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Abstract

Problems of stability of an axially moving elastic band travelling at constant veloc-
ity between two supports and experiencing small transverse vibrations are consid-
ered in a 2-D formulation. The model of a thin elastic plate subjected to bending
and tension is used to describe the bending moment and the distribution of mem-
brane forces. The stability of the plate is investigated with the help of an analytical
approach. In the frame of a general dynamic analysis, it is shown that the onset of
instability takes place in the form of divergence (buckling). Then the static forms of
instability are investigated, and critical regimes are studied as functions of geomet-
ric and mechanical problem parameters. It is shown that in the limit of a narrow
strip, the 2-D formulation reduces to the classical 1-D model. In the limit of a wide
band, there is a small but finite discrepancy between the results given by the 1-D
model and the full 2-D formulation, where the discrepancy depends on the Poisson
ratio of the material. Finally, the results are illustrated via numerical examples, and
it is observed that the transverse displacement becomes localised in the vicinity of
free boundaries.
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1 Introduction

Travelling flexible strings, membranes, beams and plates are the most com-
mon models of axially moving materials. These models are frequently used
for describing the mechanical behaviour of moving paper webs, magnetic
tapes, films, transmission cables, swimming fish, and the like (Ulsoy et al.
1978, Lighthill 1960). In many applications the models of axially moving
materials can be used for evaluation of a critical transport velocity that
leads to the loss of stability. This is important because the occurrence of
instability can cause, in particular, damage in a paper web and breakage of
transmission cables.

Previous studies of these models, described by second and fourth-order
differential equations, focus on the aspect of free vibrations including the
nature of wave propagation in moving media and the effects of axial mo-
tion on the frequency spectrum and eigenfunctions. Investigations of the
vibrations of travelling membranes and thin plates were first performed
in Archibald and Emslie (1958), Miranker (1960), Swope and Ames (1963),
Mote (1968), Mote (1972), Simpson (1973), Mote (1975), Ulsoy and Mote
(1980), Mote and Ulsoy (1982), Chonan (1986), Wickert and Mote (1990) and
Lin and Mote (1995). These studies were mainly devoted to various aspects
of free vibration and forced vibrations.

Stability considerations were reviewed in Mote (1972). The effects of axial
motion on the frequency spectrum and eigenfunctions were investigated in
Archibald and Emslie (1958) and Simpson (1973). It was shown that the nat-
ural frequency of each mode decreases when transport speed increases, and
that the travelling string and beam both experience divergence instability at
a sufficiently high speed. Response prediction has been made for particular
cases when excitation assumes special forms such as a constant transverse
point force (Chonan 1986) or harmonic support motion (Miranker 1960). Ar-
bitrary excitation and initial conditions have been analysed with the help of
modal analysis and a Green function method in Wickert and Mote (1990).
As a result, the associated critical speeds have been determined explicitly.

Lin and Mote (1996) predicted the wrinkling instability and the correspond-
ing wrinkled shape of a web with small flexural stiffness. The stability and
the vibration characteristics of an axially moving plate have been investi-
gated by Lin (1997). The loss of stability was studied with application of
dynamic and static approaches, and Wickert’s (1992) approach to derive
the equation of motion for the plate in matrix form and to use the Galerkin
method. It was shown by means of numerical analysis that, for all cases dy-
namic instability (flutter) is realised when the frequency is zero and the crit-
ical velocity coincides with the corresponding velocity obtained from static
analysis. In Shin et al. (2005), the out-of-plane vibration of an axially mov-
ing membrane was studied. Also here, it was found by numerical analysis,
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that for a membrane with a no-friction boundary condition in the lateral
direction along the rollers, the membrane remains dynamically stable until
the critical speed, at which statical instability occurs.

This paper is devoted to application of analytical methods to instability
analysis of an axially moving rectangular plate and to investigation of the
dependence of the solution on the problem parameters. In the frame of the
general dynamic approach, a functional expression for the characteristic in-
dex of stability is found and can be effectively used for frequency evalua-
tion. It is shown analytically, that the loss of stability is realised for some
critical velocity in a divergence mode, i.e. Vdiv

0 < Vfl
0 . Then a static analy-

sis of instability is performed and the possible buckled forms of the plate
(symmetric and antisymmetric) are studied as functions of geometric and
mechanical problem parameters. In particular, we show that the buckled
plate shape is symmetric and that the elastic deflections are localised in the
vicinity of free edges of the plate. This localisation phenomenon is famil-
iar from the eigenfunctions of stationary plates under in-plane compressive
load (see e.g. Gorman 1982), and it can also be seen in the numerical results
of Shin et al. (2005) for an axially travelling membrane.

