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bNumerola Oy, P.O. Box 126, FI-40101 Jyväskylä, Finland

Abstract

The time-harmonic solution of the linear elastic wave equation is needed for a variety
of applications. The typical procedure for solving the time-harmonic elastic wave
equation leads to difficulties solving large-scale indefinite linear systems. To avoid
these difficulties, we consider the original time dependent equation with a method
based on an exact controllability formulation. The main idea of this approach is
to find initial conditions such that after one time-period, the solution and its time
derivative coincide with the initial conditions.

The wave equation is discretized in the space domain with spectral elements.
The degrees of freedom associated with the basis functions are situated at the
Gauss-Lobatto quadrature points of the elements, and the Gauss-Lobatto quadra-
ture rule is used so that the mass matrix becomes diagonal. This method is combined
with the second-order central finite difference or the fourth-order Runge-Kutta time
discretization. As a consequence of these choices, only matrix-vector products are
needed in time dependent simulation. This makes the controllability method com-
putationally efficient.
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1 Introduction

The linear theory of elasticity [1] models mechanical properties of solids as-
suming small deformations. This theory describes several phenomena, includ-
ing seismic waves in the earth and the passing of ultrasonic waves through
materials in order to detect flaws. Efficient solution methods, such as do-
main decomposition [2,3,4,5], fictitious domain [6], and multigrid [7,8], have
been developed for solving the elasticity problem. These methods are typically
used when the solution is based directly on the complex-valued time-harmonic
equations and low-order finite elements (see e.g. [9,10,11]).

To obtain accurate results, the discretization mesh needs to be adjusted to
the wavelength. This leads to a large-scale indefinite linear system for which
it is difficult to develop efficient iterative solution methods. Furthermore, the
error increases as the wavenumber increases, which makes finding an accurate
solution even more challenging. Thus, several modifications of the classical
finite element method (FEM) have been used to maintain the accuracy of the
solution. For instance, these are methods such as ultra weak variational formu-
lation (UWVF) [12,13], Galerkin generalized least-squares [14], discontinuous
enrichment [15], discontinuous Galerkin [16,17], and spectral collocation [18].

Our objective is to solve the problem in a manner that does not require so-
lution of an indefinite linear system. For this purpose we use a controllability
algorithm [19,20,21,22]. The main idea of the algorithm is to return to the
time dependent wave equation and find initial conditions such that after one
time-period the solution and its time derivative coincide with the initial condi-
tions. This is why the controllability problem is reformulated as a least-squares
optimization problem. This problem is solved with a preconditioned conjugate
gradient algorithm.

We use the spectral element method (SEM) [23,24] for spatial discretization.
It provides for a convenient treatment of complex geometries and varying ma-
terial properties. The basis functions are higher-order Lagrange interpolation
polynomials, and the nodes of these functions are placed at the Gauss-Lobatto
collocation points. The integrals in the weak form of the equation are evalu-
ated with the corresponding Gauss-Lobatto quadrature formulas. As a conse-
quence of this choice, spectral element discretization leads to diagonal mass
matrices significantly improving the computational efficiency of the explicit
time-integration used. Moreover, when using higher-order elements, same ac-
curacy is reached with fewer degrees of freedom than when using lower-order
finite elements.

The paper is organized as follows. The statement of the problem and some
preliminaries are presented in Section 2. We give the exact controllability for-
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mulation in Section 3 and discretization schemes in Section 4. We discretize the
elastic wave equation in space domain with spectral elements in Section 4.1.
Time discretization is accomplished using central finite differences in Section
4.2.1 and the fourth-order Runge-Kutta scheme in Section 4.2.2. In Section
5, we present the control problem and a preconditioned conjugate gradient
algorithm that is related to the one developed in [25] for the linear acoustic
wave equation. In Sections 5.1 and 5.2, we compute the gradient of the func-
tional, an essential point of the method, using the adjoint state technique.
The algebraic multigrid method [26,27] is used for preconditioning the conju-
gate gradient algorithm in Section 5.3. Numerical experiments concerning the
propagation of time-harmonic waves show the efficiency of the algorithm in
Section 6.

2 The time-harmonic elastic wave equation

In an elastic, homogeneous, and isotropic body Ω ⊂ R2 with density ρ, the
propagation of time-harmonic waves with angular frequency ω is governed by
the Navier equation

−ω2ρu−∇ · σ(u) = 0 in Ω, (1)

where u denotes the displacement field u(x) = (u1(x), u2(x))T , which depends
on the spatial variable x = (x1, x2)T ∈ R2. The strains are related to the
displacements by the linearized strain tensor ε, which is defined by

ε(u) =
1

2

(
∇u + (∇u)T

)
. (2)

The stress tensor σ(u) is then expressed as

σ(u) = ρ
(
c2
p − 2c2

s

)
(∇ · u)I + 2ρc2

sε(u). (3)

Coefficients cp and cs represent the speed of the pressure waves (P-waves)
and the speed of the shear waves (S-waves), respectively. The P-waves have
a compressional motion, while the motion of the S-waves is perpendicular to
the direction of wave propagation [28].

The boundary ∂Ω surrounding the domain Ω is divided into two distinct parts
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Γext
Ω

Γ0

Figure 1. Domain Ω, and the two parts of the boundary ∂Ω = Γ0 ∪ Γext of the
domain Ω.

(see Figure 1). The boundary Γ0 is assumed to be rigid,

u = 0 on Γ0, (4)

whereas on the artificial boundary Γext we impose the absorbing boundary
condition

iωρBu + σ(u)n = gext. (5)

Here B is a symmetric positive definite 2× 2-matrix [29,30] given by

B =

 cpn
2
1 + csn

2
2 (cp − cs)n1n2

(cp − cs)n1n2 csn
2
1 + cpn

2
2

 , (6)

where n = (n1, n2)T is the outward pointing normal vector on Γext.

