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Abstract

Problems of dynamics and stability of a moving web, travelling between two

rollers at a constant velocity, are studied using analytical approaches. Trans-

verse vibrations of the web are described by a partial differential equation

that includes the centrifugal force, in-plane tension, elastic reaction and non-

stationary inertial terms. The model of a thin elastic plate subjected to

bending and non-homogeneous tension is used to describe the bending mo-

ment and the distribution of membrane forces. The stability of the plate is

investigated with the help of studies of small out-of-plane vibrations. The

influence of linearly distributed in-plane tension on the characteristics of the

web vibrations is studied. The static forms of instability are investigated

using numerical methods. It can be concluded that inhomogeneities in the

applied tension may significantly decrease the critical web velocities and even
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small inhomogeneities in the tension may have a large effect on the divergence

forms.

Keywords: Axially moving, Plate, Elastic, Instability, Buckling, Tension

1. Introduction

Dynamics and mechanical instability of axially moving continua are im-

portant questions from the viewpoint of papermaking. The most common

models, used in the studies of this question, are travelling flexible strings,

membranes, beams and plates. An extensive amount of research has been

conducted on various aspects of dynamics and instability of axially moving

elastic elements. Dynamics and stability considerations have been reviewed

by Mote [1].

The effects of axial motion on the frequency spectrum and eigenfunctions

were investigated by Sack [2], Archibald and Emslie [3], Swope and Ames

[4] and Simpson [5]. It was shown that the natural frequency of each mode

decreases when the transport speed increases, and that the travelling string

and beam both experience divergence instability at a sufficiently high speed.

Response prediction has been made for particular cases when excitation is

assumed to have a special form such as a constant transverse point force [6] or

a harmonic support motion [7]. Arbitrary excitation and initial conditions

have been analysed with the help of modal analysis and a Green function

method by Wickert and Mote [8]. Studies by Mote include dynamic stabil-

ity analysis of axially moving strings under periodic tension variations [9] or

under axial acceleration [10]. Recently, Wang et al. [11] showed using Hamil-

tonian mechanics that there is no instability at the critical velocity in the
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case of a travelling string.

From the viewpoint of the paper making application, dynamics of moving

materials has been in researchers’ interest. Mujumdar and Douglas [12] com-

pared two different models, a (traditional) threadline model and a membrane

model including fluid–structure interaction, with the result that also simpli-

fied models can reveal important characteristics of the physical phenomenon.

Pramila [13] and Kulachenko et al. [14, 15] have further developed models

for moving paper webs.

It is well known from experimental studies, and some theoretical estima-

tions [13], that mechanical instability of a travelling paper web can arise at

some critical velocities. This instability may occur in either dynamic, i.e.

flutter, or static, i.e. divergence, forms. These critical velocities are of both

theoretical and practical interest, as they set an upper limit for the running

speed of paper machines, and consequently, for the rate of paper production

that can be achieved. Some previous investigations show that for an axi-

ally moving elastic paper web under homogeneous tension and certain other

conditions, the value of the divergence speed V div
0 is less than the value of

the flutter speed V fl
0 , i.e. V div

0 < V fl
0 . Thus the speed V0 for reliable, stable

movement of the paper web must satisfy the condition V0 < V div
0 . Corre-

sponding results have been obtained for axially moving beams interacting

with external media (see e.g. [16, 17]) and for a two-dimensional model of

the web considered as a moving plate under homogeneous tension [18].

Stability of two-dimensional travelling rectangular membranes and plates

was first studied by Ulsoy and Mote [19] and Lin and Mote [20, 21]. Shin et

al. [22] found that for an axially moving membrane with no-friction boundary
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conditions, the membrane undergoes stable behaviour until a critical speed

at which static instability occurs. Lin and Mote [20] studied an axially mov-

ing membrane in a 2D formulation, predicting the equilibrium displacement

and stress distributions under transverse loading. In their later study [21],

Lin and Mote concentrated on analysis of wrinkling instability and the corre-

sponding wrinkled shape of a web with small flexural stiffness. The stability

and vibration characteristics of an axially moving plate under homogeneous

tension have been investigated by Lin [23]. The loss of stability was studied

with application of dynamic and static approaches, and Wickert’s approach

[24] was employed to derive the equation of motion for the plate in matrix

form and to use the Galerkin method. It was shown by means of numerical

analysis that, for an axially moving elastic web under homogeneous tension,

the dynamic instability obtained by the application of nonstationary anal-

ysis of small vibrations is realized with a vibration frequency of zero, and

that the critical velocity coincides with the critical velocity obtained from

the corresponding static analysis.

