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Abstract

The out-of-plane instability of a moving plate, travelling between two rollers with
constant velocity, is studied, taking into account the mutual interaction between
the buckled plate and the surrounding, axially flowing ideal fluid. Transverse dis-
placement of the buckled plate (assumed cylindrical), is described by an integro-
differential equation that includes the centrifugal force, the aerodynamic reaction
of the external medium, the vertical projection of membrane tension, and the bend-
ing force. The aerodynamic reaction is found analytically as a functional of the
displacement.

To find the critical divergence velocity of the moving plate and its corresponding
buckling mode, an eigenvalue problem and variational principle are derived. Plate
divergence, both within a vacuum and when submerged in an external medium,
is investigated with the application of analytical and numerical techniques.
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1 Introduction

From the viewpoint of papermaking, the inherent mechanical instabil-
ity of axially moving continua is an important question. Travelling flexible
strings, membranes, beams and plates are the most common models. An ex-
tensive amount of research has been conducted on their various aspects. See
e.g. Archibald and Emslie (1958), Miranker (1960), Swope and Ames (1963),
Simpson (1973), Chonan (1986), Wickert and Mote (1990), Shen et al. (1995),
Wang (2003), Shin et al. (2005), Sygulski (2007), and
Kulachenko et al. (2007a,b).

It is known from experimental studies and some theoretical estima-
tions (Pramila 1986) that mechanical instability in a travelling paper web
can arise at some critical velocities, and that the instability may occur in
dynamical, i.e., flutter or statical, i.e. divergence, forms. These critical ve-
locities are of both theoretical and practical interest, as they set an upper
limit for the running speed of a paper machine, and consequently on the
rate of paper production that can be achieved.

Some previous investigations (see, e.g., Chang and Moretti 1991) show
that for a moving paper web under certain conditions, the value of diver-
gence speed Vdiv

0 is less than the value of flutter speed Vfl
0 , i.e., Vdiv

0 < Vfl
0 .

Thus, the speed V0 for reliable, stable movement of the paper web must
satisfy the condition V0 < Vdiv

0 .

An important factor that affects the instability of the axially mov-
ing continuum is the interaction between the elastic continuum and the
surrounding medium. The results of a study by Pramila (1986) show that
the critical velocities and eigenfrequencies obtained using the results of
Mujumdar and Douglas (1976), which neglect the web-air interaction, may
be up to 400% too high.

Different approaches have been used in literature for taking into ac-
count the fluid-structure interaction. For example, in Watanabe et al. (2002),
two different methods of analysis were developed in order to clarify the
phenomenon of paper flutter. One of these was a flutter simulation using
a Navier-Stokes code, and the other method was based on a potential flow
analysis of an oscillating thin airfoil. In Wu and Kaneko (2005), both linear
and nonlinear analyses of sheet flutter caused by fluid-structure interaction
in a narrow passage were developed.

The simplest approach toward the fluid-structure interaction is to as-
sume potential flow (Niemi and Pramila 1986, Pramila 1987). To solve the
external aerodynamic problem, and to find the reaction of the surround-
ing medium, the finite element method has been used (Niemi and Pramila
1986). Added-mass approaches are also common, usually in combination
with a finite element solution (Pramila 1986, Pramila 1987, and for a modi-
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fied version with boundary layer theory, Frondelius et al. 2006).

It has been noted (Pramila 1986) that in the case without longitudinal
transportation of the vibrating medium, comparison of experimental and
theoretical results shows that predictions based on the potential flow the-
ory are within about 10% of the measured results. According to the same
study, the boundary layer is negligible even in the case with longitudinal
transportation, and thus potential flow predictions should apply there also.
However, in a recent paper, Frondelius et al. (2006) show that the boundary
layer does have an effect, especially near the critical velocity of the vibrat-
ing medium. While the eigenfrequency predictions agree with those from
potential flow theory, the divergence velocities are found to be significantly
higher.

Nevertheless, from an academic research viewpoint, the potential flow
problem is a standard reference case. It has been studied for axially moving
materials in stationary air (e.g. Pramila 1986), and for stationary structures
in axial flow (e.g. Eloy et al. 2007). In this study, we will combine these two
cases, solving the problem for a travelling web subjected to axial flow. We
will find the lowest critical velocity, and its corresponding buckling shape.
To do this, we apply the Eulerian concept of elastic stability that was first
used by him for buckling analysis of compressed elastic columns. As usual,
we will concentrate on small deformations and use linear theory. We will
further assume that the deformation is constant in the y (width) direction.
It should be noted that the cylindrical deformation assumption is an ap-
proximation, due to the localisation of deformation near the free edges that
has been observed in axially moving paper webs.

With the limitations of potential flow and cylindrical deformation, we
gain the possibility for an analytical solution of the aerodynamic problem.
The main contribution of this study is an analytical functional representa-
tion for the reaction the fluid exerts on the buckled plate, when axial motion
is accounted for both the plate and the fluid.

The form of the present problem shares some similarities with the
problems of pipes conveying fluid, and stationary structures subjected to
axial flow. Indeed, a similar functional analytical solution for the reaction of
the fluid has been found for a stationary plate in axial flow by Kornecki et al.
(1976). For the similarities between the two mentioned areas, see the review
by Païdoussis (2008).

Also, the numerical methods used for such problems are readily ap-
plicable here. Eloy et al. (2007) and Huang (1995), for example, have stud-
ied the flutter of a cantilevered plate. In both of the studies, a Galerkin ap-
proach with the vacuum vibration modes as the basis was used. This is the
approach we will also apply.

The study is laid out as follows. First we set up the aeroelastic prob-
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Insert Figure 1 here

Figure 1. Travelling plate, supported at x = −ℓ and x = +ℓ, buckling when its
velocity is V0 = Vdiv

0 . The displacement w of the plate is assumed to be cylindrical,
i.e., constant in the y direction (perpendicular to the page, not shown). At infinity,
the fluid moves along the x axis with the velocity v∞. The plate loses its stability at
some critical divergence velocity Vdiv

0 .

lem, and present the analytical solution of the aerodynamical part. We in-
sert the result into the original elastic equation, obtaining an aeroelastic
equation. We then formulate in variational form the eigenvalue problem
of the critical divergence velocity Vdiv

0 , and make a few observations on the
vacuum case. In the last section, we present some numerical results based
on the aeroelastic equation and the Fourier–Galerkin method, and compare
the predicted divergence velocity to known results.

