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On Static Instability and Estimates for Critical
Velocities of Axially Moving Orthotropic Plates

under Inhomogeneous Tension∗

Tytti Saksa Juha Jeronen

Abstract

In this study, models for axially moving orthotropic plates are investigated
analytically. Linearised Kirchhoff plate theory is used, and the energy forms
of steady-state models are considered. With the help of the energy forms, ho-
mogeneous and inhomogeneous tension profiles in the moving direction of the
web are studied. In the cases of both homogeneous and inhomogeneous ten-
sion profiles, some limits for the critical web velocity are found analytically. A
numerical example is given about effects of the shear modulus in the case of an
inhomogeneous tension profile.

1 Introduction

In industrial processes with axially moving materials, such as making of paper, steel
or textiles, high transport speed is desired but it also may cause loss of stability. In
modeling of such systems, the researchers have generally studied dynamic behavior
of strings, membranes, beams and plates taking into account the transverse, Coriolis
and centripetal accelerations of the material motion. The first studies on them in-
clude Sack (1954), Archibald and Emslie (1958), Miranker (1960), Swope and Ames
(1963) and Mote (1968, 1972, 1975).

Sack (1954), Archibald and Emslie (1958) and Simpson (1973) studied the effects
of axial motion on the frequency spectrum and eigenfunctions. In their research,
it was shown that the natural frequency of each mode decreases as the transport
speed is increased, and that the traveling string and beam both experience diver-
gence instability at a sufficiently high speed. Wickert and Mote studied stability
of axially moving strings and beams using modal analysis and Green’s function
method (Wickert and Mote, 1990). They presented the expressions for the critical
transport velocities analytically. However recently, Wang et al. (2005) showed ana-
lytically that no static instability occurs for the transverse motion of a string at the

∗This research was supported by the Jenny and Antti Wihuri Foundation and the Academy of
Finland, grant #140221
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critical velocity. For axially moving beams with a small flexural stiffness, Kong and
Parker (2004) found closed-form expressions for the approximate frequency spec-
trum by a perturbation analysis.

Stability of travelling rectangular membranes and plates was first studied by Ul-
soy and Mote (1982), and Lin and Mote (1995, 1996). Stability of out-of-plane vibra-
tions of axially moving rectangular membranes was studied by Shin et al. (2005).
For the behaviour of the membrane, it was found that the motion is stable until a
critical speed, at which statical instability occurs. Lin (1997) studied stability of axi-
ally moving plates, and numerically showed that loss of stability of the plate occurs
in a form of divergence at a sufficiently high speed. Banichuk et al. (2010a) consid-
ered stability and studied the critical velocity and the corresponding critical shapes
of an axially moving elastic plate.

In the recent studies concerning axially moving plates, material properties such
as orthotropicity (Banichuk et al., 2011) or viscoelasticity (Marynowski, 2010) have
been taken into consideration and their effects on the plate behaviour have been in-
vestigated. In Banichuk et al. (2011), divergence instability for travelling orthotropic
rectangular plates, with two opposite edges simply supported and the other two
edges free, was studied and an explicit expression for the limit velocity of stable
axial motion was found. Hatami et al. (2009) studied free vibration of the mov-
ing orthotropic rectangular plate in sub- and super-critical speeds, and flutter and
divergence instabilities at supercritical speeds. Their study was limited to simply
supported boundary conditions at all edges. Free vibrations of orthotropic rectan-
gular plates, which are not moving, have been studied by Biancolini et al. (2005)
including all combinations of simply supported and clamped boundary conditions
on the edges. Xing and Liu (2009) obtained exact solutions for free vibrations of
stationary rectangular orthotropic plates considering three combinations of sim-
ply supported (S) and clamped (C) boundary conditions: SSCC, SCCC and CCCC.
Kshirsagar and Bhaskar (2008) studied vibrations and buckling of loaded station-
ary orthotropic plates. They found critical loads of buckling for all combinations of
boundary conditions S, C and F.

