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Abstract

We study safe conditions and process effectiveness of systems of moving materials

from the viewpoint of failures including fracture and loss of stability. The web is

modelled as a thin elastic plate made of brittle material, travelling between a system of

supports at a constant velocity, and subjected to bending, in-plane tension and small

initial cracks. We study crack growth under cyclic in-plane tension and transverse

buckling of the web analytically. We seek optimal in-plane tension that maximizes

a performance vector function consisting of the number of cycles before fracture, the

critical velocity and process effectiveness. The present way of applying optimization

in the studies of fracture and stability is new and affords an analytical tool for process

analysis techniques.

Keywords Moving materials; Fatigue fracture; Stability; Multi-objective optimization;

Productivity

1 Introduction

In many applications of axially moving materials, such as paper making processes, printing

presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles

and other materials, there is a demand for driving or running the system fast and, at the

same time, avoiding damages. It is known that, in such systems, an increase in tension has a

stabilizing effect but a decrease in tension may lead to a loss of stability. From the viewpoint

of fracture, tension has an opposite effect: high tension may lead to growing or arising of

cracks, and tension low enough then guarantees safe conditions.

By avoiding failures, we try to achieve high productivity or effectiveness of such long pro-

cesses in which the produced material travels between supports. The productivity depends
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mainly on the material velocity and the structural longevity. By longevity or structural

longevity, we refer to the number of load cycles that the (cracked) material sustains before

fracture failure. Introducing a new idea of combining the stability and fatigue fracture anal-

yses, we start with such theoretical models that provide explicit analytical solutions. More

complicated theoretical models can be used instead, resulting maybe in more accurate re-

sults but definitely in slower solution processes. We concentrate especially on paper making

productivity in which avoiding web breaks is crucial. Web breaks have concerned many

scientists, e.g., Valenzuela et al. (2009) who developed a computer-based setting for drive

controllers in paper machines to help to avoid web breaks. However, the analysis that we

will proceed is also applicable to any other analogous processes.

The stability of axially moving materials has been studied modelling the web as a string,

beam, membrane or plate, and the critical conditions have been examined with the help of

dynamic analysis of frequency spectrum. Stability of travelling rectangular membranes and

plates was first studied by Ulsoy and Mote (1982), and Lin and Mote (1995, 1996).

Archibald and Emslie (1958), and Simpson (1973) studied the effects of axial motion

on the frequency spectrum and eigenfunctions. It was shown that the travelling string and

beam both experience divergence instability at a sufficiently high speed, which is called the

critical speed. Dynamics and stability considerations of moving materials were reviewed by

Mote (1972) and Wickert and Mote (1988), who also have studied stability of axially moving

strings and beams (Wickert and Mote, 1990). Wang et al. (2005) recently showed that for

the transverse motion of a string, no static instability occurs at a critical velocity.

Stability of out-of-plane vibrations of axially moving rectangular membranes was studied

by Shin et al. (2005). For the behaviour of the membrane, it was found that the motion

is stable until a critical speed, at which statical instability occurs. In the recent studies
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concerning axially moving plates, material properties such as orthotropicity (Banichuk et al.,

2011a) or viscoelasticity (Marynowski, 2010) have been taken into consideration and their

effects on the plate behaviour have been investigated. Also such phenomena as winding in

the context of axially moving materials has been studied (Garziera and Amabili, 2000).

Lin (1997) studied stability of axially moving plates, and numerically showed that loss

of stability of the plate occurs in a form of divergence at a sufficiently high speed. The

critical velocity and the corresponding critical shapes of an axially moving elastic plate were

studied, and an analytical expression for the critical velocity was provided by Banichuk et al.

(2010a).

The field of fracture mechanics was developed by Irwin (1958), based on the early papers

of Inglis (1913), Griffith (1921) and Westergaard (1939). Linear elastic fracture mechan-

ics was first applied to paper materials by Seth and Page (1974), who measured fracture

toughness for different paper materials. Swinehart and Broek (1995) determined the frac-

ture toughness of paper using both the stress intensity factor and the strain energy release

rate. They found that the measured crack length and fracture toughness were in a good

agreement with the LEFM theory.

Wathén (2003) discussed how the damages in paper affect the web breaks in paper mak-

ing. Tryding (1996) has studied crack growth evolution in paper material using experiments

and a cohesive crack model with finite element analysis. Fatigue of wood-pulp fibres on

micro-structural level has been studied by Hamad (1997, 1998).

