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ABSTRACT

Kiseleva, Maria

Oscillations of Dynamical Systems Applied in Drilling: Analytical and Numerical
Methods
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ISSN 1456-5390; 181)

ISBN 978-951-39-5518-2 (nid.)

ISBN 978-951-39-5519-9 (PDF)

Finnish summary

Diss.

This work is devoted to the study of electromechanical models of induction motor-
powered drilling systems. This is a current issue, as drilling equipment failures
cause significant time and expenditure losses for drilling companies. Although
there are many papers devoted to the investigation of these systems, equipment
failures still occur frequently in the drilling industry.

In this study, we continue investigations begun by researchers from the
Eindhoven University of Technology, who introduced an experimental model of
a drilling system. The model consists of two discs connected to each other by
a steel string that experiences purely torsional deformation. The upper disc is
connected to the driving part. The lower disc, representing the bottom end of
the drill-string, experiences friction torque caused mainly by interaction with the
shale. The key idea of the present study that distinguishes it from the previous
model was the introduction of more complex equations of the driving part, in
particular, considerations of the induction motor.

Towards this end, two new mathematical models are considered. The first
is a simplified one, its prototype being an electric hand drill. In this case it is
assumed that the drill string is absolutely rigid and the friction torque acting on
the lower part of the drill-string has asymmetric characteristics of the Coulomb
type. The qualitative analysis of this model made it possible to obtain parame-
ters on permissible loads (i.e., permissible values of the friction torque) in case
the system remained in operational mode after the shale’s type changes. Using
computer modeling, analysis of sudden load appearance was also performed.

The second mathematical model focuses on the torsional deformation of
the drill during operation. For the friction torque with Coulomb type asymmet-
ric characteristic, local analysis of the system is provided. The author carried out
computer modeling of the friction model created by the researches at the Univer-
sity of Eindhoven. In this model, we found an interesting effect represented by
hidden stick-slip oscillations.

The results of the study have been published in 11 papers.

Keywords: drilling systems, induction motor, friction torque, limit load problem
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1 INTRODUCTION AND THE STRUCTURE OF THE
WORK

1.1 Introduction

One of the most common problems in the drilling industry is the breakdown of
drill systems (see Fig. 1!). From both a practical and theoretical perspective, the
study of the transient processes in drilling equipment is very important.

Breakdowns occur frequently in the oil and gas industry, which causes sig-
nificant losses of time and expenditure. Of special interest is the cessation of
normal performance in the drill string caused by sudden increase in load. Given
the substantial losses caused by each incident of drill failure, the study of drilling
systems is crucial to minimize equipment failures. According to the statistics pro-
vided in (Horbeek et al., 1995; Shokir, 2004; Vaisberg et al., 2002), in 1985, 45 % of
all rigs’ failures were directly related to the drill string. Currently, each drilling
rig failure leads to expensive losses. Approximately one out of every seven rigs
will experience drill string failure of some sort. Even with all the research de-
voted to reducing the failures of drill strings (Besselink et al., 2011; Mihajlovi¢ et
al., 2006, 2007; Germay et al., 2009; Viguié et al., 2009), the data mentioned above
shows that drill strings still break frequently. Thus, the study of transient pro-
cesses appearing in drilling rigs is relevant to the modern application of drilling
theory.

This work’s focus is in the study of the dynamics of more thorough models
of drilling systems actuated by an electric induction motor.

The goal of this work is to create and to study mathematical models of the
drilling systems with more emphasis and consideration of the electrical drive op-
eration in comparison with earlier investigations. These newly refined models in-
clude an investigation of the influence of different loads on those models with the
help of analytical and numerical methods of investigation of dynamical systems,

1 Joshua Doubek (Own work), via Wikimedia Commons. 2013. upright oil derrick in the

Williston Basin North Dakota. URL:http://upload.wikimedia.org/wikipedia/commons/
1/1f/Upright_oil_derrick.JPG. [Online; accessed 09-September-2013]
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FIGURE 1 Photo of the drilling system

modern computational tools, and specialized mathematical software packages.

The stability criterion developed in this work allows for calculation of the
range of permissible loads for the drill when the type of shale changes. In cases
with a double-mass model of a drilling system, the so-called “hidden oscillations”
have been detected. The breakdown of the drilling equipment may be caused by
the presence of such oscillations, but these oscillations cannot be detected by the
transient process, which begins in a state of a stable equilibrium.

1.2 Methods of investigation

This work uses both analytical and numerical methods of investigation of dy-
namical systems. All models included have been described using differential
equations with discontinuous right-hand sides. For this purpose, the methods of
investigation of differential equations with discontinuous right-hand sides were
used, including the Filippov definition (see Appendix 2). In order to understand
the global stability of these systems, it was necessary to investigate the behav-
ior of their trajectories in the regions of continuity. This approach permitted the
use of the Lyapunov functions method (see Appendix 1) to investigate ordinary
differential equations with continuous right-hand sides. Regarding computer
modeling, in order to avoid computational errors, it is of utmost importance to
correctly define the behavior of the system in the neighborhood of the disconti-
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nuity surface. This method of correct computer modeling is based on Filippov
definition and is described in Appendix 3, the MATLAB code of the method is
presented in Appendix 6.

1.3 The main results

— A mathematical model of a drilling system whose drill string is rigid and is
actuated by an induction motor is developed (PI; PV).

— An appropriate load characteristic representing non-symmetrical dry fric-
tion is introduced. The limit load problem is solved for the model contain-
ing this type of friction (PI; PV).

— A double-mass mathematical model of a drilling system actuated by an in-
duction motor is developed. Local analysis of the system with Coulomb
type asymmetric friction torque is provided (PII; PIIL; PIV; PV).

All analytical results developed in the study are rigorously proven. For the com-
puter modeling, methods specifically designed for the integration of differential
equations with discontinuous right-hand sides were used in order to avoid com-
putational errors. The results obtained are in correlation with the results of other
researchers, in particular from Eindhoven University of Technology.

1.4 Practicability

The models obtained allow for increased effectiveness in the analysis of the per-
formance of the drilling systems. Engineers may use the regions of stability of the
drilling models to minimize failures in drilling rigs. Furthermore, it is demon-
strated that the models may experience hidden stable oscillations which co-exist
with a stable equilibrium state for certain systems. It is possible to miss those
hidden oscillations during computer modeling and reach a wrong conclusion
about the global stability of a system, which can result in drilling system fail-
ure. To avoid this, it is necessary to use special approaches when investigating
such drilling systems.

1.5 Included articles

The main results were published in the five included articles. In articles PI-PV,
the formulation of the problem belongs to the co-authors. In article PI, the au-
thor obtained estimates of the limiting value of the permissible rapidly alternat-
ing load for the model of a drilling system experiencing non-symmetrical dry
friction. In articles (PII; PIIL; PIV), a new double-mass drilling system model ac-
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tuated by an induction motor is introduced. During numerical analysis of the
models, hidden oscillations were found by the author. In PV, the author studied
different mathematical models of the drilling systems. Preliminary summary of
the dissertation material has been presented in (Kiseleva, 2013).

The results of this study were also published in (Kiseleva, 2013, 2012a; Kise-
leva and Leonov, 2012; Kiseleva, 2012b, 2011; Kiseleva et al., 2010) reported at
many international conferences: 5th IFAC International Workshop on Periodic
Control Systems “PSYCO-2013" (Caen, France), “International Student Confer-
ence on Automation & Control” (Saint-Petersburg, Russia), “4th IEEE Interna-
tional Conference on Nonlinear Science and Complexity” (Budapest, Hungary
-2012), XII International Conference “Stability and Oscillations of Nonlinear Con-
trol Systems”, Pyatnitskiy conference (Moscow, Russia —2012), “Sixth Polyakhov
Readings” (Saint Petersburg, Russia —2012), 4th All-Russian Multi-Conference on
Control Problems “MKPU-2011" (Divnomorskoe, Russia — 2011), International
Workshop “Mathematical and Numerical Modeling in Science and Technology”
(Finland, Jyvéskyld —2010) and at the seminars of the department of Applied Cy-
bernetics (Saint Petersburg State University, Russia 2009 — 2013) and the depart-
ment of Information Technology (University of Jyvaskyld, Finland 2009-2013).



2 MAIN CONTENT

2.1 Real drilling systems

It is necessary to know how the real drilling equipment used in the oil and gas
industry works if the mathematical models of the drilling systems are to be un-
derstood.

The rotary type drilling systems are used for drilling wells for exploration
and production of oil and gas (Mihajlovi¢, 2005). A schematic view of a rotary
drilling system is shown in Fig. 2 (Leine, 2000). A rock-cutting tool called drill-
bit creates a borehole in the drilled surface. The bit represents a short heavy
segment containing a cutting device at the free end (Tucker and Wang, 1999),
which is driven by torque created at the surface by a motor through a mechanical
transmission box. The motor (large disc) drives the rotary table via transmission.
The rotary table acts as a kinetic energy storage unit. A drill-string transmits this
energy from the surface to the bit. The drill-string consists mainly of drill pipes
that can be up to 8 km long. The lowest part of the drill-string is the Bottom-
Hole-Assembly (BHA). The BHA can reach several hundred meters in length ,
and consists of drill collars and the bit.