Tension inhomogeneities and their effects on the divergence instability of moving
plates have been studied in Banichuk et al. (2010b). In their study, a linearly inhomo-
geneous tension profile was considered in the case of a moving isotropic plate. The
inhomogeneities in tension were found to change the buckling shapes dramatically
compared to the shapes in the case of homogeneous tension.

In this report, we study the energy forms corresponding to (the static form of)
a travelling orthotropic plate under homogeneous or inhomogeneous tension. It is
shown that the critical velocity for an orthotropic plate under homogeneous tension
is greater than the critical velocity of an ideal membrane. The differential form of
the equations for a travelling orthotropic plate under an arbitrary tension field are
derived from the corresponding energy form. For a linearly inhomogeneous tension
profile, we solve the stress field with the help of the (Airy) stress function. For this
type of inhomogeneity, we show that the critical velocity is always real-valued and
present a numerical example.

2



2 A model of an axially moving orthotropic web

Consider an axially moving orthotropic rectangular plate travelling between two
supports. The plate is assumed to be subjected to tension T . The problem set-up is
shown in Figure 1. The plate width is 2b, its thickness is h, and the length of the span
is `. Throughout this study, the plate is assumed to travel at a constant velocity V0.
We denote the transverse displacement of the plate by the function w(x, y).

The material parameters for the orthotropic plate are denoted bym (the mass per
unit area), ν12 and ν21 (the Poisson ratios in plane), E1 and E2 (the Young’s moduli
in the x and y directions, respectively), and G12 (the shear modulus).

V0

T x

y

0
T

z

E 1
2
E2b

Figure 1: A travelling orthotropic plate.

We consider the case of a travelling orthotropic plate under inhomogeneous ten-
sion denoting the in-plane tensions by Txx, Tyy and Txy = Tyx. The bilinear form
corresponding to the energy of the moving orthotropic thin plate (see also Timo-
shenko and Woinowsky-Krieger (1959), in which the strain energy is given for a
stationary orthotropic plate, and Chen et al. (1998), in which bilinear energy forms,
e.g., for stationary isotropic plates are studied) is

b(w, v) =

∫
Ω

[
−mV 2

0

∂w

∂x

∂v̄

∂x
+ Txx

∂w

∂x

∂v̄

∂x
+ Tyy

∂w

∂y

∂v̄

∂y
+ Txy(

∂w

∂x

∂v̄

∂y
+
∂w

∂y

∂v̄

∂x
)

+D1
∂2w

∂x2

∂2v̄

∂x2
+ A1

∂2w

∂x2

∂2v̄

∂y2
+ A1

∂2w

∂y2

∂2v̄

∂x2
+D2

∂2w

∂y2

∂2v̄

∂y2
+ 4A2

∂2w

∂x∂y

∂2v̄

∂x∂y

]
dΩ ,

(1)

where v̄ in the complex conjugate of v. In (1), the bending rigidities Di and Ai are
defined as

D1 =
E1h

3

12 (1− ν12ν21)
, D2 =

E2h
3

12 (1− ν12ν21)
, (2)

and

A1 =
ν12E2h

3

12 (1− ν12ν21)
=

ν21E1h
3

12 (1− ν12ν21)
, A2 =

G12h
3

12
, (3)

where we have assumed the relation

E1ν21 = E2ν12 . (4)
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Let us derive the (partial) differential equation corresponding to the energy (1).
Integration by parts of b(w, v) gives (the Rayleigh-Green formula)

b(w, v) =

∫
Ω

[
mV 2

0

∂2w

∂x2
− Txx

∂2w

∂x2
− 2Txy

∂2w

∂x∂y
− Tyy

∂2w

∂y2

−
(
∂Txx
∂x

+
∂Txy
∂y

)
∂w

∂x
−
(
∂Txy
∂x

+
∂Tyy
∂y

)
∂w

∂y

+D1
∂4w

∂x4
+ 2(A1 + 2A2)