Previously in the context of web vibrations, fracture has been included into the problem

dynamics and the effects of the cracks on the stability has been studied. Various analyses of

vibrations and stability of stationary beams and plates exists in the literature. An extensive

review on fracture of cracked materials and challenges in such models was discussed by
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Dimarogonas (1996). Finite element analysis has often been applied to analyse the vibrations

and stability of cracked rectangular plates, considering centre or edge located cracks. Bachene

et al. (2009) and used the extended finite element method and Liew et al. (1994) developed

an efficient decomposition method to study vibrations of cracked plates. Brighenti (2005)

examined buckling failure of cracked plates for different crack orientations with the help

of finite element analysis. Both buckling and vibration analysis were covered in the finite

element studies of cracked plates by Prabhakara and Datta (1993, 1997).

Stahl and Keer (1972) studied vibrations and stability of rectangular plates with the help

of dual series equations. Vafai et al. (2002) studied parametric instability of plates having

one crack at an edge. They considered simply supported rectangular plates under periodic

loadings using an integral equation method. Effects of cracks on the eigenfrequencies and

eigenmodes of axially moving beams at sub-critical transport speeds was studied by Murphy

and Zhang (2000). However, the effect of the cracks on the results was found to be small.

We assume the material to undergo cyclic loading (and unloading) in the processes and

to contain small initial cracks at the free band (web) edges. The procedure of crack growth

under cyclic loading is a widely studied area known as fatigue crack growth. Paris and

Erdogan (1963) presented a law for the crack growth rate, which is called Paris’ law. Paris’

law assumes linear elastic fracture mechanics which in turn assumes a small plastic zone

ahead of the crack tip (Irwin, 1958).

As mentioned above, optimal magnitude of tension is essential for safe conditions in sys-

tems with axially travelling material. Seeking the optimal tension but having several objec-

tives, such as high structural longevity, transport velocity and productivity, we encounter a

multi-objective optimization problem, which usually has no unique optimal solution but a set

of ”equally optimal”, Pareto optimal results. Extensive literature reviews on multi-objective
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optimization are provided by White (1990) and Miettinen (1999). For a historical review of

the origin and development of multi-criteria optimization, we refer to Stadler (1979). Sur-

veys of concepts and methods of multi-objective optimization have also been done, e.g., by

Chankong and Haimes (1983) and Steuer (1986). Optimization under constraints on mate-

rial fracture has been done, e.g., by Banichuk et al. (2003), in which probabilistic-guaranteed

approach was applied to optimal design of membrane shells under quasi-brittle fracture.

In this study, we apply optimization to analyses of stability and fracture. To our knowl-

edge, theories of fracture and stability have not been combined before by using optimization.

We study crack growth under cyclic in-plane tension and transverse buckling of the web

analytically, which allows us extremely efficient solution methods for the use of real time

computing. We derive a multi-objective optimization problem consisting of maximizing the

critical web (band) velocity, the longevity (critical number of loading cycles) and the produc-

tivity with respect to the value of in-plane tension. The obtained objective vector function

is transformed into a scalar objective function using the weighting method. For several im-

portant sub-problems, the optimal value of tension is found analytically in the Pareto sense

with respect to the other problem parameters. The general results with dimensionless for-

mulation are represented. Some examples using parameter values typical of paper materials

are shown.

2 Problem Set-Up

Consider a web (continuum) travelling at a constant velocity between a long system of

supports (rollers). The web undergoes open draws between the supports, between which

the distances are assumed to be equal. The web is assumed to be tensioned and subjected
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to small tension variations during the process. Tension variations may arise due to Earth’s

gravity (Banichuk et al., 2011b), machine fluctuations or paper variability (Hristopulos and

Uesaka, 2002).

We model the web as a plate with infinite length travelling at a constant speed V0 in the

x direction and the supporting rollers to be located at x = 0, `, 2`, 3`, . . . . See Fig. 1.

Figure 1: A travelling web having an initial crack, and being supported by a system of
rollers.

We denote a rectangular part of the plate as follows:

Ωi = { (x, y) : i` ≤ x ≤ (i+ 1)` , −b ≤ y ≤ b }, i = 1, 2, 3, . . .

where ` and b are prescribed geometric parameters. The considered plate is assumed to have

constant thickness h, Poisson ratio ν, Young modulus E, bending rigidity D, and mass per

unit area (of the middle surface of the plate) m.

