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Abstract.
A local active noise control method that uses stochastic numerical acoustical modeling is in-

troduced. The frequency domain acoustical simulations are performed by a sequence solutions
to Helmholtz equations approximated by FEM. The proposed ANC method maps microphone
measurements linearly to the output signals of antinoise actuators. The matrix defining the
linear mapping is optimized for each frequency to minimize expected value of the noise. The
paper concentrates on defining the quadratic least-squares optimization problem for the mini-
mization of the sound pressure field in the silent region. The formulation leads to a robust and
accurate noise control in stochastic domains that has a stochastic noise source. The method is
demonstrated numerically by an experiment in a car cabin, and significant noise reduction is
demonstrated at lower frequencies.
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1 INTRODUCTION

In urban environment, noise is considered generally as an annoyance and thus it is necessary
to reduce it in various environments. Engineering vehicles and passenger cars are examples
of domains, where active noise control (ANC) methods could be efficiently applied. ANC [8]
especially good at reducing low frequency noise. In ANC, noise is cancelled by an antisound
that has the same amplitude but opposite phase, causing destructive interference to the sound
field. Often it is desired to be able to reduce noise in certain part of the acoustical space, and
there local noise control methods could be used to obtain satisfactory results.

A passenger car is a typical example of an application in which active noise control could
be used. There, noise is desired to be silenced nearby the head locations of driver and pas-
sengers. Many recent publications on ANC focus on passenger car or related enclosures, and
the most sophisticated methods involve numerical simulation and optimization [7, 12, 10, 11].
Particularly local noise control methods have been studied in [6, 5, 14].

Many practical applications involve stochasticity naturally in their acoustical domain, i.e.
there are random, time-dependent changes in the domain that manipulate the sound field signif-
icantly. In passenger car, for example, engine parts and passengers move. Stochastic domains
can be used conveniently to model such geometry changes. In a stochastic domain, the expected
value of the noise is computed as a numerical integral of product of the noise and the probability
distribution over the probability space. By this way, it is possible to use a solution methods for
non-stochastic problems, like the method introduced in [2, 4], without modifications.

The method that we consider in this paper, determines the optimal performance for local
noise control in a stochastic cavity domain. The anti-noise actuator signals are optimized such
that the numerically computed expected value of the noise is minimized. This novel technique
was first introduced in [3], and in [1] it was used to further develop a method to find optimal
anti-noise actuator locations.

The ANC evaluation method in [3, 1] could be used to investigate the possibilities of pro-
posed active noise control techniques, but it could not be implemented in a real ANC system due
its limitations. The method lacked the stochasticity of the noise source, relying on a rough de-
terministic model of the noise source. The method also assumed constant phase and amplitude,
which kept the method from being used in real applications where the phase and amplitude are
not precisely known. We will tackle these limitations in this paper by a stochastic noise source
and an approach to determine the optimal anti-noise actuators signals by using real-time data
from a number of measurement sensors.

The local noise control approach in this paper is remarkably novel, and, to author’s best
knowledge, no other similar approach are presented in the literature. While there are many
papers on local ANC methods that utilize numerical simulations to examine their method’s
abilities, or optimize microphone or anti-noise actuator locations, they are most commonly
based on linear identification and control techniques that can be implemented purely by using
digital signal processing circuitry. On the other hand, the approach on this paper is based on
numerical acoustical simulations; sensor measurements are used only to obtain accurate phase
and amplitude information to the model. The method has a major advantage over traditional
methods: by acoustical simulations, it uses much more information of the sound field than
could be obtained by measurement sensors.

This article is organized as follows. In Section 2, we present briefly the mathematical model
of sound propagation (Helmholtz equation and associated boundary conditions), and a method
to solve it numerically. In Section 3, the local noise control in a stochastic domain is formulated
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as a quadratic optimization problem. In Section 4, the numerical method is demonstrated by a
three-dimensional car cabin problem. In Section 5, conclusions are given.

2 ACOUSTIC MODEL

In this study, the sound propagation is modeled by the Helmholtz equation

−∇ ·∇p− ω2

c2
p = 0 in Ω, (1)

where c is the speed of sound, ω is the angular frequency and p is the complex sound pressure
defining the amplitude and phase of the sound pressure. The sound pressure at time t is obtained
by Re (e−iωtp), where i =

√
−1.

A partially absorbing wall material is described by the impedance boundary conditions

∂p

∂n
=
iηω

c
p+ f on S

∂p

∂n
=
iηω

c
p on ∂Ω \ S,

(2)

where η is the absorption coefficient of the surface material and f is the source term. Values
0 and 1 for η approximate sound hard material (Neumann boundary condition) and perfectly
absorbing material (low order absorbing boundary condition), correspondingly.

