
Ville Salonen

Automatic Portability Testing

Master’s Thesis
in Information Technology
October 17, 2012

University of Jyväskylä

Department of Mathematical Information Technology

Jyväskylä

Author: Ville Salonen
Contact information: ville.salonen@iki.fi
Title: Automatic Portability Testing
Työn nimi: Automaattinen siirrettävyystestaus
Project: Master’s Thesis in Information Technology
Page count: 68
Abstract: The complexity of today’s software calls for automatic testing. Automatic
tests are even more important when software is developed for multiple environments.
By writing automatic tests on unit, integration, system and acceptance testing levels
using different techniques, developers can better focus on the actual development in-
stead of performing manual tests and customers can be sure that there isn’t a constant
regression in features compared to previous versions. If tests are written in the same
languages as the actual and using portable tools, the same automatic test suites can be
performed on all environments which the software itself is required to support without
manifold increase in testing personnel.
Suomenkielinen tiivistelmä: Nykypäivän ohjelmistojen monimutkaisuus johtaa au-
tomaattitestien tarpeeseen. Automaattiset testit ovat vielä tärkeämpiä, kun ohjelmis-
toa kehitetään usealle eri alustalle. Kirjoittamalla automaattitestejä yksikkö-, integraatio-
, järjestelmä- ja hyväksyntätestaustasoilla käyttäen useita eri testaustekniikoita, kehit-
täjät voivat keskittyä paremmin varsinaiseen kehitykseen manuaalitestauksen sijaan ja
asiakkaat voivat olla varmoja, etteivät ohjelmiston ominaisuudet hajoa uusien ver-
sioiden myötä. Jos testit kirjoitetaan samalla kielellä kuin ohjelmisto ja käyttäen
siirrettäviä testaustyökaluja, samat automaattitestit voidaan suorittaa kaikilla niillä
alustoilla, joita ohjelmisto tukee, moninkertaistamatta testaushenkilöstön kokoa.
Keywords: Software testing, portability, software development, automated tests.
Avainsanat: Ohjelmistotestaus, siirrettävyys, ohjelmistotuotanto, automatisoidut testit.

Copyright c© 2012 Ville Salonen

All rights reserved.

Preface

I first dabbled in portability testing as a teenager writing web pages. At the time,
Microsoft Internet Explorer and Netscape Navigator were the two major browsers and
web pages were notoriously difficult to write so that they would be displayed similarly
in both browsers. Later on as a professional software developer I’ve made software for
multiple different platforms such as Windows, Linux and Mac computers, Android and
Symbian smartphones and even Microsoft Xbox 360 game console.

Unfortunately most platforms have minor differences between different versions of
the platform. One time I was involved in developing a software which was required to
work on Windows versions of XP, Vista and 7 and which used Windows Communication
Foundation to communicate between different software instances. One of the new
features of Windows Vista was User Account Control which was developed to secure
the platform by restricting different kinds of operations software can perform. One of
these restrictions concerned Windows Communication Foundation. It took us a whole
week to locate the source of the problem and another week to refactor the software
to work around this problem. This and other similar experiences made me want to
learn more about portability and how to use software testing to ensure portability of
developed software.

This thesis wouldn’t have been completed with the help of my thesis instructor
Tapani Ristaniemi who provided valuable insight, my colleagues Ilkka Laitinen and
Jaakko Kaski at Sysdrone Oy who helped me keep the writing going by having weekly
stand up meetings on the progress of the thesis and Tommi Kärkkäinen who helped
shape the idea behind the thesis during the thesis seminar course.

i

Glossary

Configuration Testing The testing process of finding a hardware combination that
should be, but is not, compatible with the program. [54]

Compatibility (1) The ability of two or more systems or components to perform their
required functions while sharing the same hardware or software environment. (2)
The ability of two or more systems or components to exchange information. [45]

Portability The ease with which a system or component can be transferred from one
hardware or software environment to another. [45]

Testing (1) The process of operating a system or component under specified con-
ditions, observing or recording the results, and making an evaluation of some
aspect of the system or component. (2) (IEEE Std 829-1983 [5]) The process of
analyzing a software item to detect the differences between existing and required
conditions (that is, bugs) and to evaluate the features of the software items. [45]

ii

Contents

Preface i

Glossary ii

1 Introduction 1
1.1 Objective of the Thesis . 2
1.2 Research Methods . 3
1.3 Constraints of Research . 4
1.4 Structure of the Thesis . 4

2 Software Testing 5
2.1 What is Software Testing? . 5
2.2 World Without Software Testing . 6
2.3 Complexity of the Software Testing . 7
2.4 Automatic Testing . 8
2.5 Chapter Summary . 10

3 Portability Testing 11
3.1 History of Portability . 11
3.2 Different Types of Portability . 15
3.3 Motivation for Portability . 16
3.4 Problems of Portability and Portability Testing 17
3.5 Chapter Summary . 18

4 Testing Levels 19
4.1 Defining Testing Levels . 19
4.2 Unit Testing . 22
4.3 Integration Testing . 23
4.4 System Testing . 25
4.5 Acceptance Testing . 26
4.6 Chapter Summary . 28

iii

5 Test Techniques 29
5.1 Alpha and Beta Testing . 29
5.2 Configuration Testing . 30
5.3 Conformance/Functional/Correctness Testing 30
5.4 Graphical User Interface Testing . 31
5.5 Installation Testing . 32
5.6 Penetration Testing . 32
5.7 Performance and Stress Testing . 33
5.8 Recovery Testing . 34
5.9 Regression Testing or Back-to-Back Testing 35
5.10 Reliability Achievement and Evaluation 36
5.11 Test-Driven Development . 37
5.12 Usability Testing . 37
5.13 Chapter Summary . 38

6 Case Study: Sysdrone Oy 40
6.1 Software Development for Health Technology Industry 40
6.2 Current Testing Systems . 41
6.3 Supported Software Types . 44
6.4 Requirement Specifications . 44
6.5 Chapter Summary . 45

7 Automatic Portability Testing Environments 46
7.1 Common Aspects . 46
7.2 Web-based Software Project . 46
7.3 Desktop Software Project . 48
7.4 Server Software Project . 49
7.5 Chapter Summary . 50

8 Summary 51

9 References 53

iv

1 Introduction

"Program testing can be used to show the presence of bugs,
but never to show their absence!"

Edsger W. Dijkstra

Lockheed Martin F-22 Raptor is a 5th generation fighter plane [56]. Australian Air
Marshal Angus Houston has described it as as "the most outstanding fighter aircraft
ever built" [10]. Each of them costs about 150 million U.S. dollars [101]. On February
11th, 2007 a group of these fighters were en route from Hickam Air Force base in
Hawaii to Kadena Air Force base in Japan [19]. As they were near 180th meridian, the
computers aboard the planes crashed. Navigation, communication, fuel and all other
systems shut down. The pilots tried to reset their planes but the problem persisted
[20]. What had happened? Problems started exactly on 180th meridian which is
also known as the International Date Line. When one passes the International Date
Line, the local time is shifted 24 hours [7]. The software aboard the fighter planes
had passed tremendous amount of testing but the developers and the testers had not
managed to test them against this particular scenario. A minor omission with dramatic
consequences.

Software permeates many things in the world: it adjusts the braking system in your
car, stabilizes photos you capture with your camera, handles your money at the bank
and enables to you to share all about your latest vacation to your friends near and far.
Whereas the computers executing this software are rarely in error, humans writing the
software are not infallible. Even if the software works as its developers intended, it
might not be the software the users actually needed or wanted. The backbone of the
creation of software is the software development process. This process is in place to
ease estimation of work load, to keep the project from falling behind deadlines and a
lot of other things. One of these things is the testing of the software.

Software has changed from simple trajectory calculations of the 1940s to hugely
complex and intertwined systems of today. When a user encounters a problem, she
rarely has a clue where the error actually happened. Even the developers might be
perplexed. To bring order to this chaos, computer scientists have formulated many
test processes which can be integrated to the software development process. Care-
fully planned and executed testing allows the users to succeed or just relax using a

1

well-working software. It also gives the developers a peace of mind. As software is
given increasing amounts of responsibility of our daily lives, this testing also becomes
increasingly necessary.

Simply making the software work on a single platform might not be enough. In
1940s there were just a handful of computers at all and most of these were designed
for some specific purpose such as calculating trajectories of ammo. These days many
people have much more powerful devices containing much more complex software in
their pockets, backpacks or their desktops. Despite what device the user is using at the
moment, they usually want to have access to their data and favorite applications. This
means that the software developers have to support a vast array of different hardware
and software. This brings us to the concept of portability of a software.

In my experience even the basic testing of the developer software is too often done
poorly and in haste. When the portability is added to the mix, developers usually just
concentrate on getting the software working on their favorite platform. This leads to
forcing a lot of the testing process on the end users. In extreme cases, this ad hoc
nature of testing might even to lead to fatal consequences. When the time came for
writing my master’s thesis, I pondered on many different topics but ultimately chose
this. I wanted to delve deeper into the general software testing and find out what other
people are doing when faced with the issue of portability.

While this thesis discusses general themes related to portability, the main focus is
on topics related to software development performed at Sysdrone Oy (later Sysdrone)
and more specifically its health technology projects. Health technology software is
increasingly targeted directly at the actual people who monitor and improve their own
health. This leads to a wide array of potential devices used to access and execute these
health technology software. The software must function correctly no matter which
supported platform it is used. Malfunction is at least annoying and in worst case, even
fatal.

1.1 Objective of the Thesis

The objective of the thesis is to plan a practical automatic portability testing environ-
ment for the kind of software typically developed at Sysdrone. To support the planning
process, this thesis is used in defining software testing and portability and describing
different aspects of these concepts. The most important question this thesis answers
is:

2

• How can Sysdrone use automatic testing to detect and mitigate portability issues
in its software development process?

Related supporting questions are:

• What is automatic testing, why is it important and how it can be done?

• What is portability, what kind of problems are related to it and how can these
issues be detected automatically?

First supporting question is used to explore why automatic testing is so important,
how it is used in software development process and what kind of benefits and costs
it presents. Automatic testing is a common subject in software development but ac-
cording to my experiences it is usually understood in too shallow context. My goal is
to gain in-depth knowledge about different kinds of testing levels, test techniques and
how these can be interwoven with software development processes.

Second supporting question is used to explore why portability is an important fea-
ture of a software, what kinds of problems are related to portability and why performing
portability manually is not recommended. Based on my experiences, portability is a
major issue and usually software is developed primarily on a single platform. This
may lead to a situation where other platforms are usually tested only later on in the
software development process and the testing is performed manually. Manual testing
leads to potentially unsystematic testing and major resource requirements.

1.2 Research Methods

The research of software testing and portability is done mainly by reading academic
and other professional literature. Some real world examples and supporting data are
found from blogs, Internet statistics and discussion boards such as Stack Overflow.

The information about software being developed at Sysdrone is achieved by my
2-year experience of the company and by consulting my colleagues at Sysdrone.

Plans for automated portability testing environments are made with the supporting
theoretical background of the previous parts of the thesis and by researching existing
portability testing environments which are already either planned or developed else-
where.

3

1.3 Constraints of Research

Software development, portability and software testing are complex concepts with a
vast array of different aspects. This thesis is mostly concerned with the kind of software
testing and portability issues which are typical in the software projects developed at
Sysdrone.

Although the thesis concerns portability testing, it is more focused on the kind of
portability testing which can be automated. Thus this thesis does not delve into the
topic of for example manually testing a huge array of Android handsets. This kind of
testing, although useful, is so labor intensive that small development teams at Sysdrone
cannot perform such testing.

1.4 Structure of the Thesis

Chapter 2 defines software testing, provides arguments supporting its necessity, de-
scription of its complexity and how automation of tests help mitigate the effects of the
complexity.

Chapter 3 defines portability, provides arguments for why portability is increasingly
important feature of a software, describes why portability is a hard problem and how
software portability can be tested.

Chapter 4 defines different test levels and generally describes, which kind of aspects
of a software each of these levels tests.

Chapter 5 specifies different kinds of test techniques. The list of test techniques
is mainly derived from IEEE’s Software Engineering Body of Knowledge but it is also
supported by various other literature sources. Each test technique is inspected from
the point of view of portability and automation.

Chapter 6 presents Sysdrone as a case study of a software development company.
The types of software developed at Sysdrone are categorized and the need for encom-
passing testing for software related to medical devices is discussed.

Chapter 7 contains plans for how Sysdrone could develop automatic portability
testing environments for different types of software typically developed at the company.

Chapter 8 contains the summary of the thesis.

4

2 Software Testing

This chapter contains the definition of software testing, arguments supporting its ne-
cessity, description of its complexity and how automation of tests helps mitigating the
effects of the complexity.

2.1 What is Software Testing?

Definitions for software testing can be hugely varied. One commonly heard everyday
description of why testing is performed is that it is done to ensure or improve the quality
of the software. This description, although true, is too vague to be of any use when
assessing software testing because "quality" has not been precisely defined. According
to motorcycle enthusiast and philosopher Robert M. Pirsig [83]: "Any philosophic
explanation of Quality is going to be both false and true precisely because it is a
philosophic explanation. The process of philosophic explanation is an analytic process,
a process of breaking something down into subjects and predicates. What I mean (and
everybody else means) by the word ’quality’ cannot be broken down into subjects and
predicates. This is not because Quality is so mysterious but because Quality is so
simple, immediate and direct." Thus a more precise definition is required.

IEEE Computing Society’s Guide to Software Engineering Body of Knowledge [44]
defines software testing as follows: "Testing is an activity performed for evaluating
product quality, and for improving it, by identifying defects and problems. Software
testing consists of the dynamic verification of the behavior of a program on a finite set
of test cases, suitably selected from the usually infinite executions domain, against the
expected behavior." The definition includes the mention of quality but it defines specific
ways to achieve better quality. This definition also underlines the fact that often it
is not possible to test all scenarios: instead a specific subset of the most important
scenarios is selected for verification.

According to Cem Kaner [55]: "Software testing is an empirical technical inves-
tigation conducted to provide stakeholders with information about the quality of the
product or service under test." The information produced by testing can be used by the
stakeholders in various ways. If the quality of the product or service has been proven
satisfactory, stakeholders can decide to publish the product to users. In another case
the testing might have identified a life-threatening and unhandled scenario which needs

5

further resources so that the risk can be mitigated or possibly even completely elimi-
nated.

The definition of testing has evolved over the years [22]. In year 1979 testing was
defined as "the process of executing a program or system with the intent of finding
errors". One definition from year 1983 was: "Testing is any activity aimed at evaluating
an attribute of a program or system. Testing is the measure of software quality."
More recently in year 2002 testing was defined as "a concurrent lifecycle process of
engineering, using, and maintaining testware in order to measure and improve the
quality of the software being tested." Of course, there are variations between definitions
by different people in any given year but these examples illustrate the shift in attitudes
regarding testing. Software testing is being regarded as a more integral part of the
software development process than in the past.

However, software testing can be a lot of work and dangerously often when the
deadlines are closing in the software testing is the first thing to be left out. This may
partly be because software testing usually pays back only in the long run. Thus it is
easy to adapt a similar mind-set that was used in the build-up of the economic crisis
in late-2000s: "I’ll Be Gone, You’ll Be Gone" [36]. The consequences of this kind of
behavior are discussed in the section 2.2.