3 The exact controllability problem

Solving the time-harmonic equation given by (1), (4), and (5) is equivalent to
finding a time-periodic solution for the corresponding time dependent wave
equation

ρ
∂2U

∂t2
−∇ · σ(U) = 0, in Q = Ω× (0, T ), (7)

U = 0, on γ0 = Γ0 × (0, T ), (8)

ρB
∂U

∂t
+ σ(U)n = Gext, on γext = Γext × (0, T ), (9)
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where U = (U1, U2)T and Gext = (Gext1, Gext2)T . In addition to the system
(7)-(9), we take into account the initial conditions

U(x, 0) = e0,
∂U(x, 0)

∂t
= e1. (10)

The time-period corresponding to the angular frequency ω is given by T = 2π
ω

,
and the T -periodic solution can be achieved by controlling the initial condi-
tions such that the terminal conditions are equal to the initial conditions (10)
at the end of the computation.

For the weak formulation of the problem (7)-(10), we introduce the function
space

W = {y ∈ H1(Ω)×H1(Ω) such that y = 0 on Γ0}. (11)

By multiplying the equation (7) with any test function v in the space W,
using Green’s formula, and substituting the boundary conditions, we get the
following weak formulation: Find U satisfying U(t) ∈ W for any t ∈ [0, T ]
and

∫
Ω

ρ
∂2U

∂t2
· v dx+

∫
Ω

σ(U) : ε(v) dx+
∫

Γext

ρB
∂U

∂t
· v ds =

∫
Γext

Gext · v ds (12)

for any v ∈W and t ∈ [0, T ].

Introducing the Hilbert space Z for the initial conditions e = (e0, e1)T ∈ Z by

Z = W × L2(Ω), (13)

we formulate the exact controllability problem as follows: Find initial condi-
tions e = (e0, e1)T such that the weak formulation (12) holds with the terminal
conditions

U(x, T ) = e0,
∂U(x, T )

∂t
= e1. (14)
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4 Discretization

Discretization methods play a large role in the efficiency of the controllability
method. The key factor in developing efficient solution methods is the use of
high-order approximations without computationally demanding matrix inver-
sions. We attempt to meet these requirements by using the spectral element
[23] method for space discretization.

As, for instance, in [31], we locate the degrees of freedom corresponding to the
basis functions at the Gauss-Lobatto integration points of the elements. With
the Gauss-Lobatto integration rule, this makes the mass matrices diagonal
without reducing the order of accuracy. Thus, the inversion of the mass matrix
is a trivial and computationally efficient operation.

Since we have returned to the time dependent wave equation, also time dis-
cretization is needed. For time discretization we compare the central finite
difference (CD) scheme with the fourth-order accurate Runge-Kutta (RK)
method. With respect to the time step ∆t, the CD method is second-order
accurate, while the RK method is fourth-order accurate. Both methods lead to
an explicit time-stepping scheme, and only matrix-vector products are needed
in time dependent simulation. These properties are essential for computational
efficiency. The drawback is that the schemes need to satisfy the stability con-
dition, which limits the length of the time step. In addition, the computational
effort of the RK method is approximately four times that of the central finite
difference scheme at each time step.

4.1 Spatial discretization

The physical domain Ω is divided into Ne quadrilateral elements Ωi, i =
1, . . . , Ne, such that Ω =

⋃Ne
i=1 Ωi. For the discrete formulation, we define the

reference element Ωref = [0, 1]2 and affine mappings Gi : Ωref → Ωi such that
Gi(Ωref) = Ωi. We define the finite dimensional space

Wr
h = {y = (y1, y2) ∈W such that yk|Ωi

◦ Gi ∈ Qr, k = 1, 2}, (15)

where Qr is the set of polynomials of order r in each variable in space. The
order r = 1 corresponds to bilinear finite elements.

Denoting by U(t) the global vector containing the nodal values of the dis-
placement U(x, t) at time t, we write the semi-discrete equation in the form
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M∂2U(t)

∂t2
+ S ∂U(t)

∂t
+KU(t) = F , (16)

whereM, S, and K are 2×2 block matrices and F is a block vector as follows:

