased rapidly over the last 3 years — by 10% of the population per
year. The usage of a smartphone is more prevalent (79%) in the population of
age 18-34. The relationship between the age and the percentage of smartphone
users is apparent. The older the demographic group, the lower relative amount of
smartphone users that it contains. It is our belief that the number of smart phone
users will increase also in the higher age groups. Young people already got used
to own a smart phone and they will most likely keep on owning a smart phone as
they grow older.

2.2 Pervasive computing

In 2009, Ronzani| (2009) conducted a study related to the usage of words “ubiqui-

Vaari

tous computing”, “pervasive computing” and “Internet of things” in newspapers
between years 1990 and 2006. One of the conclusions is the fact that while the

! According to the authors of the study, a feature phone is any mobile phone that is not a

smartphone or a PDA phone. Feature phones have proprietary operating system firmware,
and generally do not support third-party software applications in the way that smartphones
can. Compared to smartphones, feature phones typically are less powerful, with fewer
features and capabilities.

25

expression ubiquitous computing (UbiComp) has been appearing in newspapers
since 1990, the expression pervasive computing (PerComp) started to appear in
1994. Both of them reached their peak between 1999 and 2001. Also, while the
amount of articles related to ubicomp stayed relatively constant, the amount of
articles about PerComp fluctuated significantly more.

Lyytinen and Yoo|(2002) say that “Though these terms [PerComp and Ubi-
Comp] are often used interchangeably, they are conceptually different and employ
different ideas of organizing and managing computing services (see the accom-
panying figure)”. They see pervasive computing as a similar, but separate, effort.
The difference between UbiComp and PerComp is the fact that the former works
with a higher level of mobility and the later works with a lower level of mobility.
However, they both are striving for something that they call “a higher level of
embeddedness”.

There are some researchers, who use terms ubicomp and PerComp inter-
changeably. Saha and Mukherjee| (2003) present PerComp as an answer to Mark
Weiser’s vision of 21st century computing. However, Mark Weiser himself referes
to his vision as the vision of UbiComp in (Weiser, 1993). In their book titled
“Pervasive computing: The Mobile World”, Hansmann et al.| (2003) write about
the use of mobile phones and PDAs as machines, through which PerComp can be
achieved. The authors are members of IBM, one of them being directly a member
of IBM Pervasive Computing Division. They also emphasize the importance of
wireless networks (e.g. Personal Area Networks) as an enabler of PerComp. This
suggests that indeed PerComp is dealing with computer mobility.

There is a number of conferences and journals that accept work both in ubig-
uitous and pervasive computing. An example of such a conference is International
Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN).
Another conference that seems to use these terms interchangeably is “International
Conference on Pervasive Computing Technologies for Healthcare”. According to
their “Call for Papers” document, they state that they they concentrate on technolo-
gies related to the use of ubiquitous computing in healthcare (PervasiveHealth,
2013). However, later in the text they state that they accept contributions from
the area of pervasive computing. Some of the publication channels claim directly
that these two terms are synonymous. According to the scope of “Pervasive and
Mobile Computing Journal”:

Pervasive computing, often synonymously called ubiquitous computing, is an emerg-
ing field of research that brings in revolutionary paradigms for computing models in
the 21st century (Elsevier, 2013).

It is our belief that the boundaries between pervasive computing and ubiquitous
computing have softened. The issue of mobility does not exist anymore. Nowa-
days, computer mobility has become a part of our everyday lives. Therefore we
consider both terms interchangeable.

26

2.3 Ambient intelligence

2.3.1 History

This term was coined in 1998 in a series of workshops at Phillips Research (Aarts,
2003). At this time consumer electronics was represented by standalone devices,
each providing a certain feature. Researchers at Philips believed that by connect-
ing these devices one could obtain additional functionality. In its beginnings,
Ambient Intelligence (Aml) represented a vision of 2020s where consumer elec-
tronics would be fully integrated, user-friendly and with the ability to support
ubiquitous information, communication and entertainment (Aarts} 2003). Such
environments were supposed to be aware of human presence (Aarts et al., 2002).
The term ambient intelligence first publicly appeared in a Dutch journal in an article
named “Ambient Intelligence: thuisomgevingen van de toekomst” (Aarts and
Appelo, 1999).

In early 2000s Ambient Intelligence vision was adopted by public research
institutions as well. In 2000, a working group under the European Commis-
sion called ISTAG (IST Advisory Group) was established to come up with usage
scenarios of Aml. Their results directly influenced the content of the European
Commission’s Sixth Framework Programme (Ducatel et al., 2001). In 2002, Philips
Research opened their HomeLab laboratory (Aarts and Eggen, 2002). The goal of
the laboratory was to provide an environment for prototyping of future electronic
systems. Around the same time, many leading universities around the world
opened their own research laboratories devoted to the vision of Ambient intelli-
gence (Wildstrom, 2000; GeorgiaTech| 2012). This type of research was supported
by various companies such as Hewlett-Packard, Nokia, Intel, Motorola and others.
In 2012, when ACM published the new version of The ACM Computing Classifica-
tion System, Aml was added as a subtopic of “Ubiquitous and mobile computing”
(ACM, 2012). To this day (May, 2013) the IEEE database contains over 1400 articles
published between 1999 and 2012, and having “Ambient intelligence” as one of
the keywords.

2.3.2 Aml Scenarios

According to ISTAG, AmlI is based on three important technologies — Ubiquitous
Computing, Ubiquitous Communication and Intelligent User Friendly Interfaces.
It should lead to a state where:

People are surrounded by intelligent intuitive interfaces that are embedded in all kinds
of objects and an environment that is capable of recognising and responding to the
presence of different individuals in a seamless, unobtrusive and often invisible way.
(Ducatel et al.,[2001)

As an example of real-world use, in 2001, ISTAG published four different scenarios
taking place in 2010 where AmlI would assist people in their daily activities. They
were supposed to show the power of AmlI. The first two scenarios are based

27

on existing technologies and represent near future. The other two technologies
represent further future with higher AmlI penetration into humans’ lives.

The first scenario is about Maria, a businesswoman travelling to a foreign
country. Using her phone she is able to stay in touch with her family and friends
and at the same time find all travel-related information in a personalized and
location-aware way. These kinds of services already exist and are offered on many
smartphone operating systems.

The second scenario is about Dimitrios and his Digital Me (D-Me). D-Me is a
digital avatar representing him in the digital world. It can be programmed, but it
also has the ability to learn and get to know Dimitrios” preferences and routines.

Its goal is to relieve him of unnecessary interaction with his environment by acting
on his behalf.

The third scenario depicts the future of intelligent traffic and commerce.
The main protagonist, Carmen, uses Aml to share a morning ride to work with
somebody else. She also uses her intelligent fridge to do the shopping remotely
and collects the goods on the way home. The system pays automatically for every
service she uses on the way.

The last scenario is about a relatively futuristic environment for learning
called ambient. A course about environmental studies is taking place in a confer-
ence room. People can come and ambient helps them achieve their own goals
individually and in groups. Every learning tool and every participant are con-
nected with each other and with ambient.

Based on these four scenarios, five key technology requirements have been
identified:

Very unobtrusive hardware

A seamless mobile and fixed communications infrastructure
Dynamic and massively distributed device networks
Natural feeling human interfaces

AR

Dependability and security
2.3.3 Criticism of AmlI

It was hoped that by making human-computer interfaces intelligent, the inter-
action with them will become easier or even invisible. However, several years
later,|Alahuhta et al.| (2005) present SWAMI (Safeguards in a world of AmI) and
argue that the environment is not intelligent in a way that people define intelli-
gence. They believe that it appears intelligent only from the outside. Also, they
raise the question of privacy and security of such environments. They provide
four model situations called “dark scenarios” where some vulnerability could be
exploited. Despite its effort to find vulnerabilities, SWAMI still believes in the
vision of AmlI (Alahuhta et al., 2005). They just argue that in order to overcome
these shortcomings, all stakeholders must cooperate and ensure the necessary
technological, socio-economic, legal and regulatory safeguards.

28

2.3.4 Ambient Intelligence 2.0

In 2009, Aarts and Grotenhuis (2009) published an article describing a revised
vision of Aml. They called this vision Ambient Intelligence 2.0. They realized
that the original ideas and the way they wanted AmlI to develop were not valid
anymore. They argue that AmI did not become a user centered technology as
promised in the beginning. Also, it seems that people’s desires changed. Therefore
the old AmlI does not reflect the current wishes of the society. The society wishes
to have balanced lives where the technology would play only a supporting role.
Therefore a more human-centered approach is needed.

The new approach is based on three elements — People, Planet and Profit.
These elements should be in balance called Synergic Prosperity. Four views
are presented based on the three elements. The People element provides Body
and Mind view. The Body is related to personal wellbeing and the Mind is
about a balanced personal lifestyle. The Planet element generates Community
and Environment view. The Community relates to common welfare and the
Environment talks about sustainable development of the planet.

The Profit is understood as Prosperity. Aarts and Grotenhuis| (2009) believe
that true prosperity stems from the right combination of components related
to People and Planed. They define Synergic Prosperity as “development and
application of eco-affluent innovations that allow all people to flourish” (Aarts
and Grotenhuis, 2009). The goal of AmI 2.0 should be to create components, that
act as synergic satisfiers contributing to this prosperity. A synergic satisfier is
something that satisfies several needs at the same time (Max-neef et al.,[1991).

It is clear that Ambient Intelligence 2.0 takes into account economic and
socio-political issues. This is the major shift from the original technology-oriented
vision.

2.4 The Internet of Things

2.4.1 The original idea

According to|Ashton|(2009), the first use of the term Internet of Things (IoT) is dated
t0 1999. It was used to link two popular ideas at that time — RFID (Radio-frequency
identification) technology and the Internet. The goal was to make them look
appealing to the management of the company. Since 1999 the idea has developed
further. However, the original idea can be summarized in one sentence as follows:

If we had computers that knew everything there was to know about things — using
data they gathered without any help from us — we would be able to track and count
everything, and greatly reduce waste, loss and cost (Ashton, 2009).

The content of today’s Internet is mostly generated by humans. If one watches a
video on Youtube, reads an article from an online newspaper, sends or receives

29

an email or communicates through some social media, all this data is human-
generated. In some usage scenarios of Internet this is not a problem. When people
communicate with each other (exchange ideas and opinions), naturally the data
must (and should) be of human origin. We may call this leisure use of the Internet.
However, if precise and accurate data about some real-world object is needed,
then humans are not always the best data source. The problem of humans as data
creators is that they are not always accurate, they have limited attention span and
they don’t always have time. In these cases we may talk about an “industrial use”
of the Internet. The goal of the Internet of Things is to allow computers to gather
data about the world themselves with minimal human participation.

Gershenfeld et al.| (2004) use the example of the Internet’s architecture as
a successful method for integration of heterogeneous local networks. Similarly,
the IoT vision should be the answer to the problem of connecting heterogeneous
devices. Sometimes this idea is also called Internet-0 (10), because the data speeds
required for efficient communication between several simple devices are very
low in comparison to the capabilities of today’s Internet. Instead of speed, the
emphasis is given on the interoperability.

Buckley| (2006) define the Internet of Things as a worldwide network of
intercommunicating devices. As potential benefits they list public good, economic
growth and personal enrichment of life. The technology should enable pervasive-
ness of communication technologies in many sectors. Buckley (2006) also claim
that the idea has grown from the concepts of ubiquitous computing, pervasive
computing and ambient intelligence.

2.4.2 Auto ID project

One of the associations trying to achieve the IoT vision is Auto ID (Auto-IDLabs,
2012). Auto ID is a network of academic research laboratories in the field of
networked RFID (MIT) 2012). It consists of seven universities from four different
continents. It is also the name of a system used in intelligent manufacturing control
and supply chain management (McFarlane et al., 2003).

Traditionaly, the equipment/resources used to manufacture and distribute
products are already networked. However products themselves were not (Mc+
Farlane et al., 2003). Products only contain an identifier (usually a bar code) that
can be scanned by some equipment. The location of the product is then estimated
based on the location of the equipment used to scan it. Also, in order to obtain the
location, a scan has to be performed and therefore real-time location awareness is
not always possible. The goal of Auto ID is to provide an infrastructure where each
product is given a so-called Smart Tag (McFarlane, 2002). Then a set of wireless
sensors is capable of locating the product and obtaining its identity based on the
Electronic Product Code (ePC) written on the Smart Tag. This infrastructure is
supported by a service similar to DNS (Domain Name System). Also, the products
are described using so-called Product Markup Language, similar to HTML (Hy-
pertext Markup Language). This architecture enables the concept of networked
products, not only networked resources.

30

Consumer
electronics

influenced

influenced

Philips
Research

Retail
Everyday use ,
by laymen IoT r/ supply chains
1999
Manufacturing
influenced

control
LEGEND

academic Vision
institution introduced

FIGURE 2 Various research visions and their relationship

field

2.5 The relationship between the visions

We have introduced three important visions related to the topic of this thesis — Inter-
net of Things (IoT), Ubiquitous Computing (UbiComp) and Ambient Intelligence
(Aml). These three terms are understood in many ways, some synonymously,
depending on the literature that one is reading. However, if we track these terms
historically, we can see that originally many of them were driven by different mo-
tives and were aimed at different domains. The oldest of these three is UbiComp
and it is intended for the broadest audience — for everybody. The AmlI vision
was mostly concerned with consumer electronics, since it was developed by a
consumer electronics producer. The IoT vision was developed by an academic
institution. It is associated with the RFID technology and it targets the area of retail
supply chain and manufacturing control. Probably the biggest contrast is between
the IoT and UbiComp visions. While UbiComp puts emphasis on humans as
technology users, IoT mostly concentrates on machine-to-machine interactions.

These visions intersect. All of these technologies are trying to lower the
complexity of human-machine or machine-machine interactions. Some of the
technologies and principles can be applied to all of them. For example, the RFID
technology is useful both in the area of UbiComp and Aml. Also, ubiquitous
computing environments can accelerate the adoption of the other two visions. The
vision of fully integrated consumer electronics coming from the area of Aml is
fully compatible with the vision of UbiComp. The relationship between these
three technologies can be seen in Figure

31

2.6 Agents and agent-based systems

2.6.1 Whatis an agent?

The word agent has many meanings inside and outside the world of Computer
Science. We start our exploration of agents by first looking at the word itself.
According to Merriam-Webster dictionary, the word agent has the following mean-
ings:

— 1: one that acts or exerts power

— 2a: something that produces or is capable of producing an effect : an active
or efficient cause

— 2b: a chemically, physically, or biologically active principle

— 3: a means or instrument by which a guiding intelligence achieves a result

— 4: one who is authorized to act for or in the place of another: as

— a: arepresentative, emissary, or official of a government <crown agent>
<federal agent>

— b : one engaged in undercover activities (as espionage) : spy <secret
agent>

— c¢: abusiness representative (as of an athlete or entertainer) <a theatrical
agent>

— 5: a computer application designed to automate certain tasks (as gathering
information online)

The meaning 2b is related to chemistry and therefore it is not relevant for to this
work. All the other meanings are very closely related to agents as Computer
Science (CS) and Artifitial Intelligence (AI) understands them. However, even
within these fields various meanings are provided. Wooldridge and Jennings
(1995b)) distinguish between the two views on agents — a weak notion of agency
and a strong notion of agency. According to the weak notion of agency, an agent is
a hardware or software-based system that has four properties — autonomy, social
ability, reactivity and proactiveness. The definition of these properties is depicted
in Table[3

Autonomy is arguably the most important property that separates an agent
from any other software (Wooldridge, 1997} Jennings and Wooldridge, 1995). As a
result of this, an agent is usually implemented as a software component with its
own thread of control.

We say that agents have social abilities, if they are able to communicate
with each other. Agents communicate with each other using some kind of agent
communication language (ACL). The communication is necessary in order to perform
social actions such as negotiation, cooperation, etc. It is also important in order to
communicate with the human, since in most cases the human is the one who is
being represented by the agent.

32

TABLE 3 Agent’s properties. Adapted from |Wooldridge and Jennings (1995b)

Property Definition

autonomy agents operate without the direct intervention of other enti-
ties, and can control their actions and internal state

social ability agents interact with other agents (and possibly humans)

responsiveness | agents perceive (sense) their environment and respond to
changes that occur in it

proactiveness | agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the
initiative

Reactivity and proactivity (or proactiveness) are closely related. Reactivity
is a lower form of behavior. A reactive agent just perceives the environment and
based on the input and its current state it performs an action that potentially
changes the environment. On the other hand, proactivity is a higher form of
behavior. Proactive agents are goal-driven. It means that they don’t perform an
action just because some change was sensed. They do so, because they are trying
to achieve some goal. They plan ahead.

Apart from the weak notion of agency, Wooldridge and Jennings (1995b)
offer the so-called strong notion of agency. According to it, an agent has all the
properties mentioned in Table |3, however it should also be designed and/or
implemented using concepts related to humans and human thinking. Various
researchers use various viewpoints to achieve it. Shoham|(1993) uses so-called
mentalistic notions such as knowledge, belief, intention and obligation. Rao and
Georgetf] (1995) use another set of mentalistic notions to model and implement
agents — beliefs, desires and intetions. [Bates| (1994) uses emotions to design and
implement agents. These are just a few of them.

According toWooldridge (2002), most of the researchers agree that an agent
should be autonomous. However, they do not always agree on the rest of the
properties. An intelligent agent is and agent capable of flexible autonomous action
in order to meet its design objectives. Flexibility is achieved by three properties —
reactivity, pro-activeness and social ability.

A simple and wide definition of an agent is offered by |[Russell and Norvig
(2003)) in their book “Artificial intelligence: Modern approach”:

An agent is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators (Russell and Norvig (2003), page
32).

There are three important words mentioned in this definition — sensors, actuators
and environment (see Figure[3). Environment is a place where the agent resides. It
can be virtual (e.g. computer program) or physical (e.g. real world robot). A sensor
is something that is used to perceive the environment. In the case of physical
environment, it can be some equipment to sense light, sound, movement and

33

/ perceiving \
sensors - ™

Environment

Agent

actuators

D SO __—1
acting

FIGURE 3 Scheme of a typical agent

others. Or, in the case of virtual environments, it can be a piece of code capable of
reading files, web pages or computer’s hardware status. An actuator is something
used to influence the environment. In physical environments it could be a robotic
arm, speaker, light, etc. In virtual environments it can be a file writer, database
writer and so on. Simply put, sensors are agent’s eyes and ears, whereas actuators
are agent’s arms and legs.

Russell and Norvig (2003) also provide a more narrow definition of an agent.
A rational agent is an agent that always chooses the most benefitial action based
on the sequence of perceived data and the built-in knowledge. The level of
benefitiality of an action is determined by a performance measure.

For the purposes of this dissertation, we will use the weak notion of agency
as defined by |Wooldridge and Jennings (1995b). In other words, we will not
require agents to be designed using concepts related to the human mind, but we
will require the four properties depicted in Table

According to [Jennings| (1999), a single agent might be insufficient when
trying to model a real-world scenarios using an agent-oriented view. On the
other hand, multi-agent systems (MAS) can easily be used to model decentralized
control, cooperation, competition, etc. Often, agents are used as intermediaries
that act on behalf of other entities (e.g. people or organizations). In general,
multi-agent systems are dynamic and the interactions among agents change in
time. Since agents are autonomous and social, agent interactions might lead to
unpredictability at runtime (Jennings, 1999). This unpredictability stems from the
fact that the behavior of the agent system cannot be understood only as a sum
of behaviors of individual agents. A potential solution to this problem is the use
of organizational context by explictly modelling organizational relationships and
structures.

2.6.2 Agents and their influence on programming

The term agent-oriented programming (AOP) was coined in 1988 by Yoav Shoham
(Shoham, |1997). Traditional programming paradigms like structural programming

34

or object-oriented programming (OOP) deal with terms like program, method,
function, object, property, etc. AOP is based on congnitive and societal view
of computation. As mentioned earlier, Shoham (1993) clearly defines agents as
entities, whose state is defined using terms like beliefs, capabilities, choices and
commmitments. AOP is then a programming paradigm, where the programs
consist of agents and agents consist of elements mentioned previously. The agents
communicate by exchanging speech acts.

Shoham! (1997) argues that a complete AOP framework should contain the
following three elements. First of all, a formal language for description of agent’s
mental state must exist. Secondly, an interpreted language for agent programming
should be used. This language would depend on the mental state description
language. Lastly, there should be a method of conversion of neutral devices into
agents.

Shoham! (1991) presents an AOP system based on the Agent-0 language. The
agent’s mental state is described using quantified multi-modal logic. This allows
the agent to reference to time. The agent programming language is called Agent-
0, where actions are triggered by commitment rules. The action can either be
communicative (sending a message) or private (triggering an internal subroutine).
One of the drawbacks of Agent-0 was the inability to create plans (Wooldridge
and Jennings), |1995a).

Apart from AOD, there are also other agent-based programming paradigms,
such as agent-based software engineering (Genesereth and Ketchpel, |[1994) and
agent-oriented software engineering (AOSE) (Wooldridge, |1997; Jennings, (1999).
Strictly speaking, these are two different paradigms, but they share many similar-
ities. Jennings (1999) presents a hypothesis that for certain types of problems, a
multi-agent approach to system development brings benefits over contemporary
methods. Agent interactions are facilitated using a high-level communication
language, often called agent communication language (ACL). In contrast to tradi-
tional systems, in MAS, agents can exchange not only the data, but also logical
information, commands and whole scripts (Genesereth and Ketchpel, 1994). The
inter-agent messages are interpreted as speech acts. Moreover, agents are capa-
ble of reasoning and planning, which allows them to make context-dependent
decisions.

2.6.3 Agent-related standards

A large number of multi-agent platforms has been developed in 1990s. As a
response to this, in 1996, the Foundation for Intelligent Physical Agents (FIPA)
has been formed (FIPA, 2012). The goal of this organization is to promote agent-
based technology and the interoperability of its standards with other technologies.
FIPA provides a collection of open standards from varios areas such as agent
communication, agent architectures, agent management and others. According
to FIPA00001 named “FIPA Abstract Architecture Specification”, an agent system
consists of an agent platform hosting agents and services (FIPA, 2002a)). Each
agent has a unique identifier and one or more transport addresses. FIPA00001

35

Software
Agent
Agent platform Other
agent platform
AMS DF ACC |< >

Internal platform message transport

FIGURE 4 FIPA abstract agent platform (FIPA, 2002a)

also specifies agent’s lifecycle by defining six states in which agent may exist.
According to FIPA00023, each agent platform contains an agent management
system (AMS) acting as an agent directory (FIPA, 2004). An agent platform
may contain a directory facilitator (DF) that stores the information about agent
descriptions and their capabilities. Several DFs are allowed. A typical FIPA
platform architecture can be seen in Figure

The agents communicate by exchanging messages encoded in an ACL (FIPA,
2002c). Each ACL message has a set of parameters associated with it. Performative
is the only mandatory parameter. It represents the nature of the communication
with respect to the speach act theory. Other parameters determine the sender,
receiver, content, language, protocol, etc. FIPA00025 and FIPA00037 define typical
patterns of message exchange called interaction protocols (FIPA} 2003, 2002b). An
example of such a protocol is a request interaction protocol that allows one agent
to request an action from another agent. The interaction protocol defines what type
of messages (e.g. performative) is allowed at certain points of message exchange.
It also clearly defines the acceptance or denial of an action. There are several other
protocols defined by FIPA, such as Query, Request, When or Contract Net.

One of the most well-known agent platforms following FIPA is JADE (Java
Agent Development Framework). As the name suggests, it is a software framework
for the development of multi-agent applications written in Java programming
language (Bellifemine et al., 2000). JADE is a distributed platform that may run on
several computers. In order to achieve it, it uses a concept of an agent container,
where each platform has exactly one main container and zero or more secondary
containers (Bellifemine et al.,1999). The developer receives a toolkit consisting of
the platform runtime, Java class library used to build JADE agents and debugging
tools. Each agent is implemented as a Java object by extending a specific Java
class provided by the toolkit. Each agent may have several behaviors, which
are implemented as Java classes as well. Agents communicate by exchanging
FIPA-compliant messages.

36
2.7 Semantic Web

2.7.1 From World Wide Web to Semantic Web

The World Wide Web (WWW) is nowadays one of the most important services
on the Internet . It became so well-known that some people wrongly assume that
WWW and the Internet are the same thing. The father of the World Wide Web is
considered Tim Berners-Lee (Berners-Lee, |1999). In 1980, while he was working
at CERN (European Organization for Nuclear Research), he realized that a lot
of data and software was being lost — not due to technical failures, but due to
organizational problems. People working at CERN were hierarchically organized.
However, they were communicating with each other across all levels — upstream,
downstream, cross branches, etc. Sometimes this led to loss of information or
duplication of effort. Also, there was a very high turnover of people working
at CERN. People leaving a project were often taking valuable knowledge with
themselves. Another problem was that the environment was very dynamic. New
experiments were introduced, old experiments modified, etc. On a daily basis
researchers were facing questions such as: Which document does this refer to?
Who wrote this code or document? What does this software module depend on?
Which organizations were involved in this project?

Berners-Lee assumed that all these questions could be answered if there was
a network of linked documents, people, projects, institutions, etc. He started to call
this idea the web. He developed an application called Enquire that implemented
this idea. Enquire was the predecessor of WWW (Berners-Lee, 2012). The idea of
the web was to link various nodes with each other and thus increase the value of
the data they represent. As mentioned earlier, these nodes were people, groups,
software modules, projects, documents, concepts, etc. Nodes were connected with

each other using directed arcs (links) such as “depends on”, “refers to” and so on.
Berner-Lee’s web was therefore a directed graph (see Figure[5).

The basic idea of Enquire eventually evolved into the World Wide Web
(WWW) (Berners-Lee, 1993). WWW documents (Web pages) refer to each other
using hyperlinks. A typical Web page is written in the Hypertext Markup Lan-
guage (HTML). HTML is a text enriched by the so-called tags (Figure|[f). Tags are
used to express text formatting, hyperlinks to other documents and so on. HTML
was designed to create documents that are visually appealing and easy to read by
humans. However, a machine (computer) is able to obtain very little information
from HTML documents due to the fact that these documents are too complicated
and unstructured (Berners-Lee et al., 2001).

If also computers were capable of reading documents on the Web, it would
allow them to make decisions and take actions on behalf of humans. There would
be no (or very little) need for humans to be involved in certain tasks. Nowadays, a
human is able to read weather forecast, stock exchange information, book a flight
ticket or a hotel. If somehow computers would be capable of doing all this, people
would just specify the criteria and some application (agent) would do it for them.

diabetes.html |

sugar.html | —

37

1
|

£nough insulin, or because

1 fat.html |
Diabetes mellitus is a group / The blood sugar concentration / Fats consist of a wide group
of metabolic diseases | or blood glucose level is | of compounds that are generally
in which a person has high) the amount of glucose (sugar) | soluble in organic solvents and

blood sugar; Eiffier bécause
th; pancreas does not produce

cells do not respond to the™ AN

insulin that is produced \
\ \
\ \\
pancreas.html | *

present in the blood of a human \
or animal. \

Glucose is the primary source

of energy for the body's cells, and,
blood lipids (in the form of fats and oils)
are primarily a compact energy store.

generally insoluble in water.

insulin.html |

The pancreas /'paenkrias/ is
a glandular organ in the digestivd
system and endocrine system
of vertebrates.

Insulin is a peptide hormone,
produced by beta cells of

the pancreas, and is central

to regulating carbohydrate and

FIGURE 5 Example of the structure of Berner-Lee’s original web

FIGURE 6 Fragment of HTML text with tags printed in bold

diabetes.html

<body>

</div>
</body>

<div class="desc">
Diabetes mellitus is a group
of metabolic diseases in which a person has high
blood sugar, either because
the pancreas does not produce
enough insulin, or because
cells do not respond to the insulin that is produced

38

Unfortunately, this is not yet possible on the traditional Web. We need a web for
machines. Researchers came up with an answer to this problem, a vision called
Semantic Web.

Semantic Web is not another type of Web. It is merely an extension of the
current one . It builds on the same assumptions and principles as the Web for
humans. The difference is that in the Semantic Web computers have access to
highly structured information together with sets of inference rules that they can
use to perform logical reasoning.

2.7.2 Common features of World Wide Web and Semantic Web

Same as in Berners-Lee’s original Enquire, the main building blocks of the World
Wide Web are nodes (documents) and links. Both Enquire and WWW are using the
idea of hyperlinks and hypertext (Berners-Lee| 1993). According to the Merriam-
Webster dictionary, hypertext is “a database format in which information related
to that on a display can be accessed directly from the display” (Merriam-Webster,
2013). A hyperlink then provides access from one place in a hypertext to another.
It is important to note that the hyperlinks are only unidirectional. The existence
of a link from A to B does not automatically imply the existence of a link from
B to A. In other words, there are no “backward links”, unless they are explicitly
specified. One of the implications is that the creator of a certain document on the
Web cannot know how many other documents refer to it. This is true for WWW as
well as for Semantic Web.

Another feature of the World Wide Web is so-called AAA principle. The
AAA principle says that “Anyone can say Anything about Any topic” . It means
that every user of WWW is free to publish any information about any topic and
refer to already existing documents (Web pages or others) potentially written by
somebody else. This is not a juridical rule — law. It is a technical rule. The WWW
is technically designed with this principle in mind. Nowadays it is obvious, but in
the early days of WWW it created a lot of confusion, which was the fuel for many
myths. Some myths are presented on Berner-Lee’s Web page (Berners-Lee} 1997).
Web page owners thought that if some person wants to refer to their Web page,
that person must obtain a permission from the creator. Some even thought that
it gives them the right to ask money for every link pointing to their document.
Another myth was that linking to their documents is a copyright infringement.
None of these are true. Nowadays it might seem obvious, but in the past WWW
was too novel for non-professionals to understand.

2.7.3 Ontologies

As mentioned earlier, Semantic Web is an evolutionary step from the World Wide
Web. Whereas WWW is a web of documents for people, Semantic Web is a web
of documents for machines (computers). The World Wide Web utilizes HTML as
the main language for document creation. HTML documents are easy to read by
humans, but almost impossible to understand by computers. In general there are

39

two ways to deal with this problem — make computers smart enough to understand
the current WWW, or make the data simple enough for the current computers
to understand it. Semantic Web is trying to achieve this goal using the second
approach. The goal is for the Web to contain data that is written in a highly
structured form easily understandable by a machine.

Once the computers are able to understand the meaning of data, they can
interpret it and thus obtain information. Information can then be used to de-
termine other logically-related facts. The process of computing logically-related
consequences is called reasoning. In order to reason about the data, machines
need to be given some understanding of the domain including or some reasoning
rules. For example if a computer understands that person A is married to person B
without any additional knowledge, it is missing a very important point — that also
person B is married to person A. Humans naturally understand it, but a machine
needs to know that being married is a symmetric property. Some argue that there
should be one language that can express both data and rules (Berners-Lee et al.,
2001). Others argue that it is sufficient to have two separate languages .

Apart from the ability to reason about the data, there should be some mecha-
nism that can verify the consistency of the data. For example if the data says that
“dog Rocky is married to dog Daisy”, then humans naturally conclude that it does
not make sense, because only humans can marry each other. In other words, the
data is inconsistent with respect to the “being married” property. Again, humans
know this naturally, but machines require an explicit definition of “being married”
— a definition which specifies that only humans can be married. Therefore there
is a need for some specification containing information about what kind of con-
nections between things (e.g. people, dogs, food, feelings, etc.) are allowed to be
made. We call this specification an ontology.

The word ontology comes from the philosophy. According to the Merriam-
Webster dictionary, ontology is “a branch of metaphysics concerned with the
nature and relations of being” (Merriam-Webster, 2013). The meaning of the
word ontology in the domain of the Semantic Web is similiar. According to van
Harmelen and McGuinness|(2004), an ontology is used to “explicitly represent the
meaning of terms in vocabularies and the relationships between those terms”.

A narrower definition is provided by Noy et al. (2000). According to them,
an ontology formally and explicitly describes a domain of discourse in terms of
concepts (classes), properties (slots, roles) and property restrictions (facets, role
restrictions). Classes describe groups of concrete or abstract entities (e.g. student,
skill, bread). A property describes features and attributes of a class. For example
a student can have a name, student ID or address. In the human resource (HR)
domain, properties of the class skill can determine the area of skill, level of skill,
way it was learned, etc. Lastly, a property restriction describes property value
types, allowed values, property cardinality and other features of properties. An
example in the HR domain would be a restriction on the “level of skill” property
specifying that the cardinality is either zero or one and the value can be an integer
between 1 and 5.

Amann and Fundulaki| (1999) formally define an ontology as a triple O =

40

OWL2 |—— > OWL |— > RDF |— > URI

depends on depends on depends on

FIGURE 7 Dependency among W3C standards for the Semantic Web

(C, S, isa) where:

1. C={cy,c,...,cn} is a set of concepts, where each concept ¢; refers to a set
of real-world objects (concept instances),

2. R={ry,ry,...,rn} is a set of binary typed roles between concepts,

3. isa is a set of inheritance relationships defined between concepts. Inheritance
relationships carry subset semantics and define a partial order over concepts.

2.7.4 Semantic Web and related standards

The Semantic Web standards are developed under the umbrella of the World Wide
Web Consortium (W3C). The corner-stone of the Semantic Web is the Resource
Description Framework (RDF). It is a language for representing information about
resources in the World Wide Web (Miller and Manola) 2004). RDF relies on another
stadnard called URI for unique representation of terms. RDF as a description
language can be expressed in textual form in various ways. These ways are
called serializations and the process of expressing RDF in these forms is called
serialization. Some of the serializations are easier to read by humans, some are
easier to read by machines. Another important standard by W3C is Web Ontology
Language (OWL). As the name suggests it is a language that allows the user to
describe an ontology. In 2012, a new version of an ontology language has been
released by W3C. It has been named Web Ontology Language 2 (OWL2). It is
based on OWL and it introduces new concepts and new sublanguages. In the
next subsections we are going to describe these standards and their relationship.
Figure /| depicts which standards depend on each other.

2.7.4.1 Uniform Resource Identifier and related standards

URIs and related standards have a long history with several informative and
normative documents by IETF (Internet Engineering Task Force) such as RFC
1630, RFC 2396 and RFC 2732. Some of these documents have been obsolete by
newer ones and some of the documents are still valid. This text is based on the
latest normative document REC 3986 (Berners-Lee et al., 2005) and related valid
(non-obsolete) standards. According to this specification, URI is defined as a
“compact sequence of characters that identifies an abstract or physical resource”.
Even though URIs are mostly used on the Internet (e.g. World Wide Web), URIs
may identify both resources accessible via the Internet (e.g. Web pages or images)
and resouces outside the Internet (e.g. real-world objects or abstract concepts).
These resouces may be identified by name, by its location or both. URIs that
identify resources by their location are called URLs (Uniform Resource Locators).

41
URI

(7

FIGURE 8 The relationship between URI, URL and URN

URIs that identify resources by their name are called URNs (Uniform Resource
Names). In some cases a URI can be both URL and URN. The relationship between
them is depicted in Figure

The generic URI syntax as defined by RFC 3986 is as follows:

<scheme>:<hierarchical-part>["?"<query>] ["#"<fragment>]

The <scheme> part is a string identifying the scheme. Based on the scheme,
the <hierarchical-part>, <query> and <fragment > are interpreted. Using
this approach URIs are extensible. Each new scheme should be registered at
IANA (Internet Assigned Numbers Authority), which keeps track of existing URI
schemes. This should happen according to the procedure described in RFC 4395
(Hansen et al., 2006). However, there is no technical restriction that would prohibit
the use of private un-registred URI schemes. One of the most well-known shcemes
is http that is used to locate network resources via the Hypertext Transfer Protocol
(HTTP). Since this scheme is used to locate resources, we may consider http URIs
also URLs. RFC 2616 defines HTTP /1.1 and according to it the http URL looks as
follows (Fielding et al., 1999):

"http:" "//" <host> [":"<port>] [<abs_path> ["?"<query>]]

Another well-known schema used for remote access to terminals is telnet. Accord-
ing to RFC 4248 (Hoffman, 2005), a telnet URL looks as follows:

telnet://<user>:<password>@<host>:<port>/

Even though there might be some similarities in the scheme specific part of various
schemes (e.g. in telnet and http), these parts are different and in general they are
not interpreted the same way. The interpretation is always given by the scheme
specification. One of the limitations of URIs is the fact that according to the
specification, one can use only US-ASCII characters to identify a resource. As
URIs became more popular and started to be used for identification of resources
in other languages than English, this became a serious issue.

Internationalized Resource Identifier (IRI) is a complement to URI defined in
RFC 3987 (Diirst and Suignard) 2005). IRIs use Unicode characters, while URIs use
a subset of US-ASCII characters. The introduction of Unicode characters allows the
use of non-English characters, including non-Latin characters (e.g. Greek, Chinese

42

http://www. jyu. fi/organization#jyu

http://www. jyu. fi/organization#belongsTo

http://www.w3.0rg/2000/10/swap/pim/contact#Person http://www.jyu.fi/organization#OntoGrou;

N

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type http://www.jyu. fi/peopleOntology#worksFor

http://users. jyu. fi/jdoe

http://www.w3.0rg/2000/10/swap/pim/contact#lastName

http://www.w3.0rg/2000/10/swap/pim/contact#firstName \

FIGURE9 An example of an RDF graph

or Cyrilic). For the reasons of compatibility, IRIs can be mapped to URIs and vice
versa. The syntax of IRIs is the same as the syntax of URIs defined in RFC 3986
with one exception. The class of unreserved (“useable”) characters is extended by
Unicode characters starting from U+0080 (beyond the original US-ASCII block).
Characters other than US-ASCII must not be used for syntactical purposes.

2.74.2 RDF

The main goal of RDF is to provide a language that can be used to represent
information about resources in the World Wide Web (Miller and Manolal, 2004).
Apart from representing Web resources, RDF can be used to describe resources
that can be identified on the Web, but are not retrievable from the Web (e.g. people
or real-world objects). RDF relies on URI for identification of things (on and off the
Web) and their properties. The information about resources is expressed in a form
of a directed graph. Nodes of the graph represent resources (e.g. human John,
Web page of W3C, my car) or property values (e.g. green, 35, true). The directed
edges of the graph represent relationships (properties) between two resources, or
between a resource and a property value.

An example of such a graph can be seen in Figure[9] One can notice three
types of elements used — circles, rectangles and arrows. Circles represent resources
and they are identified by URIs. Rectangles represent property values — in this
particular case string values. In general, property values are expressed by literals
such as numbers, boolean values true/false, etc. Arrows represent properties and
are indentified by URIs. Therefore we may say that an RDF graph can consist of
three elements — resources, properties and property values. Both resources and
properties are expressed using URIs. Property values are expressed using literals.

In general, there are several ways of storing the graph representation of
RDF data. These ways are called serializations. The RDF specification provides
a serialization called RDF/XML, that expresses the data in a form of an XML

43

<?xml version="1.0" encoding="UTF-8"?>
<rdf :RDF
xmlns:org="http://www.jyu.fi/organization#"
xmlns:pim="http://www.w3.0rg/2000/10/swap/pim/contact#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#">
<rdf:Description rdf:about="http://users.jyu.fi/jdoe">
<pim:lastName>Doe</pim:lastName>
<org:worksFor rdf:resource="http://www.jyu.fi/organization#OntoGroup"/>
<pim:firstName>John</pim:firstName>
<rdf:type rdf:resource="http://www.w3.0rg/2000/10/swap/pim/contact#Person"/>
</rdf:Description>
<rdf:Description rdf:about="http://www.jyu.fi/organization#OntoGroup">
<org:belongsTo rdf:resource="http://www.Jjyu.fi/organization#jyu"/>
</rdf:Description>
</rdf :RDF>

FIGURE 10 An example of an RDF/XML document

document (Miller and Manola), 2004). This serialization is useful for data exchange
between computers due to the fact that many programming languages and com-
puter systems contain XML parsers. However, RDF/XML serialization is not
easily readable for humans. The example of RDF data from Figure [J serialized in
RDF/XML is shown in Figure

The RDF model is based on so-called triples. A triple is a statement consisting
of three elements — subject, predicate and object. Subject represents a resource in
question. Predicate represents a property of that resource and object represents a
value or another resource. One triple can be graphically expressed as two nodes
(subject and object) connected with a directed link (predicate). The direction of the
link determines which of the nodes is the subject and which is the object. The link
always travels from the subject to the object. Based on this knowledge an RDF
document can be described as a set of subject-predicate-object triples (SPO triples).
Sometimes SPO triples are called SPO statements or just statements.

As mentioned earlier that RDF elements can either be expressed using URIs
(resources and properties) or literals (property values). A subject of a statement
can only be a URI. There has been some discussion among W3C members about
the possibility of having literals as subjects, but at the moment it is not directly
supported (W3C| 2013). A predicate of a statement also can only be a URI. Finally,
the object of a statement can be either a URI or a literal.

RDF is an assertional langauge capable of expressing propositions using
formal vocabularies (Hayes, 2004). Statements in RDF act as propositions. Sub-
jects, predicates and objects of a statement may be defined in a vocabulary
with a precise meaning. In the example in Figure [J] one can see the predicate
http://www.w3.0rg/1999/02/22-rdf-syntax—ns#type, which has been
defined in a vocabulary http://www.w3.0rg/1999/02/22-rdf-syntax-ns.
This predicate defines the relationship between the subject and object in the follow-
ing way: subject of this stament belong to the class defined by the object. In our
example, this means that the resource with URL http://users. jyu.fi/jdoe
belongs to the class http://www.w3.0rg/2000/10/swap/pim/contact#-
Person. In other words it means that John is a person. In general predicates
used in an RDF document can be defined in the same vocabulary or in different

44

<http://users.jyu.fi/jdoe> <http://www.w3.0rg/2000/10/swap/pim/contact#firstName> "John" .
<http://users.jyu.fi/jdoe> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> %
<http://www.w3.0rg/2000/10/swap/pim/contact#Person> .

<http://users.jyu.fi/jdoe> <http://www.w3.0rg/2000/10/swap/pim/contact#lastName> "Doe"
<http://users.jyu.fi/jdoe> <http://www.jyu.fi/organization#worksFor> %
<http://www.Jjyu.fi/organization#OntoGroup> .

<http://www.Jjyu.fi/organization#OntoGroup> <http://www.Jjyu.fi/organization#belongsTo> %
<http://www.]jyu.fi/organization#jyu> .

FIGURE 11 An example of an RDF document in N-Triples notation

vocabularies. We will discuss the topic of vocabularies in Section|2.7.4.4
2.7.4.3 RDF serializations

As mentioned earlier, RDF /XML is not suitable for data exchange between humans
due to its complexity. Knowing that RDF data can be expressed as a set of SPO
triples, this method has become popular among the W3C contributors and has led
to a serialization called N-triples (Carothers, |[2013). As of October 2013, N-triples
specification has the status of “Last Call Working Draft” and it is intended to
become a W3C standard. According to the specification “N-Triples is a line-based,
plain text format for encoding an RDF graph” (Carothers, 2013). An N-triples
document is a plain-text document consisting of SPO statements, one statement
per line. Each statement consists of three strings (URIs or values) separated by
either a tab or a space. Each statement must end with a dot (“.”) and a new line.
The N-triples representation of RDF data from Figure[9|can be seen in Figure
Due to the fact that URIs used in this example are too long and they do not fit
the page width the % symbol is used at the end of the line to indicate that the line
continues. Note that in N-Triples one is not allowed to insert a new line between
the S, P and O portions of a statement.