It should be noted that when applied to the particular context of paper
production, the present study ignores several potentially important effects.
First of all, for a rigorous analysis, the orthotropic nature of paper should
be accounted for. Secondly, the viscoelasticity, which introduces damping
into the system, is ignored. This is not a major problem, as the introduc-
tion of damping is not expected to change the critical velocity, although it
does modify the postdivergence behaviour (Mote and Ulsoy 1982). Finally,
the interaction between the travelling web and the surrounding air, which
is not accounted for in the present study, is known to influence the critical
velocity (Pramila 1986, Frondelius et al. 2006) and the dynamical response
(Kulachenko et al. 2007), possibly also affecting the buckling shape.

2 Basic relations for transverse vibrations of axially moving elastic plate

Let us investigate the elastic stability of a band travelling with a constant
velocity V0 in the x direction between two rollers located at x = 0 and x = `.
Consider, in a cartesian coordinate system, a rectangular part of the band

Ω : 0 ≤ x ≤ `, −b ≤ y ≤ b ,

where ` and b are prescribed parameters (Figure 1). Additionally assume
that the considered part of the band is represented as a rectangular elastic
plate having constant thickness h, Poisson ratio ν, Young modulus E, and
bending rigidity D. The plate is subjected to homogeneous tension, T0, act-
ing in the x direction. The sides of the plate x = 0, −b ≤ y ≤ b and x = `,
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Figure 1. Axially moving elastic plate, simply supported at x = 0 and x = `.

−b ≤ y ≤ b are simply supported and the sides y = −b, 0 ≤ x ≤ ` and
y = b, 0 ≤ x ≤ ` are free of tractions.

The transverse displacement of the travelling band is described by the de-
flection function w which depends on the space coordinates x, y and time
t. The differential equation for small transverse vibrations has the form

m
d2w
dt2 = Txx

∂2w
∂x2 + 2Txy

∂2w
∂x∂y

+ Tyy
∂2w
∂y2 − D∆2w (1)

Here m is the mass per unit area of the middle surface of the plate, ∆2 is the
biharmonic operator, Txx, Txy, Tyy are in-plane tensions and

D∆2w = D
(

∂4w
∂x4 + 2

∂2w
∂x2∂y2 +

∂4w
∂y4

)
, D =

Eh
3

12(1− ν2)
(2)
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The total acceleration d2w
dt2 on the left-hand side of the equation (1) is ex-

pressed as

d2w
dt2 =

d
dt

(
∂w
∂t

+ V0
∂w
∂x

)
=

∂2w
∂t2 + 2V0

∂2w
∂x∂t

+ V2
0

∂2w
∂x2 , (3)

where the right-hand side in (3) contains three terms, representing respec-
tively a local acceleration, a Coriolis acceleration and a centripetal accel-
eration. The in-plane tensions Txx, Txy and Tyy are assumed to satisfy the
equilibrium equations

∂Txx

∂x
+

∂Txy

∂y
= 0,

∂Txy

∂x
+

∂Tyy

∂y
= 0 (4)

with the boundary conditions

Txx = T0, Txy = 0 at x = 0, |y| ≤ b and x = `, |y| ≤ b ,

Tyy = 0, Txy = 0 at y = ±b, 0 ≤ x ≤ ` . (5)

We assume that the deflection function w and its partial derivatives are
small, and that they satisfy the boundary conditions corresponding to sim-
ply supported boundaries at x = 0, |y| ≤ b, and x = `, |y| ≤ b, and free
boundaries at |y| = b, 0 ≤ x ≤ `. That is (see, for example, Timoshenko and
Woinowsky-Krieger 1959),

(w)x=0, ` = 0,
(

∂2w
∂x2

)
x=0, `

= 0 , −b ≤ y ≤ b (6)

(
∂2w
∂y2 + ν

∂2w
∂x2

)
y=±b

= 0 , 0 ≤ x ≤ ` (7)