2 Governing equations of elastic instability of moving plate interacting
with surrounding ideal fluid

Consider at first small transverse cylindrical deformations of a plate
travelling with constant velocity V0 and interacting with surrounding air,
modelled as ideal fluid. The plate moves between rollers placed at x = −ℓ

and x = ℓ along the x axis. See Figure 1.

We will work in the context of the flat panel model, which describes
cylindrical deformations of a plate. Note that although the equations look
similar, this model is not the same as the one-dimensional beam model. See
Timoshenko and Woinowsky-Krieger (1959), and Bisplinghoff and Ashley
(1962).

The corresponding equilibrium equation has the form

(

mV2
0 − T

) d2w

dx2
+ D

d4w

dx4
= q f , (1)

where m is the areal mass density ([m] = kg/m2) of the plate, T is the
tension per unit length in the x direction, D is the cylindrical rigidity of the
plate, q f is the aerodynamic reaction (expressed as a volume force, [q f ] =

N/m3) and w is the small displacement in the z direction (see Figure 1). The
cylindrical rigidity is given by (Timoshenko and Woinowsky-Krieger 1959,
p. 5)

D =
Eh3

12(1 − ν2)
, (2)

where E is the Young modulus, h is the plate thickness, and ν is the Pois-
son ratio of the plate. The cylindrical rigidity is also known as the flexural
rigidity.
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We will work in a dimensionless notation, where we define

x′ ≡ x/ℓ and (3)

w′(x′) ≡ w(ℓx′) . (4)

For brevity of notation, the primes and the ℓs will be omitted during deriva-
tion, and the final results will be given with the ℓs re-inserted.

We suppose here that the plate is simply supported at both ends. The
corresponding boundary conditions at x = −1 and x = +1 (where x is now
dimensionless) are given as

(w)x=−1 =

(

d2w

dx2

)

x=−1

= 0, (w)x=1 =

(

d2w

dx2

)

x=1

= 0. (5)

The divergence phenomenon consists of appearance of nontrivial (w 6≡
0) equilibrium forms of the plate at some values of velocity V0. To derive
the statical equation of equilibrium for determining the buckled forms of
the plate and the critical divergence speed Vdiv

0 , it is necessary to derive the
expression for aerodynamic reaction q f as a function of w.

Considering the cylindrical deformation assumption, we shall limit
our study to a solenoidal flow in two dimensions. We consider the xz plane
with Cartesian coordinates, setting the x axis parallel to the undisturbed
flow of the fluid and the movement of the plate.

The aerodynamic velocity potential of airflow with respect to the mov-
ing plate surface, and total pressure, have the forms

Φ (x, z) = x · (v∞ − V0) + ϕ (x, z) (6)

P (x, z, t) = p∞ + p (x, z, t) . (7)

Here v∞ and p∞ are respectively the given velocity and pressure of the
fluid at infinity, and ϕ and p are aerodynamic disturbances of the velocity
potential and pressure.

The total reaction force q f exerted by the fluid is equal to the difference
of pressure between the upper and lower faces of the plate,

q f (x) = P− (x) − P+ (x)

= p− (x) − p+ (x) , −1 ≤ x ≤ 1 (8)

where the superscript notation is defined for any function f as

f± (x) ≡ lim
z→0±

f (x, z) .
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The upper (lower) signs correspond to each other.

To derive an expression for the pressure p (x, z), we use Bernoulli’s
integral (see e.g. Sedov 1972, pp. 155–157):

1

2
(∇Φ)2 +

1

ρ f
p = C , (9)

where ρ f is the density of the fluid and C is a constant. The pressure p (x, z)
thus depends on the velocity potential Φ (x, z).

The potential Φ = Φ (x, z) can be found by solving a Neumann bound-
ary value problem for the region exterior to the plate. Instead of Φ, we shall
consider the disturbance potential function ϕ = ϕ (x, z) related to Φ by the
formula (6). Regarding ϕ and w and their first derivatives as small, we lin-
earise the aerodynamic problem and introduce a boundary condition that
the fluid does not cross the surface of the plate, relating this surface to the
boundary of the cut z = 0, −1 ≤ x ≤ 1.

By inserting (6) into (9) and omitting the second-order small terms

(∂ϕ/∂x)2 and (∂ϕ/∂z)2, we obtain an expression for the pressure p. Insert-
ing the result into (8), we have

q f = p− − p+ = ρ f · (v∞ − V0)

[

(

∂ϕ

∂x

)+

−
(

∂ϕ

∂x

)−]

. (10)

The boundary condition that the fluid does not cross the surface of
the plate, vn = (n̄ · v̄) = (n̄ · ∇Φ) = 0, is represented in the following
linearised form,

vn = (v∞ − V0)nx +
∂ϕ

∂z
nz = 0 , (11)

where nx = −dw/dx and nz = 1 are the projections of the unit vector n̄
that is normal to the plate surface. Consequently, we have

∂ϕ

∂z
= (v∞ − V0)

dw

dx
. (12)

Thus the linearised aerodynamic problem can be written as

△ϕ ≡ ∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (13)

(

∂ϕ

∂z

)±
= (v∞ − V0)

dw

dx
, z = 0, −1 ≤ x ≤ 1 (14)

(∇ϕ)∞ = 0 . (15)
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The domain of the aerodynamic problem is infinite. It consists of the
whole xz plane with the exception of the cut at z = 0, −1 ≤ x ≤ 1, which
is our linearised representation of the space occupied by the plate (note
boundary condition (14)). Although we consider an axially moving plate,
for the purposes of our analysis the plate only exists on the interval −1 ≤
x ≤ 1.