N-triples is a step forward towards more human readable RDF data. How-
ever, it has one serious limitation — all URIs must be expressed using their full
names. Due to the “one statement per row” rule and the fact that full URI names
must be used, the document becomes very wide (a single line is very long). Also,
from the N-triples example one can clearly see that some portions of the URI are
being repeated throughout the document, which is wasteful.

Another type of serialization is Turtle (Terse RDF Triple Language). At
the time of writing (October 2013) Turtle is a W3C Candidate Recommendation
(Carothers and Prud’hommeaux, 2013). According to the W3C Turtle document,
Turtle is trying to express RDF data in “a compact and natural text form, with
abbreviations for common usage patterns and datatypes”. The full syntax of Turtle
goes beyond the scope of this work. However, we would like to point out several
important differences between Turtle and N-triples. Every N-triples document
is also a Turtle document. The Turtle syntax adds several new features to the
N-triples syntax. Table [contains a list of five major differences marked from Dy
to D5.

The first difference implies that a Turtle document does not have to contain

45

TABLE 4 A comparison between various RDF serializations

’ Diff \ N-Triples \ Turtle
D1 Only tabs and spaces are | Tabs, spaces, new lines and comments
condisered white spaces | are considered white spaces

D2 Encoded in ASCII Encoded in UTE-8

D3 |- Introduction of @prefix

D4 No QNames possible QNames allowed

D5 - New abbreviations such as “,”,”;”,“[]”

and “()”

exactly one statement per line. One can put either several statements per line or a
portion of a statement per line. The D; difference means that one can use Unicode
characters in a Turtle document, which is very important if string values are in a
language different than English. The third and fourth difference (D3 and Dy) are
closely related. As mentioned earlier, in a N-Triples document some portions of
the URI are being repeated throughout the document. More precisely, one can see
that some URIs share the same begining. D3 and D, allow URIs to be abbreviated
and thus improve readability of the document. D3 introduces a special statement
in the following form:

@prefix <prefixName>: <uriref>

The <prefixName> parameter is optional and it indicates the name of the prefix
that can later be used in the document. The <uriref> parameter defines the
starting portion of the URI. Once a prefix is defined, one can use QNames (Dy)
with defined prefix names instead of URIs. The last difference (Ds) introduces
new constructs that abbreviate the statements. The symbol “;” is used in cases
when several statements are describing the same subject. One can then use it in
the following form: SP;Oq; PO,; P303. The symbol “,” is used in a similar way.
When both the subject and the object are the same, one can use the following form:
SPOq,0,, O3. The two remaining symbols are used for blank nodes and lists. For
more information about these constructs, refer to|Carothers and Prud’hommeaux
(2013). Figure[12]shows the data from Figure 1T written in Turtle. One can see that
such a document is more readable and compact.

Another approach to RDF serialization is Notation3 (shortly N3). Notation3
is a superset of RDE. Apart from providing a syntaxt for RDF, it also adds formulae,
variables, logical implications and functional predicates (Berners-Lee and Con-
nolly, 2011). N3 exists of a form of a W3C Team Submission and it is not a W3C rec-
ommendation. The addition of formulae makes it possible to annotate not only re-
sources, but also sets of statements. The set of statements that is being annotated is
enclosed in brackets. Variables in N3 are expressed either as a string starting with
a question mark “?” or with a semicolon “:”. By making formulae and variables
possible, one can also define logical implications. An implication is a statement

46

@prefix con: <http://www.w3.0rg/2000/10/swap/pim/contact#>
@prefix org: <http://www.jyu.fi/organization#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#> .

<http://users.jyu.fi/jdoe> rdf:type con:Person ;
org:worksFor org:0OntoGroup ;
con:firstName "John" ;
con:lastName "Doe"

org:0ntoGroup org:belongsTo org:jyu .

FIGURE 12 An example of an RDF document in Turtle notation

@prefix org: <http://www.Jjyu.fi/organization#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

{?x org:worksFor org:0OntoGroup} => {?x rdf:type org:0ntoGroupMember}
{?x org:worksFor ?org . ?y org:worksFor ?org}
=> {?x org:coworkerOf ?y . ?y org:coworkerOf ?x}

FIGURE 13 An example of an RDF document in Notation3

with subject and object being a container. The predicate is a “=>" symbol, which is
a shorthand for <http://www.w3.0rg/2000/10/swap/log#implies>. An
example of two implications can be seen in Figure

The relationship between N-Triples, Turtle and Notation3 is depicted in
Figure We can see that N-Triples is a subset of Turtle and that is a subset
of Notation3. That means that every N-Triples document is also a legal Turtle
document. Similarly, every Turtle document is also a legal Notation3 document.
For the remainder of this document we will use Turtle, unless specified otherwise.

2.74.4 RDFS

The previous sections introduced RDF and its four serializations as a formal way
to express propositions. However, there also has to be a way to formally define
vocabularies. This role can be played by RDF Schema (RDEFS) (Guha and Brickley,

Notation3
Turtle

FIGURE 14 The relationship between various serialization methods

47

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix org: <http://www.]jyu.fi/organization#> .

org:Student rdf:type rdfs:Class .
org:PhdStudent rdf:type rdfs:Class .
org:PhdStudent rdfs:subclassOf org:Student .
org:john rdf:type org:PhDStudent .

FIGURE 15 An RDFS example — class hierarchy

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix org: <http://www.]jyu.fi/organization#> .

org:attends rdf:type rdf:Property ;
; rdfs:domain org:Student ;
; rdfs:range org:Course .

FIGURE 16 An RDFS example — property definition

2004). Using RDFS one can define classes, class hierarchy, properties, lists, sets
and other concepts.

Classes are groups of resources sharing some common signs. RDFS allows
one to specify that a certain URI is a class by expressing that this URI is of type
rdfs:Class. One canalso define the class hierarchy by using rdfs: subclassOf
property. The example in Figure[I5specifies two classes (student and PhD student)
and their relationship (every PhD student is also a student). Also, by using the
rdf : type predicate, it indicates that the resource org: john is a phd student.

Any resource that is a member of rdf:Property class is considered a
property. In order for the property definition to be complete, one should define
its domain and range. Both the domain and the range are classes. If SP O is a
statement and P is the property one is trying to define, then S must be a member
of the property domain and O must be a member of the property range. In other
words, if one defines a property org: attends with org: Student as the domain
and org:Course as the range, then one is only allowed to make statements X
org:attends Y where Xisisastudentand Y isa course. RDFS allows definitions
of property hierarchies using rdfs: subPropertyOf. An example of a property
definition is shown in Figure

2.74.5 OWL

Another language used to represent the meaning of terms in vocabularies and the
relationship between the terms is OWL (van Harmelen and McGuinness, 2004).
OWL has higher expressive power than RDFS, which makes it more suitable for
machine reasoning. OWL is a W3C Recommendation and it is closely related to
XML, XSD, RDF and RDFS. Note that there is also OWL2, which is an improved

48

version. It will be discussed later in the text.

OWL consists of three langauges with increasing expressive power - OWL
Lite, OWL DL and OWL Full. More precisely, OWL Lite is a subset of OWL DL and
that is a subset of OWL Full. OWL Lite is a simple language used for classification
and taxonomies. Due to its simplicity an OWL Lite reasoner is relatively fast in
comparison to OWL DL. OWL DL provides the maximum of expressive power
while keeping computation complete and decisive. DL stands for description logic
— the formal foundation of OWL. Lastly, OWL Full provides the most expressive
power with no guarantees for any computational characteristics. There are many
reasonser capable of full reasoning within OWL Lite or OWL DL. However, it is
very unlikely that there will ever be a reasonser capable of full reasoning within
OWL Full .

The full description of OWL's capabilities is beyond the scope of this text.
Only a few important features of OWL DL will be described. The first difference
between RDFS and OWL DL is the ability to describe properties more precisely.
One can define if a property is an object property or a datatype property. An object
property allows only URIs as the objects of a statement — e.g. org:attends from
an earlier example. A datatype property allows only literals as the objects of a
statement — e.g. con: firstName, where a person’s name as a string is expected.
Object properties and datatype properties are disjoint in OWL DL (Schreiber and
Dean, 2004).

Both object and datatype properties can be defined as functional (owl: -
FunctionalProperty). It means that such a property has no more than one
value for a given individual. In addition to that, two object properties (x: p1 and
x :p2) can be specified as inverse. Property x:p1 is inverse of x : p2 if and only if:

{?a x:pl ?b} => {?b x:p2 2a}

An example of such properties is employeeOf and employerOf. Moreover, an
object property may be specified as symmetric, transitive and inverse functional.
A symmetric property x: p1l has the following feature:

{?a x:pl ?b} => {?b x:pl 2a}

An example of a symmetric property would be marriedTo. For a transitive property
x:p1 the following is true:

{7a x:pl ?b . ?b x:pl ?2c} => {?a x:pl ?c}

A very well known transitive property is the mathematical property <. Property
x:pl is inverse functional if and only if for every 0in S x:pl O there is exactly
one S. In other words, the object of a statement with x:p1 as the predicate fully
determines the subject. For example x:hasStudentID is inverse functional,
because no two students have the same ID. Finally, properties can have minimal
cardinality and maximal cardinality associated with them. The cardinality defines
how many statements with the property can be made about the same subject. For

49

example x:hasBiologicalParent is a property that has cardinality exactly
two, because each human has exactly two biological parents. However, property
x:hasChild has allowed cardinality range from 0 to n.

OWL DL introduces new concepts for class descriptions as well (Hayes et
al.,2004). A class can be defined by enumerating all the individuals (instances)
that belong to the class. This is not possible in OWL Lite or RDFS. Such a class is
called enumerated class. Moreover, a class can be defined as a union, intersection
or compliment of other classes. Also, one can describe relationships between two
classes such as disjointness or equivalence. Sevaral examples of OWL ontologies
can be found in as appendices. Note that while metaclasses are allowed in OWL
Full, they are illegal in OWL DL (Schreiber and Dean, |2004). A metaclass is a class
of classes. For example, class Vehicle would be a metaclass, if Car was a class and
Car would also be an instance of Vehicle.

An DL-based ontology consists of three parts — TBox, RBox and ABox (Fok+
oue et al., 2006). TBox expresses relationships among concepts such as class-
subclass relationship or class equivalence. An example of a TBox assertion would
be x:Human rdfs:subClassOf x:Mammal. RBox contains relationships be-
tween roles (properties), e.g. property-subproperty relationships. An exam-
ple would be x:hasFather rdfs:subPropertyOf x:hasParent. Finally,
ABox consists of statements about individuals using terms from TBox and RBox.
An example is a statement x: John x:hasFather x:Bill. In general, there
can be ontologies with various TBox-RBox-ABox ratios. Some ontologies might
have a very simple taxonomy (small TBox) and many descriptions of individuals
(large ABox). Others might be the oposite — complex TBox with very little ABox.

2.74.6 OWL2

OWL2 is an ontology language based on OWL. Every legal OWL ontology is also
an OWL2 ontology (W3C, 2009). OWL2 is a W3C Recommendation, which has
been released in two editions. This work focuses on the second edition, which
became a recommendation in December 2012. Similarly to OWL, OWL2 ontologies
can be written in OWL2 DL or OWL2 Full. OWL2 DL is a restricted subset of OWL2
Full (Krotzsch et al., 2012). There are two ways to interpret OWL2 ontologies —
using RDF-based Semantics (Carroll et al., 2012) or Direct Semantics (Horrocks et
al., 2012). Direct Semantics interprets OWL2 in terms of Description Logics and
under this interpretation the reasoning problem is decideable. This allows the
construction of OWL2 reasoners in Decription Logics. The RDF-based Semantics
interprets OWL2 ontologies in a way similar to RDFS. According to Krotzsch et
al. (2012) RDF-based Semantics is an extension of RDFS semantics. Under the
RDF-Based Semantics OWL2 Full is undecidable and therefore an OWL2 Full
reasoner would not always be able to return an answer about the correctness of
the ontology or data.

OWL2 introduces three profiles — OWL2 EL, OWL2 RL and OWL2 QL.
Profiles are language subsets that guarantee good computational properties for a
particular task. OWL2 EL is based on the EL family of Description Logics. This

50

property allows one to build ontologies with large amounts of classes (TBox) and
properties (RBox), while still reason in polynomial time with respect to the size of
the ontology (Wu et al., 2012). OWL2 RL represent ontologies, where reasoning
can be implement using rule-based reasoning engines. OWL2 QL is implemented
in a way that allows large amounts of individual assertions (ABox), while being
able to respond to conjunctive queries in logaritmic time with respect to the size of
the ABox. A query for OWL2 QL data can be rewritten into a standard relational
query language (Wu et al., 2012).

There are several new features in OWL2 over the older OWL. This work
mentions only a few of them. For more information, refer to W3C (2009) or
Parsia et al. (2012). In OWL2 one can express property chains. This allows a
property to be defined through a chain of two or more properties. For example
hasGrandchild is a property that can be expressed through a chain of two hasChild
properties. Therefore an individual has a grandchild x, where x is his/her child’s
child. Moreover, OWL2 can define new datatypes as a combination or restriction of
the existing ones. For example one can define a datatype based on xsd:integer
with the restriction that only values between 0 and 10 are allowed. Furthermore,
in OWL2 one can define classed based on property cardinality restrictions. For
example one can define a class ex:LargeFamily as a ex:Family class with at
least 6 ex : hasMember properties.

2.7.4.7 SPARQL

SPARQL is a recursive abbreviation that stands for SPARQL query language. SPARQL
is used to define queries across multiple RDF data sources that either store RDF
data natively or expose a different form of data as RDF via some middleware
(Prud’hommeaux and Seaborne, 2008). SPARQL fulfils a similar function as SQL
language used in relational databases. The result of a SPARQL query is either a
result set or an RDF graph. A result set is a set of variable-value mappings, similar
to SQL result set. An RDF graph is a graph constructed based on the definition of
a query. One can consider the RDF graph result a transformation of the original
RDF data.

SPARQL exists in two versions — 1.0 and 1.1. Both of them are W3C Recom-
mendations. The full description of SPARQL is beyond the scope of this work,
therefore only basic syntax is described. For more information see “SPARQL 1.1
Query Language” documentation (Harris and Seaborne} 2013). A simple query
returning a result set is shown in Figure (17} This query asks for first name and
surname of each person that works for an institute/group belonging to the Uni-
versity of Jyvaskyla. If the query was used on the data from Figure (12} it would
return a set {{?fn = John,?In = Doe} }. Figure[I8shows a construct query, which
returns an RDF graph. This query returns an RDF document consisting of state-
ments describing people as employees of the University of Jyvaskyld. One can see
that in this particular case a similar result could be achieved by using a rule (e.g.
Notation3 implication).

51

PREFIX con: <http://www.w3.0rg/2000/10/swap/pim/contact#>
PREFIX org: <http://www.jyu.fi/organization#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
SELECT ?fn ?1ln
WHERE {
?p rdf:type con:Person ;
org:worksFor ?inst ;
con:firstName ?fn ;
con:lastName ?1n .
?inst org:belongsTo org: jyu

}

FIGURE 17 A SPARQL example

PREFIX con: <http://www.w3.0rg/2000/10/swap/pim/contact#>
PREFIX org: <http://www.]jyu.fi/organization#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
CONSTRUCT { ?p rdf:type org:JyuEmployee }
WHERE {

?p rdf:type con:Person ;

org:worksFor ?inst .
?inst org:belongsTo org: jyu

}

FIGURE 18 A SPARQL construct example

2.8 Ontology visualization

In the upcoming chapters we will present various OWL-DL ontologies. Despite
the fact that a textual representation of an ontology in OWL is formal and thus
unambiguous, a visual representation depicts the ontology in a more human-
readable way. In this section we discuss various ontology visualization techniques
with respect to the ontologies being depicted later in the text.

Firstly, we provide the requirements for visualization of the ontologies. Sec-
ondly, available visualization methods are discussed. Moreover, an evaluation of
visualization methods with respect to the requirements is presented. Lastly, we
describe a visualization technique suitable for the category of ontologies that will
be presented.

2.8.1 Requirements

We present three requirements for the ontology visualization techniques. The first
requirement (R;) states that the visualization method should be able to convien-
tiently display the following type of ontologies. The ontologies have less than
30 frames (classes and instances) and thus according to |[Ernst and Storey| (2003)
they are considered to be very small. Moreover, TBox and RBox are considerabely
larger than ABox. Lastly, the size and complexity of TBox in relation to RBox

52

varies.

The second requirement (R,) deals with the medium being used to depict an
ontology. The ontologies should be readeable both on-screen and in print. This
implies that no interaction between the viewer and the medium is possible.

The third requirement (R3) specifies that the visualization method should be
able to express basic features of OWL-DL, namely:

— Classes — hierarchy, equivalence, disjointness, union, intersection, property
restrictions

— Properties — type (object or datatype), domain, range, cardinality, symmetric-
ity, asymmetricity, reflexiveness, irreflexiveness, functionality, inverse func-
tionality

— Individuals — class membership, assertions

2.8.2 Analysis and evaluation of visualization techniques

Katifori et al.| (2007) investigate various techniques for ontology visualization.
Despite the fact that the words technique and tool are used interchangeably, we
distiguish between these two. An ontology visualization technique is a set of
principles according to which an ontology can be visualized. An ontology visu-
alization tool is a software that visualizes an ontology according to one or more
visualization techniques.

According to the survey by Katifori et al. (2007) there are six main visual-
ization types. For easier reference, each of them will be given an identifier V;.
Firstly, an indented list (V1) is a tree representation similar to the representation of
file system structure. A typical representative of such a method is the class hier-
archy representation in Protégéﬂ Secondly, node-link and tree (V) representation
consists of a 2D or 3D graph representation of a taxonomy with a top-down or
left-to-right layout. This approach is used by the OntoViz tool EL IsaViz toolﬁ or
OntoTrack tool (Liebig| 2004). Third of all, zoomable visualizations (V3) represent
low-level entities inside their respective parent entities. The user is able to zoom
in or out to see either low-level or high-level entities. An example of such a tool is
Jambalaya (Storey et al,, 2001) or Grokker (Rivadeneira, 2003). Moreover, space-
filling techniques (V) represent the ontology by subdividing the screen space of a
node among its children. Examples include TreeMaps (Shneiderman, 1992) and
SequoiaView EL which is based on Squarified treemaps (a variation of the original
TreeMaps). The fifth group of techniques is called focus + context or distortion (Vs).
In this technique a context is chosen by focusing on a certain entity within the
ontology. The rest of the ontology is distorted (e.g. blurred) and only the node in
focus with related nodes is displayed. A member of this category is for example
TGVizTab (Alani} 2003). Lastly, 3D information landscapes (V) visualize entities

2 Available at http:/ /protege.stanford.edu/

3 Available at http:/ /protegewiki.stanford.edu/wiki/OntoViz

4 Available at http:/ /www.w3.org/2001/11/IsaViz/

5 Available at http:/ /w3.win.tue.nl/en/research/research_computer_science/visualization/
sequoiaview /

http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/OntoViz
http://www.w3.org/2001/11/IsaViz/
http://w3.win.tue.nl/en/research/research_computer_science/visualization/sequoiaview/
http://w3.win.tue.nl/en/research/research_computer_science/visualization/sequoiaview/

53

TABLE 5 Suitability of various ontology visualization techniques with respect to require-
ments R, Ry, R3

Visualization | Name Ri | Ry | R3
V1 | indented list + |+ |-
V5 | node-link and tree ++ | ++ | ++
V3 | zoomable visualizations ++ | - +
Vy | space-filling techniques ++ |- |+
V5 | focus + context or distortion | + | -- | +
Ve | 3D information landscapes | ++ | -- | +

of an ontology in form of color-coded 3D objects on a plane. Properties between
the entities are represented as links between the objects. File System Navigator
(FSN) (Tesler and Strasnick, 1992) and Harmony Information Landscape (Wolf,
1996) are two representatives of such a technique. A similar approach was used by
Khriyenko| (2008) to represent RDF resource closeness based on a user-specified
context. Note that the six presented visualization types are not disjoint.

The evaluation of the visualization techniques with respect to the require-
ments is summarized in Table 5| While an indented list (V) is suitable for represen-
tation of simple class hierarchies, the method is not suitable for the visualization
of properties and multiple inheritance. V, is capable of very good visualization
of class hierarchy (including multiple inheritance) and good visualization of role
(property) relations. On the other hand it may become difficult to read for larger
ontologies, especially when the amount graph edges increases. Vj is suitable
for on-screen visualization if zoomable visualizations are used (vector or high-
resolution bitmap). However, it is not suitable for print due to the fact that it relies
on the ability to zoom the visualization. V} suffers from the same issues as V3. For
larger or more complex ontologies it requires the zooming functionality, which is
not available for print. Both V5 and V; are irrelevant with regards to the require-
ments. Vs is interaction-based, which is in conflict with the print requirement. Vj
requires 3D navigation, which is not possible in print. Based on the evaluation,
the most suitable method is node-link and tree (V).

The next step is to analyze the available visualization methods within the V,
group. IsaViz is a visual environment for browsing and authoring RDF models
represented as graphs. The tool and its visualization method is suitable mostly
for on-screen view, but it can also be used for print view. OntoViz provides a
more compact representation, where a role (property) can be displayed both inside
the class node and as a link between nodes. SpaceTree and Tree Plus are both
very suitable for an on-screen interactive view. However, they are not suitable
for print, which is non-interactive. OntoTrack uses a pseudotree visualization
method, where each node is a class. Similarly to OntoViz, OntoTrack can express
certain property restrictions in a compact way as a part of the class node. Despite
the fact that it is primarily intended to be used on-screen, it is also suitable for

54

print. GoSurfer (Zhong et al., 2004) and GOBar (Lee et al., 2005) are both used to
visualize the Gene Ontology (GO). GoSurfer uses a tree-like structure and GOBar
is based on OntoViz. While both are most likely suitable for representation of
such a large ontology as GO, they do not introduce any new visualization features
that other previously mentioned tools do not have. Based on the analysis, the
visualization method should be based on OntoViz and OntoTrack.

2.8.3 Proposed visualization technique

The proposed visualization technique is based on the graph methods used by
OntoViz and IsaViz. Figure (19| provides an example of an ontology together with a
legend. There are four types of vertices — a rounded rectangle representing a class
from within the ontology, a non-rounded rectangle representing a class from a
different (e.g. imported) ontology, a rhombus representing a datatype and a circle
with the letter D in the middle (D-circle) represending disjoint classes.

Each rounded rectangle (class description) consists of three parts — class name
(N-section), equivalent classes (E-section) and properties (P-section). The class
name is represented by the class URI. If the default namespace is used, it means
that the URI belongs to the namespace defined by the ontology. The representation
of equivalent classes is based on the OWL Manchester syntax (Patel-Schneider and
Horridge, 2012) that is also used in Protégé. Each line of the E-section represents
one statement. The equivalence is given by the conjunction of the E-section lines.
Finally, the list of properties (P-section) contains one property definition per line.
Each property definition consists of five portions. The first part defines whether
it is an object property (O) or a datatype property (D). The second part defines
the property name as a URL The third part defines the range of the property.
The fourth part defines the minimal and maximal cardinality. The last, fifth, part
specifies the characteristics of the property. A property can be functional (F),
inverse function (IF), transitive (T), symmetric (S), asymmetric (aS), reflexive (R)
and irreflexive (iR).

A non-rounded rectangle represents a class from a different (imported) on-
tology and it only contains the URI of the imported class. A D-circle represents
disjointness. If a set of classes is connected through dashed lines to a D-circle, it
means that the classes are disjoint.

The edges of the graph are represented by lines (links), which can be directed
and undirected. There are three types of edges (lines). Firstly, a dashed directed
line is used to represent disjointness as mentioned previously. The line may
connect only a class and a D-circle. The second type is a full (non-dashed) directed
line with a triangular arrow, which represents class inheritance. The arrow points
to the parent class. In case several child classes share the same parent, it is allowed
to aggreggate the inheritance links into a link with a single arrow, which improves
clarity. Lastly, a dotted oriented line represents an object or datatype property
that has been defined in the class definition node (rounded rectangle). The line
leaves a node that represents the domain of the property and enters a node that
represents the range of the property (rhombus for a datatype property, class node

55

animal:Mammal
animal:Pet
I)

4 N !
N-section———> | N [:Human -
E-section———>| E |animal:hasLegs exactly 2 animal:Leg .- :hasPet
pP-section——>| P |O|:hasPet [0-n] | <aS,iR> |~

D|:hasName [1-1] | <F>).
N
T *. ~object
property property . property
type characteristics *

property name % :hasName

(URI) B

minimal and maximal .

cardinality Y

| | / xsd:string /
N |:Woman N |:Man
-0
P P

FIGURE 19 Visualization of a sample ontology together with a legend

for an object property).

Based on the visualization technique, the example from Figure [19|can be read
as follows. Classes animal:Mammal and animal :Pet are imported from a differ-
ent ontology. The ontology being depicted contains three classes — : Human, :Man
and : Woman. The : Human class is defined as a child class of animal :Mammal and
at the same time an equivalent class to a class with property restriction stating that
it should have exactly two legs. Both :Man and :Woman are subclasses of : Human
and they are disjoint (note the D-circle). The : Human class has two properties.
The object property :hasPet has range :Pet, cardinality from 0 to n, and it is
asymmetric and irreflexive. The datatype property :hasName accepts a string as
its value and it is functional.

2.9 Self-managed software

29.1 The vision of Autonomic computing

In the last 70 years the complexity of computer systems has increased significantly.
Nowadays, computer systems can be seen everywhere — from our homes to
hospitals, power plants and space shuttles. They take form of small music players
through mobile phones, laptops, desktops and up to supercomputers. This means
that more people are using computers, but at the same time computer systems
are becoming more complicated to manage and control. At some point computer
systems will become so complicated, that humans will not be able to directly
control all their features anymore. Instead some other way of indirect control is

56

needed. This fact was the motivation for the vision of autonomic computing, where
computer systems can autonomously control their behavior based on operator’s
high level goals rather than direct control.

The vision of autonomic computing was presented by IBM in March 2001
(Ganek and Corbil, 2003). The motivation behind this vision is the fact that soon
we will reach a point where computer systems’ complexity will surpass the limits
of human capability to control them (Kephart and Chess, 2003). This is especially
important in the area of pervasive computing where potentially millions of devices
can create a single distributed computer system. The complexity does not only
stem from the complexity of a single computer system, but from the interactions
of several interconnected computer systems. Kephart and Chess (2003) argue
that “the only option remaining is autonomic computing — computing systems
that can manage themselves given high-level objectives from administrators”. An
argument in favor of autonomic computing is the fact that very complex systems
such as human body or stock exchange are largely autonomous in their nature.

If autonomic computing is the problem, then self-management is a solution.
Achieving self-management in computer systems is a very complex task and
therefore Kephart and Chess| (2003) presented four aspects of it, namely self-
configuration, self-healing, self-optimization and self-protection. Some call these
features self-* properties (Salehie and Tahvildari, 2009; |Al-Shishtawy et al., 2009)
and some self-X properties (Miihl et al., 2007).

Some researchers, when refering to autonomic software, use the terms self-
adaptation, self-adaptive software (Cheng et al., 2009; Ghosh et al., 2007) or just
adaptive software (Salehie et al., 2009; Salehie and Tahvildari, 2009; Sharmin et
al., 2005, 2006; Laddaga, [1999). |[Laddaga| (1999) uses the following definition of
self-adaptive software:

Self-adaptive software evaluates its own behavior and changes behavior when the eval-
uation indicates that it is not accomplishing what the software is intended to do, or
when better functionality or performance is possible.

Salehie and Tahvildari (2009) use a narrower definition based on the terms context
and self. The context is everything in the system’s environment that influces its
properties or behavior. The self refers to the body of the software, which is often
implemented in form of layers. The definition is as follows:

Self-adaptive software is a closed-loop system with feedback from the self and the
context.

For the purpose of this work we are going to use the definition by Salehie and
Tahvildari (2009) with one exception. We believe that a better name for self and
context would be internal and external context due to the fact that according to the
definition of context by Dey| (2001), the information about self classifies as context
as well. We discuss it further in Section [2.9.3| (page[58).

The vision of autonomic computing shares some similarities with other
visions as well. Situated and Autonomic Communications (SAC) is a vision that was
presented by the European Commission as a part of the Framework Programme 6

57

(2002-2006). The authors believe that the main feature of future communication
systems will be the ability to adapt to chaning conditions and that self-organizing
networks are a solution that will make the vision possible (Sestinim) 2004). Such
networks should be radically distributed, fully scalable and autonomous (Sestinim,
2006). These features should be achieved by making computer networks task-
and knowledge-driven. Dobson et al. (2006) consider autonomic computing to be
oriented towards application software and management of computing resources,
while autonomic communication is oriented towards the management of network
resources at both infrastructure and user levels. Despite different goals, these two
visions are not disjoint (Quitadamo and Zambonelli, 2008).

2.9.2 Self-* properties

Self-configuration is the ability of a computer system to autonomously install, up-
date, itegrate and compose/decompose software entities as a response to changes
in its environment or itself (Salehie and Tahvildari, 2009). The human administra-
tor does not have to specify which steps need to be taken. Instead, he/she only
needs to specify the desired goal. The system is aware of its components and
their capabilities and it will choose a configuration that will satisfy administrator’s
goals. Also, if a new component is added, the system will recognize it and make it
available to the system automatically.

Many computer systems can be tuned by changing a wide variety of con-
figuration parameters. A system with self-optimization capabilities is constantly
seeking the best combination of these parameters in order to achieve its goal. Such
system is proactive and it tries to find new, better ways of performing its task. A
self-optimizing system can even experiment in order to find a better combination
of parameters. Self-optimization is sometimes called self-tuning or self-adjusting
(Sterritt et al., 2005).

Self-healing is the ability to detect, diagnose and fix problems at runtime.
These problems might stem from software bugs or hardware problems. It is
necessary for the system to be aware of its own configuration and dependencies
between its components.

Lastly, self-protecting system is capable of defending itself from malicious
attacks or mission-critical cascading failures. Such systems can be both reactive
and proactive. The proactive nature can be achieved by following the sensory
information and using it to predict attacks or critical problems.

Throughout the years, the term self-management has been used in many
different contexts. Originally, Kephart and Chess (2003) used the term autonomic
computing and self-management in connection to the computer system as a whole.
However, one might want to talk about such capabilities in the context of only
one aspect of computing (e.g. self-management in software). Therefore new terms
were created. Salehie and Tahvildari (2009) use the term self-adaptive software to
indicate the use of self-management in software only.

Also, new terms appeared such as self-manageable, self-managing, self-
organizing, etc. Some authors use them almost synonymously and some differ-

58

adaptive
Cada self-managing
self-manageable Csmg
Csma self-organizing
Csog

Cao[a

FIGURE 20 Hierarchy of self-* properties (adopted from Miihl et al. (2007))

entiate between them. Miihl et al.| (2007) argue that most publications give only
informal definitions of these terms. They proposed a formal system of several
terms where adaptive systems are the most general ones and self-organizing
systems are the most specific ones (see Figure 20).

2.9.3 Sensors and actuators

Based on the description mentioned earlier, a self-managing system must be well-
informed in order to make an autonomous decision. Also, such a system must
have a means to change its own behavior. Therefore a self-managing system
requires sensors to receive the information and actuators (or effectors) to perform
changes to its behavior and manage itself. The field of autonomic computing
adopted these concepts from the field of agent-based systems.

Sensors are responsible for gathering information about system resources,
component status, other systems interconnections, etc. (Hinchey and Sterritt,
2006). Sometimes the aquisition of sensory information and its propagation to the
applications is called context provisioning (Hochstatter et al.,[2008). Many authors
distinguish two types of sensory information — information about the system
itself and information about the external environment. However, these authors
do not always agree on the nomenclature. For the purpose of this work, we call
these two types internal context and external context. We understand the context
as any information that is relevant to the operation of the system, including the
information about the system itself. This is consistent with the definition of context
given by Dey| (2001). Table [f| shows synonymous terms used by other authors.
Salehie and Tahvildari| (2009) use the word context to refer to the information
about the external environment and the word self to refer to the internal context.
Hinchey and Sterritt (2006)) call the ability to perceive the internal contextual
information as self-awareness. The ability to perceive the information related to
the external context is called environment-awareness.

59

TABLE 6 Synonyms for “context”

| This publication - internal context | external context
Salehie and Tahvildari| (2009) | self context
Hinchey and Sterritt (2006) self-awareness | environment-awareness

2.9.4 C(lassification of adaptive systems

Mckinley et al. (2004) recognize two approaches to adaptation — parameter adap-
tation and compositional adaptation. Parameter adaptation is a less intrusive
approach, where component parameters are modified in order to change the be-
havior of the component and thus the system as a whole. Since no component
addition or deletion is required, the cost of the change is low and there is no need
to reconfigure component connections. The drawback of this approach is that
only anticipated changes are possible, because parametrization must be imple-
mented in the design and implementation phase of the application. Strategies
implemented after the implementation of the application cannot be adopted. On
the other hand, compositional adaptation may replace the whole structural parts
of the application. Using this approach also unforseen changes may be handled.
In general, these two approaches are not mutually exclusive and can coexist in
one system as we will show later.

Weyns et al| (2008) distiguish between exogenous and endogenous self-
management. Endogenous self-management is based on the idea that components
should cooperatively adapt their structure and behavior based on the changing
requirements. Exogenous self-management is based on a control loop, which
monitors relevant parameters and makes decisions based on high-level objectives.

2.9.5 Control loop

Each software application contains the so-called application logic. Application
logic is a set of programming elements that are trying to achieve the goal (or goals)
of the application. A self-managed software application contains also adaptation
logic, which is responsible for self-adaptive properties of the application. There
are two main approaches how these two logics can be incorporated into one
application — internal and external approach (Salehie and Tahvildari, 2009).

In the internal approach, both the application logic and the adaptation logic
are interweaved (Figure2Th). The adaptation is achieved using parametrization,
conditional expressions and exceptions. These constructs might be native to the
programming language used to define the application logic or the language might
be extended to handle them. The advantage of this approach is that all the code is
in one place and very often no special language is needed to define the adaptation
logic. The disadvantage is that such applications scale worse and are more difficult
to maintain. The reason for this is that both features are written in the same piece

60

Self-Adaptive Software
) Adaptation
/‘\Sensmg Sensing Engine
Self-Adaptive
Software Adaptable Effecting
Software
_/Eﬁecti ng
Internal Approach External Approach

FIGURE 21 Internal vs. external approach to self-management (adopted from Salehie
and Tahvildari (2009))

of code and thus are tightly coupled.

The external approach makes the adaptation a separate process (Figure 2Tp).
The adaptation is controlled by a separate component that is called adaptation
manager or adaptation engine. This component is often implemented in form of a
middleware. The adaptation component controls the software. Naturally, there is
a need to design and build the software with adaptation in mind. The software
must be adaptable in order to be controlled /managed by the adaptation engine.

In general, an adaptive system can be based on an open loop or a closed loop
control. A closed loop has a feedback loop, while an open loop does not.

2.9.6 Autonomic architectures and frameworks

An architectural approach to the problem of autonomic computing has been a fa-
vorite method for several researchers (White et al.|, 2004, 2006; Kramer and Magee,
2007). White et al.| (2004) base their approach on a service-oriented architecture.
Their system resembles a multi-agent system (MAS) in that aspect that it consists
of autonomous or semi-autonomous goal-driven components. They argue that
the key to an autonomic system are autonomic elements with respect to their
definition by Kephart and Chess (2003) mentioned earlier. According to White et
al|(2004), these elements must have the following three behaviors. Firstly, such
an element must handle problems locally whenever possible. Secondly, elements
must be interconnected for service provision including service description and
contract negotiation. Lastly, the element must refuse any kind of activity that is in
conflict with its obligations. In White et al.|(2006), they provide a prototype called
Unity, on which they show the effiency of thier approach.

Kramer and Magee|(2007) are in favor of an architectural approach as well.
They adopted a model by |Gat et al.| (1997), which originated from the field of
robotics. Gat et al. (1997) noticed that in practical applications, a robot’s actions
can be categorized into three types — simple reactive control algorithms, more
complicated techniques for governing routine sequences (plans) and the most

61

A Goal

management c | | ¢
Change plans
2z § Plan request
3 |g Change
€ |& management %H
S |8 g T Change actions
14
I
Status *
Component
Y control

FIGURE 22 The three layered model for self-management

complicated search-based algorithms (e.g. planners). Kramer and Magee (2007)
altered this model for the purposes of autonomic computing. Their model consist
of three layers — Component control, Change management and Goal management
(Figure[22). The Component control layer consists of self-tuned components. These
components use control loops to read the data from the sensors, make decisions
and manipulate the environment through the actuators. They also should support
component replacement and reconfiguration. Everything that can be solved locally
within the Component control layer is solved there. However, if an unsolvable
error occurs, it is forwarded to the second layer. The Change management layer is
responsible for component replacement and reconfiguration according to prede-
fined plans. In other words, this layer’s goal is to reactively respond to an existing
problem. If a suitable plan is not found, the Goal management layer is contacted.
The top layer is responsible for high-level planning with respect to predefined
goals and policies.

Sharmin et al. (2006) present an architectural approach to the problem of
self-management. Their project named MARKS (Middleware Adaptability for
Resource Discovery, Knowledge Usability and Self-healing) aims to handle a
new attribute in the area of pervasive computing, which they call “knowledge
usability”. Knowledge Usability is an autonomous technique to determine the
user’s preferences and related actions with respect to his/her past, present and
future information (Ahmed et al., 2005). The communication with other devices is
done through an Object Request Broker (ORB). In Sharmin et al.|(2005), they utilize
MARKS for resource discovery in pervasive computing environments. Ahmed et
al.| (2009) present their results of using MARKS+ to achieve self-healing.

62

2.10 Ubiware

2.10.1 Introduction

Ubiware is a smart semantic middleware platform for ubiquitous computing
developed at the University of Jyvaskyld by the Industrial Ontologies Group (I0G).
The platform development started in 2004 as a part of the SmartResource project
(Terziyan, 2008) and continued on in the Ubiware project (Terziyan, |2011). The
goal was to create a new generation middleware platform enabling the creation of
self-managed complex systems, especially industrial ones (Katasonov et al., 2008).
This would enable the realization of the IoT and UbiComp visions. In today’s
computer systems, a great amount of resources can be connected to various IT
systems. These devices are often very heterogeneous — human operators, software,
sensor networks, RFIDs, etc. Some of these resources can be shared and some can
be accessed only exclusively. Some are controlled by the system owner, some are
coming from outside of the system. Integration of such resources is complicated
from the design, implementation and maintenance point of view (Kephart and
Chess, 2003).

Ubiware is implemented as a multi-agent system. Each agent is implemented
using Semantic Agent Programming Language (S-APL). This approach was chosen
due to the following benefits. Firstly, agent-based systems are suitable for design of
large and complex software systems (Jennings, 2001). Secondly, MAS is suitable for
spontaneous (re)configuration, adaptive reorganization and they can recover from
partial failures (Mamei and Zambonelli, 2006). Moreover, distributed systems such
as MAS are known to scale better with growing number of resources in play.Lastly,
interoperability in UbiComp environments would be very difficult to achieve
only by imposing standards and making agents comply to them. Using semantic
technologies, agents are also capable of communicating their beliefs (Lassila, 2005).

Ubiware was designed as a toolbox for developers that helps them achieve
smooth cooperation of various heterogeneous resources such as devices, sensors,
RFIDs, web-services, software applications, humans, etc. Each of the resources is
represented by an agent that acts on its behalf in the MAS. Developers use S-APL
to design these agents. S-APL is a declarative rule-based language with special
semantic constructs. S-APL code is interpreted by the S-APL engine, which is
an integral part of the Ubiware platform. Also, a developer has the ability to
call special code snippets from within the S-APL code. These snippets are called
Reusable Atomic Behaviors (RABs) and they are written in Java programming
language. There is a database of essential RABs and S-APL scripts delivered
with the Ubiware platform. However, the developers are free to add new S-APL
scripts or RABs if needed. For a deeper technical description of Ubiware read

Section [2.10.3| (page[65).

63

GUN { PRIME (UBIWRRE(SmartResource

GUN (Global Understanding Environment) — proactive self-managed Semantic
Web of everything - general concept and final destination

PRIME - proactive inter-middleware (global interoperability among ubiquitous
systems and platforms)

UBIWARE - semantic middleware for smart resources

SmartResource — concept, technology and pilot tools to enable smart resources

FIGURE 23 GUN research roadmap (adopted from Nagy et al. (2009))

2.10.2 Ubiware and GUN

Despite the fact that the platform development officially started in 2004, Ubiware
was not an isolated project. Ubiware is a part of a bigger vision called Global
Understanding Environment (GUN) (Terziyan, 2003} 2005; Kaykova et al.,2005).
The relationship between GUN and other IOG projects is depicted in Figure
The first step towards GUN was the Smart Resource project (2004-2006), which
was trying to research and develop a large-scale environment for integration of
industrial smart devices, web services and human experts (Terziyan and al., 2007).
In the end of the project, a set of semantic tools was developed. These tools then
became the starting point of the Ubiware project (2008-2010). At the end of the
project, a semantic agent platform was developed that acts as the technical base for
the implementation of GERI (Global Enterprise Resource Integration) and GUN.
GERI acts as a step between Ubiware and GUN, where the emphasis is given on
the implementation in the industrial domain.

Originally, GUN was proposed by Terziyan|(2003) as an answer to the prob-
lem of field device management (FDM). The idea of intelligent agent systems was
not new to the area of FDM (Cederlof and Pyotsia, 1999). However, several prob-
lems still persisted. The GUN approach was based both on the agent theory and
Semantic Web technologies. In GUN, each device was represented by a software
agent following the “health” of the device. This way, during the lifecycle of the
agent, the agent can take advantage of the collected information and utilize it
in its decision making. This idea was presented as the adaptation of a physical
object into a Semantic Web environment using a so-called GUN adapter. This
early representation of GUN also introduced the idea of agent encapsulation and

64

FIGURE 24 GUN overview (adopted from |Terziyan and Katasonov| (]2009[))

transparency. Agents were able to join into clusters called OntoShells, where these
acted as a single entity towards the external environment (Figure 24).

In their later paper, Terziyan and Katasonov]|(2009) describe GUN in more
detail and show its strengths in the domain of industrial automation. Traditionally,
semantic technology has been used to describe resources from the functional and
non-functional point of view. They however suggest the use of semantic technol-
ogy as a tool for description of resources’” behavior — proactivity, communication
and coordination. The word global then has two meanings. Firstly, it denotes the
fact that resources communicate and cooperate across the whole organizational
domain and beyond. Secondly, it stands for “global understanding”, where each
resource can understand other resource’s properties, state, behavior and business
processes that it is involved in. They also believe that GUN might be the so-called
“killer application” for the Semantic Web.

Despite all the benefits of agent-based systems, they still face one serious
problem. Since agents are autonomous, the effects of their interactions are uncer-
tain and difficult to predict at run time (Jennings| 2000). In order to keep these
interactions under control, agents must incorporate effective mechanisms of co-
ordination, cooperation and negotiation. One of the solutions is based on the
implementation of static protocols that govern these. On the other hand, these
rigid rules restrict the capabilities of MAS. [Jennings| (2000) believes that a long
term solution must be found.

Terziyan and Katasonov| (2009) recognize two main directions in the scientific
literature — social level characterization of agent-based systems and ontological
approaches to coordination. The first approach emphasizes the importance of
social interactions among the agents and the way they influence the individual’s
behavior. Some of the proponents of this system believe that agent-based systems

65

should be designed with agent roles in mind (Vazquez-Salceda et al., 2005). The
second approach based on ontological coordination emphasizes the need for a
semantic description of agent’s state, intentions, beliefs, etc. By describing agent’s
mental and physical state, other agents can coordinate their efforts accordingly.
This gives the agents the ability to “understand” each other.