M =

M11 0

0 M22

 , S =

S11 S12

S21 S22

 , K =

K11 K12

K21 K22

 , F =

F1

F2

 .
The components of these block forms are

(M11)ij =
∫
Ω

ρϕjϕi dx,

(M22)ij =
∫
Ω

ρϕjϕi dx,

(S11)ij =
∫

Γext

ρ
(
cpn

2
1 + csn

2
2

)
ϕjϕi ds,

(S12)ij =
∫

Γext

ρ(cp − cs)n1n2ϕjϕi ds,

(S21)ij =
∫

Γext

ρ(cp − cs)n1n2ϕjϕi ds,

(S22)ij =
∫

Γext

ρ
(
cpn

2
2 + csn

2
1

)
ϕjϕi ds,

(K11)ij =
∫
Ω

(
ρ
(
c2
p − 2c2

s

) ∂ϕj
∂x1

∂ϕi
∂x1

+ 2ρc2
s

(
∂ϕj
∂x1

∂ϕi
∂x1

+
1

2

∂ϕj
∂x2

∂ϕi
∂x2

))
dx,

(K12)ij =
∫
Ω

(
ρ
(
c2
p − 2c2

s

) ∂ϕj
∂x2

∂ϕi
∂x1

+ ρc2
s

∂ϕj
∂x1

∂ϕi
∂x2

)
dx,

(K21)ij =
∫
Ω

(
ρ
(
c2
p − 2c2

s

) ∂ϕj
∂x1

∂ϕi
∂x2

+ ρc2
s

∂ϕj
∂x2

∂ϕi
∂x1

)
dx,

(K22)ij =
∫
Ω

(
ρ
(
c2
p − 2c2

s

) ∂ϕj
∂x2

∂ϕi
∂x2

+ 2ρc2
s

(
1

2

∂ϕj
∂x1

∂ϕi
∂x1

+
∂ϕj
∂x2

∂ϕi
∂x2

))
dx,

(F1)i =
∫

Γext

Gext1ϕi ds,

(F2)i =
∫

Γext

Gext2ϕi ds,

where i, j = 1, . . . , N̂ . By N̂ we denote the total number of Gauss-Lobatto
points in the space discretization, which is the number of degrees of freedom
(DOF) in each space variable.
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4.2 Time discretization

The time discretization of the semi-discrete equation is performed with the
central finite differences (CD) in Section 4.2.1 and with the fourth-order Runge-
Kutta (RK) method in Section 4.2.2. Since the mass matrixM is diagonal, ex-
plicit time-stepping with central finite differences or the Runge-Kutta scheme
requires only matrix-vector multiplications. After dividing the time interval
[0, T ] into N time steps, each of size ∆t = T/N , applying the appropriate
time discretization into the semidiscretized form (16), and taking into account
the initial conditions (10), we obtain matrix form of the fully discrete state
equation.

4.2.1 Central finite difference method

The spectral element approximation in space is combined with the standard
second-order central finite difference scheme in time by replacing the time
derivatives in the semidiscretized form (16) at time i∆t by the following ap-
proximations

∂2U(i∆t)

∂t2
≈ Ui+1 − 2Ui + Ui−1

∆t2
,

∂U(i∆t)

∂t
≈ Ui+1 −Ui−1

2∆t
, i = 0, . . . , N,

(17)
where Ui is the vector U at time i∆t. Taking into account the initial conditions
(10), we obtain the fully discrete state equation, which can be represented in
the matrix form

sCD(e, ŷ(e)) =



I

C0 M

B C D
. . . . . . . . .

B C D

B C D





U0

U1

...

...

UN

UN+1


−



I 0

0 ∆tB

0 0
...

...
...

...

0 0



e0

e1

−∆t2



0

1
2
F0

F1

...

...

FN


= 0,

(18)

where ŷ = (U0,U1, . . . ,UN ,UN+1)T contains the vectors Ui, the initial con-
dition is e = (e0, e1)T , and F i is the vector F at time t = i∆t. The matrix
blocks C0, B, C and D are given by the formulas
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C0 =
∆t2

2
K −M, (19)

D =M+
∆t

2
S, (20)

C = ∆t2K − 2M, (21)

B =M− ∆t

2
S, (22)

while I is the identity matrix. The form (18) is further used to derive the
adjoint state equation in Section 5.

4.2.2 Fourth-order Runge-Kutta method

The state equation (16) can be presented as a system of differential equations

∂y

∂t
= f(t,y(t)), (23)

where y = (U,V)T is a vector of time-stepping variables U and V = ∂U
∂t

, and
the function f(t, y(t)) = (f1(t,U,V), f2(t,U,V))T has components

f1(t,U,V) = V, (24)

f2(t,U,V) = −M−1 (SV +KU−F) . (25)

In the fourth-order Runge-Kutta method, the solution y at the ith time step
can be presented as

yi = yi−1 +
1

6
(k1 + 2k2 + 2k3 + k4) , (26)

where yi =
(
Ui, ∂U

i

∂t

)T
contains the displacement vector Ui and its derivative

Vi = ∂Ui

∂t
at time t = i∆t, i = 1, . . . , N . The initial condition is given by y0 =

e = (e0, e1)T , and kj = (kj1, kj2)T , j = 1, 2, 3, 4, are the gradient estimates as
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follows:

 k11

k12

 =

∆tf1(i∆t,Ui,Vi)

∆tf2(i∆t,Ui,Vi)

 , (27)

 k21

k22

 =

∆tf1(i∆t+ ∆t
2
,Ui + k11

2
,Vi + k12

2
)

∆tf2(i∆t+ ∆t
2
,Ui + k11

2
,Vi + k12

2
)

 , (28)

 k31

k32

 =

∆tf1(i∆t+ ∆t
2
,Ui + k21

2
Vi + k22

2
)

∆tf2(i∆t+ ∆t
2
,Ui + k21

2
Vi + k22

2
)

 , (29)

 k41

k42

 =

∆tf1(i∆t+ ∆t,Ui + k31,V
i + k32)

∆tf2(i∆t+ ∆t,Ui + k31,V
i + k32)

 . (30)

In other words, in order to get the gradient estimates (27)-(30), the function
f is evaluated at each time step four times by using the formulas (24)-(25)
and then the successive approximation of y is calculated by the formula (26).
To make the application of the adjoint equation technique in Section 5 more
convenient, we present the fully discrete state equation in the case of the
Runge-Kutta time discretization as

sRK(e, ŷ(e)) =



I

N I
. . . . . .

N I

N I





y0

y1

...

yN−1

yN


−



I

0

0
...

0


e−



0

F̂1

...

