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Abstract

In this paper, we consider the static stability problems of axially moving or-
thotropic membranes and plates. The study is motivated by paper production
processes, as paper has a fiber structure which can be described as orthotropic
on the macroscopic level. The moving web is modelled as an axially moving
orthotropic plate. The original dynamic plate problem is reduced to a two-
dimensional spectral problem for static stability analysis, and solved using an-
alytical techniques. As a result, the minimal eigenvalue and the corresponding
buckling mode are found. It is observed that the buckling mode has a shape
localized in the regions close to the free boundaries. The localisation effect
is demonstrated with the help of numerical examples. It is seen that the in-
plane shear modulus affects the strength of this phenomenon. The behaviour
of the solution is investigated analytically. It is shown that the eigenvalues of
the cross-sectional spectral problem are nonnegative. The analytical approach
allows for a fast solver, which can then be used for applications such as statisti-
cal uncertainty and sensitivity analysis, real-time parameter space exploration,

and finding optimal values for design parameters.

*Corresponding author
Email addresses: banichuk@ipmnet.ru (N. Banichuk), juha.jeronen@jyu.fi (J.Jeronen),
matti.m.kurki@jyu.fi (M. Kurki), pn@mit.jyu.fi (P. Neittaanmaki), tytti.j.saksa@jyu.fi (
T. Saksa), tero.t.tuovinen@jyu.fi (T. Tuovinen)

Preprint submitted to Elsevier February 8, 2011



Keywords: Buckling, Axially Moving, Orthotropic, Shear modulus,

Membrane, Plate

1. Introduction

As is well known, the mechanical behaviour of paper under a non-failure con-
dition is adequately described by the model of an elastic orthotropic plate. The
rigidity coefficients of the plate model, describing the tension and bending of
the paper sheet, have been estimated for various types of paper in many pub-
lications (see, for example, Gottsching and Baumgarten, 1976; Thorpe, 1981;
Skowronski and Robertson, 1985; Seo, 1999). The deformation properties of
a sheet of paper under tensile stress or strain are used in simulation of axial
movement of a paper web. In particular, these properties are important for

modelling the instability of the axially moving elastic web.

There are numerous studies on the loss of stability of moving elastic webs
based on one-dimensional models, using second- and fourth-order differen-
tial equations. These studies are devoted to various aspects of free and forced
vibrations, including the nature of wave propagation in moving media, and
the effects of axial motion on the frequency spectrum and eigenfunctions. The
studies include e.g. Archibald and Emslie (1958), Miranker (1960), Swope and
Ames (1963), Mote (1968), Mote (1972), Mote (1975), Simpson (1973), Ulsoy and
Mote (1980), Ulsoy and Mote (1982), Chonan (1986), and Wickert and Mote
(1990).

Two-dimensional studies have also been performed. Lin and Mote (1995) stud-
ied an axially moving membrane in a 2D formulation, predicting the equilib-
rium displacement and stress distributions under transverse loading. Later,
the same authors predicted the wrinkling instability and the corresponding
wrinkled shape of a web with small flexural stiffness (Lin and Mote, 1996).
The stability and vibration characteristics of an axially moving plate were in-

vestigated by Lin (1997). The loss of stability was studied with application of



dynamic and static approaches and the approach by Wickert and Mote (1990)
to derive the equation of motion for the plate in matrix form and to use the
Galerkin method. It was shown by means of numerical analysis that, for all
cases dynamic instability (flutter) is realised when the frequency is zero and
the critical velocity coincides with the corresponding velocity obtained from
static analysis. In Shin et al. (2005), the out-of-plane vibration of an axially
moving membrane was studied. Also here, it was found by numerical anal-
ysis, that for a membrane with a no-friction boundary condition in the lateral
direction along the rollers, the membrane remains dynamically stable until the

critical speed, at which statical instability occurs.