A real drill-string undergoes various types of vibrations during the drilling
process (Mihajlovi¢, 2005; Mihajlovi¢ et al., 2007; Jansen, 1991; Leine, 2000; Leine
and Van Campen, 2005; Van den Steen, 1997): torsional (rotational), bending
(lateral), axial (longitudinal) and hydraulic vibrations. Torsional vibrations are
caused by nonlinear interaction between the bit and the shale or the drill-string
and the borehole wall. Pipe eccentricity is generally the cause of bending vibra-
tions, which lead to centripetal forces during the rotation. Axial vibrations are
caused by the bouncing of the drilling bit on the shale during operation. Hy-
draulic vibrations are found in the circulation system, stemming from the pump
pulsations. There has already been extensive research on the subject of friction-
induced torsional vibrations in the drill-string systems. Much of the research
considers vibrations in the drill-string systems(Brett, 1992; Germay, 2002; Jansen
and Van den Steen, 1995; Kreuzer and Kust, 1996a,b; Keuzer and Kust, 1997;
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FIGURE 2 Schematic view of a real drilling rig

Kust, 1998; Kyllingstad and Halsey, 1988; Jansen, 1991; Leine, 2000; Leine and
Van Campen, 2005; Mihajlovi¢ et al., 2005, 2004b,a; Van den Steen, 1997). It is
generally concluded that torsional vibrations are the result of negative damping
in the friction force at the point between the bit and the borehole (see, for exam-
ple, (Brett, 1992; Kreuzer and Kust, 1996a; Mihajlovi¢ et al., 2004b)). This con-
clusion is supported by additional evidence from various other investigations
(Brett, 1992; Leine, 2000; Leine and Van Campen, 2005; Mihajlovi¢ et al., 2005,
2004b,a; Van den Steen, 1997). With those conclusions in mind, a control strategy
is suggested in (Jansen and Van den Steen, 1995) that torsional vibrations the in
drill-string systems should be avoided. It should be noted that Germay (Germay,
2002) and Richard et al. (Richard et al., 2004) concluded that the interaction be-
tween torsional and axial dynamics of the system may cause torsional vibrations
in the drilling systems. Such interaction effectively leads to the Stribeck effect,
according to these authors.

Only one type of vibration — torsional — is considered in this work, since it
is usually regarded as one of the most damaging types of vibration (Omojuwa et
al., 2011; Rajnauth, 2003).

2.2 A simple mathematical model of a drilling system actuated by
induction motor. Limit load problem.

The goal of this study was the development of mathematical models of drilling
rigs with an induction motor as the drive (see, e.g. (Hild, 1934; Staege, 1936; Hall
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FIGURE 3 Photo of an experimental set-up of a drilling system

and Shumway, 2009)), and to study the effect of different loads on a number of
models. First, the model which served as the motivation for this research will be
considered.

An experimental rotor dynamic set-up was studied in the articles by Ni-
jmeijer, van de Wouw, Mihajlovi¢ (De Bruin et al., 2009; Mihajlovi¢ et al., 2006;
Mihajlovi¢, 2005) (see Fig. 3, (De Bruin et al., 2009)). Its configuration can be rec-
ognized in the structure of the drilling systems. The set-up mainly consists of an
upper disc actuated by the driving part, a flexible steel string connecting it with
a lower disc, and a brake device. The upper and lower discs revolve on their
axes (see Fig. 4 (Mihajlovi¢ et al., 2006)). The brake device serves as a model for
friction force acting on the lower disc.

The following differential equations of rotation of the upper and lower discs
are presented !:

Jubu () + kg (0 (t) — 0;(£)) + (6. (t) — 0y(£)) + Ty (0u(t)) — kit = 0,
J161(t) —ko(0u(t) — 6, (t)) — b(0u(t) — 6;(t)) + Tp(6,(t)) = 0.

Here 6, and 6, represent the angular displacements of the upper and lower discs,
respectively. ], and J; are inertia torques, kg, b, k;, are non-negative coefficients, u

@™

1 The derivation of this model can be explained in the following way (Kiseleva, 2013; Leonov

etal., 2014): )
]u'f')u =M, — My,
Jibu = My — My,

where M,,, M; are rotation torques, M,,, M, are resistance torques. Here
My = kit — Tg, (6), o
Ml = M,y - k9(9u - 91) + b(eu - 91),
My = Tp(0r),

and M, is a drive part torque. Later on, when considering the models actuated by an
induction motor, this torque will undergo changes.
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FIGURE 4 Scheme of mathematical model of drilling system

is a constant input voltage, Tf, (6,,) and Ty, (6;) are friction torques acting on the
upper and lower discs.

This double-mass model allows for convenient analysis of the drilling sys-
tem model. However, full dynamics consideration of the electric motor which
actuates the upper disc in this system is lacking.

Significant results were achieved by the group from Saint Petersburg State
University lead by Prof. Leonov in the study of mathematical models of electrical
machines. New mathematical models of electrical machines were developed in
(Leonov and Kondrat’eva, 2009; Solovyeva, 2011; Zaretskiy, 2011). A new method
of nonlocal reduction is suggested, allowing improved estimates of the limit loads
for the models considered. These models take into account the dynamics of the
rotor of electrical machines and can be reduced to some other common models,
such as a motor with squirrel-cage rotor (Leonov et al., 2014). Simple differential
equations are used to describe the derived models, which allows for the in-depth
qualitative study of such models. This ensures that the implementation of these
equations in the mechanical model will result in more precise analysis (both ana-
lytical and numerical).

Here, for the both types of new models of the drilling systems, the model of
induction motor offered in (Leonov et al., 2014) will be used.

In PI, a simple electro-mechanical model described, and the limit load prob-
lem is solved for that model actuated by an induction motor. The behavior of this
model differs little from that of an ordinary drill (see Fig. 52).

Due to the short drill-string length, the torsional deformation relative to the
rotation angle of such a drill is extremely small . It can thus be assumed that the

2 By Kosiarz-PL (Own work by uploader) [GFDL (http:/ /www.gnu.org/copyleft/fdl.html),
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Com-
mons. 2013. Operating a pistol-grip drill - scheme. URL:http://upload.wikimedia.
org/wikipedia/commons/thumb/0/06/Drill_scheme.svg/424px-Drill_scheme.svg.png .
[Online; accessed 11-October-2013]
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FIGURE 5 Hand electric drill scheme

drill-string in this scenario is absolutely rigid. Assume that it is stiffly connected
to the rotor which rotates under the influence of magnetic field created by the
stator of the induction motor. The resistance torque during the drilling process
defines the interaction of the drill with the shale. Rapidly shifting loads are ex-
perienced by the system when the drill bit comes into contact with the bedrock.
The crucial aspect of the study is the behavior of the induction motor when the
friction torque suddenly experiences an abrupt change.

Consider the equations of the induction motor to be the equations of the
electromechanical model of the drilling system, (see Appendix 4, (Leonov et al.,
2014); as well as other sorts of induction motors (Leonhard, 2001; Khalil and
Grizzle, 2002; PI; PV) may also be considered) supplemented with the resistance
torque My:

~

_ 9)
Lip + Rip = —nBS6cos (£ —
Liz + Riz = —nBS6 cos

off oy
~——
~

Liy + Riy = —nBS6 cos (
(

Nl NIRNIN
SN—"

o D

@)

.. 3 _ .
18 = nBS 3 iy cos (5 -0 2507 4+ My(wpy +6).
In this equation, 6 is the drill’s angle of rotation about the magnetic field rotating
with the constant angular speed w;, s i1, ip, i3 are currents in the rotor coils, R is
the resistance of the coils, L is the inductance of the coils, B is the induction of
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=
Y

FIGURE 6  Friction torque My

magnetic field, n is the amount of winds in every coil, S is the area of one coil
wind, I is the inertia torque of the drill, w = 8 + w,, 7 is the angular velocity of
the drill rotation with respect to a fixed coordinate system. The resistance torque
M is assumed to be of the Coulomb type. Unlike the classic Coulomb friction
law with symmetrical discontinuous characteristics, however, friction torque My
has non-symmetrical discontinuous characteristics depicted in Fig. 6 (see PI)

Ty, if w >0
My € { [-To, MTy), ifw=0 3)
MT,, ifw < 0.

Where Ty > 0, number M > 0is assumed to be large enough. The drilling process
only takes place when w > 0, reflected in the previous condition. This does
not allow for w to switch from positive to negative values during the transient
process in real systems. The system will only stop when w = 0 for a long enough
period of time in these cases, which happen frequently during drilling operations.

Note that in (3) a sign € of differential inclusion was used. Differential in-
clusion is directly related to the notion of right-hand discontinuous differential
equations. There have been several papers devoted to this subject, such as (An-
dronov et al., 1981; Barbashin, 1967; Gelig et al., 1978; Neimark, 1972) The works
of Filippov (Filippov, 1988, 1985) contain a detailed description of this theory.
In (Filippov, 1985), differential equations with single-valued discontinuous right-
hand sides are considered, a concept of solution is introduced and the basic re-
sults of the qualitative theory are proven (see the main notions and approaches
in Appendix 2).
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Performing the nonsingular change of variables (Leonov et al., 2014)

s= -0,
3
. 2(k—1
X = —%ns%kgltksm(g—G—%), @)
3 —
y = 7%—11%3 k§1 ircos(5 — 6 — 2k—)m 31)n)

we reduce the system (2) to the following system (PL; PV):

s=ay+&(s,y),
y=—cy—s—xs, ®)
X = —cx+ys,

where
3(nSB)? R
1a= ——— C =

2IL 7 L’
Here variables x, y define the electric values in the rotor windings and the vari-
able s defines the sliding of the rotor. For (s, y), the following Filippov definition
is valid:

v ifs:wmf,y<—zors<wmf
G(sy) ="M, ifs=wyry> 77 Ors > Wy f
ifs— g My
—ay, ifs = Winf, T <y< P
T
where v = TO'
Let us introduce the parameter
acw ¢
Ymax = 55
c +wmf

The local analysis of equilibrium states of system (5) shows that for 0 < ¢ < ¥y
it has the unique asymptotically stable state of equilibrium.

Indeed, where v = 0, system (5) has one asymptotically stable equilibrium
states = 0,y = 0, x = 0, which occurs when the rotation of the drill with constant
angular speed is congruent to the rotation speed of the magnetic field (idle speed
operation).

For 7y € (0, Ymax) system (5) has one equilibrium state:

s _cla—/a? —4v?) _ 7%
0— 2’)/ 7 yO_ a/ xO_ ac’

where s is the smallest root of the equation

acs

2rs2 " T
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In this case, the direction of rotation of the drill and the magnetic field are the
same, but the drill rotates with a lower angular speed sy < wy.

