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Listening to music makes us move, ranging from barely visible movement like
faint foot tapping to full-body dance movement. Such movements appear to be
synchronized to the beat of the music and associated with other music-intrinsic
features, while at the same time showing highly individualistic properties. The
aim of this thesis is to investigate different factors that might affect movements
induced by music. These factors include, for instance, musical features, perceived
emotions in music, genre, and personality traits of the dancers. A motion capture
study, in which 60 participants were recorded while moving to 30 music excerpts,
forms the core of this thesis research. From these data, several features related to
movement posture, kinematics, and kinetics were extracted using MATLAB Mo-
Cap Toolbox. Subsequent correlational analyses with musical features extracted
from the stimulus data indicated strong relationships between music character-
istics, in particular pulse clarity and spectral flux of certain frequency bands,
and movement characteristics. A perceptual experiment consolidated the con-
nections between sub-band spectral flux and both perceived rhythmic strength
and movement propensity. Moreover, emotions perceived in the music were
closely associated with various movement features. A subsequent perceptual ex-
periment in which animated stick figures were rated regarding perceived emo-
tions revealed that music-induced movement conveyed emotional qualities to
observers, though auditory and visual information differed in their perception.
Furthermore, participants’ personality traits were shown to significantly affect
movement characteristics. Multivariate analysis approaches disclosed that emo-
tions perceived in the music accounted notably for relationships between musi-
cal and movement features, whereas dancers’ personality traits failed to affect
existing relationships between music and movement. In conclusion, this thesis
presents new and innovative methods for studying music-related movement. By
employing current motion capture technology and advanced analysis methods,
several relationships between music-induced movement and factors influencing
such movements have been specified, promoting approaches and applications
related to embodied music cognition and nonverbal (everyday) human behavior.

Keywords: Music-induced movement, motion capture, musical features, emo-
tion, personality, perception
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1 INTRODUCTION

Music makes us move, be it consciously and intentionally in the night club, or
subconsciously and spontaneously when listening to the radio while doing, for
instance, the dishes. Keller and Rieger (2009) stated that simply listening to mu-
sic can induce movement, and in a self-report study conducted by Lesaffre et al.
(2008), most participants reported moving when listening to music. Furthermore,
Janata, Tomic, and Haberman (2012) reported a study in which they asked par-
ticipants to tap to music and found that they not only moved the finger/hand,
but also other body parts, such as feet and head. Additionally, the tapping condi-
tion (isochronous versus free tapping) influenced the amount of movement: the
more “natural” the tapping condition, the more movement was exhibited. Thus,
it seems that there is a close relationship between music and movement exhibited
during listening, indicating that music-induced movement is a central element of
every-day behavior / music listening.

Music-induced movement covers any movement that occurs when humans
listen to music, ranging from professional dance and (layperson/every-weekend)
dancing in the night club to subconsciously nodding the head or tapping the foot.
Such movements occur, for instance, when listening to music at home, or when
being on a jazz or maybe even on a classical concert (despite the cultural con-
straints related to movement during classical concerts). Nevertheless, it seems
that people enjoy moving to music, as it might serve as a way to express them-
selves in relation to the music.

The proclivity to move with music seems to be built into human nature.
The notion of groove describes this experience of wanting to move to (some as-
pect of) the music (Janata et al., 2012; Madison, 2006; Madison, Gouyon, Ullén,
& Hornstrom, 2011). Madison et al. (2011) and Janata et al. (2012) found con-
nections between groove and rhythmic aspects of the music, while Stupacher,
Hove, Novembre, Schiitz-Bosbach, and Keller (2013) established links between
perceived groove and motor activity in the brain. The results of these studies
showed furthermore that the experience of groove in music was consistent among
participants and that groove was related to familiarity and enjoyment of the mu-
sic (Janata et al., 2012).
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While research on groove focusses on the sensation of wanting to move
(in particular in relation to music-intrinsic aspects), the experiments conducted
within the studies presented in this thesis concentrated on the actual, physical
movements that individuals perform when listening to music. In general, such
movements appear to be synchronized to the beat of the music and associated
with other music-intrinsic features. However, at the same time, they show highly
individualistic properties that appear related to personality or preference. The
aim of this thesis was to investigate music-induced movement of adults without
a professional dance background when asked to move naturally to music. The
work is of exploratory nature, since not much previous research has been con-
ducted that could have served as a basis for formulating specific hypotheses. Be-
sides intrinsic musical characteristics, as suggested by the groove literature, this
thesis research additionally focussed on more abstract musical concepts, such as
perceived emotions and genre of the music, as well as on personality as an in-
dividual factor. These four factors were chosen, because they represent a broad
range of different viewpoints on music-induced movement. They are certainly
not exhaustive and will not cover the entire field of music-induced movement,
but they form an appropriate set of aspects as a starting point for further inves-
tigations of the field. In order to adopt a feasible approach, the studies utilized
static movement and music characteristics obtained by averaging the time-series
of movement and musical features to receive one descriptor value for each fea-
ture. Retaining the time-series would have allowed investigating dynamics and
temporal development of the features. Such — more complex — analysis methods,
however, will be implemented in future work that will follow this thesis.

In order to achieve its goal, this thesis employed an interdisciplinary ap-
proach by using motion capture technology to record movement data as well as
computational feature extraction of both movement and musical features, percep-
tual evaluations, and a wide range of statistical methods to analyze the data. The
research presented in this thesis is technology-driven and would have been im-
possible without the technological opportunities available at the Music Depart-
ment of the University of Jyviskyld and within the Finnish Centre of Excellence
in Interdisciplinary Music Research. The department offers a high-quality mo-
tion laboratory hosting a Qualisys! optical marker-based motion capture system
with which this thesis research was carried out.

The increasing opportunities of quantitative research methods for recording
and analyzing body movement have offered new insights and perspectives for
studying music-related movement. Music-induced movement, especially quasi-
spontaneous, free movement to music yields large amounts of unconstrained
data offering a considerable amount of challenges in data processing and analysis
only feasible to be tackled with appropriate equipment and applications. Several
applications have been developed so far. Camurri, Lagerlof, and Volpe (2003);
Camurri, Mazzarino, Ricchetti, Timmers, and Volpe (2004), for instance, created
a video analysis tool (called EyesWeb) to recognize and classify expressive and
emotional gestures in professional dance performances. Jensenius (2006) devel-

! www.qualisys.com
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oped the technique of motiongrams for visualizing and analyzing movement and
gestures. Nymoen (2013) presented the technique of mocapgrams for visualizing
gross patterns of optical marker-based motion capture data. Furthermore, tools
like the Matlab MoCap Toolbox, which is described in this thesis (see Section
5.1.2), offer excellent possibilities for visualizing and analyzing movement data
on computational basis.

Five out of the seven publications included in this thesis were products of an
ongoing project called Music, Movement, & Personality (MMP) within the Centre
of Excellence in Interdisciplinary Music Research. The aim of the project is to in-
vestigate music-induced movement from as many angles as possible. Besides the
factors addressed in the thesis (music, emotions, genre, and personality), mem-
bers of the project group have been investigating synchronization between music
and movement, mood of the dancers, and attraction-related influences.

This thesis summary shall give an overview of the research conducted for
this thesis, including descriptions of the theoretical and empirical background,
methodologies employed in the different studies, and the studies themselves.

Chapters 2 and 3 outline the background linked to this work, in particu-
lar embodied music cognition as the theoretical framework in which this thesis
is embedded, and the empirical work summarizing movement-related research
concerning musical features, genres, emotions, and personality.

The aim of the thesis is reported in Chapter 4, providing an overview of the
organization of the thesis.

Chapter 5 describes the methodologies used in this thesis. Optical motion
capture as the technology for collecting movement data will be introduced in
detail, as well as musical feature extraction, experiment designs, and analysis
methods employed in the thesis research.

The six empirical studies included in this thesis are outlined in Chapter 6.
Aim, specific method-related aspects, and a summary of results and discussion
are provided for each study.

The final chapter, Chapter 7, offers discussion, limitations, and conclusive
remarks related to the main findings of this thesis research.



2  EMBODIED MUSIC COGNITION

Music has the capacity to elicit spontaneous movement in listeners. It can even
make people move in an organized way — they, for example, mimic instrumental-
ists” gestures or rhythmically synchronize with the pulse of the music by tapping
their foot, nodding their head, or moving their whole body in various manners
(Leman & Godey, 2010; Godey et al., 2006). Moreover, Leman (2007) suggests,
“Spontaneous movements [to music] may be closely related to predictions of lo-
cal bursts of energy in the musical audio stream, in particular to the beat and the
rhythm patterns” (p. 96).