F̂N−1

F̂N


= 0,

(31)

where ŷ = (y0,y1, . . . ,yN−1,yN)T includes the vectors yi =
(
Ui, ∂U

i

∂t

)T
, e =

(e0, e1)T contains the initial values, and the matrix N and the vector F̂ i are
defined by
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N = −



Ĉ

2Ĉ

2Ĉ

Ĉ



T 

I

B̂ I

B̂ I

2B̂ I



−1

2B̂

2B̂

2B̂

2B̂


− I, (32)

F̂ i = −



Ĉ

2Ĉ

2Ĉ

Ĉ



T 

I

B̂ I

B̂ I

2B̂ I



−1

D̂i−1

D̂i− 1
2

D̂i− 1
2

D̂i


. (33)

The matrix blocks Ĉ and B̂ and the vector blocks D̂i are given by the formulas

Ĉ =

−1
6
I 0

0 −1
6
I

 ,
B̂ =

 0 −∆t
2
I

∆t
2
M−1K ∆t

2
M−1S

 ,
D̂i =

∆tM−1F i

0

 .
The block-matrix form (31) of the fully discrete state equation with the RK
time-stepping is analogous to the state equation (18).

5 Control problem

In order to solve the exact controllability problem, we use the least-squares
formulation

min
e∈Z

J(e, ŷ(e)), (34)

where ŷ(e) solves equations (7)-(10) and
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J(e, ŷ(e)) =
1

2

(
yN − e

)T K 0

0 M

(yN − e
)

(35)

is the discretized objective function. Solving the minimization problem (34) is
equivalent to finding initial conditions such that the gradient of the objective
function (35) is zero. This can be done by a conjugate gradient algorithm. In
order to implement the algorithm, we have to compute the derivative of the
objective function (35).

The state equations (18) and (31) can be represented in the generic form
s(e, ŷ(e)) = 0, and by the adjoint equation technique we see that

dJ(e, ŷ(e))

dek
=
∂J(e, ŷ)

∂ek
− ẑT

∂s(e, ŷ)

∂ek
, k = 0, 1, (36)

where ẑ contains the vectors of the adjoint state variable at time i∆t. The
vector ẑ is the solution of the adjoint equation

(
∂s(e, ŷ)

∂ŷ

)T
ẑ =

(
∂J(e, ŷ)

∂ŷ

)T
. (37)

By s0(e, ŷ(e)) = 0 we denote the state equation ((18) or (31)) in the special
case with F i = 0 for all i.

5.1 The adjoint equation with the central finite difference method

In the matrix form corresponding to (18), the adjoint state equation is given
by

12





I C0 B

M C B

D . . . . . .

. . . . . . B

D C

D





P0

P1

...

...

PN

PN+1


=



0
...

0

∂J
∂UN−1

∂J
∂UN

∂J
∂UN+1


, (38)

where

∂J

∂UN−1
=

1

2∆t
M

(
e1 −

∂UN

∂t

)
, (39)

∂J

∂UN+1
=

1

2∆t
M

(
∂UN

∂t
− e1

)
, (40)

∂J

∂UN
= K

(
UN − e0

)
. (41)

The gradient components are then the following:

dJ(e, ŷ(e))

de0

= K(e0 −UN) + P0, (42)

dJ(e, ŷ(e))

de1

=M
(
e1 −

∂UN

∂t

)
+ ∆tBP1. (43)

5.2 The adjoint equation with the fourth-order Runge-Kutta method

The adjoint equation corresponding to the state equation (31) is



I N T

I N T

. . . . . .

I N T

I





z0

z1

...

zN−1

zN


=



0

0
...

0

∂J
∂yN


, (44)
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where zi = (Pi, ∂P
i

∂t
)T contains the solution of the adjoint equation and its

time derivative at t = i∆t, i = N − 1, . . . , 0, and in addition we have

∂J

∂yN
=

 K(UN − e0)

M(∂U
N

∂t
− e1)

 .
In the case of the fourth-order Runge-Kutta scheme, the gradient components
are

dJ(e, ŷ(e))

de0

= K(e0 −UN) + P0, (45)

dJ(e, ŷ(e))

de1

=M
(
e1 −

∂UN

∂t

)
+
∂P0

∂t
. (46)

5.3 Preconditioned conjugate gradient method

We solve the least-squares problem with the following conjugate gradient (CG)
algorithm:

Algorithm 1 Preconditioned CG algorithm

Compute the initial value e0 = (e0
0, e

0
1)T .

Solve the state equation s(e0, ŷ(e0)) = 0.

Solve the adjoint state equation
(
∂s(e0,ŷ(e0))
∂ŷ(e0)

)T
ẑ =

(
∂J(e0,ŷ(e0))

∂ŷ(e0)

)T
.

Compute the gradient g = (g0, g1)T by the formulas (42)-(43) or (45)-(46).

Solve linear system with the preconditioner Lw = −g.

Set c0 = −(w,g), c = c0 and i = 1.

Repeat until
√

c
c0
< ε

Solve the state equation s0(w, ŷ(w)) = 0.

Solve the adjoint state equation
(
∂s(w,ŷ(w))
∂ŷ(w)

)T
ẑ =

(
∂J(w,ŷ(w))
∂ŷ(w)

)T
.

Compute the gradient update v = (v0, v1)T by the formulas (42)-(43) or (45)-(46) .

Compute η = c
(w,v)

.

ei = ei−1 + ηw.

g = g + ηv.

Solve linear system with the preconditioner Lv = −g.

γ = 1
c
, c = −(v,g), γ = cγ.

w = v + γw, i = i+ 1.
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Smooth initial approximations e0 = (e0
0, e

0
1)T for the algorithm are computed

with a transition procedure, which is presented in [32]. Values of the control
variables e at the ith iteration are denoted by ei0 and ei1.

Each conjugate gradient iteration step requires computation of the gradient
of the least-squares functional, ∇J , which involves the solution of the state
equation (18) or (31) and the corresponding adjoint equation (38) or (44), the
solution of a linear system with the preconditioner, and some other matrix-
vector operations.