∂4w

∂x2∂y2
+D2

∂4w

∂y4

]
v̄ dΩ

+

∫ b

−b

[(
−mV 2

0

∂w

∂x
+ Txx

∂w

∂x
+ Txy

∂w

∂y

)
v̄

]x=`

x=0

dy

+

∫ `

0

[(
Tyy

∂w

∂y
+ Txy

∂w

∂x

)
v̄

]y=b

y=−b
dx

+

∫ b

−b

[
D1

(
∂2w

∂x2
+
A1

D1

∂2w

∂y2

)
∂v̄

∂x
+ 4A2

∂2w

∂x∂y

∂v̄

∂y

]x=`

x=0

dy

+

∫ `

0

[
D2

(
∂2w

∂y2
+
A1

D2

∂2w

∂x2

)
∂v̄

∂y

]y=b

y=−b
dx

−
∫ b

−b

[
D1

(
∂3w

∂x3
+
A1

D1

∂3w

∂x∂y2

)
v̄

]x=`

x=0

dy

−
∫ x=`

x=0

[
D2

(
∂3w

∂y3
+
A1 + 4A2

D2

∂3w

∂x2∂y

)
v̄

]y=b

y=−b
dx . (5)

We take into account the tension equilibria

∂Txx
∂x

+
∂Txy
∂y

= 0 ,
∂Txy
∂x

+
∂Tyy
∂y

= 0 . (6)

and tension boundary conditions on the free boundaries

(Tyy)y=±b = 0 , (Txy)y=±b = 0 , 0 ≤ x ≤ ` . (7)

For w, we introduce the (simply supported and free) boundary conditions

(w)x=0, ` = 0 ,

(
∂2w

∂x2

)
x=0, `

= 0 , −b ≤ y ≤ b , (8)

(
∂2w

∂y2
+ β1

∂2w

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ ` , (9)(
∂3w

∂y3
+ β2

∂3w

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` , (10)

where
β1 =

A1

D2

= ν12 , β2 =
A1 + 4A2

D2

= ν12 +
4G12

E2

(1− ν12ν21) . (11)
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In (5), the terms on the second row zero out after inserting (6). We use the boundary
conditions for tension in (7), and for the displacement w in (8), (9) and (10). Due
to linearity, v̄ satisfies the boundary conditions if and only if v does. We take into
account that for v, we have v = v̄ = 0 at x = 0, `, which implies that also the
derivative of v in the y direction vanishes, i.e. ∂v/∂y = ∂v̄/∂y = 0. All the boundary
terms (on the last six lines) vanish after these insertions.

The partial differential equation corresponding to (5) is

mV 2
0

∂2w

∂x2
− Txx

∂2w

∂x2
− 2Txy

∂2w

∂x∂y
− Tyy

∂2w

∂y2

+D1
∂4w

∂x4
+ 2(A1 + 2A2)

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 , (12)

being subjected to the boundary conditions in (8)–(10).
In-plane tensions and stresses σxx, σxy and σyy are related by

Txx = h σxx , Txy = h σxy , Tyy = h σyy . (13)

Referring to (6), the in-plane stresses σxx, σxy and σyy satisfy the equilibrium equa-
tions

∂σxx
∂x

+
∂σxy
∂y

= 0 ,
∂σxy
∂x

+
∂σyy
∂y

= 0 . (14)

In the following, we will present the Airy stress equilibrium for an orthotropic
plate. With the assumption of small deflections, the strains εxx, εyy and γxy are de-
fined with the help of the in-plane displacement u and v (in the x and y directions,
respectively) as follows:

εxx =
∂u

∂x
, εyy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
,

for which the following equation holds

∂2εxx
∂y2

+
∂2εyy
∂x2

− ∂2γxy
∂x∂y

= 0 . (15)

Stresses and strains are related to each other by Hooke’s law (inverse relation):

εxx =
1

E1

σxx −
ν21

E2

σyy , εyy =
1

E2

σyy −
ν12

E1

σxx , γxy =
1

G12

σxy . (16)

We introduce the stress function F :

σxx =
∂2F

∂y2
, σyy =

∂2F

∂x2
, σxy = − ∂2F

∂x∂y
. (17)

The stresses in (17) satisfy automatically (14). Inserting (17) and (16) into (15), we
obtain (with the help of the relation in (4)):