In technological processes, e.g. in paper making [25], inhomogeneities

in tension profiles are apparent. Therefore, they must be included in the

model describing such systems. This paper is devoted to the application

of analytical methods to the analysis of the dynamic behaviour and elastic

instability of a rectangular plate moving axially at a constant velocity under

nonhomogeneous tension, and to the investigation of the dependence of the

solution on the problem parameters. An analytical approach is used to gain

both deeper understanding about the phenomenon, and extremely efficient

solution methods for the use of realtime computing. Special attention is
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given to the analysis of the influence of the in-plane tension on the dynamic

behaviour of the plate and its stability. In the frame of a general dynamic

approach, a functional expression for the characteristic index of stability

is found in a convenient form, and analytical estimations for the critical

velocities are found. An investigation of static instability is performed with

the help of qualitative analysis and numerical techniques.

2. Basic partial differential equations for the dynamics of an axially

moving plate

In this section, the equations of dynamic behaviour of a band travelling at

a constant velocity V0 in the x direction between two rollers located at x = 0

and x = ` are presented. In a cartesian coordinate system, one considers a

rectangular part of the band

Ω : 0 ≤ x ≤ `, −b ≤ y ≤ b ,

where ` and b are prescribed parameters (see Figure 1). It is assumed also

that the considered part of the band is represented as a rectangular elastic

plate, having constant thickness h, Poisson ratio ν, Young modulus E and

bending rigidity D. The plate is subjected to in-plane distributed forces

g = g(y) = T0 + Ψ(y) (1)

acting in the x direction, applied at the plate boundaries x = 0 and x = `.

The constant T0 > 0 and the function Ψ(y), characterizing nonhomogeneous

in-plane tension of the axially moving web, are considered given. The sides

of the plate {x = 0, −b ≤ y ≤ b} and {x = `, −b ≤ y ≤ b} are simply
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supported, and the sides {y = −b, 0 ≤ x ≤ `} and {y = b, 0 ≤ x ≤ `} are

free of tractions.

0

Figure 1: Band travelling at a constant velocity V0 between two rollers placed at x = 0

and x = `. At the edges x = 0 and x = `, tension is applied with a non-homogeneous

profile (T0 + αy) depending on the y coordinate.

2.1. Transverse vibrations

The transverse displacement (out-of-plane deflection) of the travelling

band is described by the deflection function w, which depends on the space

coordinates x and y, and time t. The differential equation for small transverse

vibrations has the form

m
d2w

dt2
= LM (w)− LB (w) . (2)
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Here m is the mass per unit area of the middle surface of the plate. The

total acceleration on the left-hand side of equation (2) is expressed as

d2w

dt2
=

d

dt

(
∂w

∂t
+ V0

∂w

∂x

)
=
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2
. (3)

The right-hand side in (3) contains three terms, respectively representing a

local acceleration, a Coriolis acceleration and a centripetal acceleration. The

membrane operator LM on the right-hand side of equation (2) is

LM (w) = Txx
∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Tyy

∂2w

∂y2
. (4)

The coefficients Txx, Txy, Tyy of the linear operator LM are related to the

corresponding in-plane stresses σxx, σxy and σyy by the expressions

Tij = hσij .

The linear bending operator LB is given by the expression

LB (w) = D∆2w = D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
(5)

in the case of an isotropic elastic plate. Here,

D =
Eh3

12 (1− ν2)

is the bending rigidity of the plate and ∆2 is the biharmonic operator.