Assume that there is a sudden change in load at the moment t = 7 from
value ¢ to value 1, where 0 < 79 < 91 < Ymax- This occurs at the moment
the drill comes in contact with the bedrock. For ¢ = 1 the system experiences a
unique state of stable equilibrium

c(a—+/a* —4v?) _ Y705

50 = 0= —— 0= .
270 oY a’ ac

After the transient process, it is essential, that the solution s(t), x(t), y() of sys-
tem (5) with v = 71 and the initial data

_ C(ll - \/W), y(T) _ 7@ X(T) _ 7@

270 a ac

s(7)
tends to the equilibrium state

c(a—+/a* —4m?) _m _ s

= = X1 =
27 oo a’ ! ac

S1 =

when t — +oo0.
The following theorem is proved in the included articles (PI; PV).

Theorem 1 Let the following conditions be fulfilled

Yo < Ymax,

71 < min {’ymx, 262} ,

Wi f

(11 =70)*_2, (11— 1) 712 1+M)? ,
< _ 1 _ .
52 0 + 5 / ( cS +as c'yl) ds + M

50

Then the solution of system (5) with v = 71 and the initial data
0 x(7) = _ 0%

(r) = CVEZI) -y - T,

270 a ac

tends to an equilibrium state of this system when t — +oo.

The proof is based on building the following Lyapunov function (see Appendix
1) within the region of continuity:

2 1 y
V(x,y,s) = %(x + %s)2 + E(ay + 1)+ / (—%52 +as — C')q) ds.
51

The corollaries formulated below follow naturally from Theorem 1.
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Corollary 1 Let the following conditions be fulfilled

Yo < Ymax,

1 < min {')’max/ zcz} ,

3(M? 4 2M)~? — 8c*y1 + 3ac® > 0.
Then the solution of system (5) with wy, s = ¢, v = 71 and the initial data

’
ac

tends to the equilibrium state of this system when t — oo,

o

%

Y1=al2

"1

0 c

FIGURE7 Regions of acceptable load: 1 — due to the theorem conditions, 2 — due to
computer modeling results

Corollary 2 Let M be sufficiently large positive number, wyf = c, yo = 0 and

Y1 < min {%, 2c2} . (6)

Then the solution of system (5) with <y = y1 and the initial data
s(1)=0, y(t)=0, x(1)=0
tends to the equilibrium state of this system when t — oo,

In the case when

2¢2 < % for 7 € (202,%)

(i.e., condition (6) is not fulfilled), the computer modeling of system (5) was car-
ried out (area 2 on Fig. 7, see PI) and it demonstrated that the corollary statement
remains valid. The computer modeling applies the specialized methods for sys-
tems with right-hand discontinuity (see Appendix 3).
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2.3 A double-mass mathematical model of a drilling system actu-
ated by an induction motor

In PII-PV, an electromechanical model of an induction motor-powered drilling
system is introduced, and the torsional deformation of the drill string during the
operation is studied. Let us extend the double-mass model of a drilling system
considered above by adding the equations of an induction motor (see Appendix
4, (Leonov et al., 2014)):

7T
Liy + Ri; = —nBSH, cos <§ Gu) ,
Liy + Riy = —nBS6, cos (= — 0, — %),
2 3
7T 4
Li3 + Riz = —nBS6, cos | — — 0, — — |,
2 3
3
) o , 20k —1
Jublu + ko(6 — 6;) + b(6, — 6) — nBS Y iy cos <7ZT 0, — (3>") —0,
k=1

Ji161 — ko (6 — 6;) — b(6u — 0;) + Ty (s +6;) = 0.

Here 6,, 6; are angular displacements of the rotor and the lower disc relative to the
rotating magnetic field, w,,y is a rotation speed of the magnetic field, T (w, s +
0)) is a friction torque.

Performing the nonsingular change of variables

= _éur
B C2(k—Dm
- 3nSB Ezlkgn( 5 )
B 2(k—=1)m
- _EnTB szcos = )
U= _01/
Ore1 = 6y — 0y,
we obtain the system
X = —cx+ys,
Y = —Ccy—8—xs,
érel =Uu-=s
k b 7
:ierel*'*(u_s)'i_iy' ( )
]uk ]ub ]ul
; 0
n=—-—>0 u—s)+ =Tr(wyr—u).
I rel — ]l( ) T fl( mf )
_3(nSB)> R
Here a = oL ’C_f‘
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Consider the case when the friction force has non-symmetrical characteris-
tics considered above:

v, ifw; >0
Tﬂ(a)l) S [—M’)’, ’)/], if w; =0
—Myy, if w; <0,

where w; = wy,f — u. Here M, y > 0.
The results of the local analysis of the system are formulated in the following
theorem:

Theorem 2 For
acWy, ¢

b=0, 0 = 5———
< ’)/ < ')’max C2+C()mf2

the system (7) has one asymptotically stable equilibrium state:

_ %

5o = Up, Xp = ’
ac

Yo = _%r 07810 = %r

where s is the smallest root of the equation

acs

2y T

Appendix 5 contains the proof of this theorem, which is similar to the proof of
the theorem described in Appendix 1.

During the numerical analysis of the system, stable operation modes of the
drilling system were found, along with modes where the drill gets stuck. Let us
consider a more complex friction model. Assume that the friction torque is as
follows (see Fig. 8, (De Bruin et al., 2009))

T.(w;)sign(w;), ifw; #0
Ta(w) € ol (wy) sign(wy) : 1 7 ®)
[7Tsl/ Ts ]/ if wp; = 0/
N
To(wy) = Tp + (T — Tpr)e o™ 4 by, )

where Ty, Tfj, wg, 65 and by are non-negative coefficients.

The type of friction in this system makes qualitative analysis a complex task.

Building on the works of (Leonov et al., 2012; Bragin et al., 2011; Leonov
and Kuznetsov, 2011b,a; Kuznetsov et al., 2011; Leonov et al., 2010; Bragin et al.,
2010; Leonov et al., 2010b), some aspects of the numerical modeling of oscillations
of continuous dynamical systems will be described, which are of crucial impor-
tance to engineers for practical applications. Computer modeling of the system
was carried out. Once again, the computer modeling for this system requires
a special method for discontinuous right-hand systems (see Appendix 3). Fric-
tional oscillations are of particular interest in this scenario. Several studies have
been devoted to these frictional oscillations (Hensen, 2002; Hensen and van de
Molengraft, 2002; Juloski et al., 2005; Mallon, 2003; Mallon et al., 2006; Olsson,
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0.2- -

0.1+ -

FIGURE 8  Friction torque T

u 15 5 0

FIGURE9 Hidden oscillations in space (6,1, s, )

1996; Olsson and Astrom, 1996, 2001; Putra, 2004; Putra et al., 2004; Putra and
Nijmeijer, 2003, 2004; van de Wouw et al., 2005; Al-Bender et al., 2004; Batista
and Carlson, 1998), as wear and damage to various mechanical systems are of-
ten caused by these oscillations. Under certain parameters, the so called hidden
oscillations (Leonov et al., 2011d; Bragin et al., 2011; Leonov et al., 2012; Leonov
and Kuznetsov, 2013b) may emerge — oscillations in which the basin of attraction
does not intersect with small neighborhoods of equilibrium states.

Numerical simulation of complex nonlinear dynamical systems is now pos-
sible thanks to the development of computer modeling technology. This allows
for new information about the behavior of the trajectory of these systems. In
the well-known Duffing system (Duffing, 1918), Van der Pol system (van der Pol,
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FIGURE 10 Hidden oscillations in space {x,s,u}

FIGURE 11 Hidden oscillations in space {y, s, u}

1927) Belousov-Zhabotinsky system (Belousov, 1959), Lorenz system (Lorenz, 1963),
Roessler system (Rossler, 1976) and other systems, classic self-exciting oscillations
and the attractors can be obtained numerically by using the standard computational
procedure: a trajectory beginning in an unstable equilibrium state reaches an oscil-
lation and defines it after the transient process. s This approach has limited appli-
cations, however. In the middle of the last century, another sort of oscillation was
obtained in systems with scalar nonlinearity. These “hidden oscillations” cannot
be calculated with the previous method described above. In such cases, the simu-
lation of trajectories with random initial data is unlikely to give the desired result
(e.g., the description of the experiment by Kolmogorov related to the search of
limit cycles (Arnol’d, 2005; Leonov and Kuznetsov, 2007; Leonov et al., 2011a;
Kuznetsov, 2008; Leonov et al., 2008; Kuznetsov and Leonov, 2008; Leonov, 2010;
Leonov and Kuznetsov, 2010; Bragin et al., 2011; Kuznetsov et al., 2013)), as the
domain of attraction can be very small and the dimension of the attractor can be
significantly smaller than the dimension of the system.
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In 1961, Gubar (Gubar’, 1961; Leonov and Kuznetsov, 2013b) demonstrated
the possible existence of hidden oscillations analytically in a two-dimensional
phase locked loop with piecewise constant pulse nonlinearity. In the 1950’s and
60’s, research into hypotheses (Aizerman, 1949; Kalman, 1957; Markus and Yam-
abe, 1960) regarding absolute stability led to the discovery of hidden oscillations
in automatic control systems with piecewise-linear non-linearity. These oscilla-
tions were found to be present in the linear stability region (see (Pliss, 1958; Bernat
and Llibre, 1996; Leonov et al., 2010a; Leonov and Kuznetsov, 2013b; Bragin et al.,
2011), etc.).

In studies by (Kuznetsov et al., 2010, 2011; Leonov et al., 2011b; Bragin et al.,
2011; Leonov et al., 2011d; Kuznetsov et al., 2011; Leonov et al., 2011c; Vagaitsev,
2012; Leonov et al., 2012; Leonov and Kuznetsov, 2012; Kuznetsov et al., 2013;
Leonov and Kuznetsov, 2013b,c,a, 2014), chaotic hidden oscillations, acting as
hidden attractors, were discovered in the Chua circuit.

In the double-mass model of the induction motor-actuated drilling system
described in PII-PV, hidden oscillations were found.