The solution of a linear system with the block-diagonal preconditioner, which
we have chosen to be

L =

K 0

0 M

 , (47)

requires the solution of systems with the stiffness matrix K and the diagonal
mass matrix M. Efficient solution of linear systems with the matrix K is
critical for the overall efficiency of the control method. At this stage, we use a
modification of Kickinger’s [33] algebraic multigrid (AMG) introduced in [26].
As the name of the method indicates, a number of different grid levels are used
on the domain, ranging between fine and coarse levels. A sequence of linear
problems

Klw̃l = g̃l (48)

is generated, corresponding to grid levels l = 0, . . . , k̃, where k̃ represents
the coarsest level. Each AMG iteration starts with the finest level matrix K0,
right hand side vetor g̃0, and an approximation w̃0. For a particular level l,
the residual is given by r̃l = g̃l−Klw̃l. This is used as the basis of a correction
equation w̃l = w̃l + ẽl. The error ẽl is related to the residual by Klẽl = r̃l.
Unlike the classical geometric multigrid methods [7,8], in the AMG the actual
coarsenig of the given mesh is not needed for finding coarser grid levels.

The coarsening, i.e., selection of the unknowns for coarser levels, is based
on the graph of the stiffness matrix, rather than on the actual values stored
in the stiffness matrix. This approach ensures fast computation of coarser
level components. The coarsening process operates in a geometric fashion by
sequentially choosing a coarse node and eliminating the neighboring nodes of
the graph. In selecting the unknowns for coarser levels, the primary criterion
is to take the node with minimum degree when eliminations have taken into
account. The secondary criterion is to follow the original node numbering.

15



The use of the AMG methods for spectral elements has recently been studied
in [34]. The number of connections between unknowns of the problem increases
when higher-order elements are used. In this case, the coarsening strategy de-
scribed above leads to unacceptably coarse systems and the convergence factor
of the AMG degrades rapidly as the order of the approximation polynomials
increases. We overcome this problem by employing a graph constructed so that
unknowns are connected to each other as if low-order finite elements were used
in the discretization process. Only the unknowns corresponding to the nearest
neighbouring Gauss-Lobatto points are connected to each other. Additionally,
in vector valued problems it is necessary to prevent mixture of various types
of unknowns also on coarser levels. This is achieved by giving the method an
initial graph where the sets of graph nodes corresponding to different types of
unknowns are not interconnected.

The grid transfer operators are the restriction operator R̃ and the prolongation
operator P̃. The matrices Kl, which are used at multigrid levels l = 0, . . . , k̃,
are set as an initialization step of the AMG algorithm. For this purpose we
need the restriction operator R̃l+1

l from the fine level l to the coarse level (l+1)

R̃l+1
l =

Rl+1
l 0

0 Rl+1
l

 , (49)

where the components of the restriction matrices Rl+1
l are

(
Rl+1
l

)
ij

=



1 for a fine grid point j which is a coarse grid point i,

1
k

for a fine grid point j which is a neighbor of coarse grid

point i and has k neighboring coarse grid points,

0 otherwise.

(50)

When the fine level matrix Kl is known, the coarse grid operator is given by
the Galerkin formula Kl+1 = R̃l+1

l Kl(R̃l+1
l )T . The prolongation operator P̃l

l+1

from the coarse level (l+ 1) to the fine level l is chosen to be the transpose of
the restriction,

P̃l
l+1 = (R̃l+1

l )T .
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As a smoother of the AMG we have used successive over-relaxation (SOR),
with over-relaxation parameter 1.2, unless other mentioned. One iteration of
the SOR is used for pre- and post-smoothing. Additionally, in the beginning
of every multigrid iteration, four iterations of the SOR are used to smooth
the solution initially. The so called W-cycle [7,35] is utilized as a multigrid
iteration until the residual norm of the solution is smaller than 10−6.

When solving the state equation (18) or (31), M−1 is the only matrix inver-
sion which is involved in time-stepping. Since the matrix M is diagonal, it
is inverted simply by inverting each of its diagonal elements. This requires
only 2N̂ floating point operations, which is the number of degrees of freedom
in the space discretization. The operation count of a matrix-vector product
with any one of the matricesM,M−1, S, or S−1 (or some linear combination
of these) is of order O(N̂). In the matrix-vector multiplication involving the
sparse stiffness matrix K, only non-zero matrix entries are multiplied, which
requires on the order of r2N̂ operations. Besides these, some additions and
multiplications are needed at each time step. Thus, solving the state equa-
tion needs O(r2N̂) floating point operations at each time step in the CD and
the RK time-steppings. From this, we can conclude that the computational
demand for computing the solution for the state equation with N time steps
is O(Nr2N̂). The number of computational operations needed for solving the
adjoint state equation is obviously of the same order as that needed for solving
the state equation. On the whole, the computational cost for one iteration of
the CG algorithm is of order O(Nr2N̂). Assuming that the number of time
steps N is fixed, the number of iterations is approximately constant, and the
element order r has small integer values, the computational demand for the
overall CG algorithm is O(N̂).

6 Numerical experiments

We consider several time-harmonic problems including propagation and scat-
tering of the linear elastic wave equation in domain Ω. The domain Ω is defined
such that the boundary surrounding it, Γext, coincides with the perimeter of the
rectangle [0, 0]× [4, 4], where coordinates are given in kilometers. Wave prop-
agation as discussed in Section 6.3 is simulated in the rectangle [0, 0]× [4, 4],
whereas in the experimental results reported in Sections 6.1 and 6.2, we have
set a rigid square obstacle, having side length 2 km and boundary Γ0, in the
center of the domain. In these experiments, polygonal geometries are used to
eliminate the error in approximating the geometry. The propagation direc-
tion is chosen to be ~ω = (ω1, ω2) =

(
− 1√

2
, 1√

2

)
ω, and for angular frequency

we mainly use the value ω = 2π Hz. The source function on the absorbing
boundary is Gext = ρB∂Uinc

∂t
+ σ(Uinc)n, where the incident plane wave is
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Uinc =

ω1 cos(ωt− ω
cp

x · ~ω) + ω2 cos(ωt− ω
cs
x · ~ω)

ω2 cos(ωt− ω
cp

x · ~ω)− ω1 cos(ωt− ω
cs
x · ~ω)

 . (51)

All the computations have been carried out on an AMD Opteron 885 at 2.6
GHz.