2.2 World Without Software Testing

What would happen if software testing wasn’t performed? One example was presented
in the Introduction of this thesis but there are countless others.

Peter Sestoft [100] has described very unfortunate results from a poorly performed
software testing: Faulty baggage handling system at Denver International Airport led
to a delay of a year for the opening of the whole airport and caused financial losses of 360
million dollars. Ariane 5 rocket used control software which was originally developed
for Ariane 4 but the code was not tested with the new rocket and the rocket launch
failed and caused losses of hundreds of millions of dollars. Even though financial losses
of these kinds of scales are very unfortunate, poorly performed testing can also lead to
fatal consequences: Patriot missiles used in Gulf War performed imprecise calculations
and the resulting rounding errors made the defensive missiles miss incoming Scud
missiles and led to the death of American soldiers in 1991. Therac-25 radio-therapy
equipment and its faulty control software led to fatal radiation doses given to cancer
patients in 1987.

In United States, National Institute of Standards & Technology estimated that the
inadequate infrastructure for software testing resulted in an annual national cost of

6

22.2-59.5 billion U.S. dollars in year 2001 [98]. Based on the above evidence it is safe
to assert that the software testing is indeed important.

2.3 Complexity of the Software Testing

Bugs are result from any of these reasons [103]:

• User executed untested code. Time constraints often result in at least partially
untested codebase.

• Code statements were performed in a surprising order.

• The user entered untested input values. Testing all different input value combi-
nations can be very difficult.

• The user’s operating environment was never tested. For example building a
large network with thousands of devices takes a lot of resources and such testing
environment is rarely built for internal testing.

Unfortunately computer cannot guarantee that the software works correctly. When
a program code is compiled as a runnable software, compiler only makes sure that the
form of the software does not contain errors: the errors in the meaning of the software
cannot be detected by the compiler. However, finding these errors in the meaning of
the software can be found in better ways than just randomly experimenting with the
software: these better ways are collectively called software testing [100].

On the surface, testing the software doesn’t sound so hard. You write the software
and verify that it works correctly. Unfortunately even a simple program can be so
complex that the programmer can’t think of all the possible combinations.

Consider the following program: "The program reads three integer values from an
input dialog. The three values represent the lengths of the sides of a triangle. The
program displays a message that states whether the triangle is scalene, isosceles, or
equilateral." What kinds of tests would be required to adequately test this simple
program? Myers [73] lists 14 test cases: 13 of them represent errors that actually have
occurred in different versions of the program. One additional requires that each of
these test cases specify the expected output from the program. According to Myers’
experience, qualified professional programmers score on average only 7.8 out of the
possible 14.

The above program can very likely be written with most programming languages in
less than 50 lines of code. To put that figure in perspective, Linux kernel version 2.6.35

7

de f is_leap_year (year) :
i f year % 400 == 0 : re turn True
i f year % 100 == 0 : re turn Fal se
i f year % 4 == 0 : re turn True
re turn Fal se

a s s e r t not is_leap_year (1900) , ’1900 should not be a l eap year . ’
a s s e r t is_leap_year (1996) , ’1996 should be a l eap year . ’
a s s e r t not is_leap_year (1998) , ’1998 should not be a l eap year . ’
a s s e r t is_leap_year (2000) , ’2000 should be a l eap year . ’
a s s e r t not is_leap_year (2100) , ’2100 should not be a l eap year . ’

Figure 2.1: A simple example of a test program that verifies leap year algorithm.

contained 13 million lines of code [53]. Windows Server 2003 contained 50 million lines
of code: its development team consisted of 2,000 people but its testing team consisted
of 2,400 people [59].

It is not effective to apply the same type of testing to all different type of software.
For example when developing a simple game, small bugs or issues under intense CPU
load are usually not as serious as they would be in a medical device or space shuttle.
If the same type of testing which is performed for space shuttle would be required for
all mobile games, the increased resource requirements would likely lead to a massive
decline of the amount of mobile games. This further complicates the testing process
because a development team cannot simply copy a testing process from other project
with a good reputation of catching bugs and be done with it because it might prove
to either be a lot more exhaustive than required or it might not detect defects which
were acceptable in the other project but which are unforgivable in this project.

2.4 Automatic Testing

Figure 2.1 presents a simple example of how a programmatic unit test suite can be
implemented. The tested function is_leap_year is given an integer value and the
function returns True or False based on whether the given year is a leap year or not.
Below the function is a list of test cases and their expected values. For example year
2000 is a leap year because it is divisible by 400 but year 2100 is not a leap year even
though it is divisible by 4 because it is also divisible by 100 but not divisible by 400.
The test program provides some kind of output whether tests succeeded or failed. In

8

this particular test program the output is simply printed in the console.
Because automatic tests do not require manual resources, they can be performed

easily. For example, when developer is writing the software, she can easily perform
all or specific tests to ensure that new changes won’t break any existing tests. Even
though tests are automatic, some of them may be so complex or there may be so
many tests that performing all of them can take many hours or even days. This kind
of testing would interfere with the development. Because of this all tests in bigger
software projects are only performed during the night or even only when releasing a
new build.

According to Robert C. Martin [61], not only is manual testing highly stressful,
tedious and error prone, it also immoral because it turns humans in machines. If a test
procedure can be written as a script, it is also possible to write a program to execute
that test procedure. This leads to cheaper, faster and more accurate testing than the
manual work performed by humans, and it also frees humans to do what we do best:
create.

According to research, code reviews are one of the best ways in finding bugs. Un-
fortunately this sort of code reviewing is a manual process and gathering the right
people for performing code review or maybe even having to train them takes a lot of
effort. Because of this, it is impossible to analyze the whole codebase with code re-
views. Fortunately same type of analysis can to a degree be automated by employing
static code analysis. This kind of tool analyzes either the program code itself or the
compiled bytecode and compares it to a database of common bug patterns. Catching
bugs as early as possible makes fixing them easier [57]. Because static code analysis
can be performed even in realtime as the developer is typing the code, bugs can be
caught very early. Static code analysis cannot be used to detect all possible problems:
for example an usability problem or incorrectly implemented mathematical algorithm
cannot be detected if they are technically correct program code.

Automatic testing is especially important with rapid application development. Rapid
application development attempts to minimize development schedule and provide fre-
quent builds. This is done so that user can evaluate the evolution of the software in
small increments and provide feedback to development team so they can ensure that
the software reflects the actual needs and preferences of the user [25]. Because of the
rapid speed, there is no time for a comprehensive manual testing each time a build
is shipped but if the testing would not be performed, the specified level of quality
could not be ensured. The best way to achieve rapid shipping of new builds without
compromising the quality is by employing automatic software testing.

9

2.5 Chapter Summary

Software testing is a process to improve the quality of a software under development.
However quality should be defined more explicitly in the context of each software.
Software testing is an important part of the software development and its omission
can cause a lot of serious problems. Unfortunately nearing deadlines often result in
omitted or poorly performed testing.

Complexity of the modern software projects leads to a vast number of different
operation combinations which have to be tested. Even very simple pieces of software
can have so many combinations that even qualified professional programmers fail to
recognize missing test cases. Thus automated testing is a preferred way of testing
software in many complex and detailed test cases. Even though automated testing is
a very valuable tool, all software testing cannot and should not be automated.

10

3 Portability Testing

This chapter introduces the concept of portability, lists different types of portability,
presents reasons for developing portable software, contains the definition of portability
testing, and description of problems related to portability and portability testing.

3.1 History of Portability

The amount of work required for moving a software from one environment to another
is dictated by how portable the specific software is. Ideally software could moved
between environments without any modifications to the source code. Unfortunately,
this is rarely possible in the real world [38].

Peter J. Brown has given the following definition for portability [16]: "Software is
said to be portable if it can, with reasonable effort, be made to run on computers other
than the one for which it was originally written. Portable software proves its worth
when computers are replaced or when the same software is run on many different
computers, whether widely dispersed or at a single site."

There is no single specific definition for an environment of a software. Over the
years, the environments have changed considerably.

First electronic digital computer, ENIAC, was developed for calculating ballistic
trajectories. The programs for ENIAC were first developed on paper and later input
in the computer itself via physical interface consisting of hundreds of wires and 3,000
switches [23]. ENIAC had no storage for programs but instead they were only stored
in the position of ENIAC’s wires and switches. This was a problem because when users
wanted to run some another program on ENIAC, they had to change it physically by
changing the wires and switches. This could take days [96]. The only environment of
ENIAC programs was the ENIAC itself.

Manchester Baby was the first stored-program computer [96]. Stored-program com-
puter is able to store programs in its memory and change between them without users
changing any wires or flipping thousands of switches. Despite the move to memory
storage, the environment of the programs was still the machine itself.

Programs for these early computers were written directly in machine language which
had hardware-specific instructions such as subtraction. Machine languages are also
called first-generation programming languages [34]. These computers had no operating

11

systems so the only environment of programs running on these computers was the
hardware itself. The machines differed from each other in such dramatic ways that
there was no way to directly move a program from one kind of machine to another.

One of the biggest problems with machine languages was that they were closer to
the language of the machine instead of the language of the user. Writing programs
in 0s and 1s was difficult and changing larger programs was practically impossible.
First step towards higher levels was the development of assembly languages. Assembly
languages are symbolic representations of the machine languages. Programs written
in assembler were translated to machine languages and thus their portability is nearly
impossible. Assembly languages are called second-generation programming languages.
[34] An example of an assembly program can be seen in code listing 3.1.

12

ve r i f y that 1 + 2 + 3 + . . + n = (1 + n) ∗ n / 2 i s t rue f o r
n = 3 . Later on , we ’ l l wr i t e a program f o r a r b i t r a r y n .
#

main : # beg inning o f the program

i n i t i a l i z e $8 , $9 , and $10 as 1 , 2 , 3 .
l i $8 , 1 # $8 now conta in s 1
l i $9 , 2 # $9 now conta in s 2
l i $10 , 3 # $10 now conta in s 3

compute 1+2+3, r e s u l t in $11
add $11 , $8 , $9 # $11 = $8+$9 = 3
add $11 , $11 , $10 # $11 = $11+$10 = 3+3 = 6

compute (1+3)∗3/2 , r e s u l t in $12
add $12 , $8 , $10 # $12 = $8+$10 = 1+3 = 4
mul $12 , $12 , $10 # $12 = $12∗$10 = 4∗3 = 12
div $12 , $12 , $9 # $12 = $12/$9 = 12/2 = 6

subtract , r e s u l t in $13
sub $13 , $11 , $12 # $13 = $11−$12 = 6−6 = 0

v e r i f i e d
j $31 # end the program

Figure 3.1: A program to verify that 1+2+3=(1+3)*3/2. [75]

First true general-purpose computers were developed in the 1950s and 1960s. Whereas
previous computers were typically built for some specific purpose such as calculating
ballistic trajectories, general-purpose computers could used for many different kinds
of computers. During the same time high-level programming languages (also called
third-generation programming languages) were developed. First of them, Fortran was
introduced in 1954 and finally developed in 1957. High-level programming languages
abstract the differences between different computers [34]. Compilable high-level lan-
guages are compiled from the source code written by the programmer to objects which
contain the program in a machine language with some additional data of entry points
and external calls [12].

Up to the introduction of operating systems, computers could only run one program

13

at a time so the environment of a program consisted only of the machine itself. First
operating system, GM-NAA I/O was developed by IBM for 704 mainframe in 1956
[46]. With GM-NAA I/O the environment consisted of both hardware and operating
system. GM-NAA I/O didn’t allow for multiple programs to run simultaneously[46] so
other programs couldn’t interact nor interfere with a program.

As computers were loaded with operating systems, portability didn’t mean just
transfering a program from one hardware to another. In 1978 Ritchie and Johnson [50]
wrote: "The realization that the operating systems of the target machines were as great
an obstacle to portability as their hardware architectures led us to a seemingly radical
suggestion: to evade that part of the problem altogether by moving the operating
system itself."

According to an article published in The CPA Journal [35], the definition of porta-
bility hasn’t changed from the 1970s. These sources still define portability as an ability
to move a software from hardware platform and/or operating system to another. I ar-
gue that this is too narrow of a definition.

Oglesby et al. [78] have made the following observation: "The history of software
development has shown a trend towards higher levels of abstraction. Each level allows
the developer to focus more directly on solving the problem at hand rather than im-
plementation details." Because the nature of software development has changed due
to increasing levels of abstraction, I argue that the definition of portability should be
broadened to better reflect the real problems developers face when moving a software
from one environment to another.

For example, languages such as C# and Java are not compiled directly to machine
code but instead they are compiled to bytecode. This bytecode is then executed in
a virtual machine which doesn’t provide a direct access to neither operating system
or hardware for the program. There are ways to break out of these restrictions with
tools such as Java Native Interface but one of the key benefits of using these kinds of
languages is the ease of portability so using native interfaces is disadvantageous.

As another example an HTML5 application can’t interact directly with operating
system nor hardware. The Internet browsers act as operating systems for web applica-
tions.

Defining the portability of these kinds of software in terms of hardware and operat-
ing system support is irrelevant because the developer has no access to hardware and
operating system. However these types of software still face portability problems such
as in the case of executing a Web application in different browsers. Thus the problem
of portability is not simply solved by abstracting just hardware and operating system.

As hardware becomes more general-purpose, the specialty functionality moves from

14

hardware to software. For example whereas before some software would have required
some specific math co-processor which the software would have been written directly
against, these days software usually require some third party libraries to provide the
needed functionality. Portability between different available third party libraries be-
comes the more essential problem for developer to solve instead of solving the problem
of portability between specific hardware components.

3.2 Different Types of Portability

There are a lot of different types of portability. Typically only specific types of porta-
bility are related to a particular software. Thus it is important to define the portability
context of a software before planning how to test portability of a software. This is by no
means a comprehensive list but are listed more as examples of what type of portability
issues might be encountered.

One of the most typical portability issue is the wide selection of operating systems.
Mainstream desktop and laptop operating systems are Microsoft Windows, Apple Mac
OS X and Linux-based distributions. On the mobile front the most common ones are
Google Android, Apple iOS, Windows Phone, RIM BlackBerry OS and Nokia Symbian.
In addition to these there are lot of more specialized operating systems in embedded
devices, mainframes and other different hardware platforms.

Embedded software have a wide array of different hardware architecture. These
different hardware architectures have different characteristics such as whether they are
big endian or small endian. Embedded software will not be discussed in more detail
in this thesis because of the reasons described in 1.3 but hardware architecture may
present issues even on mainstream computers and operating systems. For example,
Apple Inc. sold its computers with four different kinds of processors in years 2005 and
2006. Previously Apple had used PowerPC-based processors which were available as
both 32-bit and 64-bit versions. In year 2005, Apple announced its plans to switch over
to x86-based processors manufactured by Intel [3]. First versions of its computers came
with 32-bit Core Solo and Core Duo processors [4] but at the end of year 2006, Apple
released its first computer with 64-bit x86 processor, Core 2 Duo [5]. 64-bit support
has since been dropped in the most recent version of OS X but at the introduction
of 64-bit Intel processors, there were four different combinations of Apple computer
processors: 32-bit Intel, 32-bit PowerPC, 64-bit Intel and 64-bit PowerPC. With the
introduction of Windows 8 and its ARM supports, developers on Windows platform
will soon be in a similar situation.