(
∂3w
∂y3 + (2− ν)

∂3w
∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ ` . (8)

In the following we use stationary relations, i.e. it is supposed that w =
w(x, y) and all partial derivatives with respect to t are equal to zero. The
following expressions for in-plane forces are found using the boundary con-
ditions (5) and the partial differential equations (4):

Txx(x, y) = T0, Tyy(x, y) = Txy(x, y) = 0 (x, y) ∈ Ω . (9)

Thus, we have the following dynamic equation for small vibrations of the
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travelling plate:

L(w) =
∂2w
∂t2 + 2V0

∂2w
∂x∂t

+ (V2
0 − C2)

∂2w
∂x2

+
D
m

(
∂4w
∂x4 + 2

∂2w
∂x2∂y2 +

∂4w
∂y4

)
= 0 , C =

√
T0

m
. (10)

As is seen from (6)-(10), our boundary-value problem is homogeneous and
invariant with respect to the symmetry operation y → −y, and conse-
quently, all solutions of the problem can be considered as symmetric or
antisymmetric functions of y, i.e.,

w(x, y, t) = w(x,−y, t) or w(x, y, t) = −w(x,−y, t) . (11)

3 Dynamic behaviour of transverse vibrations and divergence mode of
elastic instability

Let us represent the solution of our dynamic boundary-value problem as
(Bolotin 1963)

w(x, y, t) = W(x, y)eiωt , (12)

or in the equivalent form

w(x, y, t) = W(x, y)est , (13)

where ω is the frequency of small transverse vibrations and

s = iω (14)

is the complex characteristic parameter:

s = Re s + i Im s = sre + i sim (15)

If this parameter is pure imaginary, i.e.,

Re s = 0, Im s 6= 0, (16)

and consequently ω is a real value, the plate performs harmonic vibrations
of small amplitude and its motion can be considered stable. If, for some
values of the problem parameters, the real part of the characteristic index
becomes positive, i.e.,

sre = Re s > 0, (17)

the transverse vibrations grow exponentially and consequently the behaviour
of the plate is unstable. To investigate the dynamic behaviour of the plate,
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we insert the representation (13) into equation (10). We have

s2W + 2sV0
∂W
∂x

+ (V2
0 − C2)

∂2W
∂x2 +

D
m

∆2W = 0. (18)

We multiply the left-hand side of equation (18) by W and perform integra-
tion over the domain Ω to obtain

s2
�

Ω
W2 dΩ + 2sV0

�
Ω

W
∂W
∂x

dΩ + (V2
0 − C2)

�
Ω

W
∂2W
∂x2 dΩ

+
D
m

�
Ω

W∆2W dΩ = 0 . (19)

Because

�
Ω

W
∂W
∂x

dΩ =
� b

−b

� `

0
W

∂W
∂x

dx dy

=
� b

−b

[
W2(`, y)

2
− W2(0, y)

2

]
dy ,

we find by by applying the boundary conditions (6) that
�

Ω
W

∂W
∂x

dΩ = 0 . (20)

In a similar manner, by performing integration by parts and again applying
the boundary conditions (6), we have

�
Ω

W
∂2W
∂x2 dΩ = −

�
Ω

(
∂W
∂x

)2

dΩ . (21)

The last integral in (19) can be estimated, by using Green’s 2nd identity, as
�

Ω
W∆2W dΩ =

�
Ω
(∆W)2 dΩ +

�
Γ

(
W

∂

∂n
∆W − ∆W

∂W
∂n

)
dΓ, (22)

where n is the outside unit normal to the boundary. In order to evaluate
the contour integral in (22) we divide the boundary Γ into four parts (see
Figure 2):

Γ−(0 ≤ x ≤ `, y = −b), Γr(x = `, −b ≤ y ≤ b),

Γ+(0 ≤ x ≤ `, y = b), Γ`(x = 0, −b ≤ y ≤ b).
Admitting counterclockwise integration along Γ, we have

I =
�

Γ

(
W

∂

∂n
∆W − ∆W

∂W
∂n

)
dΓ = I− + Ir + I+ + I`. (23)
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Figure 2. Division of the boundary Γ for the investigated contour integral .