6.1 Accuracy and efficiency

Since we are particularly interested in the accuracy of the spatial discretiza-
tion, we have eliminated the error due to the absorbing boundary condition
by using a modified problem,

ρ
∂2Û

∂t2
−∇ · σ(Û) = −ρ∂

2g

∂t2
+∇ · σ(g), in Q = Ω× [0, T ],

Û = 0, on γ0 = Γ0 × [0, T ],

ρB
∂Û

∂t
+ σ(Û)n = Gext on γext = Γext × [0, T ],

Û(x, 0) = Uinc(x, 0)− g(x, 0), in Ω,

∂Û(x, 0)

∂t
=
∂Uinc(x, 0)

∂t
− ∂g(x, 0)

∂t
, in Ω,

g|Γ0 = Uinc, g|Γext = 0,
∂g

∂n
|Γext = 0,

the solution of which is known to be Û = Uinc − g. The accuracy and com-
putational efficiency of the method is considered with this modified problem
in an isotropic homogeneous elastic medium with cp = 2 km/s, cs = 1 km/s,
and ρ = 2700 kg/m3.

6.1.1 Approximation error with constant angular frequency

In the first experiment we have used a constant spatial discretization such that
the ratio between the order of elements r and the mesh stepsize h is r/h ≈ 20
km−1. We have also compared the CD time discretization with the RK time
discretization for element orders r = 1, . . . , 5. In each case, the number of time
steps needed for stability is tested by using 10i time steps per time-period,
for i = 1, 2, 3, . . . , until a stable solution is achieved. Stability conditions
corresponding to the largest stable time step are given in Table 1. According
to our numerical tests, these values are the same with both the CD and the
RK time-stepping. Moreover, ∆t satifies the well known CFL condition
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Table 1
Stability conditions.

r 1 2 3 4 5

Number of
time steps

CD 50 60 80 90 100

RK 50 60 80 90 100

∆t/h
CD 0.40 0.17 0.09 0.06 0.04

RK 0.40 0.17 0.09 0.06 0.04

∆t

h
=

αr

cp
√

2
, (52)

where αr is a stability constant for element order r [23].

We started computations with the largest stable time step, and then repeatedly
added 40 to the number of time steps N = T/∆t, until N was larger than
500. In this way, we achieved numerical results for a variety of time step
lengths. Errors between the analytical solution and the experimental result
are computed as L∞-norms. Accuracy of the numerical solution is shown in
Figure 2 as a function of the ratio between the time step ∆t and the mesh step
size h for both the CD and the RK time-steppings with five element orders r
and four different stopping criteria ε.

When the first-order SEM (i.e., r = 1 which corresponds to classical bilinear
finite elements) is used, spatial error dominates for each stable length of the
time step with both time discretization schemes. This is seen as horizontal lines
describing the error level of the particular spatial discretization in Figures 2(a)-
2(d). Since the lowest order space discretization gives such a poor accuracy, the
controllability method is not useful in practice unless higher-order elements
are used. As the order of the approximation in space increases, the solution
becomes more accurate until the effect of the stopping criterion or the error
of time or space discretization becomes dominant. Figure 2(a) shows that
solutions with small time step and r > 1 are limited by the stopping criterion.
When the stopping criterion is tightened, more accurate solutions are reached
with higher-order elements (see Figures 2(a)-2(d)). In Figure 2(d), the stopping
criterion affects the accuracy only when the RK time discretization is used with
r = 5. This is seen as a trifling oscillation in the left part of the error curve.
The residual stayed slightly over 10−7 for some values of ∆t in the algorithm
with CD time discretization and r = 1. This is why there are some blank
spaces in the corresponding curve in Figure 2(d).

When the stopping criterion ε is tightened, the number of CG iterations needed
to attain the stopping criterion grows. This implies a larger computational ef-
fort, as seen in Figures 3(a)-3(b). On each curve, presenting the computational
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Figure 2. Side by side comparisons of the maximum errors obtained in the case of
the CD and the RK time-stepping with four different stopping criteria ε.

cost with respect to ∆t/h, the number of degrees of freedom and r are con-
stants. The linear dependence between CPU time and ∆t/h shows that the
order of the number of iterations remains constant when time step refinement
is done. Although the RK time discretization consumes more CPU time than
the CD time discretization for a particular time step, the method with the
RK time discretization is the more efficient one with higher-order elements
(see Figure 4). The secret behind this behaviour, which is not in line with the
proportion of arithmetic operations needed at each CG iteration, lies in the
number of CG iterations. Since the algorithm with the RK time discretiza-
tion solves the problem at each iteration more accurately than the algorithm
with the CD time discretization, the RK version needs a smaller number of
iterations. This phenomenon is emphasized when the stopping criterion is
tightened. In the case of the RK time discretization with r = 4 and ε ≤ 10−5
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Figure 3. Side by side comparisons of the computational efforts (CPU time in sec-
onds) obtained in the case of the CD and the RK time-stepping with two different
stopping criteria ε.

the error of the stopping criterion has little or no influence on the solution.
Moreover, the error of time discretization has no effect at this point, which
makes possible to use the largest stable time step accurately. These properties
induce the remarkable efficiency for r = 4 with the RK time discretization and
the largest stable time step, as seen in Figures 4(b)-4(d).