Browsers are one major source of portability issues. These issues are described in

15

more detail in sections 3.4 and 7.2.
Hosting a web server application requires a hosting site. A hosting site can be a

privately owned computer with a typical Internet connection but a bigger traffic re-
quires more serious hardware and network capacity. It is possible to buy a dedicated
high-volume network connections and powerful server machines to host a site but buy-
ing enough for peak traffic without spending a lot of money can be tricky. One way
to solve this is to use cloud-based hosting. There are many options for this type of
hosting. Some of the most well-known are Amazon Web Services and Microsoft Azure
but there are many others.

In addition to these there are some third party libraries which provide major func-
tionality. One example found in the realm of games and other graphic-intensive soft-
ware are APIs such as OpenGL and DirectX. OpenGL can be found on most operating
systems but DirectX is limited to Microsoft Windows and Xbox 360 gaming console.
When a major game title is planned, the developers have to decide whether to support
both.

3.3 Motivation for Portability

Portability requires extra resources. Why then is portability an important feature of
a software? As Peter J. Brown stated [16]: "It costs planning and effort to produce
software that is portable. Moreover, on any one computer, a portable program may be
less efficient than a specially hand-tailored one. Nevertheless, given the huge cost of
rewriting non-portable software, an investment in portability is normally one that will
repay handsomely."

Even though you would develop a very interesting software, customers will rarely
switch their existing platforms just for your software. This might be the case in profes-
sional high-end software but even users are probably accustomed to the existing ways
of doing things and the switch would be costly not just because hardware and software
costs but due to decrease in productivity. Portability of a software can also be seen
as a safety guarantee for the developing organization: they are less susceptible to the
changes done by the developer of the environment. There are multiple documented
cases [37][84] of how developers have put in a lot of work to create an iOS software just
to see its access denied to the Apple’s App Store and thus to all the iOS devices (except
for ones using rooted firmwares which allow software to be installed even though the
software has not received Apple’s blessing).

Typically possible users of a software use varying devices and operating systems.
For example if an organization wants to develop a software for mobile devices which

16

would potentially be available for 80% of the population, the software would have
to support four different mobile operating systems: SymbianOS, iOS, Android and
BlackBerry OS [92].

Game industry is also concerned with portability. Most major game titles are cur-
rently released on PC computers and Microsoft Xbox 360 and PlayStation 3 consoles.
In addition to these, the game may also be released on Mac computers and Nintendo
Wii console.

For example Battlefield 3 video game was released in 2011 for three platforms:
PC computers and Xbox 360 and PlayStation 3 consoles. On November 6th, 2011
sales figures for each platform were 500,000 U.S. dollars, 2.2 million and 1.5 million
respectively [11]. In this case choosing just a single supported platform would have
almost halved the sales rate.

3.4 Problems of Portability and Portability Testing

Each additional supported platform requires some additional resources. At least the
hardware and the software must be acquired and integrated into the testing process.
This can lead to a lot of different hardware and software combinations. jQuery Mobile,
which is a JavaScript library for creating mobile user interfaces to web pages, is an
example of this: in their test lab they roughly 50 different phones, tablets and e-readers
to make sure their library performs properly on each platform [52].

Just providing a working software on a platform might not be enough. For example
there are certain differences between Windows, OS X and Linux desktops which the
users have grown accustomed to. One such difference is the placement of OK and
Cancel buttons in dialog windows. On Windows, OK button is on the left and Cancel
button on the right. On OS X these are reversed and on Linux their placement varies
between different window managers. To create great software, it is recommended for
the software to feel native to its execution platform.

Some features might not be available on all platforms. It is up to the developers to
decide whether to go with the lowest common nominator, which could lead to inferior
product compared to the competitors, or to create different versions for each platform
to take advantage of each platform’s features. Different versions introduce different
test plans and platform-specific test suites which in turn require additional resources.
There are no right answers to these decisions: they require careful balancing.

Portability testing can be a very complex process. As discussed in section 2.3,
testing even a trivial program can be difficult in itself and by introducing multiple
platforms the labor-intensiveness is multiplied. For example, by supporting browsers

17

of 80% of the international users, a software would have to compatible with Internet
Explorer, Google Chrome and Mozilla Firefox browsers (based on data from November
2011) [91]. Unfortunately, just testing the software with three browsers is not enough
because the browser usage is further divided into different versions of these browsers.
By supporting the same 80% share of the users, the software would have to be tested
with Chrome version 15, Internet Explorer versions 7.0, 8.0 and 9.0 and Mozilla Fire-
fox versions 3.6, 7.0 and 8.0 [91]. Thus the testing would have to performed with at
least seven different desktop browsers. Things are even further complicated if mo-
bile browsers should be supported. According to International Data Corporation, the
amount of mobile Internet users surpasses the amount of wireline users in United States
of America by year 2015 [48]. By supporting the same 80% share of the mobile users,
the software would have to support Opera, Android, iPhone, Nokia and Blackberry
browsers [91]. In addition to this, mobile browsers also contain version differences [29].

3.5 Chapter Summary

Nature of portability has changed over the years. In the beginning of the computer
era there were just a handful of vastly different machines. Then the main issue in
portability was supporting the hardware, as the software typically directly interacted
with the underlying machine with no abstraction layers in between. Today a lot of
developed software doesn’t even have access to the machine below.

Different software face different types of portability issues. It is up to developers
to find out what these issues are, how affect the workings of the software and how to
mitigate portability problems.

Even though ensuring portability is not an easy task, it is important for many
reasons: Company doesn’t have to bet its business on just a single platform. The pool
of potential users is larger and thus the potential economical or other benefits are larger
as well.

18

4 Testing Levels

This chapter presents and compares multiple definitions of different testing levels. The
most often-used testing levels are described more in-depth.

4.1 Defining Testing Levels

Software testing is often performed on multiple levels. For example, a developer tests
the software at a very low level because often she wants to verify that a specific piece
of code performs as expected. However this test level is rarely a meaningful level for
customer. At so low a level evaluating the whole software can be very difficult. Instead
customer usually tests the software by using its user interface and verifying that the
software works as expected from the point of view of an actual user.

Validation and verification testing are often mentioned when discussing software
testing. However they are neither testing levels nor methods. Barry W. Boehm [15]
defines verification as a process which answers the question "Are we building the prod-
uct right?" and validation process answers the question "Are we building the right
product?".

Testing levels as a term are also used to refer to maturity levels of testing process
in an organization. According to a definition by Ammann & Offutt [1], there are
five different levels ranging from Level 0 "There’s no difference between testing and
debugging" to Level 4 "Testing is a mental discipline that helps all IT professionals
develop higher quality software". However this categorization is outside of the scope
of this thesis because this thesis is more concerned with testing on a more technical
level and not on an organizational level.

There is no consensus of the exact definition of different test levels. However dif-
ferent definitions contain a lot of common themes.

According to IEEE Computing Society’s Guide to Software Engineering Body of
Knowledge, there are three different target levels in software testing: unit testing,
integration testing and system testing. These levels are defined as follows [44]:

• "Unit testing verifies the functioning in isolation of software pieces which are
separately testable. Depending on the context, these could be the individual
subprograms or a larger component made of tightly related units."

19

• "Integration testing is the process of verifying the interaction between software
components."

• "System testing is concerned with the behavior of a whole system."

There are four different test levels according to Craig et al. [22]. Each level of testing
has a corresponding development level. Code is tested by unit tests, detailed design
by integration tests, high-level design by system testing and software requirements by
acceptance testing (figure 4.1). All these levels should not necessarily be used in every
software project. Instead test manager should select the used levels based on a number
of variables such as complexity of the system, number of unique users and budget.
Unfortunately there is no formal formula for this decision.

20

[22]

Figure 4.1: Test levels and their corresponding development levels.

Ammann et al. [1] present two different kinds of testing levels. First kind is based
on software activity and the levels are defined as follows:

• "Acceptance Testing - assess software with respect to requirements.

• System Testing - assess software with respect to architectural design.

• Integration Testing - assess software with respect to subsystem design.

• Module Testing - assess software with respect to detailed design.

• Unit Testing - assess software with respect to implementation."

These levels differ slightly with object-oriented software because the design blurs
distinction between units and modules. Testing of a single method is usually called
intramethod testing while testing of multiple methods is called intermethod testing.
If a test is constructed for the whole class, it is called intraclass testing. Testing

21

of interaction between different classes is called interclass testing. The first three are
variations of unit and module testing and the interclass is testing is a type of integration
testing [1].

The rest of this chapter contains more in-depth definitions of different levels. The
set of testing levels is based on the definition of Craig et al. as it most closely resembles
the testing levels used at the target organization of this thesis.

4.2 Unit Testing

Roy Osherove [79] defines unit test as follows: "A unit test is a piece of a code (usually
a method) that invokes another piece of code and checks the correctness of some as-
sumptions afterward. If the assumptions turn out to be wrong, the unit test has failed.
A ’unit’ is a method or function." By isolating the unit from other units, tests do not
rely on external variables such as a state of database or a network connection.

Robert C. Martin [62] describes devising a test for a piece of software which he
developed for an embedded real-time system which scheduled commands to be run
after a certain amount of milliseconds. His test used an utility software in which by
tapping a keyboard he scheduled a text to be printed on the screen 5 seconds later.
Then he hummed a familiar song and tapped keyboard in rhythm and 5 seconds later
he hummed the same song again and tried to make sure that the pieces of text would
be printed in perfect synchronization. According to Martin, this not an exemplary way
of unit testing: instead it is an imprecise test at best and at worst it is very error-
prone and labor-intensive because it requires manual interaction with the software.
A good unit test for this program would be one where the unit subjected for testing
would be isolated from the computer clock. This kind of unit test would not only
remove the ambiguous results of repeated manual tests: it would also allow developer
to manipulate time perceived by the tested software to all kinds of arbitrary situations
such as testing the timing at the moment when clocks are adjusted due to daylight
saving time. Testing this particular situation by relying on the actual computer clock
would only be possible twice a year.

Ammann et al. [1] present Pentium Bug case as a real-life example of how inade-
quately done unit testing can prove very costly if problems are found in the later stages
of testing or even after the product release. A Pentium processor developed by Intel is
an example of this. The Pentium Bug was a defect discovered by MIT mathematician
Edelman and the bug resulted in incorrect answers to particular floating-point calcu-
lations. Both Edelman and Intel claimed that this would have been very difficult to
catch in the testing but according to Ammann et al. [1] it would have been very easy

22

to catch with proper unit testing.
As unit tests are small test programs which verify a certain part of a production

software, the test programs can be executed by a computer. By employing a unit
test framework such as NUnit, test programs can be written in a way which makes
it possible to automatically check whether tests succeeded or failed and if they failed,
which part of the software malfunctioned [76].

According to a case study performed at Microsoft Corporation Inc. [107] by com-
paring Version 1 of a product, which was developed with ad hoc and individualized
unit testing practices, to Version 2, which was developed with the utilization of NUnit
automated testing framework by all team members, test defects decreased by 20.9%
while development time increased by 30%. Version 2 also had a relative decrease in
defects found by customers during first two years of software use.

Unit testing relates to portability in several ways. Firstly unit tests can be used
to learn and verify how external libraries behave. Secondly unit testing can be used
verify that basic operations such as adding and subtracting work correctly despite the
change in the execution environment.

Unit testing external libraries which may be already thoroughly tested by their
development teams might sound redundant at first but it offers several advantages.
When a new external library is being investigated for possible inclusion, writing unit
tests against its API is a more systematic approach to learning how to use the library
compared to simple ad hoc testing. These unit tests can later be used when the library
is updated to a new version to verify that the API still works as expected. Without
these kinds of unit tests, small changes in the external library may propagate bugs in
a very surprising ways.

When a software is ported to another architecture, there may differences in the
basic operations. For example, if a software is ported from 64-bit architecture to a
32-bit architecture, mathematical operations with large integers or other number types
may overflow. When an integer overflow happens, it may change from architecture to
architecture what value will be returned as a result.

4.3 Integration Testing

Integration testing is performed to verify the correct integration of different compo-
nents. Integration testing ensures that passing of data between components works as
expected and that the components work in cohesion. Components may be integrated
on multiple levels in hierarchy of the software. An example of integration between
components is presented in figure 4.2. Also the integration testing can be done on

23

Figure 4.2: "Levels of Integration in a Typical Car" [22]

multiple levels. At the lowest level small components are integrated together. This
level of testing is usually performed by the development team. At a higher level the
integrated components are much larger and thus may require more testing resources.
This level of testing may be done by the developers but it may also be performed by a
dedicated test team [100].

An example case of proper unit testing but inadequate integration testing is the
story of Mars Climate Orbiter in 1999 [74]. Mars Climate Orbiter was designed to
gather data from Martian weather and to be a communications relay for Mars Polar
Lander. When Mars Climate Orbiter was entering the Martian atmosphere commu-
nications to it were lost. NASA performed an investigation into the reasons of this
mishap and located the problem in the communication between two components re-
sponsible for certain calculations relating to the atmosphere entry. Both components
worked when they had been tested in isolation but when they were integrated the cal-
culations were incorrect. The reason of this incorrectness was that another component
used Imperial units and the other used metric units.

Integration testing at its nature is similar to unit testing except that whereas unit
testing is concerned with testing a small unit of the software in isolation, integration
testing tests the integration of different components. Thus automatic integration tests
can usually be implemented with the same tools as automatic unit tests.

Portability requirements may present more requirements for the testing process.
Different components of the system may be used on different platforms. Integration of
the components on the similar platforms (such as on 64-bit architecture) may perform

24

as expected but when one of the components is run on different platform (such as on 32-
bit architecture), the functionality may be altered. One way to avoid these types issues
is to have comprehensive unit tests which are performed on all supported platforms. If
the unit test results are equal on all platforms, integrating such a component running
on different platforms should work as expected. However, even a unit testing with
comprehensive code coverage may not be able to detect subtle differences such as
slightly different timing which leads to problems only on specific platforms. Thus
if resources permit, performing integration tests on all possible combinations of the
integrated components would increase the detection of unexpected problems.

4.4 System Testing

The target of system testing is the entire system in a fully integrated state. The point of
view of system testing varies based on the type of the project: for example installation
and usability testing are performed from the point of view of a customer but some
tests can verify behavior which might go unnoticed by the user but are very important
for the correct performance of the system. System testing is usually performed by an
independent test organization if one is available [13].

Because system testing should be performed from the perspective of the user, it is
inadequate to just perform tests against internal APIs and to verify their functionality.
If the software under testing is has some kind of user interface, the testing must also
test the said user interface. There are existing testing tools for testing web UIs [88]
and desktop UIs [63][77].

To encourage developers to use automated system testing, it is recommended to
make test design and coding as easy as possible. If developing automated tests is more
of a burden than testing the feature manually, there would no point in using automated
tests. Automated system tests can yield some unexpected benefits: if system testing
requires hardware, performing automated system tests outside of typical office hours
allows the hardware to be free for other use during the office hours.

As system testing is concerned with the overall performance of the software, it is
important to perform system tests on all supported platforms. Catching some porta-
bility problems such as disparities between different database software might be hard
to catch on lower levels.