The partial differential equation (PDE) (1) is approximated by finite element method (FEM)
[13]. FEM discretization transforms (1) into a matrix equation Ax = b, where A is generally
symmetric, large, and sparse matrix. Since the size and structure of A does not allow direct
solution methods, it is necessary to use iterative solution methods like GMRES. Solving the
system with a reasonable number of iterations is, however, challenging, as the matrix A is
badly conditioned. In the numerical example in Section 4, the solutions are computed after the
systems are preconditioned by a damped Helmholtz preconditioner [2, 4].

3 THE QUADRATIC NOISE CONTROL FORMULATION

3.1 Quadratic program (QP) formulation

We consider acoustic model in an enclosed stochastic domain, denoted by Ω(r), with stochas-
tic variable r complying probability distribution Fr(r). The sound pressure p (x, r, s,γ) is due
to stochastic noise source and na anti-noise actuators as follows:

p(x, r, s,γ) = p0(x, r, s) + γTp (x, r), (3)

where p0(x, r, s) is the sound pressure due to the stochastic noise source, with stochastic vari-
able s complying probability distribution Fs(s);

p (x, r) =
(
p1 (x, r) , p2 (x, r) , · · · , pna (x, r)

)T (4)

is a vector of sound pressures due to na anti-noise actuators and γ = (γ1, . . . , γna)T is the vector
of complex coefficients γi determining the amplitudes and phases for each anti-noise source.

We will formulate the noise control problem such that the anti-noise actuator amplitudes γi
are mapped from nm measurement points contained in vector m = (m1, . . . ,mnm)T by a linear
map that is defined by a na × nm complex matrix C:

γ = Cm. (5)
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The Eq. (3) now reads:

p(x, r, s,C) = p0(x, r, s) + mTCTp (x, r) . (6)

The noise source, anti-noise actuators and measurement points are located on ∂Ω. The el-
ements of the matrix C are optimized to minimize the noise in a silent subdomain denoted by
VC(r) ⊂ Ω(r). We will use a noise functional to measure the noise in silent region, defined by
integral of square norm of the pressure over the silent region:

N(r, s,C) =

ˆ

VC(r)

|p(x, r, s,C)|2 dx. (7)

The relevant quantity with respect to optimization is the expected value of the noise functional
(7), which is written as

E (N (r, s,C)) =

ˆ

r

ˆ

s

N (r, s,C) Fs (s) dsFr (r) dr. (8)

If we approximate integrals in (8) by a numerical quadrature, we get an objective function

J(C) =
∑
j

wr
j

[∑
k

ws
kN (rj, sk,C)Fs (sk)

]
Fr (rj) , (9)

where rj and sj are the quadrature points, and wr
j and ws

j are weights for r and s, correspond-
ingly. An intermediate optimization problem now reads

min
C

J(C). (10)

In order to obtain a convenient quadratic matrix formulation, we will next expand the inte-
grand of (7):

|p (x, r, s)|2 =
(
p0 + mTCTp

)
(p0 + mTCTp)

=
(
p0 + mTCTp

)
(p0 + pTCm)

= p0p̄0 + mTCTpp̄0 + mHCHp̄p0 + mTCTppHC̄m̄

= p0p̄0 + (Cm)T pp̄0 +
(
C̄m̄

)T
p̄p0 + (Cm)T ppHC̄m̄, (11)

where overline symbol ¯ denote element-wise complex conjugate.
Let us now denote ith column vector of matrix C:n as Ci, i.e. C = (C1,C2 · · ·Cnm). Let

us remember in the following, that Cm =
∑nm

i=1 Cimi. Now we can further write

|p (x, r, s)|2 = p0p̄0 +

(
nm∑
i=1

CT
i mi

)
pp̄0 +

(
nm∑
i=1

C̄T
i m̄i

)
p̄p0

+

(
nm∑
i=1

CT
i mip

)(
nm∑
j=1

pHC̄jm̄j

)

= p0p̄0 +
nm∑
i=1

((
CT

i mi

)
pp̄0 +

(
C̄T

i m̄i

)
p̄p0

)
+

nm∑
i=1

nm∑
j=1

CT
i mim̄jppHC̄j. (12)
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Now we can define the following notations: â = p0p̄0, b̂i = m̄ip̄p0 and Âij = mim̄jppH ,
where superscript H denotes the Hermitian conjugate. It is easily seen that Âij = ÂH

ji :

ÂH
ji = m̄jmip̄pT = mim̄jppH = Âij. (13)

We want to present the objective function (9) in a quadratic matrix form, and thus we will
introduce the following notations:

Aij =
∑
j

wr
jFr (rj)

∑
k

ws
kFs (sk)

ˆ
Ξ(r)

Âij dx

bi =
∑
j

wr
jFr (rj)

∑
k

ws
kFs (sk)

ˆ
Ξ(r)

b̂i dx,

a =
∑
j

wr
jFr (rj)

∑
k

ws
kFs (sk)

ˆ
Ξ(r)

â dx,

A =

 A11 · · · A1nm

... . . . ...
Anm1 · · · Anmnm

 , b =

 b1
...

bnm

 and c =

 C1
...