Such utilization of the body is the core concept of embodied cognition,
which claims that the body is involved in or even required for cognitive processes
(e.g., Lakoff & Johnson, 1980, 1999; Shapiro, 2011; Varela, Thompson, & Rosch,
1991). The notion that human cognition is linked to the existence of the body and
to corporeal experience situated in an environment has gained increased recog-
nition in recent decades. Similar to the whole field of cognitive sciences, research
on embodied cognition is interdisciplinary and combines areas such as psychol-
ogy, artificial intelligence, philosophy, neuroscience, linguistics, and anthropol-
ogy. However, what distinguishes embodied cognition from more traditional
approaches to cognition, is that cognition in the embodied view is not seen as
temporally planned (perceive, think/compute, act), and organized in mental rep-
resentations, but as interactive, corporeal, and real-time. Perception and action
are mutually influenced by each other, as cognition and knowledge of the world
are constructed through continuous couplings of sensory (e.g., visual) informa-
tion and goal-directed actions in real-time. Perception requires action provoking
a new perception, resulting in a steady interplay of adjustments to adapt to the
changing conditions of the environment. Bodily experience and exploration of
the environment are essential for understanding the own perceptual-motor abil-
ities and for learning and accomplishing more complex cognitive tasks. Thus,
a constant interaction between mind/brain, sensorimotor capabilities, body, and
environment forms the basis for human cognition (e.g., Anderson, 2003; Clark,
2011; Pfeifer & Scheier, 1999; Wilson & Foglia, 2011).
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Following the idea of embodied cognition, we can approach music (or mu-
sical involvement) by linking our perception of it to our body movement (Le-
man, 2007). One could postulate that our bodily movements reflect, imitate, help
to parse, or support understanding the structure and content of music. Leman
suggests that corporeal articulations could be influenced by three (co-existing)
components or concepts: “Synchronization”, “Embodied Attuning”, and “Em-
pathy”, which differ in the degree of musical involvement and in the kind of
action-perception couplings. “Synchronization” forms the fundamental compo-
nent, as synchronizing to a beat is easy and spontaneous. As the first step in
engaging with the music, movements could be used for imitation and prediction
of beat-related features in the music, as suggested with the term ‘inductive res-
onance’. The second component, “Embodied Attuning”, concerns the linkage of
body movement to musical features more complex than the basic beat, such as
melody, harmony, rhythm, tonality, or timbre. Following this idea, movement
could be used to reflect, imitate, and navigate within the musical structure in or-
der to understand it. Finally, “Empathy” is seen as the component that establishes
the link to expressivity and emotions. In other words, listeners feel and identify
with the emotions expressed in the music and imitate or reflect them by using
body movements.

Music-induced movement involves both perception and motor activity.
Connections between these two areas have been proposed in several disciplines,
the most known being in speech perception and in vision. The motor theory of
speech perception, for example, claims that in order to understand speech, listen-
ers rather identify and simulate the vocal tract gestures needed to articulate the
heard utterances (by activating motor areas in the brain), than decode the sound
patterns of the utterance (Liberman & Mattingly, 1985). Although the theory has
been controversially discussed, brain studies have provided support by finding
motor-related activity in the brain during speech perception (Fadiga, Craighero,
Buccino, & Rizzolatti, 2002; Hickok, Buchsbaum, Humphries, & Muftuler, 2003).
These studies are closely related to the discovery of the mirror neuron system
(e.g., Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995; Rizzolatti & Craighero, 2004) —
a network of neurons that are both active when performing an action and when
perceiving another one performing the same action — which has led to further
support for the notion of embodied cognition, as it suggests that the motor sys-
tem is active during perception as well as in the process of understanding goals
and intentions (e.g., lacoboni et al., 2005). Various music-related studies (for a
review see Zatorre, Chen, & Penhune, 2007) could show that motor areas in the
brain were active when musicians and non-musicians, for example, listened to
different beats without the intention to move to them (with motor activity found
to be related to the presence of a beat) (Bengtsson et al., 2009; Grahn & Rowe,
2009), when pianists listened to piano performances (Bangert et al., 2006), when
pianists observed piano playing (Haslinger et al., 2005), or when non-musicians,
after learning to play a piece on the piano, listened to it again (Lahav, Saltzman,
& Schlaug, 2007). Stupacher et al. (2013) could furthermore established links be-
tween high-groove stimuli and increased motor activity in the brain during music
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listening. Such studies give support to the notion that music and movement are
interconnected in various ways.



3 FACTORS INFLUENCING MUSIC-INDUCED
MOVEMENT

Music-induced movement is a multilayered phenomenon influenced by a range
of different factors. Some aspects are very obvious, such as the music itself that
the listener is exposed to, whereas some other might be more concealed, such
as the emotional connotation of the music. This chapter will introduce the four
factors that were selected to be investigated in this thesis research in more detail:
musical characteristics, genre, perceived musical emotions, and personality.

3.1 Music

Although it seems obvious that musical characteristics are strongly related to the
way people move to music, this aspect of music-induced movement has been
rarely investigated. So far, studies have been tackling synchronization abilities of
infants and adults, spontaneous motion to short sounds as well as dancing /mov-
ing to systematically manipulated stimuli and professional dancing.

Zentner and Eerola (2010) investigated infants’ ability to bodily synchronize
with musical stimuli, finding that infants showed more rhythmic movement to
music and metrical stimuli than to speech, suggesting a predisposition for rhyth-
mic movement to music and other metrical regular sounds. Eerola, Luck, and
Toiviainen (2006) studied toddlers” corporeal synchronization to music, finding
three main periodic movement types being at times synchronized with the pulse
of the music. Toiviainen, Luck, and Thompson (2010) investigated how music-
induced movement exhibited pulsations on different metrical levels, and showed
that eigenmovements of different body parts were synchronized with different
metric levels of the stimulus. Nymoen, Caramiaux, Kozak, and Torresen (2011);
Nymoen, Torresen, Godey, and Jensenius (2012) studied sound tracing, an ap-
proach to investigate how individuals relate motion to sound by bodily react-
ing to short, systematically manipulated sounds. Caramiaux, Bevilacqua, and
Schnell (2010) analyzed relationships between gestures and sound in music per-
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formance and listening. Witek et al. (2012) investigated spontaneous body reac-
tions to various kinds of drum loops representing different levels of groove. Van
Dyck et al. (2013) studied the effect of dynamics of the bass drum and found that
participants” spontaneous movements increased with the presence of the bass
drum. Naveda and Leman (2010) as well as Leman and Naveda (2010) investi-
gated movement in samba and Charleston dancing, focusing on spatiotemporal
representations of dance gestures and discovered movement periodicities cor-
responding to different metrical levels in the music. Casciato, Jensenius, and
Wanderley (2005) conducted a study, in which three professional dancers freely
moved to non-tonal acoustic music. Despite the lack of a salient pulse in most of
their stimuli, rhythmic features were reflected in the movements of the dancers,
such as long notes embodied with smooth and slow arm movements or rhyth-
mic attacks associated with slashing arm movements, showing commonalities to
how the sounds were produced. Stevens, Schubert, Wang, Kroos, and Halovic
(2009) studied movements of professional dancers regarding time keeping with
and without music. Krumhansl and Schenck (1997) conducted a study on clas-
sical ballet dance in which they found that the dance movements could convey
structural boundaries of the music.

It has been argued that music and dance (or, more general, movement to
music) have evolved together in most cultures (Arom, 1991; Cross, 2001) and are
crucial elements of most social and collective human behavior (Brown, Merker, &
Wallin, 2000). Nettl (2000) noted that most cultures have developed coordinated
dance movements to rhythmically predictable music. There is neurobiological
evidence for a connection between rhythmic (and beat) components of music and
movement (e.g., Bengtsson et al., 2009; Chen, Penhune, & Zatorre, 2009; Grahn &
Brett, 2007; Grahn & Rowe, 2009; Stupacher et al., 2013), suggesting a predisposi-
tion for movement when listening to music. Besides brain studies, also behavioral
studies suggest links between movement/body and rhythm /beat aspects in mu-
sic: Phillips-Silver and Trainor (2008) showed that especially head movements
were found to bias metrical encoding of rhythm and meter perception. More-
over, Trainor, Gao, Lei, Lehtovaara, and Harris (2009) discovered that galvanic
stimulation of the vestibular system could be used to disambiguate an ambigu-
ous metric pattern. Todd, Cousins, and Lee (2007) found that 16% of variation
in preferred beat rate could be predicted from anthropometric factors, such as
weight as well as length and width of certain body segments. Such findings and
the studies related to groove, as mentioned earlier, have led to the assumption
that humans prefer music that facilitates entrainment and synchronization and
respond to it with movement (Madison et al., 2011).

However, since systematic investigations targeting the relationships be-
tween musical features and human movement characteristics have not been con-
ducted, this thesis research was aimed at filling this gap. Furthermore, finding
dependencies of musical characteristics and body movements that are consistent
between individuals would support the notion of embodied music cognition (Le-
man, 2007).
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3.1.1 Musical features relevant for music-induced movement

Based on the neurobiological and behavioral links between movement/motor ac-
tivity and beat and rhythmic components of music as described above, it appears
straightforward to assume that such musical elements are relevant for inducing
movement in listeners.