There are several methodologies for MAS design and implementation such as
Gaia (Wooldridge et al., 2000), TROPOS (Bresciani et al., 2004) or OMNI (Vazquez-
Salceda et al., 2005). They vary in their approach to design and implementation of
MAS, but most of them are trying to blur the distinctions between these two. For
example, OMNI uses the roles as atomic units of behavior, where roles are defined
in a declarative manner. Roles are used not only in the development process, but
also at runtime, where each agent can play several roles at the same time. In order
to bridge the gap between the design and implementation, TROPOS methodology
uses Belief-Desire-Intention (BDI) agent architecture (Rao and Georgettf, [1995).

In most cases, agent programming language (APL) is used to describe the
agent and then it is compiled into an executable code or interpreted by an inter-
preter. APL is considered to be static code that does not leave the agent and it
is not shared among other agents. GUN is going beyond this concepts and con-
siders APL to be dynamic, modifiable and available at runtime, not only during
compilation time.

In order to give APL the mentioned properties, APL must overcome the
following issues. Firstly, agent roles described in APL should be easily accessible
to all agents at runtime. Therefore there has to be some APL storage or database
that can efficiently distribute APL code among agents. Secondly, since the same
code (role) is distributed by the organization to several agents, the code must
be understood by all agents in the same way. For example, many APLs are
based on the first order logic, which is suitable for a single agent description.
However, when one piece of code is used to describe several agents, all the
language constructs (e.g. n-ary predicates) must be understood the same way by
all the agents. Therefore, there has to be some common vocabulary shared by the
agent.

Based on the requirements mentioned above, Terziyan and Katasonov| (2009)
suggest to treat agent programs as data, which can be stored in a database. They
also suggest to utilize the Semantic Web technology to overcome the ambiguity
of the code. Firstly, the RDF model can be used to unambiguously describe the
data by using binary predicates. Secondly, URIs can be used to unambiguously
identify not only the resources, but also the predicates. Lastly, ontologies can be
used to explicitly describe the semantics of predicates and thus allow semantic
inference of data.

2.10.3 Ubiware architecture
As mentioned previously, an agent perceives its environment through sensors and

acts upon that environment through actuators. In Figure 3| (page [33) a general
schema was depicted that shows an agent with sensors, actuators, the environment

66

FIGURE 25 The three layered model of Ubiware

and a central decision-making component (the “brain” of the agent) marked with
the symbol “?”. In this subsection we will discuss the decision-making component
and how it is implemented in Ubiware.

As mentioned earlier, Ubiware is a multi-agent platform based on semantic
technologies. A Ubiware agent can play several roles, where each role is specified
in S-APL. S-APL is a declarative language based on RDF. More specifically, S-APL
is a superset of RDF written in N3 notation. Figure 25/shows a three-layered
architecture of a Ubiware agent (Katasonov and Terziyan, 2008). In the next
paragraphs we will describe each of these layers. Then, we will describe how these
layers relate to the platform.

The top layer is a behavior engine. Each agent has its own instance of it.
The engine is written in Java programming language. Originally, it was based
on JADE (Java Agent Development Framework). However, the engine can be
separated from JADE and a different architecture (including a custom one) can be
used instead 2012). The behavior engine contains an S-APL interpreter.
It is responsible for the evaluation of agent’s beliefs and their interpretation with
respect to the ontology. Some of the beliefs are interpreted as actions, where one
or more actuators may be invoked. Other beliefs are interpreted as sensory input
requests, where sensors are queried for information. Another category are beliefs,
which represent behavioral rules. Lastly, there is a category of beliefs that may
add, delete or modify other beliefs of the agent.

The middle layer is a belief storage. It is the place where agent’s beliefs
are stored at runtime and inspected by the behavior engine. The storage may
be implemented in several ways — in-memory storage, RDF storage, etc. In the
current implementation, the storage is implemented as an in-memory volatile
storage. However, there is an option to store a portion of beliefs in a persistent file
storage. When the agent starts its operation without any initial script, it contains

67

/ Agent John x / Agent Mary \
[Behavior Engine | [Behavior Engine |
Belief storage BN Belief storage

Data Rules | |»| Data Rules
13
Q Q Q Q e Q Q @ Q
Blackboard 0 Blackboard
ackboar AR A i s 2|2| &
\
\

Pool of Atomic S-APL
Behaviors Repository

Ubiware platform

FIGURE 26 An example of a Ubiware platform deployment

very few default beliefs in its storage (e.g. its name, date, time). These are scenario-
independent. The scenario-dependent code is loaded from an S-APL repository.
The S-APL repository contains agent roles written by agent developers. Note
that the belief storage is a runtime storage and thus it is dynamic, whereas S-APL
repository is essentially a database of S-APL scripts and therefore it is static. Also,
while it only makes sense to talk about the belief storage in terms of a single agent,
the S-APL repository stores scripts for all agents on the platform.

The bottom layer consists of RABs (Reusable Atomic Behaviors). RABs
are Java components that can act as actuators, sensors or other agent-related
components (e.g. reasoners). There is a set of standard RABs that are provided
with the platform. The developer can however create custom RABs. Both custom
and standard RABs can be stored in a shared pool of atomic behaviors. Each agent
has access to a blackboard, where RABs can exchange Java objects between each
other. These objects are often related to communication (especially asynchronous).
Without the blackboard, agents would have to serialize Java objects into RDEF, store
it into the belief storage and then read it again. This would be inefficient from the
performance point of view and also cumbersome for Ubiware developers.

With respect to the three-layered architecture, the Ubiware platform offers
three elements — the engine (including the blackboard), the standard set of RABs
and the standard set of S-APL models. If Figure 25/shows the three layers of a
single agent, then Figure[26/shows an example of a scenario hosted on the Ubiware
platform. In this particular scenario there are two agents (Repol and Repo2)
responsible for the infrastructure — namely distribution of RABs and distribution
of S-APL models. Then there are two case agents (John and Mary) that internally
consist of three layers as specified earlier. Technically speaking, also agents Repol
and Repo2 contain the same three layers, but for the sake of clarity these layers
are not displayed.

68

2.10.4 Semantic Agent Programing Language

S-APL, as it was introduced in 2008 in Katasonov et al. (2008), is a rule-based
declarative language serialized in N3 notation ﬂ However, in later work by
Cochez| (2012), S-APL is redefined in a formal way with several modifications
including numerous serializations. For the purpose of this publication we consider
the original version from Katasonov et al. (2008), because the platform itself uses
that version of the language. We provide the following literal description of S-
APL based on the “Semantic Agent Programming Language (S5-APL) Developer’s
Guide” (Katasonov et al.,[2012):

— Everything is a belief. All other mental attitudes such as desires, goals, commit-
ments, behavioral rules are just complex beliefs.

— Every belief is either a semantic statement (subject-predicate-object triple) or a
linked set of such statements.

— Every belief has the context container that restricts the scope of validity of that
belief. Beliefs have any meaning only inside their respective contexts.

— Statements can be made about context, i.e. contexts may appear as subjects
or/and objects of triples. Such statements give meaning to contexts. This also
leads to a hierarchy of contexts (not necessarily a tree structure though).

— There is the General Context G, which is the root of the hierarchy. G is the context
for the global beliefs of the agent (what it believes to be true here and now).
Nevertheless, every local belief, through the hierarchical chain of its contexts, is
linked to G.

— Making statements about other statements directly (without mediation of a con-
text container) is not allowed. The only exception is when a statement appears
as the object of one of the following predicates: sapl:add, sapl:remove and
sapl:erase.

The most important part of the definition is the first sentence — everything is a belief.
The behavior engine is responsible for identification of the belief types. The second
most important thing is the fact that Ubiware uses the idea of context containers
that form a hierarchy with the global context G being the parent. Figure
contains a sample S-APL code. Before the engine analyzes the meaning of the
code, it parses it into the following structure. For each subject-predicate-object
triple (SPO triple) the engine remembers which context container it is associated
with. Then it remembers the relationships between the containers and creates a
graph with the general context container as the vertex through which all other
containers (vertices) are reacheable. In the case of the example from Figure 27| the
inner structure will look like in Figure

Note that since S-APL is based on Notation3, it follows these rules. Firstly, a
subject can either be a URI, a container or a literal. S-APL allows annotations of
literals, even though it is not recommended. Secondly, a predicate is a URI. Strictly
speaking, the S-APL parser allows the use of literals as predicates. However, it is
not recommended and it does not make sense with respect to the RDF semantics.
Lastly, an object can either be a URI, a container or a literal.

6 If you are unfamiliar with the N3 notation, refer to Section[2.7.4.3|on page

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>
@prefix java: <http://www.ubiware.jyu.fi/rab#>
@prefix p: <http://www.ubiware.jyu.fi/rab_parameters#>
@prefix com: <http://www.ubiware.jyu.fi/communication#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
x:Mary rdfs:type x:Female
x:Mary x:age "25"
x:Mary com:thinks {x:John x:age "23"}
/+xReceive messages with SAPL ontologyx/
{sapl:I sapl:do java:ubiware.shared.MessageSenderBehavior}
sapl:configuredAs {

p:receiver sapl:is x:agentB

p:ontology sapl:is "SAPL"

p:content sapl:is {

x:Mary x:knows x:John

}
FIGURE 27 A fragment of S-APL code

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#> .
@prefix java: <http://www.ubiware.jyu.fi/rab#> .
@prefix p: <http://www.ubiware.jyu.fi/rab parameters#> .

@prefix com: <http://www.ubiware.jyu.fi/communication#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . || _Cl

@prefix x: <http://www.example.com/example#> .
x:Mary rdfs:type x:Female .

x:Mary x:age "25" .

x:Mary com:thinks _CI .

_C2 sapl:configuredAs _C3

@prefix x: <http://www.example.com/example#> .
x:John x:age "23" .

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#> .
@prefix java: <http://www.ubiware.jyu.fi/rab#> .
sapl:I sapl:do java:ubiware.shared.MessageSenderBehavior

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#> .
@prefix p: <http://www.ubiware.jyu.fi/rab parameters#> .
p:receiver sapl:is x:agentB .

p:ontology sapl:is "SAPL" .

p:content sapl:is _C4

_QS

@prefix x: <http://www.example.com/example#> .
x:Mary x:knows x:John

FIGURE 28 An example of an S-APL container hierarchy

70

Effector 1

’—> Effector 2

Brain (engine)

/ Belief storage \

FIGURE 29 A different perspective to the three layered model of Ubiware

Sensor 2

Al

2.10.5 Agent’s lifecycle

In order to understand how the Ubiware engine operates, we provide a different
representation of the three layered model depicted in Figure 25 Figure[29 provides
the same three layers. However, they are repositioned with the engine in the
center. In our experience, this depiction is simpler to comprehend when trying to
understand how the engine works, e.g. how the rules and commitments are being
executed.

The behavior engine of the agent operates in cycles (also called lifecycles).
During each lifecycle the engine performs actions related to belief manipulation,
rule execution, RAB execution, etc. The execution of rules, commitments and RABs
will be described later in the text. The agent lifecycle is relatively complicated
and consists of several steps. However, for the purpose of this publication we
introduce a simplified version of the cycle depicted in Figure

First of all, the engine looks for triples with predicates sapl:implies or
sapl:impliesNow in the MetaRule context. These triples are categorized as
meta rules and they are executed. Secondly, the engine is looking for the same
type of triples both in the Rule context and in the general context. Then they are
executed. In the third step the engine performs the same actions as in the first step —
it is looking for the metarules. The fourth step is to look for all triples where subject
and object are containers and the predicate is sapl:configuredAs. These triples
are identified as RAB calls. For each such belief the engine calls the specified RAB
and deletes the RAB call belief, so that the RAB is not triggered again in the next
cycle. After this step the engine checks if there have been any changes made to
the beliefs. If yes, it proceeds to the next iteration. If no, the agent enters the
sleep mode, when the agent’s engine is inactive. In the sleep mode the agent only
listens for the incoming inter-agent communication and other triggers. Once such
a trigger is detected, the agent is woken up and the engine starts to perform again.

71

Changes in beliefs?

F

| Collect garbage |—>| Sleep |

FIGURE 30 Ubiware agent’s lifecycle

2.10.6 Belief types

As mentioned earlier in the text, there are several types of beliefs. Some are just
pure data and others are commitments, rules, RAB calls, etc. In this section we will
discuss the most important ones. The first type of belief is a RAB call. Whenever
this type of belief appears in the general G context, the engine will call the specified
RAB with the specified parameters. The belief blueprint looks like following;:

{sapl:I sapl:do [RABURI]}
sapl:configuredAs {
[PARAM1] sapl:is [VALUE1]
[PARAM2] sapl:is [VALUEZ2]

[PARAMn] sapl:is [VALUEnN]

Parameter [RABURI] represents a URI from the java: namespace with qgname
equal to the full class name to a Java class implementing the behavior. Parameters
[PARAM1] and [VALUE1] represent the parameter name and parameter value
that will be given to the executed RAB. In general, a parameter value can be
a literal, URI or a container. For a concrete RAB the expected value types are
described in the RAB technical documentation. One of the most common RABs is
a message-sending RAB, which was also used in the example in Figure 7] (last 8
lines).

72

x:John x:hasChild x:Mary .

x:Barbara x:hasChild x:Andy .
{ x:John x:hasChild x:Mary .
?a x:hasChild ?b ——> | x:Barbara x:hasChild x:Andy .
}=>{ x:Mary x:hasParent x:John .
?b x:hasParent ?a

FIGURE 31 Execution of a conditional commitment and its effects on the belief structure

The second type of belief is an implication. Implications always have their
subject and object as a context container. The predicate is a URI from the sapl:
namespace . Since these implications are beliefs, by definition they may exist in
various context containers. However, they are evaluated by the engine only if
they are in one of these three containers — general context G, the MetaRule context
and the Rule context. Based on what kind of context they are in and what kind of
predicate they use, they can be categorized as conditional commitment, behavioral
rule, conditional action, inference rule and meta rule. We will concentrate on the
tirst three.

A conditional commitment is a triple in the general context with sapl:-
implies as its predicate. The subject container represents the condition (left side)
of the commitment and the object container represents the result (effect) of the
commitment (right side). The condition is met if and only if one can find such
a substitution in the general context that the condition becomes true. If such a
substitution is found, the conditional commitment is removed and the right side of
the commitment is inserted into the general context with respect to the substitution.
If it is not found, the conditional commitment stays in the belief storage. In the case
of the conditional commitment, only the first found substitution is used, unless
specified otherwise. An example of the commitment execution and its effects can
be seen in Figure Note that instead of sapl:implies we used =>. Since
implications are one of the most used types of beliefs, S-APL introduces these
special “arrows” for the programmer to quickly identify the type of implication
being used.

A conditional action is very similar to the conditional commitment. It uses
the sapl:impliesNow or —> predicate and it is also located in the general context.
The mechanism of triggering the action is almost identical with one exception —
if the engine cannot find a substitution for the left side, it deletes the conditional
action from its belief structure. If it does find a substitution, it behaves the same
way as the conditional commitment. Therefore one can be always sure that a
conditional action “survives” only one cycle in the belief storage no matter what
the result.

The third type of implication is a behavioral rule. Syntactically it is a con-
ditional commitment in the Rule container instead of the general context. The
interpretation is similar to the conditional commitment with one exception —no
matter if the substitution is found or not, the rule always stays in the belief storage

73

x:John x:hasChild x:Mary . x:John x:hasChild x:Mary .
x:Barbara x:hasChild x:Andy . x:Barbara x:hasChild x:Andy .
{ {
{ {
?a x:hasChild ?b — ?a x:hasChild ?b
}=>{ } =
?b x:hasParent ?a ?b x:hasParent ?a
} }
} sapl:is sapl:Rule } sapl:is sapl:Rule
x:Mary x:hasParent x:John .

FIGURE 32 Execution of a rule and its effects on the belief structure

(more precisely in the Rule context). An example is shown in Figure This
particular case, the rule would be executed every cycle, because the condition of
the rule is always fulfilled (we can find ?a and ?b such that ?a x:hasChild
?b). The agent would be endlessly executing this rule and it would never enter
the sleep state. This could lead to a livelock.

Table [/|lists five most commonly used implication types in S-APL. The table
should be read in the following way. The first column contains the implication
name as it is mentioned in the official Ubiware and S-APL documentation. The
second and third column identify the predicates used in the implication. Both
versions are equivalent and will be interpreted the same way by the engine. The
“container” column specifies the container in which the implication should be
positioned in order to be recognized by the engine as the type described in the first
column. Note that the first three rows identify three different implication types.
Even though they use the same predicate, they differ in the container which they
reside in. In other words, {...} => {...} in the general contextand {...}
=> {...}inthe sapl:Rule context are two different implications. Therefore
one should always consider both the container and the predicate type when trying
to specify a certain implication type. The last two columns describe what happens
to the implication itself once a match is found or not found. The letter D stands
for “deleted” and letter S stands for “stays”. Note that this table does not specify
where in the agent’s lifecycle the implication is executed. For example a rule and
a metarule seem to be almost identical according to this table. However, when
consulted with Figure 30, one can notice that a metarule is triggered in different
steps of the agent’s lifecycle than a rule. The combination of Figure 30|and Table
is the best “cheat sheet” for a Ubiware programmer working with implications.

74

TABLE 7 The most commonly used implication types in S-APL

implication type predicate symbol | container | match | match
found | not
found
conditional com-| sapl:implies => G D S
mitment
rule sapl:iimplies => Rule S S
metarule sapl:implies => MetaRule | S S
conditional action | sapl:impliesNow -> G D D
inference rule sapliinfers ==> Rule S S

2.11 Short summary of terms

agent Agent is a hardware or software-based system that has 4
properties — autonomy, social ability, reactivity and proac-
tiveness

sensor A means to collect the information about agent’s environ-
ment

actuator A means to affect the agent’s environment

context con-
tainer

A group of SPO statements that can be used as a subject or
an object in another statement

RAB Reusable Atomic Behavior — Java-based component that
encapsulates a behavior, sensor or actuator
context Context is any information that can be used to describe the

situation of an entity

internal con-
text

(in autonomic computing) Contextual information from the
body of the software

external con-
text

(in autonomic computing) Contextual information from the
software’s environment

ontology A way to explicitly represent the meaning of terms in vocab-
ularies and the relationships between those terms
self- Closed-loop system with feedback from the internal and

management

external context.

3 SMART ADAPTIVE FRAMEWORK (SAF)

In this section we are going to introduce a middleware framework for self-
managed systems called Smart Adaptive Framework (SAF). Firstly, a discussion
about the nature of pervasive computing (PerComp) environments is provided.
Secondly, a series of requirements for self-managed software in such an environ-
ment is presented. Furthermore, we introduce SAF as conceptual framework for
adaptation. Lastly, we discuss the possibility of using the Ubiware platform as an
implementation candidate for SAF.

3.1 Various aspects of pervasive computing environments

3.1.1 A pervasive computing environment

The main goal of a pervasive computing environment is to improve people’s lives
by providing computer-based support to their daily activities in a transparent
way (Weiser), [1991). Therefore humans as computer users are in the center of
this environment. A typical pervasive computing (PerComp) environment is a
distributed computing system consisting of various devices . When looking at
the environment from a hollistic point of view, one can distinguish three main
elements in such an environment — humans, devices and the computer network.
A device is any kind of hardware capable of communication that can be plugged
into the environment. The computer network allows the devices to interact with
each other. Finally, a human is capable to communicate with some of the devices
directly through a user interface (UI). However, not all the devices provide a user
interface. Figure 33|shows an example of a pervasive computing environment in
form of a graph. The nodes represent either humans or devices. Some devices
have a UI and some do not. The network is represented by edges of the graph.

76

(o z
device

. device

device device O
device UI ’
device

FIGURE 33 A typical pervasive computing environment

3.1.2 Properties of pervasive computing environments

Simply put, the goal of pervasive computing is to make computing technology
transparent to the users while retaining its benefits. We argue that in order to
achieve the true transparency of the computing technology, the environment
should be as open as possible. The openness of the environment has several
implications.

Firstly, an open environment is shaped not only by one, but many stake-
holders. The original idea of ubiquitous computing considers an environment
where most of the devices (pads, tabs and boards) are blank and not owned by a
particular user. Only when a person acquires a device, the device starts to serve
the operator. While this approach is perfectly reasonable in some environments, it
might not be feasible in all the situations. There are cases when it is unsafe to let
people take devices freely and start using them (e.g. in a shopping mall). Also,
nowadays almost everybody owns a mobile computer (smartphone, tablet, laptop,
etc.) and carries it with him-/herself. Carrying such a device has become a part
of our everyday lives. We base our idea on the assumption that every device is
owned by some entity (human, organization, etc.). One entity (owner) can own
several devices, but each device is owned just by one entity.

In general, every device can have a different owner and thus different goals.
Yet still these devices should be able to engage in communication with each other.
An example of such an environment is a shopping mall full of people. People
come to the mall with different goals — to shop, to rest, to meet friends, etc. Shop
owners are trying to make profit by selling products and services. The mall is
trying to keep the area clean, safe, rent the space to the shop owners, etc. It is clear
that some of these goals are in conflict with each other. All these stakeholders own
devices that should behave according to the owner’s goals. Despite these goals
being in conflict, the devices should be capable of communicating with each other
and provide services to each other. It is one big computing marketplace. On one
hand, there has to be a certain degree of flexibility. On the other hand, too much

77

flexibility might lead to chaos.

One might conclude that if it so, then a device should always prioritize
the individual goals over the group goals. This is however not true. There are
situations when fulfilling a group goal is of higher priority. Such situations include
cases when the punishment for not obeying a group contract is severe, e.g. loss of
reputation or loss of certain rights. Therefore there must be a way to evaluate the
priority of each goal and action under a given context .

Secondly, an open environment by definition cannot put too many restric-
tions on the devices entering it. Therefore the devices operating in such a space
will be heterogeneous. Heterogeneity makes the problem of conflicting goals even
more difficult. For example, some devices will have a constant power supply,
while others will be battery-powered. Naturally, in a battery-powered device
the power consumption is critical, while in a constantly-powered device it is not.
Heterogeneity also complicates the communication. Not all devices are capable
of communicating with each other. Not all devices provide the same quality of
communication in terms of throughput, latency, etc. Another manifestation of
heterogeneity is in the form of various software and hardware. A system trying to
tie these devices together should allow communication among as many device
types as possible, ranging from a simple light sensor, through a smartphone, to a
server.

Moreover, an open distributed environment is changing rapidly. Pervasive
computing systems are dynamic — each device can leave or enter freely at any time.
Also, many devices are portable. Usually the fluctuation is high in comparison to
non-mobile distributed systems. The situation in dynamic environments changes
quickly. The information that was true a moment ago might not be true anymore.
Also, the devices know only what they can obtain from their sensors or from other
devices. Due to the size and changing nature of the environment, they cannot
know everything. Thus the devices have to assume that there is some unknown
information. In other words, if one sees only five cars around himself/herself,
one cannot assume that there are only five cars in the whole world. Therefore, if
one asks “How many cars are there in the world?”, one must answer “I do not
know”, rather than answering “There are five cars”. This is called the open world
assumption. On the contrary, according to the closed world assumption any belief
not known by an entity is automatically considered false by this entity.

To summarize, a typical pervasive computing environment is open. It con-
sists of various stakeholders, each trying to achieve a combination of individual
and group goals. The appropriate actions taken by these stakeholders depend
on these goals and the context in which they find themselves. Moreover, devices
operating in such environments are heterogeneous in their software and hardware
nature. Lastly, pervasive computing environments are highly dynamic.

3.1.3 Conflicting goals and various stakeholders

We consider a human to be yet another resource in the environment. Since humans
require an interface in order to be a part of a pervasive computing environment,

78

they are represented by an agent running on some kind of device (usually portable).
In many cases, a good candidate for such a device could be a mobile phone, since
it is exclusively owned by a single person and in most cases it is being transported
with it. That way one can assume that the owner of the phone is wherever the
phone is. In some cases a different device might be used, e.g. ID badge, wrist band,
or even a sub-dermal chip/computer. Not all environments provide this possibility.
However, this assumption may significantly simplify the system development
process.

One thing to keep in mind when developing a system with human com-
ponents is the fact that there can be considerable differences between people’s
expectations. The software should be designed for people who want only minimal
human-computer interaction (HCI), as well as for people who want to be engaged
in decision making and thus want a highly customizable software. Naturally, giv-
ing a user a wider variety of options can be dangerous, especially if the user does
not understand the consequences of his/her actions. Since autonomous software
with an external approach to adaptation by definition provides a configuration
interface, user preferences can easily be incorporated into the adaptation cycle. It
is our belief that the group of people demanding highly customizable software
will grow in the future due to fact that the young population is well versed in
handling of a computer. Therefore the ability to incorporate user preferences into
the adaptation process will increase in significance over time.

3.1.4 Device heterogeneity

A pervasive computing environment consists of wide variety of devices in terms
of their computing capabilities. According to Smith/ (2013), between 77% and 90%
of U.S. citizens of age 18-29 own a smartphone. This number is more likely to
increase over the next few years. An example of a mid-end smartphone at the time
of writing (October 2013) is Samsung Galaxy S4 mini (also called Samsung 19190),
which features a dual-core ARMv7 1.7 GHz processor and 1.5 GB of operating
memory (Samsung, 2013). In comparison, the first consumer desktop dual-core
processor by Intel was Intel Core 2 released in July 2006, 7 years ago (Intel, 2006).
In 1993, around the time when Weiser’s original vision was introduced, Galaxy S4
mini would qualify as one of the top 500 supercomuters in the world in terms of
computing power (according to the historical data provided by [TOP500) (2013)).

In the recent years many low-priced single-board computers appeared. An
example would be Raspberry Pi offered in several specifications. As of time of
writing (November 2013), the weakest specification (Model A) with end price
approximately 25 EURBhas a 700MHz ARM11 processor with 256 MB of opera-
tional memory. This is powerful enough to run a middleware framework without
significantly influencing other software processes.

On the other side of the spectrum, there are devices that do not posses such
computational abilities. A variety of smaller, less powerful and more energy-
efficient devices is used in the area of automation. These sensors and actuators

1 Notice that this is the end price. The production costs are significantly lower.

79

can be used for the environmental control, each of them providing a networking
interface. Some of the companies already provide fully integrated systems with
a shared communication bus. In most cases these sensors and actuators are
benevolent by nature, i.e. they accept all other components” commands without
any deliberation. Such components alone do not posses any computing abilities.

Heterogeneity of devices manifests itself also in the way the devices com-
municate. Since pervasive computing environments contain a number of mobile
devices, the prevalent form of communication will be wireless. However, in some
cases wired connections may still be used, e.g. for simple low-cost stationary
sensors. Several wireless communication technologies can be used. Smartphones
and other devices (e.g. tablets or book readers) offer cellular data service based on
protocols such as GPRS (General Packet Radio Service), EDGE (Enhanced Data
rates for GSM Evolution), LTE (Long Term Evolution), etc. Then there are WLANSs
(Wireless Local Area Networks) based on IEEE 802.11 protocol — often called
WiFi™. Another type of wireless data network are WPANs (Wireless Personal
Area Networks), mostly based on the IEEE 802.15 standard. WPANSs are often
ad-hoc and have a more limited reach than WLANSs. The three most well-known
WPAN networks are Bluetooth, IrDA (Infrared Data Association) and ZigBee. The
hardware assumptions can be summarized as follows:

1. Computing capabilities of devices range from very powerful computers,
single-board computers, microcontrollers, to sensors and actuators with no
computing capabilities.

2. Some devices have a Ul and some do not.

3. Devices are capable of communicating with each other over various forms of
wired and wireless networks.

4. Some devices are stationary and some are mobile.

5. Some devices are battery-powered and some are constantly-powered.

3.1.5 Dynamicity of the environment

The environment consists of a mixture of stationary and mobile devices. Mobile
devices mostly communicate using wireless technologies and are battery-powered.
Their location changes and so changes the environment in which they reside. We
believe that mostly mobile devices are the ones that influence the dynamicityﬂ
and the level of openness of PerComp environments. This makes the problem of
communication and decision making inherently more difficult to tackle.
Generally speaking, the environment of a device is observed by the device
purely through its sensors. This implies that the state of the environment as
it is perceived by the device is determined by the sensory data — both current
and historical. The environment is dynamic due to the fact that the sensory
data changes over time. The rate at which the data is changing determines the

2 The word dynamism is used to refer to something that has a dynamic quality. We use the

word dynamicity to describe the extent into which something is dynamic, thus the exent of
dynamism.

80

dynamicity as perceived by the device. Note that the rate at which the environment
is changing objectively might be different than the rate at which the device senses
(perceives) these changes. This is due to fact that device’s sensing abilities are
limited, e.g. some sensors might be missing or they are not precise enough. As
an example, let us consider a tablet that has only two sensors — a light sensor and
a sound sensor (microphone). If the tablet is in an environment with a constant
level of ambient light and ambient sound, then the environment is perceived as
static. Changes in the atmospheric pressure, temperature or other parameters
are not perceived by the tablet. Such an evironment is objectively dynamic, but
subjectively it is perceived as static by the tablet.

Depending on the reason why the environment is perceived as changing, we
identify three main factors that influence the dynamicity as perceived by a device —
dynamicity of the physical environment, dynamicity of the social environment
and the rate of location change (Figure[34). As the name suggests, the dynamicity
of the physical environment is determined by the rate at which the properties
of the physical environment are changing over time. For example, a relatively
static environment is a museum at night. If one would put the tablet mentioned
previously into such an environment, the tablet would perceive the environment
as nearly static, because it is quiet and dark over a long period of time. An example
of a dynamic environment would be an urban environment, where the ambient
sound, light, temperature and other parameters change more often over time.

The second factor is the dynamicity of the social environment. Under the
term social environment of a device D we understand a set of devices (neighbors)
that the device D can potentially communicate with using a computer network.
The social environment of a device does not have to correspond to its physical
environment. The existence of WANSs makes it possible to be connected to virtually
any device in the world. Naturally, LANs as well increase the range at which
devices can communicate, but one can still assume that the end nodes are in the
same geographical area. The difference between a physical location and social
location of a neighbor is smallest in the case of PANSs, since they operate in a very
limited space. Generally speaking, the social environment is dynamic also due
to the fact that the communication medium (computer network) is constantly
changing. Moreover, if a device moves in space, then its network status (e.g. the
amount and quality of network connections) may change as well. Therefore there
is a connection between the physical and social environment.

Lastly, the rate of physical location change also influences the dynamicity
as perceived by a device. Even if the physical environment is static in time, it
might vary in space. Thus the change of the location of the device is perceived
as an environmental change. This is determined mostly by the environmental
diversity and device’s movement. Under the term diversity we understand the
rate of informational change in space. It might be the change in information about
the physical environment or the social environment. The device’s movement is
determined by its trajectory, velocity, etc.

For the purpose of this publication, we will call the “Dynamicity as perceived
by a device” perceived dynamicity. Perceived dynamicity is a subjective measure of

81

Social environment Physical environment Rate of
dynamicity dynamicity location change
Perceived
dynamicity

FIGURE 34 Dynamicity of the environment as it is perceived by an agent in a pervasive
computing environment

time change of agent’s beliefs. The only way for an agent to perceive is through
its sensors. Therefore a situation might arise, when objectively the environment
might be changing more dynamically or less dynamically than the agent perceives.
This might happen for example if some sensor is faulty, wrongly configured or not
available. It is also closely related to the problem of observability of the agent’s
environment.

3.2 Self-adaptive software in pervasive computing environments

3.2.1 Requirements

As mentioned in the previous chapter, self-adaptive software is a closed-loop
system with a feedback from the internal and external context. The combination
of self-managed software and a pervasive computing environment brings new
challenges.

Firstly, the autonomic software has to take into consideration other entities
in the environment. This not only increases the sensory load, but also creates new
problems. In pervasive computing environments not all services are available to
all devices. Therefore devices have to interact (cooperate) with each other and
their actions must be coordinated. Competition among the devices has to be
expected due to potentially conflicting individual goals. Therefore the adaptation
software should be capable of making decisions based on both individual and
group goals.

Secondly, the heterogeneity of the devices entering the environment makes
the communication more complicated. The problem is not only in the hetero-
geneity of the media, but also in the heterogeneity of communication languages.
The machine-to-machine (device-to-device) interaction is one of the most impor-
tant features of pervasive computing. Devices interact using communication
languages. As a conclusion, the self-managed software should be able to adapt to
various interaction methods depending on the communication context (e.g. type
of communication partner, type of medium, desired quality).

82

Third, a constantly changing environment calls for reconfiguration more
often than a static environment. Every self-managed software must deal with the
problem of reconfiguration cost versus its benefits. If too much computing power
is spent on reconfiguration (or adaptation in general), then there is no time left
for the actual application logic. An autonomic software in such an environment
should try to minimize the adaptation overhead.

Moreover, a highly dynamic environment requires the adaptive software
to be loosely coupled. Since not all components might be available at all times,
components need to be replaced often. Therefore the adaptive software should
support both the parameter adaptation and the compositional adaptation. Also,
tightly coupled systems scale worse than loosely coupled systems.

Furthermore, service discovery and reuse by different applications has a very
high priority in ubiquitous computing (Kindberg and Fox, 2002). These dynamic
and heterogeneous environments can cause the service availability changes rapidly.
Since pervasive computing environments are open, an agent must also count with
the possibility of being cheated. This forces the device to consider trust and
reputation as a part of service discovery process. In order to solve these issues, the
autonomic software must provide dynamic service discovery methods.

3.2.2 Approach

In order to improve the scalability of the system, we use an external approach
to the adaptation in a form of an adaptation middlewareﬂ Using the external
approach, one can separate the adaptation logic (middleware) and the application
logic (middleware application). Using this approach application developers do
not have to be concerned with self-management to such an extent as it is in the
case of the internal approach. Instead of making the application adaptive, they
make it only adaptable.

Many authors use a control loop as a method to achieve self-adaptivity.
Oreizy et al. (1999) describe a loop for self-adaptive software, that consists of 4 steps
(Figure 35p). In the first step, the system monitors and evaluates the software’s
running parameters. Secondly, the planner constructs an adaptation plan based
on the evaluation. In the third step, the change descriptions are deployed. Lastly,
the change descriptions are used to replace and/or reconfigure the components.
Kephart and Chess (2003) propose a structure of an autonomic manager based on
so-called MAPE-K cycle. MAPE-K is very similar to the approach by Oreizy et
al. (1999). The acronym stands for Monitor, Analyze, Plan, Execute with shared
Knowledge. The similarity between these two models can be seen in Figure
where the left side (a) describes the model by Oreizy et al. (1999) and the right
side (b) describes the model by Kephart and Chess|(2003). [Dobson et al.| (2006)
introduce another autonomic control loop based on four steps — collect, analyze,
decide and act. These four steps are very similar to the MAPE-K cycle. We
believe that the usage of a control loop might be beneficial due to the fact that it
reasonably divides the tasks performed by the self-adaptive system and clearly

3 See Section (page|59) for more details

83

Plan changes

Autonomic manager
Analyze Plan
Deploy change Adaptation Evaluat.e and
descriptions management monitor
obeservations 1
Monitor Knowledge Execute

Managed element

A B

FIGURE 35 Two closed loop examples: (a) Closed loop by [Oreizy et al. (1999), (b) MAPE-
K closed loop by Kephart and Chess|(2003)

Y

Enact changes and
collect observations

defines the information flow. However, we argue that the planning stage is not
always necessary due to its high computation costs.

Our approach is also based on the three-layered architecture for adaptation
by Kramer and Magee (2007ﬂ The three-layered model however does not specify
the internal implementation of each layer. By combining this approach with the
MAPE-K cycle, it is possible to avoid costly planning by allowing shorter sub-
cycles within the main cycle. By utilizing three layers with increasing processing
capabilities, the information is travelling to the upper layers only when it cannot
be handled by the current level. We believe that this model is suitable for the
area of pervasive computing, because it decreases the computation time, memory
usage, energy consumption, etc.

The nature of device interactions within a pervasive computing environment
strongly resembles a multi-agent system (MAS). These two systems share several
similarities. Firstly, MAS are by nature distributed, same as pervasive computing
environments. Secondly, in both cases the usefulness of the system increases with
the increasing number of interactions among the elements (agents or devices).
Moreover, both systems engage in similar types of social activities, such as coop-
eration, competition and negotiations. The area of MAS is a field with a variety
of problem solving techniques that can also be applied in pervasive computing
environments.

In our experience, the heterogeneity problem can be solved by utilizing
semantic technologies. Using semantic technologies can help in discovery and
utilization of heterogeneous resources (Katasonov and Terziyan, 2008). Also, they
can be used for behavioral control among various resources (Lassila, 2005). Table
summarizes the requirements for self-managed software in pervasive computing
environments. It also provides our approach to these problems.

4 See Section (page|60) for more details

84

TABLE 8 Requirements for self-managed software in pervasive computing environments
and our approach

Requirement Our approach
R; | Adaptation decisions are based on both indi- | MAS

vidual and group goals.
R, | Ability to adapt to heterogeneous interaction | Semantic web tech-

methods. nologies
Rz | Minimize the adaptation overhead. Architectural
approach (three-
layered model)

Ry | Support both the parameter adaptation and | External approach
the compositional adaptation.
Rs | Support dynamic service discovery. MAS and Semantic
Web technologies

3.3 Smart Adaptive Framework

In this section we are going to introduce an adaptive middleware for pervasive
computing environments called Smart adaptive framework (SAF). SAF is based
on the four previously mentioned approaches. Since SAF consists of several
components with various functions, we divided this section into the following
subsections. Firstly, we introduce the conceptual architecture of the framework.
Each framework processing element is described. Secondly, we describe various
types of sensors and actuators that the platform uses for actuation and context
provisioning. Moreover, we elaborate on possible reconfiguration triggers, which
we call incidents. Lastly, various software and platform profiles are discussed.

3.3.1 Conceptual architecture

Smart adaptive framework (SAF) is a middleware based on a hybrid architecture
using the three-layered architectural approach (Kramer and Magee, 2007) and
a MAPE-K cycle (Oreizy et al., [1999; Kephart and Chess| 2003). The platform
architecture can be seen in Figure 36, The platform consists of a shared knowledge
base (KB), service facilitator, various processing elements and resources.

The letter K in MAPE-K denotes a knowledge base, which can be seen on
the left hand side of the figure. The shared knowledge base (KB) contains all
contextual information, plans, goals, capability descriptions, etc. At any moment
any processing element may access the base and fetch information that it needs
for its operation. The rest of the loop (MAPE) can be seen in the middle as a
modified circle consisting of the processing elements. The name element was
chosen intentionally, because the word component refers to a component of the
managed software on top of the platform. The monitoring phase is embodied in

85

| Software |
Knowledge I sensor “ actuator I
base /\\ "
N / N 8
% conott::;al | monitor | | action executor | §
Y |l information A \
k!
B
[¢)
& Component g
o | detector | control 4':
-0 3
8 §]
:I’]
2 _

Change
/l deliberator | —»l plan executor management

\

Goal
| management

Legend | belief IR Software resource
element

FIGURE 36 SAF architecture

86

the monitor processing element. The analyse phase is implemented by the detector.
Instead of the MAPE planning phase, SAF contains two elements — deliberator
and planner. This is due to our previously mentioned argument that planning is
not always necessary. Finally, the execute phase is implmented in two processing
elements — plan executor and action executor.

When looking at the figure, the three layers are in the opposite order than
they were depicted in the original model. The logically lowest layer (Component
control) is in the top and it consists of sensors, actuators, monitor, detector and
action executor. The goal of this layer is only to monitor and affect the software
and the environment. The logically second layer (Change management) is in the
middle and it consists of deliberator and plan executor. This layer is concerned
with best plan selection and its execution. The logically topmost layer (Goal
management) is in the bottom and it is represented by the planner element.

The depiction of the framework contains two main types of sensors and
actuators. On the top, sensors and actuators are responsible for the internal
context and software actuation. The sensors and actuators on the right are related
to the external context and actuation.

The monitor reads the information from various sensors, which will be
discussed later in a separate section. The sensory information is forwarded to the
detector, which classifies the sensory input. Based on the user’s and software’s
profile, the detector decides what should happen. It either ignores the change (if
it is irrelevant) or contacts the deliberator in the second layer. A relevant change
is any sensory information that either breaks a policy or it can contribute to a
solution of an already broken policy.

The deliberator is responsible for checking of the existing plans and finding
the best solution among them. If no plan is suitable, the third layer is contacted,
where the planner takes over. The planner checks the goals of the system together
with user preferences and creates a plan. This plan is then sent to the plan executor,
which determines the sequence of actions, which in turn are executed by the action
executor. Table [J]contains a summary of processing elements, their relationship to
the MAPE portion of the MAPE-K cycle and the three-layered architecture.

Each device in a pervasive computing environment may run several appli-
cations, each having different capabilities and providing various services. These
services and capabilities need to be discovered and properly accessed. In the SAF
framework, it is the responsibility of the service facilitator (SF). The facilitator
collects the information about all available services and provides it to other com-
ponents. SF is also responsible for the trust and reputation management. Some
services may be provided by more than one application. However, the quality of
the provided service may vary. In order to determine the quality of the provided
service there has to be some metric. We suggest the use of utility functions as
metric providers due to their superiority over simple action and goal policies
(White et al., 2004; Kephart and Walsh| 2004; Kephart and Das, 2007; Walsh et al.,
2004).

Each device in the environment has an instance of SAF on top of which it
runs middleware applications. The devices communicate with each other through

87

TABLE9 Summary of SAF processing elements’ roles

Layer Processing Original| Role

component MAPE
Component | Monitor M Reading context-relevant sensory
control data

Detector A Policy consistency check

Deliberator r Incident discovery and classification
Change Best incident recovery plan selection
management among existing plans

Action executor | E Action execution

Plan executor | E Incident recovery plan execution
Goal Planner P Planning for incident recovery
management

their SAF instances. The human-computer interaction (HCI) between a device
and its user is facilitated through an application running on top of SAF. It is not
our intention to tackle the problem of HCI in pervasive computing environments.
However, the framework provides enough flexibility for a UI application to be
developed on top of it. Through such an application the user may change the
global (platform-wide) preferences, manage the device, configure sensors, etc. We
do not impose any restrictions on the type of Ul and HCI methods, e.g. graphical
user interface, haptic interface, command-line interface, voice user interface, etc.
A sample pervasive computing environment based on SAF is shown in Figure

3.3.2 Sensors and actuators

There are various criteria according to which we may categorize sensors and
actuators. Based on where the data is collected from, we distinguish between
software (SW), hardware (HW), operating system (OS) and environmental sensors
(Figure38). We consider these four to be the most important aspects of the system
in terms of context provisioning.

The software sensors sense data from the adaptable software. Naturally, the
software developer must make this data available. Since every software running
on top of SAF middleware can have a different application logic, there should be a
way to provide own classification of software sensors.

The hardware sensors sense data about physical components of the device
that the software is running on. This could include CPU usage, memory usage,
battery level, Bluetooth status, screen brightness, disk temperature, etc. The
OS sensors sense the information about the operating system and its running
parameters. This can include number of active processes, virtual memory size,
number of active users, etc.