The solution of the boundary value problem (13)-(15) and the deriva-
tion of the formula for the aerodynamic force has been presented in
Banichuk and Neittaanmäki (2008) (see also Appendix A) as a function of
the plate transverse displacement w in the following form:

q f = ρ f · (v∞ − V0)

[

(

∂ϕ

∂x

)+

−
(

∂ϕ

∂x

)−]

=−ρ f · (v∞ − V0)
2 ∂

∂x

ˆ 1

−1
N (ξ, x)

dw

dx
(ξ) dξ, (16)

where the aerodynamic kernel N is defined as

N (ξ, x) =
1

π
ln

∣

∣

∣

∣

1 + Λ

1 − Λ

∣

∣

∣

∣

(17)

and

Λ (ξ, x) =

[

(1 − x) (1 + ξ)

(1 − ξ) (1 + x)

]1/2

. (18)

One needs to be careful with the derivative on the left side of the in-
tegral in q f because the aerodynamic kernel N (ξ, x) is singular. It can be
shown (for details, see Banichuk et al. 2008) that the L1 norm of N is finite,
but that of ∂N/∂x is not, so we cannot directly take the derivative operator
into the integral. However, because the integral in q f ,

ˆ 1

−1
N (ξ, x)

dw

dx
(ξ) dξ ≡ F (x) ,

is absolutely convergent, the function F (x) is bounded. Thus, two different
approaches may be employed. If the integral is evaluated first, the resulting
function can be differentiated by all the usual methods. However, because
the antiderivative is not known analytically, it may be easier in a numerical
solution to use a weak form and integration by parts, as we do below. In-
tegration by parts in the weak form is legitimate because the integrand of
the weak form is a product of two bounded, integrable functions: the test

function and q f = −ρ f (v∞ − V0)
2 ∂

∂x F (x).

In summary, in this section we derived the following integro-differential
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equation for the stationary displacement function w = w (x),

(

mV2
0 − T

) d2w

dx2
+ D

d4w

dx4
=

− ρ f · (v∞ − V0)
2 ∂

∂x

ˆ 1

−1
N (ξ, x)

dw

dx
(ξ) dξ , (19)

which is considered with the corresponding boundary conditions (5). The
equation is written in the dimensionless notation introduced above. Ac-
counting for the span length ℓ, equation (19) becomes

(

mV2
0 − T

) 1

ℓ2

d2w

dx2
+

D

ℓ4

d4w

dx4
=

− 1

ℓ
ρ f · (v∞ − V0)

2 ∂

∂x

ˆ 1

−1
N (ξ, x)

dw

dx
(ξ) dξ , (20)

where x and w still represent the dimensionless quantities (3) and (4).

Equation (20), together with the boundary conditions (5), constitutes
our eigenvalue problem. The minimal value of the parameter V0 is called
the critical divergence speed, if there exists a nontrivial function w (x) sat-
isfying equation (20) with boundary conditions (5). This function, if it exists,
is known as the divergence shape or mode.

3 Eigenvalue problem and variational principle

Let us multiply the left and right hand sides of (19) by an arbitrary
function φ (x) satisfying the boundary conditions (5). Then we integrate
both sides with respect to x over the interval [−1, 1]:

(

mV2
0 − T

)

ˆ 1

−1

d2w

dx2
φ dx + D

ˆ 1

−1

d4w

dx4
φ dx =

ˆ 1

−1
q f φ dx . (21)

Performing integration by parts twice in the bending term and once
in the other terms, we obtain

(

T − mV2
0

)

ˆ 1

−1

(

dw

dx

)(

dφ

dx

)

dx + D

ˆ 1

−1

(

d2w

dx2

)(

d2φ

dx2

)

dx

− ρ f · (v∞ − V0)
2
ˆ 1

−1

ˆ 1

−1

dw

dx
(ξ) N (ξ, x)

dφ

dx
(x) dξdx = 0 . (22)

Note that as discussed above, we have transferred the outer derivative in q f

onto the φ we introduced in (21). Again accounting for an arbitrary length
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ℓ, we have

(

T − mV2
0

) 1

ℓ

ˆ 1

−1

(

dw

dx

)(

dφ

dx

)

dx +
D

ℓ3

ˆ 1

−1

(

d2w

dx2

)(

d2φ

dx2

)

dx

− ρ f · (v∞ − V0)
2

ˆ 1

−1

ˆ 1

−1

dw

dx
(ξ) N (ξ, x)

dφ

dx
(x) dξdx = 0 . (23)

Rearranging the terms, we obtain

Q(w, φ) ≡ −(m JC + ρ f JF) V2
0 + (2 v∞ ρF JF) V0

+ (T JT + D JB − ρF v2
∞ JF) = 0 , (24)

where the functionals corresponding to the tension, bending, aerodynamic
(F), and centrifugal terms are

JT (w, φ) = JC (w, φ) =

ˆ 1

−1

(

dw

dx

)(

dφ

dx

)

dx

JB (w, φ) =

ˆ 1

−1

(

d2w

dx2

)(

d2φ

dx2

)

dx (25)

JF (w, φ) =

ˆ 1

−1

ˆ 1

−1

dw

dx
(ξ) N (ξ, x)

dφ

dx
(x) dξdx .

We can now state the variational form of our eigenvalue problem:
find the smallest positive V0, and the corresponding divergence shape w(x),
such that equation (24) holds for all functions φ(x) that satisfy the bound-
ary conditions (5). This is the weak form of the problem introduced in the
previous section, and the same nomenclature applies.

4 Plate divergence in vacuum

If the motion of the plate is considered in a vacuum, then ρ f = 0 and
consequently q f = 0. In this case, (19) becomes

(

mV2
0 − T

) d2w

dx2
+ D

d4w

dx4
= 0 . (26)

Because (26) contains only second and fourth derivatives, we can introduce
an auxiliary function

u ≡ d2w

dx2
, (27)
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describing the curvature of the plate, and formulate the corresponding eigen-
value problem for it:

d2u

dx2
+ λu = 0 , −1 ≤ x ≤ 1 (28)

u (−1) = 0 , u (1) = 0 . (29)

The parameter λ in (28),

λ =
mV2

0 − T

D
, (30)

plays the role of the eigenvalue. The nontrivial solutions, i.e., eigenfunc-
tions, of the eigenvalue problem (28)-(29) are determined as

u (x) = A sin

(√
λ

x + 1

2

)

+ B cos

(√
λ

x + 1

2

)

,

with two unknown coefficients A and B and an unknown eigenvalue λ.
Applying the boundary conditions (29), we obtain

u (x) = A sin

(

jπ
x + 1

2

)

(31)

λ = j2π2, j = 1, 2, . . . (32)

where A 6= 0 is an arbitrary constant. In divergence analysis made in the
frame of the Eulerian concept of statical instability, the amplitudes of the
eigenfunctions are unknown. Integrating (31) twice and accounting for the
boundary conditions (5), we have for the displacement of the jth mode the
function

w (x) = C sin

(

jπ
x + 1

2

)

, −1 ≤ x ≤ 1 , (33)

where C = − (2/jπ)2 A is an arbitrary constant. We have from (30) and (32)
that the corresponding divergence speed is

(

V
div j
0 vac

)2
=

T + j2π2D

m
. (34)

Thus, we observe that the shape of the eigenmode coincides with the mem-
brane (D = 0) eigenmode regardless of the value of the bending rigidity D,
but the bending rigidity contributes an additional term to the divergence
speed.