∂4F

∂x4
+

(
E2

G12

− 2ν21

)
∂4F

∂x2∂y2
+
E2

E1

∂4F

∂y4
= 0 . (18)
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Note that the orthotropic model can be reduced to an isotropic model by choosing
G12 = GH (Huber, 1923; Timoshenko and Woinowsky-Krieger, 1959), where

GH =

√
E1E2

2(1 +
√
ν12ν21)

. (19)

In practice, the measured values for the shear modulus G12 may significantly differ
from this ideal value (Seo, 1999; Yokoyama and Nakai, 2007). In such cases, the full
orthotropic model must be used.

2.1 A travelling orthotropic plate under homogeneous tension

The dynamic equation for an axially moving orthotropic plate under homogeneous
tension is (Marynowski, 2008; Banichuk et al., 2011)

m

(
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2

)
−T0

∂2w

∂x2
+D1

∂4w

∂x4
+ 2D3

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 , (20)

where
D3 = A1 + 2A2 .

For the edges at the supports, we set simply supported boundary conditions and for
the non-supported edges we set free boundary conditions. See equations (8)–(10).

We consider the steady-state form of equation (20):

(mV 2
0 − T0)

∂2w

∂x2
+D1

∂4w

∂x4
+ 2D3

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 . (21)

The corresponding energy form is (compare with (1))

b1(w, v) =

∫
Ω

[
−(mV 2

0 − T0)
∂w

∂x

∂v̄

∂x
+D1

∂2w

∂x2

∂2v̄

∂x2
+ A1

∂2w

∂x2

∂2v̄

∂y2

+ A1
∂2w

∂y2

∂2v̄

∂x2
+D2

∂2w

∂y2

∂2v̄

∂y2
+ 4A2

∂2w

∂x∂y

∂2v̄

∂x∂y

]
dΩ , (22)

From (22), it can be easily shown for the divergence velocity V div
0 that

m(V div
0 )2 − T0 ≥ 0. For v = w, we obtain (for a complex number a, ‖a‖2 = aā)

b1(w,w) =

∫
Ω

[
−(mV 2

0 − T0)

∥∥∥∥∂w∂x
∥∥∥∥2

+D1

∥∥∥∥∂2w

∂x2
+
A1

D1

∂2w

∂y2

∥∥∥∥2

+ (D2 −
A2

1

D1

)

∥∥∥∥∂2w

∂y2

∥∥∥∥2

+ 4A2

∥∥∥∥ ∂2w

∂x∂y

∥∥∥∥2 ]
dΩ .

The constant D2 − A2
1/D1 ≥ 0, since

D2 −
A2

1

D1

= D2(1− A2
1

D1D2

) = D2(1− ν12ν21) ,
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and 0 ≤ √ν12ν21 ≤ 1/2 and D2 > 0. For b1(w,w) = 0, we obtain

(m (V div
0 )2 − T0)

∫
Ω

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ︸ ︷︷ ︸
≥0

=

∫
Ω

[
D1

∥∥∥∥∂2w

∂x2
+
A1

D1

∂2w

∂y2

∥∥∥∥2

+ (D2 −
A2

1

D1

)

∥∥∥∥∂2w

∂y2

∥∥∥∥2

+ 4A2

∥∥∥∥ ∂2w

∂x∂y

∥∥∥∥2 ]
dΩ︸ ︷︷ ︸

≥0

.

This implies that m(V div
0 )2 − T0 ≥ 0, and finally for the critical velocity: V div

0 ≥√
T0/m. This is to say that in the case of homogeneous tension, the divergence

velocity of an orthotropic plate is always greater than the divergence velocity of an
ideal membrane, which is

√
T0/m.