Finally, the environmental sensors pick up information about the device’s

88

App || App || APP || APP

'd ~\ 'd
Q 7 uI App
-~
-
A =

[Operating system [Operating system

[Hardware [Hardware l
A

App || App ur Rl P
SAF Q

[Operating system

[Hardware]

FIGURE 37 SAF in pervasive computing environments
Sensor

PushSensor -
\| PhysicalEnvSensor ‘

FIGURE 38 Sensor classification

| MeasurementSensor

| ListenerSensor

s

VirtualEnvSensor ‘

1

environment. The environmental sensors are divided into to two categories —
virtual and physical environmental sensors. Physical environmental sensors (PES)
measure data from the device’s surroundings such as ambient temperature, humid-
ity, loudness, location, speed, yaw angle, pitch angle, etc. Virtual environmental
sensors (VES) measure data related to the devices presence on the Internet and/or
other computer networks. An example of such a sensor is a social media sensor,
news feed sensor, etc.

The second sensor classification is based on the method used to provide the
data. In general there are pull and push sensors. A pull sensor is a passive sensor
that provides the data only on request. In the case of the framework, it means that
the agent has to actively ask the sensor for the information. A push sensor is an
active sensor. Typically, a push sensor keeps track of parties that are interested in
the data and whenever there is a change in the reading, the parties are provided
with the new data. Often it is possible to provide a wrapper that would expose a
pull sensor as a push sensor. A similar method is used to notify the detector by
the monitor, which will be discussed later.

The third method to classify the sensors is based on their mode of operation.
There are measurement sensor and listener sensors. Measurement sensors are

89

PlatformActuator |

N

1l

HWActuator

Actuator

ParametricActuator |

SWActuator

CompositionalActuator|

OSActuator

FIGURE 39 Actuator classification

measuring the value of a certain variable, such as temperature, CPU usage, virtual
memory size, etc. The result of such a sensor is a value. Usually they are imple-
mented as pull sensors. Listener sensors are listening for certain events, rather
than just providing a value. The result of such a sensor is not only a value, but
a whole event description. We base this classification on our experience in the
SCOPE project . In the Work Package 2 we used both types of sensors for gathering
and classification of information about life threatening events (e.g. natural disas-
ters), cultural events, marketing messages, etc. All these were then integrated into
a single mobile application and provided to the user based on his/her preferences
and location.

There are four main types of actuators (Figure B9). Firstly, platform actuator
can change the configuration of the SAF platform. Secondly, hardware actuator is
responsible for manipulation of hardware components such as network interface
card, camera, speakers, etc.This type of actuator would be used for actions such
as taking a picture, playing a sound or calibrating a sensor. Moreover, operating
system actuator is used to influence the operating system, e.g. chaning the memory
space for a certain application. Finally, software actuator changes the adaptive
software running on SAF. Parametric actuator is used for parametric adaptation
and compositional actuator is used for compositional adaptation (e.g. component
replacement).

3.3.3 Incident classification

The self-adaptive software is capable of autonomously changing its behavior if it
does not operate within specified parameters. In order to do this, such a software
must be able to sense all relevant parameters that might influence its operation.
Not all of the changes are relevant to the operation of the software. There must
be some way to distinguish between relevant and irrelevant ones. We call the
relevant changes incidents. Not all incidents are equally important. Some of them
might be more severe than others. Therefore some kind of classification should
be performed. We suggest the classification depicted in Figure 40l Note that even
though the word incident refers to something unpleasant or unwanted, developers
can use incidents as indicators of a significant change. We decided to use a word
different from change, because not all changes in the sensory information are
necessarily context-relevant. Therefore we may say that an incident is a context-

90

HWIncident PhysicalIncident
SWIncident B | VirtualIncident|
Incident

DeviceIncident EnvironmentalIncident

|SocialIncident| |LocationIncident|
| UserIncident | SpatialIncident
PreferenceIncident| |EmotionalIncident MotionIncident

FIGURE 40 Incident classification

relevant change.

As mentioned previously, we assume that a significant portion of devices in
the environment will be mobile. It is reasonable to assume that the change in the
position and motion-related data (e.g. speed, acceleration, pitch, yaw) might be
relevant to mobile devices. We call these spatial incidents.

Another type of incidents are user incidents. An adaptive software must
by definition react to user preference changes. A preference incident is used to
refer to such a change. Humans are one of the three elements of a pervasive
computing environment. A social incident refers to any change in terms of other
people’s proximity to the device. For example if a mall customer comes close
to an information screen, it plays a commercial. Lastly, an emotional incident is
related to the field of emotionally intelligent HCI (Pantic and Rothkrantz, 2003). If
a device has sensors for measuring user’s affective states, an emotional incident
can indicate a context-relevant change in user’s emotions.

Device incidents are related to changes in the device itself. As the name sug-
gests, HWIncident is a hardware incident (e.g. high disk temperature), OSIncident
is related to changes in the operating system (e.g. drop in free virtual memory
space), SAFIncident is a framework-related incident (e.g. new software deployed)
and finally, SWIncident refers to changes in the internal context of the application.

The last type of an incident is an environmental incident. The physical
environment incident determines a change in the physical environment of the
device, e.g. ambient temperature, humidity, amount of light, etc. The virtual
environment incident indicates a context-relevant change in the area of available
services, capabilities and other devices. This type of change is relevant for example
in cases when a device cooperates with other devices/services that are not in its
physical proximity (e.g. a web service). Finally, same as in the case of software
sensors, there should be a simple way to provide own classification of software
incidents.

91

3.3.4 Configurations and profiles
3.3.4.1 Software profile

In general, every software requires a different way of adaptation. However, many
types of actions associated with adaptation share certain similarities. By providing
generic configurable adaptation techniques in form of a middleware, the software
developer does not have to reimplement these techniques inside every software,
as it is in the case of the internal approach to self-management. Instead of that, the
developer provides a configuration of his/her software, which can be read by the
platform.

The adaptability of the software is achieved through two elements. Firstly, the
developer defines the adaptation profile of the application. The adaptation profile
is a set of policies that the adaptation engine should follow for this particular
software. There should be two types of policies — hard and soft. If a hard policy is
broken, the system is considered non-functional. Hard policies are often associated
with mission-critical portions of the application logic. A soft policy represents the
optimal state. However, if a soft policy is broken, the system still operates, it is
only less effective. There should also be a hierarchy of soft policies, which reflects
their importance. This is useful in cases where the system has to choose between
braking one or the other policy.

Secondly, the structural profile describes the structure of the application in
terms of components, functions, modules, etc. Using the structural profile, the
adaptation middleware can make decisions related to component reconfiguration
and replacement. Many modern programming languages are delivered with
introspection tools and libraries that can be used to partially or fully automate the
process of structural profile creation. For example, in the case of Java applications
one can use custom annotations for this purpose.

3.3.4.2 Platform profile

The use of configurable middleware also allows a greater control over the adapta-
tion process. This might be beneficial for managing a larger numbers of devices
falling under one organization. The administrator can restrict certain behavior
by configuring each device’s platform. Also, the platform might be configured to
facilitate adaptation for specific types of software.

In order for the platform to operate properly, the available sensors must be
configured. This is especially true for the external context sensors, since they can
serve all the applications running on top of the middleware. Moreover, certain
capabilities might be used platform-wide. Lastly, the platform configuration
profile might contain some generic plans, e.g. component replacement or sensor
calibration.

92

3.4 Self-* properties

Kephart and Chess (2003) present four properties of self-managed software. Self-
configuration is the ability to autonomously configure systems and components
following high-level policies. Mckinley et al.|(2004) recognize two approaches to
adaptation — parameter adaptation and compositional adaptation. SAF provides
both types through software actuators that can modify software parameters. A
parameter change or component change can be expressed as an action with certain
input parameters. Such an action is then executed by the action executor element.
Actions can be composed into plans by the planner element. The policies are
provided in the software adaptation profile and are incorporated into the planning
process.

Self-healing autonomously finds, diagnoses and repairs localized software
and hardware faults. In SAF, the monitor reads sensory data and notifies the
detector. The detector is capable of detecting a fault. If a fault is detected, an
incident is created that is then forwarded to the deliberator. Depending on the
availability of a plan, either deliberator or planner finds a solution to the problem,
which is then enforced through the plan executor and action executor as a set of
repair actions for the actuator.

Self-protection is the ability to autonomously defend against malicious at-
tacks or cascading failures. In the case of pervasive computing environments, the
greatest danger of malicious attacks comes from the other devices in the environ-
ment. It is important to recognize potential attackers among the communication
partners. This is achieved through the service facilitator (SF). SF is responsible
for trust and reputation evaluation. Also, policies (especially hard ones) in the
software adaptation profile define the operating parameters of the software. As
mentioned earlier, the planner considers policies in the decision-making process.

Self-optimization drives the components to continuously seek possibilities
to improve their operating parameters. In SAF, this ability is achieved through
utility functions.

3.5 Ubiware as a candidate for SAF implementation

Based on the requirements and the approach to self-management described pre-
viously, the SAF framework should be an agent-based middleware based on the
hybrid model of adaptation. It should be capable of effective resource discovery
and communication in heterogeneous environment. We base our approach on
two main hypotheses. Firstly, we assume that semantic technologies improve the
interoperability among various heterogeneous devices in pervasive computing
environments. Secondly, we believe that agent technologies are a suitable tool
model and implement interactions among various actors in such environments.

These two hypotheses are also the base of the Global Understanding Environ-

93

ment (GUN) vision (Ierziyan, 2003, 2005; Kaykova et al., 2005). The Ubiware agent
platform was created as an effort toward the GUN vision (Ierziyan, 2008, 2011).
Another important contribution towards the vision is the creation of the Semantic
Agent Programming Language (S-APL). S-APL is a declarative language based
on Semantic Web technologies. The language is used as an agent communication
language (ACL), agent programming language (APL) and for the representation
of agent’s beliefs. S-APL can be used to tackle the problem of heterogeneity of the
environment. Naturally, this is not a coincidence, since Ubiware was developed
with pervasive computing environments in mind.

The three layered architecture from Figure 36| can be implemented as a
Ubiware agent. This follows the Ubiware and GUN philosophy, where a Ubiware
agent acts as an adapter to the resource. The knowledge base contains beliefs in
form of SPO triples. Since in the case of a Ubiware agent everything is a belief, also
plans and goals are just special beliefs. The knowledge base also contains other
types of beliefs that will be mentioned later. The framework components can be
implemented using the S-APL language. Following the Ubiware philosophy, the
sensors and actuators can be implemented as RABs. Finally, one of the benefits of
using S-APL is the fact that it is based on the RDF family of standards. This allows
us to utilize already existing reasoning and modeling tools for added benefit.
In order to implement SAF using Ubiware and S-APL, several issues must be
solved. The next chapter introduces three new features that should extend the
range of Ubiware’s capabilities and make it more suitable for implementation of
SAF framework. For each of these improvements, we provide the motivation that
drove us to implement it.

4 UBIWARE PLATFORM IMPROVEMENTS

In this chapter we provide three Ubiware platform improvements necessary for
a Ubiware-based implementation of SAF. For each improvement, we provide
the motivation with regards to SAF together with the implementation in terms
of S-APL constructs. In case new constructs or RABs are introduced, they are
described as well. Also, for each implementation an OWL ontology is provided —
both as a graph visualization and as an OWL file in Turtle notation.

Note that while the provided ontologies are formally defined and consistent
with respect to the OWL specification, they are used in an atypical way. Since
S-APL uses beliefs as a way to define both data and application logic elements (e.g.
implications or RAB calls), the ontologies act as belief blueprints. This is similar to
the role of a class in object-oriented programming.

4.1 Utility functions

4.1.1 Motivation

Russell and Norvig (2003) describe four main types of agents — simple reflex
agents, model-based reflex agent, goal-based agent and utility-based agent. A
simple reflex is the simplest type of agent that makes decisions only based on the
current sensory input. A model-based reflex agent deliberates based on a model
of the environment. This model is gradually built by incorporating historical
observations into the decision-making process. The third type is a goal-based
agent that makes such decisions that should progressively bring it into the desired
state (goal). The choice of actions leading to this state is determined by a plan.
Finally, the most sophisticated agent is a utility-based agent, which, apart from
being able to find a plan, is also capable of evaluating the usefulness of each plan
or action by using utility functions.

According to |Russell and Norvig| (2003), utility function maps agent’s state
onto a real number, which expresses the degree of agent’s happiness. Utility

95

functions are a suitable problem-solving tool for two types of problems. Firstly,
in the case of several conflicting goals, the utility function can determine an
appropriate tradeoff. Secondly, if there are several unreachable goals, the utility
function can help choose a goal that is the most likely to be achieved.

Kephart and Walsh| (2004) argue that in complex environments such as
autonomic systems, a combination of reflex, goal-based and utility-based agent
behavior may improve the overall performance of the system. The current set
of S-APL constructs does not allow a simple representation of utility functions.
Therefore we introduce a set of new constructs to overcome this problem.

41.2 Implementation

In Nagy (2012) we discussed the issue of business-to-customer (B2C) multi-channel
communication. We proposed two approach to this problem. Firstly, for modeling
of the domain, we suggest an ontology-based approach. Secondly, for decision
making (e.g. best channel selection), we suggest an approach based on utility
function. We developed this idea further in Nagy (2013) and presented a frame-
work for multi-channel communication. The process of best channel selection
based on utility functions on top of semantic data was described in more detail.
This approach had one limitation — the utility functions were not described in
form of RDF data. In this section we present an improved version of the original
utility functions for semantic data. In our approach, utility functions are described
using RDF statements and therefore this approach follows the Ubiware philosophy
“everything is a belief”.

By describing utility functions in form of RDF statements, the following
benefits are gained. Firstly, it is possible to make statements about utility functions
and their elements. This allows us to build taxonomies. Secondly, it is possible to
reason about the utility functions and thus check their consistency and/or infer
new facts about them. Moreover, it is possible to query utility functions and their
properties. For example, one can ask “Show me all the utility functions where
person’s age matters”.

Figure 41| shows an example of a utility function u:uf1, where cost c and
speed s of a certain route is taken into account. Mathematically, the function can
be expressed as follows:

Utility function u:ufl has a query associated with it. The query acts as
a filter over the data. In the example it is asking for all the routes with their
speeds and costs. The query is written in S-APL, however the transformation
to SPARQL is trivial. The second parameter is describes which element is being
evaluated (u:usesEvalElement). In the example, a route r is being evaluated.
The result of a query is a result set with one binding for each found route. This
result set is then later used in the mathematical function u: £0. Each function
is described by its type (e.g. multiplication, addition, etc.) and its operands.
In the example, one can see two binary functions, where u: f1 acts as a part

96

u:ufl rdf:type u:UtilityFunction
; u:hasQuery {
?r rdf:type x:Route
; xX:cost ?c
; X:speed ?s
}
; u:usesEvalElement "r"
; u:thasFunction u:f0

u:f0 rdf:type u:Function, u:BinaryFunction, u:FunctionDiwv
; u:opl u:fl
; u:op2 [rdf:type u:Variable ; u:hasVarName "c"]

u:fl rdf:type u:Function, u:BinaryFunction, u:FunctionMul

; u:opl [rdf:type u:Variable ; u:hasVarName "s"]
; u:op2 [rdf:type u:Value ; u:hasValue "10"""xsd:integer]

FIGURE 41 An example of a utility function description

u:ufl rdf:type u:UtilityFunction

uchasQuery { G,
i ?r rdf:type x:Route : i?r rdf:type x:Route :
i ; x:cost ?c 3 i ; x:cost %c :
; x:speed ?s . 3 ,xspeed”s
). ?result sapl:expression " (10*95) / (?C) LI

; u:usesEvalElement "r" } => { A

; u:hasFunction u:£0 . // do something .

!

!

1

Fa Ve W VN,

VOV Vel

N\

FIGURE 42 Conversion of a utility function description into a conditional commitment

of u: £0. Such functions can easily be transformed into a sapl:expression
command as shown in Figure 42| We do not provide a formal algorithm, since this
transformation is trivial.

We have shown how a utility function can be described and how it relates
to S-APL language constructs. The next step is to evaluate the function on top
of some RDF data. Figure 43/shows an evaluation annotation (lines 1-3). The
evaluation resource u:evall is has the mandatory property u:useFunction
that points to the function that should be used for the evaluation. The parameter
u:useDataContainer is optional and it specifies the context container, from
which the data should be queried. If no container is defined, then the general
context G is queried. Currently, the evaluation is performed by executing an
experimental RAB called UtilityEvaluator (lines 5-8). However, in the future
a simpler call can be used (line 10). The reason for not using the simpler call is the

97

1 u:evall rdf:type u:Evaluation
2 ; u:useFunction u:ufl

3 ; u:useDataContainer ?dataCont

4

5 { sapl:I sapl:do java:ubiware.experimental.UtilityEvaluator }
6 sapl:configuredAs {

7 u:eval sapl:is u:evall

10 sapl:I sapl:evaluate u:evall

FIGURE 43 The evaluation of a utility function

DATA
x:rA rdf:type x:Route x:rC rdf:type x:Route
; x:cost "0.25"**xsd:float ; x:cost "0.1"~*xsd:float
; x:speed "0.5"**xsd:float . ; x:speed "0.3"**xsd:float .
x:rB rdf:type x:Route x:rD rdf:type x:Route
; x:cost "0.8"~*xsd:float ; x:cost "0.6"~*xsd:float
; x:speed "0.6"**xsd:float . ; x:speed "0.9"**xsd:float .
RESULTS
u:evall u:result (
[rdf:type u:ResultElement ; u:hasResourceURI x:rC ; u:hasEvalValue "30"*“xsd:float]
[rdf:type u:ResultElement ; u:hasResourceURI x:rA ; u:hasEvalValue "20"*“xsd:float]
[rdf:type u:ResultElement ; u:hasResourceURI x:rD ; u:hasEvalValue "15"**xsd:float]
[rdf:type u:ResultElement ; u:hasResourceURI x:rB ; u:hasEvalValue "7.5"**xsd:float]

)

FIGURE 44 Result of the utility function execution on top particular data

fact that the simpler call would require changes in the Ubiware engine, while the
use of a RAB is inherently supported.

The result of both calls is the same. Figure 44| shows the data consisting
of four routes named A, B, C and D. Each route is annotated with its speed and
cost. The result is an ordered list of result elements. Each result element describes
the evaluation value (score) and the resource’s URI. According to this data and
function, we may conclude that the best route is the route C with score of 30.

We also provide an ontology for checking the consistency of utility function
definitions, calls and results. The OWL ontology can be found in Appendix
and its visualization is available in Figure

86

sapl:Container owl:Thing
A ~.. ~
i thasQuery :useDataContainer thasResourceURI
(N :UtilityFunction) N |:Evaluation) N [:Operand N [:ResultElement
E E E E
P |O|:hasFunction [1-1]| <F,aS,iR> P |O|:useDataContainer [[1-1] |<F,aS,iR> P I P [O|:hasResourceURI| [1-1]| <F,aS,iR>
O|:hasQuery [1-1]| <F,aS,iR> Q| :useFunction [1-1] |<F,aS,iR> D|:hasEvalValue [[1-1]|<F>
| |D|:usesEvalElement]| [1-1]| <F>) o
\:,'
:use.Function I |
N [:Function | | N|:Variable N |:Value
“-.. thasFunction E E E
A Pl | P [D[:hasVarName [[1-1][<F,aS,iR> | [P [D]:hasValue [[1-1][<F.aS,iR>

=

-. N [|
‘._‘:usesEvalElement N [:BinaryFunction N [:UnaryFunction

E E

P[O[:op1 [[1-1] [<F,aS,iR> P [O[:0p1|[1-1][<F.aS,iR>

Of:op2 [[1-1] |<F,aS,iR>

FIGURE 45 Visualization of the utilify function ontology

opl

:hasVarName

99

u:eval3 u:result {

{[rdf:type u:ResultElement] u:resourceURI x:rC ; u:evalValue "30"} x:order "1" .
{[rdf:type u:ResultElement] u:resourceURI x:rA ; u:evalValue "20"} x:order "2" .
{[rdf:type u:ResultElement] u:resourceURI x:rD ; u:evalValue "15"} x:order "3"
{[rdf:type u:ResultElement] u:resourceURI x:rB ; u:evalValue "7.5"} x:order "4" .
}
{
u:eval3 u:result {
{?res u:resourceURI ?x} x:order "3" .
b
u:eval3d u:result {
{* rdf:type u:ResultElement} x:order ?ord .
}o.
?m sapl:max ?ord
Po=> A
{ sapl:I sapl:do java:ubiware.shared.PrintBehavior } sapl:configuredAs {

p:print sapl:is "There are ?m elements and the third element is ?x"
} o
o

FIGURE 46 A variation of the utility function result and a conditional commitment
showing two operations on top of the result

4.1.3 Other improvements

When representing an ordered list of result elements, we used a method based
on containers as described in the RDFS specification (Guha and Brickley, [2004).
However, it is possible to use other methods as well. Melnik and Decker (2001) de-
scribe seven methods for representing the order in RDF. All of these methods have
advantages and disadvantages when it comes to operations on top of ordered lists,
in particular operations in S-APL. Therefore we introduce a different approach re-
sembling the Order by Ordinal Properties method. The elements of the list are stored
in a context container, where statements about them indicate their order. Figure [46|
shows the method together with a S-APL conditional commitment querying the
total number of elements in the list and the 3" element. It is also possible to
perform other statistical operations, such as the average evaluation value in the
list. In general, utility functions in S-APL can support several methods for result
representation. This can be done by adding a property to the u:Evaluation
resource, which would indicate the desire result list type. The developer would
determine the most desirable list type based on the operations that he/she wants
to perform with it later in the code.

Another improvement could the introduction of meta-functions. Meta-
functions are classes of functions. It is also possible to look at them as function
providers. An example could be a multiplication meta-function with one argument
n. An instance of this meta-function would an n-ary multiplication function of
type u:Function. By associating a certain execution logic to the meta-function,
a new fully-defined function could be created on the fly. Figure 47| shows an
example of this approach. When the Ubiware engine detects an unknown function
class (x: TernaryMul) on line 4, it tries to find its definition by looking for its
class (function’s metaclass). In the case of x :MulMetafunction, the defintion is

N U W N =

100

x:TernaryMul rdf:type u:Function, x:MulMetafunction
; X:thasArity "3" .

x:fx rdf:type x:TernaryMul

; u:operandl [rdf:type u:Variable ; u:hasVarName "x"]
; u:operand2 [rdf:type u:Variable ; u:hasVarName "y"]
; u:operand3 [rdf:type u:Value ; u:hasValue "4"""xsd:integer |

FIGURE 47 Meta-function example in S-APL

primitive: expect the amount of operands determined by the arity and multiply
them. In this particular example it means that fr..nsrymu (¥,Y,2) = x -y - z. Note
that (as mentioned earlier) metaclasses are only allowed in OWL Full. OWL DL
does not support them.

4.2 Belief safeguards

4.2.1 Motivation

In 2010, a new policy system was introduced in Ubiware prototype version 3.0
(Terziyan et al., |2010b). This policy system restricts agent’s external actions. A
policy check is triggered whenever an unconditional commitment statement is
found in the global context G. The implementation is based on the idea that every
agent has a policy checker object that restricts its behavior and there is a policy
checking agent on the platform. Every time an agent performs an action, it first
asks the policy checker object if the action is allowed. If yes, it performs it. If no, it
redirects its request to the policy agent, which gives the definite answer based on
the global set of policies. We will call this system action policies.

In our experience, when defining agent’s behavior, there are some critical
states that the agent should not achieve, because it may be in conflict with its goals.
Also, there might be some desired states that an agent should always be in. The
set of desired or undesired states depends on the tasks that the agent performs. In
the case of a Ubiware agent, the state of the agent can be determined by its beliefs,
therefore we are interested in a set of desired and undesidered beliefs.

In the current implementation of Ubiware, a Ubiware developer can utilize
implications to check for existence or nonexistence of certain beliefs. The check
(S-APL query) would be performed in the left-hand side of the implication and
the action would provided in the right-hand side. This does not differ from any
other implication, e.g. a conditional commitment. The existence or nonexistence
of such beliefs is critical in terms of agent’s operation and it should be treated with
a higher priority than simple implications. Therefore it would be helpful to the
Ubiware developer to have a simple method to check for existence or nonexistence
of certain beliefs. We will call these methods belief safequards.

In general, some belief safeguards might be more important than others. For

101

example, an agent controlling a smartphone does not wish to be in a situation
when it is without any Internet connection. On the other hand, it must not get into
a situation that its battery is below 15% and it still consumes more than 0.1 Watts
of energy. Clearly, the second state is more dangerous than the first state. Thus,
the decision of turning off the Internet connection when the battery is below 15%
is permissible, even though it breaks the first safeguard. Therefore, we believe that
each safeguard should have a severity level associated with it.

There are several reasons why safeguards are not called policies. First of
all, an agent with hard policies must not enter a state that would break any of
the hard policies. An agent looks at the consequences of its actions and if the
consequence breaks a policy, the action is not performed. A safeguard is “weaker”
in its protecting ability. A safeguard can be broken if a more important safeguard
must be protected. Also, we base the idea of safeguards on the fact that an agent
cannot always know all the consequences of its actions. If the safeguard is broken,
only after that the agent performs corrective actions. For example, it makes little
sense to put a policy guarding the fact that the smartphone should not be operated
in temperatures below —30 °C, since it might not be in the power of the phone to
affect this parameter. Secondly, a Ubiware agent is based on RDF and RDF is based
on the open world assumption. Therefore, if a certain belief does not exist in KB, it
does not mean that this belief is false. Falsehood must be annotated explicitly. The
definition of a safeguard is not based on the truth and falsehood of a belief, but
rather on the existence or nonexistence of the belief.

4.2.2 Implementation

We introduce two safeguard types — existence safeguard and nonexistence safe-
guard. As the name suggests, an existence safeguards is guarding a set of beliefs
that should always exist. A nonexistence safeguard is guarding beliefs that should
never exist. The existence of beliefs is determined by a S-APL query. Figure
shows the example of S-APL code describing two safeguards mentioned earlier.

The safeguard checking mechanism is implemented with the help of S-
APL metarules (see Appendix 2.I). The metarules were chosen, because they
are triggered before all the other implications in the G context. This way the
safeguards are given a higher priority than the rest of the code. In the case of a
nonexistence safeguard, a metarule is used to check that the beliefs guarded by the
prohibition safeguard do not exist. For this purpose the sapl:doNotBelieve
construct is used. In the case of an existence safeguard, the condition in its original
form is used. If a safeguard has been broken, then a special ticket object is created
describing the situation. The ticket is used to resolve the problem and it goes
through several states. The state diagram is shown in Figure 49|

Once the ticket is detected, it enters the detected (DET) state. The Ubiware
developer may register a handler to handle the ticket. In that case the state moves
to resolution in progress (PRO). The resolution process might finish in three ways.
Firstly, the conflict is resolved and the safeguard is not broken anymore. In that
case the ticket is put to the resolved (RES) state. Secondly, the conflict cannot be

102

@prefix sfg: <http://www.ubiware.jyu.fi/safeguard.owl#>

x:safeBattery rdf:type sfg:Safeguard, sfg:NonexistenceSafeguard
; sfg:hasImportance "10"""xsd:integer
; sfg:hasCondition {
x:thisDevice x:hasBatteryLevel ?lev
?lev < "15"""xsd:integer
x:thisDevice x:hasConsumption ?con
?con > "0.1"""xsd:float

x:safeInternet rdf:type sfg:Safeguard, sfg:ExistenceSafeguard
; sfg:hasImportance "5"""xsd:integer
; sfg:hasCondition {
x:thisDevice x:hasConnection ?con
?con rdf:type x:InternetConnection
?con x:hasStatus x:active

FIGURE 48 An example of two safeguards

critical
(CRI)

resolution
in progress
(PRO)

reso
(RES)

detected
(DET)

FIGURE 49 State diagram of safeguard ticket states

103

x:tl rdf:type sfg:Ticket, sfg:TicketBLO
; sfg:inState sfg:stateBLO
; sfg:handlingSFG x:safelInternet
; sfg:blockedBySFG x:safeBattery .

FIGURE 50 Example of a safeguard ticket in the blocked state

resolved due to the fact that another safeguard with a higher priority would be
broken. This is indicated by moving to the blocked (BLO) state. It is also indicated
which higher priority safeguard caused the block. Lastly, the agent does not know
how to solve the problem and the ticket enters the critical (CRI) state. It depends
on the programmer what should happen if a ticket in such a state is found. In
some cases the program might be terminated, suspended, or the user must resolve
the problem. Once the ticket is released from its BLO or CRI state, it enters the
RES state and is discarded. In all cases, the ticket always starts its life in the DET
state and always ends its life in the RES state. An example of a ticket in the BLO
state can be seen in Figure 50, Note that the state of the ticket is indicated both by
its class and the sfg: inState property indicating the state. The usage of class
was chosen, because in OWL it is possible to easily add an extra property for the
ticket in a certain state. For example the property sfg:blockedBySFG makes
sense only in the BLO state. The safeguard ontology is available in Appendix
and its visualization can be seen in Figure

sapl:Container

k4
thasConditon —____o----"TTTTTTTTOT @ ___________________
-7 1 e
N [:Safeguard (N |:Ticket) Y N [:TicketState
“.. | E |:ExistenceSafeguard or :NonexistenceSafeguard DR dli A [:TicketBLO or :TicketCRI or :TicketPRO or @ |A
1 P |O|:hasCondition (1-1] [<FaS;iR> |\ . 0N 4 neSkG :TicketRES or :TicketDET . é@ P
D| :hasImportance [1-1]| <F> "~../oo """"" P |O|:handlingSFG [1-1] [<T.aSiR> |
'n‘.@% | |Ol:inState [1-1] | <T,aS,iR>)
| | G
N [:ExistenceSafeguard | | N |:NonexistenceSafeguard |
A A N [:TicketCRI N | :TicketPRO N [:TicketRES N |:TicketDET
P P A A A A
< — P P P P
S s oy T - — =
@ N |:TicketBLO R 27T
I
P [O|:blockedBySFG [[1-1]| <F,aS,iR>

FIGURE 51 Visualization of the safeguard ontology

y01

105

4.3 Plans and actions

4.3.1 Motivation

As mentioned previously, SAF uses a hybrid approach based on two concepts —
MAPE-K cycle and three-layered architecture for self-management. In both these
concepts, planning is of great importance. In the case of MAPE-K, planning is one
of the steps in the cycle, which is represented by the letter P in the word MAPE. In
the case of the three-layered architecture, the top layer called “Goal management”
is responsible for plan creation.

Nikitin et al.| (2009) introduced the concept of Ontonuts into the Ubiware
platform. An ontonut is a semantic software component, whose instance represents
a capability with a known input and expected output. An Ontonut is described by
providing a precondition, effect and a script. Using a backward chaining planning
technique, it is possible to create Ontonut plans. Nikitin (2011) uses Ontonuts as
one of the tools to solve the problem of distributed information querying in the
industrial domain. Whereas this solution is suitable for this particular domain,
we believe that by providing a more general approach to planning we may gain
several benefits.

The planning problem has been studied for several decades. Generally
speaking, there is a great amount of planning approaches, each having certain
benefits and drawbacks. For a given domain and problem, one planner might
perform better than the other. For a different domain and problem, the situation
might be reversed. There are various outlets, where new or improved planning
algorithms are introduced every year (e.g. International Conference on Planning
and Scheduling). We believe that instead of creating a planner specifically for
Ubiware, it is more benefitial to utilize already existing planners. The Planning
Domain Definition Language (PDDL) is a widely accepted problem and domain
description language in the area of planning. By transforming the planning
problem from S-APL into PDDL we may utilize all planning algorithms capable of
accepting PDDL as the input language.

4.3.2 Overview

Planning takes place in an external module that accepts planning problems de-
scribed in PDDL. Creation of new planning algorithms is outside the scope of
this publication. Also, a planner implementation in S-APL language is not pro-
vided, because the language is not suitable for such a task. Principally, it could
be possible to implement a planner using S-APL, but the implementation would
be cumbersome and it would bring no extra benefits in comparison to already
existing planners. We rely on an external planner capable of accepting PDDL as
the input language.

Typically, a planning problem described in PDDL consists of two files —
domain file and problem file. The domain file describes available predicates and

106

D, fi D¢ £ fi
action descriptions domain description
in S-APL s in pddl AN &
E N]
& s . & actions
o g solution o] 1
D \:7) D K| u.,*, in sap.
B g D ol g
incident description ﬁ fx
. 1 P | |»| problem description /
1n sap in pddi

FIGURE 52 Overview of the planning process in Ubiware

available actions. The problem file contains the description of objects, initial state
and goals. If the domain does not change, a single domain file can be used to
solve various problems described in the problem files. Since in SAF the amount of
predicates and actions does not change often, the content of the domain file will
in most cases stay unchanged as well. However, for every new problem that the
planner is going to face, a new problem file is needed.

The planning process is described in Figure 52, The first step is to convert
the action descriptions in S-APL (D4) into the domain description in PDDL (D).
This is done by the SAPL-PDDL transformation (f;), which will be described later.
The concrete incident described in S-APL (Dp) is also transformed by (f;) into a
PDDL problem description file (Dp). Both files are then used by the planner (f,)
that provides a solution (Dg). The solution is then transformed by the solution
transformation function (f3) into a set of actions in S-APL (Dr).

The following subsections contain the description of actions and plans both
in S-APL and PDDL. Also, the conversion between S-APL descriptions and PDDL
descriptions is provided.

4.3.3 Plan ontology

The framework’s planning component is responsible for plan creation. Each plan
is described as a sequence of actions. Also, the plan itself is an action. This creates a
recursion that allows one to create multi-level plans. Each action has preconditions
and effects represented by containers consisting of positive and negative S-APL
expressions. The ontology is formally described in Appendix[1.3|and visualized in

Figure 53|

sapl:Container B CEEEEEEEEEEEETE I

A A

.ipreconditionExist
:preconditionNonexist

effectAdd

o

:hasVariableBinding

:effectRemove

=

N [:AtomicAction N [:Plan
E E
P | | | P OlzhasPlanSequencel[l,l] |<F,aS,iR>

FIGURE 53 Visualization of the planning ontology

(N |:Action h N [:Step

E E

P [O}:preconditionExist [0,1] kF,aS,iR> P |OlhasVariableBinding [1,1] |<F,aS,iR>
O|:preconditionNonexist [[0,1] |<F,aS,iR> O|:performsAction [1,1] |<F,aS,iR>
O|-effectAdd [0,1] kF,aS,iR> ;

L Ol:effectRemove [0,1] F,aS,iRa{ :performsAction ..

:hasPlanSequence

owl:Thing

_..1boundTo

N |:Variable

1

P |O[boundTo

(1,1]

F,aS,iR>

D [:expressedAs

[L,1]

<F>

rdfs:Bag

01

108

4.3.4 Action description in S-APL

An action is described in S-APL using a special resource of type pla:Action.
The resource URI determines the action name and therefore for every action the
URI must be unique. Every action can have a precondition and an effect. The
precondition is a logical expression that must be true in order for the action to be
applicable. The effect is a logical expression that becomes true once the action has
been completed. Therefore we may consider an action a transition from a state
described by the precondition into a state described by the effect. Both the effect
and the precondition are described in two containers each. Lastly, a set of S-APL
commands is associated with the action. These commands determine what should
be done in order to perform the action. Figure 54| contains a simple action in S-APL
and a set of beliefs.

The precondition is determined by two containers — the exist container
(pla:preconditionExist) and the nonexist container (pla:precondition-—
Nonexist). The semantics is as follows. If the beliefs in the exist container do
exist and the beliefs in the nonexist container do not exist, then the precondition is
met. Similarly, there are two effect containers. The add container contains beliefs
that will be inserted in the belief storage and the remove container contains beliefs
that will be removed from the belief storage. The content of these four containers
must be a list of S-APL query beliefs. These beliefs must not contain containers.
Only variables, URIs and literals are allowed. Also, each belief must contain at
least one and at most two variables.

4.3.5 Plan description in S-APL

As mentioned earlier, every plan is considered a compound action. Therefore every
plan has the same properties as an action. Furthermore, a resource describing a
plan has a property pla:hasPlanSequence which points to a list of so-called
steps. A step can be considered an instantiated action. The step resource provides
the information about the action that should be performed and the corresponding
variable binding (pla:hasVariableBinding), where each variable is given a
value (pla:boundTo). An example of a plan is shown in Figure

4.3.6 SAPL-PDDL domain transformation

The transformation of an action in S-APL into PDDL consists of the following steps.
Firstly, the name of the action in PDDL is equal to the URI of the pla:Action
resource. Secondly, the parameters of an action are determined by going through
all the beliefs in all effect and precondition containers and finding all the variables.
In the case of the example from Figure 54| there are only two parameters — ?x and
?y. Lastly, the preconditions and effects are determined in the same way — by
transforming the beliefs in RDF into unary or binary predicates, which will be
explained in the next paragraph. The final product of the transformation can be
seen in Figure 56|

109

x:getMarried rdf:type pla:Action
; pla:preconditionExist {
?x x:loves ?y .
?y x:loves ?x .
?x = 2y .

; pla:preconditionNonexist {
?x x:marriedTo ?y .
?y x:marriedTo ?x .

; pla:effectAdd {
?x x:marriedTo ?y .
?y x:marriedTo ?x .

; pla:effectRemove {
?x x:loves ?y .
?y x:loves ?x .

}

x:John x:loves x:Mary .
x:Mary x:loves x:John .
x:Bill x:loves x:Mary .
x:Bill x:marriedTo x:Alice .

FIGURE 54 An example of a S-APL action

The first step of the transformation of an SPO triple into a PDDL predicate
consists of determining the belief type depending on what elements were used to
express it. All beliefs contained in precondition and effect containers of an action
are S-APL queries. A S-APL query triple can be expressed using four elements —
variables, URISs, literals and containers. Since containers do not have a counterpart
in PDDL, statements containing them are not allowed in action descriptions. Let
us divide the remaining element types into two categories — variables and non-
variable (URIs or literals). Based on this division, there can be eight belief types in
total. Out of these eight belief types, two are borderline cases — a belief consisting
of three variables and a belief consisting of three non-variables. These two cases
are not allowed, because as mentioned earlier, each precondition or effect belief
must have at least one and at most two variables. The remaining six belief types
and their conversion into PDDL predicates are displayed in Table

The first three columns of Table 10| determine the type of the belief, where V;
means a variable at i-th position and N; means a non-variable at i-th position. The
combination of the first three columns determines the type of the predicate, e.g.
the first row describes a VVN predicate, the second row describes a VNV predicate,
etc. The fourth column determines the conversion schema. For binary predicates,
the predicate name consists of a letter determining the position of the non-variable,
semicolon and the URI or literal of that non-variable. The predicate name is then
followed by two variables. In the case of unary predicates, the predicate name
consists of two elements separated by a dash followed by a variable. The [] brackets
denote a string transformation function. The reason for applying such a function

110

x:planl rdf:type pla:Plan, pla:Action
; pla:hasPlanSequence (x:stepl x:step2)
; pla:hasVariables ({
x:varCompX pla:expressedAs "compX"
x:varCompY pla:expressedAs "compY"

; pla:preconditionExist {
?compX rdf:type conf:Component
?compX conf:implements ?caphA
conf:thisSoftware conf:requires ?capA

; pla:preconditionNonexist {
conf:thisSoftware conf:uses ?compX

; pla:effectAdd {
conf:thisSoftware conf:uses ?compX

x:stepl rdf:type pla:Step
; pla:performsAction x:removeComponent
; pla:hasVariableBinding {
x:varCompX pla:boundTo x:componentOld

x:step2 rdf:type pla:Step
; pla:performsAction x:addComponent
; pla:hasVariableBinding {
x:varCompX pla:boundTo x:componentNew
x:varCapA pla:boundTo x:capabilityX

FIGURE 55 An example of a S-APL plan

TABLE 10 Types of S-APL query statements

’ Subject \ Predicate \ Object \ PDDL predicate \ Predicate type ‘

Vi V2 N3 ([O:N3] V1 V3) | B
V1 N> V3 ([P:N2] V1 V3) | B
Vﬁ Ab Ak (H%Ab-CXAk]Vﬁ) U
Ny V2 V3 ([S:N1] V2 V3) | B
N1 Vz N3 ([SZNl—O:Ng,] Vz) U
N1 N2 V3 ([SINl-PINz] V3) U

111

Translation table

<http://www.ubiware.jyu.fi/examplesf#getMarried> |actionA
P:<http://www.ubiware. jyu.fi/examples#loves> predA
P:<http://www.ubiware. jyu.fi/examples#marriedTo> |predB

P:<http://www.ubiware. jyu. fi/sapl#neq> predC
x:getMarried rdf:type pla:Action (:action actionA
; pla:preconditionExist { :parameters (?x ?y)
?x x:loves ?y . :l\ :precondition (and
?y x:loves ?x . [(preda ?x ?y)
?x I= ?y . T (predA ?y ?x)
} | (predB ?x ?y)
; pla:preconditionNonexist { [(not (predc ?x ?y))

?x x:marriedTo ?y . |+ (not (predC ?y °?x))
?y x:marriedTo ?x .)

} :effect (and
; pla:effectAdd { (predC ?x ?y)
?x x:marriedTo ?y . T (predC ?y ?
_ | (Pre ?y ?x)
?y x:marriedTo ?x . (not (predA ?x ?y))
} |_—7| (not (preda 2y ?x))
; pla:effectRemove {] y

?x x:loves ?y]/)

?y x:loves ?x .
}o. PDDL

S—-APL

FIGURE 56 Conversion of a S-APL action into PDDL

is the fact that URIs might contain special characters that are not allowed in PDDL
predicate names. Therefore a transformation into a PDDL-enabled string space is
required. This transformation must be bijective, because a reverse transformation
is needed once a plan is found. One of the possible transformation functions is a
simple translation table (Figure [56).

There is one important aspect of the action description transformation which
we call effect expansion. This situation happens if there is a special relationship
between a certain binary and a certain unary predicate. We will show this situation
on an example. Let marriedTo (?x ?y) be a binary VNV predicate correspond-
ing to ?x x:marriedTo ?y. Let johnsWife (?z) be a unary NNV predicate
that translates into x: john x:marriedTo ?z. Let’s assume that a certain action
A promisses to marry any two people, which means that the effect of the action
ismarriedTo (?x ?y). Then this means that A’s effect should also include (be
expanded to) johnsWife (?y), meaning that it can marry john as well. We say
that the predicate marriedTo (?x ?y) expands the predicate johnsWife (?y).
The expansion relationship between each of the 6 predicate types is shown in

Figure[57]

A PDDL domain file consists of a set of predicates and a set of actions. An
example of a converted PDDL domain file can be seen in Figure

112

Legend

@O>—>(®) = A expands B

FIGURE 57 The effect expansion

(define (domain domain)
(:predicates (predA ?x ?y) (predB ?x ?y) (predC ?x ?y)
)
(:action actionA
:parameters (?x ?y)
:precondition (and (predA ?x ?y)
(predA ?y ?x) (predB ?x ?vy)
(not (predC ?x ?y)) (not (predC ?y ?x))

ceffect (and
(predC ?x ?y)
(predC ?y ?x)
(not (predA ?x ?y))
(not (predA ?y ?x))

FIGURE 58 An example of a PDDL domain file

113

4.3.7 SAPL-PDDL problem transformation

For every incident reaching the planner component a PDDL problem description
tile must be created. The file is created based on the domain file and the knowledge
base of the agent. A typical PDDL problem definition file consists of five elements
— problem name, domain, objects, initial state and goal. During the conversion
process, the problem name is derived from the incident URI, which is unique for
every incident. Since in SAF there is only a single domain, the domain name is
irrelevant as long as it matches the domain file name. The objects, initial state and
goal are related and can be determined as follows.