Only the critical divergence speed has physical significance. It corre-
sponds to the minimal eigenvalue, i.e., j = 1. Inserting the omitted ℓs, we
have for the critical divergence speed

(

Vdiv
0 vac

)2
=

π2D

mℓ2
+

T

m
. (35)

10



In the theory of paper web dynamics, the bending rigidity D is a small
parameter. If D tends to zero, then the divergence speed tends to the limit
value,

Vdiv
0 vac →

√

T

m
= Vdiv

0 mem vac , (36)

which corresponds to the critical divergence speed of a moving membrane
(see, e.g., Chang and Moretti 1991).

We also observe by letting D → 0 in (34) that for a membrane in vac-
uum, there is only one (degenerate) eigenvalue, and thus all displacement
modes (33) correspond to the critical divergence speed. Because (33) is an
infinite Fourier basis, this implies that a membrane in vacuum may take any
shape as it approaches divergence. This is in contrast with the case with sur-
rounding fluid, and also that of a plate in a vacuum, for both of which the
divergence shape is unique.

5 Numerical estimations

In this section we consider the eigenvalue problem of equation (19)
with the boundary conditions (5), applying numerical techniques in order
to obtain concrete values for the critical divergence speed and the corre-
sponding eigenmode of divergence.

The original problem can be approximated with a finite-dimensional
problem in a standard form. We represent w (x) as a Galerkin series in a
Fourier type basis,

w (x) =
n0

∑
n=1

fnΨn (x) , (37)

where n0 is a discretisation parameter and

Ψn (x) ≡ sin

(

nπ
x + 1

2

)

, x ∈ [−1, 1] (38)

are the (normalised) eigenmodes of free vibrations of a membrane in a vac-
uum. The basis satisfies the boundary conditions (5) by its construction.

By multiplying both sides of (19) with Ψj (where j = 1, 2, . . . , n0), inte-
grating over the domain [−1, 1] and inserting (37), we have, after rearrang-
ing the terms, the weak form

(T Sjn + D Kjn − ρ f v2
∞ Njn) fn =
[

(m Sjn + ρ f Njn) V2
0 − 2 ρ f v∞ Njn V0

]

fn , (39)

where the summation convention has been used. For an arbitrary length ℓ,
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equation (39) becomes

(

T

ℓ
Sjn +

D

ℓ3
Kjn − ρ f v2

∞ Njn

)

fn =
[(m

ℓ
Sjn + ρ f Njn

)

V2
0 − 2 ρ f v∞ Njn V0

]

fn . (40)

The matrices Sjn, Kjn and Njn are the discrete representations of the
functionals JC = JT, JB and JF respectively, and are defined as

Sjn ≡
ˆ 1

−1

dΨj

dx

dΨn

dx
dx =

(

jπ

2

)2

δjn

Kjn ≡
ˆ 1

−1

d2Ψj

dx2

d2Ψn

dx2
dx =

(

jπ

2

)4

δjn

Njn ≡
ˆ 1

−1

ˆ 1

−1

dΨn

dx
(ξ) N (ξ, x)

dΨj

dx
(x) dξdx , (41)

where δjn is the Kronecker delta. The expressions for Sjn and Kjn can be
obtained by a direct analytical calculation of the antiderivative, the result
of which is given above. The matrix Njn must be evaluated numerically
because no closed-form solution for the antiderivative is available.

We see that the matrices Sjn and Kjn are diagonal. This is to be ex-
pected, because we work in a vacuum eigenmode basis, and these ma-
trices correspond to physical effects already present in the vacuum case.
However, the matrix Njn introduced due to the fluid-structure interaction
is found to be diagonally dominated, but it is clearly not diagonal. Thus,
when the plate is submerged in an external medium, couplings exist be-
tween the vacuum eigenmodes that cannot be reproduced by an added
mass approach.

Writing (40) in matrix form, multiplying both sides by ℓ, dividing by
tension T and applying (36), we obtain

(S +
D

ℓ2T
K −

ℓ ρ f

m

v2
∞

(Vdmv
0 )2

N) f =

[(

1

(Vdmv
0 )2

S +
ℓ ρ f

m

1

(Vdmv
0 )2

N

)

V2
0 − 2

ℓ ρ f

m

v∞

Vdmv
0

N
V0

Vdmv
0

]

f , (42)

where we have abbreviated Vdmv
0 ≡ Vdiv

0 mem vac . To simplify the notation,
we define the dimensionless quantities
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λ≡V0/Vdiv
0 mem vac (43)

β≡ D

ℓ2T
(44)

γ≡
ℓ ρ f

m
(45)

θ ≡ v∞/Vdiv
0 mem vac . (46)

Our eigenvalue problem thus becomes

(S + β K − γ θ2 N) f =
[

(S + γ N) λ2 − 2 γ θ N λ
]

f . (47)

Equation (47) is a quadratic eigenvalue problem, which can be reduced to a
(twice larger) standard linear generalised eigenvalue problem by applying
one of the companion linearisations (see, e.g., the extensive review article
Tisseur and Meerbergen 2001, p. 253). The problem has the dimensionless
eigenvalue λ and three dimensionless parameters, β, γ and θ. The critical
divergence speed can be found from the minimal positive eigenvalue of
problem (47).

For T = 0 and V0 = 0, from equation (40) we can formulate the prob-
lem of Guo and Païdoussis (2000) (see also Païdoussis 2004) in the limit of
an infinitely wide channel:

K f = U
2

N f (48)

where the eigenvalue U
2

is the dimensionless dynamic pressure (Païdoussis
2004, p. 1149)

U
2

=
ρ f ℓ3

D
v2

∞ , (49)

which is the square of the dimensionless flow velocity U. Equation (48) de-
fines a standard linear generalised eigenvalue problem. The critical fluid

flow velocity for divergence, vdiv
∞ , can be found from Ucd

2
, the minimal pos-

itive eigenvalue U
2

of the problem (48).

Insert Figure 2 here

Figure 2. Behaviour of N (ξ, x) in Ω ≡ [−1, 1]× [−1, 1]. The infinities and the upper
and left edges should be understood in the sense of limits.