Cnm

 . (14)

With these notations, the objective function (9) is now expressed as a quadratic complex matrix
form

J (c) = cTAc̄ + cT b̄ + c̄Tb + a. (15)

Eq. (15) is a complex-valued quadratic optimization program, which is not trivially solved.
The imaginary part of quadratic function (15) is zero. Let us expand the real part of the objective
function (15) as follows

J (c) = a+
nm∑
i=1

(
2ReCT

i Rebi + 2 ImCT
i Imbi

)
+

nm∑
i=1

nm∑
j=1

(
ReCT

i ReAi,jReCj + ImCT
i ReAi,jImCj

−ImCT
i ImAi,jReCj + ReCT

i ImAi,jImCj

)
. (16)

By using notations in (14), this can be written in matrix form:

J (c) =

(
Rec
Imc

)T (
ReA ImA
−ImA ReA

)(
Rec
Imc

)
(17)

+2

(
Rec
Imc

)T (
Reb
Imb

)
+ a. (18)

If we now further introduce notations

Ã = 2

(
ReA ImA
−ImA ReA

)
, b̃ = 2

(
Reb
Imb

)
and c̃ =

(
Rec
Imc

)
, (19)
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we can express (15) as a real-valued quadratic optimization program

J (c) =
1

2
c̃T Ãc̃ + c̃T b̃ + a. (20)

There are many efficient methods available problems of this form [9].

3.2 Optimality condition

If there are no constraints involved in the optimization problem, the linear mapping C is
given by the optimality condition ∇cJ = 0, which is equivalent with ∇cReJ as ImJ = 0.
This condition must be split into gradient with respect to real and imaginary parts of c:{

∇RecJ = 0, and
∇ImcJ = 0.

(21)

To solve these conditions, the gradients of (21) are expanded by considering vector c in parts,
i.e. the gradients with respect to real and imaginary parts of Ci are expanded as follows:

∇ReCi
J (c) = 2Rebi

+2ReAiiReCi −
(
ImCT

i ImAii

)T
+ ImAiiImCi

+
∑
j 6=i

(
ReAijReCj + ImAijImCj

+
(
ReCT

j ReAj,i

)T − (ImCT
j ImAj,i

)T)
= 2Rebi + 2ReAiiReCi + 2ImAiiImCi

+
∑
j 6=i

(ReAijReCj + ImAijImCj + ReAijReCj + ImAijImCj)

= 2Rebi + 2ReAiiReCi + 2ImAiiImCi

+
∑
j 6=i

(2ReAijReCj + 2ImAijImCj)

= 2Rebi +
nm∑
j=1

(2ReAijReCj + 2ImAijImCj) , (22)
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∇ImCi
J (c) = 2Imbi

+2ReAiiImCi − ImAiiReCi +
(
ReCT

i ImAii

)T
+
∑
j 6=i

(
ReAijImCj − ImAijReCj

+
(
ImCT

j ReAj,i

)T
+
(
ReCT

j ImAj,i

)T)
= 2Imbi + 2ReAiiImCi − 2ImAiiReCi

+
∑
j 6=i

(ReAijImCj − ImAijReCj + ReAijImCj − ImAijReCj)

= 2Imbi + 2ReAiiImCi − 2ImAiiReCi

+
∑
j 6=i

(2ReAijImCj − 2ImAijReCj)

= 2Imbi +
nm∑
j=1

(2ReAijImCj − 2ImAijReCj) . (23)

Now, by using (22) and (23), we can write full gradient for (16) with respect to real and imagi-
nary parts of c in matrix form:

∇RecJ (c) =

 ∇ReC1J (c)
...

∇ReCnm
J (c)


=

 ReA11 · · · ReA1nm ImA11 · · · ImA1nm

... . . . ...
... . . . ...

ReAnm1 · · · ReAnmnm ImAnm1 · · · ImAnmnm


 ReC1

...
ReC2nm


+

 Reb1
...

Rebnm


=
(
ReA ImA

) (
Rec

)
+
(
Reb

)
, (24)

∇ImcJ (c) =

 ∇ImC1J (c)
...

∇ImCnm
J (c)


=

 −ImA11 · · · −ImA1nm ReA11 · · · ReA1nm

... . . . ...
... . . . ...

−ImAnm1 · · · −ImAnmnm ReAnm1 · · · ReAnmnm


 ImC1

...
ImCnm


+

 Imb1
...