Rhythmic music is based on beats, which can be physically characterized as
distinct energy bursts in time. If such beats occur as regular and repetitive tem-
poral patterns, they give rise to a percept of pulse. Beat and pulse structures can
be regarded as the basic metrical structure in music from which more complex
temporal structures, such as rhythm, emerge. This is typically achieved by subdi-
viding the basic metrical structure in smaller and larger units of varying lengths,
constructing a metrically interlocked grid with events on different temporal lev-
els (Parncutt, 1994). These rhythmic structures can vary, for example, in the de-
gree of pulse clarity. Pulse clarity estimates, on a large time scale, how clearly the
underlying pulsation in music is perceivable and can therefore be regarded as a
measure for the underlying periodicity of the music (Lartillot, Eerola, Toiviainen,
& Fornari, 2008). Another aspect of rhythmic structure is covered by spectro-
temporal features, such as the sub-band spectral flux, which has been found to
be among the most important features contributing to polyphonic timbre percep-
tion (Alluri & Toiviainen, 2010). Spectral flux measures spectral change, which,
when taken separately for different sub-bands, reflects the strength of rhythmic
elements created by instruments within the frequency range of the respective sub-
band. However, besides being used in music information retrieval-related appli-
cations, such as automatic classification (see, e.g., Jiang, Lu, Zhang, Tao, & Cai,
2002 and Cai, Lu, Hanjalic, Zhang, & Cai, 2006, both slightly differing in their
technical implementation), the perceptual dimension of spectral flux has so far
only been studied in connection to polyphonic timbre (see Alluri & Toiviainen,
2010, 2012), but neither in relation to rhythm perception nor in relation to music-
induced movement. It could be assumed that sub-band flux is a crucial feature
not only in a (passive) listening situation, but also in a (active) movement sit-
uation. Furthermore, related timbral characteristics could have an influence on
movement responses to music. For instance, high amounts of percussive ele-
ments in music could result in fast movements, reflecting the way such sounds
are often produced. Following these notions, it could be assumed that variations
in musical features, such as Pulse Clarity, Spectral Flux, or Percussiveness, not
only increase or decrease the amount of movement, but also change the kinds
and properties of the movements.

Besides features such as pulse clarity, tempo is an important factor con-
tributing to the perception of rhythm (Fraisse, 1982). Tempo is the speed at which
beats are repeated, the underlying periodicity of music, and is usually measured
in beats per minute (bpm). A large body of research has been conducted on lis-
teners’ abilities to perceive different tempi, synchronize to them, and reproduce
them in tapping tasks (for reviews see Repp, 2005; Repp & Su, 2013). Large and
Palmer (2002) have developed a model on listeners’ perception of temporal regu-
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larity in music performance. The model was operationalized as a system of mul-
tiple, self-sustained oscillations running at different periods corresponding to the
hierarchical levels of temporal structure. The system tracked temporal structures
of music performances containing expressive tempo variations and could pre-
dict and interpret such temporal deviations as musically expressive by classify-
ing them into discrete metrical categories. With respect to tempo-synchronization
and -production tasks, free tapping tasks have found that a majority of partic-
ipants tapped at a rate close to 600 msec, though the individual rates differed
considerably (Fraisse, 1982). Synchronizing to steady, periodic beat stimuli is
possible at a wide range of tempi, however it is most regular and accurate for
intervals around 400-500 msec (Collyer, Broadbent, & Church, 1992), respectively
400-800 msec (Fraisse, 1982), while with slower and faster tempo the time be-
tween two taps becomes more variable. Moelants (2002) suggested 120 bpm as
the preferred tempo — the tempo where tempo perception is considered to be op-
timal and appears most natural. Interesting to note here is that literature often
draws links between spontaneous/preferred tempo and repeated motor activi-
ties, such as walking, for which the spontaneous duration of steps is around 500-
550 msec (Fraisse, 1982; MacDougall & Moore, 2005; Murray, Drought, & Kory,
1964). Walking has been suggested as “a fundamental element of human motor
activity” (Fraisse, 1982, p. 152) and could therefore serve as an origin of pre-
ferred tempo perception. Following these considerations, it could furthermore be
assumed that music with tempi around 110-120 bpm stimulate movement more
than music with other tempi. This thesis research aimed at investigating pulse-,
tempo-, and rhythm-related musical features and thereby revealing relationships
between these features and various movement characteristics.

3.1.2 Genre

Musical genres are descriptions created by humans to label and categorize dif-
ferent pieces of music. They usually cannot be strictly defined and do not have
clear boundaries, as they arise based on interactions between the community of
listeners and are highly context dependent (Aucouturier & Pachet, 2003). How-
ever, musical pieces belonging to the same genre share certain musical charac-
teristics, such as instrumentation, rhythmic structure, and harmonic and pitch
content (Tzanetakis & Cook, 2002). Therefore, genre offers a description of music
both in musical and in symbolic/semantic terms (Aucouturier & Pachet, 2003).
The detection of audio features in order to automatically classify music by their
genre is an important research applications in the field of music information re-
trieval (e.g., Aucouturier & Pachet, 2003; Costa, Oliveira, Koerich, Gouyon, &
Martins, 2012; Hartmann, Saari, Toiviainen, & Lartillot, 2013; Silla Jr., Koerich, &
Kaestner, 2009; Tzanetakis & Cook, 2002). Thus, it seems highly likely that such
identifiable acoustic cues would also elicit very specific movements (e.g., Godey
& Jensenius, 2009). Particular genres are indeed commonly associated with char-
acteristic movements, as can be seen, for instance, in the way listeners tend to
nod their head or tap their foot when listening to jazz music, or remain still when
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being in a classical music concert. Furthermore, stereotypic and culturally-driven
movements are linked with particular genres, for example, “air guitar” (Godey
et al., 2006) or “head banging” motions linked to rock music, and swaying of the
hips to latin music. For their ‘Latin Music Database’, Silla Jr. et al. (2009) even
used two professional dance teachers that labeled musical genres based on how
each music was danced, indicating a strong connection between music and move-
ment in latin music. Despite these rather obvious relationships, there appears to
be a lack of empirical work examining the effect of musical genre on listeners’
body movement, a topic being addressed in this thesis.

3.2 Emotions

In addition to music-intrinsic characteristics, music-induced movement might be
shaped by the emotional content of the music. Emotions are an essential com-
ponent of musical expression (e.g., Gabrielsson & Lindstrom, 2010) that can have
a strong influence, for instance, on the listener’s mood (e.g., Saarikallio, 2011).
However, only a few studies have addressed possible connections between emo-
tions and music-induced movement.

3.2.1 Emotion-specific nonverbal behavior

Research on emotion-specific nonverbal behavior has shown that it is possible
to successfully express and distinguish emotions based on movement character-
istics, and furthermore to communicate emotional states to observers through
body movements. Already in 1872, Darwin assigned certain body movements
and postures quite specifically to emotional states; joyful movements, for exam-
ple, were described as jumping, stamping, body thrown backwards and shaking,
and upright torso and head, whereas anger was characterized by trembling body,
shaking fist, erected head, and expanded chest. Sad movements were described
as passive and motionless with a downward directed head. Despite these finding,
the topic was rather neglected for a while — probably due to lack of appropriate
technologies —and research focused more on facial expression (e.g., Ekman, 1982),
following the assumption that gross body movements would only communicate
intensity of emotions, but not qualitative characteristics (Ekman & Friesen, 1974).

Nevertheless, several recent studies have shown that emotions can be ex-
pressed by, and successfully recognized from, body postures or movements. Wall-
bott (1998) conducted a study in which he used a scenario-based approach, with
professional actors performing certain emotions. Besides a recognition test, he
also analyzed movement features characteristic and distinctive for each emotion
category. Dael, Mortillaro, and Scherer (2012) also used actors in a scenario-based
approach, and manually labeled their data with a self-developed microcoding
system (Body Action and Posture system; BAP) including 49 movement vari-
ables, such as “shoulder action” or “arm action towards body”. A different ap-
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proach was chosen by de Meijer (1989), who used actors performing several
movement characteristics instead of emotions. These movements differed in gen-
eral features, such as trunk or arm movement, velocity, and spatial direction. In a
subsequent step, observers attributed emotional characteristics to the movements
resulting in coherent links between emotions and movements. Coulson (2004)
used pictures of static body postures of computer-generated figures, which he
systematically manipulated in several parameters and showed that different pos-
tures could communicate different emotions. Clynes (1980, 1992), for example,
investigated in the context of human-machine interaction from the early seven-
ties onwards how communication can be made more human-like and more effi-
cient. For this purpose, he developed a repertoire of so-called dynamic transient
forms, or sentic forms, specific for each emotion.