Note that because the aerodynamic kernel N (ξ, x) is singular along
the line x = ξ, some care needs to be taken in computing the integrals in
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the matrix Njn. We use the approximation

Njn ≡
ˆ 1

−1

ˆ 1

−1

dΨn

dx
(ξ) N (ξ, x)

dΨj

dx
(x) dξdx

≈
ˆ 1−ε1

−1+ε1

(

ˆ x−ε2

−1

dΨn

dx
(ξ) N (ξ, x)

dΨj

dx
(x) dξ

+

ˆ 1

x+ε2

dΨn

dx
(ξ) N (ξ, x)

dΨj

dx
(x) dξ

)

dx,

(50)

where ε1 and ε2 are small. It can be shown that the L1 norm of N (ξ, x) is
finite. This property, together with the Hölder inequality guarantees that
the integrals containing N (ξ, x) converge. Thus, all Njn are finite and our
approximation is legitimate.

Some useful properties may be obtained analytically for high-level op-
timisation of the numerical evaluation of Njn. First, we note that the aero-
dynamic kernel N (ξ, x) itself is symmetric along the straight lines x = ξ
and x = −ξ inside the domain (x, ξ) ∈ [−1, 1]× [−1, 1]. On the upper and
left edges of the domain (see Figure 2) it is singular. However, if, at these
locations, we instead understand the expression of N (ξ, x) as a one-sided
limit at the edge (approaching from inside the domain), then the symmetry
applies there, too. Finally, N (ξ, x) is undefined at exactly two corners of the
domain, but this does not affect the integrals. These observations are sum-
marised in Figure 2. The details for deriving all the properties stated in the
last two paragraphs are given in Banichuk et al. (2008).

Then, considering the whole expressions of the integrals in Njn, we
make some more observations. If j + n is odd, then Njn = 0 by consideration
of symmetries of the integrand. The matrix is symmetric, by symmetry of
N (ξ, x) with respect to x = ξ, and application of Fubini’s theorem. Finally,
when j + n is even, the integrand is symmetric with respect to x = ξ and
x = −ξ, so for each integral we only need to evaluate one half of the domain
and then multiply the result by 2.

For a concrete numerical estimation, let us assume an ideal membrane
with D = 0 and physical parameters typical for a paper web. As for its
length, let us take ℓ = 1 m as an example for the rest of this section.

It is numerically observed that antisymmetric vibration modes do not
contribute to the critical divergence speed or shape, i.e., using either n0 =
2k + 1 or n0 = 2k + 2 where k = 0, 1, . . . produces the same result. Let us set
n0 = 55 in the Galerkin series (37). The results for different fluid velocities
v∞ are presented in Table 1.

The numerical solution approximates the solution of the continuous
problem (represented by equation (24)) rather accurately. As an example,
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Table 1
Critical divergence speed of a membrane (D = 0) for different fluid velocities with
the physical parameters T = 500 N/m, m = 80 g/m2 and ρ f = 1.25 kg/m3. The
length of the membrane is ℓ = 1 m.

v∞ [m/s] Vdiv
0 mem [m/s] v∞ [m/s] Vdiv

0 mem [m/s]

0 30.6071 0 30.6071

1 31.4552 -1 29.7549

10 38.8994 -10 21.8972

20 46.7651 -20 12.7606

30 54.1760 -30 3.1692

33 56.3032 -33 0.1958

Figure 3 shows the sensitivity of the solution Vdiv
0 on the number of terms

n0 in the Galerkin approximation when v∞ = 0 and physical parameters
are as in Table 1.

Insert Figure 3 here

Figure 3. The sensitivity of the solution Vdiv
0 on the number of terms n0 in the

Galerkin approximation. Physical parameters are the same as in Table 1, and
v∞ = 0. Note the logarithmic vertical axis in the second plot.

Beginning with the last known solution of the finite-dimensional prob-
lem, we obtain an approximation to the solution of the continuous prob-
lem by summing the difference of successive terms based on the curve fits,
shown in Figure 3, up to a large value of j. The coefficients for the fits are
calculated by solving aj + b = f (vdiff(j)) from each fit expression, and per-
forming a linear fit for the function f .

It was observed that the exponential fit converges faster, but fluctuates
visibly above and below the data. The rational fit converges more slowly,
but stays closer to the data. For obtaining the limit approximation for each,
the upper limit of summation jmax = 899 was used for the exponential fit,
and for the rational fit, jmax = 5999. The limit approximations from the two
fits were found to be very close to each other.

With the physical parameters given above and v∞ = 0, we have from
both fits the limit approximation Vdiv

0 mem ≈ 30.6065 m/s. We notice that the
added terms change the result by less than 0.002%.

An important question is how the problem parameters influence the
solution. In Figures 4 and 5, the effect of the parameters on the critical di-
vergence speed can be seen.
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As the fluid velocity is increased, the critical divergence speed also
becomes larger, until it suddenly drops to zero. This is because increas-
ing θ shifts the whole spectrum of eigenvalues toward positive infinity. At
some critical value of θ (depending on the other parameters), the maximal
negative eigenvalue will cross the origin and become the minimal positive
eigenvalue.

Because statical instability analysis is only concerned with the critical
velocity, and not the (complex-valued) eigenfrequencies, the present analy-
sis cannot tell apart the type of the interval between the origin (V0 = 0) and
the minimal positive eigenvalue, i.e., whether the behaviour in the interval
is stable or unstable. Of course, by physical considerations this interval is
known to be stable when the fluid velocity is zero.

Due to this theoretical constraint, we have concentrated only on the
lowest region of stability, given by the interval between the two eigenval-
ues that, at zero fluid velocity, are the maximal negative and the minimal
positive eigenvalue. Once either end of this region crosses the origin (as θ
is varied), the results become physically meaningless. The figures shown
have been filtered to show only the physically meaningful data.

With this in mind, Figure 4 shows the effect of the fluid velocity θ (de-
fined by (46)) and the bending parameter β (defined by (44)) on the critical
divergence speed in the lowest region of stability. The density ratio γ has
been fixed to the value 15.625 corresponding to the physical parameters
used in Table 1. As expected, the region of stability expands toward ma-
terials having a larger bending stiffness D, or as the length of the span ℓ

becomes shorter.