25

4.5 Acceptance Testing

Whereas unit, integration and system testing have been concerned about looking for
problems, acceptance testing is used to make sure that the software fulfills the require-
ments. When software development has been contracted, successful acceptance tests
are usually required before the customer accepts the product. However, this doesn’t
mean that acceptance tests would not be used when software is not developed under
contract. Acceptance tests should be performed in an environment as close to the
production environment as possible. The focus of the tests is usually on typical user
scenarios instead of corner cases [13].

People interested in the acceptance test plan and the results of test can include
many individuals from developers to business people. All interested parties may not
be technically oriented so acceptance test plan should be non-technical [22].

Test-driven development and unit testing are widely used and researched methods
in agile software development. Automated acceptance tests (AAT) is a more recent
arrival and compliments the previous practices. Manually performing acceptance tests
can be tedious, expensive and time consuming and thus is not suitably for agile software
development processes. In AAT, acceptance requirements are captured in a format
which can be automatically and repeatedly executed [40].

Selenium [88] is an example of such tool. Selenium can be used to automate actions
which user performs with a web browsers. Though it can be used for other purposes
than just acceptance tests, it can be used for them as well. Portability testing of
multiple browsers can be done by executing Selenium test suites with multiple browsers.

However, Selenium tests are generally quite technical and therefore usually difficult
to present to the customer as is. Customers can rarely read or especially write the
code required for Selenium tests. FitNesse [30] and RSpec [85] are example tools which
attempt to make the automated tests more readable to the customer.

RSpec is designed for Ruby programming language and is intended as a Behaviour-
Driven Development tool. Behaviour-Driven Development combines Test-Driven De-
velopment, Domain Driven Design, and Acceptance Test-Driven Planning. [85] For
example, in a banking application one acceptance criteria might be that a new bank
account should contain 0 dollars. This test case can be written as an RSpec test
detailed in figure 4.3 [17].

FitNesse uses a wiki for creating and maintaing test cases. Pages in the wiki contain
test cases which are associated with tables of different inputs and expected outputs.
Test tables are then parsed and used to perform tests against the software. When tests
are performed, the successful test values are colored green and unsuccessful tests are

26

de s c r i b e "A new account " do
i t " should have a balance o f 0" do

account = Account . new
account . ba lance . should == Money . new(0 , :USD)

end
end

Figure 4.3: An example of RSpec test case.

colored red. [30]

eg.Division
numerator denominator quotient?
10 2 5.0
12.6 3 4.2
22 7 =3.14
9 3 <5
11 2 4<_<6
100 4 33

Table 4.1: An example of a FitNesse test table. [30]

Based on case studies performed by Haugset et al. [41] developers felt that by having
automated acceptance tests it was safer to make changes in code, fewer errors were
found and the need for manual testing reduced. In addition to these there were some
higher-level benefits such as it was easier to share competence within team, acceptance
tests gave a better overview of the whole project and writing acceptance tests made
developers think of what they are doing before doing this. Developers also felt that
traditional specifications received from customers were poor in quality and writing
acceptance tests based on them was in a way a reflection of what the customer really
needed.

By executing automated acceptance tests to ensure portability, resources can be
freed from performing same repetitive tests on multiple platforms. These resources
can used to for example perform additional tests which may not possible to automate
or to lower costs of the overall software project.

27

4.6 Chapter Summary

There is no single universally accepted definition of testing levels. Different software
projects may require some testing levels which are unnecessary in others. By comparing
different definitions and emphasizing the testing levels used at Sysdrone, unit, integra-
tion, system and acceptance testing levels were chosen for more detailed inspection.
Unit testing is concerned with the operation of smallest independent unit in software.
Integration testing is used to verify that the integration of two independently correctly
working components is working as expected. System testing tests the software as a
whole with a lot of technical and detailed test cases. Acceptance testing is usually
concerned with the user requirements and thus its test cases are smaller in number and
of less technical nature.

28

5 Test Techniques

In this chapter different test techniques are described and their relation to automatic
testing and portability testing are investigated. The list of of test techniques is lifted
from SWEBOK [44] but other literature and academic sources have been used to sup-
plement the descriptions.

5.1 Alpha and Beta Testing

The usage of terms "alpha testing" and "beta testing" can vary significantly between
different development teams. Most commonly they are defined as follows [22]: Alpha
testing is an acceptance test performed in a development environment and hopefully
with real users in a realistic environment. Beta testing is an acceptance which is
performed in a production environment with real users. Many companies just release
a beta version of the software for a group of users and let them have a go at it. This
kind of ad hoc testing is not as precise as performing beta test with planned test cases
and expected results.

Acceptance tests are sometimes divided into two categories [13]: alpha tests which
are performed in-house and beta tests which are done by real customers. These tests
can be used to test whether the product is ready for market but they can also be useful
in finding bugs which were not found in the usual system testing process.

Alpha and beta testing performed by real users with usage monitoring systems
(external or built-in into the tested software) can provide valuable insight into how
users really use the software or which functions are the most commonly used.

Game called Starcraft II is one example of how beta testing can be applied to solving
complex problems [14]. Starcraft II is a real-time strategy game with three different
races which all have different kinds of units. This leads to a tricky balancing between
different units and races so that no race or unit is unfairly dominating in gameplay.
Finding the right kind of balance by only using internal testers can be very difficult
but by releasing a beta version of the game to public the development team can gather
massive amounts of data by embedding statistics tools and by asking opinions of the
gaming community and pro players. These can be used to measure for example which
units are used most or what are the winning ratios between three races.

Alpha and beta testing are especially used to get real users for the software by

29

releasing alpha and beta versions. Real user feedback cannot be obtained by any
automatic testing system. Of course, alpha and beta versions can be subjected to other
tests but usually if any test suites have been developed for the particular software, it
should already pass those tests completely or at least partially with an expected level
of errors before an alpha or beta version is released to the users.

Alpha and beta testing can be a good source of feedback about the portability of a
software. Developers may not have access to the same array of devices that the users
have or may not have enough resources to perform testing with that many devices. For
example, testing an Android mobile software can be extremely difficult even if money
is not a problem due to the sheer amount of different devices with varying hardware
and software capabilities.

5.2 Configuration Testing

SWEBOK [44] defines configuration testing as follows: "In cases where software is built
to serve different users, configuration testing analyzes the software under the various
specified configurations." On the contrary, Kaner et al. [54] definition is: "The goal
of configuration test is finding a hardware combination that should be, but is not,
compatible with the program." Based on SWEBOK definition, portability testing and
configuration testing are the same thing, but Kaner et al. definition places configuration
testing as a subset of portability testing as portability testing is concerned with a more
general portability from one environment to another. These environments may be
identical in hardware aspect but differ on the software level. Because of these reasons,
configuration testing is not researched in this particular subsection as it is researched
overall in this thesis.

5.3 Conformance/Functional/Correctness Testing

SWEBOK [44] defines conformance testing as follows: "Conformance testing is aimed
at validating whether or not the observed behavior of the tested software conforms to
its specifications." Specification which is used to perform conformance testing may also
be a specific standard [102].

Requirements detailed in a specification can be used as a basis when developing au-
tomatic test suite although some requirements may not suitable for automatic testing.

Software may behave differently on other platforms. Thus a conformance testing
should be performed on all supported platforms.

30

5.4 Graphical User Interface Testing

Graphical user interface testing is hard because it involves testing both the underlying
system and the user interface implementation. User interfaces have a large number of
possible interactions. It is not just sufficient to test each view but also to test each
sequence of commands which lead to that view. It is also very hard to determine
how much of the user interface is covered by each test set. Determining test coverage
of conventional systems is done by analyzing the amount and type of code in the
software. This does not apply to user interface testing because the most important
metric is how many different possible states of the system are tested. Each step of
the user interface test has to be verified because if a problem has been encountered, it
may not be possible to proceed to the next step. [64] Due to the amount of possible
permutations, automation of graphical user interface testing is paramount. Manually
testing each permutation and keeping track of which permutations have already been
tested is very labor-intensive even with a small amount of permutations.

Testing of graphical user interfaces is not limited to a single level. The testing can
be performed on all levels from a unit test level by developer to an acceptance test
level by end-user.

User interface consists GUI objects which can be anything from windows and but-
tons to menus and other types of widgets. Even a simple interface typically contains
multiple GUI objects. These objects have a lot of different behaviors from responding
to a click to disabling an input field. Testing these behaviors can be very complicated
and the resulting test code is usually messy. Some of these behaviors may even be
impossible to test. [39] Unit testing of GUI objects can be made a lot easier by not
putting code in the actual GUI object class but to create another class, a smart test
class, first and the actual GUI object class last. GUI object doesn’t any logic in itself
but it is used just to display and retrieve data to and from user. This kind GUI object
can be represented by a mock object during unit tests so developer can verify that
smart class retrieved and displayed data correctly. [28]

Selenium [43] is a software used for in-browser testing. Selenium offers the possibil-
ity for writing web software in a test-first manner. These tests can be later used as a
regression test suite. Selenium can be used on a system testing and acceptance testing
levels.

There are also test software for taking automated screenshots of web pages on
multiple platforms. This kind of testing is also offered as a service: one such example
can found at http://browsershots.org/. This will be explored more in depth in section
7.2.

31

5.5 Installation Testing

SWEBOK [44] defines installation testing as follows: "Usually after completion of
software and acceptance testing, the software can be verified upon installation in the
target environment. Installation testing can be viewed as system testing conducted
once again according to hardware configuration requirements. Installation procedures
may also be verified."

It is possible to perform a installation without user interaction at least on Windows
[65], Mac OS X [2] and various other UNIX-based [27][6][33] platforms. These types
of installers can be used automatically and a successful installation can be verified in
multiple ways depending on the installed software.

Installation on different platforms requires testing because for example installation
on Windows and Linux operating systems are very different processes. This can be
performed automatically with the help of virtual machines. [9]

5.6 Penetration Testing

The purpose of penetration testing [97] is to test security of the software against real-
world attacks in a safe way. The penetration testers provide the software developers
and managers data about the possible security problems before real attackers can
exploit these problems. Penetration testing is usually performed on a real system and
staff. Penetration testing may even involve physical attacks such as breaching physical
security controls, stealing equipment or disrupting communications. Many penetration
testers use a combination of vulnerabilities in one or many systems to gain improper
access.

Most common vulnerabilities used in penetration testing can be found from these
categories [97]: Misconfigurations such as insecure default usernames and passwords.
Flaws in the kernel which is the heart of the operating system and thus affect all
programs which are executed within it. Buffer overflows where an intruder can input
a too large piece of data in memory and thus inject malicious data. Insufficient input
validation such as when an attacker employs SQL injection by entering SQL commands
in text inputs. Symbolic links where an attacker can point the link to parts of file system
which would otherwise be inaccessible to the attacker. File descriptor attacks where
type of file can be used in malicious ways by entering an invalid file descriptor. Race
conditions where attacker can hijack a program when the said program is running in
with elevated privileges. Incorrect file and directory permissions where attacker can
gain access to files which should not be made available.

32

Some of these categories - such as misconfigured security settings - may not be
directly related to the developed software. For example an UNIX server which is
configured to allow root user to login over SSH or even telnet connection and a poor
choice of root user password can be combined to breach the system. Root privileges
allow the attacker to perform a variety of different attacks such as reading files which
can not be accessed through the developed software or overwriting certain parts of the
memory to fool the developed software to behave incorrectly.

However categories such as insufficient input validation are a direct responsibility
of the developed software. For example database components should have proper unit
tests for detecting SQL injections and when developing web software, HTML form
components should be tested against cross-site scripting attacks where attacker inputs
malformed data in a text input and manages to execute external JavaScript code.

Software may use security features of the underlying system. Different systems
may have different implementations of these security features. Thus penetration testing
should be performed on all supported platforms to ensure the safe operation of software
on each of them.

5.7 Performance and Stress Testing

Software problems are often not caused by a deficiency in program logic but because the
software is executed under a kind of stress which was not anticipated or not properly
tested for during the development. Purpose of stress testing is to execute software in
a situation where expected resources are not available [18]. These kinds of situations
may be such as performing time-critical operations with CPU usage at full capacity or
losing network connection in the middle of a database transaction.

SWEBOK [44] defines performance testing as follows: "This is specifically aimed at
verifying that the software meets the specified performance requirements, for instance,
capacity and response time. A specific kind of performance testing is volume testing, in
which internal program or system limitations are tried." In comparison, stress testing
is defined as follows: "Stress testing exercises software at the maximum design load,
as well as beyond it."

Stress testing is often used to mean an array of different tests such as load testing,
mean time between failure testing, low-resource testing, capacity testing and repetition
testing. Stress testing itself is used to simulate a load greater than expected to expose
bugs under stressful conditions. Load testing instead is used to test software under
typical peak or higher loads. Mean time between failure measures average amount
of successful operation before an error or crash occurs. Low-resource testing executes

33

program in an environment with low or depleted resources such as hard disk space or
physical memory. Capacity testing is used to measure the maximum amount of users a
system can withstand. Repetition testing is used to perform a test suite repeatedly to
detect hard-to-find problems such as tiny memory leaks which become a big problem
after a huge number of repetitions. [80]

Stress testing can be automated. Automated stress testing tools enable test engineer
to instruct which tests should be performed and how many users should simulated
during the test. Stress tests typically attempt to mimic normal user behavior but this
kind of behavior can be multiplied with the automated stress testing tool. These kinds
of tools typically produce a log file which can be used to assess the performance during
test. Typical types of errors found in stress tests include memory leaks, problems
with performance, locking or concurrency, excess consumption of system resources,
and exhaustion of disk space. [25]

Environment can affect software performance. For example, different browsers pro-
vide different kinds of JavaScript performance, hardware architecture (such as 32-bit
compared to 64-bit) can affect memory requirements and typically newer operating
systems have more optimized system functions. Thus it is important to perform per-
formance and stress tests on all supported platforms.

5.8 Recovery Testing

Many systems are required to have some degree of fault-tolerance. By being fault-
tolerant, system has to be able to recover from certain hardware or network faults,
software or human errors or loss of data without causing the system to cease operating
or crash. During recovery testing, a system is intentionally injected with some type
of system failure to verify that the system recovery is properly performed. Recovery
process may or may not be automated. In case of automatic recovery process, a test
should validate that the recovery was properly performed. [26] Specific objectives of
recovery testing include the following [81]:

• "Adequate backup data is preserved.

• Backup data is stored in a secure location.

• Recovery procedures are documented.

• Recovery personnel have been assigned and trained.

• Recovery tools have been developed."

34

Some aspects of recovery testing - such as assigning and training recovery personnel
- cannot be used in automatic testing process. However, certain fault scenarios can be
triggered automatically. For example, if a software recording data from medical devices
loses a database connection, it may be required to be able store medical data for a
certain time period in a secondary storage location. This type of scenario can be used
in a automated system or acceptance test where a database is programmatically closed
or its network traffic blocked and then programmatically restored after the specified
timespan. Automatic test can then verify that all produced data can be found at the
database after the test has been concluded.

Different environments of software may affect the recovery procedures so recovery
testing should also be performed on all supported platforms.