Here

Ii =
�

Γi

(
W

∂

∂n
∆W − ∆W

∂W
∂n

)
dΓ = 0, i = r, ` (24)

I− =
�

Γ−

(
W

∂

∂n
∆W − ∆W

∂W
∂n

)
dΓ

=−
� `

0

(
W

∂

∂y
∆W − ∆W

∂W
∂y

)
y=−b

dΓ (25)

I+ =
�

Γ+

(
W

∂

∂n
∆W − ∆W

∂W
∂n

)
dΓ

=−
� `

0

(
W

∂

∂y
∆W − ∆W

∂W
∂y

)
y=b

dΓ . (26)

To transform (24)-(26) we have used the relations

dΓ = dx,
∂

∂n
= − ∂

∂y
for (x, y) ∈ Γ− ,

dΓ = −dx,
∂

∂n
=

∂

∂y
for (x, y) ∈ Γ+ , (27)

W = ∆W = 0 for (x, y) ∈ Γ` + Γr .
Thus, we have

I = I− + I+ = −
� `

0
(Qy=b + Qy=−b)dx , (28)
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where
Q = W

∂

∂y
∆W − ∆W

∂W
∂y

. (29)

Using the boundary conditions (7) and (8), we perform the transformations

(∆W)y=±b =
(

∂2W
∂x2 +

∂2W
∂y2

)
y=±b

= (1− ν−1)
(

∂2W
∂y2

)
y=±b

(30)

(
∂∆W

∂y

)
y=±b

=
(

∂2W
∂x2∂y

+
∂3W
∂y3

)
y=±b

=
1− ν

2− ν

(
∂3W
∂y3

)
y=±b

,

and find

Q = (1− ν)
(

1
2− ν

W
∂3W
∂y3 +

1
ν

∂W
∂y

∂2W
∂y2

)
. (31)

We can see from (11) and (31) that the function Q is antisymmetric with re-
spect to the transformation y → −y (for both symmetric and antisymmetric
functions W), and consequently,

Qy=b + Qy=−b = 0, ⇒ I = 0. (32)

Thus the boundary term in (22) vanishes and we obtain
�

Ω
W∆2W dΩ =

�
Ω
(∆W)2 dΩ . (33)

It follows from (19)-(21) and (33) that

ω2 = −s2 =
(C2 −V2

0 )
�

Ω

(
∂W
∂x

)2

dΩ +
D
m

�
Ω
(∆W)2 dΩ

�
Ω

W2 dΩ
. (34)

All the integrals in (34) are positive. We see that s2 is initially (V0 = 0) nega-
tive, meaning s is purely imaginary, which corresponds to a mode with sta-
ble harmonic oscillation. As V0 is increased, the first term in the numerator
vanishes when V0 = C. Upon further increase of V0, the first term becomes
negative, and at some point (depending on the bending rigidity D) it will
balance out the second term and s becomes zero. At this point we have the
steady-state solution (buckling) at some velocity V0 = Vdiv

0 (Figure 3). At
this moment, as is seen from (34), the following relation between the critical
velocity and the divergent mode holds:

(
Vdiv

0

)2
= C2 +

D
m

�
Ω
(∆W)2dΩ

�
Ω

(
∂W
∂x

)2

dΩ

. (35)
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Figure 3. Behaviour of the characteristic exponent s.

In particular, it is follows from (35) that when bending rigidity of the band
is negligibly small, then

(
Vdiv

0
)2 = C2.

If V0 is still further increased, s becomes purely real, and the displacement
of the plate grows exponentially with time.

Note that s will always pass through the origin before its real part becomes
nonzero. Therefore, the problem setup of a simply supported axially mov-
ing elastic plate with free edges always exhibits statical instability first, and
flutter modes are not realised.