However, as the tension T is increased, β decreases. This is counter-
intuitive, as one would expect a stabilising effect resulting from increased
tension. A stabilising effect is indeed present, because increasing the tension
also increases the vacuum divergence velocity (equation (36)). This causes θ
to decrease if the dimensional fluid velocity is kept constant, and at θ = 0, λ
stays constant with increasing T. Thus, one needs to be careful when inter-
preting the dimensionless results with respect to tension or paper density.

Insert Figure 4 here

Figure 4. Effect of fluid velocity on the critical divergence speed, parametrised by
values of bending rigidity. The parameter γ = 15.625.

Insert Figure 5 here

Figure 5. Effects of fluid density and fluid velocity on the critical divergence speed
of a membrane, D = 0. In the blank area, the eigenvalue problem has no physical
solution.

The critical value of θ, where the lowest region of stability ends, can be
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found for each fixed pair (β, γ) numerically e.g. with a linear-logarithmic
search procedure. That is, start from θ = 0, increase θ in fixed steps until
the solution decreases, then go back one step, halve the step size and repeat
the procedure until desired tolerance is achieved. For the cases illustrated
in Figure 4, the values θcritical are found to be 0.4199 for β = 0, 0.8287 for
β = 1, and 1.627 for β = 5.

Figure 5 provides a closer look into the fluid parameters when β = 0.
The effect of the density ratio is plotted against the fluid velocity. The shad-
ing of each point in the figure represents the ratio of the critical divergence
speed to the vacuum case. Light shades are the closest to the vacuum so-
lution, and dark shades indicate that the critical divergence speed is much
lower than the vacuum solution. The blank area lies outside the lowest sta-
bility region. The curve with β = 0 in the previous Figure 4 shows a slice of
this plot at the line γ = 15.625.

In addition to the critical divergence speed, the corresponding diver-
gence shapes are of interest. All of the shapes at different parameter val-
ues lie between two extremes. These are the vacuum shape, and the critical
θ limit shape where the fluid exerts the largest effect. In the vacuum, the
value of β has no effect on the shape obtained. On the other hand, if there
is no bending rigidity, any nonzero value of γ causes the membrane to take
the limit shape.

Figure 6 shows as an example the divergence shape at β = 0.01, γ =
15.625 and θ = θcritical ≈ 0.43238. The corresponding vacuum shape is also
shown.

Figure 7 shows the difference between the vacuum shape and the
shape at different θ, with fixed γ = 15.625 and two different values of β.
The critical θ for β = 0.01 was given in the previous paragraph. For β = 0.1,
we have θcritical ≈ 0.49161.

The vertical scaling of Figure 7 corresponds to that in Figure 6. We ob-
serve that the fluid presses the ends of the shape down when compared to
the vacuum case, whereas the center bulges slightly. The difference changes
sign at x ≈ ±0.35. We also observe that β needs to be relatively small to ob-
tain a noticeable difference from the vacuum divergence shape.

We can observe that for most pairs of the parameters β and γ, the
divergence shape is very close to one of its two extremes. That is, obtaining
in-between shapes requires careful choice of the parameters. This behaviour
is shown in Figure 8.

Insert Figure 6 here

Figure 6. Divergence shape at β = 0.01, γ = 15.625, θ = θcritical ≈ 0.43238 (solid
line). The dashed line shows the corresponding vacuum divergence shape.
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Insert Figure 7 here

Figure 7. Difference between vacuum divergence shape and divergence shape for
different fluid velocities at two different values of β. The parameter γ = 15.625.

Insert Figure 8 here

Figure 8. Distance of the divergence shape from its extreme values. The parameter
k ≡ 201. The axes have a logarithmic scale with base 10.

The first two graphs in Figure 8 show the distance of the divergence
shape from each of the extreme values. The upper graph represents the dis-
tance from the vacuum shape, and the lower graph represents the distance
from the critical θ limit shape.

The third graph in Figure 8 shows the product of the two distances
from the first two graphs. At parts of the graph where this function is large
(in the relative sense), we have divergence shapes that are as far as possible
from both extremes.

The sums in Figure 8 are calculated as follows. The Galerkin series
(37) of each divergence shape w is assembled with k equally spaced points
in the range x ∈ [−1, 1], and normalised by a constant such that the maxi-
mum displacement is +1. Reference shapes are calculated for a membrane
in vacuum (β = 0, γ = 0), and for paper in air near critical θ (β = 0,
γ = 15.625, θ = θcritical − ε where ε is small) and assembled as wvac and
wcrit, respectively. The reference shapes are also normalised such that the
maximum displacement is +1.

Finally, let us compare our results to known ones. The study by Pramila
(1986) is well suited for comparison, because in it an axially moving web
submerged in ideal fluid was considered. In Pramila’s study, we have v∞ =
0 for the stationary air, D = 0 for the threadline model (corresponding to

an ideal membrane in the flat panel model), and ρ f = 1.2 kg/m3.

In his study, Pramila gives the nondimensional first natural frequency
as a function of the nondimensional velocity for some example cases. We
are interested in the nondimensional velocity where the natural frequency
becomes zero, denoted λ in our eigenvalue problem.

From added mass considerations, Pramila obtains a scaling factor, r.
In his model, the first natural frequency and the critical divergence veloc-
ity (computed from the vacuum case) both become scaled with the factor
r, when the ideal fluid is taken into account. In our model, λ is the scal-
ing factor for the divergence velocity, and the present analysis makes no
prediction concerning the natural frequency.

For m = 35.5 g/m2, Pramila’s Figure 5 (Pramila 1986, p. 74) suggests
that r is in the range 20%–30%, depending on which added mass expression
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is used. Similarly, his Figure 6 suggests that for m = 54 g/m2, r is in the
range 22%–35%. For both these examples, the dimensions of the open draw
are 2 ℓ = 2.4 m and b = 0.47 m, leading to an aspect ratio of 2 ℓ/b ≈ 5.1, i.e.
a narrow strip. Note that we will not need the width in our model.

In both cases, we have the dimensionless parameters β = 0 and θ = 0.
Noting that for stationary fluid the value of T only affects the absolute value
of Vdiv

0 and not λ, our model predicts that for the first case (γ = 40.5634),
r ≈ 25%. For the second case (γ = 26.6667), we have r ≈ 31%. Both cases
show good agreement with Pramila’s results.