The objects and the initial state can be determined together by accessing
the domain description file and acquiring the list of predicates. An alternative
to the list of predicates is the translation table, if one is used. The list of actions
corresponds to a certain query pattern in S-APL language. For each action, the
query pattern is used to query the knowledge base. The result of such a query
is a result set with variable bindings. Each variable binding together with the
predicate corresponds to one initial state statement. The objects are determined
simply by collecting all variable values for all the variable bindings.

The algorithm is described in Algorithm |1, Let’s consider a scenario from
Figure 54, There is one action that has already been included into a PDDL domain
description file and a set of four beliefs. The domain description file (Figure
states that there are three predicates with corresponding S-APL query statements,
therefore the predicates variable (algorithm line 3) contains three elements.
We will show the algorithm for the first iteration of the for cycle on line 4. Let’s
assume that p is equal to predicate predA. On line 5 the query is performed. The
corresponding query of predicate predA is ?x x:loves ?y.Once the query is
performed, the result set contains three variable bindings (line 7), each having
two variables (?x and ?y). For each variable binding a statement object with
corresponding predicate is prepared (lines 9 and 10). For each variable name we
determine the variable value (line 12), add the value to the statement object (line
13) and insert it into the result set (line 14). Naturally, for unary predicates the
cycle consists of one iteration only. The same happens for the other two remaining
predicates. The result is then a set of URIs describing the S-APL resources and a
set of statements with bound variables defining the initial state. These resources
can then be transformed and used as objects in PDDL problem description file.

The goal is determined by the safeguard condition that caused the incident to
occur. Every incident is caused by a ticket, which can be determined by following
the inc:responsibleTicket property of the incident resource that triggered
planning. The safeguard can be determined by following the sfg:handl1ingSFG
property of the ticket. An example of a complete PDDL problem file can be seen

in Figure [@}

114

Algorithm 1: PDDL conversion algorithm

input :KnowledgeBase kb
input :File domainFile
output: URI[] result
output:Statement[] stats

1 URI[] resources;
2 Statement][] stats;
3 Predicate[] predicates = getAl1lPredicates (domainFile);
4 foreach p in predicates do
5 SAPLQuery query = p.get SAPLQuery ();
6 String[] varNames = query.getVarNames ();
7 VariableBinding][] rs = kb.performQuery (query);
8 foreach vb in rs do
9 Statement statement;
10 statement.predicate = p;
11 foreach var in varNames do
12 URI resource = vb.getVarVvalue (var);
13 statement.addvarvalue (var,resource) ;
14 resources.add (resource);
15 end
16 stats.add (statement);
17 end
18 end

(define (problem incidentX)
(:domain domain)
(:objects john mary bill alice)
(:init (predA john mary)
(predA mary john)
(predA bill mary)
(predB bill alice)

(:goal (predB Jjohn mary))

FIGURE 59 An example of a PDDL problem file

S-APL plan

x:planl rdf:type pla:Plan, pla:Action
; pla:hasPlanSequence (x:stepl x:step2)

x:stepl rdf:type pla:Step

PDDL plan

[

\
N

(acRemoveComponent

FIGURE 60 Conversion of a PDDL plan into S-APL

4.3.8 Solution transformation into S-APL

115

The solution to a planning problem is a sequence of actions with bound variables.
If each action is performed as defined in sequence, the goal will be reached. A
sample action sequence transformation into a S-APL plan is shown in Figure
In order to save space, the sequence consists of only two actions and the plan
is missing precondition and effect containers. Using a transformation table or a
bijective function, the PDDL actions and objects are transformed into URIs. These
are then used as action identifiers and variable values for plan steps.

4.4 Related ontologies

’ Ontology ‘ Prefix ‘ Purpose ‘ Defined in ‘
utility ufn:,u: | Describes utility functions Appendix|1.1
function
ontology
safeguard | sfg: Describes existence and nonexis- | Appendix|1.2
ontology tence belief safeguards
planning | pla: Describes actions, plans and their | Appendix|1.3
ontology conditions

5 UBIWARE-BASED IMPLEMENTATION OF SAF

Chapter 5 introduces a SAF implementation based on the Ubiware platform
enriched by the three new improvements that were introduced in Chapter 4.
Firstly, we present ontologies that are used to describe agent’s beliefs that are used
for knowledge representation and decision-making. Secondly, the platform and
software configurations are described. Moreover, we define the service facilitator
and related processes (e.g. calculation of reputation). Lastly, each SAF processing
element is described in terms of its implementation in Ubiware and S-APL.

5.1 Ontologies

In Chapter 3 we discussed the classification of sensors, actuators and incidents.
We presented a simple classification based on subsumption. In this section we
introduce a set of formal OWL ontologies in Turtle notation. Due to their length,
all OWL files will be provided as Appendices. However, in each of the following
subsections we discuss the choice of ontologies and we also provide sample ABox
assertions.

Many assertions might appear to be long despite using a relative concise
notation (Turtle). We assume that the developer will use some kind of graphical
tool (e.g. Protégéﬂ or similar) that would allow him /her to conveniently configure
the platform, sensors, actuators and other components. The output of the graphical
tool would be an S-APL document.

5.1.1 Sensor ontology

The formal OWL ontology is provided in Appendix|l.4/and its visualization in Ap-
pendix The platform keeps track of available sensors by using sen: Sensor
resources. According to the Ubiware philosophy, sensors are implemented as
RABs and therefore sen: implementedIn property points to the RAB that per-

1 Available at http:/ /protege.stanford.edu/

117

x:5ensorCPUTemp rdf:type sen:Sensor, sen:MeasurementSensor,
sen:PullSensor, sen:HWSensor
; sen:implementedIn java:fi.jyu.ubiware.sensors.CPUSensor
; sen:providedObjectType x:CPUTempMeasurement .

x:measurement45356 rdf:type sen:SensorResult, x:CPUTempMeasurement
; sen:readFrom x:sensorCPUTemp
; sen:hasTimestamp "2013-09-12T14:36:23.5562"""xsd:dateTimeStamp
; sen:value "25"*"xsd:integer .

sapl:I sen:haveCurrentState x:measurement45356 .

FIGURE 61 Example of a sensor assertion

forms this function. Each time some data is sensed, a special resource of type
sen:SensorResult is created that represents the measured data or event. Each
result provides a timestamp using the sen:hasTimestamp property together
with an event object (for event sensors) or a measured value (for measurement
sensors). Since in general there can be many sensors performing the same function,
every sensor result contains a link (sen: readFrom property) to the sensor that it
was obtained from. An example of a sensor with a result is shown in Figure

The timestamp on each measurement is provided for the historical data
analysis. The agent always remembers the current sensory value for each sensor.
This achieved through the last statement in Figure The sapl:I URI refers
to the current agent. The object refers to the URI of a measurement resource
indicating the last measured value. There can be several statements like this, one
for each sensor.

Each sensor can be configured to remember only certain amount of values.
In Appendix 2.2l we provide a piece of S-APL code, where a CPU temperature
sensor is called. Upon a successful execution a condition starting at line 13 is
checked. The condition specifies that if there are more than 10 entries from that
particular sensor, the oldest one will be deleted (line 24). This way there are
always at most 10 measurements. The amount of remembered values can easily be
modified (also at runtime) through a sensor parameter. An example of parametric
self-configuration could be a case when thanks to this feature it is possible to
change the amount of remembered measurements depending on the available
memory. As the amount of free memory changes over time, so does the amount of
remembered measurements.

5.1.2 Actuator ontology

The formal OWL ontology can be found in Appendix|1.5and its visualization in
Appendix It follows the class hierarchy introduced earlier in Figure 39| (page
89). It also defines several object and datatype properties. Firstly, each software
actuator has the property act :affects, which indicates the capability of the
adaptive software that is influenced by it. In case the actuator is implemented as a
RAB, it is referenced by the act : implementedIn property. Figure|62/shows an

118

x:camera rdf:type act:Actuator, act:HWActuator
; act:implementedIn java:fi.jyu.ubiware.phone.CameraActuator .

x:fontActuator rdf:type act:Actuator, act:SWActuator,
act:ParametricActuator
; act:implementedIn java:fi.jyu.ubiware.ui.FontActuator
; act:affects x:capabilityUI .

FIGURE 62 Example of an actuator assertion

example of an actuator that changes the font size in the UL
5.1.3 Incident ontology

Incident is any context-relevant change in the sensory input. A formal OWL
ontology following the classification from Chapter 3 can be found in Appendix
and its visualization in Appendix An incident is created when a policy
expressed by a safeguard is broken by some sensory input. Therefore each incident
is related to the policy that was broken (inc:brokenPolicy property), ticket
that deals with the issue (inc:responsibleTicket property) and the sensory
input that caused it (inc: responsibleSensorResult property). An example
of an incident can be found later in the text in Figure [75|(page)-

It is possible to extend the ontology and define own types of events. This can
be done by in the application profile. The profile can include the developer’s own
ontology based on the default event ontology. The developers can also provide
categorization rules for event annotation according to their own ontology.

5.14 Configuration ontology

The configuration ontology is related to software and platform configuration.
The formal OWL ontology is provided in Appendix|l.7]and its visualization in
Appendix Since this ontology deals with various aspects of configuration, we
provide two separate subsections.

5.1.4.1 Structural configuration

We assume that the adaptive software is designed using a component-based ap-
proach. We also assume that the component connections are loose enough to allow
component replacement. The configuration ontology captures the relationship
between the software, components and the service that they provide. Figure
shows the basic class hierarchy:.

The central concept is the adaptive software represented by conf : Adapt ive-
Software class. The adaptive software provides and requires certain capabil-
ities (conf:Capability) for its operation. Some of these capabilities might
be required mandatorily (conf: requiresMandatorily) and some optionally
(conf:requiresOptionally). While the mandatory capabilities are constantly

119

AdaptiveSoftware Component Policy
AdaptiveComponent InternalComponent ProhibitonPolicy
ExternalComponent ObligationPolicy

FIGURE 63 Configuration class hierarchy

needed in order for the software to operate, the optional ones do not always have
to be available. These two properties indicate the need for a certain capability. This
information depends on the application logic and therefore it usually does not
change during the life of the software. Capabilities can be understood as abstract
component descriptions.

A capability may be provided by a an internal (conf : InternalComponent)
or external component (conf :ExternalComponent). An internal component
originates from the same system as the software that uses it. An external com-
ponent originates from the outside, e.g. is provided by another agent/device.
In the case of an external component, the provider agent is annotated using
the conf:providedByAgent property. The pool of available components is
managed by the service facilitator. For every needed capability, the software
may choose a component that provides it. This fact is indicated by the conf: -
currentlyUtilizes property. Contrary to the software-capability relationship,
the software-component relationship changes depending to the context. There is a
number of reasons for component reconfiguration, e.g. a better component was
discovered, the used component is out of reach, the policies have changed, etc.

In cases when the adaptive software provides a certain capability, it also
becomes a component itself. This might happen if the software advertises itself to
other devices. In these situations the resource describing the software is of type
conf:AdaptiveComponent.

For the purposes of trust and reputation management (discussed later) each
component’s abilities are evaluated from four different perspectives. The quality
of the provided service is expressed by the conf:hasQuality property. The
response time is described by conf :hasPromptness. The degree into which the
external component stays true to the negotiated contract is recorded by conf: -
hasMisjudgment. Finally, the conf:hasExternalFactor expresses the fac-
tors beyond the control of both parties, e.g. a network fault or a power outage.
Figure |64/ shows a sample external component annotation.

5.1.4.2 Adaptation configuration
An important element of the adaptation are the policies. A policy is represented by

the class conf:Policy with two subclasses — conf:0bligationPolicy and
conf:ProhibitionPolicy. The importance of the policy is determined by the

120

x:compFrontDoorControl rdf:type conf:Component,
conf:ExternalComponent ;

conf:provides x:capabilityDoorControl ;
conf:providedByAgent x:agentDoorOperator ;
conf:hasQuality "0.91" ;
conf:hasPromptness "150" ;
conf:hasMisjudgment "0.1" ;
conf:hasExternalFactor "0.9"

FIGURE 64 External component annotation

x:pol2 rdf:type conf:Policy, conf:0bligationPolicy
; conf:hasImportance "10"
; conf:hasCondition {
conf:thisSW conf:requiresMandatorilly ?capA .
conf:thisSW conf:currentlyUtilizes ?compX .
?compX rdf:type conf:Component
?compX conf:implements ?caphA .

FIGURE 65 Example of a policy in S-APL

conf:hasImportance property. The importance can be expressed through 10
levels, where 10 represents a hard policy and 1-9 represents soft policies. Each
policy has a condition associated with it (property conf :hasCondition)which
is expressed as a series of S-APL query statements. Figure |65/shows a hard policy
which tells the framework that all mandatory capabilities must be provided by
a component. In other words, if there is a situation, where the software requires
a mandatory capability and no component implements it, the policy is broken.
This also a good example of a platform-wide policy, since we can assume that
mandatory capabilities required by software are mission critical.

5.1.5 Summary

’ Ontology \ Prefix \ Visualization \ Description in OWL ‘
sensor ontology sen: | Appendix(3.1|| Appendix|l.4
actuator ontology act: | Appendix[3.2| | Appendix|1.5
incident ontology inc: | Appendix[3.3|| Appendix|1.6
configuration ontology | conf: | Appendix 3.4 | Appendix|1.7]

121

x:s5ensorGPS rdf:type sen:Sensor, sen:MeasurementSensor, sen:PullSensor,
sen:EnvSensor, sen:PhysicalEnvSensor
; sen:implementedIn java:fi.jyu.ubiware.sensors.GPSSensor
; sen:providedObjectType x:GPSLocation

x:sensorFacebook rdf:type sen:Sensor, sen:EventSensor, sen:PushSensor,
sen:EnvSensor, sen:VirtualEnvSensor
; sen:implementedIn java:fi.jyu.ubiware.sensors.FBSensor
; sen:providedObjectType x:FacebookUpdate

x:wifiModule rdf:type conf:Component, conf:InternalComponent
; conf:provides x:networkProviderCapability

x:GSMModule rdf:type conf:Component, conf:InternalComponent
; conf:provides x:networkProviderCapability

FIGURE 66 An example of a platform configuration file

5.2 Configurations

5.2.1 Platform configuration

In order for the SAF middleware platform to provides support to the software, it
must be properly configured. The platform configuration files is a S-APL document
consisting of three parts. Firstly, the available sensors are described based on the
sensor ontology described earlier. Secondly, the components and capabilities
are described based on the configuration ontology. Figure [66| shows a sample
platform configuration file. Lastly, generic platform-wide actions are described
(e.g. component replacement or sensor calibration). As mentioned earlier, such
configuration document in S-APL can be generated from a graphical tool.

5.2.2 Software configuration
5.2.2.1 Software structural profile

The structural profile is a S-APL file that describes software’s dependencies on
capabilities and components. Since the adaptive software itself is a component
as well, it also describes what kind of capabilities are provided by the software.
The resource conf:thisSW of type conf:AdaptiveSoftware refers to the
software being described. Figure[67] contains a sample structural description of
a software that receives Facebook event updates and shows them to the user. If
the user’s location is available, then also other information might be provided,
e.g. walking distance to the event. The software strictly requires network access
and a Facebook sensor. The initial configuration uses a wireless network as the
network provider and a Facebook adapter as the event provider. Naturally, this
configuration may change over time, since it is an adaptive software. In 2011, as
part of the Tivit SHOK Cloud Software Program, we presented a similar Ubiware-

122

conf:thisSW rdf:type conf:AdaptiveSoftware,
conf:Component, conf:AdaptiveComponent
; conf:provides x:FBEventMashupCapability
; conf:requiresMandatorily x:networkProviderCapability
; conf:requiresMandatorily x:sensorFacebook
; conf:requiresOptionally x:sensorGPS
; conf:curentlyUtilizes x:wifiModule
; conf:curentlyUtilizes x:sensorFacebook .

FIGURE 67 An example of a software structural profile

based application called “Social media mashupper”, which collected social media
data for a single user and presented them as a mashup (Cochez and Nagy, 2011).

5.2.2.2 Software adaptation profile

The adaptation profile is a S-APL file provided by the software developer and
used by the platform to understand what kind of adaptation the software creator is
seeking. The profile consists of three parts. Firstly, the policies are described. Each
policy (conf:Policy) contains a logical expression in S-APL and the severity
level. The severity level determines how soft or hard the policies are. Soft policies
might be broken if it protects a higher level policies. Hard policies are mission-
critical and must never be broken. The policy can either be an obligation or a
prohibition. The expressions in obligation policies must always be true in the G
context, while the expressions in prohibition policies must never be true in the G
context. Everything else is considered to be allowed with respect to the policies.

Policies are also a way to express the goals of the software in terms of its
health. A policy defines, which operational parameter values are considered
normal (healthy). The information about required sensors from the structural
configuration determines the context-relevant sensory data.

The second element of the adaptation profile is the information about soft-
ware actuators. Actuators are RABs that are used by the platform to change the
operating parameters of the software (parameter adaptation) or modity its struc-
ture (compositional adaptation). Since the software developers are responsible
for creating software that is adaptable, only they can provide a way to invoke
reconfiguration.

Lastly, the adaptation profile contains a list of actions. The adaptation frame-
work cannot know how to adapt the software and construct plans unless it is
provided with actions and policies. Some generic actions are already provided
by the platform. However actions related to the application logic of the software
being configured are needed as well. Figure |68/ shows an example of a software
adaptation profile.

x:thisSW conf:hasPolicy x:poll, x:pol2
x:poll rdf:type conf:Policy, conf:ProhibitionPolicy
; conf:hasImportance "5"
; conf:hasCondition {
conf:thisSw

x:pol2 rdf:type conf:Policy, conf:0ObligationPolicy
; conf:hasImportance "10"
; conf:hasCondition {
conf:thisSW conf:requiresMandatorilly ?capA
?compX rdf:type conf:Component
?compX conf:implements ?caphA

x:replaceComponent rdf:type pla:Action
; pla:hasVariables {
x:varCompX pla:expressedAs "compX".
x:varCompY pla:expressedAs "compY".
x:varCapA pla:expressedAs "capA".

; pla:preconditionExist {
?compX rdf:type conf:Component
?compY rdf:type conf:Component
?compX conf:provides ?capA
?compY conf:provides ?capA
conf:thisSoftware conf:uses ?compX

; pla:preconditionNonexist {
conf:thisSoftware conf:uses ?compY

; pla:effectAdd {
conf:thisSoftware conf:uses ?compY

; pla:effectRemove {
conf:thisSoftware conf:uses ?compX

FIGURE 68 An example of a software adaptation profile

123

124

5.3 Service facilitator — trust and resource discovery

As mentioned earlier, pervasive computing environments are open, dynamic and
the devices in them are controlled by different stakeholders. Each device has its
own set of goals. Goals of one agent might be in conflict with goals of another
one (e.g. use of a resource with exclusive access). This means that the agents have
to compete against each other. However, sometimes an agent cannot reach its
goals on its own. Sometimes information or action from other agents are needed,
which means that the agents also have to cooperate with each other . Therefore
we cannot say that pervasive computing environments are purely competitive or
purely cooperative. They manifest features of both.

This situation is very similar to the world of humans, therefore we would
like to use it as an analogy. The pervasive computing environment is an analogy of
a marketplace and agents/devices are an analogy of humans. In the marketplace,
each human has its own goals, but sometimes people need help from each other
in order to achieve their goal. The question arises: Why would one human help
another? In the case of pervasive computing environments the analogous question
is: Why would one device (agent) help another one?

5.3.1 Approach

There have been many approaches trying to explain human behavior in such
scenarios, many coming from the area of economy. Some authors see humans as
selfish entities working only for their own benefit (Arrow) 1980). This may lead
to a deceiving behavior such as lying, cheating and stealing (Williamson), [1985).
Other authors however believe that humans very often behave according to the
principle of reciprocity (Fehr and Gachter, 2000). Reciprocity means that friendly
actions will be rewarded with friendly behavior and similarly hostile actions will
be rewarded with unfriendly behavior.

Since pervasive computing environments are by definition unregulated and
open, agents must count with the possibility of being cheated and lied to. In order
for reciprocity principle to work, there must be some way of evaluating actions for
each agent in the system. In other words, one must distinguish lies from truth and
act accordingly. There are two basic terms in the area of inter-agent trust research
— trust and reputation. Since trust has several meanings in the area of Artificial
Intelligence, first we would like to define this term. Barber and Kim/ (2001) define
trust as “confidence in the ability and intention of an information source to deliver
correct information”. We suggest a slightly modified version of the definition:

Trust is the confidence in the ability and intention of an information source to deliver
correct information or perform the promised action

Barber et al.| (2003) define reputation as “the measurement of the amount of trust
one agent holds for another”. For the rest of this publication, we will use these
two definitions.

125

Fullam et al.|(2005) argue that there are two capabilities that an agent should have
in order to select the most trustworthy partner. Firstly, it must maintain a model
of trustworthiness of potential partners and secondly, the trust-based decisions
should be based on those models. In pervasive computing environments it is
inherently impossible to impose some central authority responsible for reputation
management and the only option is a distributed approach.

There are two types of trust modeling — interaction-based (also called experience-
based) and recommendation-based. The interaction-based trust modeling relies on
building the reputation based on direct interaction with the agents being assessed
(Jonker and Treur) 1999). Every action of the trustee is evaluated and assessed
from several points of view based on the criteria (components of the trust). This
information is then used by the truster in its decision making. This is not a problem
when a trust baseline for the trustee has been established. However, a newcoming
agent is not yet known and therefore its reputation is unknown as well. How can
the truster find it out? One way is to interact with the newcoming trustee and
discover the trust associated with it. In order to do this, the new trustee must have
a certain default reputation. Then, based on its actions, the reputation increases
or decreases in corresponding components. Depending on the initial reputation,
this process can be very turbulent in the initial stage of trust discovery. In the later
stages, when the baseline is established, the changes in the reputation are not so
significant. While the truster is discovering the trust level of the trustee, it also has
to keep on performing its tasks. While performing the tasks, the initial stage of
newcomer’s trust discovery can significantly influence the decisions made by the
truster (Barber et al., 2003).

An example of this situation is described in Figure|69, The horizontal axis
represents the time and the vertical access represents the trust as a single number
between 0 and 1. Agents A; and A; have been evaluated by the truster before and
their value trust is relatively stable. However, at time t; a new agent A3 appears
and the trust evaluation algorithm assigns the newcomer trust value of 0.5. This
trust value stays stable until the first evaluation round is finished at time t;, when
the value changes to 0.3. Agent A3 then keeps the value close to 0.25 for the rest
of the life. The problem arises when the truster tries to evaluate the trust of all
three agents and establish a ranking. In the t1-t; interval the ranking from the
best to the worst would be A3, A1,A;. The agent A3 wins only because the default
value of a newcoming agent is 0.5, which in this particular case is higher than
the other two agents. However, we can clearly see that after the first evaluation
of Az (time t;), agent A3 drops to 0.3, which is significantly less than other two
agents. One of the solutions to this problem is to establish a evaluation period
after a new agent enters the capability space of the truster. During this period the
truster would collect the information about the new trustee, but it would not use
it in the decision process. The evaluation period may expire after the first, second
or n-th evaluation of the new trustee. Then the truster behaves normally.

The second problem with interaction-based trust modeling is the fact that it
does not work well in cases where there are not many interactions with the trustee
or these interactions are sporadic . In those cases the second trust modeling method

126

trust A
1.0 +

o =] = €3

FIGURE 69 The trust development of a newly discovered agent

might be more beneficial. In the recommendation-based modeling method agents
communicate with each other and share their experiences with other agents (Yu
and Singh, 2002). This way the truster can receive testimonies about an unknown
agent from so-called recommenders. Recommenders are agents that are willing
and capable to share the trust information about another agent with the truster.
This way the truster does not have to engage in a cooperation with an unknown
agent.

However, there is still some risk associated with the information it receives
from the recommender — the recommender might lie. Therefore it is necessary
to assess the trustworthiness of the recommender as well. Moreover, if a new
truster enters the environment, it does not know which recommenders it can trust.
Similarly, if a new agent joins the system, no recommender knows it and therefore
its reputation is unknown. In both cases there has to be some initial trust value,
which brings us to a problem similar to the interaction-based trust modeling.
There is one difference however. While in interaction-based trust modeling the
agent evaluates only based on the trustee’s answer, in recommendation-based trust
modeling the truster might receive several answers from several recommenders.
Even though the recommenders are unknown, this information might be used
to establish a default value for trust and continue with interaction-based trust
modeling with an evaluation period.

5.3.2 Composite trust metric

A simple way of expressing trust of an agent is assigning a numerical value to it,
where 0 means no trust and 1 means full trust (Sen and Sajja, 2002) . According
to Barber et al| (2003) this lacks additional description as to the nature of this
trust/distrust. Another approach is to model trust as a set of components rather
than just a number. One example of such an approach is a metric defined by

127

Falcone et al.|(2002), who propose a set of 5 components — intent, competence,
availability, promptness and external factors. Intent is the tendency of an agent
to behave honestly. Competence reflects the ability of the agent to perform the
desired action or provide the information. Availability measures how free the
agent is from other commitments that limit its ability to provide the information
or perform an action. Promptness expresses the speed of agent’s actions. External
factors reflect agent’s susceptibility to other uncontrollable factors affecting its
performance. They argue that several components give the requesting agent the
possibility to find the most suitable performing agent according to the requesting
agent’s goals. For example, if one is looking for a quick answer, one prioritizes
agents with the reputation of being quick, rather than precise. In the context of a
single evaluation, the agent being evaluated is called a trustee and the agent that
evaluates is called a truster. . Naturally, in a multi-agent scenario, every agent is a
truster and a trustee at the same time, since it evaluates and is evaluated by others.

When one agent asks for an action or information from another agent, there
is a risk of failure. The problem is that for an observer it is difficult to distinguish
between an agent that failed due to its incapability and an agent that decided not
to honor the agreement for its own benefit. In other words, it is difficult to tell
apart a deceiving and incapable agent. In some environments this difference can
be crucial. If the multi-agent system permits it, an agent with malicious intents
can be punished and an incapable agent can just be notified that it failed. This is
one of the arguments for a composite trust metric. We argue that this difference is
irrelevant. The reason is that in the case of pervasive computing environments it
would be difficult to enforce the punishment due to the fact that there is no central
authority . Therefore we do not distinguish between these two. We also believe
that availability as a metrics component is not necessary, because a poor time
management ability is just a special case of incompetence. It is irrelevant to the
agent if a task was not performed because the performer was unable to perform it
or because it did not calculate the time properly.

Every agent provides certain capabilities and therefore agent’s performance
and trust should be evaluated with respect to those. An agent can have a capability
to provide a certain service with high quality. The same agent can also have a
different capability providing a lower quality service. Therefore an agent should
not be judged as a whole. Instead, agent’s capabilities should be evaluated. The
reason for this approach is that agents are primarily interested in information and
tasks to be performed. They are looking for the best tradeoff between quality,
speed, cost, etc. of an action or information. They are not looking for the best agent
necessarily. If one is looking for the fastest runner, one would choose a person
with an outstanding running ability, even if it should mean that this person is very
bad at all the other things.

A typical service provisioning scenario is shown in Figure |70, The provider
agent advertises a certain set of capabilities. The consumer is able to utilize
these capabilities in form of external components. The evaluation is happening
on the side of the consumer in the service facilitator (SF). SF is responsible for
assigning trust value to every external component. External component is only an

128

/ Consumer agent :\ (Provider agent 0
)
Ext. component 1 |[<— {7 —Capability1
S |
Ext. component 2 | < E%"‘—\— Capability2
S |
< U ”
Ext. component 3 | <] Capability3
A = N)

FIGURE 70 Provider-consumer relationship in pervasive computing environments

encapsulation of the capability advertised by the provider.

With respect to the nature of pervasive computing environments, we believe
that for the reasons stated above a composite metric is the best solution. However,
we do not believe that all five elements as stated by [Falcone et al.| (2002) are needed.
Intent, competence and availability can be integrated into one component — quality.
The quality component is a real number between 0 and 1, where 0 represents no
quality and 1 represents flawless quality. In the case of an information query, the
quality parameter only reflects the correctness of the result. In the case of a task
request, it represents the success of the tasks. The quality has both lower and
upper bounds, because there is no worse quality than no quality (value 0) and
there is no better quality than flawless quality (value 1). This means that based on
the value of the quality we may compare different capabilities of the same agent
or different agents. If agent A has a capability C; with quality Q (A,C;) and a
capability C; with quality Q (A,C;) and Q (A,C;) < Q (A, Cj), then we can say
that A performs tasks related to C; better than tasks related to C;.

The response time is characterized by promptness. The numerical represen-
tation of promptness is different in nature than the numerical representation of
quality. As mentioned above, the quality has both upper and lower bounds. In the
case of reaction time, we know for sure that no action will last shorter or equal to
0 units of time. Thus reaction time has a lower bound. However, for any given
reaction time one can always find a longer time. In other words, the reaction time
has no upper bound. The trust metric is related to a capability and not to the
whole agent. The reaction time differs with the capability, because some actions
take naturally longer than others. Being able to run 400 meters in 45 seconds is
considered a very good time. Whereas being able to run 100 meters in the same
time is considered a poor result. We may compare swiftness only for a given
discipline (capability). Formally, if several agents Ai (i=1..n) are providing the
same capability C;, their reaction time T (4;, C]-) is comparable for all n agents.
The fact that T (A,C;) < T (A,C;) for i # j only tells us that agent A performs
C; faster than it performs C;. This however, does not tell us if time T (A, C;) isa
good time with respect to the capability C;. Having this in mind, we believe that
the most practical way of expressing the promptness is in form of reaction time.
Therefore, the promptness is represented by a non-negative integer.

129

TABLE 11 Summary of trust metric components

Name Definition Interval | Better
quality A real number representing the degree | (0,1) +

of quality of the offered service
promptness | A real number representing the re-| (0, c0) -
sponse time of the offered service
ext factor All other factors that are not in the | (0,1) +
power of the provider or consumer
misjudgment | A real number representing how much | (—o0,0) | -
the provider overstates or understates

The third component of the composite metric is “external factors”. This
parameter incorporates all other factors that are not in the power of the performer
or the requestor. This may include faulty network connection, HW errors, power
outage, etc.

Apart from these three components, we suggest one more — misjudgment.
Since some interactions are based on a contract, the estimations stated in the
contract might differ from the parameters achieved in real life. The misjudg-
ment reflects how much the agent overstates or understates. Table[11|contains a
summary of all metrics components.

Based on the composite metrics, an entry for a particular agent A can be
visualized as a table where rows are capabilities and columns are components of
the composite evaluation metrics. Figure[/1|depicts agent Ag and its trust database
for agents A;, Ay and Az, where each table represents one agent entry. One way
of implementing the trust database is by using a single table where each row
represents a unique agent-capability combination.

In the case of the example in Figure |71} agent Ag would choose its transaction
partners in the following way. Let us assume that Ay has only three agents in
its environment — agents A;, Ay and Ajz. Each of these agents is known to Ay
and thus each of them has an entry in Ag’s trust table. Agent Ay is looking for
the most suitable agent with capability Cs. It tries to discover which agents can
provide this service. The answer in this case is all of them. Then it looks for the
criteria of the choice. Ay is mostly interested in quality. Promptness is secondary.
It also does not want any disruptions caused by external factors. The process of
capability selection is described later in the text. For now we just assume that Ay
chooses in the following order of priority — firstly quality together with external
factors and secondly promptness. Agent A; provides a very poor quality service,
because Q (A1,C3) = 0.1 and due to external factors it succeeds in only 80% of
cases (EF (A1,C3) = 0.8). Agent A, provides the highest quality Q (A, C3) = 0.7
among the agents and also fairly good external factor score EF (Ap,C3) = 0.7.
Agent A3 provides quality Q (A3, C3) = 0.5 and it has the best possible external
factor score of EF (A3, C3) = 1. Based on the conditions, A; is the clear winner. If

130

Agent A0
Agent Al Agent A2 Agent A3
Q P |EF| M Q P |EF| M Q P |EF| M
Cl|0.5(76 1 1 C2|0.5| 96 1 1 C3|0.5| 49 1 1

c2|0.7| 82 |(0.3]|0.9 c3|0.7| 77 |0.3]0. C5|0.7|147(0.3

9 [
c3|0.1(56 1 0.8 c4|0.1]| 69 1 0.8 Cc6|0.1|289| 1 0.8
7 0

C5|0.3|123|0.5]0. C710.3| 47 |0.5

Agent A3

Agent A2
Agent Al

FIGURE 71 Trust evaluation table

the condition would be that there should be no external factor influence at all, the
winner would be As.

As mentioned earlier, the framework keeps track of all the metric components
for every software component. The metric values are stored in the knowledge base
as properties of the software component description resource. Figure [72|shows an
example of a relatively complicated utility function that determines the best face
recognition component. Let us assume that x : QMul is a quaternary multiplication
function (multiplication with arity 4). Also, let us assume that x: Thresholdis
a binary function with arguments v and ¢ that returns 0 except for f (v > t) = v.
The utility function x : bestFace helps find the best face recognition component
according to this function (fr is the threshold function):

Fo(q,p,mef) = fr(q,08) —— —-ef

5.3.3 Reputation building process

Based on the discussion above, we suggest the following algorithm for finding
the reputation of an unknown agent (Figure [73). We assume that this algorithm is
used by the truster Ay to find out the reputation of an unknown agent Ax. We also
assume that Ap knows exactly m agents that can act as potential recommenders.
The algorithm starts with agent Ay sending reputation request to m potential
recommenders. Then agent Ay waits Py units of time (e.g. milliseconds) for
the answer. We assume that out of m potential recommenders exactly n will
answer (0 < n < m). If nobody answered (n = 0), then the agent has to revert
to interaction-based trust evaluation with an evaluation period, which will be
described later in this section. If at least one agent answered, then we divide the

131

x:bestFace rdf:type u:UtilityFunction
; uthasQuery {

?fc rdf:type conf:Component ;
conf:provides x:capabilityFaceRecognition ;
conf:providedByAgent ?ag ;
conf:hasQuality ?qg ;
conf:hasPromptness ?p ;
conf:hasMisjudgment ?m ;
conf:hasExternalFactor ?ef .

}
; u:usesEvalElement "fc"
; uthasFunction x:£f0 .

x:f0 rdf:type u:Function, x:QMul
; u:opl [rdf:type x:Threshold
; u:opV [rdf:type u:Variable ; u:hasVarName "g"]
; u:opT [rdf:type u:Value ; u:hasValue "0.8"]

; u:op2 [rdf:type u:Div
; uropl [rdf:type u:Value ; u:hasValue "1000"]
; u:op2 [rdf:type u:Variable ; u:hasVarName "p"]
]
; u:op3 [rdf:type u:Div
; u:opl [rdf:type u:Value ; u:hasValue "3"]
; uiop2 [rdf:type u:Variable ; u:hasVarName "m"]
]

; u:opd4 [rdf:type u:Variable ; u:hasVarName "ef"]

FIGURE 72 Example of a utility function for best facial recognition component selection

group of n agents that answered into two disjunctive groups — 1, known agents
and n, unknown agents (n = n, + ny). The group of known agents contains
agents that are known to Ay and thus Ay knows their reputation. The group of
unknown agents consists of 1, agents that do not have any reputation record in
Ag’s knowledge base. The agent calculates the weighted arithmetic mean for
the group of known agents X and for the group of unknown agents %, using the
following formula:

i} / w; Y wixi Y wixi
X = w;x; = X = -
i; l z; Limwj L@ L @i
These two steps may happen in parallel. After values X and x,, are obtained,
the agent calculates the total initial trust of agent Ax using the following formula:

Then the agent switches into interaction-based mode with no evaluation
period and it uses T as the initial trust value for Ax. Please notice that the algorithm
uses two parameters — P,; and Py;. As mentioned earlier, P,; determines the wait
time for the recommenders to respond. P, is a number between 0 and 1 that
determines how relevant the unknown agents’ responses are. Value 1 means that
they are equally important to the known agents’ responses and value 0 means that
they are not important at all.

132

Send request about A;
to all known agents

{

| Wait for P,,, time units

0 answers n answers
— How many asnwers?

split to known and unknown

weighted average X, weighted average X,
for ny known agents for n, unknown agents

\/

get total:
T= (ny/n) X + Py (n/n)X,

¥

Interaction-based

Interaction-based

WITH eval period NO eval period
def. trust="T

FIGURE 73 Recommendation-based trust modeling

5.4 SAF processing elements

5.4.1 Knowledge base

The system should be capable of storing different types of information about
neighboring devices, goals, user preferences, etc. Some of this data is relatively
static (e.g. own preferences) and some data is dynamic (e.g. information about
neighbors). However, we believe that a single way of representation is favorable
due to the need to integrate and reason about all these kinds of data together.
Reasoning will take place mostly in two cases — when a message is received and
when a message is sent.

We need a way of knowledge modeling that would be expressive enough to
describe relationships between heterogeneous entities such as customers, products,
services, channels, etc. Moreover, the language must allow reasoning about the
facts. This reasoning must be sound, so that it infers only valid facts. It should be
complete as well, so that no valid fact is missing. If a valid missing was missing, it
would result in a failure to send an outbound message or to properly annotate an
inbound message. Lastly, this modeling framework must not be computationally
too complex. As mentioned earlier, the discussed system should be usable in
real-world production environment. Therefore the existence of a mature tool with
abovementioned properties is important.

Based on these requirements we believe that Resource Description Frame-
work (RDF) is the most reasonable way to model our data. It is expressive enough,

133

x:measurement45356 rdf:type sen:SensorResult, x:TempResult
; sen:readFrom x:tempSensor
; sen:value "25"""xsd:integer .

x:measurement45356 rdf:type sen:SensorResult, x:TempResult
; sen:readFrom x:tempSensor
; sen:hasEvent x:ev32532

x:ev32532 rdf:type sen:SensorEvent, x:FaultEvent
; X:source x:airConditioning
; X:severity x:medium .

FIGURE 74 Sample of sensory data

proven and widely supported by a great amount of production-quality tools for
modeling (e.g. Protégé (Standford, 2013)), storing and querying data (e.g. Jena
framework (Apache, 2013), Sesame (Aduna, 2012)). Also, there are many reasoners
that are sound, complete and still computationally inexpensive (e.g. RacerPro (Rac-
erSystems), 2013)), HermiT (Hermit, 2013), etc.). RDF is built on top of wide-spread
standards such as XML, XML Schema, etc. It is closely related to Web Ontology
Language (OWL) which is used to formally define knowledge schemas called
ontologies. Thanks to ontologies and reasoners it is possible not only to conclude
new facts from existing ones, but to check data consistency as well.

5.4.2 Monitor

As the name suggests, the role of this component is to monitor the contextual
data and report any changes. In the software adaptation profile, the application
developer specifies which sensory data is considered relevant and thus a part of
the context. The monitor then collects this data in form of RDF and stores it in the
agent’s knowledge base. After the collection, the detector is notified. A sample
of collected data is shown in Figure |74, There is a reading from a measurement
sensor measuring the ambient temperature. In that case the result is a value. The
second example comes from an event sensor and therefore the result is an event.
In this case the sensor reads data from the car’s Electronic control unit indicating
that the air-conditioning is faulty.

5.4.3 Detector

The detector is responsible for detection of incidents. Incidents are changes in
sensed parameters and events that may influence the operation of the software.
Incident classification is based on software’s adaptation profile, where software
developer indicates undesired events and optimal operation parameters’ values.
Once these values are crossed or undesired events are detected, the detector
contacts the deliberator.

The incident classification is implemented using safeguards introduced ear-
lier. A safeguard contains a condition that determines the normal working state

134

x:inc5 rdf:type inc:EnvironmentIncident, inc:PhysicallIncident
; inc:brokenPolicy x:policyHighTemp
; inc:responsibleTicket x:tic72
; inc:responsibleSensorResult x:measurement454 .

x:tic72 rdf:type sfg:Ticket, sfg:TicketDET
; sfg:inState sfg:stateDET
; sfg:handlingSFG x:safeTemp .

FIGURE 75 Example of an incident

(in the case of existence safeguards) or the abnormal working state (nonexistence
safeguards). Whenever a safeguard is broken, a ticket is created. In the software’s
adaptation profile, it is specified which condition is related to which incident.
For example the profile might specify that the permissible ambient temperature
for a smartphone camera flash is between —20°C and +60 °C and whenever it
outside this range, the incident is classified as a physical environment incident. A
condition might also be more complicated — e.g. a combination of several measure-
ment values and/or events. Once a safeguard breach is found, a ticket is created
automatically. This ticket then acts as an accompanying resource to the incident
object. A sample incident description together with the accompanying ticket can
be found in Figure

5.4.4 Deliberator

The goal of this component is to decide what should happen in order to deal with
the incident. First, the deliberator consults the database of existing plans and tries
to find a plan that can make the system return to the normal state. If several plans
are found, the best one is chosen. If no plan is found, the planner is contacted.

5.4.5 Planner

The planner tries to find a plan based on the goals specified in the software
adaptation profile. It is not our goal to provide a new planning algorithm, due to
the fact that this domain is outside the scope of this publication. Also, we do not
implement a planner using S-APL language, because the language is not suitable
for such a task. Principally, it could be possible to implement a planner using
S-APL, but the implementation would be cumbersome and it would bring no extra
benefits in comparison to already existing planners. Instead of that, we provide a
method to convert the problem into the Planning Domain Definition Language
(PDDL). There are a number of various planners capable of reading PDDL problem
specifications and provide a solution. Such a solution can be converted back to a
plan.

Every hard policy (level 10) has to be considered when preparing the problem
definition file. For every obligatory hard policy, the condition in its original form
become a part of the goal. For every prohibition hard policy, the negated condition

135

is added to the goal section. This way the system ensures that the plan will never
break a hard policy.

If no plan is found and the incident was caused by a soft policy, then the
system leaves both the incident and its ticket in KB. This is due to the fact that at
some point in the future some sensory data may come, which may help resolve
the incident.

5.4.6 Plan executor

This component is responsible for the proper plan execution. It coordinates actions
specified in the plan with the involved components. For every action in the plan,
it contacts the action executor. When the action is performed, the plan executor
determines the next step to be performed. In case some action fails, the plan is
considered failed as well. In those cases, the deliberator takes over and treats the
situation as a new incident.

5.4.7 Action executor

The action executor receives an action from the plan executor. It performs the
action using the specified actuators and action parameter values. Both in the case
of a success and failure, it reports back to the plan executor. If the action causes a
component replacement or addition, new data might be added or removed. Each
component may have an initialization and finalization (clean-up) script.

6 SMART HOSPITAL SCENARIO

The first goal of this chapter is to describe an example of a case, where the Ubiware-
based SAF helps achieve both the vision of pervasive computing and decrease the
perceived complexity of software used in it. We have chosen the area of healthcare,
because it has relatively medium complexity, dynamicity and openness. One
seemingly simple scenario with two situations is provided. The SAF adaptation
process is described in detail. Note that many parts of the text will refer to S-APL
code fragments. Due to limited space we provide most of them as appendices.
The second goal is to contrast between the new, Ubiware-based SAF and the old
Ubiware implementation without SAF.

Since SAF is a conceptual framework, it can be implemented using any
combination of programming languages and platforms assuming that they provide
the required features. This chapter deals with a Ubiware-based implementation
of SAF introduced in Chapter 5 and therefore when referring to it we will use
the term Ubi-SAF. Note that Ubi-SAF contains the improvements from Chapter 4,
since they are required for the implementation. The old Ubiware implementation
without SAF or any of the three improvements will be shortly called Ubi-0 and
it will act as the reference point. For each situation, we provide a comparison
between Ubi-0 and Ubi-SAF.