2.2 A travelling orthotropic plate under a linear tension profile

Consider now a case in which the tension profile is linear at the web edges x = 0
and x = `. That is, (Txx)x=0, ` = T0 + αy where T0 and α are positive constants such
that Txx is non-negative along the edge. The parameter α will be called the tension
profile skew parameter. See Figure 2. We introduce boundary conditions for the
stresses:

(σxx)x=0, ` =
1

h
(T0 + αy) , (σxy)x=0, ` = 0 , −b ≤ y ≤ b ,

(σyy)y=±b = 0 , (σxy)y=±b = 0 , 0 ≤ x ≤ ` . (23)

With the help of the boundary conditions in (23) and the relations in (17), we find

0

Figure 2: A moving plate subjected to tension with a linear profile at the edges.

the boundary conditions for F . Note that above the last two boundary conditions in
(23) guarantee that (7) are satisfied. The boundary conditions for the stress function
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F read as(
∂2F

∂y2

)
x=0, `

=
1

h
(T0 + αy) ,

(
∂2F

∂x∂y

)
x=0, `

= 0 , −b ≤ y ≤ b ,(
∂2F

∂x2

)
y=±b

= 0 ,

(
∂2F

∂x∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` . (24)

The solution to the boundary value problem (18) and (24) is

F (x, y) =
1

h

(
T0
y2

2
+ α

y3

6
+ c1x+ c2y + c0

)
where c0, c1 and c2 are arbitrary real constants. Now the tensions are

Txx = h
∂2F

∂y2
= T0 + αy , Tyy = h

∂2F

∂x2
= 0 , Txy = h

∂2F

∂x∂y
= 0 . (25)

The partial differential equation for an axially moving orthotropic plate under a
linear tension profile can now be written:

mV 2
0

∂2w

∂x2
− (T0 + αy)

∂2w

∂x2
+D1

∂4w

∂x4
+ 2D3

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 . (26)

Assuming that T0 + αy ≥ 0 and proceeding similarly as in the previous section, we
may show that the divergence velocity V div

0 gets always real values:

m (V div
0 )2

∫
Ω

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ︸ ︷︷ ︸
≥0

=

∫
Ω

[
(T0 + αy)

∥∥∥∥∂w∂x
∥∥∥∥2

︸ ︷︷ ︸
≥0

+D1

∥∥∥∥∂2w

∂x2
+
A1

D1

∂2w

∂y2

∥∥∥∥2

+ (D2 −
A2

1

D1

)

∥∥∥∥∂2w

∂y2

∥∥∥∥2

+ 4A2

∥∥∥∥ ∂2w

∂x∂y

∥∥∥∥2 ]
︸ ︷︷ ︸

≥0

dΩ .

Thus, m(V div
0 )2 ≥ 0 and V div

0 is real-valued.

3 Static analysis of stability loss

We present the solution of (26) and (8)–(10) in the following form:

w(x, y) = sin
(πx
`

)
f
(y
b

)
, (27)

where f(y/b) is an unknown function. Introducing a new variable η = y/b and
inserting (27) into (26), we obtain

µ4H2
d4f

dη4
− 2µ2H3

d2f

dη2
+ (H1 + α̃η)f = λf , −1 ≤ η ≤ 1 , (28)

8



where

µ =
`

πb
, α̃ =

b`2

π2D0

α , (29)

the eigenvalue λ is defined as

λ =
`2

π2D0

(
mV 2

0 − T0

)
, (30)

and the dimensionless bending rigidities are

H1 =
D1

D0

, H2 =
D2

D0

, H3 =
D3

D0

. (31)

In (31), D0 can be chosen freely, e.g., D0 = D1.
The boundary conditions (9)–(10) become(

µ2 d2f

dη2
− β1f

)
η=±1

= 0 , (32)

(
µ2 d3f

dη3
− β2

df
dη

)
η=±1

= 0 . (33)

The parameters β1 and β2 are explained above in equation (11). Note that for an
isotropic material H1 = H2 = H3 = 1 with D0 = D, and β1 = ν and β2 = 2 − ν. For
comparison, see Banichuk et al. (2010b).

4 Numerical analysis and results

The problem (28), (32)–(33) was solved numerically via the finite difference method.
The solution process is reported in details in Banichuk et al. (2010b).