Emotion recognition and communication to observers has also been inves-
tigated in several studies. Atkinson, Dittrich, Gemmell, and Young (2004) com-
pared static vs. dynamic whole body expressions and full-light vs. point-light
displays and found that all of them could communicate emotions, though recog-
nition rates and misclassification patterns differed for individual emotions. Pol-
lick, Paterson, Bruderlin, and Sanford (2001) investigated visual perception of
emotions in simple arm movements shown as point-light displays, such as drink-
ing and knocking. They found that arm movements could communicate emo-
tions, though observers tended to confuse similar emotions. Besides in acted
emotion approaches, emotion recognition has been studied in other contexts as
well, such as gait. Montepare, Goldstein, and Clausen (1987), for instance, showed
that happiness, anger, and sadness could be successfully recognized in walking
patterns. Research in linguistics investigated integration of auditory and visual
information in emotion perception using face-voice stimuli. Such studies showed
that usually the visual information dominated (Collignon et al., 2008), and that
bimodal stimuli could be successfully integrated even if they displayed incongru-
ent emotion combinations (de Gelder & Vroomen 2000; Massaro & Egan, 1996).

3.2.2 Emotions in music

Emotions are a central component of music and have been investigated in a large
number of music-related studies. According to Krumhansl (2002), people report
that their primary motivation for listening to music is its emotional impact. Var-
ious rating experiments have shown that listeners are able to perceive emotional
content in music. One of the issues that researchers in this field face concerns
the choice of emotion categories and models that can cover musical emotions
successfully. As Eerola and Vuoskoski (2011) noted, there are basically three dif-
ferent approaches that have been used in studies on music and perceived emo-
tions: discrete (basic) emotions (e.g., Balkwill & Thompson, 1999; Gabrielsson &
Juslin, 1996), domain-specific emotion models, such as GEMS (Geneva Emotion
Music Scale, see Zentner, Grandjean, & Scherer, 2008), and dimensional mod-
els (e.g., llie & Thompson, 2006; Schubert, 1999). The discrete model describes
emotions as unidimensional, independent from each other, and derived from a
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limited number of universal and innate basic emotions, such as happiness, anger,
sadness, or fear. The advantage of using this approach is the possibility to fo-
cus on emotions that are commonly expressed and represented by music, and
name them in clear terms. Inspired by this approach, domain-specific discrete
scales such as GEMS have been developed to create a repertoire of emotion terms
that is highly music-specific. A disadvantage of discrete emotions, according to
Eerola and Vuoskoski (2011), is that they can be mixed and confused with each
other in discrimination tasks. This issue might be reduced by using a dimensional
approach, in which all affective states are represented as a combination of two
(usually valence and arousal) or three (valence, arousal, and tension) mutually
independent dimensions. A common way to illustrate dimensional models is in
a spatial design, such as a circle, with two bipolar dimensions — valence forming
the horizontal axis, and arousal the vertical axis (in case of a three-dimensional
model, tension would form the third axis resulting in a spherical design). Exam-
ples of such approaches are the circumplex models of affect by Russell (1980) and
Schlosberg (1954). Eerola and Vuoskoski (2011) compared the different models
and showed that, although both dimensional and discrete models performed sim-
ilarly, the discrete model performed worse when it came to ambiguous emotions.
Additionally, they found that a two-dimensional model consisting of valence and
arousal successfully represented music-related emotions.

Musical emotions are conveyed not only by the music itself, but also through
movement. In music performance, for example, movements additional to the
plain movements needed for producing the sound are used to communicate ex-
pressivity (e.g., Thompson & Luck, 2012; van Zijl & Luck, 2013; Wanderley, Vines,
Middleton, McKay, & Hatch, 2005). Dahl and Friberg (2007) investigated emotion
communication of a marimba, a bassoon, and a saxophone player, each of them
performing a piece of music with different emotional intentions (happy, angry,
sad, and fearful). Observers were presented with visual-only elements of the per-
formances and were asked to identify movement cues used to convey the differ-
ent emotions. For each of the four emotions, distinct movement patterns related
to the regularity, fluency, speed, and amount of movement could be identified.

More direct links between music and emotion-specific movement have been
investigated in research on dance, in which movement is the only way to convey
expressivity and emotion. Camurri et al. (2003) described a study in which pro-
fessional dancers were asked to perform the same dance with four different emo-
tional intentions (anger, joy, sadness/grief, and fear). In a qualitative analysis,
they identified characteristic movements for the expression of each of these emo-
tions, mainly based on force and tempo. Camurri et al. (2003) and Camurri et al.
(2004) developed a video-based analysis tool to recognize and classify expressive
gestures in professional dance performances. This tool was used, for example, in
Castellano, Villalba, and Camurri (2007), who studied dynamic qualities of mo-
tion cues as opposite to different movement shapes that might convey emotional
qualities. They recorded the same gesture performed in four emotions (happy,
angry, sad, and pleasurable) and could identify two main movement characteris-
tics that differentiated between them: Quantity of Motion (QoM), defined as “the
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overall measure of the amount of detected motion, involving velocity and force”
(p. 47), and Contraction Index (CI), defined as “the contraction and expansion
of the body [...], i.e., the minimum rectangle surrounding the body” (p. 47) in a
two-dimensional space. Furthermore, Boone and Cunningham (1998) reported
results of a dance study in which actors displayed four discrete emotions (hap-
piness, sadness, anger, and fear). For the different emotions, the authors could
identify distinct movement characteristics.

Besides studying music performers” and dancers’” movement characteris-
tics when communicating emotions, emotion communication and recognition
through music-related movement by observers has also been investigated. David-
son (1993) conducted a study in which observers rated expressive movements of
violinists and pianists. Results indicate that visual information more clearly com-
municated the expressive manner of the musician than sound alone and sound
and vision presented together. Vines, Krumhansl, Wanderley, and Levitin (2006)
examined clarinetists’ abilities of communicating tension to observers and found
that auditory and visual signals evoked different perceptions of tension, with the
sound dominating the judgments. Additionally, their results indicated that the
audiovisual presentation increased the perceived tension compared to the audio-
only and video-only conditions, suggesting that participants integrated both sig-
nals. In the previously mentioned study by Dahl and Friberg (2007), they asked
the observers in the first part of the experiment to rate which emotions they per-
ceive when watching the visual elements of the performances. They could detect
the happy, angry, and sad performances successfully, but failed with the fear-
ful ones. Burger and Bresin (2010) developed a small robot displaying different
emotions based on the movement cues found by Dahl and Friberg (2007). In
a perceptual experiment, all emotions were successfully recognized by the ob-
servers. Sorgjerd (2000) investigated a clarinetist and a violinist who performed a
piece of music with different emotional intentions, and reported that happiness,
anger, sadness, and fear were better identified than tenderness and solemnity.
However, no significant differences for the presentation condition (audio-only,
movement-only, audio+movement) were found. Petrini, McAleer, and Pollick
(2010) found that in audiovisual presentations of musicians playing with differ-
ent emotional characteristics, the sound dominated the visual signal, both in emo-
tionally matching and in emotionally mismatching stimuli. Furthermore, when
participants were asked to focus on the visual information of the audiovisual
stimuli, their ability to correctly identify the emotion decreased in case of emo-
tionally incongruent stimuli, whereas it was unaffected by the video information,
when participants were asked to focus on the audio information. Kaiser and
Keller (2011) conducted a study in which they asked participants to rate short
clips portraying different emotions (in a two-person dialog situation) that were
accompanied with either emotionally compatible or incompatible music. They
found that music affected the accuracy of the emotion ratings: happiness and
sadness were perceived more accurately when combined with compatible than
with incompatible music, while contentedness was rated vice versa. The percep-
tion of anger was found unaffected by the music.
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Several perception studies have also focussed on dance and showed that
dance movement could successfully communicate emotions to observers, both
in regular video and in stick figure animations. In the previously mentioned
study by Boone and Cunningham (1998), professional actors portrayed four dis-
crete emotions by means of dance movements. Observers were able to success-
fully identify the emotions expressed in these movements. Dittrich, Troscianko,
Lea, and Morgan (1996) conducted a study using short video clips of profes-
sional dancers aiming to convey fear, anger, grief, joy, surprise, and disgust. Ob-
servers could successfully recognize the portrayed emotions. Lagerlof and Djerf
(2009) asked professional dancers to improvise on different emotions (joy, anger,
fear, and sadness) as solo dances. Observers were able to successfully determine
the intended emotions in the movements displayed as video clips. Walk and
Homan (1984) showed point-light displays of dancers portraying emotions to ob-
servers, who could effectively identify the emotions. Krumhansl and Schenck
(1997) found that expressed emotions were low in section beginnings, but in-
creased during sections and reached a peak short before sections ends. Dance
and music could further convey similar emotion judgements.

This relatively large body of research regarding emotion-specific movement
demonstrates the high relevance of emotions in human movement, in particular
related to music. However, most dance-related studies used professional actors
or dancers, indicating a lack of research dedicated to movement of nonprofes-
sionals. Moreover, in these studies, the portrayal of emotions was intentional (i.e.,
the dancers/actors were asked to display certain emotions), thus those relation-
ships between musical emotions and movement characteristics required further
investigation when (layperson) dancers freely and spontaneously move to music
without the conscious attention towards displaying a certain emotion expressed
in the music. Besides the actual movement features characteristic for each emo-
tion, the abilities of emotion communication and recognition in such movement
was investigated for this thesis research. Links between musical emotions and
movement responses could further provide support for the notion of embodied
music cognition (Leman, 2007).