All the plate elements Ωi are subjected to homogeneous (in the y direction) tension T
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acting in the x direction. The sides

Γi,` = {x = i` , −b ≤ y ≤ b } and

Γi,r = {x = (i+ 1)` , −b ≤ y ≤ b }

are simply supported and the sides

Γi,− = { y = −b , i` ≤ x ≤ (i+ 1)` } and

Γi,+ = { y = b , i` ≤ x ≤ (i+ 1)` }

are free of traction. Tension is supposed to be cyclic such that the web may undergo few or

many cycles on each span. See Fig. 2.

Figure 2: Two examples of cyclic tension. There may be few or many tension cycles per
span.
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3 Stability of Transverse Vibrations of the Web and

Critical Velocity

The critical velocity corresponding to the loss of stability of the transverse vibrations of

the web is analysed here by the linearised Kirchhoff plate theory, in which we assume that

the transverse vibrations are small (Timoshenko and Woinowsky-Krieger, 1959). The critical

velocity for each span Ωi can be found by solving the buckling problem for dynamic transverse

deflections of the plate (see Banichuk et al., 2010a, or Lin, 1997).

Stationary equations describing the behaviour of the web with the applied boundary

conditions form the following eigenvalue problem (a buckling problem):

(mV 2
0 − T0)

∂2w

∂x2
+D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= 0 , in Ωi ,

w = 0 ,
∂2w

∂x2
= 0 , on Γi,` and Γi,r ,

∂2w

∂y2
+ ν

∂2w

∂x2
= 0 , on Γi,− and Γi,+ ,

∂3w

∂y3
+ (2− ν)

∂3w

∂x2∂y
= 0 , on Γi,− and Γi,+ , (1)

where D = Eh3/(12(1− ν2)), and we denote the eigenvalue

λ = γ2 =
`2

π2D
(mV 2

0 − T0) .

The travelling plate subjected to a constant tension experiences divergence instability at

a critical speed (Banichuk et al., 2010a)

(V cr
0 )2 =

T0

m
+
γ2
∗
m

π2D

`2
, (2)
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Figure 3: Behaviour of Φ and Ψ as functions of γ.

where γ2
∗ = λ∗ is the minimal eigenvalue of problem (1). Parameter γ = γ∗ is found as the

root of the equation (see also Fig. 3)

Φ(γ, µ)−Ψ(γ, ν) = 0 , (3)

where

Φ(γ, µ) = tanh

(√
1− γ
µ

)
coth

(√
1 + γ

µ

)
,

Ψ(γ, ν) =

√
1 + γ√
1− γ

(γ + ν − 1)2

(γ − ν + 1)2
, µ =

`

πb
. (4)

As it is seen from (3) – (4), the root γ = γ∗ depends on ν and µ and does not depend on

the other problem parameters, including the value of tension T0. Consequently, the critical

instability velocity, defined in (2), is increased with the increasing of tension T0. However,

increasing of T0 is limited due to initial damages and other imperfections.
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4 Fracture Under Constant Tension

Assume that the value of tension is constant T = T0 and that the plate has small surface

cracks that arise at the free boundaries of the plate and have length a with upper bound a∗,

i.e.,

a ≤ a∗ � 2 b , (5)

where a∗ is a given admissible value. The cracks are assumed to be orthogonal to the

boundary lines, and thus, the external loading mode is an opening mode and cracks are

considered in the xy plane. If distances between the cracks are large enough, we may

consider only one isolated crack of a limited length a = a∗. This is to say that there is no

correlation between the singular stress fields that arise nearby crack ends.

The stress intensity factor K can be expressed as (see Irwin, 1958, or Westergaard, 1939)

K = βσ
√
πa = β

T

h

√
πa . (6)

Here β = 1.12 is a geometric factor ( a
2b

is small) and σ = σx is a component of a stress

tensor. We express the brittle fracture condition as

K = KC , (7)

where KC is the fracture toughness of material.

Consider now that the biggest admissible crack length a∗ coincides with the critical crack

length acr, i.e.

a∗ = acr .
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In this case (T = T0), by definition of KC, we have

KC = Ka=acr = β
T0

h

√
πacr ,

so that we obtain the following expression for the critical value of tension:

T cr
0 ≡ (T0)a=acr =

KCh

β
√
πacr

. (8)

Thus, safe movement of the plate is realised when

T0 ≤ T cr
0 . (9)

Figure 4: An admissible length of the crack and the critical tension, a schematic figure. Note
the assumption acr = a∗ � 2 b.