We show that Ubi-SAF provides three types of improvements over Ubi-0. In
the order of increasing significance they are as follows. Firstly, Ubi-SAF introduces
some simplifications of the S-APL code (I;). This improves the readability and
helps the developer focus on the problem at hand. Secondly, there are cases
where both Ubi-SAF and Ubi-0 are capable of performing an action, but Ubi-SAF
outperforms Ubi-0 (I3). Lastly and most importantly we will show cases where
Ubi-SAF possesses abilities to solve certain types of problems that Ubi-0 cannot
solve (I3). Table|[12|summarizes the improvement types.

137

TABLE 12 Types of improvements that Ubi-SAF introduces

ID | Improvement Significance
Iy | S-APL code simplification +

I | Ubi-SAF outperforms Ubi-0 ++

I3 | Ubi-SAF can solve problems that Ubi-0 cannot solve | +++

6.1 Case description

The case takes place in a fictional hospital in a developed country. The year is 2025.
Computing devices have become an everyday part of people’s lives. Over 90%
of people own a smartphone. A vast majority of mobile devices has a constant
access to the Internet. The RFID technology is being used in the supply chain
management, hospitals, homes, etc. Some of the people already have sub-dermal
chips. Smart spaces are becoming more prevalent.

6.1.1 Human actors

As mentioned earlier, ubiquitous or pervasive computing is about humans and
their relationship to the technology. Therefore we first introduce the human actors.
Human actors are described using the concept of personas. Personas are widely
used in the field of interaction design to function as certain representatives of the
target group . They provide a unified view of the users and help make the product
design more customer-focused (Preece et al., 2011). There are two personas in this
scenario.

Anna (35) has been a nurse for over 15 years. She works for the University
Hospital at the Intensive Care Unit (ICU). She is very thorough in her work and
she does not like surprises. She likes to check on her patients often to make sure
that everything is fine. Anna has a high sense of responsibility. Charles (63) is one
of Anna’s patients.

Several hours ago Charles was hit by a car when he was trying to cross the
road. When the ambulance came to the crash site, the crew administered first aid.
As a part of the procedure, he received a GPS- and RFID-enabled wristband that
is constantly checking his vital signs. The ambulance took him to the Emergency
Room (ER), where they discovered internal bleeding in the brain. He was immedi-
ately taken to the operating room, where they conducted surgery to release the
pressure in his head. After the operation, Charles was taken to the ICU, where
Anna started to take care of him. Charles was in an artificially induced coma and
he was connected to a ventilator that was fully breathing for him. His bed with all
the sensors was put into the cubical number 2 in the ICU ward.

138

C—— 1 C——] C—— 1

L]

(@) (@)
[ﬁ] Charles / EMJ

1 2 3
—
N door sensor

Anna

5 :

1#

I | I I

FIGURE 76 The spatial setting of the ICU ward

6.1.2 Spatial setting

The scenario will take place in a hospital, in the ICU. The ICU in our case is
one large room with a nurse station in the center. Around the station there are
8 cubicals separated by a soundproof plexiglass that can be opened and closed.
Each cubical contains at most one patient. This way the nurse can see all the
patients from one place. The station has a large screen with all patients’ vital signs
displayed on it. Figure 76/shows the spatial setting.

6.1.3 Devices

Each hospital employee not having a sub-dermal chip is wearing a bracelet with an
RFID chip, GPS and a low-powered wireless network interface card. Each patient
is wearing a bracelet with all the previous mentioned functionalities, which also
measures patient’s vital signs. The hospital personnel is allowed to carry personal
phones if their phones follow the hospital’s policies. Often, nurses and doctors
carry a tablet-like device with them when visiting patients. Tablets are mostly
used to present patient’s data. The default policy for hospital’s tablets is to connect
to the nearest patient information source in case only one patient is located within
2 meters from the device. If more patients are present, then the nurse has to choose
one of them. Moreover, every patient’s bed has a controller that is connected to
various sensors and collects all the sensory data related to patient’s health. Finally,
each room has a room controller, a small Ul-less computer that takes care of the
room’s sensors and actuators.

139

6.2 Scenario: Anna checking on Charles

Anna’s shift just started. As one of the first, she starts to check on patients by
visiting their cubicals. Each cubical has a motion sensor and an RFID sensor.
Upon entering the cubical, the blinds on both sides close to provide privacy to the
patient. The light turns on slightly to illuminate the room. Anna’s tablet detects the
presence of a patient in the room. According to the roster, she is currently taking
care of him. The tablet automatically shows the patient’s information depending
on Anna’s profile. In this scenario there are three devices (Anna’s tablet, Charles’
bed, room controller) and two humans (Anna, Charles).

6.2.1 Configurations
6.2.1.1 Room controller configuration

The room controller is running a control software on top of SAF. It does not
have any user interface. The controller has an RFID scanner (c2: senRFIDDoor)
around the door frame. Every time somebody enters the room, the scanner can
pick up the RFID code belonging to the person. The scanner is a push sensor (of
type sen:PushSensor). It means that every time it detects an RFID tag inside
the door, it notifies the controller by sending an event of type m:DoorEvent,
which contains the RFID identifier.

Also, the device has a soft policy (c2:pol1l) saying that at all circumstances
it should know the person being inside the room with the patient. It however
does not say how the device should proceed once this is not true. The policy only
describes a desire or undesired state. It is up to the device to find the right solution
to the problem. Both the policy and sensors’ descriptions are a part of the software
configuration. For a full description in S-APL see Appendix

Currently, the software and platform configuration offer 3 actions. Two are
generic and can be used platform-wide — initialize component (m: initComp) and
find component (m: £indComp). One action is specific to the application logic —
find human (m: findHuman). As the name suggests, the component finder is capa-
ble of finding a component implementing a certain capability (Appendix line
33). The action is implemented as a service facilitator call. When a component is
found, the information about it is stored into the knowledge base. The component
initializator action performs a compositional reconfiguration of the software. A
specific unused component is initialized and as a result the platform starts to use
it (Appendix line 50). Finally, the human finder action performs a query in
the database of people trying to find the identity of a person based on an RFID
identifier (Appendix 4.2} line 14).

6.2.1.2 Tablet configuration

The tablet belongs to the hospital and nurses use it to visualize patient’s informa-
tion. The tablet has an RFID sensor (m:bedSensor) that of type sen: PushSensor.

140

c2:ev532 rdf:type sen:SensorEvent, m:DoorEvent
; sen:hasValue "354186465463"
; sen:hasTimestamp "2013-09-10T08:15:50.547Z2"*"xsd:dateTimeStamp
; sen:readFrom c2:senRFIDDoor
; m:source c2:door .
sapl:I m:cannotIdentifyHuman "354186465463"

FIGURE 77 Example of a door event

It is a more sophisticated sensor than the door RFID reader from the previous
example. Whenever a bed is detected next to the device, an event with a bed URI
is generated.

The software structural profile specifies that the tablet optionally requires a
capability that allows patient’s monitoring (m: capPatientData). The adapta-
tion profile contains no plan and only one action sw: attachBed that can provide
the patient’s monitor component if the bed’s URI is provided. The tablet has
one soft obligation policy tab:polA, which specifies that it should always be
connected to a patient. The configuration can be found in Appendix4.3|

6.2.2 Situation 1: Identification of Anna
6.2.2.1 Initial state
We assume the following initial state:

1. There is only one person in the room — Charles
2. The room controller is aware of Charles
3. The room controller does not have a connection to any database of people

6.2.2.2 Chain of events

Anna enters the room wearing her RFID bracelet. The door RFID scanner picks
up the code. Since the software is configured to listen to this sensor, the infor-
mation is caught by the SAF monitor and stored into the knowledge base as a
new event. Also, the sensor is configured so that also a special belief sapl:T
m:cannotIdentifyHuman <ID> is inserted into KB whenever a previously un-
encountered person is met. This is the first time Anna is entering the room,
therefore the belief is inserted. Figure [77|shows the event with the special belief.
The SAF detector detects that the policy c2:pol1 is broken, because an unknown
person entered the room. An incident with the corresponding ticket is created.

The SAF deliberator is contacted to resolve the situation. The first step is
to look into the knowledge base and find a suitable plan or action. Since there is
no plan and only 3 actions, which are unsuitable, the deliberator has to contact
the SAF planner. Note that findHuman action is unusable, because it requires the
software to have a human database component.

The SAF planner starts with the conversion from S-APL into PDDL. In order

141

TABLE 13 Translation table for actions

’ Predicate \ Vi \ Vo \ Type \ S-APL query
implements ?x | ?y | VNV | ?x conf:implements ?y
humanDBComp | ?x VNN | ?x conf:implements m:capHumanDB
isComp ?X VNN | ?x rdf:type conf:Component
using ?X NNV | m:thisSW conf:currentlyUtilizes ?x
unknown ?X NNV | sapl:I m:cannotldentifyHuman ?x

(raction findComp
:parameters (?comp ?cap)
:precondition (and

(not (isComp ?comp))

(not (implements ?comp ?cap))

ceffect (and
(isComp ?comp)
(implements ?comp ?cap)
(humanDBComp ?comp)

)

FIGURE 78 PDDL version of the find component action

to transform the actions, the predicates must be converted. The conversion table is
shown in Table (13| For convenience, the table shows predicate names that resemble
the meaning of the original S-APL query statement. In reality the predicate
names would be converted into a seemingly random string with no meaning.
Once the conversion is finalized, it is crucial to mark which binary predicates
expand unary predicates. In this particular case the implements predicate expands
humanDBComp, which is consistent with the expansion graph introduced earlier
in Figure 57| This means that if there is an action with the implements predicate in
the effect, also the humanDBComp predicate should be included.

Once the predicate conversions are known, an action can be constructed.
There are 3 actions in the configuration. Therefore there will be 3 actions in the
PDDL domain description file. Figure |78 shows the findComp action together
with the effect expansion. The incident indicates that the policy was broken. Upon
examining the condition of the policy, the SAF planner finds out that the conflicting
statement is sapl:I sw:cannotIdentifyHuman "354186465463". There
is no hard policy in the system, therefore the problem file indicates that the desired
goalis not (unknown 354186465463).

The planner runs the external planning algorithm with both the problem and
the domain PDDL file as the input. In general, the planner can provide several
plans. In this particular case, only one plan is provided. The visual representation
of the plan is shown in Figure[79] It is possible to see the expansion in the findComp

142

findComp < findHuman ———

unknown (?id))
—unknown (?id)
use (?comp)

isComp (?comp)
humanDBComp (?comp)

—isComp (?comp) isComp (?comp)
—implements (?comp, ?cap) implements (?comp, ?cap)
humanDBComp (?comp)

initComp
isComp (?comp)

kd
—use (?comp) use (?comp)

FIGURE 79 Visual representation of a plan

action. The plan is converted into S-APL (see Appendix and delivered to the
SAF plan executor.

For each step in the plan, the SAF executor contacts the SAF action executor
with a single action to perform (e.g. a RAB call). Upon a successful action comple-
tion, the next step action is performed. This repeats until the goal has been reached.
Once the goal has been reached, the incident with its ticket is removed from KB.
In this particular case the first step was to find a human database component. The
second step was to initialize the found component. Lastly, the component was
used to find out who entered the room. The plan was saved into KB. The next
time Anna enters the room, no safeguard will be broken, because the person-ID
mapping is already present in KB. If some other unknown person enters the room,
the safeguard will be broken, which will cause an incident. However, this time the
planner will be skipped, because the deliberator will find a suitable plan in KB.

6.2.2.3 Scenario modification

In some cases a certain combination of sensory inputs within the given time frame
may cause an incident. Figure 80|shows how such a condition could be modeled.
The condition shows two door events for the same door. Event A comes from the
RFID door sensor and event B is sent from the motion sensor indicating movement
in the door area. The condition also specifies that the event B occurred at most 1
second after event A (lines 14-16). Finally, the last condition says that the human
cannot be identified.

6.2.24 Comparison between Ubi-0 and Ubi-SAF

There are two steps (moments) in the deliberation process, where Ubi-SAF im-
proves Ubi-0. The first step is the moment when an unknown person entered the
room and the detector detected that the policy c2:pol1 was broken. As described
earlier, Ubi-0 contains a policy system for RAB-related actions. However, it does
not have a policy system for agent’s internal beliefs. In Ubi-SAF this is achieved
using safeguards. Whenever a safeguard is broken, a precisely specified series of
events happens. As an indication of a broken policy, a ticket is created and it goes
through five states until it is resolved. A similar approach could be implemented

© ® N o U R W N =

Y
® NI o G s @ N = O

143

// two events detected for the same door
?eventA rdf:type m:DoorEvent

; sen:hasValue ?RFIDValue

; sen:hasTimestamp ?timeA

; sen:readFrom cl:senRFIDDoor

; m:source cl:door .

?7eventB rdf:type m:DoorEvent
; sen:hasTimestamp ?timeB
; sen:readFrom cl:senMotionRoom
; m:source cl:door .

// one second apart

?timeDiff sapl:expression "?timeB-?timeA"
?timeDiff < 1000 .

?timeDiff > 0 .

sapl:I m:cannotIdentifyHuman ?RFIDValue .

FIGURE 80 Modification of the incident condition

in Ubi-0 as a series of implications. By externalizing the safeguard break detection,
ticket creation and state transition process, the agent developer does not have
to repeat the same set of implications for each safeguard. Instead, he/she just
specifies the condition and the safeguard module (sub-system) will take care of
the process. This improvement can be classified as .

The second improvement can be identified in the situation when the delib-
erator finds out that no plan or action is available. In Ubi-SAF a planner can be
contacted and together with the newly introduced ability to plan, the planner can
provide a series of actions that lead to a ticket resolution. In Ubi-0 there is no ticket,
planner, deliberator or any other adaptation component. All adaptation-related
actions have to be implemented using implications and RABs. If some component
or portion of the code in Ubi-0 detects a problem, it has to rely only on the implica-
tions to solve it. In the situation described in the scenario, Ubi-0 would fail due to
its inability to plan. Therefore in this case Ubi-SAF provides an improvement of
type Is.

Apart from these two moments in the deliberation process, Ubi-SAF out-
performs Ubi-0 in the following way. Ubi-SAF has the ability of semi-automatic
memory management, which lowers the risk of memory overflow and improves
the performance. In general, the speed of agent’s deliberation is determined by
the speed of S-APL implication execution. The speed of the implication execution
mostly depends on the size of the knowledge base (KB) and the complexity of
conditions in the left-hand side of implications. When looking at the adaptation
cycle, the highest data flow (belief flow) is the one entering the monitor and detec-
tor components. This flow comprises of sensory data (beliefs). In Ubiware all the
beliefs stay in KB until an explicit action to delete them is detected (sapl : remove
or sapl:erase). In Ubi-0 the developer must provide these actions manually.
In Ubi-SAF we provide an automatic belief cleanup mechanism for sensory data

144

(introduced in Section[5.1.1). Due to these improvements, the historical sensory
data can be deleted either depending on the amount of stored values or depending
on the age of the measurement.

Another problem of a potential memory overflow and performance imped-
iment is in cases when a developer creates beliefs and then forgets to remove
them. This is a well known problem in software engineering and it has led to the
implementation of automatic garbage collection methods into various program-
ming languages (e.g. Java, Python, C#, etc.). In Ubi-SAF, by externalizing the
adaptation process, the developer does not have to perform a cleanup manually.
Instead of that, the cleanup is a part of the adaptation cycle. An example of such a
process can be seen in the incident lifecycle management. An incident is created by
SAF, held in KB throughout the resolution process and once the incident has been
solved, SAF automatically removes the incident and the corresponding ticket.

Depending on the point of view, this improvement can be seen as of type
I, because it simplifies the development process by automating the memory
management. Also, it is a type I, improvement, because it lowers the size of KB
and thus it improves the performance of the whole system. Lastly, it can be seen as
a type I3 improvement, because it allows Ubi-SAF to partially solve the problem
of memory overflow.

6.2.3 Situation 2: Anna’s tablet autonomously connects to patient’s bed
6.2.3.1 Initial state

We assume the following initial state:

1. Anna has just entered Charles” room
2. Anna has already been detected and identified by the room controller
3. The tablet is not connected to any bed

The policy m:polA (Appendix line 12) specifies that there should always
be a connection to a bed providing patient’s data. However, in the initial state,
there is no connection to any bed. Also, no component is used as the patient’s
data provider. There is no action that can help solve the issue. Therefore, in this
particular case, the scenario starts with a broken soft policy. So far we have shown
only cases when in the beginning the policy condition was holding and then a
disrupting even arrived. Since a soft policy is broken, a ticket in PRO (in progress)
or BLO (blocked) must exist. In this case, no other policy is blocking m: pola and
therefore some ticket (let us call it m: t2) in the PRO state exists in the agent’s
(tablet’s) belief storage.

6.2.3.2 Chain of events

The RFID sensor picks up Charles’ bed. Since Charles is in the room alone, only
his bed is picked up by the tablet. The sensory input can be seen in Figure
This sensor provides a more sophisticated information than the door sensor in the

145

x:ev327 rdf:type m:BedEvent
; sen:hasValue c2:bed
; sen:hasTimestamp "2013-09-10T08:15:52.239Z2"""xsd:dateTimeStamp
; sen:readFrom cl:senRFIDTablet .

FIGURE 81 Sample bed event

previous example. The event directly contains the bed URI. There is no need to
look it up based on the RFID identifier.

The SAF monitor detects the event and stores it into the knowledge base. The
detector does not notice any new policy inconsistency. However, since the policy
m:polA has been broken and the m: t A ticket exists, the detector also checks if the
newly available sensory input solves m: t A. In fact, the detector finds out that the
new event may contribute to the solution of m: tA. The deliberator is contacted.
This time the deliberator finds the action sw:attachBed that can solve the situa-
tion. Instead of contacting the planner, the plan executor is contacted. Since it is a
simple action, the plan executor directly contacts the action executor. The compo-
nent representing the bed is connected and the application can start to download
patient’s data and display it to the nurse. Note that Anna did not have to do
anything. She just approached the bed and the data was displayed automatically.
The same would happen if she entered another room with a different patient in it.

6.2.3.3 Comparison between Ubi-0 and Ubi-SAF

Thanks to the existence of the safeguard sub-system in Ubi-SAF, a SAF application
developer can easily specify various safeguards with different importance levels.
Whenever a safeguard is broken, SAF automatically creates a ticket, which is then
kept in the KB until it is resolved. The developer does not have to explicitly specify
the adaptation logic. He/she only specifies a set of policies, actions and plans
as a part of the software configuration. SAF takes care of the problem resolution
process automatically. Traditionally, in Ubi-0 one would have to use a set of
implications and RABs to implement the adaptation logic that is already contained
in Ubi-SAF. This new feature of Ubi-SAF can be classified as type ;.

6.3 Conclusion

We have provided a sample scenario with two situations. In the first situation S;
Anna enters Charles’ cubical and the room controller detects her for a credential
check. The second situation Sy describes how Anna’s tablet autonomously con-
nects to Charles” bed. While S; requires planning to resolve the situation, in S,
a suitable action is found and planning is completely avoided, saving resources.
Another difference is that S starts in a state when no policy is broken. S, starts
with a broken policy. Thanks to a new sensory input the solution is found. Lastly,
S1 uses a prohibition policy and S, uses an obligation policy.

7 CONCLUSION AND DISCUSSION

Chapter 7 finalizes the thesis by providing an analysis of the related work, sum-
mary of conclusions and a discussion on future work. Firstly, the related work in
the area of self-managed systems both in and out the area of pervasive computing
is examined. Several systems are presented and compared to SAF in terms of
capabilities. Secondly, the three research questions asked in the beginning of this
dissertation are answered. Lastly, we elaborate on possible future research in this
area.

7.1 Related work

This work presents a self-management middleware called SAF (Smart Adaptive
Framework), first as a conceptual framework (Chapter 3) and then as a Ubiware-
based implementation (Chapter 5). The related work in this section will be pre-
sented with respect to the effort described in Chapter 5, which also includes the
concept of SAF (Chapter 3) and a set of Ubiware improvements (Chapter 4). This
allows us to cover the whole extent of the work demonstrated in this dissertation.

7.1.1 Work that SAF is based on

In the general description of SAF we mention four main technologies that the
framework is based on — multi-agent systems (MAS) (Shoham, [1993; Wooldridge,
1997), semantic technologies (Berners-Lee et al., 2001; Lassila and Adler, [2003;
Lassila, 2005), an external (middleware-based) approach to adaptation (White
et al., 2004) and the three-layered model for adaptation (Kramer and Magee,
2007). The first three are also related to the vision of the Global Understanding
Environment (GUN) (Terziyan, |2003; Terziyan and Katasonov, 2009), which served
as a motivation for the development of the Ubiware platform and the S-APL
language (Katasonov et al., 2008).

In the area of MAS we base our work on the idea of Agent Oriented Program-

147

ming (AOP) by Shoham|(1993) and Agent-Oriented Software Engineering (AOSE)
by Wooldridge (1997). The Ubiware platform and thus also the Ubiware-based
implementation of SAF (Ubi-SAF)utilize an approach similar to the Belief-Desire-
Intention (BDI) architecture by Rao and Georgeftf (1995), OMNI by Vazquez+
Salceda et al.| (2005) and Gaia by Wooldridge et al. (2000).

The research in the area of Semantic Web and related technologies con-
tributed to the idea of utilizing a semantic approach to tackle the problem of
interoperability in heterogeneous environments (Lassila and Adler, 2003; |Lassila,
2005). Since this work deals with software engineering problems as well, the
adoption of widely-used standards such as RDF (Miller and Manola, 2004), OWL
(Miller and Manola, [2004) and Notation3 (Berners-Lee and Connolly, 2011) became
important as well.

The work in the field of self-management architectures such as White et al.
(2006) and Kramer and Magee| (2007) helped us better understand the processes
that an adaptive middleware has to deal with. The work by |Oreizy et al. (1999)
and Kephart and Chess (2003) improved our understanding of self-management
cycles.

Finally, our work on various industrial projects helped us understand the
real-world needs and also provided a testbed for partial solutions that were
presented in this work. Namely, the work on idustrial cases within the Ubiware
project showed us how various events and measurement data can be classified
using S-APL and formal ontologies. Also, the work on various core components
of the Ubiware platform broadened our view on its usability in self-management
(Terziyan et al) 2010a). This work has been further improved in the SCOPE
project. Lastly, our work within the Tivit SHOK Cloud Software program helped
us develop a method for utility function description in S-APL (Nagy, 2012, 2013).

7.1.2 Qualitative comparison to other approaches

We provide a qualitative comparison between the Ubiware-based SAF (Ubi-SAF)
and other self-management architectures. There is a number of surveys in the
area of autonomic computing, self-managed systems, context-aware architectures
and other related fields. Each of the surveys provides a different view on the
topic. For example, Bradbury et al. (2004) provide a survey of formal specifications
in self-management software architectures. Parashar and Hariri (2005) present
an overview of mostly commercial autonomic computing solutions for different
application domains such as distributed data storage management, database
systems management or server farms. Kjee r/ (2007) provides a survery of context-
aware middleware. Note that while context-awareness is a necessary condition of
self-management, it is not a sufficient condition of self-management. Salehie and
Tahvildari (2009) present a relatively broad overview of research projects dealing
with self-management.

Pervasive computing environments have been studied for over a decade.
Roman et al.|(2002) describe a meta-operating system called Gaia E| that runs on top

1 Do not confuse with Gaia — Analysis and design methodology for agent-based systems

148

of a normal operating system. The goal of the system is to provide a distributed
middleware architecture for coordination of software entities in physical spaces.
The middleware simplifies the resource discovery and utilization in heterogeneous
environments. However, it does not fully address the issue of autonomicity
(Sharmin et al, 2006). On the other hand, Ubi-SAF is based on the MAPE-K cycle
and thus it features the adaptation logic necessary to achieve autonomicity.

MARKS (Middleware Adaptability for Resource Discovery, Knowledge Us-
ability and Self-healing) is an effort to provide a middleware for pervasive com-
puting environments (Sharmin et al., 2005, 2006). Its emphasis is on the resource
discovery in open and dynamic environments using the notion of knowledge
usability (Ahmed et al., 2005).

The self-healing portion of MARKS is called ETS, which stands for Efficient,
Transparent, and Secured (Shameem et al., 2007). The ETS healing process consists
of six steps — Fault Detection, Fault Notification, Faulty Device Isolation, Alteration,
Information Distribution and Fault Healing. A fault is detected by comparing
a set of historical measurement data with a predefined threshold. In Ubi-SAF
a fault is called an incident and it is detected if a policy is broken. First of all,
Ubi-SAF supports events as well. Secondly, Ubi-SAF is capable of reasoning and
thus detecting indirect faults. Moreover, using a policy one can provide a more
complex condition than “value over a threshold”. A policy can use a combination
of several measurement values, events and internal beliefs (agent’s states). Finally,
according to the architecture presented by Shameem et al. (2007), ETS does not
support internal context provisioning. The fault notification phase of ETS is similar
to the service provided by the SAF detector element. The last four phases roughly
correspond to the deliberator-planner-executor portion of the SAF deliberation
cycle. While Ubi-SAF can deal with unforseen situations due to the planning
ability, the ETS implementation does not mention any planning process.

One of the similar approaches to SAF is Niche (Al-Shishtawy et al., 2009).
Niche, same as SAF, is trying to achieve self-management of component-based
applications in dynamic distributed environments. Niche relies on the replication
of a service using finite state machine (Al-Shishtawy et al., 2010). The machine is
then used as a replica for analysis and decision-making. Niche performs well in
large-scale distributed applications, where system nodes cooperate to achieve the
self-management properties. However, to our knowledge Niche does not address
the issue of heterogeneous resource discovery. Also, it does not mention the issue
of trust and reputation. Both of these are important in PerComp environments. In
Ubi-SAF, both of these problems are solved in the service facilitator element. The
use of semantic technologies makes the resource discovery less complicated and
the use of utility functions lowers the complexity of reputation management.

Saxena et al.| (2010) introduce a self-management method based on the
DESERT self-management framework. The framework utilizes Model Integrated
Computing (MIC), which is based on a method of applying computer-based mod-
eling approaches to the problem solution. DESERT symbolically encodes the space
of valid system states. When a goal changes or a fault is detected, a constraint
describing the problem is created and used to resolve the issue. Similarly to Niche,

149

DESERT performs well when self-configuration and self-healing is expected in the
cooperative environements. However, it does not provide any planning capability
and thus it is only able to deal with predefined states.

Hochstatter et al. (2008) describe the CArAM project (Context Architecture
for Autonomic Management) that uses a similar approach to self-management as
Ubi-SAF. The main idea is to provide a system that acts as a middleware between
policy-based service management and various context providers. CArAM shares
some similarities with Ubi-SAF. Firstly, the adaptation process is achieved through
an adaptation manager implementing a MAPE-K-like cycle. Secondly, the context
provisioning is achieved using semantic technologies (Buchholz et al., 2004). Lastly,
the adaptation management is based on policies. While CArAM utilizes various
languages for different purposes, Ubi-SAF uses S-APL to provide all the features
of platform. Moreover, to our knowledge CArAM does not use utility functions in
the decision-making process.

Kumar et al.|(2007) present a self-adaptive middleware based on utility func-
tions, overlay networks and data-stream processing techniques. The system pro-
vides self-configuration and self-optimization features in form of a three-layered
architecture consisting of application, autonomic and underlay layers. The ap-
plication layer collects and organizes the data using an SQL-like language. The
autonomic layer then performs the utility calculation and optimization. Finally,
the underlay layer is responsible for maintaining a hierarchy of physical nodes,
which are clustered according to system attributes. Even though the proposed
system is not dealing with the area of pervasive computing, there are several
similarities to the Ubi-SAF approach. It is possible to look at the three-layered
model as a MAPE-like cycle, where the application layer monitors and analyzes,
the autonomic layer decides and the underlay layer executes.

Probably the thematically closest effort to Ubi-SAF is the Hydra project
(Sarnovsky et al., 2007), which stands for a Networked Embedded System Mid-
dleware for Heterogeneous Physical Devices in a Distributed Architecture. The
goal was, among others, to create a self-managed middleware platform for the
realization of the Aml vision. Despite being two separate efforts, Hydra and
Ubi-SAF share several similarities. Firstly, according to Zhang and Hansen (2008a),
the context in Hydra is modelled using semantic technologies. Secondly, both
Hydra and Ubi-SAF utilize the three-layered model of adapatation by Kramer
and Magee| (2007). Lastly, both of the visions are targeting the area of pervasive
computing.

Hydra was an FP6 IST Programme integrated project that lasted between
the years 2006 and 2010 with a budget over 12 million EUR. This overlaps with
the efforts of the SmartResource project (2004-2008) and the Ubiware project
(2008-2011), where Ubiware platform and S-APL as GUN (Global Understanding
Environment) enablers were developed.

There are several differences between Ubi-SAF and Hydra. Firstly, Ubi-
SAF utilizes an agent-based approach to self-management achieved through the
Ubiware platform. Secondly, a typical Hydra programmer uses a combination of
various languages (e.g. OWL, SWRL, WSDL, Alloy modelling language, etc.) in

150

the application development process. This might be due to the fact that the project
consortium consisted of various research institutions, each providing solutions
based on their own approach and research background. Ubi-SAF is based on
Ubiware and therefore the software developer uses mostly S-APL. In some cases,
he/she might need to use Java to provide a new RAB functionality. However, for
most applications, the database of available RABs is sufficient. Moreover, Hydra
and Ubi-SAF use a different knowledge representation. Furthermore, to our
knowledge Hydra does not use utility functions in the decitionsmaking process.
Finally, in Ubi-SAF semantic technologies are used not only for context modelling
as in Hydra, but also to solve the problem of interoperability in heterogeneous
environments.

7.2 Conclusions

Chapter 1 proposed three research questions that we are trying to answer in this
dissertation. Firstly, we wanted to identify the key elements for adaptive software
set in pervasive computing environments. Secondly, we were trying to find an
approach to implementation of such software. Lastly, we wanted to show how it
can be used in pervasive computing environments.

Chapter 2 introduced several scientific visions related to the topic of this
dissertation. Moreover, several key technologies were mentioned as well. Lastly,
the Ubiware platform and S-APL language were described.

7.2.1 Answer to Q1

The first stated question is: What are the key elements of a middleware for adaptive
software? In Chapter 3 we first discussed various aspects of pervasive comput-
ing environments. Such an environment consists of three elements — humans,
machines (devices) and a communication network. Pervasive computing envi-
ronments are open and consist of various stakeholders, each trying to achieve
a combination of individual and group goals. The appropriate actions taken by
these stakeholders depend on these goals and the context in which they find
themselves. Moreover, devices operating in such environments are heterogeneous
in their software and hardware nature. Lastly, pervasive computing environments
are highly dynamic.

We introduced five requirements for software trying to achieve self-manage-
ment in these environments. Along these five requirements we introduced four
technologies that are able to provide the solutions. Firstly, adaptation decisions
should be based on both individual and group goals. This can be achieved by
using the multi-agent systems (MAS), which are a suitable tool to model and im-
plement competitive and cooperative distributed systems. Secondly, the software
should have the ability to adapt to heterogeneous interaction methods among
the devices. As a solution we suggest the use of semantic technologies, which

151

have proven to be an effective tool to solve the heterogeneity problem. Thirdly,
the adaptation overhead should be minimized, so that the software can spend
most of its computing time on providing the actual service it was designed to
provide. This can be achieved by dividing the adaptation process into three layers
with increasing computation complexity. Moreover, self-managed software should
support both the parameter adaptation and the compositional adaptation in an
unobtrusive manner. The answer to this problem could be an external approach to
self-management, where the adaptable software is built on top of an adaptation
middleware providing basic adaptation services. Lastly, such software should
support dynamic service discovery due to the dynamism of the environment it op-
erates in. The solution could be a combination of MAS and semantic technologies.
Table 8| (on page [84) summarizes these requirements.

We also introduced the concept called Smart Adaptive Framework (SAF),
which is a middleware platform for development of self-managed applications
for pervasive computing environments. The framework is based on the aforemen-
tioned approaches and consists of a shared knowledge base (KB), service facilitator,
various processing elements and resources. We utilize a modified MAPE-K cycle,
which is implemented in six processing elements. The first element, the monitor,
reads all sensory data and annotates it according to the sensor ontology. Secondly,
the detector is responsible for policy consistency checks. Third, the deliberator
decides which actions should be taken in case a plan is available. If no plan is
available, it contacts the fourth element, the planner, which performs planning.
Moreover, the plan executor is responsible for the implementation of the recovery
plan. Lastly, the action executor performs the actions specified in the plan by
triggering the actuators. Table 9] (on page [87) summarizes the processing elements
of SAF.

SAF and each software built on top of SAF have a configuration file that
specifies various parameters. The platform configuration file specifies the plat-
form administrator’s policies, actions and plans. The software configuration and
adaptation profile specifies various attributes of the adaptation logic.

7.2.2 Answer to Q2

The second question asks: How can such a middleware be implemented? To answer
the question we utilize the Ubiware platform, which is based both on agent
technologies and semantic technologies. Using this platform we show how SAF
can be implemented in terms of S-APL constructs and Ubiware components.

In order to make the implementation possible, the platform has to be ex-
tended with additional functionality and constructs. Chapter 4 provides three
improvements, namely belief safeguards, utility functions and planning. Safe-
guards are special S-APL constructs that allow the Ubiware developers to describe
certain desired or undesired states in the agent’s belief structure. The Ubiware
engine is able to automatically detect if a safeguard has been broken and create a
special object called ticket that can be used to resolve the issue. Utility functions al-
low the developer to define a resource evaluation method based on the properties

152

of the resources being evaluated. Utility function definitions are provided as RDF
statements, which allows the engine to reason about them. A utility evaluation
method is described as well. Lastly, the planning process is described by con-
verting S-APL actions and goals into the Planning Domain Definition Language
(PDDL) and utilizing an external PDDL planner.

The second portion of the answer to Q2 can be found in Chapter 5, where we
provide a Ubiware-based implementation of SAF. We provide a concrete way to
describe sensors, actuators, configurations, actions and plans in terms of Ubiware
and S-APL constructs. Also, in form of appendices, several OWL ontologies are
provided. Moreover, the service facilitator and its way to deal with reputation and
trust management is explained. Finally, SAF processing elements are described.

7.2.3 Answer to Q3

The last question is: How can such a middleware be used in the domain of pervasive
computing? The answer to the question is partially provided in Chapter 5, since
the Ubiware-based SAF implementation is already based on the assumption that
the devices running SAF will interact in pervasive computing environments.

The second part of the answer is provided in Chapter 6, where a sample
scenario is introduced. In this scenario SAF helps to achieve both the vision of
pervasive computing and decrease the perceived complexity of software used in
it. As an example of such an environment we have chosen a hospital from the
near future. The scenario features a nurse that takes care of a patient with the
help of various technologies embedded into her environment in a transparent way.
Thanks to SAF, the nurse is automatically recognized whenever she enters the
room. In fact, using the same principle any hospital personnel can be recognized in
any patient room. Also, the patient data is automatically displayed on the screen
of the nurse’s tablet depending on the nurse’s profile and patient’s diagnosis.

7.3 Limitations and future research

We see 3 areas, where SAF and its Ubiware-based implementation can be improved.
The first area is related to the problem of better and simpler utilization of the
historical sensory data. While in the current implementation of Ubiware it is
possible to perform certain statistical operations on top of the historical sensory
data, it is cumbersome. For example if one wants to express a condition “if the
current temperature drops bellow one hour average, ...”, one has to use a set of
complicated statements. A more elegant solution could improve the readability of
the code and potentially add new statistical capabilities. Also, some method of
trend discovery would improve the proactive capabilities of the agent and thus
help prevent it from falling into a certain undesired state.

Secondly, the model of interactions among agents is relatively simple in SAF.
A more expressive and detailed way of modeling can improve the self-configura-

153

tion abilities of the framework. Also, by understanding the relationship between
agents can help them plan their actions more efficiently.

Lastly, the self-optimization capabilities of SAF should be improved. While
a utility-based approach provides a solution to the problem, we should conside
other approaches as well (e.g. mathematical optimization). A combination of
several approaches may balance out drawbacks of each individual approach.

154
YHTEENVETO (FINNISH SUMMARY)

Nyky&dan useimmilla on kdytossddn erilaisia suorituskykyisid kannettavia lait-
teita kuten dlypuhelimia ja tablettitietokoneita. Toisaalta ndma laitteet ovat yha
monimutkaisempia ja kokonaisuus voi muuttua yksittdiselle kayttdjalle hallitse-
mattomaksi.

Tarvitaan uudentyyppisid ohjelmistoja, jotka kykeneviét hallitsemaan itsedan
ilman merkittdvaa kdyttdjan panosta. Kutsumme tillaista ohjelmistoa itseohjau-
tuvaksi (tai adaptiiviseksi). Téllaisten uudentyyppisten ohjelmistojen mahdollis-
tamiseksi Ubiware-projektissa luotiin uusi viliohjelmistoalusta. Alusta yhdistaa
uudella tavalla agettipohjaisen ohjelmistotekniikan semantiikkaan pohjautuvaan
deklaratiiviseen ohjelmointikieleen, jota kutsutaan nimelld S-APL (Semantic Agent
Programming Language).

Téssd tyossa esitetddn viitekehys itseohjautuvuudelle (SAF, Smart adaptive
Framework - dlykds adaptiivinen viitekehys). Tama viitekehys yhdistda adapti-
ivisten ohjelmistojen kolmitasoisen mallin ja itsendisen suljetun suunnittelusyklin.
Viitekehys antaa ohjelmistosuunnittelijalle uusia tekniikoita ja tyokaluja kuvata
tavoitteita, politiikkoja, tietorakenteita ja toimintasuunnitelmia ohjelmistokehi-
tyksen aikana. Nadiden kuvausten avulla SAF huolehtii ohjelmiston toiminnan
aikaisesta ohjauksesta itsendisesti tai tuetusti.

Ty0ssd tarkastellaan myos SAF:n toteuttamista Ubiware-viliohjelmiston laa-
jennuksen avulla. Téassd yhteydessa esitellddn kolme tarvittavaa laajennusta vilio-
hjelmistoon ja sen S-APL-kieleen: hyddyllisyysfunktiot, uskomusten valvojat ja
suunnittelijat. Laajennetun S-APL:n avulla kuvataan viitekehyksen eri modulien
toiminta sekd tekniikat, joilla ohjelmistoa ja viitekehystd voidaan konfiguroida.
Lisdksi kuvataan viitekehyksen toiminnassa tarvittava ontologia.

Lopuksi esitetddn esimerkkiskenaario, jossa demonstroidaan, miten SAF
voisi auttaa sairaalaympaéristdssd hoitohenkildston tyovélineiden ja potilaan valvon-
talaitteistojen vélisen yhteistyon automatisointia. SAF voisi tukea hoitajan tiedon-
hallintatehtdvien automaattista tai puoliautomaattista suorittamista eri toimijoiden
asettamien korkean tason tavoitteiden ja politiikkojen mukaan.

155
REFERENCES

ACM 2012. The 2012 ACM Computing Classification System. (URL:http://dl
acm.org/ccs_flat.cfm). Accessed on 2013-10-13.

Aarts, E. & Appelo, L. 1999. Ambient Intelligence: thuisomgevingen van de
toekomst. ITMonitor 9, 7-11.

Aarts, E. & Eggen, B. 2002. Ambient intelligence in HomeLab. (URL:http://andre|
meyer-vitali.com/documents/ambientintelligence.pdf). Accessed on 2013-10-
13.

Aarts, E. & Grotenhuis, F. 2009. Ambient Intelligence 2.0: Towards Syner-
getic Prosperity. In Proceedings of the European Conference on Ambient In-
telligence. Berlin, Heidelberg: Springer-Verlag. AmlI 09, 1-13. do0i:10.1007/
978-3-642-05408-2_1. (URL:http:/ /dx.doi.org/10.1007 /978-3-642-05408-2_1).

Aarts, E., Harwig, R. & Schuurmans, M. 2002. Ambient intelligence. In P. J. Denning
(Ed.) The invisible future. New York, NY, USA: McGraw-Hill, Inc., 235-250.
(URL:http:/ /dl.acm.org/ citation.cfm?1d=504949.504964).

Aarts, E. 2003. Ambient Intelligence: BUILDING THE VISION. (URL:http:
/ /www.research.philips.com/technologies/download /homelab_365.pdf). Ac-
cessed on 2013-10-13.

Aduna 2012. OpenRDF Sesame. (URL:http://www.openrdf.org/). Accessed on
2013-10-13.

Ahmed, S., Ahamed, S. I., Sharmin, M. & Hasan, C. S. 2009. Self-healing for
Autonomic Pervasive Computing. In A. V. Vasilakos, M. Parashar, S. Karnouskos
& W. Pedrycz (Eds.) Autonomic Communication. Springer US, 285-307. doi:10!
1007 /978-0-387-09753-4. (URL:http:/ /www.springerlink.com /index/10.1007 /
978-0-387-09753-4).

Ahmed, S., Sharmin, M. & Ahamed, S. I. 2005. Knowledge Usability and its
Characteristics for Pervasive Computing. In PSC, 206-209.

Al-Shishtawy, A., Fayyaz, M. A., Popov, K. & Vlassov, V. 2010. Achieving Robust
Self-Management for Large-Scale Distributed Applications. In Self-Adaptive
and Self-Organizing Systems (SASO), 2010 4th IEEE International Conference
on, 31-40. doi:10.1109/SAS0.2010.42.

Al-Shishtawy, A., Vlassov, V., Brand, P. & Haridi, S. 2009. A Design Methodology
for Self-Management in Distributed Environments. In Computational Science
and Engineering, 2009. CSE "09. International Conference on, Vol. 1, 430-436.
doi:10.1109/CSE.2009.301.

http://dl.acm.org/ccs_flat.cfm
http://dl.acm.org/ccs_flat.cfm
http://andre.meyer-vitali.com/documents/ambientintelligence.pdf
http://andre.meyer-vitali.com/documents/ambientintelligence.pdf
doi:10.1007/978-3-642-05408-2_1
doi:10.1007/978-3-642-05408-2_1
http://dx.doi.org/10.1007/978-3-642-05408-2_1
http://dl.acm.org/citation.cfm?id=504949.504964
http://www.research.philips.com/technologies/download/homelab_365.pdf
http://www.research.philips.com/technologies/download/homelab_365.pdf
http://www.openrdf.org/
doi:10.1007/978-0-387-09753-4
doi:10.1007/978-0-387-09753-4
http://www.springerlink.com/index/10.1007/978-0-387-09753-4
http://www.springerlink.com/index/10.1007/978-0-387-09753-4
doi:10.1109/SASO.2010.42
doi:10.1109/CSE.2009.301

156

Alahuhta, P, Hert, P. D., Delaitre, S., Friedewald, M., Gutwirth, S., Lind-
ner, R., Maghiros, 1., Moscibroda, A., Punie, Y., Schreurs, W., Verlin-
den, M., Vildjiounaite, E. & Wright, D. 2005. Dark scenarios on ambi-
ent intelligence: Highlighting risks and vulnerabilities. European Com-
mission. (URL:http:/ /is.jrc.ec.europa.eu/pages/TFS/documents/SWAMI_D2_
scenarios_Final ESvf 003.pdf).

Alani, H. 2003. TGVizTab: An Ontology Visualisation Extension for Protégé. In
Knowledge Capture (K-Cap’03), Workshop on Visualization Information in
Knowledge Engineering. (URL:http:/ /eprints.soton.ac.uk/258326/).