The stable equilibrium states and stable limit cycles are depicted in Fig. 9-
11 (see PIII). In accordance with the previous statement, this implies that hidden
frictional oscillations are present in the system, which suggests that complex phe-
nomena such as hidden oscillations may appear even in comparatively simple
models. The detection of hidden oscillations is a difficult task; given the small
region of attraction, the probability of finding these oscillations while modeling
a system with random data is very low. New approaches are needed in order to
properly study and understand these systems. Note that in the case presented
in this study, these are stick-slip type hidden oscillations — they pass through the
sliding region created by the sudden discontinuity. Thus, the modelling should
take place in the region of discontinuity in order to observe the phenomenon.



3 CONCLUSION

This dissertation is devoted to a topic particularly important for the oil and gas
industry — study of the drilling systems. As shown in the first chapter, drilling
systems experience time- and cost-consuming failures, so it is necessary to look
for new ways of failures reduction.

In the second chapter two new mathematical models of the drilling systems
are developed and studied. It is shown how different types of loads may affect
the operation of the drilling system. The obtained results also give a better under-
standing of the reasons of drill-string failures. Thus, hidden oscillations found in
the second model show that such a standard approach of the engineers when the
study of the drilling system is mainly based on local analysis of equilibria is not
efficient.

This work has potential for future investigations. First of all, more complex
mathematical models based on the models developed in the current research can
be obtained by lessening some limitations. Second of all, the numerical results
are obtained with the help of Matlab. It would be interesting to try out the same
modelling in some other mathematical packages as well. For example, in Maple
with more accuracy settings. Another variant of future investigations could be
the development of analytical methods for finding hidden oscillations. Also a
state-feedback control could be created for the second mathematical model of the
drilling system in order to stabilise the equilibrium, as it was done in (De Bruin
et al., 2009) for the model which motivated this research.
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YHTEENVETO (FINNISH SUMMARY)

Tama tyo kasittelee oikosulkumoottoriin perustuvien porausjdrjestelmien sahko-
mekaanisia malleja. Aihe on ajankohtainen, koska porauslaitteiston vahingoittu-
minen aiheuttaa huomattavia aikataulullisia menetyksid ja taloudellisia kustan-
nuksia 0ljy- ja kaasualalla toimiville yrityksille. Vaikka néistd jarjestelmistd on
tehty merkittdva maard tutkimuksia, porauslaitevikoja esiintyy edelleen usein
0ljy- ja kaasuteollisuudessa.

Téssd tyossa tutkitaan porauslaitteiston sshkomekaanisia malleja, jotka toi-
mivat oikosulkumoottoreilla. Tyo pohjautuu Eindhovenin Teknillisen Yliopiston
tutkijoiden tutkimuksiin, jotka kehittivdt porausjdrjestelmédn koemallin. Tama
malli koostuu kahdesta levystd, jotka ovat yhdistetty toisiinsa terdstangolla ja
johon kohdistuu véantorasituksia. Ylempi levy on yhdistetty kayttolaitteeseen.
Alempaan levyyn, joka toimii poran varren pdand, vaikuttaa kitkavoima, joka
johtuu pédasiassa kivilajien vuorovaikutuksesta. Keskeinen ajatus, joka erottaa
taméan tutkimuksen aiempaa mallia koskevasta tutkimuksesta, on monimutkai-
sempien kdyttolaitteeseen liittyvien yhtédloiden kdyttaminen, erityisesti oikosul-
kumoottoriin liittyen.

Téassa tyossad on otettu huomioon kaksi uutta matemaattista mallia. Ensim-
madinen malli on yksinkertaistettu, tavallisen porakoneen prototyyppi. Téss4 ta-
pauksessa oletetaan, ettd pora on tdysin jaykks, ja ettd kitkavoima on epasym-
metristd Coulombin tyyppid. Analyysimallin laadullisen tutkimuksen avulla sel-
vitettiin sallitun kuormituksen arvot (niin sanotun kitkavoimamomentin sallitut
arvot), joilla jarjestelmd pysyi toiminnassa huolimatta porausympaériston muu-
toksesta. Tietokonemallinnusta kdyttamalla analysoitiin myos dkillinen kuorman
kasvu.

Toinen matemaattinen malli ottaa huomioon poran vaantomuodon muu-
tokset porauksen aikana. Kitkamomentista, joka aiheuttaa epdsymmetrisen Cou-
-lombin tyyppisen reaktion, tehtiin jarjestelman paikallinen analyysi. Tutkimuk-
sen tekija teki tietokonemallinnuksen Eindhovenin yliopiston tutkijoiden luoman
kitkamallin pohjalta. Tassd mallissa havaittiin mielenkiintoinen vaikutus, joka
johtui piilevastd slip-stick -liikkeesta.

Taman tutkimuksen tulokset on julkaistu 11 artikkelissa.
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APPENDIX1 LYAPUNOYV FUNCTIONS METHOD

The stability of solutions can be studied using a method developed by Lyapunov
which involves special functions chosen suitably, known as Lyapunov functions
(Lyapunov, 1950). It is not necessary to find the solution of a system in order to
use this method. The following section explains the concepts of Lyapunov stabil-
ity, Lyapunov functions, and describes the theorems used in the dissertation.

Following (Leonov, 2001; Krishenko, 2007), let us formulate the main no-
tions and results. Consider the differential equation:

% = f(t,x), teR! xeR", (10)

where f(t,x) is a continuous vector-function: R! x R" — R". Hereafter, we
assume that all considered solutions x(t, ty, xo) with initial data x(fo, fg, xo) = xo
are defined in the interval (t, +o0).

Definition 1 Solution x(t, to, xo) of system (10) is Lyapunov stable, if for any number
e > 0 there exists a number §(e) > 0 such as for all yo, which satisfy the inequality
|x0 — yo| < 6(e), the following relation holds true:

\x(t, to, xo) — X(t, i‘o,yo)| <e YVt > t. (11)

Definition 2 If the solution x(t, ty, xo) of system (10) is Lyapunov stable and there ex-
ists a number 5(&) > 0 such as for all yo, which satisfy the inequality |xo — yo| < d(¢),
the following relation holds true:

lim |x(t,to, x0) — x(t, to,y0)| =0, (12)

t—4o0

then the solution x(t, ty, xo) is asymptotically stable.

Let us consider the case of the zero solution: x(t, f, x9) = 0. The generalised case
is reduced to this particular case by the following change of variables x = y +
x(t, to, x0). However, this requires knowledge of the solution x(t, o, xp), some-
thing that is not always convenient.

Let us consider the function V(x) differentiable in a certain neighbourhood
of the point x = 0 (V : R" — R%), for which V(0) = 0.

It is clear that if x is replaced by the solution x(f,t, xp), then, according
to the rules of differentiation of a composite function, we obtain the following
identity:

av " oV
i=1 "1

Here x; — i-th component of the vector x and f; — i-th component of the vector
function f.
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Theorem 3 (on asymptotic stability) Let there exist differentiable function V(x) and
continuous function W(x), for which in certain neighborhood of the point x = 0 the
following conditions hold true:

1. V(x) >0ifx #0,V(0) =0,

2. V(x) <W(x) <0ifx #0.
Then the zero solution of system (10) is asymptotically stable.

Theorem 4 (on instability) Let there exist differentiable function V (x) and continuous
function W(x), for which in certain neighbourhood of the point x = 0 the following
conditions hold true:

1. V(0) = 0and for certain sequence xy — 0 when k — oo inequalities V (x;) < 0O
are fulfilled,

2. V(x) < W(x) < 0when x # 0.
Then the zero solution of system (10) is Lyapunov unstable.

Definition 3 Let x(t, to, yo) be a solution of (10). Then the region of attraction is defined
as the set of all points yo such that lim;_ 1 «x(t, to, yo) = 0.

Let us introduce certain notions that are necessary for further discussion. When
talking about asymptotical stability of zero solution it is often interesting to de-
termine on how far from it the trajectory can be and still tend to x = 0.

Definition 4 If the equilibrium state of system (10) is asymptotically stable and its re-
gion of attraction is congruent to R", then the equilibrium state is globally asymptotically
stable.

Definition 5 Equilibrium state of system (10) is asymptotically stable in region D if the
region of attraction of this solution is congruent to D.

Definition 6 Function V (x) is called positively definite, if for all x % 0
V(x)>0

and
V(0) =0.

Definition 7 Function V (x) is called negatively definite, if for all x # 0
V(x) <0,

and
V(0) =0.

There are theorems on asymptotic stability by Barbashin and Krasovskii that are
special cases of the theorem by La Salle (LaSalle, 1968). Let us formulate two of
them (Barbashin and Krasovsky, 1952).
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Theorem 5 (the first theorem of Barbashin-Krasovsky) Let x = 0 be an equilibrium state
of system (10), defined in R", and let there exist continuous and differentiable, positively
definite and infinite for ||x|| — oo function V : R" — R!, derivative of which along
the trajectories of system (10) is a negatively definite function. Then x = 0 is a globally
stable equilibrium state.

Theorem 6 (the second theorem of Barbashin-Krasovsky) Let x = 0 be an equilibrium
state of system (10), defined in D, and there exists continuous and differentiable, posi-
tively definite function V : D — R, for which V(x) < 0in D, and set S = {x €
D : V(x) = 0} doesn’t contain full trajectories except of x = 0. Then x = 0 is an
asymptotically stable equilibrium state.



APPENDIX 2 DIFFERENTIAL INCLUSIONS AND FILIPPOV
DEFINITION

All systems assessed in this study are right-hand discontinuous differential equa-
tions, due to modelling of the friction torque. To investigate these equations, it
is necessary to introduce a new definition of solution that is applicable to these
systems. Continuing the work of (Andronov et al., 1966; Yakubovich et al., 2004;
Filippov, 1960) below, the friction in mechanical systems will be considered, and
reason for which the well-known definition of solution of an ordinary differential
equation doesn’t work for discontinuous systems will be explained. The notion
of the differential inclusion will be introduced, along with the Filippov definition
for systems of differential equations with discontinuous right-hand sides.

A

FIGURE 12 Viscous friction

Credit for the discovery of the theory is usually given to the French math-
ematician Marchaud (Marchaud, 1936) and the Polish mathematician Zaremba
(Zaremba, 1936). Later on, Filippov (Filippov, 1960, 1985, 1988) introduced def-
inition of a solution for a discontinuous system. That encompasses other well-
known definitions of discontinuous system solutions encountered in the problem
in this study.