If the tension increases and activates the critical value (8) (see Fig. 4), the crack will

propagate without stop and cut the web into two. This process of the crack growth is realised

in a dynamical manner and is considered as inadmissible and catastrophic for applications.

The crack size limits the value of tension, which in turn limits the value of the critical
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velocity. We now take into account the movement of the plate. From the viewpoint of

fracture, we assume that the rollers do not affect the crack behaviour.

When interested in the upper limit of the web velocity corresponding to a critical crack

size (and the critical value of tension), we may use Eq. (2) where the value of tension is the

critical value given in (8). In this way, the following safe range of velocities is obtained:

0 < V0 < V ∗0 ≡

√
γ∗
π2D

m`2
+

KCh

βm
√
πacr

. (10)

5 Fatigue Fracture Under Cyclic Tension

The plate is assumed to undergo cyclic loading and unloading processes caused by cyclic

variation in the value of in-plane tension T (Fig. 2). For one cycle, tension increases from

T = Tmin up to T = Tmax (the loading process) and then decreases from T = Tmax to T = Tmin

(the unloading process). We suppose quasi-static processes meaning that the dynamic effects

are excluded.

We define parameters T0 (average tension) and ∆T (small tension variation) such that

Tmin = T0 −∆T and Tmax = T0 + ∆T ,

Tmin ≤ T ≤ Tmax ,

and

T0 −∆T > 0 and
∆T

T0

� 1 .

We consider the plate longevity (number of loading cycles) applying the fatigue crack

growth theory. Suppose that the web contains one initial crack of length a0. The process of
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fatigue crack growth under cyclic tension (loading) can be described by the Paris’ law (Paris

and Erdogan, 1963). The describing equation and initial condition are

da

dn
= C(∆K)k , (a)n=0 = a0 , (11)

where the variation ∆K of the stress intensity factor K (defined in (6)) can be expressed as

∆K =
2β
√
πa

h
∆T . (12)

In Eq. (11), C and k are material constants and n is the number of cycles.

The ordinary differential equation (11) defines a quasi-static process of crack growth, and

determines the dependence of the crack length a on the number of cycles n, and is valid up to

the moment, when a = acr and the unstable crack growth (fracture of the web) is attained.

Suppose that the unstable crack growth is attained after n = ncr cycles, when the critical

crack length acr satisfies the limiting relation

(Kmax)a=acr = β
Tmax

h

√
πacr = KC . (13)

Note that Tmax and Tmin are the maximum and minimum tensions in the non-cracked

web at the crack location. Thus, the structural longevity can be measured by the number of

load cycles

n = ncr , (14)

for which a = acr, and the unstable fracture is realised. In the analysis process, the longevity

constraint can be taken as

ncr ≥ nC , (15)
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where nC is a given minimum value of cycles.

Using (11) and (12), we write the crack growth equation in the following form:

da

dn
= Cκk

0a
k/2 , κ0 =

2β
√
π

h
∆T . (16)

It follows from (16) and the initial condition in (11) that for considered values of the

parameter k 6= 2, we will have

n = A

[
1

a
(k−2)/2
0

− 1

a(k−2)/2

]
, A =

2

(k − 2)Cκk
0

. (17)

Using (13) and the inequality ∆T/T0 � 1, we obtain

acr =
1

π

(
KCh

βTmax

)2

≈ 1

π

(
KCh

βT0

)2

, (18)

and, consequently, we will have the following expression for the critical number of cycles:

ncr = (n)a=acr = A

[
1

a
(k−2)/2
0

−
(√

πβT0

KCh

)k−2
]
. (19)

From the condition of positiveness of the expression in (19), we find the maximum value of

admissible tensions

T0 ≤
1
√
πa0

KCh

β
≡ TM

0 . (20)

In the special case k = 2, we can find the critical number of cycles to be

ncr = B ln

[
1

πa0

(
KCh

βT0

)2
]
, B =

1

Cκ2
0

, T0 ≤ TM
0 , (21)
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and the tension limit TM
0 is expressed by (20).

The dependence of the critical number of cycles ncr on the average tension T0 and the

problem parameter k is shown in Fig. 5 using dimensionless quantities defined below in

(26)–(28).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
0
~

n cr~

 

 

k=2.5
k=3
k=4
k=5

Figure 5: Dependence of the critical number of cycles (dimensionless) on the average tension
(dimensionless).