Amann, B. & Fundulaki, I. 1999. Integrating Ontologies and Thesauri to Build RDF
Schemas. In S. Abiteboul & A.-M. Vercoustre (Eds.) Research and Advanced
Technology for Digital Libraries, Vol. 1696. Springer Berlin Heidelberg. Lecture
Notes in Computer Science, 234-253. d0i:10.1007 /3-540-48155-9_16. (URL:http:
/ /dx.doi.org/10.1007 /3-540-48155-9_16).

Apache 2013. Apache Jena. (URL:http:/ /jena.apache.org/). Accessed on 2013-10-
13.

Apple 2011. iPod nano (6th generation) - Technical Specifications. (URL:http:
/ /support.apple.com/kb/SP593). Accessed on 2013-10-13.

Arrow, K. 1980. Discrimination in the Labour Market. Readings in Labour Eco-
nomics.

Ashton, K. 2009. That ’ Internet of Things " Thing. RFID Journal, 1-2. (URL:http:
/ /www.rfidjournal.com/article/view /4986).

Auto-IDLabs 2012. Auto-ID Labs. (URL:http://www.autoidlabs.org/). Accessed
on 2013-10-13.

Barber, K. S., Fullam, K. & Kim, J. 2003. Challenges for trust, fraud and deception
research in multi-agent systems. In Proceedings of the 2002 international confer-
ence on Trust, reputation, and security: theories and practice. Berlin, Heidelberg:
Springer-Verlag. AAMAS’02, 8-14. (URL:http:/ /dl.acm.org/citation.cfm?id=
1762128.1762130).

Barber, K. S. & Kim, J. 2001. Belief Revision Process Based on Trust: Agents
Evaluating Reputation of Information Sources. Trust in Cybersocieties 2246, 73—
82. (URL:http:/ /www.springerlink.com/index/ WHPTD63CXVLBA3]JP.pdf).

Bates, J. 1994. The role of emotion in believable agents. Communications of the
ACM 37 (7), 122-125. d0i:10.1145/176789.176803. (URL:http:/ /portal.acm.org/
citation.cfm?doid=176789.176803).

Bellifemine, F., Poggi, A. & Rimassa, G. 1999. JADE-A FIPA-compliant agent
framework. Proceedings of PAAM 99 (97-108), 33.

http://is.jrc.ec.europa.eu/pages/TFS/documents/SWAMI_D2_scenarios_Final_ESvf_003.pdf
http://is.jrc.ec.europa.eu/pages/TFS/documents/SWAMI_D2_scenarios_Final_ESvf_003.pdf
http://eprints.soton.ac.uk/258326/
doi:10.1007/3-540-48155-9_16
http://dx.doi.org/10.1007/3-540-48155-9_16
http://dx.doi.org/10.1007/3-540-48155-9_16
http://jena.apache.org/
http://support.apple.com/kb/SP593
http://support.apple.com/kb/SP593
http://www.rfidjournal.com/article/view/4986
http://www.rfidjournal.com/article/view/4986
http://www.autoidlabs.org/
http://dl.acm.org/citation.cfm?id=1762128.1762130
http://dl.acm.org/citation.cfm?id=1762128.1762130
http://www.springerlink.com/index/WHPTD63CXVLBA3JP.pdf
doi:10.1145/176789.176803
http://portal.acm.org/citation.cfm?doid=176789.176803
http://portal.acm.org/citation.cfm?doid=176789.176803

157

Bellifemine, F., Poggi, A. & Rimassa, G. 2000. Developing Multi-agent Systems
with JADE. In ATAL, 89-103.

Berners-Lee, T. & Connolly, D. 2011. Notation3 (N3): A readable RDF syntax. W3C.
W3C Team Submission. (URL:http://www.w3.org/TeamSubmission/n3/).

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The Semantic Web. Scientific
American 284 (5), 34-43. doi:10.1038/scientificamerican0501-34. (URL:http:
/ /www.nature.com/doifinder/10.1038 /scientificamerican0501-34).

Berners-Lee, T. 1993. A Brief History of the Web. <URL:http:/ /www.w3.org/
DesignlIssues/TimBook-old /History.html). Accessed on 2013-10-13.

Berners-Lee, T. 1997. Links and Law: Myths. <URL:http: / /www.w3.org/
Designlssues/LinkMyths.html). Accessed on 2013-10-13.

Berners-Lee, T. 1999. The original design and ultimate destiny of the world wide
web by its inventor. Harper Collins, chapter 12.

Berners-Lee, T. 2012. Start of the web: Influences. (URL:http://www.w3.org/
People/Berners-Lee/FAQ.html#Influences). Accessed on 2013-10-13.

Berners-Lee, T., Fielding, R. & Masinter, L. 2005. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (INTERNET STANDARD). (URL:http://www.ietf,
org/rfc/rfc3986.txt). Accessed on 2013-10-13.

Bradbury, J. S., Cordy, J. R., Dingel, J. & Wermelinger, M. 2004. A survey of self-
management in dynamic software architecture specifications. In Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems. ACM, 28-33.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. 2004. Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems 8 (3), 203-236. d0i:10.1023 /B: AGNT.0000018806.20944
ef. (URL:http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef).

Buchholz, T, Krause, M., Linnhoff-Popien, C. & Schiffers, M. 2004. CoCo: Dynamic
Composition of Context Information. In MobiQuitous, 335-343.

Buckley, J. 2006. From RFID to the Internet of Things, 32. (URL:ftp:/ /ftp.cordis!
europa.eu/pub/ist/docs/ka4/au_conf670306_buckley_en.pdf).

Carothers, G. & Prud’hommeaux, E. 2013. Turtle. W3C. Candidate Recommenda-
tion.

Carothers, G. 2013. N-Triples. W3C. W3C Working Draft.

Carroll, J., Herman, I. & Patel-Schneider, P. F. 2012. OWL 2 Web Ontology Language
RDF-Based Semantics (Second Edition). W3C. W3C Recommendation.

Cederlof, H. & Pyotsia, J. 1999. Advanced Diagnostics Concept Using Intelligent
Field Agents. In ISA TECH. University of Jyvaskyla.

http://www.w3.org/TeamSubmission/n3/
doi:10.1038/scientificamerican0501-34
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://www.nature.com/doifinder/10.1038/scientificamerican0501-34
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/LinkMyths.html
http://www.w3.org/DesignIssues/LinkMyths.html
http://www.w3.org/People/Berners-Lee/FAQ.html#Influences
http://www.w3.org/People/Berners-Lee/FAQ.html#Influences
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
doi:10.1023/B:AGNT.0000018806.20944.ef
doi:10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
ftp://ftp.cordis.europa.eu/pub/ist/docs/ka4/au_conf670306_buckley_en.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ka4/au_conf670306_buckley_en.pdf

158

Cheng, B. H., Lemos, R., Giese, H., Inverardi, P, Magee, J., Andersson,].,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dust-
dar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle,
H. M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Miiller, H. A., Park,
S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D. & Whittle, J. 2009. Software
Engineering for Self-Adaptive Systems. In B. H. Cheng, R. Lemos, H. Giese,
P. Inverardi & J. Magee (Eds.) Software Engineering for Self-Adaptive Systems.
Berlin, Heidelberg: Springer-Verlag, 1-26. doi:10.1007/978-3-642-02161-9_1.
(URL:http:/ /dx.doi.org/10.1007 /978-3-642-02161-9_1).

Cochez, M. & Nagy, M. 2011. WP1: Mashupper agent-enabled social cloud. Uni-
versity of Jyvaskyla.

Cochez, M. 2012. Semantic Agent Programming Language: use and formalization.
University of Jyvaskyld, Finland. Master’s Thesis.

Diirst, M. & Suignard, M. 2005. Internationalized Resource Identifiers (IRIs).
(URL:http:/ /www.ietf.org/rfc/rfc3987.txt). Accessed on 2013-10-13.

Dey, A. K. 2001. Understanding and Using Context. Personal Ubiquitous Com-
put. 5 (1), 4-7. doi:10.1007 /s007790170019. (URL:http://dx.doi.org/10.1007 /
s007790170019).

Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, E,
Nixon, P, Saffre, F, Schmidt, N. & Zambonelli, F. 2006. A survey of auto-
nomic communications. ACM Trans. Auton. Adapt. Syst. 1 (2), 223-259. doi:
10.1145/1186778.1186782. (URL:http://doi.acm.org/10.1145/1186778.1186782).

Ducatel, K., Bogdanowicz, M., Scapolo, F. & Leijten, J. 2001. Scenarios for ambient
intelligence in 2010 : final report. European Commission. (URL:http://www.ist,
hu/doctar/fp5/istagscenarios2010.pdf).

Elsevier 2013. Pervasive and Mobile Computing Journal. (URL:http://www,
journals.elsevier.com/pervasive-and-mobile-computing /). Accessed on 2013-
10-13.

Ernst, N. A. & Storey, M. A. 2003. A Preliminary Analysis of Visualization Require-
ments in Knowledge Engineering Tools. University of Victoria.

FIPA 2002a. FIPA00001 Abstract Architecture Specification. FIPA, 75. (URL:http:
/ /www.fipa.org/specs/fipa00001/SC00001L.pdf).

FIPA 2002b. FIPA00037 Communicative Act Library Specification, 45.

FIPA 2002c. FIPA00061 ACL Message Structure Specification, 11. (URL:http:/ /
www.fipa.org/specs/fipa00061/SC00061G.pdf).

FIPA 2003. FIPA00025 Interaction Protocol Library Specification, 25. (URL:http:
/ /fipa.org/specs/ fipa00025/DCO00025F.pdf).

doi:10.1007/978-3-642-02161-9_1
http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://www.ietf.org/rfc/rfc3987.txt
doi:10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1007/s007790170019
doi:10.1145/1186778.1186782
doi:10.1145/1186778.1186782
http://doi.acm.org/10.1145/1186778.1186782
http://www.ist.hu/doctar/fp5/istagscenarios2010.pdf
http://www.ist.hu/doctar/fp5/istagscenarios2010.pdf
http://www.journals.elsevier.com/pervasive-and-mobile-computing/
http://www.journals.elsevier.com/pervasive-and-mobile-computing/
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf
http://fipa.org/specs/fipa00025/DC00025F.pdf
http://fipa.org/specs/fipa00025/DC00025F.pdf

159

FIPA 2004. FIPA00023 Agent Management Specification, 40. (URL:http:/ /www,
fipa.org/specs/fipa00023/SC00023K.pdf).

FIPA 2012. Foundation for Intelligent Physical Agents main web page. (URL:http:
/ /www.fipa.org/)). Accessed on 2013-10-13.

Falcone, R., Pezzulo, G. & Castelfranchi, C. 2002. Quantitying Belief Credibility for
Trust-based Decision. In Proceedings of the Autonomous Agents 2002 Workshop
on Deception, Fraud, and Trust in Agent Societies. AAMAS "02, 41-48.

Fehr, E. & Géchter, S. 2000. Fairness and Retaliation: The Economics of Reciprocity.
Journal of Economic Perspectives 14 (3), 159-181. d0i:10.1257 /jep.14.3.159.
(URL:http:/ /pubs.aeaweb.org/doi/abs/10.1257 /jep.14.3.159).

Fielding, R., Gettys,]., Mogul,]., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee,
T. 1999. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616 (Draft Standard).
(URL:http:/ /www.ietf.org/rfc/rfc2616.txt). Accessed on 2013-10-13.

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E. & Srinivas, K. 2006. K.:
The Summary Abox: Cutting Ontologies Down to Size. In In: Proc. ISWC-
06. Volume 4273 of LNCS. Springer Berlin Heidelberg, 343-356. (URL:http:
/ /dx.doi.org/10.1007 /11926078_25).

Fullam, K. K., Klos, T. B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Barber,
K. S., Rosenschein, J. S., Vercouter, L. & Voss, M. 2005. A specification of the
Agent Reputation and Trust (ART) testbed: experimentation and competition
for trust in agent societies. In Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems. New York, NY,
USA: ACM. AAMAS ’05, 512-518. |d0i:10.1145/1082473.1082551. (URL:http:
/ /doi.acm.org/10.1145/1082473.1082551).

Ganek, A. G. & Corbi, T. A. 2003. The dawning of the autonomic computing era.
IBM Syst. J. 42 (1), 5-18. d0i:10.1147/5sj.421.0005. (URL:http:/ /dx.doi.org/10.
1147 /5sj.421.0005).

Gat, E., Bonnasso, R. P, Murphy, R. & Press, A. 1997. On Three-Layer Architectures.
In Artificial Intelligence and Mobile Robots. AAAI Press, 195-210.

Genesereth, M. R. & Ketchpel, S. P. 1994. Software Agents. Commun. ACM 37 (7),
48-53.

GeorgiaTech 2012. Aware Home Research Initiative. (URL:http://www,
awarehome.gatech.edu/). Accessed on 2013-10-13.

Gershenfeld, N., Krikorian, R. & Cohen, D. 2004. The Internet of Things. Scientific
American 291 (4), 46-51.

Ghosh, D., Sharman, R., Raghav Rao, H. & Upadhyaya, S. 2007. Self-healing
systems - survey and synthesis. Decis. Support Syst. 42 (4), 2164-2185. doi:http:

http://www.fipa.org/specs/fipa00023/SC00023K.pdf
http://www.fipa.org/specs/fipa00023/SC00023K.pdf
http://www.fipa.org/
http://www.fipa.org/
doi:10.1257/jep.14.3.159
http://pubs.aeaweb.org/doi/abs/10.1257/jep.14.3.159
http://www.ietf.org/rfc/rfc2616.txt
http://dx.doi.org/10.1007/11926078_25
http://dx.doi.org/10.1007/11926078_25
doi:10.1145/1082473.1082551
http://doi.acm.org/10.1145/1082473.1082551
http://doi.acm.org/10.1145/1082473.1082551
doi:10.1147/sj.421.0005
http://dx.doi.org/10.1147/sj.421.0005
http://dx.doi.org/10.1147/sj.421.0005
http://www.awarehome.gatech.edu/
http://www.awarehome.gatech.edu/
doi:http://dx.doi.org/10.1016/j.dss.2006.06.011

160

/ /dx.doi.org/10.1016/j.dss.2006.06.011. (URL:http://dx.doi.org/10.1016/j.dss
2006.06.011).

Google 2011. Greater choice for wireless access point owners. (URL:http://
googleblog.blogspot.fi/2011/11/greater-choice-for-wireless-access.html). Ac-
cessed on 2013-10-13.

Guha, R. V. & Brickley, D. 2004. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C. W3C Recommendation.

Hansen, T., Hardie, T. & Masinter, L. 2006. Guidelines and Registration Procedures
for New URI Schemes. RFC 4395 (Best Current Practice). (URL:http://www|
ietf.org/rfc/rfc4395.txt). Accessed on 2013-10-13.

Hansmann, U., Merk, L., Nicklous, M. & Stober, T. 2003. Pervasive Computing,
448.

van Harmelen, F. & McGuinness, D. 2004. OWL Web Ontology Language
Overview. W3C. W3C Recommendation.

Harris, S. & Seaborne, A. 2013. SPARQL 1.1 Query Language. W3C. W3C Recom-
mendation.

Hayes, P.,, Patel-Schneider, P. F. & Horrocks, 1. 2004. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C. W3C Recommendation.

Hayes, P. 2004. RDF Semantics. W3C. W3C Recommendation.

Hermit 2013. hermit. (URL:http://hermit-reasoner.com/). Accessed on 2013-10-
13.

Hinchey, M. G. & Sterritt, R. 2006. Self-managing software. do1:10.1109/MC.2006/
69. (URL:http:/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1597102).

Hochstatter, 1., Dreo, G., Serrano, M., Serrat, J., Nowak, K. & Trocha, S. 2008.
An architecture for context-driven self-management of services. In INFOCOM
Workshops 2008, IEEE, 1-4. doi:10.1109/INFOCOM.2008.4544629.

Hoffman, P. 2005. The telnet URI Scheme. RFC 4248 (Proposed Standard).
(URL:http:/ /www.ietf.org/rfc/rfc4248.txt). Accessed on 2013-10-13.

Horrocks, 1., Parsia, B. & Sattler, U. 2012. OWL 2 Web Ontology Language Direct
Semantics (Second Edition). W3C. W3C Recommendation.

Intel 2006. Intel Unveils World'’s Best Processor. (URL:http://web.archive.org/
web /20070403081121 /http:/ /www.intel.com /pressroom/archive/releases/
20060727comp.htm?cid=rss-83642-c1-135841). Accessed on 2013-10-13.

Jennings, N. R. & Wooldridge, M. 1995. Applying agent technology. Applied
Artificial Intelligence 9 (4), 357-369.

doi:http://dx.doi.org/10.1016/j.dss.2006.06.011
doi:http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://googleblog.blogspot.fi/2011/11/greater-choice-for-wireless-access.html
http://googleblog.blogspot.fi/2011/11/greater-choice-for-wireless-access.html
http://www.ietf.org/rfc/rfc4395.txt
http://www.ietf.org/rfc/rfc4395.txt
http://hermit-reasoner.com/
doi:10.1109/MC.2006.69
doi:10.1109/MC.2006.69
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1597102
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1597102
doi:10.1109/INFOCOM.2008.4544629
http://www.ietf.org/rfc/rfc4248.txt
http://web.archive.org/web/20070403081121/http://www.intel.com/pressroom/archive/releases/20060727comp.htm?cid=rss-83642-c1-135841
http://web.archive.org/web/20070403081121/http://www.intel.com/pressroom/archive/releases/20060727comp.htm?cid=rss-83642-c1-135841
http://web.archive.org/web/20070403081121/http://www.intel.com/pressroom/archive/releases/20060727comp.htm?cid=rss-83642-c1-135841

161

Jennings, N. R. 1999. Agent-Oriented Software Engineering. In Proceedings of the
9th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World: MultiAgent System Engineering. London, UK, UK: Springer-Verlag.
MAAMAW 99, 1-7. (URL:http:/ /dl.acm.org/ citation.cfm?id=646910.710805).

Jennings, N. R. 2001. An agent-based approach for building complex software
systems. Communications of the ACM 44 (4), 35-41. (URL:http:/ /portal.acm|
org/citation.cfm?id=367250).

Jennings, N. R. 2000. On Agent-Based Software Engineering. Artificial Intelligence
117 (2), 277-296. (URL:http:/ /eprints.ecs.soton.ac.uk/3741/).

Jessup, L. M. & Robey, D. 2002. The relevance of social issues in ubiquitous
computing environments. Commun. ACM 45 (12), 88-91. doi:10.1145/585597|
585621. (URL:http://doi.acm.org/10.1145/585597.585621).

Jonker, C. & Treur, J. 1999. Formal Analysis of Models for the Dynamics of Trust
Based on Experiences. In F. Garijo & M. Boman (Eds.) Multi-Agent System
Engineering, Vol. 1647. Springer Berlin Heidelberg. Lecture Notes in Computer
Science, 221-231. d0i:10.1007 / 3-540-48437-X_18. (URL:http://dx.doi.org/10
1007 /3-540-48437-X_18).

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S. & Terziyan, V. Y. 2008. Smart
Semantic Middleware for the Internet of Things. In ICINCO-ICSO, 169-178.

Katasonov, A., Nagy, M. & Cochez, M. 2012. Ubiware application developer guide,
32. (URL:http:/ /www.cs.jyu.fi/ai/OntoGroup /ubidoc/ Application_developer,

pdf).

Katasonov, A. & Terziyan, V. 2008. Semantic Agent Programming Language (S-
APL): A Middleware Platform for the Semantic Web. In Proceedings of the
2008 IEEE International Conference on Semantic Computing. Washington, DC,
USA: IEEE Computer Society. ICSC "08, 504-511. doi:10.1109/ICSC.2008.82.
(URL:http://dx.doi.org/10.1109/1CSC.2008.82).

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C. & Giannopoulou, E. 2007.
Ontology Visualization Methods — a Survey. ACM Comput. Surv. 39 (4). doi:
10.1145/1287620.1287621. (URL:http://doi.acm.org/10.1145/1287620.1287621).

Kaykova, O., Khriyenko, O., Kovtun, D., Anton, N., Terziyan, V. & Zharko, A.
2005. General Adaption Framework. International Journal on Semantic Web and
Information Systems 1 (3), 31-63.

Kephart, J. O. & Walsh, W. E. 2004. An Artificial Intelligence Perspective on
Autonomic Computing Policies. In POLICY, 3-12.

Kephart, J. O. & Chess, D. M. 2003. The vision of autonomic computing. doi:
10.1109/MC.2003.1160055. (URL:http:/ /ieeexplore.ieee.org/xpls/abs_alljsp?
arnumber=1160055).

http://dl.acm.org/citation.cfm?id=646910.710805
http://portal.acm.org/citation.cfm?id=367250
http://portal.acm.org/citation.cfm?id=367250
http://eprints.ecs.soton.ac.uk/3741/
doi:10.1145/585597.585621
doi:10.1145/585597.585621
http://doi.acm.org/10.1145/585597.585621
doi:10.1007/3-540-48437-X_18
http://dx.doi.org/10.1007/3-540-48437-X_18
http://dx.doi.org/10.1007/3-540-48437-X_18
http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/Application_developer.pdf
http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/Application_developer.pdf
doi:10.1109/ICSC.2008.82
http://dx.doi.org/10.1109/ICSC.2008.82
doi:10.1145/1287620.1287621
doi:10.1145/1287620.1287621
http://doi.acm.org/10.1145/1287620.1287621
doi:10.1109/MC.2003.1160055
doi:10.1109/MC.2003.1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1160055

162

Kephart, J. O. & Das, R. 2007. Achieving Self-Management via Utility Functions.
Internet Computing, IEEE 11 (1), 40-48. doi:10.1109/MIC.2007.2.

Khriyenko, O. 2008. Adaptive semantic web based environment for web resources.
University of Jyvaskyld. Ph. D. Thesis, 193. (URL:http:/ /urn.fi/ URN:ISBN:
978-951-39-3446-0).

Kindberg, T. & Fox, A. 2002. System Software for Ubiquitous Computing. IEEE
Pervasive Computing 1 (1), 70-81. doi:10.1109/MPRV.2002.993146. (URL:http:
/ /dx.doi.org/10.1109/MPRV.2002.993146).

Kjeer, K. E. k.2007. A SURVEY OF CONTEXT-AWARE MIDDLEWARE. In Context.
ACTA Press, 148-155. d0i:10.1109/MPRV.2002.1012334. <URL:http: / /portal.acm|
org /citation.cfm?id=1332069).

Kroétzsch, M., Patel-Schneider, P.,, Rudolph, S., Parsia, B. & Hitzler, P. 2012. OWL 2
Web Ontology Language Primer (Second Edition). W3C.

Kramer,]. & Magee, J. 2007. Self-Managed Systems: an Architectural Challenge. In
2007 Future of Software Engineering. Washington, DC, USA: IEEE Computer
Society. FOSE "07, 259-268. d0i:10.1109/FOSE.2007.19. (URL:http:/ /dx.doi.org/
10.1109/FOSE.2007.19).

Kumar, V., Cooper, B. E, Cai, Z., Eisenhauer, G. & Schwan, K. 2007. Middleware
for enterprise scale data stream management using utility-driven self-adaptive
information flows. Cluster Computing 10 (4), 443-455.

Laddaga, R. 1999. Creating robust software through self-adaptation. Intelligent Sys-
tems and their Applications, IEEE 14 (3), 26-29. d0i:10.1109/MIS.1999.769879.

Lassila, O. & Adler, M. 2003. Semantic gadgets: Device and information interop-
erability. In In the working notes of the Workshop of Ubiqutous Computing
Environment.

Lassila, O. 2005. Using the Semantic Web in Mobile and Ubiquitous Computing.
In M. Bramer & V. Terziyan (Eds.) Industrial Applications of Semantic Web,
Vol. 188. Springer US. IFIP — The International Federation for Information Pro-
cessing, 19-25.|d01:10.1007 /0-387-29248-9_1. (URL:http:/ /dx.doi.org/10.1007 /
0-387-29248-9_1)).

Lee, J. S. M., Katari, G. & Sachidanandam, R. 2005. GObar: a gene ontology based
analysis and visualization tool for gene sets. BMC bioinformatics 6 (1), 189. doi:
10.1186/1471-2105-6-189. (URL:http:/ /www.biomedcentral.com/1471-2105/
6/189).

Liebig, T. 2004. OntoTrack: Combining browsing and editing with reasoning and
explaining for OWL Lite ontologies. In In Proceedings of the 3rd International
Semantic Web Conference (ISWC) 2004. Springer, 244-258.

doi:10.1109/MIC.2007.2
http://urn.fi/URN:ISBN:978-951-39-3446-0
http://urn.fi/URN:ISBN:978-951-39-3446-0
doi:10.1109/MPRV.2002.993146
http://dx.doi.org/10.1109/MPRV.2002.993146
http://dx.doi.org/10.1109/MPRV.2002.993146
doi:10.1109/MPRV.2002.1012334
http://portal.acm.org/citation.cfm?id=1332069
http://portal.acm.org/citation.cfm?id=1332069
doi:10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
doi:10.1109/MIS.1999.769879
doi:10.1007/0-387-29248-9_1
http://dx.doi.org/10.1007/0-387-29248-9_1
http://dx.doi.org/10.1007/0-387-29248-9_1
doi:10.1186/1471-2105-6-189
doi:10.1186/1471-2105-6-189
http://www.biomedcentral.com/1471-2105/6/189
http://www.biomedcentral.com/1471-2105/6/189

163

Lyytinen, K. & Yoo, Y. 2002. Issues and Challenges in Ubiquitous Computing.
Commun. ACM 45 (12), 62-65. doi:10.1145/585597.585616. (URL:http:/ /doi|
acm.org/10.1145/585597.585616)).

MIT 2012. AUTO-ID Labs at MIT. (URL:http:/ /autoid.mit.edu/cs/). Accessed
on 2013-10-13.

Miihl, G., Werner, M., Jaeger, M. A., Herrmann, K. & Parzyjegla, H. 2007. On the
Definitions of Self-Managing and Self-Organizing Systems. In T. Braun, G. Carle
& B. Stiller (Eds.) Proceedings of the KiVS 2007 Workshop Selbstorganisierende
Adaptive Kontextsensitive verteilte Systeme SAKS 2007. VDE Verlag, 291-301.
(URL:http:/ /www.kbs.cs.tu-berlin.de/publications/ fulltext/ kivs2007_2.pdf).

Mamei, M. & Zambonelli, F. 2006. Field-Based Coordination for Pervasive Mul-
tiagent Systems. Springer. Springer Series on Agent Technology. (URL:http:
/ /books.google.se/books?id=IQJR3]J-5HpwC).

Max-neef, M. A., Hopenhayn, M. & Hamrell, S. 1991. Development and Human
Needs. In HUMAN SCALE DEVELOPMENT CONCEPTION. The Apex Press,
13-54. (URL:http:/ /www.max-neef.cl/download /Max-neef_Human_Scale_
development.pdf).

McFarlane, D., Sarma, S., Chirn, J. L., Wong, C. Y. & Ashton, K. 2003. Auto ID
systems and intelligent manufacturing control. Engineering Applications of Arti-
ficial Intelligence 16 (4), 365-376. doi:10.1016 /50952-1976(03)00077-0. (URL:http:
/ /www.sciencedirect.com/science/article /pii/S0952197603000770).

McFarlane, D. 2002. Auto ID based control systems-an overview. In Systems, Man
and Cybernetics, 2002 IEEE International Conference on, Vol. 3, 6 pp. vol.3.
doi:10.1109/ICSMC.2002.1176120.

Mckinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B. H. C. 2004. A Taxonomy
of Compositional Adaptation. East 2004 (May). (URL:http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.1.7262&rep=repl&type=pdf).

Melnik, S. & Decker, S. 2001. Representing Order in RDF. (URL:http://infolab,
stanford.edu/ ~stefan/daml/order.html).

Merriam-Webster 2013. Merriam-Webster dictionary.
Miller, E. & Manola, F. 2004. RDF Primer. W3C. W3C Recommendation.

Nagy, M., Katasonov, A., Khriyenko, O., Nikitin, S., Szydlowski, M. & Terziyan,
V. 2009. Challenges of Middleware for the Internet of Things. In Automation
Control - Theory and Practice. InTech, 247-270.

Nagy, M. 2012. On the Problem of Multi-Channel Communi-
cation. In ICTERI, 128-133. (URL:http://ceur-ws.org/Vol-848/
ICTERI-2012-CEUR-WS-paper-40-p-128-133.pdf).

doi:10.1145/585597.585616
http://doi.acm.org/10.1145/585597.585616
http://doi.acm.org/10.1145/585597.585616
http://autoid.mit.edu/cs/
http://www.kbs.cs.tu-berlin.de/publications/fulltext/kivs2007_2.pdf
http://books.google.se/books?id=IQJR3J-5HpwC
http://books.google.se/books?id=IQJR3J-5HpwC
http://www.max-neef.cl/download/Max-neef_Human_Scale_development.pdf
http://www.max-neef.cl/download/Max-neef_Human_Scale_development.pdf
doi:10.1016/S0952-1976(03)00077-0
http://www.sciencedirect.com/science/article/pii/S0952197603000770
http://www.sciencedirect.com/science/article/pii/S0952197603000770
doi:10.1109/ICSMC.2002.1176120
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.7262&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.7262&rep=rep1&type=pdf
http://infolab.stanford.edu/~stefan/daml/order.html
http://infolab.stanford.edu/~stefan/daml/order.html
http://ceur-ws.org/Vol-848/ICTERI-2012-CEUR-WS-paper-40-p-128-133.pdf
http://ceur-ws.org/Vol-848/ICTERI-2012-CEUR-WS-paper-40-p-128-133.pdf

164

Nagy, M. 2013. A Multi-channel Communication Framework. In V. Ermolayev,
H. Mayr, M. Nikitchenko, A. Spivakovsky & G. Zholtkevych (Eds.) ICT in Educa-
tion, Research, and Industrial Applications, Vol. 347. Springer Berlin Heidelberg.
Communications in Computer and Information Science, 72-88. d0i:10.1007 /
978-3-642-35737-4_5. (URL:http:/ /dx.doi.org/10.1007 /978-3-642-35737-4_5).

Nikitin, S., Katasonov, A. & Terziyan, V. Y. 2009. Ontonuts: Reusable Semantic
Components for Multi-agent Systems. In ICAS, 200-207.

Nikitin, S. 2011. Dynamic aspects of industrial middleware architectures. Univer-
sity of Jyvaskyla. Ph. D. Thesis.

Noy, N. E, Fergerson, R. W. & Musen, M. A. 2000. The Knowledge Model of
Protégé-2000: Combining Interoperability and Flexibility. In Proceedings of
the 12th European Workshop on Knowledge Acquisition, Modeling and Man-
agement. London, UK, UK: Springer-Verlag. EKAW ‘00, 17-32. (URL:http:
/ /dl.acm.org/ citation.cfm?id=645361.650855).

Oreizy, P, Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D. S. & Wolf, A. L. 1999. An architecture-based
approach to self-adaptive software. Intelligent Systems and their Applications,
IEEE 14 (3), 54-62. d0i:10.1109/5254.769885.

Pantic, M. & Rothkrantz, L. J. M. 2003. Toward an affect-sensitive multimodal
human-computer interaction. Proceedings of the IEEE 91 (9), 1370-1390. doi:
10.1109/JPROC.2003.817122.

Parashar, M. & Hariri, S. 2005. Autonomic Computing : An Overview. Uncon-
ventional Programming Paradigms 3566, 247-259. do0i:10.1007 /11527800_20.
(URL:http:/ /www.springerlink.com /index/8JWVM292E2N5NPMG.pdf).

Parsia, B., Motik, B. & Patel-Schneider, P. 2012. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition). W3C.
W3C Recommendation.

Patel-Schneider, P. & Horridge, M. 2012. OWL 2 Web Ontology Language Manch-
ester Syntax (Second Edition). W3C. W3C Note.

PervasiveHealth 2013. 8th International Conference on Pervasive Computing
Technologies for Healthcare.

Preece, J., Rogers, Y. & Sharp, H. 2011. Interaction Design (3rd edition). New York,
NY, USA: John Wiley & Sons, Inc.

Prud’hommeaux, E. & Seaborne, A. 2008. SPARQL Query Language for RDF. W3C.
W3C Recommendation.

Quitadamo, R. & Zambonelli, F. 2008. Autonomic communication services: a new
challenge for software agents. Autonomous Agents and Multi-Agent Systems 17

doi:10.1007/978-3-642-35737-4_5
doi:10.1007/978-3-642-35737-4_5
http://dx.doi.org/10.1007/978-3-642-35737-4_5
http://dl.acm.org/citation.cfm?id=645361.650855
http://dl.acm.org/citation.cfm?id=645361.650855
doi:10.1109/5254.769885
doi:10.1109/JPROC.2003.817122
doi:10.1109/JPROC.2003.817122
doi:10.1007/11527800_20
http://www.springerlink.com/index/8JWVM292E2N5NPMG.pdf

165

(3), 457-475. d0i:10.1007 /s10458-008-9054-9. (URL:http:/ /dx.doi.org/10.1007 /
s10458-008-9054-9).

RacerSystems 2013. Renamed ABox and Concept Expression Reasoner (RACER).
(URL:http:/ /www.racer-systems.com/products/racerpro/). Accessed on 2013-
10-13.

Rao, A. S. & Georgeff, M. P. 1995. BDI Agents : From Theory to
Practice. Practice 95 (Technical Note 56), 312-319. doi:10.1.1.51.9247.
(URL:http:/ /scholar.google.com /scholar?hl=en&btnG=Search&q=intitle:
BDI+Agents+:+From+Theory+to+Practice#0).

Rivadeneira, W. 2003. A Study of Search Result Clustering Interfaces: Comparing
Textual and Zoomable User Interfaces. University of Maryland HCIL, 8.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H. & Nahrstedst,
K. 2002. A middleware infrastructure for active spaces. Pervasive Computing,
IEEE 1 (4), 74-83. d0i:10.1109/MPRV.2002.115828]1.

Ronzani, D. 2009. The Battle of Concepts: Ubiquitous Computing, Pervasive
Computing and Ambient Intelligence in Mass Media. Ubiquitous Computing
and Communication Journal 4, 9-19. (URL:http:/ /www.ubicc.org/ files /pdf/
paper-146_20070929.pdf_146.pdf).

Russell, S.J. & Norvig, P. 2003. Artificial Intelligence: A Modern Approach (2nd edi-
tion). Pearson Education.

Saha, D. & Mukherjee, A. 2003. Pervasive computing: a paradigm for the 21st
century. Computer 36 (3), 25-31. doi:10.1109/MC.2003.1185214.

Salehie, M. & Tahvildari, L. 2009. Self-adaptive software: Landscape and research
challenges. ACM Transactions on Autonomous and Adaptive Systems 4 (2),
1-42. doi:10.1145/1516533.1516538. (URL:http:/ /portal.acm.org/citation.cfm?
doid=1516533.1516538).

Salehie, M., Li, S. L. S., Asadollahi, R. & Tahvildari, L. 2009. Change Support in
Adaptive Software: A Case Study for Fine-Grained Adaptation. |doi:10.1109/
EASe.2009.11. (URL:http:/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4839203).

Samsung 2013. Galaxy S4 mini. (URL:http://www.samsung.com/uk/consumer/
mobile-devices/smartphones/android / GT-19195ZKABTU-spec). Accessed on
2013-10-13.

Sarnovsky, M., Butka, P., Kostelnik, P. & Lackova, D. 2007. HYDRA — Network
Embedded System Middleware for Ambient Intelligent Devices. In ICCC2007:
Proceedings of 8th Inter-national Carpathian Control Conference, 4.

doi:10.1007/s10458-008-9054-9
http://dx.doi.org/10.1007/s10458-008-9054-9
http://dx.doi.org/10.1007/s10458-008-9054-9
http://www.racer-systems.com/products/racerpro/
doi:10.1.1.51.9247
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:BDI+Agents+:+From+Theory+to+Practice#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:BDI+Agents+:+From+Theory+to+Practice#0
doi:10.1109/MPRV.2002.1158281
http://www.ubicc.org/files/pdf/paper-146_20070929.pdf_146.pdf
http://www.ubicc.org/files/pdf/paper-146_20070929.pdf_146.pdf
doi:10.1109/MC.2003.1185214
doi:10.1145/1516533.1516538
http://portal.acm.org/citation.cfm?doid=1516533.1516538
http://portal.acm.org/citation.cfm?doid=1516533.1516538
doi:10.1109/EASe.2009.11
doi:10.1109/EASe.2009.11
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4839203
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4839203
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9195ZKABTU-spec
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/android/GT-I9195ZKABTU-spec

166

Saxena, T., Dubey, A., Balasubramanian, D. & Karsai, G. 2010. Enabling Self-
Management by Using Model-Based Design Space Exploration. In Engineering
of Autonomic and Autonomous Systems (EASe), 2010 Seventh IEEE Interna-
tional Conference and Workshops on, 137-144. doi:10.1109/EASe.2010.22.

Schreiber, G. & Dean, M. 2004. OWL Web Ontology Language Refer-
ence. W3C. W3C Recommendation. (URL:http://www.w3.org/TR/2004/
REC-owl-ref-20040210/).

Sen, S. & Sajja, N. 2002. Robustness of reputation-based trust: boolean case. In
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1. New York, NY, USA: ACM. AAMAS "02, 288-293.

doi:10.1145/544741.544808. (URL:http:/ /doi.acm.org/10.1145/544741.544808)
Sestinim, F. 2004. Situated and Autonomic Communications. European Commis-

sion.

Sestinim, F. 2006. Situated and autonomic communication an EC FET European
initiative. SIGCOMM Comput. Commun. Rev. 36 (2), 17-20.|/d01:10.1145 /1129582
1129587. (URL:http://doi.acm.org/10.1145/1129582.1129587).

Shameem, A., Moushumi, S. & Sheikh, I. A. 2007. ETS (Efficient, Transparent,
and Secured) Self-healing Service for Pervasive Computing Applications. I. J.
Network Security 4 (3), 271-281.

Sharmin, M., Ahmed, S. & Ahamed, S. I. 2005. SAFE-RD (secure, adaptive, fault
tolerant, and efficient resource discovery) in pervasive computing environments.

In Information Technology: Coding and Computing, 2005. ITCC 2005. Interna-
tional Conference on, Vol. 2, 271-276 Vol. 2. doi:10.1109 /ITCC.2005.249.

Sharmin, M., Ahmed, S. & Ahamed, S. I. 2006. MARKS (Middleware Adaptabil-
ity for Resource Discovery, Knowledge Usability and Self-healing) for Mobile
Devices of Pervasive Computing Environments. In Information Technology:
New Generations, 2006. ITNG 2006. Third International Conference on, 306-313.

doi:10.1109/ITNG.2006.88.

Shneiderman, B. 1992. Tree Visualization with Tree-maps: 2-d Space-filling Ap-
proach. ACM Trans. Graph. 11 (1), 92-99. doi:10.1145/102377.115768. (URL:http:

/ /doi.acm.org/10.1145/102377.115768).
Shoham, Y. 1991. AGENTO: A Simple Agent Language and Its Interpreter. In

AAAI, 704-709.

Shoham, Y. 1993. Agent-oriented programming. Artificial Intelligence 60 (1), 51—
92. doi:10.1016/0004-3702(93)90034-9. (URL:http:/ /linkinghub.elsevier.com/

retrieve/pii/0004370293900349).

Shoham, Y. 1997. Software agents. In J. M. Bradshaw (Ed.) Software agents. Cam-
bridge, MA, USA: MIT Press, 271-290. (URL:http://dl.acm.org/ citation.cfm?

1d=267985.268004).

doi:10.1109/EASe.2010.22
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
doi:10.1145/544741.544808
http://doi.acm.org/10.1145/544741.544808
doi:10.1145/1129582.1129587
doi:10.1145/1129582.1129587
http://doi.acm.org/10.1145/1129582.1129587
doi:10.1109/ITCC.2005.249
doi:10.1109/ITNG.2006.88
doi:10.1145/102377.115768
http://doi.acm.org/10.1145/102377.115768
http://doi.acm.org/10.1145/102377.115768
doi:10.1016/0004-3702(93)90034-9
http://linkinghub.elsevier.com/retrieve/pii/0004370293900349
http://linkinghub.elsevier.com/retrieve/pii/0004370293900349
http://dl.acm.org/citation.cfm?id=267985.268004
http://dl.acm.org/citation.cfm?id=267985.268004

167

Smith, A. 2013. Smartphone Ownership 2013, 12. (URL:http: / /pewinternet.org/
~/media/ /Files/Reports /2013 /PIP_Smartphone_adoption_2013_PDF.pdf).

Standford 2013. Protege ontlogy editor. (URL:http://protege.stanford.edu/).
Accessed on 2013-10-13.

Sterritt, R., Parashar, M., Tianfield, H. & Unland, R. 2005. A concise introduction
to autonomic computing. Adv. Eng. Inform. 19 (3), 181-187. doi:10.1016/j.aei!
2005.05.012. (URL:http:/ /dx.doi.org/10.1016/j.aei.2005.05.012).

Storey, M. A., Musen, M. A, Silva, J., Best, C., Ernst, N., Fergerson, R. & Noy,
N. F. 2001. Jambalaya: Interactive visualization to enhance ontology authoring
and knowledge acquisition in Protege. In Workshop on Interactive Tools for
Knowledge Capture, K-CAP-2001. Victoria, B.C. Canada: . (URL:http://www,
cs.toronto.edu/~nernst/papers/storey-kcap2001.pdf).

TOP500 2013. Performance Development. (URL:http://www.top500.0rg/
statistics/perfdevel /). Accessed on 2013-10-13.

Terziyan, V. & Katasonov, A. 2009. Global Understanding Environment: Applying
Semantic and Agent Technologies to Industrial Automation. In M. D. Lytras
& P. Ordoiiez de Pablos (Eds.) Emerging Topics and Technologies in Informa-
tion Systems. IGI Global. d0i:10.4018/978-1-60566-222-0. (URL:http:/ /www,
igi-global.com/chapter/global-understanding-environment/10190/).

Terziyan, V., Nagy, M., Cochez, M., Pilli-Sihvola, V., Kesdniemi, J. & Khriyenko,
O. 2010a. Deliverable D3.4 UBIWARE Platform Prototype v. 3.1. Industrial
Ontologies Group - Agora Center, University of Jyvaskyld. Deliverable.

Terziyan, V., Nagy, M., Cochez, M., Pulkkis, A., Kesdniemi, J., Khriyenko, O. &
Nikitin, S. 2010b. Deliverable D3.3: UBIWARE Platform Prototype v.3.0, 45.

Terziyan, V. & al., E. 2007. SmartResource Project Final Report. SmartResource
Tekes Project - Agora Center, University of Jyvaskyla. Deliverable.

Terziyan, V. 2003. Semantic Web Services for Smart Devices in a Global Un-
derstanding Environment. In R. Meersman & Z. Tari (Eds.) On The Move to
Meaningful Internet Systems 2003: OTM 2003 Workshops, Vol. 2889. Springer
Berlin Heidelberg. Lecture Notes in Computer Science, 279-291. d0i:10.1007 /
978-3-540-39962-9_37. (URL:http:/ /dx.doi.org/10.1007 /978-3-540-39962-9_37).

Terziyan, V. 2005. Semantic Web Services for Smart Devices Based on Mobile
Agents. International Journal of Intelligent Information Technologies 1 (2), 43—-
55.

Terziyan, V. 2008. SmartResource - Proactive Self-Maintained Resources in Seman-
tic Web: Lessons Learned. International Journal of Smart Home 2 (2), 33-58.