4 Static analysis of stability loss

Taking into account the result (34), we may limit our consideration to a
statical analysis. The stability problem considered in the frame of stationary
equations is known as a buckling problem. This problem is formulated as
the eigenvalue problem for the partial differential equation

(mV2
0 − T0)

∂2w
∂x2 + D

(
∂4w
∂x4 + 2

∂2w
∂x2∂y2 +

∂4w
∂y4

)
= 0, (36)

with the boundary conditions (6)-(8). To determine the minimal eigenvalue

λ = γ2 =
`2

π2D
(mV2

0 − T0) (37)
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of the problem (6)-(8), (36), and the corresponding eigenfunction w = w(x, y),
known as the divergence or buckling form, we apply the following repre-
sentation:

w = w(x, y) = f
(πy

`

)
sin

(πx
`

)
, (38)

where f (πy
` ) is an unknown function. It follows from (38), that the desired

buckling form w satisfies the boundary condition (6). Using dimensionless
variables

η =
πy
`

, µ =
`

πb
, (39)

and the relations (7)-(8), (36)-(39), we obtain the following eigenvalue prob-
lem for the unknown function f (η):

d4 f
dη4 − 2

d2 f
dη2 + (1− λ) f = 0, −πb

`
≤ η ≤ πb

`
(40)

d2 f
dη2 − ν f = 0, η = ±πb

`
(41)

d3 f
dη3 − (2− ν)

d f
dη

= 0, η = ±πb
`

. (42)

The spectral boundary value problem (40)-(42) is invariant with respect to
the symmetry operation η → −η, and consequently, all its eigenfunctions
(40)-(42) can be classified as

f s(η) = f s(−η), f a(η) = − f a(−η), 0 ≤ η ≤ πb
`

. (43)

Here f s and f a are, respectively, functions that are symmetric and antisym-
metric (skew-symmetric) with respect to the x-axis.

When γ ≤ 1, a divergence mode which is symmetric with respect to the
x-axis, can be presented in the form

w = f s(η) sin
(πx

`

)
(44)

f s(η) = As cosh(κ+η) + Bs cosh(κ−η) (45)

κ+ =
√

1 + γ , κ− =
√

1− γ (46)

where f s(η) is a symmetric solution of (40), and As and Bs are arbitrary
constants. We will return to the antisymmetric case at the end of section 4.

Using the relations (41)-(45), we can derive the linear algebraic equations
for determining the constants As and Bs :

As(κ2
+ − ν) cosh

(
κ+

µ

)
+ Bs(κ2

− − ν) cosh
(

κ−
µ

)
= 0 (47)
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Figure 4. Behaviour of Φ and Ψ as functions of γ. Qualitative drawing.

−Asκ+(κ2
− − ν) sinh

(
κ+

µ

)
− Bsκ−(κ2

+ − ν) sinh
(

κ−
µ

)
= 0 .

The condition for a non-trivial solution to exist in the form (44)-(46) is that
the determinant of the system (47) must vanish. This leads to the transcen-
dental equation

∆s(γ, µ) = κ−(κ2
+ − ν)2 cosh

(
κ+

µ

)
sinh

(
κ−
µ

)
− κ+(κ2

− − ν)2 sinh
(

κ+

µ

)
cosh

(
κ−
µ

)
= 0, (48)

which determines the eigenvalues λ = γ2 as an implicit function of the
parameter µ = `

πb . Equation (48) can be transformed into a more convenient
form

Φ(γ, µ)−Ψ(γ, ν) = 0, (49)

where

Φ(γ, µ) = tanh
(√

1− γ

µ

)
coth

(√
1 + γ

µ

)
,

Ψ(γ, ν) =
√

1 + γ√
1− γ

(γ + ν− 1)2

(γ− ν + 1)2 . (50)

In the following we investigate the properties of the functions Φ(γ, µ) and
Ψ(γ, ν), expressed by (50), when 0 ≤ γ ≤ 1. See Figure 4.

As γ increases from zero to unity, the function Φ(γ, µ) decreases continu-
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Figure 5. Plots of Φ (left) and Ψ (right) for different values of the parameters `/2b
and ν.

ously and monotonically from 1 to 0, i.e.

1 ≥ Φ(γ, µ) ≥ 0,
∂Φ(γ, µ)

∂γ
< 0, 0 ≤ γ ≤ 1 (51)

Φ(0, µ) =
(

tanh
√

1− γ

µ
coth

√
1 + γ

µ

)
γ=0

= 1

Φ(1, µ) =
(

tanh
√

1− γ

µ
coth

√
1 + γ

µ

)
γ=1

= 0

The function Ψ(γ, ν) decreases from 1 to 0 in the interval 0 < γ < 1− ν,

1 ≥ Ψ(γ, ν) ≥ 0,
∂Ψ(γ, ν)