Mechanical system with a dry friction

As proven in (Andronov et al., 1966), relationship between the work re-
quired to overcome friction and the speed can be established. This relationship
between work and friction when the body is moving in fluid is completely dis-
tinct from that of the friction between the body and any solid surface. In the first
case (known as “viscous friction”), the work is proportional to the speed; that is,
if the speed decreases, the work decreases as well and it can be made arbitrarily
small. In the case of “dry friction”, however, the work is only partially dependent
on the speed. Regardless of how slow the body is moved, some work is done by
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FIGURE 13 Dry friction

FIGURE 14 Slope field in the neighborhood of discontinuity surface: the sliding mode

the system, i.e., the friction force has a finite value even when the speed is arbi-
trary small. Furthermore, as the friction force is always applied in the direction
opposite to the velocity, the friction force changes sign when passing through
zero. In the case of the “viscous friction”, the friction force changes sign as it
passes through zero without a jump (Fig. 12, (Andronov et al., 1966)).

With “dry friction”, the friction force on both sides tends to different finite
limits as the speed tends to zero. These limits are opposite in sign, but equal in
absolute value. It follows, then, that the function is discontinuous at zero (Fig.
13, (Andronov et al., 1966)).

Thus, mathematical models of mechanical systems with the Coulomb fric-
tion, obtained from knowing the mechanics of the systems of rigid bodies, are
differential equations, the right-hand sides of which are discontinuous functions
with respect to generalized velocities (the friction force changes abruptly when
the direction of the motion changes) (Bothe, 1999; Feckan, 1997, 1999; Filippov,
1988; Kunze, 2000; Kunze and Kiipper, 1997).

The sliding mode is one of the operational modes of a system with dry fric-
tion, which occurs when phase trajectories are directed towards each other in the
neighborhood of the discontinuous surface of the control function (see Fig. 14,
(Gelig et al., 1978)). When the function comes into contact with the discontinu-
ity, for an arbitrarily small time interval, the image point is incapable of moving
along any trajectory adjacent to the surface (should any displacement occur, there
is always movement that returns an affix on the discontinuity surface). Another
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FIGURE 15  Slope field in the neighborhood of discontinuity surface: the solution moves
away from the discontinuity surface

scenario may also occur: the opposite happens, and the solution doesn’t reach
the corresponding part of the discontinuity surface as time progresses (see Fig.
15, (Gelig et al., 1978)).

Justification of the need to generalize the notion of solution of differential
equation

The classical definition of solutions of differential equation reads as (Filip-
pov, 1985).

Definition 8 Solution of differential equation

%= f(x,1)

with continuous right-hand side is a function x(t), which has derivative everywhere on
this interval and satisfies this equation.

Furthermore, the equation with a continuous right-hand side is equivalent to the
following integral equation

x(t) = /f(t,x(t)) dt + C. (14)

The definition 8 does not work when the differential equation is right-hand
discontinuous. However, for cases where f(t, x) is discontinuous for ¢ and con-
tinuous for x, the functions satisfying integral equation may be called solutions of
the equation . When this occurs, solutions from one side of discontinuity surface
S go to S, from the other side they go off S (trajectories puncture the surface), see
Fig. 16, (Gelig et al., 1978).

Solution x(t), which falls for t = t( into the discontinuity surface S, ex-
tends uniquely for t > ty and close to tg; by intersecting S the solution satisfies
the equation everywhere except the point of intersection in which the solution
doesn’t have a derivative. In another case, when the solution approach the dis-
continuity surface S from both sides (trajectories merge — the sliding mode), this
definition of solution is meaningless, because it tells us nothing about the behav-
ior of the solution on the surface S.
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FIGURE 16 Slope field in the neighborhood of discontinuity surface: trajectories punc-
ture the surface S

It is necessary to give such definition of the solution which would embody
these both cases and which formulation would not be dependent on the lines’
position and discontinuity surfaces.

Definition of solution

Consider the equation of the system in the vector notation

1= f(tx), (15)

with a piecewise continuous function f in the region G; x € R", M - set (of
measure zero) of discontinuity point of function f.

Most of the well-known definitions of solution of equation (15) could be
described in the following way. For each point (f, x) of the region G set F(t, x) in
n-dimensional space is introduced. If at the point (¢, x) function f is continuous,
then the set F(t,x) consists of one point, which is congruent to the value of the
function f at this point. If (, x) is a discontinuity point of the function f, then the
set F(t, x) is defined in certain chosen way.

Definition 9 Solution of equation (15) is called the solution of the differential inclusion

X € F(t,x), (16)

i.e., absolutely continuous vector function x(t), defined on the interval or segment I, for
which almost everywhere on I % € F(t,x).

In other words, the solution of the differential equation (15) is defined as a func-
tion which derivative ¥ = dx/dt may have any values from a certain set F(f, x).
Sometimes (16) are called differential equations with a set-valued right-hand side.
A function is called a set-valued function and we emphasize that F(t, x) is a set.
If for all (¢, x) the set F(t, x) contains only one point, then (16) is an ordinary dif-
ferential equation. The function F(¢, x) is called one-valued at the point (fy, xg),
if the set F(tg, xo) contains one point.

The most common definition of the solution of discontinuous system is Fil-
ippov definition. (Filippov, 1960, 1985, 1988).

Extending convex definition
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For every point (¢, x) € G let F(t, x) be the minimal convex closed set which
contains all limit vector-functions f (¢, x*); when (¢,x*) ¢ M, x* — x, t = const.
We call the solution of system (15) a solution of differential inclusion (16) with the
just constructed F(t, x). Since M is a set of measure zero, for almost all ¢ € I the
measure of the section of set M with the plane t = const is zero. For these t, the
set F(t,x) is defined for all (t,x) € G. At the points of continuity for function f,
a set F(t, x) consists of one point f (¢, x) and the solution satisfies equation (15) in
the ordinary sense. If the point (¢, x) € M lies on the boundaries of two or more
regions Gi,...,Gy of plane t = const, then the set F(t, x) is a segment, convex
polygon or polyhedron with vertexes f;(t,x), i < k, where

fi(t,x) = lm  f(t,x"). (17)
(t,x*)GG,'
x*—x
All the points f;(t,x) (i =1,...,k) are contained in F(f, x), but not necessar-
ily all of them are vertexes.

Definition 10 (Filippov definition) Vector-function x(t), defined on the interval |, is
called a solution of system (15), if it is absolutely continuous and if for almost all t € |
and for all § > 0 the vector x(t) belongs to the minimal convex closed set (n-dimensional
space), which contains all the values of the vector function f(t, x*), when x* runs through
almost entire é—neighborhood of the point x(t) in the space X (for a fixed t), that is,
through the entire neighborhood, except of the set of measure zero.

Such definition outlines the unique extension of the solution on the discontinuity
surface. Let us consider the case when the function f(t, x) is discontinuous on
a smooth surface S, defined by the equation s(x) = 0. The surface S divides its
neighborhood in the space into the regions G~ and G™. Let for t = const and for
approximation x* for x € S from regions G~ and G* the function has limit values

lim f(t,x*) = f~(t,x),

X' =X
lim f(t,x") = f(t x). 18)
XeGT
X" =X
Then the set F(t,x), mentioned in the definition of extension, is the segment
which connects endings of the vectors f~(t,x) and f (¢, x), which start at x.

o If for t € I the segment lies on one side of the surface P, which is tangent
to the surface S at the point, then the solutions for those t go from one side of the
surface S to its other side (Fig. 17, (Filippov, 1985)).

o If this segment crosses the surface P, the crossing point is the end of the

vector fO(t, x), which defines the speed of the motion

x = fO(t,x) (19)

along the surface S in space X (Fig. 18, (Filippov, 1985)).
Note that the vector is tangent to S fO(t,x) € P, so, f°(t,x) € F(t,x). This
means that the function x(t), which satisfies equation (19) due to the extension,
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FIGURE 17 The solution goes from one side of the surface S to its other side

FIGURE 18 Motion of the solution along the surface S
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is the solution of equation (15). This implies that x(t), which on this part of the
considered time interval passes in the area G~ (or in the area G™) and satisfies
equation (15); on the remaining part it goes along the surface S and satisfies equa-
tion (19), it is also considered as a solution of (15) in the sense of the definition of
extension introduced above.

In equation (19) f = aft + (1 —a)f ",

fn
o= )
fn I

fxr- f are vectors projections of f* and f* to the normal of the surface S at the
point x (the normal is oriented towards the direction of GT).

e If the whole segment with the endings f~ and f™ lies on the surface P,
then the movement speed f° on discontinuity surface S is multi-valued.

For f0 # =, f # f7 there is a sliding mode, which was discussed before.
Let the ideal sliding mode equation look as equation (19). Calculating « for f0 =
aft + (1 —a)f~ from the condition grad S - f0 = 0, we find the equation

0<a<l), (20)

- . fT
4= gradS- f )er gradS - f

Tgmds (7)) s (-1 @
with the help of which we define the motion in the sliding mode (the initial data
for (21) is chosen on the discontinuous surface, i.e., S(x(0)) = 0).

The connection of the theory of equations (15) with discontinuous right-
hand side to the theory of differential inclusions (16) is obvious. If there is equa-
tion (17) with discontinuous function f(t, x), we need to replace its value f (o, xo)
in the discontinuity point (fo, xo) with a certain set. This set should be limited,
convex, and self-contained. Furthermore, it should contain all limit values f (¢, x)
when (t,x) — (fo,xp). After such change of variables (for any discontinuity
point) instead of (15) we obtain differential inclusion (16), in which a set-valued
function satisfies the above stated requirements.

This extension can be applied to systems with a small delay of a certain type
and to some systems with a dry friction including the systems considered in this
study.