Boundary conditions for the deflection function w, corresponding to the

simply supported boundaries and the free boundaries, can be written in the

following form (see, e.g., [26]):

(w)x=0, ` = 0 ,

(
∂2w

∂x2

)
x=0, `

= 0 , −b ≤ y ≤ b , (6)(
∂2w

∂y2
+ ν

∂2w

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ ` , (7)(
∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` . (8)
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2.2. In-plane tensions

In this subsection, stationary representations for the in-plane forces are

described, i.e., it is supposed that the in-plane tensions do not depend on

the time t. Thus, it is supposed that the in-plane tensions Txx, Txy and Tyy

satisfy the equilibrium equations

∂Txx
∂x

+
∂Txy
∂y

= 0 ,
∂Txy
∂x

+
∂Tyy
∂y

= 0 , (9)

and the following boundary conditions:

(Txx)x=0, ` = g (y) , (Txy)x=0, ` = 0 , −b ≤ y ≤ b , (10)

(Tyy)y=±b = 0 , (Txy)y=±b = 0 , 0 ≤ x ≤ ` . (11)

The in-plane tensions Txx, Txy and Tyy can be represented with the help

of the Airy stress function Φ:

Txx =
∂2Φ

∂y2
, Tyy =

∂2Φ

∂x2
, Txy = − ∂2Φ

∂x∂y
. (12)

The Airy stress function Φ satisfies the biharmonic equation

∆2Φ ≡ ∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0 . (13)

The boundary conditions satisfied by Φ, corresponding to (10) and (11), are(
∂2Φ

∂y2

)
x=0,`

= g(y) ,

(
∂2Φ

∂x∂y

)
x=0,`

= 0 , −b ≤ y ≤ b , (14)

(
∂2Φ

∂x2

)
y=±b

= 0 ,

(
∂2Φ

∂x∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` . (15)

Note that the tensions expressed via the stress function Φ in (12) will

satisfy the equilibrium equations in (9) for any function Φ that is smooth
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enough. Equation (13), which must be solved, expresses the condition of

compatibility for the tensions (stresses).

The present study will concentrate on a linear tension distribution, using

the rigorous solution of the boundary value problem (13) – (15) corresponding

to the case that Ψ(y) = αy, i.e. g(y) = T0 + αy. Here, α > 0 is a given

constant that will be called the tension profile skew parameter. For the stress

function Φ, one has

Φ(x, y) = T0
y2

2
+ α

y3

6
+ c1x+ c2y + c0, (x, y) ∈ Ω . (16)

Here, c0, c1 and c2 are arbitrary constants. The corresponding tensions will

be

Txx(x, y) = T0 + αy, Txy(x, y) = 0, Tyy(x, y) = 0, (x, y) ∈ Ω . (17)

3. Small transverse vibrations and elastic instability

3.1. Dynamic analysis and critical velocity estimates

Consider the following dynamic equation for small vibrations of the trav-

elling plate:

∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ (V 2

0 − C2)
∂2w

∂x2
− Ψ̃

∂2w

∂x2

+
D

m

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= 0, (x, y) ∈ Ω ,

C =

√
T0

m
, Ψ̃ =

Ψ

m
=
α

m
y , (18)

which follows from the expressions (1) – (5) and (17).
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The solution of the nonstationary boundary value problem for the partial

differential equation (18) with the boundary conditions (6) – (8) is repre-

sented as [27]

w(x, y, t) = W (x, y) est , s = iω . (19)

Here, ω is the frequency of the small transverse vibrations, and s is the

complex characteristic parameter

s = Re s+ i Im s . (20)

If the parameter s is purely imaginary, then the plate performs harmonic

vibrations with a small amplitude, and its motion can be considered stable.

If the real part of s becomes positive, then the transverse vibrations grow

exponentially and, consequently, the behaviour of the plate is unstable.