∂γ
< 0, 0 < γ < 1− ν (52)

Ψ(0, ν) =
[√

1 + γ√
1− γ

(γ + ν− 1)2

(γ− ν + 1)2

]
γ=0

= 1

Ψ(1− ν, ν) =
[√

1 + γ√
1− γ

(γ + ν− 1)2

(γ− ν + 1)2

]
γ=1−ν

= 0 ,

whereas it increases monotonically in the interval 1− ν < γ < 1 and takes
values as large as are desired when γ → 1,

0 ≤ Ψ(γ, ν) < ∞,
∂Ψ(γ, ν)

∂γ
> 0, 1− ν < γ < 1 (53)

Ψ(1− ν, ν) = 0, lim
γ→1

Ψ(γ, ν) = ∞

Plots of the function Φ(γ, µ) when `
2b = 0.1, 1 and 10 (µ = `

πb ) are shown
in Figure 5 on the left. The functions Ψ(γ, ν) when ν = 0.2, 0.3 and 0.5 are
shown on the right.
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The value of γ = γ0 for which

Ψ(γ0, ν) = 1, γ0 ∈ [1− ν, 1] (54)

is of special interest. On solving the corresponding equation, we obtain

γ2
0 = (1− ν)(3ν− 1 + 2

√
1− 2ν(1− ν)) (55)

The value of γ0 turns out to be to close to unity. The values of λ = γ2
0 are

presented in Table 1 for different values of the Poisson ratio ν.

Assuming that ` � b (a long band span) so that µ = `
πb is large, we have

the approximate expression

Ψ =

√
1− γ

1 + γ
(56)

and the equation (49) admits the solution

λe = γ2
e = 1− ν2 . (57)

This solution corresponds to a narrow strip which is simply supported at
its ends and leads to the Euler value of the force for stability loss (buckling)

P = Pe = λe
π2D
`2 = π2 EI

`2 , (58)

where

P = mV2
0 − T0, D =

Eh3

12(1− ν2)
, I =

h3

12
. (59)

Thus, we find that the case of a narrow strip corresponds to the classical
one-dimensional case.

It follows from the above treatment and the properties of the functions
Φ(γ, µ) and Ψ(γ, ν), that the roots γ = γ∗ of the equation (49) lie in the
interval

γe ≤ γ∗ ≤ γ0 (60)
for all 0 < µ < ∞.

The corresponding critical velocity of the travelling band is represented as

(V0)2
∗ =

T0

m
+

γ2
∗

m

(
π2D
`2

)
. (61)

In the limit of a wide band we have

γ∗ → γ0 6= 1 for µ =
`

πb
→ 0, (62)
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and therefore, the corresponding mode of stability loss (44)-(46) does not
turn out to be cylindrical. Thus, the case of a wide band does not reduce to
the classical one-dimensional case.

The largest difference between the critical parameter γ∗, which leads to the
loss of stability of an infinitely wide band, and the corresponding value, ob-
tained assuming a distribution of the deflections in the form of cylindrical
surface, occurs when ν = 0.5 , i.e., in the case of an absolutely incompress-
ible material.

Let us consider the possibility of modes of buckling which are antisymmet-
ric about the x-axis:

w = f a(η) sin
(πx

`

)
, (63)

where
f a(η) = Aa sinh(κ+η) + Ba sinh(κ−η) (64)

for γ ≤ 1. Here η = πy
` and the values κ+, κ− are defined by the expres-

sions (46). Using the expression (64) for f a and the boundary conditions on
the free edges of the plate (41)-(42), we obtain the following transcendental
equation for determining the quantity γ:

Φ(γ, µ)−Ψ−1(γ, ν) = 0 . (65)

In (65), Φ(γ, µ) and Ψ(γ, ν) are again defined by the formulas (50). In the
segment 0 ≤ γ ≤ 1 being considered, the equation has two roots,

γ = γ1 → γ0 < γ1 < 1 and

γ = γ2 → γ2 = 1, (66)
for arbitrary values of ν and the parameter µ, which characterizes the elon-
gation of the plate.

Taking into account (60) and (66), we see that

γ∗ < γ1 < γ2 ,

so the minimal eigenvalue is γ∗. Thus, the critical buckling mode is sym-
metric with respect to the x-axis, and corresponds to γ = γ∗, i.e., the solu-
tion of equation (49).