3.3 Personality

Above, music-induced movement was discussed in relation to music-related as-
pects, such as musical features, genre, and perceived emotion. However, individ-
ual differences, such as personality, can also be assumed to have an influence on
movement. Personality is “the dynamic and organized set of characteristics pos-
sessed by a person that uniquely influences his or her cognitions, motivations,
and behaviors in various situations” (Ryckman, 2008, p. 4). Links between per-
sonality and movement could be established on a general level; for example, peo-
ple with dissimilar personality structures have been shown to move differently
(e.g., Brebner, 1985; North, 1972). Koppensteiner and Grammer (2010) asked ob-
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servers to watch animated stick figure videos of speeches given by politicians
and rate the politicians” personality traits. Observers could associate personality
traits with different movement qualities, including amount and flow of move-
ment. Bechinie and Grammer (2003) developed a computer system producing a
personality profile based on human dance movement (although without music).
Furthermore, robots and agents haven been created that decode the personality
types of the user based on gestures and movements for improving the interaction
between robot and human (e.g., Ball & Breese, 2000), or that are provided with
behaviors that observers can perceive as personality (e.g., Kim, Kwak, & Myung-
suk Kim, 2008; Neff, Wang, Abbott, & Walker, 2010). Personality disorders have
also been found to be reflected in bodily movement (Kluft, Poteat, & Kluft, 1986).

In terms of evaluating personality, the five-factor model, also called Big Five
(John, Naumann, & Soto, 2008; McCrae & Costa, 1987) — measuring the five gen-
eral traits of Extraversion, Agreeableness, Conscientiousness, Neuroticism, and
Openness to Experience — is widely accepted (John et al., 2008) and considered
to describe personality at the highest level of organization (Goldberg, 1993). Fur-
thermore, it has been validated across cultures (McCrae, 2002; McCrae & Ter-
racciano, 2005). There are several versions of Big Five questionnaires available,
varying in length (between 10 and 240 items) and style (single adjectives vs. short
phrases providing more context). This thesis research used the so-called Big Five
Inventory (BFI), a 44-item version measuring the five traits using short phrases
(John et al., 2008; John & Srivastava, 1999). Items were rated on 5-point scales
ranging from strongly disagree (1) to strongly agree (5).

The five personality traits can be described as follows (e.g., John et al., 2008;
McCrae, Gaines, & Wellington, 2012): Extraversion includes traits such as ener-
getic, enthusiastic, positive, sociable, talkative, assertive, and outgoing. Agree-
ableness is defined as the tendency to be friendly, compassionate, trustful, mod-
est, emphatic, and helpful, while being less anger-prone (Kuppens, 2005). Con-
scientiousness is associated with self-disciplined, controlled, dutiful, dependable,
efficient, planned, and organized behavior. Neuroticism is related to the tendency
to easily experience negative emotions, such as anger, anxiety, depression, vul-
nerability, and emotional instability. Openness to Experience can be defined as
inventive, creative, imaginative, and curious, with an appreciation for arts, emo-
tion, aesthetic experiences, adventure, unusual ideas, and novelty.

The Big Five personality traits have been investigated in a variety of music-
related contexts. Rentfrow and Gosling (2003), for instance, have studied rela-
tionships between the personality traits and music preference. They found that
extraverts had a preference for both “upbeat and conventional” and “energetic
and rhythmic” music, while open participants showed a preference for “reflective
and complex” as well as “intense and rebellious” music. Vuoskoski and Eerola
(2011b) conducted a study investigating relationships between personality traits
and emotion perception and preference in film music excerpts. They found that
open participants liked sad and fearful stimuli, whereas extravert and agreeable
participants preferred happy-sounding excerpts, with agreeable participants also
preferring the tender excerpts, although disliking angry- and fearful-sounding
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examples. In another study, Vuoskoski and Eerola (2011a) investigated person-
ality and felt emotions to music. Here, extraversion was positively related to
experienced happiness, sadness, and tenderness, while Openness was positively
connected with felt tenderness and sadness, and Agreeableness with tenderness.
G. Dunn (2009) related preference ratings of music to personality and audio fea-
tures and could, for example, find that Excitement-Seeking (a facet of Extraver-
sion) was positively related to music with a greater number of percussive events
and a preference for rap. Aesthetics (a facet of Openness to Experience) was
positively related to tonal complexity and the liking of jazz, while participants
lower in Aesthetics preferred simpler tonal complexity as found in pop music.
In another study, P. G. Dunn, Ruyter, and Bouwhuis (2012) supported the find-
ings that personality traits are connected with listening behavior: results indi-
cated that Neuroticism is positively related to a preference for classical music,
and Openness to Experience is positively related to a preference for jazz music.
Fink et al. (2012) conducted a study in which they gathered Big Five personality
data from male participants and asked them to dance to a basic thythm. Subse-
quently, women rated the stick figure animations related to dance quality, yield-
ing positive correlations between movement of conscientious and agreeable men
and women's perception of dance quality. Luck, Saarikallio, Thompson, Burger,
and Toiviainen (2012) conducted a perceptual experiment on attraction on the
dance floor and studied how the personality of both dancer and observer influ-
enced the observers’ attractiveness ratings of the dancers” movements presented
as stick figure animations. The results of the study suggest that personality traits
shape interpersonal attraction on the dance floor.

Given the connections between personality and movement, as well as be-
tween personality and various music-related settings, it seems reasonable to as-
sume that there are relationships between personality and music-induced move-
ment. As music is effective in eliciting body movement, it could be (besides the
previously mentioned music-related characteristics) that the personality traits of
a person influences the way she moves to music.



4 AIMS AND OVERVIEW OF THE THESIS

The main aim of this thesis is to investigate different factors that were considered
to be influential on music-induced movement. The factors studied in this thesis
included musical features, perceived emotions in music, genre, and personality
traits of the dancers. A schematic outline of the topics and studies is given in
Figure 1.
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FIGURE 1 Schematic overview of the studies included in this thesis (the numbers in the
brackets refer to the studies).

Two main experiment designs were employed in order to shed light on the basic
research aim from different viewing angles: motion capture recordings and per-
ceptual (rating) evaluations. The motion capture study used an infrared marker-
based optical motion capture system to quantitatively study the movements that
participants performed when being ask to move to 30 different popular-music
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stimuli of 30 seconds length each. Studies I, III, V, and VI were based on this
motion capture study, covering effects of musical features (I), perceived emotions
in music (III), personality, and genre (both V) on characteristics of music-induced
movement. Studies I, III, and V investigated relationships between movement
features and each of the factors separately. However, relationships might also
exist between the different factors, thus Study VI describes two different multi-
variate statistical approaches to investigate more complex relationships than the
dual ones described in Studies I, III, and V.

Studies II and IV feature perceptual evaluations as their main experiment
design. They were conducted to investigate participants’ ratings for audio stim-
uli regarding perceptual qualities of a certain musical feature (II) — the spectral
flux — and participants’ ratings for audio and video stimuli regarding emotion
communication (IV). Study II evaluated the relationship of spectral flux to per-
ceived rhythm and the desire to move, since Study I found that the spectral flux
of low and high frequency bands was important for music-induced movement
assuming it would be related to rhythmic properties of the music. Study IV de-
scribes a rating study regarding the possibilities of audio and movement convey-
ing emotions to observers. This study is related to Study III and can be seen as a
follow-up experiment, as Study III found movement characteristics to be related
to perceived musical emotions.

Study VII does not describe a research study but a research tool, the MoCap
Toolbox, a Matlab? toolbox for analysis and visualization of motion capture data.
The author of this thesis has been involved in the advancement and support of
the project for the time of her doctoral studies and has furthermore developed
several features related to data analysis and visualization that were implemented
in the toolbox. The extraction of the movement features used in Studies I, III, V,
and VI has been carried out with MoCap Toolbox.

A secondary aim of this thesis was related to the development of com-
putational features that describe movement in a meaningful way. This thesis
tried to go beyond features based on plain velocity and acceleration calculations
and aimed at developing higher-level descriptors not only applicable to music-
induced movement, but also to other music-related activities, such as performing
music, or even non-musical movement, for instance, related to non-verbal com-
munication.

www.mathworks.com



5 METHODOLOGIES

The purpose of this chapter is to introduce the different methodologies and ap-
proaches adopted in this thesis research. First, motion capture technology as the
methodological approach employed for recording and analyzing movement data
is elaborated in detail. Furthermore, information regarding the computational
extraction of musical features, as well as the experiment designs and analysis
methods utilized in the different studies are given.

5.1 Motion capture

In order to conduct research on human movement, it is necessary to employ
methods that precisely describe the motion. This can be achieved using various
approaches, ranging from gathering still pictures of body postures with a photo
camera to capturing continuous movement with high-speed video or infrared
cameras or non-visual techniques that consider orientation, acceleration, or force.
Besides sensing technologies to capture the motion, computer technology is com-
monly used to process or store the data and represent the movement data in nu-
merical form to allow quantitative analysis or real-time processing. Thus, motion
capture (mocap) usually refers to motion representations in digital formats.