To investigate the dynamic behaviour of the plate, the representation (19)

is inserted into equation (18). One obtains

s2W + 2 s V0
∂W

∂x
+ (V 2

0 − C2)
∂2W

∂x2

− α

m
y
∂2W

∂x2
+
D

m
∆2W = 0, (x, y) ∈ Ω . (21)

Equation (21) is multiplied by W and integration over the domain Ω is per-

formed. Using the boundary conditions (6) – (8) and integrating by parts,

one finally has

s2

∫
Ω

W 2 dΩ + (C2 − V 2
0 )

∫
Ω

(
∂W

∂x

)2

dΩ

+
α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ +
D

m

∫
Ω

W ∆2W dΩ = 0 . (22)

Two special cases, from which it is possible to draw further conclusions,

will be considered. First, let α = 0 and Txx(x, y) = T0, i.e. one assumes
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homogeneous tension. In this case, as it was shown by Banichuk et al. [18],

the following relation takes place:∫
Ω

W ∆2W dΩ =

∫
Ω

(∆W )2 dΩ + 2

∫ `

0

Qy=b dx . (23)

Above, the abbreviation

Q = W
∂

∂y
(4W )−4W ∂W

∂y
(24)

has been used. Note that in (23), symmetry properties of the original PDE

were used to obtain this form of the Q integral.1 Consequently, one has

ω2 = −s2 =
(C2 − V 2

0 )
∫

Ω

(
∂W
∂x

)2
dΩ + D

m

[∫
Ω

(∆W )2 dΩ + 2
∫ `

0
Qy=b dx

]
∫

Ω
W 2 dΩ

.

(25)

At the critical velocity, as it can be seen from (25), the following relation

between the critical velocity and the divergence mode holds:(
V div

0

)2
= C2 +

D

m

∫
Ω

(∆W )2 dΩ + 2
∫ `

0
Qy=b dx∫

Ω

(
∂W
∂x

)2
dΩ

. (26)

Note that one needs to use the solution from the corresponding static prob-

lem, described in the next section for the general case, in order to determine

that Qy=b > 0 at this point. Thus, all the integrals on the right-hand side of

(26) are positive, and one sees that(
V div

0

)2
> C2 .

It follows from (26) that if the bending rigidity of the web is negligibly

small, then (
V div

0 mem

)2
= C2 =

T0

m
. (27)

1In the general case, it is possible to derive a similar relation, but one needs to use the

form
∫ `

0
(Qy=b −Qy=−b) dx instead of 2

∫ `

0
Qy=b dx.
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In the one-dimensional case of axially travelling strings, this is a known result

(see, e.g., Chang and Moretti [16]). From (27), one can see that the same

value of the critical velocity also applies to ideal membranes. Note that (27)

does not depend on W . Thus, the theory predicts that any combination

of modes may occur at the critical velocity for the special case of an ideal

membrane under homogeneous tension. Both of these observations directly

generalize the analogous earlier results [17] for cylindrical deformation (flat

panel model) of an ideal membrane.

Consider now a second special case, where the bending rigidity of the

axially moving plate is negligibly small and the in-plane tension (in the x di-

rection) is positive (thus avoiding compression and wrinkling considerations;

see Figure 1). That is, one assumes that

D = 0 , T0 > α b , (28)

where the latter condition comes from the constraints Txx(x, y) = T0+α y > 0

and y ≥ −b. In this case, the characteristic parameter s is evaluated as

ω2 = −s2 =
(C2 − V 2

0 )
∫

Ω

(
∂W
∂x

)2
dΩ + α

m

∫
Ω
y
(
∂W
∂x

)2
dΩ∫

Ω
W 2 dΩ

(29)

One obtains the steady-state solution (divergence) at some velocity(
V div

0

)2
= C2 +

α

m

∫
Ω
y
(
∂W
∂x

)2
dΩ∫

Ω

(
∂W
∂x

)2
dΩ

. (30)

Taking into account the expression in (30) and the inequalities in (28), one

may estimate the divergence velocity (from below) as(
V div

0

)2 ≥ C2 − αb

m
=
T0 − αb
m

. (31)

One can see from (31) that as long as the condition for T0 in (28) is fulfilled,

one has (V div
0 )2 ≥ 0, i.e., the value of V div

0 is physically meaningful.
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4. Solution of eigenvalue problem and numerical results for some

problem parameters

The stability problem considered in the frame of stationary equations is

known as a divergence or buckling problem. This problem is formulated as

an eigenvalue problem for the static equilibrium equation.