APPENDIX3 NUMERICAL METHODS OF STABILITY
INVESTIGATION OF DISCONTINUOUS
SYSTEMS

The models studied in this work use equations with discontinuous right hand-
sides. Hence, a special method for numerical computation of their solutions is
required. In what follows, we are going to provide a brief description of one of
such methods following the works (Piiroinen and Kuznetsov, 2008; Kuznetsov et
al., 2003).

The event-driven simulation method

In some cases it is definitely possible to find explicit expressions for the
solutions of the ordinary differential equation that describe sliding if the vector
fields in the non-sliding regions are given. For example, this is the case when we
consider low order linear systems. However, in the case of the above models of
the drilling systems actuated by an induction motor, the idea is to present a nu-
merical algorithm where we only provide different vector fields and information
about the discontinuity surface, and then the vector fields for the sliding regions
are automatically computed. The method that has been chosen here for modeling
the systems with a discontinuous right-hand side is similar to the hybrid system
approach, where the integrations of smooth ordinary differential equations are
mixed with discrete maps and vector field switches. In practice, this means that
an initial value problem is solved for one of the possible smooth dynamical sys-
tems until the trajectory of the solution reaches one of the predefined surfaces.
At such a point, the vector field is possibly switched, depending on the state at
that instance. It is very important to have a reliable ODE solver that is supple-
mented by an accurate routine to locate discontinuity surface and the tangent
surface crossings. In what follows, a surface crossing will be called an event and
a scalar function defining an event surface will be referred to as the event func-
tion. We will assume here the existence of event detection routines. For instance,
in MATLAB (Higham and Higham, 2005) the event detection routines are built-in
and can easily be used together with the likewise built-in ODE solvers in order
to integrate trajectories and to locate events along them as precisely as the accu-
racy of MATLAB permits (for more details of the MATLAB ODE routines, see
(Shampine and Reichelt, 1997; Ashino et al., 2000)). However, standard methods,
for example, the so-called secant type methods, can easily be implemented and
have proven to be fast and reliable. The type of events which need to be detected
also plays an important role in how to numerically deal with them and how sen-
sitive the event detection should be. Let us introduce the basic ideas behind the
simulation algorithm for one discontinuity surface and a description on how the
algorithm works following (Piiroinen and Kuznetsov, 2008).

Let us consider a general dynamical system:

i=f(x), xeR" 22)
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FIGURE 19 The vector fields F; and F, near a stable sliding region 5.

here the vector field f(x) is either smooth or piecewise smooth. Assume that the
state space consists of only two regions, S; and Sy, separated by a discontinuity
surface S, which is defined by a smooth scalar function h(x) such that

S = {x € R"|h(x) =0}, (23)
and where

S1 ={x e R"h(x) >0} (24)
and

Sy = {x € R"|h(x) < 0}. (25)

Dynamical system (22) can be rewritten as

F if S
xE{ 1(x), ifxe S

(26)
F(x), ifx €S,

where F; and F, are sufficiently smooth. Let us also assume that F; and F, are
defined in the whole state space.

The motion is said to be sliding if both vector fields F; and F, are locally
pointing away from or pointing towards the discontinuity surface S (see Fig. 19).
We call the sliding surface the open subset ¥ of the surface S where the vector
fields are both pointing towards or away from S. In Fig. 19 the sliding surface %
which is a subset of S is a line segment between two points, % and .

Let us define the Lie derivative Lr(h)(x) of a smooth function f(x) along a
smooth vector field F(x) as

Lr(h)(x) = ah(g(t)) » = ix dr . = (W,F(x», (27)

where &(t) is a solution of the equation & = F(¢) with initial data &(0) = x.
Thus, sliding surface 3 is stable if

Lr_p(h)(x) <0, x€3, (28)
and sliding surface ¥ is unstable if

Lr_p(h)(x) >0, x€e=X. (29)
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FIGURE 20 Some trajectories corresponding to the vector fields F; and F, near a stable
sliding region )

According to Utkin’s equivalent control (Utkin, 1992) we can extend the
dynamical system (26) in order to include the vector field on the sliding surface
such that

A

X = Flz(x), xex, (30)

where A +R#) | BF) - k)
X)+ m(x x)— F(x
Fiax) = ==+ (v, (31)
and —1 < u < 1. Due to the fact that the motion is constrained to 3, Fjp must be
tangent to £, i.e. Lp,, ()(x), which yields

u(x) = — Lr+F (h)(x) '

Lr,—r, (h)(x)
Notice that Fj; = F; when p(x) = —1 and Fj = F, when u(x) = 1, and also
Lr,_r (h)(x) # 0 for x € % since the vetoer fields always either point toward or
away from the discontinuity surface. Thus the surfaces defining the borders of
the sliding surface are as follows:

P ={xeXulx) = -1} (33)

(32)

and
2t ={xeu(x) =1}. (34)
These points will be referred to as tangent surfaces.

By concatenating standard solutions in S; and S, and sliding solutions in &
(See Fig. 20) let us define the solutions of system (26). To assure the uniqueness
of such a solution, the assumption that it does not visit points of S, where both
vectors F; and F, are tangent to S, is required. We are going to call such solutions
and their corresponding orbits generic.

Finally, let us discuss a relationship between the commonly used Filippov’s
convex method (Filippov, 1988) and the above described construction. As was
mentioned in Appendix 2 original Filippov approach consists of replacing (26)
by the differential inclusion

F (x), if x € 54
x € co(F(x), F(x)), ifxes, (35)
Fz(x), lfx S SZ,
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FIGURE 21 Different regions that the state space is divided into in a neighbourhood of
the sliding surface &

where co(F;(x), F2(x)) is the minimal closed convex set which contains F; and F;
that is

E(Fl(x),Fz(x)) = {f € R" f=h +/\(F2 — F]),/\ S [0,1]} (36)

A solution to this differential inclusion is an absolutely continuous function x(t)
that satisfies (35) for almost all ¢ from its definition domain. Assuming smooth-
ness of F and h, Theorem 2 by Filippov (Filippov, 1988) (Chapter 2, pp. 110-111)
implies forward uniqueness of those solutions of (35), which do not visit unstable
sliding surfaces, and those points of sliding surface S where both vectors F; and
F, are tangent to S. Moreover, this unique solution is the same as the one con-
structed above. It should be noted that the solutions constructed with help of Fil-
ippov’s approach starting at unstable sliding surfaces are not unique, while they
generically have this property in our formulation, where they are constrained to
3. This difference is not important in most applications, since solutions which
start away from the unstable sliding surface can never reach it.

Let us rewrite the full dynamical system with one discontinuity surface S as

F(x), ifxe S
X € ﬁer ifxes§, (37)
Pz(x), if x € 5y,

where the sliding vector field Fy; is given by (31). In addition, since the dynamics
depends on ¥ during sliding, we substitute Fj»(x) by its regularisation Fj,(x) in
order to avoid drift away from .

The state space for Filippov system with one discontinuity surface can be
locally divided into three disjoint regions, namely, S1, S and S. Further, the state
space can also be divided into two regions, M, and My, by the two extended
tangent surfaces S~ and S, which are defined by

§" ={x e R"[u(x) = -1} = {x € R"|LF (k) = 0}, (38)

§* = {x € R"u(x) = 1} = {x € R"| L, (k) = 0}, (39)
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where y is defined as in equation (32) (see Fig. 21). By using (38) and (39) the two
regions My, and M5 can be defined as

Mip = {x € R"[|u(x)| < 1} (40)

and
My = {x € R*|[u(x)[ = 1}. (41)

One can notice the similarity with the tangent surfaces defined in equations
(33) and (34). Also, since it is assumed that F; and F, are defined everywhere in
the state space, u is defined everywhere except for points where both F; and F,
are tangent to the surface h(x) = const.

This division into disjoint subregions makes it relatively easy to implement
in a numerical algorithm and reduces the number of checks that should be made
every time the discontinuity surface S is crossed. Also, taking into account the
fact that we are always looking for the surfaces given by L (h)(x) = 0 and
Lr,(h)(x) = 0 it makes the algorithm more robust when locating the events for
orbits that hit the discontinuity surface almost tangentially.

During the simulation of Filippov systems using an event-driven scheme
it is important to locate events, for example, discontinuity surface or a tangent
surface crossing, as accurately as possible (within a given tolerance). Therefore,
to make an automatic algorithm robust, we need to predefine specific events as
region-dependent. In case it is assumed that a system has a total of m possible
events in each region then an event list e(x, ) can be defined as

e(x, t) = (er(x,t),....em(x, 1)), 42)

where each element ¢ (x, t) € Ris an event function that defines an event surface
that can be reached by the state vector or the time.
Let us define the event functions as

e1(x,t) :=h(x), ex(x,t):= Ly (h)(x), es(x,t):=Lg(h)(x), (43)

(cl. equations(38) and (39)).

In order for the solver to know what vector field to use and what events
to look for, we will introduce a number of event variables. So, to keep track of
which of the regions S1, S, and ¥ the state variable x(t) is in the event variables
s1, 52 and s3 are introduced respectively. Further, to look after the state variable
is in My, of Mi, we are introducing the event variables s; and ss5, respectively.
Letting s = (s1,52,53,54, 55)T and using the same state division as in Fig. 21 the
event variables can be given the following values

1, if S 1, if S
s1(x) € SIS s Lo (44)
-1, ifx¢ S, -1, ifx &Sy,

1, ifxel
s3(x) € R 45
(%) {—1, ifx ¢, )
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1, ifxeM 1, if M
sa(x) € DR N e (46)
-1, if x ¢ M12, -1, if x ¢ MlZ-

The event parameters are changed at the even depending on in what region
x(t) is in and to what region it continues. For instance, assume x € S; U M,
before it crossed the discontinuity surface S then we obtain

s=(1,-1,-1,-1,1)

before the crossing and
s=(-1,-1,1,-1,1)

after. This means that the orbit is sliding along ¥ after the surface crossing and
this information is passed to the solver so that during the solving process the
correct vector field is used.

Continuing this discussion, each of our original event functions e; can be
seen as one of two different kinds, namely ¢;" (x, t) and ¢, (x, ), where the former
corresponds to one in which the surface crossings are only detected when ¢y is in-
creasing and the latter when ey is decreasing. The MATLAB code built according
to this algorithm is presented in Appendix 6.