A large time step allows us to compute the solution utilizing only small amount
of CPU time, but it may involve an error which deteriorates the accuracy of
the method. As a result, we tested which magnitude of the time step leads
to prescribed accuracy with a relatively low number of time steps, i.e., with a
comparatively low computational cost. The comparison between the two time
discretization schemes shows that with higher-order elements, the RK time
discretization gives a more accurate solution with a larger time step than the
CD time discretization. The fourth-order accurate RK time discretization does
not limit the accuracy of the solution at all with any stable time step and any
r < 5. With the second-order CD time discretization, the error level of the
space discretization is achieved with r > 1 only by choosing an appropriately
small time step. Since we are interested in particular in the accuracy of spatial
discretization, the smallest number of time steps which eliminate the error of
temporal discretization are determined from Figure 2(d) and shown in Table 2.
These are also the values which we will use for the later tests in this article. The
proportion of CPU time required for different parts of the CG algorithm, with
number of time steps shown in Table 2, is seen in Figure 5. It is noteworthy
that with the CD time discretization the number of time steps needed to attain
the given accuracy is at least ten times that of the RK time discretization for
r ≥ 3. This confirms the better efficiency of the RK time discretization with
higher-order elements.
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Figure 4. Side by side comparisons of the maximum errors with respect to CPU
time (in seconds) obtained in the case of the CD and the RK time-stepping with
four different stopping criteria ε.

Table 2
Number of time steps needed to attain the error level of spatial discretization for
different spectral orders. For the CD time discretization with spectral order r = 3 or
higher, the length of time step that eliminates the error of temporal discretization
is determined by extrapolating the curves in Figure 2(d) to smaller time steps.

r 1 2 3 4 5

Number of
time steps

CD 50 140 800 1300 3600

RK 50 60 80 90 210
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Figure 5. Side by side comparisons of the proportions of CPU time (in percent)
required by AMG cycles in the case of the CD and the RK time-steppings with
ε = 10−7.

6.1.2 Numerical dispersion with increasing angular frequency

Even though we have eliminated the main error sources in Section 6.1.1, nu-
merical dispersion deteriorates the accuracy of solutions with small waves.
The computed wavenumber differs from the wavenumber of the exact solu-
tion, and with high angular frequencies this part of approximation error be-
comes dominant. This is also referred to as the pollution effect. To show that
using higher-order elements alleviates this inaccuracy, we performed another
set of experiments, varying both the angular frequency and the resolution of
the mesh so that ωh = rπ/10 km/s. Since the efficiency of the method is not
significantly better with ε = 10−7 than with ε = 10−6, and the method with
the CD time discretization had problems converging to the stopping criterion
ε = 10−7 with certain lengths of the time step, we hereafter concentrate on
the case with ε = 10−6. In this case, the stopping criterion does not signifi-
cantly limit the accuracy of the numerical solutions computed with the CG
algorithm.

The accuracy of the solution with respect to the angular frequency is presented
in Figure 6. As the wavenumber grows, the error increases for all orders of the
elements. In the case of the classical finite element discretization, i.e., r = 1,
the error becomes very large as the wavenumber increases. This happens even
if ωh is kept constant. With higher-order elements, the pollution effect is
not eliminated, but the accuracy is significantly better, even for high angular
frequencies. As seen in Figure 6, when the error of time discretization is elim-
inated, the same level of accuracy is attained with the CD and the RK time
discretizations. This is also true for high wavenumbers. With the RK time
discretization, this level of accuracy is achieved with lower computational cost
than with the CD time discretization (see Figure 7). From Figures 6 and 7, we

23



10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

4 π 6 π 8 π 10 π 12 π 14 π 16 π

M
ax

im
um

 e
rr

or

Angular frequency

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(a) ε = 10−3

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

4 π 6 π 8 π 10 π 12 π 14 π 16 π

M
ax

im
um

 e
rr

or

Angular frequency

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(b) ε = 10−4

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

4 π 6 π 8 π 10 π 12 π 14 π 16 π

M
ax

im
um

 e
rr

or

Angular frequency

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(c) ε = 10−5

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

4 π 6 π 8 π 10 π 12 π 14 π 16 π

M
ax

im
um

 e
rr

or

Angular frequency

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(d) ε = 10−6

Figure 6. Side by side comparisons of the maximum errors obtained in the case of
the CD and the RK time-stepping with four different stopping criteria ε.

further notice that CPU time for the algorithm grows with the wavenumber.
The reason for this is the increase in number of CG iterations.

6.2 Elastic scattering by a rigid obstacle

We now discuss elastic scattering by a rigid square obstacle of side length 2 km
in an isotropic homogeneous elastic medium. The material parameters are the
same as in the previous test case, and the absorbing boundary Γext is located
around the obstacle at a distance of 1 km, as in Figure 1.

To take closer look at the iteration numbers, the computational effort, and the
accomplishment of the preconditioner, we tested these properties with respect
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Figure 7. Side by side comparisons of the maximum errors with respect to CPU
time in the case of the CD and the RK time-stepping with four different stopping
criteria ε.

to the relaxation parameter for the AMG (see Figure 8). The AMG solver
performs best when the value of the relaxation parameter is between 1.2 and
1.6, depending on the order of the elements (see Figures 8(c) and 8(d)). From
Figure 8(b), we see that the computational effort is considerably larger for
r = 5 than for the other element orders. This is because a very fine time step
is needed with r = 5 to eliminate the temporal error. The number of iterations
varies between different element orders more than expected (see Figure 8(a)).
The reason for this is probably the tightness of the stopping criterion ε. Also,
our previous experiments show that when a very tight stopping criterion is
used, the convergence rate may be lower, and the residual may converge to
a level that is higher than the stopping criterion. That is why the number of
iterations is almost constant for all element orders when ε & 10−4, but differs
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Figure 8. Elastic scattering by a square obstacle in the case of the RK time-stepping
with ω = 2π Hz and ε = 10−6 in homogeneous domain, where cp = 2 km/s, cs = 1
km/s, and ρ = 2700 kg/m3.

to a certain extent between the element orders for more strict stopping criteria.