Imbnm


=
(
−ImA ReA

) (
Imc

)
+
(
Imb

)
. (25)
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Figure 1: Left figure: noise and anti-noise sources (A1...A6) and measurement point locations (L1...L8, R1...R8).
Right figure: ANC involves 2, 4 and 8 measurement points (magenta dashed line, green dot-dash line, and red
dashed line, respectively).

We can now use (24) and (25) to express optimality condition (21) as a single linear system of
equations: (

ReA ImA
−ImA ReA

)(
Rec
Imc

)
= −

(
Reb
Imb

)
. (26)

Furthermore, it can be now seen that (26) corresponds to complex-valued system of linear equa-
tions Āc = −b, which has the solution

c = −Ā−1b. (27)

4 NUMERICAL DEMONSTRATION

The proposed local noise control method is demonstrated as by a numerical study of local
active noise control in BMW 330i car interior (see Fig. 1). We will assume that there is a
driver in otherwise empty car, so the computation domain Ω (r) for acoustical sound pressure
field is defined by the cabin interior excluding the driver. Objective is to minimize noise in
driver’s ears, thus the silent region VC (c.f. (7)) is defined as a set of two points, VC (r) =
{xel (r) , xer (r)} ⊂ Ω (r) , where xel (r) and xer (r) are the co-ordinates of the driver’s left
and right ear, respectively.

The stochasticity of the domain is here caused by the random movements of the driver. As
in [3], the domain stochasticity variable r = (r1, r2,r3)T consists of three parameters: r1 is
driver’s sideways bending angle, r2 is forward bending angle, and r3 is head rotation angle to
left/right (see Fig. 1); all angles are in degrees. The distribution function Fr is given by a
piecewise trilinear function that is defined by nodal values of a sampling over probability space,
and elsewhere by trilinear interpolation. We will use sampling r ∈ R = R1 ×R2 ×R3, where

R1 = {−30.0, −20.0, −10.0, 0.0, 10.0, 20.0, 30.0} ,
R2 = {−10.0, −5.0, 0.0, 5.0, 10.0, 15.0, 20.0} , and
R3 = {−75.0, −50.0, −25.0, 0.0, 25.0, 50.0, 75.0} . (28)

The corresponding expected value integral in (8) is approximated by the three-dimensional
trapezoidal quadrature rule.
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The noise source is modeled as a vibrating quadrangular surface behind the leg room, which
approximates the real noise source (see Fig. 1). The amplitude f (see (2)) of the noise source
is given by a bilinear function defined by the corner values f (xi, yi) = si , i = 1 . . . 4, where
si denotes amplitude coefficient for ith corner of the source quadrangle, located in (xi, yi). The
noise source stochasticity variable is thus defined as s = (s1, s2, s3, s4)T . The distribution func-
tions Fs is given by a piecewise quadrilinear function that is defined by the nodal values of a
sampling over probability space, and elsewhere by quadrilinear interpolation. We will use sam-
pling s ∈ S = S1 × S2 × S3 × S4, where S1 = S2 = S3 = S4 = {0.5, 0.75, 1.0, 1.25, 1.5} .
The corresponding expected value integral in (8) is approximated by the four-dimensional gen-
eralization of the trapezoidal quadrature rule.

The Helmholtz equation (1) was solved with the finite element method. Meshes consisting
of linear tetrahedra and triangles were generated with Ansys ICEM CFD meshing software;
the meshes were generated so that there are at least 10 nodes per wavelength at f = 1000 Hz.
Measurement point locations are presented in Fig. 1 and they are labeled as follows: L1...L8 for
left side measurement points and R1...R8 for right side measurement points. The absorbency
coefficients η in (2) were set approximately for each material. The study was performed in the
frequency range 10–1000 Hz with 10 Hz steps.

In Fig. 1, the solution obtained by the method is plotted when 2, 4 and 8 measurement points
are used in optimizing ANC performance. The optimality condition (27) is used to optimize the
coefficient matrix C for each frequency, six anti-noise actuators are being used (see Fig. 1). It is
seen that increasing the number of measurement points enhances the noise control. Especially
good results (over 20 dB attenuation) are obtained with lower frequencies.

5 CONCLUSIONS

The least-squares quadratic optimization formulation for an advanced local noise control
method based on stochastic finite element domains was given. The method presented in this
paper intelligently uses information obtained by numerical acoustical modeling, which allows
to obtain substantially better noise control than with traditional local ANC methods, with re-
spect to both attenuation level and it’s focusing on right place. The stochasticity of the noise
source made the model significantly more realistic and linear mapping makes it possible to use
precise time-dependent phase and amplitude information such that the noise control is adapted
to prevailing conditions. The method was demonstrated by a local noise control in a car cabin
and good results (over 20 dB attenuation) were obtained, especially with low frequencies.
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