4.1. Transformation to ordinary differential equation

The stationary eigenvalue problem of elastic instability consists of finding

a nontrivial solution (mode) and the corresponding minimal eigenvalue of the

following boundary-value problem. Consider the static equation correspond-

ing to (18),

(V 2
0 −C2)

∂2W

∂x2
−αy
m

∂2W

∂x2
+
D

m

(
∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+
∂4W

∂y4

)
= 0 , (x, y) ∈ Ω .

(32)

The boundary conditions for W , which follow from (6) – (8), are

(W )x=0,` = 0,

(
∂2W

∂x2

)
x=0,`

= 0 , −b ≤ y ≤ b (33)

(
∂2W

∂y2
+ ν

∂2W

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ ` (34)(
∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` . (35)

From the latter condition in (28), a constraint for α is obtained, leading to a

definition of the limit value αmax of the tension profile skew parameter (see

Figure 2):

α < T0/b , αmax = T0/b . (36)
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Figure 2: Definition of the maximal value αmax of the tension profile skew parameter. Four

different tension profiles are shown. Tension T is plotted with respect to the y coordinate

at a supported side of the plate (x = `). In the Figure, the tension profile skew parameter

α obtains the values 0, 1/4 αmax, 1/2 αmax and αmax.

To determine the minimal eigenvalue

λ =
`2

π2D
(mV 2

0 − T0) (37)

of the problem (32) – (35) and the corresponding eigenfunction W = W (x, y),

known as the divergence or buckling form, the following representation is

applied:

W = W (x, y) = f(
y

b
) sin(

πx

`
) , (38)

where f(y/b) is an unknown function.

It follows from (38) that the desired divergence form W satisfies the

boundary conditions (33). Using dimensionless variables

η =
y

b
, µ =

`

πb
, (39)
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and the free-of-traction boundary conditions (34) and (35), with relations

(32), (37), (38), one obtains the following eigenvalue problem for the unknown

function f(η):

µ4 d4f

dη4
− 2µ2 d2f

dη2
+ (1 + α̃η)f = λf, η ∈ (−1, 1) , (40)

where

α̃ =
b `2

π2D
α (41)

is the dimensionless tension profile skew parameter. The problem (40) is

subject to the boundary conditions

µ2 d2f

dη2
− νf = 0, η = ±1 and (42)

µ2 d3f

dη3
− (2− ν)

df

dη
= 0, η = ±1 . (43)

The equation (40) is a linear eigenvalue problem in f with polynomial coef-

ficients (due to the α̃ηf term).

With the help of the definition of αmax in (36) and equation (41), one

obtains the upper limit for the dimensionless tension profile skew parameter:

α̃max =
b `2αmax

π2D
=
`2 T0

π2D
. (44)

4.2. Numerical method

In this sub-section, a numerical solution for the problem (40), (42) – (43)

will be presented. Note that the boundary conditions (42) and (43) are not

natural, in the sense that they are not generated by deriving the variational

form of (40) and applying integration by parts.
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The strong form (40), (42) – (43) was discretized directly, with classical

central differences of second-order asymptotic accuracy. To account for the

boundary conditions, the method of virtual points was used.

As the problem is linear in f , discretization leads to a standard discrete

linear eigenvalue problem representing (40):

Af = λf . (45)

The boundary conditions (42) – (43) have not yet been applied. Because the

boundary conditions are homogeneous, it is possible to add them to the dis-

crete system by rewriting the original discrete problem (45) as a generalized

linear eigenvalue problem:

Af = λBf , (46)

where B is an identity matrix with the first two and last two rows zeroed

out. In (46), the first two and the last two rows of A contain the discretized

boundary conditions.

To sum up, in order to solve the original problem, one computes the

solution of (46), discards eigenvalues of infinite magnitude (resulting from

the chosen way of handling the boundary conditions), and then extracts the

smallest eigenvalue and its corresponding eigenvector. Note that the first two

and last two components of the eigenvector should be discarded, because they

represent the function values at virtual points that were generated from the

boundary conditions. Finally, the divergence mode W (x, y) is constructed

by equation (38).
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Table 1: Critical divergence velocities V div
0 for some cases studied. Note that α̃max is

different for each value of ν.