5 Numerical results

In this section we present some numerical results. First, we describe the
methods used, and show an example of the eigenvalues in one particular
case (Figure 6). We then observe that the deflections are localised near the
free edges (Figure 7), and investigate the sensitivity of this phenomenon on
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the geometry and Poisson ratios of the plate (Figure 8). Finally, we evalu-
ate the divergence speed for a selection of different geometry and Poisson
ratios, with other physical parameters given and kept constant (Table 2).

Note that the dimensionless parameters ν and µ fully determine the local-
isation behaviour, as can be seen from equation (49), which implicitly de-
fines the eigenvalue γ. The other physical parameters T0, D and m have no
effect on the localisation. The divergence velocity, on the other hand, de-
pends on the values of all the physical parameters, but as the dependence
is explicitly given by equation (61), we only evaluate one example case.

Based on the theory given in the sections above, the root γ = γ∗ of equation
(49) was searched numerically in the interval [0 + ε, 1− ε], where the nu-
merical parameter ε, used to avoid singularities, is small (10−8). The critical
value γ0 was evaluated directly from the analytical expression (55), and the
root corresponding to the antisymmetric case, γ = γ1, was found numeri-
cally from (65) using [γ0 − ε, 1− ε] as the search interval.

Once the eigenvalue γ∗ of the symmetric case was found, the corresponding
eigenfunction was constructed by inserting the eigenvalue into (46), (47). It
is possible to eliminate either As or Bs from the first equation of the system
(47). We chose to eliminate Bs; we have Bs = −As · (κ2

+ − ν) cosh (κ+/µ) ·
((κ2

− − ν) cosh (κ−/µ))−1. Because multiplying by a constant does not af-
fect the eigenfunction property, an arbitrary value may then be assigned to
the constant As. We chose As = 1, and after evaluating ws(x, y) using this
choice, normalised the final result by scaling the maximum value to unity.
In case the denominator was zero, we set As = 0 and assigned Bs = 1.

For an incompressible material (ν = 0.5), it was observed that the separa-
tion between the symmetric and antisymmetric eigenvalues was at its clear-
est when `/2b ≈ 1/5. Figure 6 shows the left-hand sides of equations (49)
and (65) as functions of γ, using these parameters. The eigenvalues, located
at the zeros of the functions, are marked in the Figure.

In Figure 7, we can observe a localisation phenomenon: most of the dis-
placement in the buckling mode occurs near the free edges. This phenomenon
becomes more pronounced as the width of the plate grows with respect to
its length. The compressibility of the material also affects the localisation
phenomenon. The effect is at its strongest when ν = 0.5, and it disappears
completely in the limit ν → 0.

If `/2b was increased from 1/5, both the symmetric and antisymmetric so-
lutions very rapidly converged to their respective limits. Already at `/2b =
1/4, the eigenvalue γ1 was already so close to 1, that with the value of ε
used, the function zero search was unable to detect it.

In the other limit, at `/2b = 1/30 the solutions converged to γ0 such that
the first six decimal places of γ∗, γ0 and γ1 were the same.
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Figure 6. Eigenvalues of the symmetric (γ∗) and antisymmetric (γ1, γ2) modes
for `/2b = 1/5, ν = 0.5. The critical parameter γ0 is the value of γ for which
Ψ(γ, ν) = 1.
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Figure 7. Localisation of deflections in the vicinity of the free boundaries.
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In the limit of a perfectly compressible material (ν → 0) with `/2b = 1/5
kept constant, γ∗, γ0 and γ1 were observed to converge to unity. In this limit
the buckling mode becomes cylindrical (no localisation).

Figure 8 represents the effect of the parameters c ≡ `/2b and ν on the
localisation phenomenon. The shade of each point of the figure indicates
the degree of localisation of the corresponding eigenfunction. To obtain the
degree of localisation for a given parameter pair (c, ν), we calculated the
eigenfunction w, and then evaluated the localisation functional

L(ŵ) = α

� b

−b
1− ŵ(`/2, y) dy , (67)

where

ŵ(x, y) =
∣∣∣ w(x, y)

max
(x,y)∈Ω

|w(x, y)|

∣∣∣ (68)

and α is an arbitrary constant for normalisation.