The strong form (28), (32)–(33) was discretized directly, with classical central dif-
ferences of second-order asymptotic accuracy. To account for the boundary con-
ditions, the method of virtual points was used. Because the boundary conditions
are homogeneous, it is possible to add them to the discrete system by rewriting the
original discrete problem as a generalized linear eigenvalue problem

Af = λBf , (34)

where B is an identity matrix with the first two and last two rows zeroed out, A
contains the differential operators (in (28) on the left hand side), f is the discretized
form of f . In (34), the first two and the last two rows of A contain the discretized
boundary conditions.

In the computations, the geometric parameters for the plate were ` = 0.01 m,
2b = 1m, h = 10−4m. The used material parameters were m = 0.08 kg/m2, E1 =
6.8 GPa, E2 = 3.4 GPa, ν12 = 0.2 (and ν21 = 0.1 from equation (4)) and G12 =
0.7GH, GH, or 1.3GH (where GH ≈ 2.11 GPa is calculated with the help of other

9



material parameters by equation (19)). The tension profile skew parameter was α =
10−5αmax, where αmax = T0/b. That is, the tension at the egdes y = ±b differs 0.001
% from the average tension T0. (For homogeneous tension, α = 0.) For the finite
difference method, 600 computation nodes were used.

For different values of the shear modulus, the buckling mode and the critical
velocity were studied.

In Table 1, the results for the critical velocities are shown for three different val-
ues of the shear modulus G12. It can be seen that the smaller the value of the shear
modulus the lower the critical velocity V cr

0 . However, the effect on the critical veloc-
ity is relatively small. The critical velocity for an orthotropic plate with G12 = GH

and homogeneous tension (α = 0) is V cr
0 = 83.4460 m/s (by keeping other parameter

values the same). We may see that for a large value of the shear modulus (1.3GH),
the critical velocity for a plate with an inhomogeneous tension profile can be larger
than that of a plate with homogeneous tension but with a smaller value of the shear
modulus.

Table 1: Critical velocities V cr
0 for three different shear moduli G12.

G12 0.7GH GH ≈ 2.11 GPa 1.3GH

V cr
0 (m/s) 83.4452 83.4458 83.4461

In Figure 3, the effect of the shear modulus variation on the buckling mode is
visualised by presenting the displacement w at x = `/2. As expected, the larger
the values of the shear modulus the smaller the change in the buckling mode when
compared to the case with a homogeneous tension profile.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

y

w
(ℓ
/
2
,y
)

Displacement at x = ℓ/2; α = 1e-05 αmax

 

 
G

12
 = 1.47 GPa

G
12

 = 2.11 GPa

G
12

 = 2.74 GPa

Figure 3: Effect of the value of the shear modulus G12 on the buckling mode. The
plate is under a linear tension profile, the tension profile skew parameter having the
value α = 10−5αmax.
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In Figure 4, both the effect of the value of the shear modulus G12 and the effect of
tension inhomogeneity are illustrated.
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Figure 4: Effects of the tension inhomogeneities and the value of the shear modulus
on the buckling mode. The tension profile skew parameter α increases from left to
right, and the shear modulus decreases from top to bottom.

5 Conclusion

Models for axially moving orthotropic plates under an inhomogeneous tension pro-
file were studied. For the critical velocity of a moving orthotropic plate under ho-
mogeneous tension, it was shown that the critical velocity is higher than that of an
ideal membrane. A partial differential equation corresponding to the energy form
of a moving orthotropic plate under any tension field was derived. The case of a
linearly inhomogeneous tension profile was studied in details. It was shown analyt-
ically that the values of the critical valocity for the buckling problem are real-valued.
A numerical example about the effects of the shear modulus on the critical speeds
and buckling modes was given. It was seen that the greater the value of the shear
modulus the smaller the change in the buckling mode when compared to the case

11



with a homogeneous tension profile. The effect of the shear modulus on the critical
speed was minor but for greater values of the shear modulus the plate was found to
be more stable.

The analytical results found can be seen helpful for future studies in the area
and for implementing numerical algorithms. For example, the limits for the critical
velocities guarantee that the results given by a numerical algorithm are physically
meaningful.
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