5.9 Regression Testing or Back-to-Back Testing

Regression testing and back-to-back testing are somewhat related. Back-to-back testing
involves two different versions of the software which are ran through the same set
of tests and their test results are compared. Regression testing is a way of testing
subsequent versions of software against the same set of tests and verifying that all
the previously passed test cases are still passed. [44] Majority of all testing effort
in commercial software development is regression testing. Regression testing is very
important because even small changes to one part of the system may cause unwanted
changes in a completely different part of the software. [1]

Regression tests must be automated. If regression tests are not automated, it is
equivalent to no regression testing. Large components or systems usually have large
regression test suites. [1] Performing the equal amount of testing manually would be a
huge waste of resources because these test suites must absolutely be performed on each
software release. Performing all tests manually may take several weeks with a small
test team. So for example if a software project has a release cycle of two weeks, test
team may not even have enough time to perform all the previous regression tests.

As small changes may cause unexpected changes, making a seemingly innocuous
change to code and testing it on one specific platform may introduce a bug on another
platform. Because of this, regression tests must not only be automated but they must
be performed on all supported platforms to ensure the correct behavior of the software.

35

5.10 Reliability Achievement and Evaluation

Software reliability engineering is concerned with reliability which is defined as "the
probability of failure-free software operation for a specified period of time in a specified
environment". Reliability is one of the attributes of software quality. Other attributes
are functionality, usability, performance, serviceability, capability, installability, main-
tainability, and documentation. Software relibility engineering includes measuring reli-
ability, identifying attributes and metrics which affect reliability and applying these to
increase reliability of the software. Reliability can be affected by multiple factors such
as product design, development process, system architecture and software operational
environment. [58]

Software reliability engineering can be divided into six steps. First it is important
to specify how software is used and what kind of environmental conditions affect that.
Secondly quality should be defined in cooperation with the customer. Quality of course
includes reliability but also includes other factors such as delivery date or costs. Thirdly
quality definition and product usage data can be used to design and implement the
product. Fourthly reliability of third party software should be measured and included
in the acceptance requirements. Fifthly reliability should be tracked during testing
and this information can be used when deciding on releasing the product. And lastly
reliability should be monitored in real world conditions and its results should be used
to guide the product development further.

A case study performed at AT&T researched the application of software reliabil-
ity engineering. Software engineers defined an operational profile based on customer
modeling. This operational profile was used in automatically generating test cases.
Software underwent a system test done in increments and clean-room development
techniques together with feature testing based on the operational profile. Testing was
done to reliability objectives. The quality improved dramatically: a factor-of-10 reduc-
tion in customer-reported problems, a factor-of-10 reduction in program maintenance
costs, a factor-of-2 reduction in the system test interval and a 30 percent reduction in
new product introduction interval. [58]

Besides using software reliability engineering methods to automatically generate
test cases based on a real-world operational profile, software reliability can also be
included in automatic testing process by adding a measurement of reliability rates in
the automatic test cases.

Different environments, both hardware and software, may have different reliability
rates. These reliability rates reflect on the reliability rate of the software under testing.
Due to this, software reliability engineering should be performed on all supported

36

platforms.

5.11 Test-Driven Development

Test-driven development [106] is a software development practice. Earliest references
to TDD are from as early as 60s when it was used at NASA. TDD is a critical part
in Extreme Programming where code implementation is not preceded by any formal
designs.

Test-driven development or in its commonly abbreviated form TDD is a software
development process. Robert C. Martin defines the laws of process as follows [62]:

• "First Law: You may not write production code until you have written a failing
unit test.

• Second Law: You may not write more of a unit test than is sufficient to fail, and
not compiling is failing.

• Third Law: You may not write more production code than is sufficient to pass
the currently failing test."

These laws should be performed in a tight loop which is about two minutes long and
almost always ends in success. Based on Robert Martin’s experience [60] by employing
TDD 90% of the production will be covered by unit tests. A major benefit of TDD is
that if the code is not covered by tests, developers are afraid to change it because they
might break it. If TDD is employed, any change may be tested against the existing
test suite and if no tests break, it is unlikely that anything was broken. Unit tests can
also be used as a documentation of how the software works.

Traditionally TDD is focused on unit tests but variations of TDD such as storytest-
driven development (STDD) and acceptance test-driven development (ATDD) have
also emerged. Both STDD and ATDD rely on automated test frameworks such as Fit,
FitNesse and FitLibrary [42].

Automatic tests created by using test-driven practices can and should be performed
on all supported platforms.

5.12 Usability Testing

Usability testing [86] is "a process that employs people as testing participants who are
representative of the target audience to evaluate the degree to which a product meets

37

specific usability criteria". According to this definition, automation of usability testing
is impossible. There are however services such UserTesting.com which help the user
testing process.

UserTesting.com [99] provides a crowdsourcing service that provides a selection of
test users from different demographics. The user of the service can watch as the test
users use the software and provide commentary about their intents and frustrations.
Unfortunately these results still require manual evaluation.

5.13 Chapter Summary

Alpha and beta testing is a valuable tool to get information from a lot of users. Due
to its nature, it cannot be automated but by using diagnostics tools, a lot of data can
be obtained from the real-world usage and possible problems related to portability.

Configuration testing is not precisely defined but most of its definitions relate to
testing software in different configurations. This is similar to the portability testing
but most definitions focus only on the hardware configurations.

Requirements detailed in a specification can be used as a basis when developing au-
tomatic test suite although some requirements may not suitable for automatic testing.

Due to the amount of possible permutations, automation of graphical user interface
testing is paramount. Testing of graphical user interfaces is not limited to a single
level. There are design patterns and 3rd party tools which help developers to create
automatic test suites for graphical user interfaces.

Installation is particularly dependent on the underlying environment. Its testing
can be automated. Virtual machines are useful when creating a testing environment
for installations.

The purpose of penetration testing is to test security of the software against real-
world attacks in a safe way. Some of the most common vulnerabilities encountered
in penetration testing are misconfigurations, kernel flaws, buffer overflows, insufficient
input validation, symbolic links, file descriptor attacks, race conditions and, incorrect
file and directory permissions. Some aspects of the penetration are not directly related
to the software development and some are concerned with the actual humans interacting
with the system. These cannot be automated but there are many aspects which can
be. Environment also can affect the safety of the software so penetration testing should
be done on all supported platforms.

Purpose of stress testing is to execute software in a situation where expected re-
sources are not available. Stress testing is often used to mean an array of different tests
such as load testing, mean time between failure testing, low-resource testing, capacity

38

testing and repetition testing. Stress testing can be automated. Environment can af-
fect software performance and thus stress testing should be performed on all supported
platforms.

A system is injected with some type of failure recovery testing. To succeed the tests,
the system must recover from the failure. Recovery testing involves educational and
management work which cannot be integrated into automatic tests but some failure
injections and recovery verifications can be automated.

In back-to-back testing two different versions are run through the same set of tests
and their test results are compared. Regression testing is a way of testing subse-
quent versions of software against the same set of tests. Majority of all testing effort
in commercial software development is regression testing. If regression tests are not
automated, it is equivalent to no regression testing.

Software reliability is the probability of failure-free software operation for a specified
period of time in a specified environment. A case study performed at AT&T suggests
that software reliability testing can result in a factor-of-10 reduction in customer-
reported problems, a factor-of-10 reduction in program maintenance costs, a factor-
of-2 reduction in the system test interval and a 30 percent reduction in new product
introduction interval.

Besides using software reliability engineering methods to automatically generate
test cases based on a real-world operational profile, software reliability can also be
included in automatic testing process by adding a measurement of reliability rates in
the automatic test cases.

Different environments, both hardware and software, may have different reliability
rates. These reliability rates reflect on the reliability rate of the software under testing.
Due to this, software reliability engineering should be performed on all supported
platforms.

Test-driven development is a tried and tested software development practice. By
employing TDD, software will have a comprehensive test suite. Created tests are
automatic.

Usability testing cannot be automated and thus falls outside the scope of this thesis.

39

6 Case Study: Sysdrone Oy

This chapter describes software development process, typical software project types
and the requirements for validating and testing health technology software.

6.1 Software Development for Health Technology Industry

Sysdrone Oy is a software development company located in Jyväskylä, Finland and
currently employs 14 people. Most of the staff are software designers and software
architects.

Sysdrone doesn’t have any internal product development: instead it provides soft-
ware development teams and project management for software projects. Because of
this, Sysdrone develops a lot of different kinds of software for different kinds of environ-
ments. The company specializes in health technology software. Most of the projects
are developed with Microsoft’s C# language but due to different kinds of customer
needs, some projects have also been developed with languages such as C, Delphi Ob-
ject Pascal, Perl and PHP.

Some of these software projects have been web or other kinds of server projects
whereas in others the software has been installed on the computers of Sysdrone’s client
organizations or even directly on the computers of the clients of Sysdrone’s client
organizations.

Software testing is a pervasive requirement in software development at Sysdrone.
Requirements for the correct performance of the software especially in the context of
health technology and heavy industry software require comprehensive and systematic
testing. Especially the software related to healthcare technology has some testing
requirements specified by either local or EU laws.

Even though Sysdrone doesn’t manufacture medical devices itself, both the Council
of the European Communities and Food and Drug Administration of the United States
of America include the related software as part of the medical device [32][21]. Thus
Sysdrone doesn’t manufacture any actual medical devices, it is still required to comply
with all the requirements defined for actual medical devices.

There are many different standards which are used to evaluate medical devices
and software. ISO 13485 is one such standard and is used in the European Union.
ISO 13485 is based on ISO 9001 but places more emphasis on meeting regulatory and

40

customer requirements, risk management and effective processes. Unfortunately just
ISO 13485 certification is not sufficient for the product to allowed for example in the
United States of America: FDA has its own Quality System Regulation. However, ISO
13485 certification aligns management system of an organization to requirements of
FDA’s QSR and other such regulatory requirements in other countries. [104]

ISO 13485 is meant to improve consistency. Consistency helps to minimize er-
rors. Well-documented processes, integrated quality controls and automated quality
management systems lead to consistency. According to an article in Quality Maga-
zine: "The standard is based on eight quality management principles: customer focus,
leadership, involvement of people, process approach, system approach to management,
continual improvement, fact-based decision-making and mutually beneficial supplier
relationships." Failure to provide consistent functionality can lead to massive finan-
cial and personal damages. One such example is from 2010 when Medtronic paid 268
million U.S. dollars to settle lawsuits and claims related to their faulty defibrillation
devices. The company estimated that 13 people may have died due to these failures.
[105]

6.2 Current Testing Systems

Software development process at Sysdrone "is based on Scrum development process.
Scrum is an iterative incremental process of software development commonly used with
agile software development. Sysdrone uses slightly modified version of Scrum in order
to fulfill the requirements of Medical devices directive." [94]

According to Sysdrone’s software development process documentation software de-
velopment has been divided into sprints. Sprint is an development iteration of 2 weeks
or sometimes up to a month. Each sprint is started by having a meeting with a client
and discussing which backlog items are selected from the product backlog for the sprint
backlog. Product backlog is "a prioritized list of backlog items that are user require-
ments or risk mitigation requirements or bug fixes." Sprint backlog is "a list of backlog
items to be completed during a single sprint." [94] Each backlog item contains a de-
scription of what kind of new feature or change to an existing feature should be done
and what are the acceptance criteria for the user story. These acceptance criteria are
used as a starting point for acceptance and validation testing plans which are written
before the development has been started.

Process is divided into three phases: initial analysis, iterative development and
release phase. Testing has been integrated into each of these phases. Test plans are
written based on the task descriptions during the initial analysis. In the implementation

41

phase, programming tasks are implemented using test-driven development. If any of
the newly created tests or previously implemented tests fails, it is number one priority
to fix the tests. In the release phase acceptance tests are performed manually and the
test steps and test results are written to test documents. [94]

When a development for a user story is started, the development is split into several
tasks. Tasks should usually be the smallest possible meaningful steps to further the
development. One example of a task could be adding an HTML form for adding a
new patient to the system. When a task is completed, it is handed over to another
developer who reads the program code or other similar result of the task and verifies
that it is developed correctly. Code is further reviewed usually once per sprint in a
more formal group code review session. According to Capers Jones, bug detection
efficiency of informal code reviews ranges from 20% to 35% and efficiency of formal
code inspections range from 45% to 70% [51].

All program code is developed by using test-driven development (as described in
section 5.11). The resulting tests are also used in the peer review phase to verify that
the software works as expected in another environment in addition to the development
environment of the developer of the particular task. These tests are automatically
added to the testing suite of the software.

Sysdrone uses continuous integration. According to Martin Fowler, "Continuous
Integration is a software development practice where members of a team integrate
their work frequently, usually each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an automated build (including
test) to detect integration errors as quickly as possible. Many teams find that this
approach leads to significantly reduced integration problems and allows a team to
develop cohesive software more rapidly." [31]

Automatic testing suite is divided into two testing processes:
First testing process is called instant build which is performed instantly after the

continuous integration system detects a new commit to the version control system.
Instant build only executes unit tests which can be performed quickly. If instant
build would take a lot of time, developers couldn’t get feedback from the broken tests
immediately after committing new change to codebase. If a test fails, an email is sent
to the developer and build monitor displays red error message which specifies the title
and date of the breaking commit. Build monitors are located near the developers at
the office. Build monitors can also be used by project managers or CEO to verify at a
single glance that the software works as expected. Some tests which are not part of the
instant build may also fail and developers won’t get feedback from these immediately
but it is a necessary compromise between smoothly flowing programming effort and

42

getting instant feedback from all tests.
Second testing process is called nightly build which is performed each night. Nightly

build executes all possible tests related to the project. The same procedure is used in
nightly build as in the instant build if a test fails. Build monitor and error emails
indicate if the problem is with nightly or instant build tests.

Each step in the development cycle contains a definition of done. Definition of done
is a list of requirements which have to satisfied before continuing to next step. One of
the most important requirements is planning and performing tests. Here is an example
of how definitions of done are specified for one of the projects at Sysdrone:

• Analyze phase is done when developers have written acceptance and validation
tests plans for a user story.

• Develop phase is done when all implementation tasks are done and functionality
can be demonstrated. Each programming task is developed with TDD and after
the completion of a task, all unit tests are automatically performed. If an error
is encountered, all development will be stopped until the error is analyzed and
steps have been planned on how to solve the error.

• Verify phase is done when all tests are implemented and integration tests pass in
development server.

• Deploy phase is done when all tests pass in a server which is as similar as possible
to production server.

In addition to the unit tests created by developing with TDD, there are two types
of tests: integration tests and validation tests. Validation tests are performed by the
customer and are used to pass responsibility from Sysdrone to the client. Validation
and integration tests are usually similar but whereas validation tests are quite simple
and easy to perform even manually, integration tests are much more comprehensive.

There are two differences in terminology used at Sysdrone when compared to the
more commonly used terminology:

• Whereas integration tests in the more strict definition test integration between
two or more components of the software, integration tests at Sysdrone contain
all tests between but not including unit test and acceptance test levels.

• Validation tests are similar to acceptance tests as detailed in this thesis but the
chosen term validation tests was selected to emphasize the validation required in
healthcare products.

43

6.3 Supported Software Types

Software developed at Sysdrone can be divided into three general categories:

• server software,

• desktop software and

• web-based software.

Server software is typically written in either C# language with ASP.NET framework
or PHP language and executed on either Windows or Linux servers. Server software
may or may not also provide a web interface.