6.3 Wave propagation in homogeneous and heterogeneous material

In this section, we consider the wave propagation in homogeneous and piece-
wise heterogeneous media without rigid obstacles. In this case, the boundary
Γ0 is not involved. Moreover, to avoid problems arising from the singular-
ity of the stiffness matrix, we have used K + M

106 instead of K in precondi-
tioning. In the homogeneous case, the domain is a square Ω = [0, 4] × [0, 4]
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(d) Convergence factor in the first CG iteration with
respect to the relaxation parameter for the AMG.

Figure 9. Wave propagation in the case of the RK time-stepping with ω = 2π Hz and
ε = 10−6 in homogeneous domain, where cp = 2 km/s, cs = 1 km/s, and ρ = 2700
kg/m3 in Ω = [0, 4]× [0, 4].

surrounded by the boundary Γext, and is provided with material parameters
cp = 2 km/s, cs = 1 km/s, and ρ = 2700 kg/m3. The piecewise heterogeneous
material is constructed by fixing the above described material parameters in
Ω \ ([1, 3]× [1, 3]) and the material parameters cp = 0.6 km/s, cs = 0.4 km/s,
and ρ = 7200 kg/m3 in the square [1, 3] × [1, 3]. The results with homoge-
neous and heterogeneous material are shown in Figures 9 and 10, respectively.
The AMG solver performs best when the value of the relaxation parameter
is between 1.2 and 1.6, depending on the order of the elements (see Figures
9(c), 9(d), 10(c), and 10(d)). The number of iterations is not dependent on
the value of the relaxation parameter (see Figures 9(a) and 10(a)), but too
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(d) Convergence factor in the first CG iteration with
respect to the relaxation parameter for the AMG.

Figure 10. Wave propagation in the case of the RK time-stepping with ω = 2π Hz
and ε = 10−6 in heterogeneous domain, where cp = 600 m/s, cs = 400 m/s, and
ρ = 7200 kg/m3 in [1, 3]× [1, 3] and cp = 2 km/s, cs = 1 km/s, and ρ = 2700 kg/m3

in Ω \ ([1, 3]× [1, 3]).

small of a value of the relaxation parameter causes an increase in the num-
ber of AMG cycles and decrease in the convergence factor of the AMG. This
induces remarkably large CPU time requirements, which are seen in the left
part of Figures 9(b) and 10(b). Since smaller wave lengths are involved in the
center of the domain in the heterogeneous case than in the homogeneous case,
a larger number of iterations and a larger amount of CPU time is needed for
computations in the heterogeneous domain (see the displacement and velocity
fields of the solutions with r = 3 in Figures 11 and 12). The convergence his-
tories of the simulations in homogeneous and heterogeneous media, in which
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(a) Homogeneous domain. (b) Heterogeneous domain.

Figure 11. Displacement vector field for the real part of the solution of elastic scat-
tering in homogeneous and heterogeneous domains.

(a) Homogeneous domain. (b) Heterogeneous domain.

Figure 12. Velocity vector field for the real part of the solution of elastic scattering
in homogeneous and heterogeneous domains.
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(b) Heterogeneous domain.

Figure 13. Convergence histories of elastic scattering in homogeneous and heteroge-
neous domains.

 0

 2

 4

 6

 8

 10

 12

 14

 20  40  60  80  100  120  140

N
um

be
r 

of
 A

M
G

 c
yc

le
s

Number of iterations

RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(a) Homogeneous domain.
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(b) Heterogeneous domain.

Figure 14. Number of AMG cycles with respect to the number of CG iterations in
homogeneous and heterogeneous domains.

the relaxation parameter 1.2 is used for the AMG, are shown in Figure 13. In
both of these cases, where residuals are plotted with respect to the number of
iterations, the convergence rate is equal for all element orders during the first
iterations. As the residual becomes smaller, the convergence rate might be-
come lower for some element orders. Still, the highest element order does not
necessarily mean the poorest convergence rate. Insufficient preconditioning is
the most feasible explanation for this observation. As the residual becomes
smaller, the values in the right hand side vector g, which appears in precon-
ditioning (see Algorithm 1), become closer to zero. With small residuals, the
stopping criterion of the AMG solver is fullfilled with a small number of AMG
cycles (or without any AMG cycles) as is seen in Figure 14.
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7 Conclusions

To make good use of higher-order elements, the time discretization should also
be done with a higher-order scheme. As a rule of thumb, we can say that the
efficiency of the overall method suffers from the time discretization error if
the order of the element is greater than the order of the time discretization
method. The second-order CD time discretization method is efficient with
r = 1, and the insufficiency of computational capacity might be a good reason
to use it for r = 2 as well. When high accuracy is needed, it is best to use the
RK time discretization method and small ε. The largest stable time step can
be used when r ≤ 4, but for elements of order r ≥ 5, smaller time steps are
recommended to guarantee high accuracy. According to our computations,
the most efficient solution strategy with this controllability algorithm is a
combination of the RK time discretization, the largest stable time step and
the stopping criterion of ε = 10−6 with r = 4.
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