The critical value of tension maximum T cr
max (or approximation of average T cr

0 ) may be

studied with respect to the problem parameters. For example, if we set ncr = nC, we may

solve T cr
max from (18)–(19) (or from (18) and (21) if k = 2).
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6 Optimal Value for In-Plane Tension via Multi-Criteria

Optimization

We present a productivity criterion (performance function) with the help of the plate velocity

V0 and the process time tf :

M = m0V0tf , m0 = 2bm . (22)

where

0 < V0 < V cr
0 ,

0 < tf < tcrf or 0 < n < ncr ,

and furthermore, the critical value of the velocity V cr
0 is given by (2), and the critical number

of the cycles ncr by (19) (and by (21) in the case k = 2). For a small cycle time period τ

and a big number of cycles n, we assume that tf = nτ (approximately).

Using the critical velocity V cr
0 , longevity ncr and process effectiveness M cr and noticing

that these values depend on the value of in-plane average tension T0, we define the following

vector function:

J(T0) =


JV(T0)

JN(T0)

JM(T0)

 ≡


V cr
0 (T0)

ncr(T0)

M cr(T0)

 , (23)

where M cr is given by (22) with critical parameter values.

Now, we formulate the multi-objective optimization problem. It is required to determine

the optimal value T ∗0 of in-plane tension T0 that gives a maximum of the considered vector
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function, i.e.

J∗ = J(T ∗0 ) = max
T0

J(T0) . (24)

The max operation in (24) is considered in the Pareto sense. It is

T ∗0 = arg max
T0

J(T0)

if there is no other value T̂0, such that

Ji

(
T̂0

)
≥ Ji

(
T ∗0
)
, i = V,N,M ,

and the following rigorous inequality is satisfied for at least one component criterion:

Jj

(
T̂0

)
> Jj

(
T ∗0
)
.

To solve this multi-objective optimization problem, we apply the weighting method, which

is one of the most relevant substitutes for vector optimization problems. The preference

function is formulated as a sum of the single objective functions JV, JN, JM associated with

the weighting factors CV, CN, CM:

JC = CVJV + CNJN + CMJM , (25)

where we suppose that

CV ≥ 0, CN ≥ 0, CM ≥ 0 ,

CV + CN + CM = 1 .
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We will consider the multi-objective optimization problem of finding the optimal in-plane

tension T ∗0 separately for different particular cases using the expressions presented in Section

2.

For convenience of performing the analysis and for reduction of characteristic parameters,

we introduce the following values with tildes:

J̃V =
JV

J0
V

, J0
V =

√
KCh

mβ
√
πa0

,

J̃N =
JN

J0
N

, J0
N =

2

(k − 2)Cκk
0a

(k−2)/2
0

, (26)

J̃M =
JM

J0
M

, J0
M = m0τJ

0
VJ

0
N ,

and represent the criterion functions as

J̃V =
(
T̃0 + d

)1/2
,

J̃N = 1− T̃0
k−2

, (27)

J̃M = J̃VJ̃N ,

using the dimensionless values of problem parameters

T̃0 =
β
√
πa0

KCh
T0 , d =

γ2
∗π

2Dβ
√
πa0

l2KCh
, 0 < T̃0 < 1 . (28)
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6.1 Maximizing the Critical Velocity and Safety Criterion

We consider the case of maximization of the velocity criterion J̃V and the safety criterion J̃N

when k = 3. In this case, we have

J̃1 ≡ CVJ̃V + CNJ̃N ,

CV + CN = 1 . (29)

Let us study the solution of (29) with respect to the weight CN. Now, the optimization

problem is (CV = 1− CN)

max
0≤T̃0≤1

(1− CN)(T̃0 + d)1/2 + CN(1− T̃0) . (30)

The object function in (30) is concave, so the weighting method may be used for finding the

Pareto optimal solutions.