Let us compare the results using another aspect ratio, too. In Pramila’s
numerical example (Pramila 1986, p. 72), the geometry is a wide plate with
2 ℓ = 0.75 m and b = 7.5 m, giving an aspect ratio of 0.1. The physical

parameters are T = 16 N/m and m = 50 g/m2. This gives a vacuum
divergence velocity of Vdiv

0 vac ≈ 18 m/s. Pramila predicts that with these
values, depending on the added mass expression used, the critical velocity
is found to be between 2.7–4.6 m/s, or 15%–26% of the vacuum case.

Inserting the numbers to our model, we have β = 0, γ = 9.0, θ = 0,
and solving the eigenvalue problem gives that Vdiv

0 ≈ 8.7 m/s, or 48% of
the vacuum case. Here the only agreement is qualitative: according to both
models, the divergence velocity decreases when compared to the vacuum
case. The quantitative difference is probably due to the deformation locali-
sation effect, which renders the cylindrical deformation assumption invalid
in the case of an axially moving wide plate.

As for the stationary plate subjected to axial flow, Païdoussis (2004)
reports that (p. 1155) in a wide channel, the dimensionless critical flow ve-
locity for a pinned-pinned plate is Ucd ≈ 3.3. By solving the eigenvalue
problem (48), we obtain Ucd ≈ 2.8, which is within 20% of the referred
value. We observe that the choice of n0 does not matter; the change in the
result between n0 = 1 and n0 = 56 is less than 0.5%. The fast convergence
agrees with the remark in Guo and Païdoussis (2000).

Païdoussis (2004) lists the quantity Ucd
2
/π3 for several different refer-

ences, where flow on one side only has been studied. Scaling Ucd by a factor
of 2 to account for flow on one side only (Païdoussis 2004, p. 1155), we have
for our result that (2 Ucd)

2/π3 ≈ 0.99. Comparing this to the results in the
table on p. 1150 in the same reference (for number of antinodes m = 1), we
see that our result most closely corresponds to that of Dugundji et al. 1963

(Ucd
2
/π3 = 1.00), as for the other results listed, the quantity is closer to 1.3.
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6 Notes and conclusion

In the previous sections, we considered the statical instability prob-
lem for travelling membranes and plates submerged in ideal fluid, when
the elastic deformation is small and cylindrical. We discussed the case in
which the external aerodynamic problem is two-dimensional, and the aero-
dynamic force is found analytically as an integral functional of the plate
displacement function. As a result of analytical transformations, the origi-
nal aeroelastic problem was reduced to the solution of an ordinary integro-
differential equation for the displacement function. To find the critical di-
vergence speed, the obtained eigenvalue problem was solved numerically.
The computations performed show that the surrounding fluid has a mean-
ingful effect on the critical parameters of instability.

Furthermore, it was found that when working in an vacuum eigen-
mode basis, the aerodynamic coefficient matrix introduced due to the fluid-
structure interaction is diagonally dominated, but not diagonal. Thus, when
the plate is submerged in an external medium, even if this medium is ideal
fluid, couplings exist between the vacuum eigenmodes that cannot be re-
produced by an added mass approach. This conclusion is important for
rigorous estimation.

For the most part of this study, the velocity of the moving plate was
regarded as the unknown critical value characterising the statical form of
instability i.e. divergence. Other essential values, such as tension, the den-
sities of the fluid and plate, velocity of the fluid, and the bending rigidity
of the plate, were considered as given. However, the problem can be eas-
ily restated to determine the critical values of these other parameters, as
was briefly done for the critical velocity of the fluid in the special case of a
stationary plate with no applied tension.

The model developed can, with some limiting assumptions, provide
some insight into the divergence of a moving paper web interacting with air
flowing along the axis of movement of the paper web. Taking this into ac-
count, we used for numerical estimations the parameter values correspond-
ing to air and some paper materials.

It should be noted that the cylindrical deformation assumption is an
approximation, due to the localisation of deformation near the free edges
that has been observed in axially moving paper webs. Based on our com-
parison to earlier results (Pramila 1986), we conclude that the flat panel
model is nevertheless a reasonable approximation for a narrow strip.

A recent study by Frondelius et al. (2006) suggests that due to the
boundary layer, the divergence velocities in viscous fluid may be signifi-
cantly higher than those predicted by the ideal fluid model. Thus, the present
results should be primarily seen as academical basic research concerning
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axial flow phenomena and axially moving materials.

Even though the model ignores the deformation localisation effect and
fluid viscosity, much work still remains to be done even in the present sim-
plified case, as the benefit of the approach was not fully realised in the stat-
ical analysis. The dynamical behaviour of the system, and dynamical insta-
bility analysis (Bolotin 1963), remain natural directions in which to extend
this research.

Acknowledgement: This research was supported by the MASI Tekes
Technology Programme.
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A Derivation of aerodynamic reaction

The purpose of this section is to present a derivation of the formulas
(16)-(18) for the aerodynamic reaction.

To find ϕ = ϕ (x, z), we consider the following linearised boundary
value problem:

△ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (A.1)

(

∂ϕ

∂z

)±
= γ (x) , −ℓ ≤ x ≤ ℓ, z = 0 (A.2)

(∇ϕ)∞ = 0, (A.3)

where

γ (x) ≡ (v∞ − V0)
dw

dx
. (A.4)

We will solve this problem in the dimensionless notation (3)-(4).

We introduce an auxiliary function W = Ψ + iϕ of the complex vari-
able ζ = x + iz, where i2 = −1. The Cauchy-Riemann equations and the
boundary conditions (A.2) imply that

∂Ψ

∂x
=

∂ϕ

∂z
= γ (x) (A.5)

and consequently we have

Ψ = χ (x) + C (A.6)

χ (x) =

ˆ x

−1
γ (ξ) dξ, (A.7)

where C is a real constant of integration.