Let us explain the importance of special numerical methods for modelling
the systems with discontinuous right-hand side.

Consider the following system of equations which describes the operation
of the Watt governor with the dry friction model (Andronov and Mayer, 1947;
Yakubovich et al., 2004; Gelig et al., 1978):

Y1 = —Ay1 + y2 — sign(y1),
Y2 = —By1 +ys, (47)
Y3 = —V1-

Itis well-known that the sliding region of system (47) is globally stable when
AB > 1 (Yakubovich et al., 2004; Gelig et al., 1978). Consider A = 1.5, B = 1.1 and
y1(0) = —0.5, y2(0) = 1, y3(0) = 1.2. If the modelling is conducted without spe-
cial methods for discontinuous systems (see Fig. 22) the small oscillations appear
in the system (47) (see Fig. 22, b). On the other hand, if the event-driven simula-
tion method is used there are no such oscillations and the trajectory is stable (see
Fig. 23).

This example demonstrates that careful treatment of solutions of systems
with discontinuous right-hand side is required.
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FIGURE 22 Numerical modelling of the Watt governor without using special methods
for systems with discontinuous right-hand side.
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FIGURE 23 Numerical modelling of the Watt governor with help of the event-driven
simulation method.



APPENDIX4 MATHEMATICAL MODEL OF INDUCTION
MOTOR

In what follows, we are going to provide a brief derivation of a system of equa-
tions describing a mathematical model of the induction motor with a wound ro-
tor. The full version of this derivation can be found in (Leonov et al., 2014; Leonov
and Solovyeva, 2012).

Currently, the methods of research and design of asynchronous motors based
on mathematical modeling have become widespread (Bespalov et al., 2002; Be-
spalov, 1992; Golubev and Zikov, 2003; Gruzov, 1953; Kopilov et al., 2002; Kopilov,
2001b,a; Moshinsky and Petrov, 2001; Moshinsky and T., 2007; Moshinsky and
Petrov, 2007; Pankratov and Zima, 2003; Sipaylov and Loos, 1980; Hrisanov and
Brxhezinsky, 2003). Both Russian and foreign researchers have made great contri-
bution to the development and establishment of scientific methods of calculation
of induction motors, among them: Adkins, Bespalov, Blondel, Woodson, Glebov,
Gorev, Danilevich, Ivanov-Smolensky, Ilinskiy, Kazovsky, Kovacs, Kononenko,
Kopylov, Kostenko, Kron, Luther, Park, Petrov, Postnikov, Radin, Raz, Sipailov,
Soroker, Treschev, White, Filtz and others.

The basic constructive elements of induction electrical machines are station-
ary stator and rotating rotor. The windings are located on the stator and the rotor.
Stator winding is arranged in such a way that it generates a rotating magnetic
field when fed with alternate current.

Consider the induction motor with a wound rotor (Drury, 2001) shown in
Fig. 24. In the simplest case, a wound rotor winding consists of three coils, each
consists of several turns of insulated conductor. Furthermore, one considers in-
duction motors with wound rotor, when a rotor winding is short-circuited and
no external devices are connected. A working gear is connected to the rotor shaft
(in our case, it is a drill-string). Thus, the induction motor, by transforming the
electric energy into the mechanical one, imparts rotational motion to the working
gear via shaft.

The classic derivation of expressions for the currents in rotor winding and
the electromagnetic torque of induction motor are based on the following sim-
plifying assumptions (Popescu, 2000; Leonhard, 2001; Skubov and Khodzhaev,
2008):

I It is assumed that the magnetic permeability of the stator and rotor iron is
equal to infinity. This assumption makes it possible to use the principle of
superposition for the determination of the magnetic field, generated by the
stator;

I one may neglect energy losses in electrical steel, i.e., the losses related to
motor heating, magnetic hysteresis, and whirling currents;

IIT one does not take into account saturation of the rotor iron, i.e. the current of
any force can run in rotor winding;
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FIGURE 24 Wound rotor of induction motor: 1 — the first coil with the current i1, 2 — the
second coil with the current ip, 3 — the third coil with the current i3, 4 — slip
rings, 5 — rotor shaft

IV one may neglect the effects arising at the ends of rotor winding and in rotor
slots, i.e., one may assume that the magnetic field is distributed uniformly
along the circumference of the motor;

Let us make an additional assumption:
V Stator windings are fed by a powerful outlet of sinusoidal voltage.

Then, following the works (Adkins, 1957; White and Woodson, 1968; Skubov and
Khodzhaev, 2008), due to the last assumption, the effect of rotor currents on stator
currents may be ignored. Thus, a stator generates a uniformly rotating magnetic
field with constant magnitude. So, one may assume that magnetic induction vec-
tor is constant in magnitude and rotates with a constant angular velocity. This
assumption is due to the classical ideas of Tesla and Ferraris and allows one to
consider dynamics of induction motor from the point of view of its rotor dynam-
ics (Leonov, 2006; Leonov and Solovyeva, 2012; Leonov et al., 2013).

Suppose that the magnetic field rotates clockwise. One introduces uni-
formly rotating coordinates, rigidly connected with the vector magnetic induc-
tion, and considers the motion of wound rotor in this coordinate system. Also,
suppose that the positive direction of the rotation axis of the rotor coincides with
the direction of the rotation of the magnetic induction vector.

The rotating magnetic field crosses rotor winding and, by the law of electro-
magnetic induction, it induces electromotive force (EMF) in it. Thus, taking into
account the number of turns, EMF in coils is equal to

€ = —nSBcos (n()z(k_l)ﬂ

> 3 )9, k=1,2,3.

Here B is the inductance of the magnetic field, # is the number of turns in each
coil, S is a cross-sectional area of coil, 6 is a mechanical angle of rotation of rotor.
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The EMF induces a variable current in the rotor winding. According to
Ampere’s force law, as a result of the interaction of currents in coils with rotat-
ing magnetic field, electromagnetic forces arise. Electromagnetic forces generate
electromagnetic rotating moment, under which the rotor begins to rotate with a
certain frequency.

Using Ampere’s force law for calculating electromagnetic forces and taking
into account the number of turns in coil and positive direction of the rotor rotation
axis, it follows that the generated rotating electromagnetic torque, acting on a coil
with the current 7, is equal to

M = nSB cos <7;— <6+2(k31)n)>ik, k=1,2,3.

Thus, the electromagnetic torque of the induction motor with a wound rotor is
equal to
Mew = My + Mp + Ma.

The dynamics of the rotating induction motor is described by the equations
of electric chains (voltage equations) and the equation of moments of forces, act-
ing on the motor rotor (equation of moments).

Using the second Kirchgoff’s law and following the positive direction of the
by-pass of the circuit in the clockwise order, one arrives at the following differen-
tial equations

L(iy —12) + R(i1 — i) = &1 — &3,
(48)
L(l:z — 13) + R(iz — i3) =& — €3,
where R, L are active and inductive resistance of each coil; ¢, is EMF, induced in
k-th coil by rotating magnetic field.

The motion of wound rotor of induction motor about shaft in the chosen

coordinate system is described by the equation of torques:

]9 = Mo _Mf/

where 6 is mechanical angle of rotor rotation; | is inertia moment of the rotor
relative to shaft; M.y, is electromagnetic torque; M; is load torque.
Thus, the system of differential equations

i L us 2(k—1)r
J6 = nBSk;zkcos (2—9—3> ~ My,

Li; + Ri; = —nBS6 cos <g — 6) ,
(49)

. . 2
Liy + Riy = —nBS cos (Z —6— ”) )

. . 4
Lis + Ris = —nBS6 cos (7; —9— ”)
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describes the dynamics of induction motor with a wound rotor.
Note that non-singular change of variables (4), makes it possible to reduce
system (49) to the model used in (5) !.

Some other types of induction motors may also be reduced to this model under certain
additional assumptions (Leonhard, 2001; Khalil and Grizzle, 2002)



APPENDIX5 PROOF OF THE THEOREM ON LOCAL
STABILITY

Proof

In case when

a
0<'}’<’)’mgx:§

system (7) has one equilibrium state:
14 i i
= = ——5p, = ——, 9 = —. 50
o =So, Xo=—_S0, Yo g G0 = (50)

Here sy is the smallest root of the equation

acs

2+ T

The characteristic polynomial of the first approximation matrix of (7) in sta-
tionary point (50) is as follows:

1 A) = 610/\5 + ﬂ1)\4 + ﬂz)\s + 613/\2 + 614/\ + as,
p

where

aO - 1/

a1 = 2c,

ap = i(a +2k¢g+ D) + ! (29%kg + J;a%c® — Jjac*D)
2]y 2]17? ’

c

a3 = —((2kg + D)]; + 2]uks),

]u]l

k
1y = =t — (Va+9°D + i + Jua*c — Jjac?D — Juac’D),
2LJiy

- CDkg
]u]l .

as

Here D = /a%? — 42. For defining stability, one uses Routh-Hurwitz stability
criterion (Hurwitz, 1964; Routh, 1877) for a polynomial of the 5th order:

a; >0, i=0.5 (51)
ai1ay — agas > 0, (52)

(a1ay — agaz)(asay — azas) — (ajay — agas)* > 0. (53)
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Thus, the conditions (52) and (53) for the local stability of equilibrium state (50)
are as follows ((51) holds automatically)

ac

3
ac
+—(a—-D) >0,
Ju ')’2( )

1
2137* (Jiv?a?c*kg(D(a — D) + 2kg(a — D)) + J..J;a?c®Dkg(D — a)? + 49*a*c%k3,
u
+4uy*a’ckG(a — D)) > 0.

Therefore, equilibrium state (50) is asymptotically stable.



APPENDIX6 COMPUTER ASSISTED MODELLING OF
TWO-MASS MATHEMATICAL MODEL OF THE
DRILLING SYSTEM(MATLAB
IMPLEMENTATION)

This code is based on templates of the files which can be found in (Piiroinen,
2007).