Terziyan, V. Y. 2011. Global Understanding Environment: Towards Self-managed
Web of Everything. In GPC Workshops, 1-2.

http://pewinternet.org/~/media//Files/Reports/2013/PIP_Smartphone_adoption_2013_PDF.pdf
http://pewinternet.org/~/media//Files/Reports/2013/PIP_Smartphone_adoption_2013_PDF.pdf
http://protege.stanford.edu/
doi:10.1016/j.aei.2005.05.012
doi:10.1016/j.aei.2005.05.012
http://dx.doi.org/10.1016/j.aei.2005.05.012
http://www.cs.toronto.edu/~nernst/papers/storey-kcap2001.pdf
http://www.cs.toronto.edu/~nernst/papers/storey-kcap2001.pdf
http://www.top500.org/statistics/perfdevel/
http://www.top500.org/statistics/perfdevel/
doi:10.4018/978-1-60566-222-0
http://www.igi-global.com/chapter/global-understanding-environment/10190/
http://www.igi-global.com/chapter/global-understanding-environment/10190/
doi:10.1007/978-3-540-39962-9_37
doi:10.1007/978-3-540-39962-9_37
http://dx.doi.org/10.1007/978-3-540-39962-9_37

168

Tesler, J. & Strasnick, S. 1992. FSN: The 3D file system navigator. Silicon Graphics,
Inc., Mountain View, CA.

Véazquez-Salceda, J., Dignum, V. & Dignum, F. 2005. Organizing Multiagent Sys-
tems. Autonomous Agents and Multi-Agent Systems 11 (3), 307-360.

W3C 2009. OWL 2 Web Ontology Language Document Overview. W3C.

W3C 2013. Literals as Subjects. <URL:http: / /www.w3.org /2001 /sw /wiki/
Literals_as_Subjects). Accessed on 2013-10-13.

Walsh, W. E., Tesauro, G., Kephart, J. O. & Das, R. 2004. Utility functions in
autonomic systems. In Autonomic Computing, 2004. Proceedings. International
Conference on, 70-77. d0i:10.1109/ICAC.2004.1301349.

Weiser, M. 1991. The Computer for the Twenty-First Century. Scientific American
265 (3), 94-104.

Weiser, M. 1993. Some computer science issues in ubiquitous computing. Commun.
ACM 36 (7), 75-84.|d0i:10.1145/159544.159617. (URL:http://doi.acm.org/10
1145/159544.159617).

Weyns, D., Haesevoets, R., Van Eylen, B., Helleboogh, A., Holvoet, T. & Joosen,
W. 2008. Endogenous versus exogenous self-management. In Proceedings of
the 2008 international workshop on Software engineering for adaptive and
self-managing systems. New York, NY, USA: ACM. SEAMS 08, 41-48. doi:
10.1145/1370018.1370027. (URL:http:/ /doi.acm.org/10.1145/1370018.1370027).

White, S. R., Hanson, J. E., Whalley, I., Chess, D. M. & Kephart, J. O. 2004. An
Architectural Approach to Autonomic Computing. In ICAC, 2-9.

White, S. R., Hanson, J. E., Whalley, 1., Chess, D. M., Segal, A. & Kephart, J. O.
2006. Autonomic computing: Architectural approach and prototype. Integrated
Computer-Aided Engineering 13 (2), 173-188. (URL:http:/ /iospress.metapress,
com/content/ FFMYG7A5H3FOMOLA).

Wildstrom, S. 2000. Can Oxygen Turn Sci-Fi into Reality? Business Week Magazine.
(URL:http:/ /www.businessweek.com /2000/00_29/b3690062.htm).

Williamson, O. E. 1985. The Economic Institutions of Capitalism: Firms, Markets,
Relational Contracting. Free Press. (URL:http:/ /books.google.se/books?id=
1j-6AAAAIAA]J).

Wolf, P. 1996. Three-Dimensional Information Visualisation: The Harmony Infor-
mation Landscape. Technische Universitat Graz. Master’s Thesis.

Wooldridge, M., Jennings, N. R. & Kinny, D. 2000. The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent
Systems 3 (3), 285-312.

http://www.w3.org/2001/sw/wiki/Literals_as_Subjects
http://www.w3.org/2001/sw/wiki/Literals_as_Subjects
doi:10.1109/ICAC.2004.1301349
doi:10.1145/159544.159617
http://doi.acm.org/10.1145/159544.159617
http://doi.acm.org/10.1145/159544.159617
doi:10.1145/1370018.1370027
doi:10.1145/1370018.1370027
http://doi.acm.org/10.1145/1370018.1370027
http://iospress.metapress.com/content/FFMYG7A5H3F0M0LA
http://iospress.metapress.com/content/FFMYG7A5H3F0M0LA
http://www.businessweek.com/2000/00_29/b3690062.htm
http://books.google.se/books?id=lj-6AAAAIAAJ
http://books.google.se/books?id=lj-6AAAAIAAJ

169

Wooldridge, M. 1997. Agent-based software engineering. IEE Proceedings - Soft-
ware 144 (1), 26-37.

Wooldridge, M. 2002. Intelligent agents: The key concepts. In V. Marik,
O. Stepankovd, H. Krautwurmovéa & M. Luck (Eds.) MultiAgent Systems and
Applications II, Vol. 2322. Springer. Lecture Notes in Computer Science, 3—
43. doi:10.1007 /3-540-45982-0_1. (URL:http:/ /www.springerlink.com/index/
e34fygdmnejbOpa6.pdf).

Wooldridge, M. J. & Jennings, N. R. 1995a. Agent theories, architectures, and
languages: a survey. In Agent theories, architectures, and languages: a survey.
Springer-Verlag, 1-39.

Wooldridge, M. J. & Jennings, N. R. 1995b. Intelligent Agents: Theory and Practice.
Knowledge Engineering Review 10 (2), 115-152. (URL:http:/ /eprints.soton.ac|
uk/252102/).

Wu, Z., Horrocks, 1., Motik, B., Fokoue, A. & Grau, B. C. 2012. OWL 2 Web
Ontology Language Profiles (Second Edition). W3C. W3C Recommendation.

Yu, B. & Singh, M. P. 2002. An evidential model of distributed reputation manage-
ment. In AAMAS. ACM, 294-301.

Zhang, W. & Hansen, K. M. 2008a. Towards self-managed pervasive middleware
using owl/swrl ontologies. In Fifth International Workshop on Modelling and
Reasoning in Context. MRC 2008.

Zhang, W. & Hansen, K. M. 2008b. Semantic Web Based Self-Management for a
Pervasive Service Middleware. In Self-Adaptive and Self-Organizing Systems,
2008. SASO ’08. Second IEEE International Conference on, 245-254. do1:10.1109/
SASQO.2008.14.

Zhong, S., Storch, K.-F,, Lipan, O., Kao, M.-C., Weitz, C. & Wong, W. 2004. GoSurfer.
Applied Bioinformatics 3 (4), 261-264. doi:10.2165/00822942-200403040-00009.
(URL:http:/ /dx.doi.org/10.2165/00822942-200403040-00009).

doi:10.1007/3-540-45982-0_1
http://www.springerlink.com/index/e34fyq4mnejb0pa6.pdf
http://www.springerlink.com/index/e34fyq4mnejb0pa6.pdf
http://eprints.soton.ac.uk/252102/
http://eprints.soton.ac.uk/252102/
doi:10.1109/SASO.2008.14
doi:10.1109/SASO.2008.14
doi:10.2165/00822942-200403040-00009
http://dx.doi.org/10.2165/00822942-200403040-00009

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

APPENDIX1 OWL ONTOLOGIES

APPENDIX 1.1 Utility function ontology

@prefix : <http://iog.jyu.fi/utility-functions.owl#>

@prefix u: <http://iog.jyu.fi/utility-functions.owl#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix xml: <http://www.w3.org/XML/1998/namespace>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

@base <http://iog.jyu.fi/utility-functions.owl>
<http://iog.jyu.fi/utility-functions.owl> rdf:type owl:0Ontology

:hasFunction rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:range :Function ;

rdfs:domain :UtilityFunction

:hasQuery rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:domain :UtilityFunction

:hasResourceURI rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :ResultElement ;

rdfs:range owl:Thing

:opl rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:domain :Function ;

rdfs:range :0perand

:op2 rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:domain :BinaryFunction ;
rdfs:range :0Operand

:useDataContainer rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :Evaluation

50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101
102
103

171

:useFunction rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :Evaluation ;

rdfs:range :UtilityFunction

:hasEvalValue rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;

rdfs:domain :ResultElement ;

rdfs:range xsd:float

:hasValue rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;
rdfs:domain :Value

:hasVarName rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;

rdfs:domain :Variable ;

rdfs:range xsd:string

:usesEvalElement rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;
rdfs:domain :UtilityFunction ;

rdfs:range xsd:string

:BinaryFunction rdf:type owl:Class ;
rdfs:subClassOf :Function

:Evaluation rdf:type owl:Class

:Function rdf:type owl:Class ;
rdfs:subClassOf :Operand

:FunctionAdd rdf:type owl:Class ;
rdfs:subClassOf :BinaryFunction

:FunctionDiv rdf:type owl:Class ;
rdfs:subClassOf :BinaryFunction

:FunctionMul rdf:type owl:Class ;
rdfs:subClassOf :BinaryFunction

:FunctionSquare rdf:type owl:Class ;
rdfs:subClassOf :BinaryFunction

:FunctionSub rdf:type owl:Class ;
rdfs:subClassOf :BinaryFunction

:Operand rdf:type owl:Class

:ResultElement rdf:type owl:Class

104
105
106
107
108
109
110
111
112
113

® N G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

172

:UnaryFunction rdf:type owl:Class ;
rdfs:subClassOf :Function

:UtilityFunction rdf:type owl:Class

:Value rdf:type owl:Class ;
rdfs:subClassOf :0Operand

:Variable rdf:type owl:Class ;
rdfs:subClassOf :0Operand

APPENDIX 1.2 Safeguard ontology

@prefix : <http://www.ubiware.jyu.fi/safeguard.owl#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix xml: <http://www.w3.org/XML/1998/namespace>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

@base <http://www.ubiware.jyu.fi/safeguard.owl>
<http://www.ubiware.jyu.fi/safeguard.owl> rdf:type owl:0Ontology

:blockedBySFG rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:InverseFunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:range :Safeguard ;

rdfs:domain :TicketBLO

:handlingSFG rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:range :Safeguard ;

rdfs:domain :Ticket

:hasCondition rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0bjectProperty ;

rdfs:domain :Safeguard

:inState rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:domain :Ticket ;

rdfs:range :TicketState

:hasImportance rdf:type owl:DatatypeProperty ;

39
40
41
42
43
44
45
46
47
48
49
50
51

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

rdfs:domain

:Safeguard ;

rdfs:range xsd:integer

:ExistenceSafeqguard rdf:type owl:Class ;
rdfs:subClassOf
owl:disjointWith :NonexistenceSafeguard ,

:Ticket ,

:TicketBLO
:TicketCRI
:TicketDET
:TicketPRO
:TicketRES

4

14

:TicketState

:NonexistenceSafeguard rdf:type owl:Class
rdfs:subClassOf
owl:disjointWith

:TicketBLO
:TicketCRI
:TicketDET
:TicketPRO
:TicketRES

4

4

4

4

4

:TicketState

:Safeguard rdf:type owl:Class
owl:equivalentClass [rdf:type owl:Class
:ExistenceSafeqguard

owl:unionOf

:Safeguard ;

:Safeqguard ;

:Ticket

:NonexistenceSafeguard

)
1

owl:disjointWith

:TicketBLO
:TicketCRI
:TicketDET
:TicketPRO
:TicketRES

4

4

4

4

4

:TicketState

:Ticket rdf:type owl:Class
owl:equivalentClass [rdf:type owl:Class
:TicketBLO

owl:unionOf
:TicketCRI
:TicketDET
:TicketPRO
:TicketRES
)

1

owl:disjointWith

:TicketBLO rdf:type owl:Class
rdfs:subClassOf
owl:disjointWith

:TicketDET
:TicketPRO

4

14

:Ticket

:TicketState

:Ticket

:TicketCRI

14

14

4

173

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

N GO e W

174

:TicketRES ,
:TicketState

:TicketCRI rdf:type owl:Class ;
rdfs:subClassOf :Ticket ;
owl:disjointWith :TicketDET ,
:TicketPRO ,

:TicketRES ,

:TicketState

:TicketDET rdf:type owl:Class ;
rdfs:subClassOf :Ticket ;
owl:disjointWith :TicketPRO ,
:TicketRES ,

:TicketState

:TicketPRO rdf:type owl:Class ;
rdfs:subClassOf :Ticket ;
owl:disjointWith :TicketRES ,
:TicketState

:TicketRES rdf:type owl:Class ;
rdfs:subClassOf :Ticket ;
owl:disjointWith :TicketState

:TicketState rdf:type owl:Class

:stateBLO rdf:type :TicketState ,
owl :NamedIndividual

:stateCRI rdf:type :TicketState ,
owl :NamedIndividual

:stateDET rdf:type :TicketState ,
owl :NamedIndividual

:statePRO rdf:type :TicketState ,
owl :NamedIndividual

:stateRES rdf:type :TicketState ,
owl :NamedIndividual

APPENDIX 1.3 Plan ontology

@prefix : <http://www.ubiware.jyu.fi/plan.owl#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix pla: <http://www.ubiware.jyu.fi/plan.owl#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
@prefix xml: <http://www.w3.org/XML/1998/namespace>
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>
@base <http://www.ubiware.jyu.fi/plan.owl>
<http://www.ubiware.jyu.fi/plan.owl> rdf:type owl:0ntology

:boundTo rdf:type owl:0bjectProperty ;

rdfs:domain :Variable ;
rdfs:range owl:Thing

ceffectAdd rdf:type owl:0ObjectProperty ;

rdfs:domain :Action ;
rdfs:range sapl:Container

:effectRemove rdf:type owl:0ObjectProperty ;

rdfs:domain :Action ;
rdfs:range sapl:Container

:hasPlanSequence rdf:type owl:ObjectProperty ;

rdfs:domain :Plan ;
rdfs:range rdfs:Bag

thasVariableBinding rdf:type owl:ObjectProperty ;

rdfs:domain :Step ;
rdfs:range sapl:Container

:performsAction rdf:type owl:0bjectProperty ;

rdfs:range :Action ;
rdfs:domain :Step

:preconditionExist rdf:type owl:0bjectProperty ;

rdfs:domain :Action ;
rdfs:range sapl:Container

:preconditionNonexist rdf:type owl:0ObjectProperty ;

rdfs:domain :Action ;
rdfs:range sapl:Container

:expressedAs rdf:type owl:DatatypeProperty ;

rdfs:domain :Variable ;
rdfs:range xsd:string

:Action rdf:type owl:Class
:AtomicAction rdf:type owl:Class
rdfs:subClassOf :Action ;

owl:disjointWith :Plan

:Plan rdf:type owl:Class ;
rdfs:subClassOf :Action

:Step rdf:type owl:Class

:Variable rdf:type owl:Class

sapl:Container rdf:type owl:Class

4

175

62
63

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

176

rdfs:Bag rdf:type owl:Class

APPENDIX 1.4 Sensor ontology

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

<http://www.ubiware. jyu.fi/sensor.owl> rdf:type owl:0ntology

<http://www.ubiware.jyu.fi/sensor.owl#>

owl:
rdf:
xml :
xsd:
rdfs:
sapl:

<http://www.
<http://www.
<http://www.
<http://www.

w3.
w3.
w3.
w3.

0rg/2002/07/owl#>
org/1999/02/22-rdf-syntax—-ns#>
org/XML/1998/namespace>
org/2001/XMLSchema#>

<http://www.w3.0rg/2000/01/rdf-schema#>
<http://www.ubiware.jyu.fi/sapl#>
@base <http://www.ubiware.jyu.fi/sensor.owl>

:hasEvent rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;
rdfs:domain :

rdfs:range

EventResult

:SensorEvent

4

:implementedIn rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0bjectProperty ;
rdfs:range sapl:RAB ;

rdfs:domain :

Sensor

:providedObjectType rdf:type owl:AsymmetricProperty ,

owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;
rdfs:domain :

Sensor ;

rdfs:range owl:Class

:readFrom rdf:type owl:AsymmetricProperty ,

owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:range
rdfs:domain

:Sensor ;
:SensorResult

rhasTimestamp rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;

rdfs:domain

:SensorResult
rdfs:range xsd:dateTimeStamp

14

:hasValue rdf:type owl:DatatypeProperty ,
owl:FunctionalProperty ;

rdfs:domain

:MeasurementResult

177

47

48 sapl:RAB rdf:type owl:Class

49

50 :EnvSensor rdf:type owl:Class ;

51 rdfs:subClassOf :Sensor ;

52 owl:disjointUnionOf (:PhysicalEnvSensor
53 :VirtualEnvSensor

54)

55

56 :EventResult rdf:type owl:Class ;

57 rdfs:subClassOf :SensorResult ;

58 owl:disjointWith :MeasurementResult
59

60 :HWSensor rdf:type owl:Class ;

61 rdfs:subClassOf :Sensor

62

63 :ListenerSensor rdf:type owl:Class ;
64 rdfs:subClassOf :Sensor

65

66 :MeasurementResult rdf:type owl:Class ;
67 rdfs:subClassOf :SensorResult

68

¢ :MeasurementSensor rdf:type owl:Class ;
70 rdfs:subClassOf :Sensor

71

72 :0SSensor rdf:type owl:Class ;

73 rdfs:subClassOf :Sensor

74

75 :PhysicalEnvSensor rdf:type owl:Class ;
76 rdfs:subClassOf :EnvSensor

77

78 :PullSensor rdf:type owl:Class ;

79 rdfs:subClassOf :Sensor

80

81 :PushSensor rdf:type owl:Class ;

g2 rdfs:subClassOf :Sensor

83

84 :SWSensor rdf:type owl:Class ;

85 rdfs:subClassOf :Sensor

86

g7 :Sensor rdf:type owl:Class ;

g8 owl:disjointWith :SensorEvent ,

89 :SensorResult ;

90 owl:disjointUnionOf (:EnvSensor

91 :HWSensor

92 :0SSensor

93 :SWSensor

9%)

95 (:ListenerSensor

9% :MeasurementSensor

97)

98 (:PullSensor

9 :PushSensor

100)

101
102
103
104
105
106
107
108
109
110
111
112
113

178

:SensorEvent rdf:type owl:Class
owl:disjointWith :SensorResult

:SensorResult rdf:type owl:Clas

owl:disjointUnionOf (:EventResult

:MeasurementResult

)

:VirtualEnvSensor rdf:type owl:Class

rdfs:subClassOf :EnvSensor

owl:Class rdf:type owl:Class

S

APPENDIX 1.5 Actuator ontology

@prefix : <http://www.ubiware.jyu.fi/actuator.owl##>
@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—ns#>
@prefix xml: <http://www.w3.org/XML/1998/namespace>
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix conf: <http://www.ubiware.]jyu.fi/config.owl#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>

@base <http://www.ubiware.jyu.fi/actuator.owl#>
<http://www.ubiware.jyu.fi/actuator.owl#> rdf:type owl:0Ontology ;
owl:imports <http://www.ubiware.jyu.fi/configuration.owl>

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

raffects rdf:type owl:AsymmetricProperty ,

owl:IrreflexiveProperty ,
owl:0bjectProperty ;
rdfs:domain :SWActuator ;
rdfs:range conf:Capability

:implementedIn rdf:type owl:AsymmetricProperty ,

owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0bjectProperty ;
rdfs:domain :SWActuator ;
rdfs:range sapl:RAB

:Actuator rdf:type owl:Class

:CompositionalActuator rdf:type
rdfs:subClassOf :SWActuator

:HWActuator rdf:type owl:Class
rdfs:subClassOf :Actuator

:0OSActuator rdf:type owl:Class
rdfs:subClassOf :Actuator

4

4

owl:Class

179

36
37 :ParametricActuator rdf:type owl:Class ;
38 rdfs:subClassOf :SWActuator

39

40 :PlatformActuator rdf:type owl:Class ;

41 rdfs:subClassOf :Actuator

2

43 :SWActuator rdf:type owl:Class ;

4 rdfs:subClassOf :Actuator

APPENDIX 1.6 Incident ontology

1 Q@prefix : <http://www.ubiware.jyu.fi/incident.owl#>

2 @prefix inc: <http://www.ubiware.jyu.fi/incident.owl#>
3 @prefix owl: <http://www.w3.0rg/2002/07/owl#>

4 Q@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
5 @prefix sen: <http://www.ubiware.jyu.fi/sensor.owl#>

6 @prefix sfg: <http://www.ubiware.jyu.fi/safeguard.owl#>
7 Qprefix xml: <http://www.w3.0rg/XML/1998/namespace>

8 Qprefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

9 @prefix conf: <http://www.ubiware.jyu.fi/config.owl#>

10 Q@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

11 Qbase <http://www.ubiware.jyu.fi/incident.owl#>

12 <http://www.ubiware.jyu.fi/incident.owl#> rdf:type owl:Ontology ;
13 owl:imports <http://www.ubiware.jyu.fi/config.owl> ,

14 <http://www.ubiware.jyu.fi/safeguard.owl> ,

15 <http://www.ubiware. jyu.fi/sensor.owl>

16

17 :brokenPolicy rdf:type owl:0bjectProperty ;

18 rdfs:range conf:Policy ;

19 rdfs:domain :Incident

20

21 :responsibleSensorResult rdf:type owl:0bjectProperty ;
2 rdfs:domain :Incident ;

23 rdfs:range sen:SensorResult

24

25 :responsibleTicket rdf:type owl:0bjectProperty ;

26 rdfs:domain :Incident ;

27 rdfs:range sfg:Ticket

28

29 :DevicelIncident rdf:type owl:Class ;

30 rdfs:subClassOf :Incident

32 :EmotionalIncident rdf:type owl:Class ;
33 rdfs:subClassOf :0OwnerIncident

34

35 :EnvironmentIncident rdf:type owl:Class ;
36 rdfs:subClassOf :Incident

37

38 :HWIncident rdf:type owl:Class ;

39 rdfs:subClassOf :Devicelncident

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

180

:Incident rdf:type owl:Class

:LocationIncident rdf:type owl:Class
rdfs:subClassOf :Spatiallncident

:MotionIncident rdf:type owl:Class ;
rdfs:subClassOf :Spatiallncident

:OwnerIncident rdf:type owl:Class ;
rdfs:subClassOf :Incident

:PhysicalIncident rdf:type owl:Class
rdfs:subClassOf :EnvironmentIncident

:PreferencelIncident rdf:type owl:Class

rdfs:subClassOf :OwnerIncident

:SWIncident rdf:type owl:Class ;
rdfs:subClassOf :Devicelncident

:SocialIncident rdf:type owl:Class ;
rdfs:subClassOf :OwnerIncident

:SpatialIncident rdf:type owl:Class ;
rdfs:subClassOf :Incident

:VirtualIncident rdf:type owl:Class ;
rdfs:subClassOf :EnvironmentIncident

4

APPENDIX 1.7 Configuration ontology

@prefix : <http://www.ubiware.jyu.fi/config.owl#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
@prefix sen: <http://www.ubiware.jyu.fi/sensor.owl#>
@prefix xml: <http://www.w3.o0rg/XML/1998/namespace>
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>

@base <http://www.ubiware.jyu.fi/config.owl>

10
11
12
13
14
15
16
17
18
19

<http://www.ubiware.]jyu.fi/config.owl> rdf:type owl:0Ontology ;
owl:imports <http://www.ubiware.jyu.fi/sensor.owl>

:currentlyUtilizes rdf:type owl:0bjectProperty ;

rdfs:domain :AdaptiveSoftware ;
rdfs:range :Component

:dependentOntology rdf:type owl:AsymmetricProperty ,

owl:IrreflexiveProperty ,
owl:0bjectProperty ;

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

72

rdfs:domain :Capability ;
rdfs:range owl:0ntology

:hasCondition rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :Policy

:hasInVar rdf:type owl:AsymmetricProperty ,
owl:IrreflexiveProperty ,
owl:0bjectProperty ;

rdfs:domain :Capability ;

rdfs:range :InVariableDescription

:hasOutVar rdf:type owl:AsymmetricProperty ,
owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :Capability ;

rdfs:range :0utVariableDescription

:0fType rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:domain :VariableDescription

:providedByAgent rdf:type owl:AsymmetricProperty ,
owl:FunctionalProperty ,

owl:IrreflexiveProperty ,

owl:0ObjectProperty ;

rdfs:domain :ExternalComponent ;

rdfs:range sapl:Agent

:provides rdf:type owl:AsymmetricProperty ,
owl:IrreflexiveProperty ,
owl:0ObjectProperty ;

rdfs:range :Capability ;

rdfs:domain :Component

:requires rdf:type owl:IrreflexiveProperty ,
owl:0bjectProperty ,

owl:TransitiveProperty ;

rdfs:domain :AdaptiveSoftware ;

rdfs:range [rdf:type owl:Class ;
owl:unionOf (:Capability

sen:Sensor

)

]

:requiresMandatorily rdf:type owl:0ObjectProperty ;
rdfs:subPropertyOf :requires

:requiresOptionally rdf:type owl:0bjectProperty ;

181

182

74 rdfs:subPropertyOf :requires

75

76 :cardinalityMax rdf:type owl:DatatypeProperty ,
77 owl:FunctionalProperty ;

78 rdfs:domain :VariableDescription ;

79 rdfs:range xsd:integer

80

81 :cardinalityMin rdf:type owl:DatatypeProperty ,
g2 owl:FunctionalProperty ;

83 rdfs:domain :VariableDescription ;

84 rdfs:range xsd:integer

85

86 :thasExternalFactor rdf:type owl:DatatypeProperty ;
g7 rdfs:domain :Component ;

88 rdfs:range xsd:float

89

90 :thasImportance rdf:type owl:DatatypeProperty ,
91 owl:FunctionalProperty ;

92 rdfs:domain :Policy ;

93 rdfs:range xsd:integer

94

95 :hasMisjudgment rdf:type owl:DatatypeProperty ;
96 rdfs:domain :Component ;

97 rdfs:range xsd:float

98

9 :thasPromptness rdf:type owl:DatatypeProperty ;
100 rdfs:domain :Component ;

101 rdfs:range xsd:float

102

103 :hasQuality rdf:type owl:DatatypeProperty ;

104 rdfs:domain :Component ;

105 rdfs:range xsd:float

106

107 :AdaptiveComponent rdf:type owl:Class ;

108 owl:equivalentClass [rdf:type owl:Class ;
19 owl:intersectionOf (:AdaptiveSoftware
110 :Component

m)
112]
113

1

s
'S

:AdaptiveSoftware rdf:type owl:Class

115

116 :Capability rdf:type owl:Class

117

118 :Component rdf:type owl:Class

119

120 :ExternalComponent rdf:type owl:Class ;
121 rdfs:subClassOf :Component ;

122 owl:disjointWith :InternalComponent

123

124 :InVariableDescription rdf:type owl:Class ;
125 rdfs:subClassOf :VariableDescription

126

127 :InternalComponent rdf:type owl:Class ;

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

rdfs:subClassOf :Component

:ObligationPolicy rdf:type owl:Class ;
rdfs:subClassOf :Policy

:OutVariableDescription rdf:type owl:Class
rdfs:subClassOf :VariableDescription

:Policy rdf:type owl:Class

:ProhibitionPolicy rdf:type owl:Class ;
rdfs:subClassOf :Policy

:VariableDescription rdf:type owl:Class

sapl:Agent rdf:type owl:Class

owl:Ontology rdf:type owl:Class

4

183

[

[S N A N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

[

=W N

APPENDIX 2 S-APL CODE FRAGMENTS

APPENDIX 2.1 Safeguard metarules

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>
@prefix Jjava: <http://www.ubiware.jyu.fi/rab#>

@prefix p: <http://www.ubiware.jyu.fi/rab_parameters#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#>
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

@prefix x: <http://www.ubiware.jyu.fi/examples#>

@prefix sfg: <http://www.ubiware.jyu.fi/safeguard.owl#>

?sfg rdf:type sfg:ExistenceSafeguard
; sfg:hasCondition ?condContainer

sapl:I sapl:doNotBelieve {?condContainer sapl:is sapl:true}

sapl:I sapl:doNotBelieve {x rdf:type sfg:Ticket

sfg:handlingSFG ?sfg}

?ticket sapl:expression "ID()"
bo=> |
?ticket rdf:type sfg:Ticket, sfg:TicketDET
; sfg:inState sfg:stateDET
; sfg:handlingSFG ?sfg

} sapl:is sapl:MetaRule

?sfg rdf:type sfg:NonexistenceSafeguard

; sfg:hasCondition ?condContainer
?condContainer sapl:is sapl:true
sapl:I sapl:doNotBelieve {x rdf:type sfg:Ticket

; sfg:handlingSFG ?sfg}

?ticket sapl:expression "ID()"
bo=> A
?ticket rdf:type sfg:Ticket, sfg:TicketDET
; sfg:inState sfg:stateDET
; sfg:handlingSFG ?sfg

} sapl:is sapl:MetaRule

APPENDIX 2.2 Sensory data garbage collection

@prefix sapl: <http://www.ubiware.jyu.fi/sapl#>
@prefix java: <http://www.ubiware.jyu.fi/rab#>

@prefix p: <http://www.ubiware. jyu.fi/rab_parameters#>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

@prefix rdf:
@prefix sen:

{sapl:I sapl:do java:fi.]jyu.ubiware.sensors.CPUSensor}sapl:configuredAs {

p:resultURI sapl:is ?resURI

sapl:Success sapl:add {

{

?measurement rdf:type x:CPUTempMeasurement
; sen:readFrom x:sensorCPUTemp

; sen:thasTimestamp ?timeStmp

?count sapl:count ?measurement

?o0ldest sapl:min ?timeStmp

?count > 10

} sapl:All ?measurement

=>
{

?remID sen:hasTimestamp ?oldest

P> A

sapl:I sapl:remove {?remID x x}

}

{sapl:I sapl:do java:ubiware.shared.PrintBehavior} sapl:configuredAs

{p:print sapl:is

"More than 10 measurements

<http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
<http://www.ubiware. jyu.fi/sensor.owl#>

(oldest ?2oldest)"}

185

=
=
Z
=
w
sapl:RAB / xsd:dateTimeStamp / =Y
N 7 X -
: roviiiedOb'ectT e o
:implementedIn P) P :hasTimestamp g
X : o
=
X . . . —_
N |:Sensor N [:SensorResult N |:SensorEvent QNJ
E - :readFrom E E =)
P |OlimplementedIn [L1] KFaS,iR> Jaeresererrraranersannnainiancieiiinnrnnnianrninnnssanens P |O|readFrom [1,1] |<F,aS,iR> P (=)
|_ |Ol:providedObjectType|[1,1] | <F,aS,iR> {_|DlhasTimestamp|[1,1] |<F,aS,iR> A]
i i i 8
(a2
[] [| -
:PullSensor N [:PushSensor N [:ListenerSensor N [:MeasurementSensor N [:MeasurementResult N |:EventResult (:D-
E E E E E E 0
P Pl] | | Pl | | P [DfhasValue [[1,1]] <F,aS,iR>) [P [OfhasEvent | [1,1]] <F,aS,iR> -
e . [7)
:hasEvent o
[| | | S
:SWSensor N |:HWSensor N |:OSSensor N |:EnvSensor o
E E E E ,5
P P P o
=}
T 3
=
I l Q9
N [:VirtualEnvSensor N |:PhysicalEnvSensor <
E E

Pl [T Jell | |

€ XIAN3ddV

SNOILVZITVASIA AD0TOLNO

N |:Actuator

conf:Capability
P

1

:HWActuator N [:OSActuator N |:PlatformActuator (N [:SWActuator A
E E E E
| | | P P | | | P |Ol:affects [0,n] [<aS,iR>]
| |OlimplementedIn|[1,1] |<F,aS,iR>) -...':’.I.’?Rlﬁlmentedl

st o) ey n]

N [:ParametricActuator :Compositional Actuator

m
o|m|Z

A30103u0 10jEN)OE 3Y) JO UOJRZI[eNSIA T'€ XIANAIIV

L81

188

APPENDIX 3.3 Visualization of the incident ontology

conf:Policy

..
:brokenPolicy

sfg:Ticket

A

:responsibleTicket

:Incident

m

O| :responsibleTicket

[1-1] |<F,aS,iR>

O| :brokenPolicy

[1-1]|<F,aS,iR>|

O| :responsibleSensorResult|[1-1] |<F,aS,iR>

:responsibleSensorResult

y

sen:SensorResult

N [:HWIncident]
E
N [:DeviceIncident P
E
P N [:SWIncident
E
P
N |:PhysicalIncident
E
N [:EnvironmentIncident P
E
P N [:Virtuallncident
E
P
N [:EmotionalIncident
E
P
N [:OwnerIncident N [:Preferencelncident
E ¢ E
LP 7 P 7
N [:Sociallncident
E
P
N [:MotionIncident
E
N |:LocationIncident P
E
P N |:SpatialIncident
E

/W |sapl:C0ntainer | e ofType ... N |:VariableDescription
E
! H e cardinaliyMin - Fp O ofType [1-1][<F,a8,iR>
:haslrilportance -hasCondition] L D|:cardinalityMax |[1-1] |<F,aS,iR>
! . S cardinalityMax D|:cardinalityMin | [1-1]| <FaS,iR>
N [:Policy Yy T
P |O|:hasCondition | [1-1]| <F.aS,iR> N [:OutVariableDescription | | N [:InVariableDescription
D|:hasImportance |[1-1] [<F> E E
? P 3
I | — A A
N [:ObligationPolicy N |:ProhibitionPolicy I];l :Capability : :
IE ﬁ P |O|:dependentOntology |[0-n] |<aS,iR> |- thasQueVar ...
O|:hasInVar [0-n] |<aS,iR>
O|:hasOutVar [0-n] [<aS,iR>}........ thasInVar el
4 v
‘requires :currentlyUtilizes :pI‘OYldeS
B . BN
N |:AdaptiveSoftware) N|:Component | ... thasQuality
E E hasPromptness g
P |O|:currentlyUtilizes |[0-n] | <iR> P |O|:provides [1-n][<aSAR> [rreeeeeeme s it s 2
| |O|:requires [0-n] |[<T,iR> } D|:hasQuality [1-1] |<F> hasExternalFactor ‘1
D|:hasPromptness |[1-1] [<F> ~ [rrrrrrrmmmmmmmmsmsmmsmsmmeeeeeeeeeee aq
D|:hasExternalFactor|[1-1] [<F> |........" hasMisjudgement
D|:hasMisjudgement | [1-1] | <F>
[|
N |:AdaptiveComponent N |:InternalComponent | | N |[:ExternalComponent
E |:AdaptiveSoftware and :Component E E __.:'providedByAgent
P P P |O|:providedByAgent |[1-1]|<F,aS,iR>

n
sapl:Agent

A3o0103u0 uoryRINSPUOd 3Y) Jo uonezIfensiA '€ XIANAIIV

681

O ® N Uk W N e

T T T G
N 2 S © ® N0 Gk ®N = O

O 0N U W

W oW WNNNNNNRNRNRNIRN S 2 = s s e e e
R 23S Y ® I & G & O N RS © ® N O U k= WN = O

APPENDIX4 SMART HOSPITAL SCENARIO

APPENDIX 4.1 Plan1

sw:planl rdf:type pla:Plan, pla:Action
; pla:hasPlanSequence (sw:stepl sw:step2 sw:step3)

sw:stepl rdf:type pla:Step

; pla:performsAction sw:findComp

; pla:rhasVariableBinding {
x:varCap pla:boundTo sw:capHumanDB
x:varComp pla:boundTo ?x

x:step2 rdf:type pla:Step

; pla:performsAction sw:initComp

; plarhasVariableBinding {
x:varComp pla:boundTo ?x

x:step3 rdf:type pla:Step

; pla:performsAction sw:findHuman

; pla:hasVariableBinding {
x:varRFIDVal pla:boundTo "354186465463"
x:varHumanDB pla:boundTo ?x

APPENDIX 4.2 Room controller’s configuration

conf:thisSW rdf:type conf:AdaptiveSoftware,
conf:Component, conf:AdaptiveComponent
; conf:provides m:RoomControl
; conf:requiresMandatorily m:DoorSensor
; conf:requiresOptionally m:HumanHandle
; conf:requiresOptionally m:capHumanDB
; conf:curentlyUtilizes m:DoorSensor

// Finding human’s indentity based on the RFID code
// var: I have an RFID code and a database component
// pre: I cannot identify a person
// eff: I found the person
m:findHuman rdf:type pla:Action
; pla:hasVariables {
m:varRFIDVal pla:expressedAs "RFIDValue".
m:varHumanDB pla:expressedAs "humanDB".

; pla:preconditionExist {
sapl:I sw:cannotIdentifyHuman ?RFIDValue
conf:thisSW conf:currentlyUtilizes ?humanDB
?humanDB rdf:type conf:Component
; conf:implements m:capHumanDB

; pla:effectRemove {
sapl:I m:cannotIdentifyHuman ?RFIDValue

// Finds a component implementing the given capability

// var: I have a capability URI

// pre: I don’t have any information about a component with that
// eff: I have this information

capability

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

O ® N N Uk W N

O g
® NG W N RO

m:findComp rdf:type pla:Action
; pla:hasVariables {
m:varCap pla:expressedAs "cap".
; pla:preconditionNonExist ({
?comp rdf:type conf:Component
; conf:implements ?cap

; pla:effectAdd {
?2comp rdf:type conf:Component
; conf:implements ?cap

// Initializes a component
// var: I have a component URI
// pre: I know of this component, but I am not using it
// eff: I am using the component
m:initComp rdf:type pla:Action
; pla:hasVariables {
m:varComp pla:expressedAs "comp".
m:varCap pla:expressedAs "cap".

; pla:preconditionExist {
?comp rdf:type conf:Component.

; pla:preconditionNonExist ({
conf:thisSW conf:currentlyUtilizes ?comp

; pla:effectAdd {
conf:thisSW conf:currentlyUtilizes ?comp

m:poll rdf:type conf:Policy, conf:ProhibitionPolicy
; conf:hasImportance "9"
; conf:hasCondition {
?eventA rdf:type m:DoorEvent
; sen:hasValue ?RFIDValue
; sen:hasTimestamp ?timeA
; sen:readFrom c2:senRFIDDoor
; m:source c2:door
sapl:I m:cannotIdentifyHuman ?RFIDValue

APPENDIX 4.3 Tablet’s configuration

conf:thisSW rdf:type conf:AdaptiveSoftware,
conf:Component, conf:AdaptiveComponent
; conf:provides m:dataVisualization
; conf:requiresMandatorily m:bedSensor
; conf:requiresOptionally m:capPatientData
; conf:curentlyUtilizes m:bedSensor

m:bedSensor rdf:type sen:Sensor, sen:PushSensor,
sen:EventSensor

// policy — always stay connected to the patient
m:polA rdf:type conf:Policy, conf:0ObligationPolicy
; conf:hasImportance "8"
; conf:hasCondition {

?event rdf:type m:BedEvent

; sen:hasValue ?bedURI
conf:thisSW conf:currentlyUtilizes ?compBed
?compBed conf:implements m:capPatientData

191

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

192

//
//
//
//

; m:fromSource ?bedURI

Provides patient data component from bed URI

var: I have a bed URI
pre: I know of a patients bed
eff: I am using the patient data component

:attachBed rdf:type pla:Action

pla:hasVariables {
m:varBedURI pla:expressedAs "bedURI"
m:varCompBed pla:expressedAs "compBed"

pla:preconditionExist {
?bedURI rdf:type m:PatientsBed

pla:effectAdd ({
conf:thisSW conf:currentlyUtilizes ?compBed
?compBed conf:implements m:capPatientData

; m:fromSource ?bedURI

	Abstract
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	Contents
	Introduction
	Problem statement
	Research approach
	Structure of the thesis

	Theoretical background
	Ubiquitous computing
	The original vision
	Ubiquitous computing today

	Pervasive computing
	Ambient intelligence
	History
	AmI Scenarios
	Criticism of AmI
	Ambient Intelligence 2.0

	The Internet of Things
	The original idea
	Auto ID project

	The relationship between the visions
	Agents and agent-based systems
	What is an agent?
	Agents and their influence on programming
	Agent-related standards

	Semantic Web
	From World Wide Web to Semantic Web
	Common features of World Wide Web and Semantic Web
	Ontologies
	Semantic Web and related standards
	Uniform Resource Identifier and related standards
	RDF
	RDF serializations
	RDFS
	OWL
	OWL2
	SPARQL

	Ontology visualization
	Requirements
	Analysis and evaluation of visualization techniques
	Proposed visualization technique

	Self-managed software
	The vision of Autonomic computing
	Self-* properties
	Sensors and actuators
	Classification of adaptive systems
	Control loop
	Autonomic architectures and frameworks

	Ubiware
	Introduction
	Ubiware and GUN
	Ubiware architecture
	Semantic Agent Programing Language
	Agent's lifecycle
	Belief types

	Short summary of terms

	Smart Adaptive Framework (SAF)
	Various aspects of pervasive computing environments
	A pervasive computing environment
	Properties of pervasive computing environments
	Conflicting goals and various stakeholders
	Device heterogeneity
	Dynamicity of the environment

	Self-adaptive software in pervasive computing environments
	Requirements
	Approach

	Smart Adaptive Framework
	Conceptual architecture
	Sensors and actuators
	Incident classification
	Configurations and profiles
	Software profile
	Platform profile

	Self-* properties
	Ubiware as a candidate for SAF implementation

	Ubiware platform improvements
	Utility functions
	Motivation
	Implementation
	Other improvements

	Belief safeguards
	Motivation
	Implementation

	Plans and actions
	Motivation
	Overview
	Plan ontology
	Action description in S-APL
	Plan description in S-APL
	SAPL-PDDL domain transformation
	SAPL-PDDL problem transformation
	Solution transformation into S-APL

	Related ontologies

	Ubiware-based implementation of SAF
	Ontologies
	Sensor ontology
	Actuator ontology
	Incident ontology
	Configuration ontology
	Structural configuration
	Adaptation configuration

	Summary

	Configurations
	Platform configuration
	Software configuration
	Software structural profile
	Software adaptation profile

	Service facilitator – trust and resource discovery
	Approach
	Composite trust metric
	Reputation building process

	SAF processing elements
	Knowledge base
	Monitor
	Detector
	Deliberator
	Planner
	Plan executor
	Action executor

	Smart hospital scenario
	Case description
	Human actors
	Spatial setting
	Devices

	Scenario: Anna checking on Charles
	Configurations
	Room controller configuration
	Tablet configuration

	Situation 1: Identification of Anna
	Initial state
	Chain of events
	Scenario modification
	Comparison between Ubi-0 and Ubi-SAF

	Situation 2: Anna's tablet autonomously connects to patient's bed
	Initial state
	Chain of events
	Comparison between Ubi-0 and Ubi-SAF

	Conclusion

	Conclusion and discussion
	Related work
	Work that SAF is based on
	Qualitative comparison to other approaches

	Conclusions
	Answer to Q1
	Answer to Q2
	Answer to Q3

	Limitations and future research

	Yhteenveto (Finnish Summary)
	References
	OWL Ontologies
	Utility function ontology
	Safeguard ontology
	Plan ontology
	Sensor ontology
	Actuator ontology
	Incident ontology
	Configuration ontology

	S-APL code fragments
	Safeguard metarules
	Sensory data garbage collection

	Ontology visualizations
	Visualization of the sensor ontology
	Visualization of the actuator ontology
	Visualization of the incident ontology
	Visualization of the configuration ontology

	Smart hospital scenario
	Plan 1
	Room controller's configuration
	Tablet's configuration