Desktop software is typically written in C# language with .NET framework but may
also be written in other languages such as Delphi Object Pascal and is mainly used on
Windows operating system. .NET-based languages may be run with Mono framework
on operating systems ranging from Android to Mac OS X and even on game consoles
such as Nintendo Wii and Sony PlayStation 3 [71] but this cross-platform support
hasn’t been requested by current or previous customers.

Web-based software is typically written in C# language with ASP.NET framework
or PHP. More recently client side of the software has been developed using HTML5.
These kinds of software is usually accessed with a variety of different devices and op-
erating systems ranging from Windows desktops to Android and iOS mobile devices.
Web-based software may or may not interact with server software developed by Sys-
drone.

6.4 Requirement Specifications

Requirement specifications for testing environment was composed based on discussions
with software developers and especially project manager Ilkka Laitinen at Sysdrone.

Automatic portability testing system should be built using virtual machines. Be-
cause automatic portability testing suites are typically performed during nightly tests,
having separate physical computers for each testing environment would be detrimental
due to increased hardware, energy and physical space requirements. Sysdrone already
uses project-specific virtual machines in development workstations so the company has
previously acquired skills and knowledge related to building a system composed of
virtual machines. This would also enable individual developers to install multiple dif-
ferent testing environments to their own development workstations for possible manual
testing.

44

The automatic portability testing system should provide an easy way to choose
desired testing environments for a specific project from a list of all possible different
testing environments.

Reports from different automatic portability testing environments should preferably
be provided as a single test report so developers or product manager don’t have to
access each of the selected testing environments manually to read the test reports.

The amount of testing environments should be kept relatively small because testing
environments increase the amount of required computer maintenance (such as installing
system updates), the amount of required server capabilities and in some cases the
amount of licensing costs. In practice the costs of multiple testing environments and
the benefits of higher defect-detection rate should be balanced. All newly added testing
environments may not contribute significantly to the defect-detection rate and thus
each testing environment should be carefully considered.

6.5 Chapter Summary

Sysdrone’s software development process is based on Scrum with slight modifications to
fulfill the requirements related to medical devices. Testing is tightly integrated into the
software development process. Many of the tests are continuously and automatically
performed in addition to a smaller number of manual acceptance tests. Currently tests
are only performed on a single platform.

Software developed at Sysdrone can be roughly divided into three categories: server
software, desktop software and web-based software. Testing environments for the soft-
ware categories are describe in chapter 7.

45

7 Automatic Portability Testing Environments

This chapter includes plans for automatic portability testing environments for different
kinds of software projects typically developed at Sysdrone.

7.1 Common Aspects

Even though portability testing increases the required testing effort by introducing
many different platforms, fortunately most of this increased testing effort just requires
more processing time from computers. If the required behavior is the same on all
platforms, an existing comprehensive unit test suite for a single platform can be used
when new required platforms are added. However, some platforms may require or
utilize custom behavior which requires additional tests. An example of this could be a
web site which has both desktop and mobile versions where the mobile version might
not have all the features of the desktop version.

Sysdrone uses TeamCity as a continuous integration server. TeamCity supports
feature called Build Grid. Build Grid consists of Build Agents which are computers
with installed agent software capable of running builds. Build Agents can also run
tests against the built software. Build Agents can be installed on multiple platforms
with different pre-configured environments. Builds on multiple platforms can be ex-
ecuted simultaneously to speed up the build and testing process. Each build agent
automatically checks out the most recent version from version control system so the
maintenance requires less manual effort. [49] Build Agents could be run on actual
physical computers but they can also be run in virtual machines which are abundantly
available at Sysdrone.

7.2 Web-based Software Project

This section focuses on the part of the software project which is accessed by a web
browser. Browser compatibility issues have been common for a long time. Some of the
issues were detailed in section 3.4. In summary, to support 80% of the desktop users,
developers would have to test the software with seven different versions of three major
browsers. On mobile devices, the number of browsers to support 80% is five.

46

Sysdrone already employs Selenium as a system and acceptance testing tool for
web-based software projects. However the tests are only run on a single platform.
For existing projects, existing test suites can used to verify the functionality on new
platforms in addition to the current testing platform.

Most of the major browsers such as Mozilla Firefox and Google Chrome are avail-
able on all major platforms. However some browsers such as Apple Safari are only
available on certain platforms. In addition to this some browsers implementations be-
tween different platforms. For example, Apple Safari is available on Apple OS X and
Microsoft Windows and the implementations are mostly same but there are some mi-
nor differences [90]. Some of these platforms can be installed on a virtual machine but
some licensing issues may prohibit this on at least Apple OS X. OS X can legally be
installed only on a Mac computer [8].

Selenium tests can also be executed on mobile platforms. Apple iOS and Google
Android devices support remote access to their mobile browser. The browsers are
controlled via RemoteWebDriver interface. This interface also allows tests to retrieve
screenshots of the tested application. [87] Currently support is only available on Apple
iOS and Google Android devices but the support is reportedly coming to Microsoft
Windows Phone 7 and Research In Motion BlackBerry devices[47].

Screenshots can also be taken from the desktop browsers as well as mobile browsers.
Screenshots are especially helpful in error situations but they can also be used to verify
that not only the web application works as expected, it also is displayed correctly.
Manually comparing screenshots can be labor-intensive in the long run so in the future
it might be viable to investigate if an automatic comparison tool can be developed or
integrated in to the automatic portability testing environment. This comparison tool
could automatically compare images and trigger an alarm for example in a situation
where the images of same view are less than 95% similar.

Selenium testing would be most comprehensive if all the tests were run on all
combinations of available platforms and browsers. However due to time and money
constraints many software projects have a limited selection of supported browsers. This
should be accounted when building the automatic portability testing environment so
that time is not spent on building support for platforms which are not required in any
software projects at Sysdrone.

Selenium testing can be used to verify functionality of the software on acceptance
and system testing levels. Testing all detailed functionality of the software project at
these levels is labor-intensive (see section 4.2). Unit and integration testing levels are
also relevant even on the client side (e.g. browser) of web-based software projects.

As JavaScript accounts for ever-increasing percentage of the codebase in web-based

47

projects, it too should be properly tested. There are many unit testing frameworks for
JavaScript. One of the popular unit testing frameworks for JavaScript is Jasmine. Unit
testing JavaScript is similar to unit testing software written in other languages. Because
JavaScript support of the browsers differs between different browsers and their versions,
unit testing should be performed on all supported browsers. To ensure that there is
no regression in JavaScript code in the future versions of the software, JavaScript unit
tests should also be integrated in the common build and testing processes. There are
a variety of options[95][108] of how to integrate Jasmine tests to TeamCity.

Web-based software project usually also include server-side software. That part is
discussed in section 7.4.

7.3 Desktop Software Project

Desktop software developed at Sysdrone is typically executed on Windows operating
system. Because Sysdrone uses almost exclusively .NET desktop software development
tools without Mono multiplatform extensions, this thesis will focus on the Windows
portability issues.

The most apparent portability issue concerns different Windows versions. Microsoft
current support lifecycles cover XP (until April 2014 [66]), Vista (until April 2017 [67])
and 7 (until January 2020 [68]). If the desktop software should support Windows Server
versions as well, supported versions range from Windows Server 2003 to the latest one
[69]. Due to customer requirements, some obsolete Windows versions might have to
be supported as well. Further complexity arises from the availability of Service Pack
updates. Most software should perform correctly even after Service Pack update but
there are documented problems with at least some software and Service Pack update
combinations [70]. The amount of versions and Service Pack updates leads to a lot of
different combinations. Each new combination requires additional resources not only
due to test suite execution time but due to the maintenance of test environments.
Therefore it might not be ideal to perform all tests on all platforms but instead nego-
tiate with the client about a list of supported versions. Unsupported versions can be
periodically checked if customer wants information about whether the software can be
used on certain platform even if that platform is not officially supported.

Some desktop software might be required for other desktop platforms. Depending
on the nature of the required platforms and chosen programming languages and li-
braries, this might be relatively simple effort or require a lot of additional resources. In
the case of Sysdrone, most of the software is developed on .NET platform. .NET soft-
ware can be run on other operating systems beside Windows by using Mono framework

48

as discussed in section 6.3. As the automatic test suites for .NET software at Sysdrone
are typically written in .NET languages (and more specifically, with NUnit framework)
as well, they can be executed on all platforms supported by Mono [72]. Different pro-
gramming languages and libraries might need platform-specific testing efforts but as
currently there are no specific platforms and programming languages which should be
supported at Sysdrone, discussing those platforms’ and programming languages’ needs
would overtly speculative and currently unnecessary.

So far, all desktop software projects at Sysdrone have been for x86 hardware archi-
tecture. Recently, both 32- and 64-bit hardware support has become a requirement. So
far, all the automatic tests have been run on one hardware architecture 32-bit and 64-
bit hardware architecture has been tested manually and in a limited fashion. However,
there haven’t been any documented problems with this approach as .NET software can
be compiled as platform agnostic [89]. If in the future a more comprehensive testing is
desired, automatic test suites can be set up for execution on both 32- and 64-bit virtual
or physical machines without any added human effort. Of course, computer resource
needs will be increased.

7.4 Server Software Project

Server software at Sysdrone is typically written either for .NET platform or in PHP.
.NET framework and its portability and testability were detailed in section 7.3. PHP
is available on a wide selection of operating systems [82]. Test suites for PHP software
are typically written also in PHP at Sysdrone so all the test suites can be executed on
all the platforms that the actual software can be run. Selenium tests detailed in section
7.2 are used in most acceptance tests but for example REST APIs can be tested simply
with PHPUnit without using Selenium.

As described in section 7.3, Windows operating systems can be updated with service
packs which may introduce portability issues. These should be tested for with different
service pack versions. Server software developed at Sysdrone is also developed for Linux
servers. Linux is available in a wide array of different distributions such as Red Hat or
Ubuntu. Although same software is typically available on different distributions, some
of core software can differ. These can be tested as well with different virtual machines
running on different distributions.

Some server software can also be developed for both Windows and Linux operating
systems. In case the software is portable, the test suites are typically written portable
as well. The same test suites can be then tested on different virtual machines with
different operating systems. If there are some platform-specific test suites, it is possible

49

to specify these to particular virtual machines. Test results can be combined as a one
report to ease the verification process.

The possible issues with 32- and 64-bit implementations are similar to the ones
encountered with desktop software projects. For more details, refer to section 7.3.

7.5 Chapter Summary

Performing automatic test suites on multiple platforms would not require additional
test planning or writing as the functionality is typically the same on all supported plat-
forms. Different platforms can be added to TeamCity’s agent pool so all the required
platforms can be tested automatically.

Web-based software projects can and should be tested on unit, integration, system
and acceptance test levels. Tools such as Jasmine can be used on unit and integration
levels. Tools such as Selenium can be used on system and acceptance test levels. Tests
should be performed on multiple browsers on different platforms to comprehensively
verify the functionality of the software.

Desktop software projects typically use .NET framework for both the actual soft-
ware and test suites. Thus the existing test suites can be executed on all platforms
where the software will be executed. Mono framework can provide support for other
platforms beside Windows. Virtual machines can be used to verify the functionality
on different hardware architecture such as between 32- and 64-bit computers.

In a lot of cases the server software developed at Sysdrone are similar to desktop
software projects. However desktop software is not typically developed for Linux op-
erating systems whereas server software can run on both Windows or Linux or just
either one.

50

8 Summary

The most important question of this thesis was: "How can Sysdrone use automatic
testing to detect and mitigate portability issues in its software development process?"
At Sysdrone testing is very important because of the extensive requirements due to laws
and standards related to medical devices. Testing is already performed extensively and
is automated to a high degree. This is a very good situation for introducing portability
testing.

There are a number of steps Sysdrone can do to enhance their testing processes:
Use TeamCity to control a number of virtual machines with different operating

systems. These virtual machines have their own build agents which build the software
and perform automatic test suites. As done already today, unit tests which are fast to
execute can be run upon each commit and longer acceptance tests can be run nightly.
The virtual machines can be used to perform both Windows and Linux test suites
developed with C# and PHP languages used typically at Sysdrone.

One of the most usually encountered portability problems are differences between
various browser vendors and their software versions. Sysdrone already uses Selenium to
perform acceptance tests but these are currently only performed with Mozilla Firefox
browser. These same test suites can performed on multiple different browsers with
Selenium. These browsers also include mobile browsers on mobile platforms such as
iOS and Android.

In addition to running existing Selenium acceptance tests with different browsers,
Sysdrone would also benefit from unit testing JavaScript code. Acceptance tests are
also important but testing various detailed functionality with acceptance tests is overly
complicated and much slower. There are various JavaScript unit testing frameworks
but one of the most popular is Jasmine. Unit tests written with these frameworks
should also be executed on all supported platforms. Preferably they are executed upon
each commit as are other unit tests.

First supporting question was: "What is automatic testing, why is it important and
how it can be done?" Automatic testing is a well researched subject and there weren’t
any new discoveries made during the writing of this thesis. Fortunately automation of
tests is already well understood at Sysdrone so there wasn’t need to argue in favor of
increasing the automation.

Second supporting question was: "What is portability, what kind of problems are

51

related to it and how can these issues be detected automatically?" Portability is a
complex concept. A lot of the books and scientific articles related to portability were
concerned about the hardware portability. Hardware portability has become less of
problem recently as higher-level programming languages have become increasingly pop-
ular and they help abstract out the hardware differences. Many portability issues of
today are of software nature. One of the most frequently encountered is the issue of
browser incompatibility.

At the beginning of writing this thesis I expected that there would be a lot of
research done into practical portability issues. Unfortunately finding such research was
surprisingly difficult. However during the writing I found out that it isn’t required that
these portability issues are deeply understood in theory before they can be detected.
Testing portability issues proved to be easier than I expected because the existing
test suites can be simply executed on all supported platforms. This is good news
also because it doesn’t require that much of additional resources. After the automatic
portability testing environments have been setup for the first time, they can be used
in many different projects without a lot of setup overhead.

Typically manual acceptance tests are executed on at least most of the supported
platforms. This however is insufficient because some portability issues happen at a
very low level and these can be hard or at least labor-intensive to detect in acceptance
tests. It is beneficial to perform all the available tests on all supported platforms to
detect the problems at an early stage and fix them as quickly as possible.

In retrospective, the subject of this thesis was overly broad. If I were to start
the thesis again, I would constraint the subject to a more limited area such as porta-
bility issues in web browsers. More limited subject would have allowed me to delve
deeper into the issues. However even with this broad subject, writing the thesis was
very educational. Even though I already had some experience of automated tests, my
knowledge is now both broader and deeper.

52

9 References

[1] Ammann, P. & Offutt, J., 2008. Introduction to software testing, p. 5, 215. New
York, New York: Cambridge University Press.

[2] Apple, Mac OS X Developer Library, installer(8) Mac OS X Manual Page, avail-
able at <URL: https://developer.apple.com/library/mac/#documentation/
Darwin/Reference/ManPages/man8/installer.8.html>, 10.2.2012.