Function “run_drill.m” builds a 3D plot of solutions of the system describ-
ing two-mass mathematical model of the drilling system.

function dy = run_drill (time)
global T_sl T_cl omega_sl delta_sl b_1 ¢ Ju Jl k a T_0 nl color;

% Parameters for drilling system

nl = 6;

T_0 = .1;

T_ sl = 0.26;
T_cl = 0.05;
omega_sl = 2.2;
delta_sl = 1.5;
b_1 = 0.009;
c = 6;

Ju = 0.4765;
Jl = 0.035;
k = 0.075;
a = 2.1;
color = "-g’;

% ODE solver
solver = ’'oded5’;

%$ODE-solver options

$Type "help odeset’ in the Matlab window for more details
%opts = odeset ('RelTol’,le-6,’AbsTol’,le-6,"MaxStep’,0.01);
opts = odeset ("RelTol’,le-2,’AbsTol’,le-3, ' MaxStep’,0.01);

% Name of the file with the two vectorfields
vfields = ’vectorfields’;

% Name of the file with the two Jacobianss
jacobians = ’jacobians’;

% Name of the file with the two Jacobianss
pfunction = ’7’;

Filippov parameter
= 1;

Q o°

o\

% Initial condition [u, x, y, theta, s]
0 = [nl, 0, O, 0, nl];

=

% Integration time
tspan = [0, timel;

% Output is the time, states and events as in Matlab’s standard output
[t,y,te,ye,ie,se] = filippov(vfields, jacobians,pfunction,solver,tspan,
y0,C,opts);
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Function ‘run_drill.m” calls the file “filippov.m”, which takes care of the
event handling and also calls the MATLAB built-in ODE solver and event detec-
tor

function [tvect, yvect, te, ye, ie, se] = filippov(vfields, ...
jacobians,pfunction, solver, tspan,y0,C, inopts)

tl = tspan(end); t0 = tspan(l);

[state,dir] = findstate(vfields, jacobians,yO0);

options = odeset (inopts,’'Events’,@fevents);

yvect
tvect
te
ye
ie
se =

Ne Ne Se oSe S

]
]
]
]
]
]

stopit = 0;
while ~stopit
[t,y,TE,YE, IE] = feval(solver,@filippovfunc,tspan,y0,options, ...
vfields, jacobians,C, state,dir);

ploter(t, vy);
y0 = y(end, :);
yvect = [yvect;v];
tvect = [tvect;t];
te = [te; TE];
ye = [ye;YE];

tspan =[t(end),tl];

if ~isempty (IE) & (t(end)~=tl)
for k = l:length (IE)
ie = [ie;IE(k)];
if IE(k) ==

if ~isempty (pfunction)

y0 = feval (pfunction,t,vy0);
end

else

switch 1

case state(3)

switch IE (k)
case {2,3}

state (IE(k)-1) = -state(IE(k)-1);
state (3) = —-state(3);
state (4) = -state (4);
state (5) = —-state(5);
dir([1,IE(k)]) = -[1,dir(IE(k))];
case 5,
otherwise

disp(’Error, there is something wrong
with the event in filippov’)
end
case state (4)
switch IE (k)

case 1,
state (l)=-state (1) ;
state (2)=-state (2);
dir (IE(k)) = -dir(IE(k));
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81
82
83
84
85
86
87
88
89
90
91
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case {2,3}

state(4) = -state(4);
state (5) = -state(5);
dir(IE(k)) = —-dir(IE(k));
case 5,
otherwise

disp (’Error, there is something wrong
with the event in filippov’)
end
case state(5)
switch IE (k)
case 1,
state (1
state (2
state (3
dir (IE(
case {2,3}
state (4) = -state (4
state (5) = —-state (5
dir(IE(k)) = —-dir(I
case 5,
disp(’case 5")
otherwise
disp (’Error, there is something wrong
with the event in filippov’)

)=-1

)=-1;

)=—state (3);

k)) = —-dir(IE(k));

)
)
E

(

k));

end

otherwise
disp(’Error, There is something wrong with
the state vector in filippov’)

end
end
se = [se;state];
end
elseif ~isempty (IE)
stopit =1;
ie = [ie;IE];
se = [se;state];
else
stopit =1;
end
end
e findstate - ———------"""---"—-—-—-—=
function [state,dir] = findstate(vfields, jacobians,y0);
state = -1l+%ones(1,5); % [-1, -1, -1, -1, —-1]
[F1,F2,H,dH] = feval(vfields, yO0);

dHF1 = dH«F1l; dHF2 = dH«F2;

dir = [-sign(H), -sign(real (dHF1l)), -sign(real (dHF2))]1;
if H>0
state (1) = -state(l);
elseif H < O
state (2) = -state(2);
elseif sign(dHF1l)*sign(dHF2) < 0
state (3) = -state(3);
else

if sign(dHF1l) > 0
state(l) = -state(l);

65
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126 else

127 state (2) = -state(2);
128 end

129 | end

130
1B1 | % difficalty function
132 |[1f sign (dHF1) *sign (dHF2) > 0

133 state(4) = -state(4);

134 |elseif sign(dHF1)*sign (dHF2) < 0

135 state (5) = —-state(5);

136 |else

137 if isempty (jacobians)

138 state (4) = -state(4);

139 else

140 [J1,J2,d2H] = feval (jacobians,vy0);

141 if dHF1 ==

142 HxF1lx_FlHxx = dH+«Jl + F1’xd2H;

143 sig = sign(HxFlx_F1lHxx+F1)+sign (dHF2);
144 dir(2) = -sign(HxFlx_FlHxx*F1);

145 elseif dHF2 ==

146 HxF2x_F2Hxx = dH*J2 + F2’*xd2H;

147 sig = sign (HxF2x_F2Hxx*F2)*sign (dHF1);
148 dir(3) = -sign(HxF2x_F2Hxx*F2);

149 else

150 disp ('ERROR: Something is wrong in filippov:findstate’)
151 sig = 1;

152 end

153

154 if sig < 0

155 state(5) = —-state(5);

156 else

157 state(4) = —-state(4);

158 end

159 end

160 | end

161

162 | $———————————————————— filippovfunc — -~
163

164 | function dy = filippovfunc(t,y,vfields, jacobians,C,state,dir);
165

66 | [F1,F2,H,dH] = feval(vfields,y);

167

168 | switch 1

169 case state(l) % Vector field in region 1

170

171 F = F1;

172 case state(2) % Vector field in region 2

173

174 F = F2;

175 case state(3) % Vector field on sliding region
176

177 Fa = 0.5%F1;

178 Fb = 0.5%F2;

179 dHF1 = dH«*F1;

180 dHF2 = dH*F2;

181 Hu = - ((dHF1+dHF2) / (dHF2-dHF1) ) ;

182 F = (Fa + Fb) + Hux(Fb - Fa) - CxH=*dH’;
183 otherwise

184 disp(’Error, there is something wrong with the state
185 vector in filippov:filippovfunc’)

186 | end

187 |dy = F;

188
189
190 | $————— oo filippovevents —————————————————————




192 | function [value,isterminal,direction]

193 |= fevents(t,y,vfields, jacobians,C,state,dir);
194

15 | [F1,F2,H,dH] = feval(vfields,y);

196

197 | dHF'1 = dH«*F1;

198 | dHF2 = dH*F2;

199 |value = [H,dHF1,dHF2];

20 |direction = dir;

201

202 | switch 1

203 case {state(l),state(2)}

204 direction(l) = -state(l);

205

206 value = [value, 11;

207 direction = [direction,0];

208

209 case state (3)

210 value(l) = 1;

211

212 if isempty (jacobians)

213 value = [value, 115

214 direction = [direction,0];

215 else

216 [J1,J2,d2H] = feval (jacobians,y);
217

218 dHF1_p_dHF2 = dHF1 + dHF2;

219 dHF2_dHF1 = dHF2 - dHF1;

220

21 Hu = - ((dHF1_p_dHF2)/ (dHF2_dHF1)) ;
222

23 F2_F1 = F2-F1;

224 F2_F1_2 = 0.5%F2_F1;

225 Fl p F2 = F1+F2;

226 Fl p F2_2 = 0.5xF1_p_F2;

227

228 J2_J1 = J2-J1;

229 J2_J1_2 = 0.5%J2_J1;

230 J1l_p_J2 = J1+J2;

231 Jl_p_J2_2 = 0.5«J1_p_J2;

232

233 dHu = - (((Fl_p_F2')*d2H+dH* (J1_p_J2))* (dHF2_dHF1)-...
234 ((F2_F1’)*d2H + dH* (J2_J1))* (dHF1_p_dHF2)) /...
235 (dHF2_dHF1"2) ;

236 F = (Fl_p_F2_2) + (F2_F1_2)*Hu - CxHxdH’;
237

238 dHuF = dHuxF;

239 value = [value, dHuUF];

240 direction = [direction,0];

241 end

242 otherwise

243 disp (" ERROR: Wrong event in filippov:fevents’)
244 | end

245 |value = real (value);

26 |isterminal = [1, 1, 1, 01;

247

248

29 | function [] = ploter(t,z);

%0 | %% Parameters

251 |global

252 color nl;

253 | %% Variables

254 u =z(:,1);

255 X =z(:,2);
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256 y =z(:,3);
257 theta = z(:,4);
258 s =z(:,5);

259
20 |$ Plots of the different state variables
21 | figure (1)

262 hold on;

263 plot (t,nl-s,color)

264 title (A plot of \omega_u versus time t.’)
265 xlabel ("time (t)’), ylabel(’s’)

266 grid on;

267
28 | figure (2)

269 hold on;

270 plot (t,nl-u,color)

271 title (A plot of \omega_l versus time t.’)
272 xlabel ("t’), ylabel('u’)

273 grid on;

274
275 | figure (3)

276 hold on;

277 plot (x,y,color)

278 title ('A phase plot of x_2 versus x_1.")
279 xlabel ("x’"), ylabel('y")

280 grid on;

281
282 | figure (4)

283 hold on;

284 plot (theta, y,color)

285 title(’A plot of x_2 versus the scaled time t.’)
286 xlabel (" \theta’), ylabel('y’)

287 grid on;
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