ν \ α̃ 0 10−6α̃max 10−4α̃max 10−2α̃max

0 79.0634 79.0634 79.0605 78.6892

0.1 79.0635 79.0635 79.0605 78.6886

0.3 79.0640 79.0640 79.0609 78.6876

0.5 79.0652 79.0652 79.0618 78.6870

4.3. Numerical results

Numerical results were computed for some practically interesting choices

of problem parameters. The dimensions of the plate were ` = 0.1 m,

2b = 1 m, and the tension (at the midpoint y = 0) was T0 = 500 N/m.

Young’s modulus was E = 109 N/m2, plate thickness h = 10−4 m and plate

mass per unit area m = 0.08 kg/m2. These parameter values approximately

correspond to some paper materials within the limitations of the isotropic

model.

In the study of critical divergence shapes, various values of the Poisson

ratio ν and the dimensionless tension profile skew parameter α̃ in (44) were

considered. Note that
α

αmax

=
α̃

α̃max

.

Thus, tildes can be omitted below in the cases, where the ratio is considered.

Note also that the ratio α/αmax directly gives the relative change in tension,

with respect to the average T0, at the edges y = ±b. Since Ty=±b = T0 ± αb,
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Table 2: Convergence of the results for the critical velocity. The dimensionless tension

profile skew parameter α̃ is given different values. Poisson ratio is kept constant (ν = 0.3).

α̃ \ points 75 150 300 600 1200

0.01 α̃max 78.6865 78.6874 78.6876 78.6876 78.6876

0.05 α̃max 77.1181 77.1242 77.1257 77.1261 77.1262

0.25 α̃max 68.6445 68.6917 68.7040 68.7071 68.7078

one obtains
α

αmax

=
|T0 − Ty=±b|

T0

.

See also Figure 2. For the Poisson ratio, the values 0, 0.1, 0.3 and 0.5

were used. The values of α/αmax were 0, 10−6, 10−4 and 10−2, where αmax

corresponds to the upper limit imposed by the constraint (36). Note that

α̃ in (41) depends on ν via D. In Table 1, critical divergence velocities

are presented for the selected values of α̃. One may see that the analytical

solution for α̃ = 0 for the same geometric and material parameters (see [18],

note that `/2b = 0.1) matches the values in the first column of the table.

The value of discretization points used in computations was 600, large

enough to account for the large values of derivatives in the y direction. It

was found that, for large values of α̃, more computation points were needed

but the value of ν (always between 0 and 0.5) did not affect the convergence.

In Table 2, the results of the convergence are shown for three different values

of α̃.

In the study of critical (divergence) velocities, the values of α/αmax were

0− 0.25 (in (36)) and the values of b (half the web width) were 0.1− 10 m.

Thus, the web width was 0.2− 20 m. The web length was again ` = 0.1 m.
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Figure 3: Results for the critical velocity. Left: Critical web velocity (V0)crit with respect

to the tension profile skew parameter ratio α/αmax and half the web width b. Note the

logarithmic scale of b. The web length is constant (` = 0.1 m). Right: The critical velocity

(V0)crit plotted with respect the tension profile skew parameter ratio α/αmax. The value

of Poisson ratio is ν = 0.3. Web geometry is kept unaltered (` = 0.1 m, 2 b = 1 m).

The results for the critical velocities with respect to the tension profile skew

parameter ratio α/αmax and b are shown in Figure 3. The value of Poisson

ratio was ν = 0.3.

The results for the transverse displacement are shown in Figures 4 – 6.

In each figure, ν is fixed. Figure 4 is divided into two parts. Both parts

of the figure are further divided into four subfigures. Each of these four

subfigures shows the results for a different value of the skew parameter α̃. In

the upper four subfigures, f(η) is plotted, showing a slice of the out-of-plane

displacement from one free edge to the other at x = `/2. Tension increases

toward positive η. The total out-of-plane displacement in the whole domain

Ω = [0, `]× [−b, b], from equation (38), is shown in the lower four subfigures.