Since the object function is concave, the solution T̃ ∗0 of (30) can be found at a zero of

the derivative of the object function if it lies on the interval [0, 1]. Otherwise, the solution

is 0 or 1. The solution T̃ ∗0 depends on the weight CN and it can be found analytically. The

following dependence of the optimal value for the dimensionless tension T̃ ∗0 on CN holds:

0 ≤ CN ≤
1

1 + 2
√
d+ 1

: T̃ ∗0 = 1 ,

1

1 + 2
√
d+ 1

< CN <
1

1 + 2
√
d

: T̃ ∗0 =

(
1− CN

2CN

)2

− d ,

1

1 + 2
√
d
≤ CN ≤ 1 : T̃ ∗0 = 0 .
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Consequently, the values of the component functions are found in the following form:

J̃V =

√
T̃ ∗0 + d =

1− CN

2CN

,

J̃N = 1− T̃ ∗0 = 1 + d−
(

1− CN

2CN

)2

,

and, for the considered problem of critical velocity and longevity maximization, the Pareto

front (PF) of the optimal solution is given by the equation

J̃N = 1 + d− J̃2
V , (31)

where J̃V ∈ [
√
d,
√

1 + d].

6.2 Maximization of the Critical Velocity and Process Effective-

ness

Consider now another case, where we maximize the functions J̃V (critical velocity criterion)

and J̃M (process effectiveness criterion). We discuss again the case k = 3. In this case, the

weighting method problem is

J̃2 ≡ CVJ̃V + CMJ̃M ,

CV + CM = 1 ,

so that we study

max
0≤T̃0≤1

CV(T̃0 + d)1/2 + CM(T̃0 + d)1/2(1− T̃0) . (32)
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The object function in (32) is concave. Now, the extremal condition is

dJ̃2

dT̃0

= CV
dJ̃V

dT̃0

+ CM
dJ̃M

dT̃0

= CV
dJ̃V

dT̃0

+ CM

(
J̃N

dJ̃V

dT̃0

+ J̃V
dJ̃N

dT̃0

)
(33)

= 0.

The solution of the problem is studied with respect to the weight CM. By (33), it is found

that the optimal value for the dimensionless tension T̃ ∗0 depends on CM as follows:

0 ≤ CM ≤
1

2d+ 3
: T̃ ∗0 = 1

1

2d+ 3
< CM ≤ 1 : T̃ ∗0 =

1− 2dCM

3CM

.

For the optimized functions J̃V and J̃M, we have

J̃2
V =

1

3

(
1

CM

+ d

)
,

J̃M =
1

3

(
2d+ 3− 1

CM

)√
1

3

(
1

CM

+ d

)
.

The Pareto front (PF) of the problem under consideration is described by the equation

J̃M = (1 + d)J̃V − J̃3
V (34)

defined on the interval

J̃V ∈
[√

(1 + d)/3,
√

1 + d

]
.
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6.3 Maximizing the Safety Criterion and Process Effectiveness

As a third case, we study the maximization of the functions J̃N (safety criterion) and J̃M

(process effectiveness criterion) when k = 3. We have

J̃3 ≡ CNJ̃N + CMJ̃M ,

CN + CM = 1 ,

and the optimization problem reads

max
0≤T̃0≤1

CN(1− T̃0) + (1− CN)(T̃0 + d)1/2(1− T̃0) . (35)

The object function J̃3 is concave. We study the problem (35) with respect to the weight

CN. Now the optimal value of the dimensionless tension T̃ ∗0 depends on CN in the following

way:

0 ≤ CN <
1− 2d

1− 2d+ 2
√
d

: T̃ ∗0 =
2

9

(
α2 − 3d+ 3/2− α

√
α2 + 3d+ 3

)
,

1− 2d

1− 2d+ 2
√
d
≤ CN ≤ 1 : T̃ ∗0 = 0 ,

where

α = CN/CM = CN/(1− CN) .

In this case, the Pareto front is given by

J̃M = J̃N

√
1 + d− J̃N, J̃N ∈

[
2

3
(1 + d), 1

]
. (36)
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Note that the maximum of (25) in the case CM = 1 and CV = CN = 0 is found above by

solving the problems (32) and (35). Then, J̃V =
√

(1 + d)/3 and J̃N = 2
3
(1 + d), which is

also a Pareto optimal solution for the problem (30) confirmed by (31).

7 Numerical Results and Discussion

The results obtained in previous sections are illustrated numerically in this section. Param-

eter values are chosen such that they describe paper materials and paper making process

conditions. They are ν = 0.3, E = 109 Pa, m = 0.08 kg/m2, h = 10−4 m, ` = 0.1 m,

2b = 10 m, and β = 1.12. Paper material properties have been measured by, e.g., Seth and

Page (1974), and Yokoyama and Nakai (2007).