[3] AppleInsider, Apple confirms switch to Intel, available at <URL: http:
//www.appleinsider.com/articles/05/06/06/apple_confirms_switch_
to_intel.html>, 16.12.2011

[4] AppleInsider, Apple unveils Mac mini Core Duo, available at <URL:
http://www.appleinsider.com/articles/06/02/28/apple_unveils_mac_
mini_core_duo.html>, 16.12.2011.

[5] AppleInsider, A closer look at Apple’s Core 2 Duo MacBook Pro, avail-
able at <URL: http://www.appleinsider.com/articles/06/10/31/a_closer_
look_at_apples_core_2_duo_macbook_pro.html>, 16.12.2011.

[6] APT-RPM, apt-get(8) - Linux man page, available at <URL: http://linux.die.
net/man/8/apt-get>, 10.2.2012.

[7] Ariel, A. & Berger, N.A., 2006. Plotting the globe: stories of meridians, parallels,
and the international, p. 142. Westport, Connecticut: Praeger Publishers.

[8] Ars Technica, Appeals court: Apple can continue to restrict OS X to Mac
hardware, available at <URL: http://arstechnica.com/apple/2011/09/
appeals-court-apple-can-continue-to-restrict-os-x-to-mac-hardware/>,
27.05.2012.

[9] Attivio, Inc., Attivio Technical Series: Automating Installation Testing,
available at <URL: http://www.attivio.com/blog/56-java-development/
223-technical-series-automating-installation-testing.html>, 10.2.2012.

[10] Australian Strategic Policy Institute, Is The JSF good enough?, available at
<URL: http://www.aspi.org.au/publications/publication_details.aspx?
ContentID=56&pubtype=6>, 10.11.2011.

53

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/installer.8.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/installer.8.html
http://www.appleinsider.com/articles/05/06/06/apple_confirms_switch_to_intel.html
http://www.appleinsider.com/articles/05/06/06/apple_confirms_switch_to_intel.html
http://www.appleinsider.com/articles/05/06/06/apple_confirms_switch_to_intel.html
http://www.appleinsider.com/articles/06/02/28/apple_unveils_mac_mini_core_duo.html
http://www.appleinsider.com/articles/06/02/28/apple_unveils_mac_mini_core_duo.html
http://www.appleinsider.com/articles/06/10/31/a_closer_look_at_apples_core_2_duo_macbook_pro.html
http://www.appleinsider.com/articles/06/10/31/a_closer_look_at_apples_core_2_duo_macbook_pro.html
http://linux.die.net/man/8/apt-get
http://linux.die.net/man/8/apt-get
http://arstechnica.com/apple/2011/09/appeals-court-apple-can-continue-to-restrict-os-x-to-mac-hardware/
http://arstechnica.com/apple/2011/09/appeals-court-apple-can-continue-to-restrict-os-x-to-mac-hardware/
http://www.attivio.com/blog/56-java-development/223-technical-series-automating-installation-testing.html
http://www.attivio.com/blog/56-java-development/223-technical-series-automating-installation-testing.html
http://www.aspi.org.au/publications/publication_details.aspx?ContentID=56&pubtype=6
http://www.aspi.org.au/publications/publication_details.aspx?ContentID=56&pubtype=6

[11] Battlefield 3 Blog, Battlefield 3 Xbox 360 sales top PlayStation 3 and PC combined,
available at <URL: http://bf3blog.com/2011/11/battlefield-3-xbox-360-sales-top-
playstation-3-and-pc-combined/>, 5.1.2012.

[12] Binu, A., 2010. Problem Solving and Computer Programming Using C, p. 6-7. New
Delhi, India: University Science Press.

[13] Black, R., 2002. Managing the Test Process: Practical Tools for Managing Hard-
ware and Software Testing, p. 7-8. Wiley Publishing. ISBN 0-471-22398-0

[14] Blizzard Insider, StarCraft II Beta Retrospective, available at <URL: http://us.
battle.net/sc2/en/blog/39345>, 9.12.2011.

[15] Boehm, B.W., 1981. Software engineering economics, p. 37. Upper Saddle River,
New Jersey: Prentice Hall.

[16] Brown, P.J., 2003. Encyclopedia of Computer Science, 4th Edition, p. 1633-1634,
available at <URL: http://dl.acm.org/citation.cfm?id=1074100.1074809>.
Chichester, UK: John Wiley and Sons Ltd. ISBN: 0-470-86412-5

[17] Chelimsky, D., Astels, D., Dennis, Z., Hellesøy, A., Helmkamp, B. & North, D.,
2010. The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and
Friends, p. 153. The Pragmatic Programmers.

[18] Chemuturi, M., 2010. Mastering Software Quality Assurance: Best Practices,
Tools and Technique for Software, p. 273. J. Ross Publishing. ISBN-13: 978-
1604270327

[19] CNN, This Week At War - Feb 24, 2007, available at <URL: http://
transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html>, 10.11.2011.

[20] Committee for Advancing Software-Intensive Systems Producibility, National Re-
search Council, Critical Code - Software Producibility For Defense, p. 87-91. Wash-
ington, District of Columbia: The National Academies Press.

[21] Council of the European Communities, Council Directive 93/42/EEC of 14 June
1993 concerning medical devices, available at <URL: http://eur-lex.europa.
eu/LexUriServ/LexUriServ.do?uri=CELEX:31993L0042:En:HTML>, 20.1.2012.

[22] Craig, R.D. & Jaskiel, S.P., 2002. Systematic software testing, p. 101. Norwood,
Massachusetts: Artech House Publishers.

54

http://us.battle.net/sc2/en/blog/39345
http://us.battle.net/sc2/en/blog/39345
http://dl.acm.org/citation.cfm?id=1074100.1074809
http://transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html
http://transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31993L0042:En:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31993L0042:En:HTML

[23] da Cruz, F., Columbia University Computing History: Programming the ENIAC,
available at <URL: http://www.columbia.edu/cu/computinghistory/eniac.
html>, 30.12.2011.

[24] Dijkstra, E.W., Notes on Structured Programming, available at <URL: http:
//www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF>, 10.11.2011.

[25] Dustin, E., Rashka, J. & Paul, J., 1999. Automated Software Testing: Introduction,
Management, and Performance, p. 40-41. Addison-Wesley Professional.

[26] Engel, A., 2010. Verification, Validation and Testing of Engineered Systems (Wiley
Series in Systems Engineering and Management), Chapter 5.4.3. Wiley-Blackwell.
ISBN-13: 978-0470527511

[27] Ewing, M., Johnson, J. & Troan, E., rpm(8) - Linux man page, available at <URL:
http://linux.die.net/man/8/rpm>, 10.2.2012.

[28] Feathers, M., The Humble Dialog Box, available at <URL: http://www.
objectmentor.com/resources/articles/TheHumbleDialogBox.pdf>, 9.2.2012.

[29] Firtman, M., Mobile HTML5 - compatibility tables for iPhone, Android,
BlackBerry, Symbian, iPad and other mobile devices, available at <URL:
http://mobilehtml5.org/>, 16.12.2011.

[30] FitNesse, Two Minute Example, available at <URL: http://fitnesse.org/
FitNesse.UserGuide.TwoMinuteExample>, 15.12.2011.

[31] Fowler, M., Continuous Integration, available at <URL: http://martinfowler.
com/articles/continuousIntegration.html>, 20.6.2011.

[32] U.S. Food and Drug Administration, Is The Product A Medical De-
vice?, available at <URL: http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.
htm>, 20.1.2012.

[33] The FreeBSD Project, PKG_ADD(1) FreeBSD General Commands Man-
ual, available at <URL: http://www.freebsd.org/cgi/man.cgi?query=pkg_
add&sektion=1>, 10.2.2012.

[34] Gabbrielli, M. & Martini, S., 2006. Programming Languages: Principles and
Paradigms, p. 414, 417. Springer London Dordrech Heidelberg New York. ISBN:
978-1-84882-913-8.

55

http://www.columbia.edu/cu/computinghistory/eniac.html
http://www.columbia.edu/cu/computinghistory/eniac.html
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://linux.die.net/man/8/rpm
http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf
http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf
http://fitnesse.org/FitNesse.UserGuide.TwoMinuteExample
http://fitnesse.org/FitNesse.UserGuide.TwoMinuteExample
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.htm
http://www.freebsd.org/cgi/man.cgi?query=pkg_add&sektion=1
http://www.freebsd.org/cgi/man.cgi?query=pkg_add&sektion=1

[35] Garen, K., Software Portability: Weighing Options, Making Choices, available at
<URL: http://www.nysscpa.org/cpajournal/2007/1107/perspectives/p10.
htm>, 5.1.2012.

[36] Gore, A. Presentation given at Nordic Business Forum in Jyväskylä, Finland,
30.9.2011.

[37] Guardian, The, Apple backtracks on iPhone sex ban, available at
<URL: http://www.guardian.co.uk/technology/blog/2009/may/24/
iphone-ban-eucalyptus>, 16.6.2012.

[38] Hakuta, M. & Ohminami, M., A Study of Software Portability Eval-
uation, available at <URL: http://www.mendeley.com/research/
study-software-portability-evaluation/>, 30.12.2011.

[39] Hamill, P., 2004. Unit Test Frameworks, p. 51-52. O’Reilly Media. ISBN-13: 978-
0596006891.

[40] Hanssen, G.K. & Haugset, B., 2009. Automated Acceptance Testing Using Fit,
FIND COMPLETE REFERENCE INFORMATION FROM IEEEXPLORE.

[41] Haugset, B. & Hanssen, G.K., 2008. Automated Acceptance Testing: A Literature
Review and an Industrial Case Study, published in Agile ’08 Conference on 4-8 Aug.
2008. Available at <URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=4599450>. ISBN: 978-0-7695-3321-6

[42] Hayes, J.H., Dekhtyar, A. & Janzen, D.S., 2009. Towards Traceable Test-Driven
Development, published in Traceability in Emerging Forms of Software Engineering
ICSE Workshop on 18 May 2009. ISBN: 978-1-4244-3741-2

[43] Holmes, A. & Kellogg, M., 2006. Automating Functional Tests Using Sele-
nium Published in Agile Conference, 2006. Print ISBN: 0-7695-2562-8. Avail-
able at <URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=
1667589>, 9.2.2012.

[44] IEEE Computer Society, Guide to the Software Engineering Body of Knowledge
(SWEBOK), Chapter 5, available at <URL: http://www.computer.org/portal/
web/swebok/html/ch5#Ref2>, 10.11.2011.

[45] IEEE Computer Society, 1990. IEEE Standard Glossary of Software Engineering
Terminology. E-ISBN: 0-7381-0391-8. Available at <URL: http://ieeexplore.
ieee.org/servlet/opac?punumber=2238>, 26.1.2012.

56

http://www.nysscpa.org/cpajournal/2007/1107/perspectives/p10.htm
http://www.nysscpa.org/cpajournal/2007/1107/perspectives/p10.htm
http://www.guardian.co.uk/technology/blog/2009/may/24/iphone-ban-eucalyptus
http://www.guardian.co.uk/technology/blog/2009/may/24/iphone-ban-eucalyptus
http://www.mendeley.com/research/study-software-portability-evaluation/
http://www.mendeley.com/research/study-software-portability-evaluation/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4599450
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4599450
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1667589
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1667589
http://www.computer.org/portal/web/swebok/html/ch5#Ref2
http://www.computer.org/portal/web/swebok/html/ch5#Ref2
http://ieeexplore.ieee.org/servlet/opac?punumber=2238
http://ieeexplore.ieee.org/servlet/opac?punumber=2238

[46] Illing, G. & Peitz, M., 2006. Industrial Organization and The Digital Economy, p.
42. Cambridge, Massachusetts: MIT Press. ISBN-13: 978-0-262-09041-4.

[47] InfoWorld, Selenium test suite to add mobile apps, available at
<URL: http://www.infoworld.com/d/application-development/
selenium-test-suite-add-mobile-apps-011>, 20.5.2012.

[48] International Data Corporation, Press Release: More Mobile Internet Users Than
Wireline Users in the U.S. by 2015 - Sep 12th, 2011, available at <URL: http:
//www.idc.com/getdoc.jsp?containerId=prUS23028711>, 16.12.2011.

[49] JetBrains, TeamCity - Features, available at <URL: http://www.jetbrains.
com/teamcity/features/index.html#Build_Infrastructure>, 18.5.2012.

[50] Johnson, S.C. & Ritchie, D.M., Portability of C Programs and the UNIX Sys-
tem, available at <URL: http://cm.bell-labs.com/who/dmr/portpap.html>,
5.1.2012.

[51] Jones, C., 1996. Software defect-removal efficiency, p. 94. Published in Com-
puter Volume 29 Issue 4 by IEEE Computer Society. ISSN: 0018-9162. Avail-
able at <URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=
488361>, 26.1.2012.

[52] jQuery Mobile, jQuery Mobile 1.0.1 Released, available at <URL: http:
//jquerymobile.com/blog/2012/01/26/jquery-mobile-1-0-1-released/>,
16.6.2012.

[53] The Linux Foundation, Linux Kernel Development, available at <URL: http://
www.linuxfoundation.org/docs/lf_linux_kernel_development_2010.pdf>,
3.11.2011.

[54] Kaner, C., Falk, J.L. & Nguyen, H.Q., 1999. Testing Computer Software, Second
Edition. New York, New York: John Wiley & Sons, Inc. ISBN: 0471358460

[55] Kaner, C., Exploratory Testing - Keynote at QAI November 17, 2006, available at
<URL: http://www.kaner.com/pdfs/ETatQAI.pdf>, 11.11.2011.

[56] Lockheed Martin, F-22 Raptor, available at <URL: http://www.
lockheedmartin.com/products/f22/>, 10.11.2011.

[57] Louridas, P., 2006. Static Code Analysis, published in IEEE Software Volume
23 Issue 4. ISSN: 0740-7459. Available at <URL: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1657940>, 27.1.2012.

57

http://www.infoworld.com/d/application-development/selenium-test-suite-add-mobile-apps-011
http://www.infoworld.com/d/application-development/selenium-test-suite-add-mobile-apps-011
http://www.idc.com/getdoc.jsp?containerId=prUS23028711
http://www.idc.com/getdoc.jsp?containerId=prUS23028711
http://www.jetbrains.com/teamcity/features/index.html#Build_Infrastructure
http://www.jetbrains.com/teamcity/features/index.html#Build_Infrastructure
http://cm.bell-labs.com/who/dmr/portpap.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=488361
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=488361
http://jquerymobile.com/blog/2012/01/26/jquery-mobile-1-0-1-released/
http://jquerymobile.com/blog/2012/01/26/jquery-mobile-1-0-1-released/
http://www.linuxfoundation.org/docs/lf_linux_kernel_development_2010.pdf
http://www.linuxfoundation.org/docs/lf_linux_kernel_development_2010.pdf
http://www.kaner.com/pdfs/ETatQAI.pdf
http://www.lockheedmartin.com/products/f22/
http://www.lockheedmartin.com/products/f22/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1657940
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1657940

[58] Lyu, M.R., 1996. Handbook of Software Reliability Engineering, chapters 1 & 6.
IEEE Computer Society Press & McGraw Hill. ISBN: 0-07-039400-8. Also made
freely available by the author at <URL: http://www.cse.cuhk.edu.hk/~lyu/
book/reliability/>, 17.2.2012.