The functional (67) was chosen, because w is of the form w = f (y) · g(x),
and the x dependence is given by sin

(
πx
`

)
. Thus, all the necessary informa-

tion about the localisation effect is present in a single slice w(x0, y) for a con-
stant x0. The choice x0 = `/2 is particularly convenient because sin (π/2) =
1.

We see from (67) that if ŵ(`/2, y) ≡ 1, then L(ŵ) = 0, and for localised
deflections of the type depicted in Figure 7, L(ŵ) > 0. In the limit case of
ŵ(`/2, y) ≡ 0 (excepting the two points y = ±b), we have L(ŵ) = 2bα.

For the plot in Figure 8, we normalised the result by choosing α such that

max
(c,ν)∈S

L(ŵ) = 1 ,

where S = [cmin, cmax]× [νmin, νmax], the chosen plot range for the problem
parameters.

Finally, we evaluated the divergence speed Vdiv
0 for some example cases.

For the physical parameters in equation (61), where D is defined by equa-
tion (2), we used values typical for the papermaking process: E = 109 Pa,
h = 10−4 m, m = 80 g/m2 and T0 = 500 N/m. Note that as far as geometry
is concerned, the divergence speed depends directly only on the length of
the plate. Width, and thus, geometry ratio, dependence is introduced im-
plicitly via the γ2

∗ term in (61).

The results of the divergence speed calculation are shown in Table 2. The
row with ν = 0.3 corresponds to the plots in Figure 7. We observe the con-
clusion indicated by the analysis in the previous section: the difference be-
tween the one-dimensional limit of Vdiv

0 =
√

T/m ≈ 79.0569 m/s and the
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Figure 8. Relative strength of the localisation phenomenon as a function of the
problem parameters. Note the logarithmic vertical axis.

divergence speed given by the two-dimensional model is the largest when
the material is incompressible (ν = 0.5) and the length to width ratio is
small.

6 Conclusion

The loss of stability of axially moving plates was investigated in a two-
dimensional formulation, taking into account their bending resistance and
in-plane tension. The studies performed were mainly based on analytical
approaches, and the basic relation characterising the behaviour of the plate
at the onset of instability was found in an analytical form.

As the result of the general dynamic analysis performed, it was shown that
the onset of instability takes place in a divergence (static) form for some
critical value of the transport velocity when the frequency of the plate vi-
brations is equal to zero. It was shown that the flutter modes arise only for
higher values of the transport velocity.

Detailed analysis was performed in an analytical manner for static modes of
instability. The critical divergence velocity and the corresponding buckling
shapes were studied as functions of geometric and mechanical problem pa-
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rameters. It was proved that the buckled plate shape is symmetrical, i.e. the
antisymmetric shapes correspond to higher values of the transport velocity.
It was shown that the meaningful elastic deflections become localised at the
vicinity of free edges of the plate, and that the amount of localisation only
depends on the Poisson and aspect ratios of the plate.

It is necessary to note that for some buckling problems for plates where the
ratio of width to length, b/`, is large, in practice a one-dimensional panel
model is used. For this model, the critical parameter is equal to one (γ∗ = 1).
However, as was seen from our studies of the two-dimensional buckling
problem, the limit of γ∗ when the width to length ratio tends to infinity
(panel limit) depends on the Poisson ratio, and is less than 1. For any mean-
ingful Poisson ratio (ν > 0), this difference is small but finite. The largest
difference is obtained when the Poisson ratio is equal to 0.5. This unusual
conclusion is important for rigorous estimation.
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Table 1
Values of λ = γ2

0 for different values of the Poisson ratio ν.

ν γ2
0

0.1 0.99997

0.2 0.99939

0.3 0.99621

0.4 0.98533

0.5 0.95711

Table 2
Divergence speed Vdiv

0 [m/s] for some example cases, using the physical parame-
ters given in Section 5. In all cases, 2b = 1 m.

ν \ ` [m] 10 1 0.1 0.01

0.1 79.0569 79.0570 79.0635 79.7110

0.2 79.0569 79.0570 79.0637 79.7310

0.3 79.0569 79.0570 79.0640 79.7659

0.4 79.0569 79.0570 79.0645 79.8160

0.5 79.0569 79.0570 79.0652 79.8824
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