Motion data can be represented in several ways. Position/displacement
data can be measured in two dimensions (i.e., on a plane) or in three dimensions
(i.e., in a space). Additionally, motion data can be described in terms of three-
dimensional orientation (referring to an object and its orientation in space). Such
data is usually denoted in the form of six degrees of freedom (6DOEF), that is 3-
dimensional position and 3-dimensional orientation data.

There is a wide range of sensing and motion capture technologies available,
ranging from inexpensive hand-held devices, such as mobile phones and game
controllers, to high-precision tracking instruments used in film and game indus-
tries as well as in research, mainly in biomechanics and sports. The technologies
mostly used in music-related research and applications comprise inertial, mag-
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netic, mechanical, and optical (camera-based) tracking systems. The following
list provides a short overview of the different systems.

¢ Inertial systems: accelerometers and gyroscopes to measure acceleration and
orientation/rotation
- Affordability: inexpensive sensors, as e.g., implemented in smart
phones or game controllers; high-end systems (e.g., whole-body suits)
expensive
- Usability: no direct visibility needed (sensors can be hidden); unaf-
fected by light conditions or magnetic fields; requires sensor for each
joint of interest; body suit potentially motion-restricting, customized
— Portability: yes, light and small sensors and self-contained system
— Precision: the higher quality the better; drift (position error), cumulat-
ing during time/length of data capture
— Data: 6DOF derivative data, yielding drift when integrating
* Magnetic systems: position and orientation of objects measured in a magnetic
field
- Affordability: expensive
— Usability: no direct visibility needed; unaffected by light conditions;
affected by other magnetic fields
- Portability: yes
— Precision: high accuracy in near-field; distortion of other magnetic
fields and in larger areas
- Data: 6DOF
® Mechanical systems: gears, potentiometers, and bend sensors measuring an-
gles between joints
- Affordability: the better, the more expensive
- Usability: no direct visibility needed; unaffected by light conditions
or magnetic fields; can be worn on the body (e.g., suit or glove) or
detached as external controller device; require a sensor for each joint
of interest; body suit potentially bulky, motion-restricting, customized
— Portability: yes
— Precision: high
- Data: angular
* Optical systems: camera-based systems using light (usually either light in
the visible or in the infrared spectrum) and different imaging techniques

- Affordability: wide range from low-quality, inexpensive devices (e.g.,
a web camera) to high-end, expensive systems (e.g., infrared motion
capture)

- Usability: unaffected by magnetic fields; partly affected by light con-
ditions; direct visibility needed; limited capture space restricted by the
cameras —in case of infrared systems: reflective markers, allowing flex-
ible configurations, easy to attach, though might constrain or fall
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— Portability: yes, but restricted (since large equipment)
— Precision: the higher quality, the better

— Data: 2- or 3-dimensional position data with regular video cameras;
with infrared cameras also 6DOF

In the following, infrared camera- and marker-based optical motion capture tech-
nology will be emphasized, as this was the technique used for capturing move-
ment data in this thesis research. In the progression of this thesis summary, the
term motion capture (or mocap) will therefore refer to infrared marker-based op-
tical motion capture.

Infrared cameras work with light detectable in the infrared part of the elec-
tromagnetic spectrum. Such light has longer wavelengths and lower frequencies
than visible light. Infrared optical tracking is based on an active source emit-
ting pulses of infrared light at a very high frequency. In a passive system, as the
one used for this thesis research, this emitting source is usually attached to the
camera (e.g., LEDs arranged as a ring around the camera lens), which in turn
captures the reflections of this light produced by small, usually spherical mark-
ers attached to the tracked object. These markers are placed on points of interest,
such as characteristic joints of the human body. Section 5.1.1 will describe marker
placements in more detail. The temporal resolution of the system is specified by
the rate of the infrared light pulses. Standard capture speeds in music-related
applications range from 60 to 240 frames per second, which is sufficient for a
wide range of music-related movement, such as playing most instruments and
dancing®. Optical systems require direct visibility of the tracked objects (i.e., if a
marker is hidden, e.g., by clothes, it will not be recorded). Each camera captures a
two-dimensional image, commonly with white pixels indicating the markers on
a black background. If several cameras are set up in a network around the cap-
ture space, data in three dimensions can be obtained (the system can construct the
3D-location of a marker as soon as two cameras detect it). The use of several cam-
eras also increases the field of view and thus minimizes the occurrence of hidden
markers. It also reduces the measurement error (at least in some cases). More
details regarding data capturing and the system that was used for conducting the
studies reported in this thesis is given in the next section.

5.1.1 Motion capture data collection

The data used for the studies of this thesis were collected in the Motion Capture
Lab hosted by the Music Department of the University of Jyvaskyld, Finland. At
the time of the data collection, the lab featured eight Qualisys ProReflex MCU120
cameras mounted on the walls around the capture space at a height of approxi-
mately 2.50 to 3 m. A depiction of the lab is provided in Figure 2.

For each camera, the orientation (based on the mounting), focus, and aper-
ture can be adjusted to achieve an appropriate capture space in which markers

3 Some systems can capture several thousand frames per second. However, a higher frame

rate increases the amount of data without necessarily describing the movement more accu-
rately, as human movement cannot exceed a certain tempo.
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FIGURE 2 Depiction of the motion capture lab showing the camera cones of each of the
eight cameras and the covered volume after calibration.

can be detected well. For capturing data in three dimensions, the first step of a
data collection is to calibrate the system, so that it obtains the exact position and
orientation of each camera with respect to the others and the floor in order to cre-
ate a three-dimensional representation of the capture space (see covered volume
depicted in Fig. 2). As a result, the calibration provides origin and orientation
of the Cartesian coordinate system relative to which the locations of the mark-
ers are determined, calculated using a method called direct linear transformation
(Robertson, Caldwell, Hamill, Kamen, & Whittlesey, 2004), depicted in Figure
3(A).

FIGURE 3 (A) As the field of view, location, and orientation of each camera is known,
the system can calculate the location of a marker in 3D based on its 2-
dimensional location detected by each camera, indicated by the three dotted
beams. The 3D coordinates are determined as the point in which the beams
intersect. (B) Marker with three degrees of freedom (yellow, left side) and
rigid body (of three markers) with six degrees of freedom (blue, right side).
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This approach yields time-series data representing the displacement of the mark-
ers in three dimensions (x, y, and z). If additionally the orientation of objects are
of interest, so-called rigid bodies can be employed. Rigid bodies consist of at least
three markers that are mounted on an object as a fixed cluster (i.e., having stable
distances and angles). These markers establish their own coordinate system with
the center of the marker cluster as origin and track 6DOF data (three position
coordinates yielding displacement in the capture space and three rotation angles
yielding orientation in the capture space). Both displacement of a marker in three
dimensions as well as displacement and orientation of a rigid body with six de-
grees of freedom are conceptualized in Figure 3(B).

The ProReflex system can record at a maximal speed of 120 frames per sec-
ond, which was used in the data collection for the studies described in this thesis.
As general characteristics of music-induced movement were of greatest interest,
this capture speed was sufficient and provided a good combination of amount of
data and information depth.

In order to capture whole-body movement, reflective markers are placed on
characteristic joints of the human body, such as head, arms, or legs. Twenty-eight
markers were used in the motion capture data collection conducted for this thesis
research. They were attached to the following body parts of each participant (the
locations are displayed in Figure 4(A) and (B)): (L = left, R = right, F = front, B
= back): 1: LF head; 2: RF head; 3: LB head; 4: RB head; 5: L shoulder; 6: R
shoulder; 7: sternum; 8: spine (T5); 9: LF hip; 10: RF hip; 11: LB hip; 12: RB hip;
13: L elbow; 14: R elbow; 15: L wrist/radius; 16: L wrist/ulna; 17: R wrist/radius;
18: R wrist/ulna; 19: L middle finger; 20: R middle finger; 21: L knee; 22: R knee;
23: L ankle; 24: R ankle; 25: L heel; 26: R heel; 27: L big toe; 28: R big toe.