Note the orientation of the axes. In Figures 5 and 6, the four subfigures show
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the slices of the out-of-plane displacement at x = `/2 for the limit cases ν = 0

and ν = 0.5, in analogous order.

From Figures 3 – 6 and Table 1, three conclusions are apparent. First, in

the study of critical velocities, it was seen that inhomogeneities in the tension

profile may significantly decrease the critical velocities. Up to a 20 % tension

inhomogeneity between the midpoint and edges causes a 10 % decrease in the

critical velocity. It is also seen that a wider web is more sensitive to tension

inhomogeneities. Secondly, by comparing Figures 4 – 6, one can conclude

that materials with a larger Poisson ratio tend to exhibit a higher degree of

sensitivity to inhomogeneities in the tension profile.
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Figure 4: Out-of-plane displacement of an axially travelling pinned-free plate for dif-

ferent values of the tension profile skew parameter ratio. The plate dimensions are

` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio is ν = 0.3.

Tension profile skew parameter ratio α/αmax is given the values 0, 10−6, 10−4 and 10−2.

In the upper four sub-figures, the displacement at x = `/2 is shown.
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Figure 5: Out-of-plane displacement of an axially travelling pinned-free plate at x = `/2

for different values of the tension profile skew parameter ratio. The plate dimensions are

` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio is ν = 0.

Tension profile skew parameter ratio α/αmax is given the values 0, 10−6, 10−4 and 10−2.

Finally, one may see form the results that even for the smallest inhomo-

geneity tested (one part in 106), for these problem parameters the divergence

(buckling) mode changes completely. Thus, from a practical point of view,

although studies of the homogeneous tension case can predict the critical

velocity relatively accurately for such small inhomogeneities in the tension

profile, the performed analysis indicates that predictions of the divergence

shape should be corrected.
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Figure 6: Out-of-plane displacement of an axially travelling pinned-free plate at x = `/2

for different values of the tension profile skew parameter ratio. The plate dimensions are

` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio is ν = 0.5.

Tension profile skew parameter ratio α/αmax is given the values 0, 10−6, 10−4 and 10−2.

The sensitivity to the inhomogeneity was found to be affected also by the

tension at the midpoint, T0. The higher the tension, the more sensitive the

system is to small inhomogeneities. This effect is shown in Figure 7. The

subfigure on the bottom left of Figure 7 corresponds to the subfigure at the

top right of Figure 4. One may see that with ν = 0.3, α̃ = 10−6α̃max, and

the values of the other parameters fixed to those given at the beginning of

this section, the sensitivity is very high already at T0 = 500 N/m, which is

realistic for paper production.
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Figure 7: Out-of-plane displacement of an axially travelling pinned-free plate at x =

`/2 for different values of midpoint (average) tension. The plate dimensions are ` =

0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio is ν = 0.3,

tension profile skew parameter ratio is α/αmax = 10−6. Midpoint tension T0 is given the

values 5, 50, 500 and 5000 N/m.

Finally, it should be noted that as far as geometric parameters are con-

cerned, the divergence shape is a function of not only the aspect ratio `/2b

but also the overall scale. Even for the same aspect ratio, scaling ` (and also

b to keep the same aspect ratio) changes the divergence shape. This effect

occurs even if h is scaled by the same amount as ` and b. Thus, it should be

emphasized that the results in Figures 4–7 only represent the specific case of

plates with the dimensions `× 2b× h = 0.1 m× 1 m× 10−4 m.
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5. Some notes and conclusions

In this paper, the model of an axially moving thin elastic plate subjected

to in-plane loads (tensions) and out-of-plane actions (centrifugal forces and

bending moments) was studied. Equalities and inequalities for the critical

velocities, in terms of the problem parameters, were derived and discussed.