We first study the case with constant tension. In Fig. 6(a), the predicted critical value
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Figure 6: Critical tension (a) and the corresponding critical velocity (b) with respect to the
critical crack length for two different values of the strain energy rate.

of tension T cr
0 is plotted with respect to the critical crack length acr (Eq. (8)). The results

are plotted for two different values of KC: the smaller one (2.8 ·106 Pa
√

m) corresponding to
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a newsprint and the larger one (4 · 106 Pa
√

m) corresponding to a writing paper (Seth and

Page, 1974). The results are plotted for the range 0 ≤ acr ≤ 0.1 m.

In Fig. 6(b), the upper limit of safe velocity V ∗0 (in vacuum) is plotted with respect to

the critical crack length acr (Eq. (10)). The results suggest that a safe web velocity is higher

for a web with smaller initial cracks.

Note that we assume acr � 2 b, which allows us to use a constant crack geometry factor

β = 1.12. The results in Fig. 6 are independent from the parameter b but the accuracy of

the results depends on b. Thus, the results in Fig. 6 may not be valid for very narrow webs

(2b = 0.1 m).

We then study fatigue fracture of the travelling plate under cyclic tension. In Fig. 7(b),

the value of critical tension maximum T cr
max is studied as a function of problem parameters

a0 and ∆T . In Fig. 7(a), the values of the critical crack length corresponding to the values

of critical tension are shown. We set the value for the number of cycles the web must sustain

to be nC = 100. In Paris’ law, we used values k = 3 and C = 10−18. Paris’ constants

have been measured for many materials, e.g. for nickel based superalloys by Bazant and

Xu (1991), for concrete by Branco et al. (2009), and for epoxy by Brown et al. (2009), and

the constants vary a lot for different materials. Parameter k is approximately 3 for many

materials (Farahmand and Nikbin, 2008) but it may also be larger (for epoxy, k = 9.7, see

Brown et al., 2009) or smaller (for rubber, k = 0.211, see Schubel et al., 2003). Values for

parameter C vary between 10−40 and 1.

In Fig. 7, the used value for fracture toughness was KC = 2.8 · 106 Pa
√

m. The initial

crack length a0 was given values 0.01 m − 0.1 m, and the variation in tension was between

0.1 N/m and 5 N/m. The critical number of cycles was constant, nC = ncr = 100. The

results are as expected. If the variation in tension is big, only small initial cracks can be
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Figure 7: Critical crack length acr (a) and critical tension T cr
max (b) with respect to the initial

crack length a0 and the tension variation ∆T . The number of cycles ncr = nC = 100 is fixed.

accepted. Note that in the figure, the critical conditions are shown. Also the number of

cycles corresponds to the critical situation. These results are mainly qualitative.

Finally, we analyse the results of the optimization problems. The Pareto fronts (31), (34)

and (36) are illustrated in Fig. 8 when the initial crack length is a0 = 0.01 m.
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Figure 8: Pareto fronts for the problems max{J̃N, J̃V}, max{J̃M, J̃V}, and max{J̃M, J̃N},
respectively, in the case when the initial crack length a0 = 0.01 m.

In Fig. 9, the optimal values of tension T ∗0 (N/m) for the problems (30), (32) and (35)
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are plotted with respect to the weights (CN, CM and CN, respectively) and the initial length

of the crack a0.
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Figure 9: Dependence of the optimal tension
T0 on the parameter a0 and the weight CN or
CM.

In Fig. 9(a), we present the optimal values of tension T ∗0 when the velocity JV is optimized

(weighted) against the longevity JN . One may note that even for a small crack size (a0 =
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0.01), the optimal value of tension is almost zero, when the longevity is given a large weight

(CN > 0.8). Weighting the velocity, the optimal tension gets very large values (T ∗0 ∼ 1400

N/m).

In Fig. 9(b), we weight the velocity function JV against the process effectiveness function

JM. In this case, it is noted that the length of the initial crack length significantly affects

the optimal value of tension.

Figure 9(c) shows the third case, where the longevity JN and the process effectiveness

JM are compared. Also here, it is seen that a0 has an effect on the value of optimal tension,

especially when the process effectiveness is weighted.