Optical motion capture systems basically record all reflections they detect
without “knowing” what they represent. Thus, each marker needs to be correctly
identified and labeled accordingly during or after the recording process. This
procedure varies for different motion capture systems. In some systems, such as
Vicon* and Optitrack®, the user manually creates a marker model of the person
to be tracked, which is subsequently applied during the capture to automatically
identify the markers. In case the automatic approach fails, the user continues to
label manually. With the Qualisys system, the user first captures and then an-
notates the data manually. A manually annotated capture can be used for creat-
ing a model to automatically label subsequent captures. This can be done either
after the first capture, so that the model can be applied during the tracking of
subsequent captures, or after all captures are made. Three main challenges can
be mentioned regarding the process of labeling: 1) Markers might get occluded
during capture, so the same marker might be split into several parts (called tra-
jectories), which need to be combined during labeling. 2) If markers come too
close to each other during the capture, the system might switch them, resulting
in two markers being assigned to the same trajectory, which requires separation
during labeling. This might also happen when one or both markers were hid-

WWWw.vicon.com
www.naturalpoint.com/optitrack
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FIGURE 4 Marker and joint locations. (A) Anterior and posterior view of the marker
placement on the participants’ bodies; (B) Anterior view of the marker loca-
tions as stick figure illustration; (C) Anterior view of the locations of the sec-
ondary markers/joints after a marker-to-joint transformation; (D) Segment
representation. Each segment is characterized by its parent segment, length,
rotation, angle to the parent segment (indicated by the arrows), and a mass
and moments of inertia specified by the Dempster model (Dempster, 1955;
Robertson et al., 2004).

den for a short period of time. 3) Reflections might cause extra markers that the
system tries to match with the actual markers. These double markers need to be
removed during labeling.

If a marker was occluded during the capture, these frames will be missing,
resulting in a gap. Gaps can be filled using different inter- or extrapolation meth-
ods®. These methods apply different algorithms to estimate the missing frames
based on the data points before and after the gap. Usually, some kind of poly-
nomial (e.g., spline) interpolation techniques are used for gap-filling. The sim-
plest way of polynomial interpolation is linear interpolation, in which the two
data points before and after the gap are connected with a straight line. More ad-
vanced methods of polynomial and spline interpolation use higher-order poly-
nomial functions to fill gaps. Gap-filling works well for short gaps. However,
with an increasing length it becomes more difficult to estimate the gap mathe-
matically, so gap-filling might lead to inaccurate results. Gap-filling can be either
applied in the motion capture software used for recording, such as the Qualisys
Track Manager (QTM), or at a later stage of the analysis.

Although motion capture applications generally offer a few methods for
data analysis, the data is usually exported after the labeling is completed and
subsequently imported into a more generic analysis environment, such as Mat-
lab. The movement analysis performed for the studies of this thesis was con-

6 Interpolation refers to procedures where missing data between two points of the capture

are determined, whereas extrapolation is used in cases when data is missing in the begin-
ning or in the end of a capture (i.e., only one captured data point is available).
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ducted using the MoCap Toolbox, which will be explained in more detail in the
next section.

5.1.2 Mocap Toolbox

The tool that was used for analyzing the movement data was the MoCap Toolbox,
a set of function written in Matlab for analyzing and visualizing movement data.
Publication VII included in this thesis describes structure, functionality, and use
of the toolbox in detail. It has been developed for analyzing music-related move-
ment, but might be useful for other research areas as well. Users can freely adopt
the functions according to their needs, as the toolbox code is written in Matlab
syntax and available as open source’. Additionally, users can utilize the func-
tionality that Matlab offers as a generic (scientific) computing environment, to
further analyze the features extracted with MoCap Toolbox while staying in the
same environment.

There are closed-source software solutions available for motion capture
analysis and visualization, such as Visual3D® or MotionBuilder”, and the appli-
cations that primarily used for data recording, such as QTM and Vicon Nexus'°.
However, such applications are usually too limited in their functionality, too fo-
cussed on visualization, and/or too restrictive in adapting to the needs of the
researcher, such as to develop movement features useful for their individual re-
search questions. To overcome these issues, this toolbox was implemented in
Matlab as an open-source environment.

The MoCap Toolbox supports several motion capture data formats, in par-
ticular the .c3d file format (which, e.g., Vicon or OptiTrack optical motion capture
systems can produce), the .tsv and the .mat format, both produced by the Qua-
lisys motion capture system, and the .wii data format produced by the WiiData-
Capture software (also developed at the Music Department of Jyvaskyla Univer-
sity and downloadable for free from the same internet address as the MoCap-
Toolbox — see Footnote 7).

The current version of the toolbox (version 1.4) provides 64 functions for an-
alyzing and visualizing mocap data. The main categories can be summarized as
data input and edit functions, coordinate transformation and coordinate system
conversion functions, kinematic and kinetic analysis functions, time-series anal-
ysis functions, visualization functions, and projection functions. Furthermore,
it uses three different data structures: the MoCap data structure, the norm data
structure, and the segment (segm) data structure. To convert between the differ-
ent data representations and enable certain visualizations, parameter structures
are used. A MoCap data structure instance is created when mocap data is read
from a file to the Matlab workspace (using the function mcread). A MoCap data
structure contains the 3-dimensional locations of the markers as well as basic in-

downloadable from www.jyu.fi/music/coe/materials/mocaptoolbox
www.c-motion.com/products/visual3d/
www.autodesk.com/motionbuilder

10 www.vicon.com/products/nexus.html
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formation, including the type of structure, the file name, number of frames of
the recording, the number of markers in the data, the frame rate, the names of
the markers, and the order of time differentiation of the data. The marker rep-
resentation reflects the actual maker locations. It can be transformed into a joint
representation that is related to locations derived from marker locations. A joint
can consist of one marker, but it can also be derived from more than one markers.
It can, for example, be used for calculating the location of a body part where it is
impossible to attach a marker. The mid-point of a joint, for instance, can be then
derived as the centroid of four markers around the joint. The norm data structure
is similar to the MoCap data structure, except that marker/joint data contains the
Euclidean norm of the data from which it was derived. If, for instance, the norm
is applied to velocity data, the resulting data structure holds the magnitude of
the velocity, or speed, of each marker. The third data structure, the segm data
structure, is not like the other two related to points in space (markers or joints),
but to segments of the body (see, e.g., Robertson et al., 2004). Body segments are
commonly simplified as a chain of interconnected rigid bodies that have physical
characteristics, such as segmental masses and locations of the segmental centers
of gravity, and inertial properties of the segmental mass, required when perform-
ing kinetic analysis. Body-segment parameters have been quantified in various
ways, for instance by measuring human cadavers as done by Dempster (1955).
For modeling body segments, Dempster’s parameters have been implemented in
the toolbox. A segm data structure instance is generated by transforming a joint
representation to a segment representation. Most fields of a segm data structure
are similar to the ones of a MoCap data structure, however, the data field is re-
placed by four other fields. These fields store information on how the joints are
connected to form segments, and about the location and orientation of the cen-
ter of the body (called root) and of the segments in several ways (as Euclidean
vector pointing from the proximal to the distal joint of the segment, the length
of each segment, the rotation as a quaternion representation (Hanson, 2006), and
the angles between two adjacent segments). The conception of the segment rep-
resentation is depicted in Figure 4(D).

After importing a motion capture file into Matlab, any missing frames can
be filled using linear interpolation. Visualizing and animating data is a useful
approach to get a first overview of the data. Data can be visualized as time-series
or as single frames. Time-series plots are provided in Figure 5, whereas single-
frame marker visualizations were given in Figure 4(B) and (C). For single-frame
visualizations, a parameter structure can be employed to provide settings for the
visualization, such as colors, connector lines, and marker and line sizes. To create
an animation from a recording, a series of single frames are produced that are
afterwards compiled into a movie.

Kinematic variables, such as velocity and acceleration, are estimated using
the time derivatives of the position data (with mct imeder). The function calcu-
lates either the differences between two successive frames and then uses a Butter-
worth filter for smoothing or derives the data with a Savitzky-Golay smoothing
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FIGURE 5 Time-series plots of mocap data. (A) Toe markers plotted as separate plots;
(B) Both toe markers plotted into the same plot.

filter (Savitzky & Golay, 1964). The first implementation is considerably faster
than the second, whereas the second yields slightly more accurate results.

Furthermore, MoCap Toolbox offers several functions to analyze movement
data, such as calculating the cumulative distance travelled by a marker, the
bounding rectangle (the area covered by the movement), the distance between
two markers, or the periodicity of movement. Kinetic variables, such as the ki-
netic energy of different body parts, can be estimated based on the body-segment
representation. A full overview of the functions can be obtained in the manual of
the toolbox.

The MoCap Toolbox was intended as a tool to analyze music-related move-
ment, but has attracted the attention of researchers working in various fields.
Besides for music-related research, it has been downloaded for face recognition,
sports, gait, or biomechanics research, as well as for artificial intelligence research,
such as robotic motion, human-robot interaction, and machine learning. Since its
first launch in 2008, MoCap Toolbox has continuously been extended by the main
developers as well as by the users who provided valuable feedback. The follow-
ing section describes the movement features extracted with MoCap Toolbox that
were used in the studies presented in this thesis.