[59] Maraia, V., 2005. The Build Master: Microsoft’s Software Configuration Manage-
ment Best Practices. Addison-Wesley Professional.

[60] Martin, R.C., 2007. Professionalism and Test-Driven Development, published in
IEEE Software Volume 24 Issue 3. Available at <URL: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=4163026> ISSN: 0740-7459.

[61] Martin, R.C., 2007. TDD with Acceptance Tests and Unit Tests, avail-
able at <URL: http://blog.objectmentor.com/articles/2007/10/17/
tdd-with-acceptance-tests-and-unit-tests>, 3.6.2012.

[62] Martin, R.C., 2009. Clean Code: A Handbook of Agile Software Craftsmanship, p.
121-122. Boston, Massachusetts: Pearson Education Inc.

[63] McCaffrey, J., Automating UI Tests In WPF Applications, available at <URL:
http://msdn.microsoft.com/en-us/magazine/dd483216.aspx>, 3.6.2012.

[64] Memon, A.M., Pollack, M.E. & Soffa, M.L., 1999. Using a Goal-Driven Approach
to Generate Test Cases for GUIs, available at <URL: http://www.cs.purdue.
edu/homes/xyzhang/spring07/Papers/test-gui.pdf>, 9.12.2011.

[65] Microsoft, Standard Installer Command-Line Options, available at <URL:
http://msdn.microsoft.com/en-us/library/windows/desktop/aa372024(v=
vs.85).aspx>, 10.2.1012.

[66] Microsoft, Microsoft Support Lifecycle, available at <URL: http://support.
microsoft.com/lifecycle/?c2=1173>, 3.6.2012.

[67] Microsoft, Microsoft Support Lifecycle, available at <URL: http://support.
microsoft.com/lifecycle/?c2=11732>, 3.6.2012.

[68] Microsoft, Microsoft Support Lifecycle, available at <URL: http://support.
microsoft.com/lifecycle/?c2=14019>, 3.6.2012.

[69] Microsoft, Microsoft Support Lifecycle, available at <URL: http://support.
microsoft.com/lifecycle/?c2=1163>, 3.6.2012.

58

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4163026
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4163026
http://blog.objectmentor.com/articles/2007/10/17/tdd-with-acceptance-tests-and-unit-tests
http://blog.objectmentor.com/articles/2007/10/17/tdd-with-acceptance-tests-and-unit-tests
http://msdn.microsoft.com/en-us/magazine/dd483216.aspx
http://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/test-gui.pdf
http://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/test-gui.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/aa372024(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa372024(v=vs.85).aspx
http://support.microsoft.com/lifecycle/?c2=1173
http://support.microsoft.com/lifecycle/?c2=1173
http://support.microsoft.com/lifecycle/?c2=11732
http://support.microsoft.com/lifecycle/?c2=11732
http://support.microsoft.com/lifecycle/?c2=14019
http://support.microsoft.com/lifecycle/?c2=14019
http://support.microsoft.com/lifecycle/?c2=1163
http://support.microsoft.com/lifecycle/?c2=1163

[70] Microsoft, Some programs have compatibility issues with Service Pack 1 for Win-
dows 7 and for Windows Server 2008 R2, available at <URL: http://support.
microsoft.com/kb/2492938/>, 3.6.2012.

[71] Mono Project, Support Platforms, available at <URL: http://www.
mono-project.com/Supported_Platforms>, 26.1.2012.

[72] Mono Project, NUnit, available at <URL: http://www.mono-project.com/
NUnit>, 10.6.2012.

[73] Myers, G.J., 2004. The Art Of Software Testing, Second Edition. Hoboken, New
Jersey: John Wiley & Sons, Inc.

[74] National Aeronautics and Space Administration, 1999. Mars Climate Orbiter
Mishap Investigation Board Phase I Report, p. 6 & 13, available at <URL:
http://sunnyday.mit.edu/accidents/MCO_report.pdf>, 2.12.2011.

[75] National University of Singapore, Assembly Examples, available at <URL:
http://staff.science.nus.edu.sg/~phywjs/CZ101/assembly-examples/
programs.html>, 5.1.2012.

[76] NUnit, NUnit Quick Start, available at <URL: http://www.nunit.org/index.
php?p=quickStart&r=2.6, 23.2.2012.

[77] NUnitForms, NUnitForms - windows.forms unit testing, available at <URL: http:
//nunitforms.sourceforge.net/>, 3.6.2012.

[78] Oglesby, D., Schloegel, K., Bhatt, D. & Engstrom, E., 2001. A Pattern-based
Framework to Address Abstraction, Reuse, and Cross-domain Aspects in Domain
Specific Visual Languages, available at <URL: http://w3.isis.vanderbilt.edu/
OOPSLA2K1/Papers/Oglesby.pdf>, 23.12.2011.

[79] Osherove, R., 2009. The Art Of Unit Testing with Examples in .NET, p. 4. Green-
wich, Connecticut: Manning Publications Co.

[80] Page, A., Johnston, K. & Rollison, B.J., 2008. How We Test Software at Microsoft.
Microsoft Press. ISBN-13: 978-0735624252

[81] Perry, W.E., 2006. Effective Methods for Software Testing, Third Edition. Indi-
anapolis, Indiana: Wiley Publishing, Inc. ISBN-13: 978-0-7645-9837-1

[82] PHP Group, The, PHP: platforms, available at <URL: https://wiki.php.net/
platforms>, 11.6.2012.

59

http://support.microsoft.com/kb/2492938/
http://support.microsoft.com/kb/2492938/
http://www.mono-project.com/Supported_Platforms
http://www.mono-project.com/Supported_Platforms
http://www.mono-project.com/NUnit
http://www.mono-project.com/NUnit
http://sunnyday.mit.edu/accidents/MCO_report.pdf
http://staff.science.nus.edu.sg/~phywjs/CZ101/assembly-examples/programs.html
http://staff.science.nus.edu.sg/~phywjs/CZ101/assembly-examples/programs.html
http://www.nunit.org/index.php?p=quickStart&r=2.6
http://www.nunit.org/index.php?p=quickStart&r=2.6
http://nunitforms.sourceforge.net/
http://nunitforms.sourceforge.net/
http://w3.isis.vanderbilt.edu/OOPSLA2K1/Papers/Oglesby.pdf
http://w3.isis.vanderbilt.edu/OOPSLA2K1/Papers/Oglesby.pdf
https://wiki.php.net/platforms
https://wiki.php.net/platforms

[83] Pirsig, R.M., 1974. Zen and the Art of Motorcycle Maintenance, Chapter 20. New
York City, New York: William Morrow and Company.

[84] RegHardware, Apple bans Page 3 from iPhone app, available at <URL: http:
//www.reghardware.com/2009/05/05/the_sun_app_ban/>, 16.6.2012.

[85] RSpec, RSpec.info: Home, available at <URL: http://rspec.info>, 15.12.2011.

[86] Rubin, J. & Chisnell, D, 2008. Handbook of Usability Testing: How to Plan, De-
sign and Conduct Effective Tests, 2nd Edition, p. 21. Indianapolis, Indiana: Wiley
Publishing Inc.

[87] Selenium, WebDriver support for Mobile browsers, available at <URL:
http://code.google.com/p/selenium/wiki/WebDriverForMobileBrowsers>,
20.5.2012.

[88] SeleniumHQ, Selenium - Web Browser Automation, available at <URL: http:
//seleniumhq.org/>, 15.12.2011.

[89] Seth, G., Moving from 32-bit to 64-bit application development on .NET Frame-
work, available at <URL: http://blogs.msdn.com/b/gauravseth/archive/
2006/03/07/545104.aspx>, 10.6.2012.

[90] Stack Overflow, stopping key event bubbling in safari 4 windows,
available at <URL: http://stackoverflow.com/questions/1678273/
stopping-key-event-bubbling-in-safari-4-windows>, 27.05.2012.

[91] StatCounter, Top 5 Browsers on Nov 2011, available at <URL: http://gs.
statcounter.com/#browser-ww-monthly-201111-201111-bar>, 16.12.2011.

[92] StatCounter, Top 8 Mobile OSs from Jan to Dec 2011, available at <URL: http:
//gs.statcounter.com/#mobile_os-ww-monthly-201101-201112>, 12.1.2012.

[93] Stern, N. 1981. From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly
Computer. Bedford, Massachusetts: Digital Press.

[94] Sysdrone Oy, Software Development Process description, an internal document,
5.12.2011.

[95] Tar Pit, The, Having Jasmine tests results in TeamCity via
node.js (on windows) invoked from powershell, available at <URL:
http://blog.goneopen.com/2011/09/having-jasmine-tests-results-in-teamcity-
via-node-js-on-windows-invoked-from-powershell/>, 18.5.2012.

60

http://www.reghardware.com/2009/05/05/the_sun_app_ban/
http://www.reghardware.com/2009/05/05/the_sun_app_ban/
http://rspec.info
http://code.google.com/p/selenium/wiki/WebDriverForMobileBrowsers
http://seleniumhq.org/
http://seleniumhq.org/
http://blogs.msdn.com/b/gauravseth/archive/2006/03/07/545104.aspx
http://blogs.msdn.com/b/gauravseth/archive/2006/03/07/545104.aspx
http://stackoverflow.com/questions/1678273/stopping-key-event-bubbling-in-safari-4-windows
http://stackoverflow.com/questions/1678273/stopping-key-event-bubbling-in-safari-4-windows
http://gs.statcounter.com/#browser-ww-monthly-201111-201111-bar
http://gs.statcounter.com/#browser-ww-monthly-201111-201111-bar
http://gs.statcounter.com/#mobile_os-ww-monthly-201101-201112
http://gs.statcounter.com/#mobile_os-ww-monthly-201101-201112

[96] University of Manchester, Early Electronic Computers, available at <URL: http:
//www.computer50.org/mark1/contemporary.html>, 5.1.2012.

[97] U.S. Department of Commerce, National Institute of Standards & Technol-
ogy, 2008. Technical Guide to Information Security Testing and Assessment,
available at <URL: http://csrc.nist.gov/publications/nistpubs/800-115/
SP800-115.pdf>, 2.12.2011.

[98] U.S. Department of Commerce, National Institute of Standards & Technology,
2002. Planning Report 02-3: The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing, available at <URL: http://www.nist.gov/director/
planning/upload/report02-3.pdf>, 17.11.2011.

[99] UserTesting.com, UserTesting.com - Low Cost Usability Testing, available at
<URL: http://www.usertesting.com/>, 9.12.2011.

[100] Sestoft, P. 2008. Systematic software testing, Version 2, available at <URL:
http://www.itu.dk/~sestoft/papers/softwaretesting.pdf>, 17.11.2011.

[101] United States Air Force, FY 2011 Budget Estimates, p. 15, available at <URL:
http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.
pdf>, 10.11.2011.

[102] Wakid, S.A., Kuhn, D.R. & Wallace, D.R., 2002. Toward Credible IT Testing
and Certification, published in IEEE Software Volume 16 Issue 4. ISSN: 0740-
7459. Available at <URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=776947>, 3.2.2012.

[103] Whittaker, J.A., 2000. What Is Software Testing? And Why Is It So
Hard?, published in IEEE Software Volume 17 Issue 1. ISSN: 0740-7459. Avail-
able at <URL: http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=
&arnumber=819971>, 27.1.2012.

[104] Wichelecki, S., Understanding ISO 13485, published in Quality Magazine on
January 2, 2008. Available at <URL: http://www.qualitymag.com/Articles/
Feature_Article/BNP_GUID_9-5-2006_A_10000000000000225133>, 26.1.2012.

[105] Willett, N., 2011. Quality Management: The Need for ISO 13485, pub-
lished in Quality Magazine on January 1, 2011. Available at <URL:
http://www.qualitymag.com/Articles/Feature_Article/BNP_GUID_
9-5-2006_A_10000000000000964284>, 18.6.2012.

61

http://www.computer50.org/mark1/contemporary.html
http://www.computer50.org/mark1/contemporary.html
http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.usertesting.com/
http://www.itu.dk/~sestoft/papers/softwaretesting.pdf
http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.pdf
http://www.saffm.hq.af.mil/shared/media/document/AFD-100128-072.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=776947
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=776947
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=819971
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=819971
http://www.qualitymag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000225133
http://www.qualitymag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000225133
http://www.qualitymag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000964284
http://www.qualitymag.com/Articles/Feature_Article/BNP_GUID_9-5-2006_A_10000000000000964284

[106] Williams, L., Maximilien E.M. & Vouk, M., 2003. Test-driven Development as a
Defect-Reduction Practice, published in Software Reliability Engineering Interna-
tional Symposium on 17-20 November 2003. ISBN: 0-7695-2007-3

[107] Williams, L., Kudrjavets, G. & Nagappan, N., 2009. On the Effectiveness
of Unit Test Automation at Microsoft, published in 20th International Sympo-
sium on Software Reliability Engineering on 16-19 November 2009. ISSN: 1071-
9458, E-ISBN: 978-0-7695-3878-5, Print ISBN: 978-1-4244-5375-7. Available at
<URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5362086>,
23.2.2012.

[108] You Can’t Write Perfect Software, Running Jasmine Tests in a Continuous
Integration Build (with TeamCity), available at <URL: http://benshepheard.
blogspot.com/2011/05/running-jasmine-tests-in-continuous.html>,
18.5.2012.

62

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5362086
http://benshepheard.blogspot.com/2011/05/running-jasmine-tests-in-continuous.html
http://benshepheard.blogspot.com/2011/05/running-jasmine-tests-in-continuous.html

	Preface
	Glossary
	1 Introduction
	1.1 Objective of the Thesis
	1.2 Research Methods
	1.3 Constraints of Research
	1.4 Structure of the Thesis

	2 Software Testing
	2.1 What is Software Testing?
	2.2 World Without Software Testing
	2.3 Complexity of the Software Testing
	2.4 Automatic Testing
	2.5 Chapter Summary

	3 Portability Testing
	3.1 History of Portability
	3.2 Different Types of Portability
	3.3 Motivation for Portability
	3.4 Problems of Portability and Portability Testing
	3.5 Chapter Summary

	4 Testing Levels
	4.1 Defining Testing Levels
	4.2 Unit Testing
	4.3 Integration Testing
	4.4 System Testing
	4.5 Acceptance Testing
	4.6 Chapter Summary

	5 Test Techniques
	5.1 Alpha and Beta Testing
	5.2 Configuration Testing
	5.3 Conformance/Functional/Correctness Testing
	5.4 Graphical User Interface Testing
	5.5 Installation Testing
	5.6 Penetration Testing
	5.7 Performance and Stress Testing
	5.8 Recovery Testing
	5.9 Regression Testing or Back-to-Back Testing
	5.10 Reliability Achievement and Evaluation
	5.11 Test-Driven Development
	5.12 Usability Testing
	5.13 Chapter Summary

	6 Case Study: Sysdrone Oy
	6.1 Software Development for Health Technology Industry
	6.2 Current Testing Systems
	6.3 Supported Software Types
	6.4 Requirement Specifications
	6.5 Chapter Summary

	7 Automatic Portability Testing Environments
	7.1 Common Aspects
	7.2 Web-based Software Project
	7.3 Desktop Software Project
	7.4 Server Software Project
	7.5 Chapter Summary

	8 Summary
	9 References