Table 1: Dependence of the optimal tension (dimensionless T̃ ∗0 and dimensional T ∗0 ) on the
selected weights for the three studied cases. The used initial crack length was a0 = 0.01 m.

arg max{CNJN + CVJV}
CN 0.4 0.5 0.6 0.7 0.8 0.9

T̃ ∗0 0.5624 0.2499 0.1110 0.0459 0.0156 0.0030
T ∗0 (N/m) 801 356 158 65 22 4

arg max{CMJM + CVJV}
CM 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T̃ ∗0 0.8333 0.6666 0.5555 0.4761 0.4166 0.3703 0.3333
T ∗0 (N/m) 1187 950 791 678 594 528 475

arg max{CNJN + CMJM}
CN 0.0 0.1 0.2 0.3 0.4 0.5 0.6

T̃ ∗0 0.3333 0.2932 0.2500 0.2042 0.1571 0.1111 0.0695
T ∗0 (N/m) 475 418 356 291 224 158 99

Note that the case CM = 1 and CV = CN = 0 is included in both Figs. 9(b) and 9(c), being

the worst case in the previous figure and the best one in the latter figure. Analysing these

two sub-problems helps us to make decisions on the weights to be selected. The optimum of

process effectiveness JM gives some kind of reference value for the desired tension.

With the help of Fig. 9, some values of the weights CN and CM were selected and the
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solutions were collected and are shown in Table 1. The initial crack length a0 gets values

0.005 m, 0.01 m, 0.05 m and 0.1 m. In Table 1, also the dimensional values (N/m) for

tension are shown. In the case CM = 1, CV = CN = 0, the optimal tension level of the

process is T̃ ∗0 = 0.3333 or T ∗0 = 475 N/m. Comparing this to the results for a stationary

paper web (Eq. (18) and Fig. 6(a)), we see that tension level T0 = 475 N/m corresponds

to the critical crack of length acr = 0.088 m for KC = 2.8 · 106 Pa
√

m and acr = 0.18 m for

KC = 4 · 106 Pa
√

m.

8 Conclusions

This paper was devoted to finding optimal conditions in a system, where material (contin-

uum) travels between a system of supports (rollers). The model of a thin elastic plate subject

to bending, in-plane tension and fatigue crack growth was used. The optimized criteria were

maximal critical web speed, maximal structural longevity and maximal process effectiveness.

Several sub-problems of the derived multi-objective optimization problem were solved ana-

lytically using the weighting method to find the Pareto optimal results. The value of optimal

tension at the edges of the moving web was sought in the studied cases.

The key result of this study was finding the analytical expression for process effectiveness

(productivity). With the help of it, we were able to explore the whole solution set and to

proceed detailed parametric studies. It also provided efficient computational analysis.

The analytically solved Pareto fronts and optimal values for tension were analysed with

the help of figures and numerical tables. It was seen that the length of the initial crack affects

the optimal value of tension as expected: the larger the crack size, the smaller the safe value

of tension. It was noticed that the different kinds of criteria of high velocity and high
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longevity were difficult to compare to each other, but the criterion of process effectiveness

could be seen as some kind of reference value to the optimal tension.

The presented way of optimizing process effectiveness, and at the same time minimizing

probability of failures, in this kind of systems is new. It provides tools that can be utilized

in processes with moving materials, such as paper making. However, one must note that the

model used in this study was simplified: for example, the web-air interaction was excluded.

The effect of the surrounding fluid is known to lower the critical speed (see e.g. Banichuk

et al., 2010b).
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List of Figure Captions

Figure 1. A travelling web having an initial crack, and being supported by a system of rollers.

Figure 2. Two examples of cyclic tension. There may be few or many tension cycles per span.

Figure 3. Behaviour of Φ and Ψ as functions of γ.

Figure 4. An admissible length of the crack and the critical tension, a schematic figure.

Note the assumption acr = a∗ � 2 b.

Figure 5. Dependence of the critical number of cycles (dimensionless) on the average tension

(dimensionless).

Figure 6. Critical tension (a) and the corresponding critical velocity (b) with respect to

the critical crack length for two different values of the strain energy rate.

Figure 7. Critical crack length acr (a) and critical tension T cr
max (b) with respect to the

initial crack length a0 and the tension variation ∆T . The number of cycles ncr = nC = 100

is fixed.

Figure 8. Pareto fronts for the problems max{J̃N, J̃V}, max{J̃M, J̃V}, and max{J̃M, J̃N},

respectively, in the case when the initial crack length a0 = 0.01 m.

Figure 9. Dependence of the optimal tension T0 on the parameter a0 and the weight CN



or CM.