Thus, finding the potential is reduced to the computation of the imag-
inary part of the analytic function W = Ψ + iϕ, whose real part on [−1, 1]
is Re W = Ψ = χ (x) + C. We use the results given in Sherman (1952) and
represent the solution to this problem as

W (ζ) =
1

2πi

(

ζ − 1

ζ + 1

)1/2 ˆ 1

−1

(

ξ + 1

ξ − 1

)1/2 χ (ξ) + C

ξ − ζ
dξ. (A.8)

The real constant C is determined with the help of the following equa-
tion,

1

2πi

ˆ 1

−1

χ (ξ) + C
√

ξ2 − 1
dξ = 0, (A.9)
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which represents a regularity condition for the function W at the point ζ =
1. From the condition (A.9) we have

C =
1

πi

ˆ 1

−1

χ (ξ) dξ
√

ξ2 − 1
. (A.10)

Using the expression (A.10) and the formula

1

2πi

ˆ 1

−1

(

ξ + 1

ξ − 1

)1/2 dξ

ξ − ζ
=

1

2

(

ζ + 1

ζ − 1

)1/2

− 1

2
, (A.11)

we perform substitutions into expression (A.8) and elementary transforma-
tions, and obtain

W =
1

2πi

(

ζ − 1

ζ + 1

)1/2 ˆ 1

−1

(

ξ + 1

ξ − 1

)1/2 χ (ξ) dξ

ξ − ζ

+
C

2

[

1 −
(

ζ − 1

ζ + 1

)1/2
]

=

√

ζ2 − 1

2πi

ˆ 1

−1

χ (ξ) dξ

(ξ − ζ)
√

ξ2 − 1
+

C

2
.

(A.12)

To compute the quantity ϕ+, we take the limit of (A.12) at ζ = x +
iz → x + i · 0 (z → 0+) and separate the imaginary part

ϕ+ = lim
z→0+

[Im W (x + iz)]

= p.v.

(

−
√

1 − x2

2π

ˆ 1

−1

χ (ξ) dξ

(ξ − x)
√

1 − ξ2

)

.
(A.13)

Here we took into account that the constant C on the right-hand side of
(A.12) is real, and consequently must be omitted when the limit of the imag-
inary part is computed in (A.13). Note also that the integration in (A.13) is
understood in the sense of Cauchy’s principal value (p.v.).

Thus we have

ϕ+ − ϕ− = 2ϕ+ = p.v.

(

−
√

1 − x2

π

ˆ 1

−1

χ (ξ) dξ

(ξ − x)
√

1 − ξ2

)

. (A.14)
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By definition of the principal value, we will have

2ϕ+ = p.v.

(

1

π

ˆ 1

−1

(

1 − x2

1 − ξ2

)1/2
χ (ξ) dξ

ξ − x

)

= lim
ε→0

1

π

[

ˆ x−ε

−1

(

1 − x2

1 − ξ2

)1/2
χ (ξ) dξ

ξ − x

+

ˆ 1

x+ε

(

1 − x2

1 − ξ2

)1/2
χ (ξ) dξ

ξ − x

]

.

(A.15)

Integrating by parts and substituting the expression (A.7) for χ (x),
we have

2ϕ+ =

lim
ǫ→0

[

N (x − ǫ, x)

ˆ x−ǫ

−1
γ (ξ) dξ − N (x + ǫ, x)

ˆ x+ǫ

−1
γ (ξ) dξ

−
ˆ x−ǫ

−1
N (ξ, x) γ (ξ) dξ −

ˆ 1

x+ǫ
N (ξ, x) γ (ξ) dξ

]

,

(A.16)

where we use the notation

N (ξ, x) ≡ 1

π
ln

∣

∣

∣

∣

1 + Λ

1 − Λ

∣

∣

∣

∣

, Λ (ξ, x) ≡
[

(1 − x) (1 + ξ)

(1 − ξ) (1 + x)

]1/2

. (A.17)

We observe that all terms on the right-hand side of (A.16) are finite;
therefore, the integration by parts is legitimate. As ε → 0, the sum of the first
two terms in (A.16) approaches zero, while the last two integrals converge.
Therefore, the required functional dependence is of the form

2ϕ+ = −
ˆ 1

−1
N (ξ, x) γ (ξ) dξ . (A.18)

With the help of (10), (A.4), (A.17), and (A.18), we derive the expres-
sion for the aerodynamic reaction of the fluid:

q f (x) = p− (x)− p+ (x) = ρ f v

[

(

∂ϕ

∂x

)+

−
(

∂ϕ

∂x

)−]

= ρ f v
∂

∂x

[

ϕ+ − ϕ−] = ρ f v
∂

∂x

[

2ϕ+
]

= −ρ f v
∂

∂x

ˆ 1

−1
N (ξ, x) γ (x) dξ = −ρ f v2 ∂

∂x

ˆ 1

−1
N (ξ, x)

dw

dx
(ξ) dξ,

where we have abbreviated v ≡ v∞ − V0 .
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Figure captions

Figure 1: Travelling plate, supported at x = −ℓ and x = +ℓ, buckling
when its velocity is V0 = Vdiv

0 . The displacement w of the plate is assumed
to be cylindrical, i.e., constant in the y direction (perpendicular to the page,
not shown). At infinity, the fluid moves along the x axis with the velocity
v∞. The plate loses its stability at some critical divergence velocity Vdiv

0 .

Figure 2: Behaviour of N (ξ, x) in Ω ≡ [−1, 1] × [−1, 1]. The infinities
and the upper and left edges should be understood in the sense of limits.

Figure 3: The sensitivity of the solution Vdiv
0 on the number of terms

n0 in the Galerkin approximation. Physical parameters are the same as in
Table 1, and v∞ = 0. Note the logarithmic vertical axis in the second plot.

Figure 4: Effect of fluid velocity on the critical divergence speed,
parametrised by values of bending rigidity. The parameter γ = 15.625.

Figure 5: Effects of fluid density and fluid velocity on the critical di-
vergence speed of a membrane, D = 0. In the blank area, the eigenvalue
problem has no physical solution.

Figure 6: Divergence shape at β = 0.01, γ = 15.625, θ = θcritical ≈
0.43238 (solid line). The dashed line shows the corresponding vacuum di-
vergence shape.

Figure 7: Difference between vacuum divergence shape and diver-
gence shape for different fluid velocities at two different values of β. The
parameter γ = 15.625.

Figure 8: Distance of the divergence shape from its extreme values.
The parameter k ≡ 201. The axes have a logarithmic scale with base 10.
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Tables

Table 1
Critical divergence speed of a membrane (D = 0) for different fluid velocities with
the physical parameters T = 500 N/m, m = 80 g/m2 and ρ f = 1.25 kg/m3. The
length of the membrane is ℓ = 1 m.

v∞ [m/s] Vdiv
0 mem [m/s] v∞ [m/s] Vdiv

0 mem [m/s]

0 30.6071 0 30.6071

1 31.4552 -1 29.7549

10 38.8994 -10 21.8972

20 46.7651 -20 12.7606

30 54.1760 -30 3.1692

33 56.3032 -33 0.1958
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