The effects of problem parameters on the critical divergence mode were

investigated by a numerical analysis. It was found that inhomogeneities in

the tension profile may significantly decrease the critical velocities, and that

even slight inhomogeneities have a very dramatic response in the divergence

shapes. For example, a tension inhomogeneity of 20 % between the midpoint

and edges produces a 10 % decrease in the critical velocity. For the diver-

gence shape, an inhomogeneity of one part in a million is enough to create

a significant effect, and the divergence shape has changed completely when

1% inhomogeneity has been reached. Because in practice no tension profile

is completely homogeneous, these results suggest that in order to predict the

divergence shape accurately, tension inhomogeneities must be accounted for.

Note that, in this paper, only linear distributions of the applied boundary

tensions were considered. Other distributions of boundary tensions, such as

piece-wise linear or parabolic distributions, can also be considered in the

frame of the described approach by means of generalization of the solution

for a more complex in-plane stress function. The analytical investigation was

performed for the case of an isotropic elastic web modelled by an isotropic

membrane or an isotropic elastic plate. In the same manner, it is possible to

study small vibrations and instability modes of orthotropic membranes and

plates moving axially at a constant velocity. It is very important to realize
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this because many used materials — especially in papermaking processes —

are orthotropic.

Two more assumptions were used in this paper. First, it was assumed that

there are no gravity forces or forces of web interaction with external media.

In many applications, the gravity effects are indeed negligible. However,

for the interaction of the moving elastic web with the surrounding fluid,

corresponding studies are very important. These effects have been shown

to be significant in published studies (see e.g. [14, 28, 29]). Secondly, in

many conditions such as the dynamics of a wet paper web, the plate must

be considered to be viscoelastic. Investigation of viscoelastic effects requires

special attention and separate studies.

In conclusion, it is noted that the investigation of ideal models provides a

solid foundation for more complex multiphysics problems, and for thorough

understanding of certain technological processes.
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Figure captions

Figure 1: Band travelling at a constant velocity V0 between two rollers placed

at x = 0 and x = `. At the edges x = 0 and x = `, tension is applied with a non-

homogeneous profile (T0 + αy) depending on the y coordinate.

Figure 2: Definition of the maximal value αmax of the tension profile skew

parameter. Four different tension profiles are shown. Tension T is plotted with

respect to the y coordinate at a supported side of the plate (x = `). In the Figure,

the tension profile skew parameter α obtains the values 0, 1/4 αmax, 1/2 αmax and

αmax.

Figure 3: Results for the critical velocity. Left: Critical web velocity (V0)crit

with respect to the tension profile skew parameter ratio α/αmax and half the web

width b. Note the logarithmic scale of b. The web length is constant (` = 0.1 m).

Right: The critical velocity (V0)crit plotted with respect the tension profile skew

parameter ratio α/αmax. The value of Poisson ratio is ν = 0.3. Web geometry is

kept unaltered (` = 0.1 m, 2 b = 1 m).

Figure 4: Out-of-plane displacement of an axially travelling pinned-free plate

for different values of the tension profile skew parameter ratio. The plate dimen-

sions are ` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson

ratio is ν = 0.3. Tension profile skew parameter ratio α/αmax is given the values 0,

10−6, 10−4 and 10−2. In the upper four sub-figures, the displacement at x = `/2

is shown.

Figure 5: Out-of-plane displacement of an axially travelling pinned-free plate

at x = `/2 for different values of the tension profile skew parameter ratio. The plate

dimensions are ` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness).

Poisson ratio is ν = 0. Tension profile skew parameter ratio α/αmax is given the

values 0, 10−6, 10−4 and 10−2.
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Figure 6: Out-of-plane displacement of an axially travelling pinned-free plate

at x = `/2 for different values of the tension profile skew parameter ratio. The plate

dimensions are ` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness).

Poisson ratio is ν = 0.5. Tension profile skew parameter ratio α/αmax is given the

values 0, 10−6, 10−4 and 10−2.

Figure 7: Out-of-plane displacement of an axially travelling pinned-free plate

at x = `/2 for different values of midpoint (average) tension. The plate dimensions

are ` = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio is

ν = 0.3, tension profile skew parameter ratio is α/αmax = 10−6. Midpoint tension

T0 is given the values 5, 50, 500 and 5000 N/m.
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