5.1.3 Movement feature extraction

This section describes the movement features derived for the mocap studies (I, 111,
V, and VI) using MoCap Toolbox. For preprocessing the mocap data, the first step
after importing and gap-filling was to synchronize the data with the musical stim-
uli and trim the data according to the length of the stimuli. Following this, a set
of 20 secondary markers or joints was derived from the original 28 markers. The
markers were reduced, since some markers were redundant for the subsequent
analysis (in any thesis-related analyses, there was, for instance, no interest in the
orientation of the head). Furthermore, these 20 joints are required for conduct-
ing body segment modeling. The locations of the 20 joints are depicted in Figure
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4(C). The locations of joints C, D, E, G, H, I, M, N, P, Q, R, and T are identical
to the locations of one of the original markers, while the locations of the remain-
ing joints were obtained by averaging the locations of two or more markers; joint
A: midpoint of the four hip markers; B: midpoint of markers 9 and 11 (left hip);
F: midpoint of markers 10 and 12 (right hip); J: midpoint of breastbone, spine,
and the hip markers (midtorso); K: midpoint of shoulder markers (manubrium),
L: midpoint of the four head markers (head); O: midpoint of the two left wrist
markers (left wrist); S: midpoint of the two right wrist markers (right wrist). Joint
A (middle of the hip, also called root) and joint L (head) are examples for several
markers being used to calculate a virtual marker at a location impossible to place
a marker. The joint representation was additionally transferred to a segment rep-
resentation using Dempster’s parameters.

The joint representation was next transformed to a local coordinate system
with joint A located in the origin, and segment BF had zero azimuth (i.e., identical
to the x-axis of the coordinate system), so that the movement was expressed rel-
ative to the center of the body. The movement features were estimated based on
the local coordinate system, unless indicated differently. Next, for both the local
and the global joint representations, the instantaneous velocity, acceleration, and
jerk were estimated using numerical differentiation based on the Savitzky-Golay
smoothing FIR filter (Savitzky & Golay, 1964) with a window length of seven
samples and a polynomial order of two. These values were found to provide an
optimal combination of precision and smoothness in the time derivatives. These
kinematic variables were estimated for the three-dimensional data as well as for
each of the dimensions separately.

From this basic data, several movement features related to different body
parts and movement qualities were extracted and used in the different studies.
Besides topic-related selections of features (i.e., previous research suggesting cer-
tain features), another aim of this thesis was to develop and introduce meaningful
movement features and descriptors that are potentially useful and applicable in
different kinds of movement-related research. The extracted features comprised
postural features, global and local kinematic features, and kinetic features.

e Postural features

- Distance between both hands (joints P and T), both elbows (joints N
and R), and both feet (joints E and I).

- Torso Tilt, the vertical tilt of the torso (joints A-K) with positive tilt
being related to bending forward.

e Kinematic features

- Magnitude of Velocity (Speed) of center of mass (joint A), head (joint
L), both hands (joints P and T), and both feet (joints E and I). The center
of mass used the global joint data (since the hip was set to zero in the
local data).

- Magnitude of Acceleration of center of mass (joint A), head (joint L),
both hands (joints P and T), and both feet (joints E and I) (global joint
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data in case of the center of mass).

- Magnitude of Jerk of center of mass (joint A), head (joint L), both hands

(joints P and T), and both feet (joints E and I) (global joint data in case
of the center of mass).

Amount of Movement as based on the travelled distance of all markers.

Area of Movement (i.e., bounding rectangle), defined as the smallest
rectangle that contains the projection of the trajectory of the center of
mass (joint A) on the horizontal plane (i.e., floor), averaged across a
four-second analysis window with a two-second overlap. This feature
used the global joint data.

Fluidity, an overall movement fluidity /smoothness measure based on
the ratio of velocity to acceleration. The combination of high velocity
and low acceleration reflects fluid movement, whereas the combina-
tion of low velocity and high acceleration reflects non-fluid movement.

Rotation Range, defined as the amount of rotation of the body (joints
M and Q) around the vertical axis.

Movement Complexity, based on principal components analysis (PCA)
of the position data of all joints. PCA, in this case, can be understood as
a decomposition into different (independent) movement components.
The PCA was performed on individual subject level, i.e., one PCA per
participant and stimulus. Subsequently, the cumulative sum of the
proportion of (explained) variance contained in the first five PCs was
determined. For five PCs, the cumulative variance was found to have
the highest range of variation across movement recordings, so using
five PCs discriminated best between complex and non-complex move-
ment. The proportion of variance explained by the first five PCs varied
between 67.0% and 99.8%, with an average of 85.5% (subject level). For
an excerpt with 99.8% explained variance, almost all movement can be
explained by the first five components, whereas for an excerpt with
67.0% explained variance, 33% cannot be explained by the first five
components (and more components are needed). Thus, a high propor-
tion of unexplained variance (i.e., a low cumulative sum) would mean
that the underlying movement is complex, as a high number of PCs
is needed to explain the movement sufficiently. A low proportion of
unexplained variance (i.e., a high cumulative sum), on the other hand,
implies simpler movement, as it can be sufficiently explained with a
low number of PCs. Figure 6 illustrates this feature by displaying pro-
jections of the first five principal components of complex (A) and non-
complex (B) movements.

Hip Wiggle, defined as the absolute angular velocity of the hips (joints
B and F) around the anteroposterior (front-back) axis (global joint data).
Shoulder Wiggle, defined as the absolute angular velocity of the shoul-
ders (joints M and Q) around the anteroposterior axis (global joint
data).
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¢ Kinetic features

- Kinetic Energy, the energy contained in the body when moving (using
Dempster’s (1955) parameters).
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FIGURE 6 Movement Complexity illustrated by displaying the projections of the first
five principal components of complex movement (A) and non-complex
movement (B). The extreme deflections of the projections/dimensions are
plotted from the front, from the side, and from the top. (A) High Movement
Complexity, as movement is visible in all five PC projections, thus a high
number of principal components is needed to explain the movement; (B)

Low Movement Complexity, as most movement is found in the projection of
PC 1 - a low number of PCs can sufficiently explain this movement.

In order to conduct further analysis, the instantaneous values of each move-
ment feature were averaged across each stimulus presentation (time) yielding
one value per movement feature for each participant and stimulus. In case of the
kinetic energy, the standard deviation was also calculated besides the mean. Such
an approach of calculating ‘static’ movement features characterizing a movement
progression might be oversimplifying as it disregards any temporal evolution.
However, emphasis was put more towards finding broad descriptors accounting
for the whole movement sequence, thus one-value descriptors seemed appropri-
ate as opposed to any time-series analysis approach.

5.2 Musical feature extraction

This section describes the musical feature extraction process used in Studies I,
II, and VI. The features were obtained by employing the Matlab MIRToolbox
(version 1.4) (Lartillot & Toiviainen, 2007), a Matlab toolbox for music informa-
tion retrieval. The stimuli were imported to Matlab and subsequently analyzed
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with different functions provided by the MIRToolbox. The extracted features in-
cluded pulse-, thythm-, attack-, dynamics-, and timbre-related features. Some
features were based on the waveform representation of the signal (time domain),
whereas others were based on the spectral representation of the signal (frequency
domain). For several features, the waveform was first divided into shorter time
spans called frames, for which the features were subsequently calculated.

Pulse Clarity indicates the strength of rhythmic periodicities and pulses in
the signal, estimated by the relative Shannon entropy of the fluctuation spectrum
(Pampalk, Rauber, & Merkl, 2002). In this context, entropy can be understood
as a measure of the degree of peakiness of the spectrum. Music with easily per-
ceived beat has a distinct and regular fluctuation spectrum, indicating low en-
tropy. Thus, high pulse clarity is associated with low fluctuation entropy. To
illustrate this measure of Pulse Clarity, fluctuation spectra for high and low Pulse
Clarity are shown in Figure 7.
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FIGURE 7 Fluctuation spectra of two stimuli used in the studies. (A) Peaks at a regular
distance of 0.28 Hz, with the highest peak at 4.56 Hz and other clear peaks
at 2.29, 6.85, and 9.13 Hz, suggesting clear pulses and periodicity (stimulus
1, see Appendix 1). (B) Markedly lower magnitude values, a less periodic
pattern of peaks, and more noise, suggesting low Pulse Clarity (stimulus 21,
see Appendix 1).

Spectral Flux indicates to which extent the spectrum changes over time, reflecting
rhythmic properties of the music, such as strength and prominence. It is com-
puted by calculating the Euclidean distances of the spectra for each pair of con-
secutive frames of the signal (Alluri & Toiviainen, 2010), using a frame length of
25 ms and an overlap of 50% between successive frames. For the calculation of
Spectral Flux of different frequency bands, the stimulus was first divided into 10
frequency bands in the range of 0-22050 Hz, with the first band reaching from
0-50 Hz and the remaining bands containing one octave each. The Sub-band
Flux, with the same procedure as described above, was then calculated for each
of these ten bands separately. Three different frequency bands were used in stud-
ies included in this thesis: Studies I and VI employed sub-bands no. 2 (50-100
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Hz) and no. 9 (6400-12800 Hz), whereas Study II used these two sub-bands and
additionally sub-band no. 6 (800-1600 Hz). Two spectrograms of sub-band no. 2
are displayed in Figure 8 to show the difference between high and low amounts
of Sub-band Flux.
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FIGURE 8 Spectrograms (sec. 10-20) of sub-band no. 2 (50-100 Hz) of two stimuli used
in the study. (A) High amount of temporal change (red represents hig