The two-dimensional problem of instability analysis of an axially moving elas-
tic plate was formulated and investigated analytically in Banichuk et al. (2010)
in the context of the isotropic model. It was observed that the transverse deflec-
tion localizes near the free edges. This was noted to correspond to the eigen-
functions of stationary plates under in-plane compressive load (see, e.g., Gor-
man, 1982), and the results matched the above mentioned results of Lin (1997)

and Shin et al. (2005) for moving plates and membranes.

Hatami et al. (2009) studied free vibration of the moving orthotropic rectan-
gular plate in sub- and super-critical speeds, and flutter and divergence insta-
bilities at supercritical speeds. Their study was limited to simply supported
boundary conditions at all edges. Free vibrations of orthotropic rectangular
plates, which are not moving, have been studied by Biancolini et al. (2005)
including all combinations of simply supported and clamped boundary con-
ditions on the edges. Xing and Liu (2009) obtained exact solutions for free vi-
brations of stationary rectangular orthotropic plates considering three combi-
nations of simply supported (S) and clamped (C) boundary conditions: SSCC,
SCCC and CCCC. Kshirsagar and Bhaskar (2008) studied vibrations and buck-
ling of loaded stationary orthotropic plates. They found critical loads of buck-

ling for all combinations of boundary conditions S, C and F.

In this paper, the analysis from Banichuk et al. (2010) is generalized to the case



of orthotropic material. Paper materials are an example of this, since they have
a fiber structure which can be described as orthotropic on the macroscopic
level. To understand the behaviour of such materials, it is thus important to
consider in which ways and how much the introduction of the orthotropic ma-
terial model changes the predictions with respect to those from the isotropic
model. We develop an analytical solution for the orthotropic case, analogous to
the isotropic development in our earlier study. Only a transcendental equation
needs to be solved numerically. This allows for a fast solver, which can then
be used for applications such as statistical uncertainty and sensitivity analysis,
real-time parameter space exploration, and finding optimal values for design

parameters.

The problem of stability of an axially moving orthotropic elastic plate travelling
between two rollers at a constant velocity, and experiencing small transverse
vibrations, is considered in a two-dimensional formulation. The model of a
thin elastic orthotropic plate, which is subjected to bending and tension, is used
for describing the bending moment and the distribution of membrane forces.
The static form of instability is investigated and the critical regime is studied
as a function of geometric parameters and the moduli of orthotropicity. It is
shown that for some values of the problem parameters, the buckling mode
becomes localized in the vicinity of the free boundaries also for the orthotropic

plate.

It is well known that by using Huber’s estimate for the shear modulus of an
orthotropic plate, the equations reduce to those of the isotropic case. In this
paper, it is briefly noted that this approach works also for the time-dependent
dynamic equation of the moving plate. However, in the analysis proper, we
will not make this assumption, but instead develop the analysis for the general

orthotropic case.

Huber’s estimate is not the only way to theoretically estimate the shear modu-
lus. Methods such as calculating the Young modulus in the 45° direction based

on laminate theory, and Campbell’s estimate have been used (Yokoyama and



Nakai, 2007). Thus, if we allow for the use of actual measured values for the
shear modulus, it is possible to compare the different estimates. Also, this
makes possible the sensitivity analysis of the shear modulus with respect to

any deviation from the Huber estimate.

It should be noted that when applied to the particular context of paper produc-
tion, this study still ignores some potentially important effects. First, damping
effects resulting from the viscoelastic nature of paper are neglected. This is
not a major problem, as the introduction of damping is not expected to change
the critical velocity, although it does modify the postdivergence behaviour (Ul-
soy and Mote, 1982). Secondly, the interaction between the travelling web and
the surrounding air is known to influence the critical velocity (Pramila, 1986;
Frondelius et al., 2006) and the dynamical response (Kulachenko et al., 2007),
possibly also affecting the buckling shape. These effects are ignored by the

in-vacuum model used in the present study.

2. Basic relations for transverse vibrations of an axially moving orthotropic

band

Consider an elastic band travelling with a constant velocity Vj in the x direction
between two rollers located at x = 0 and x = / in a Cartesian coordinate

system. Figure 1 shows a rectangular part of the band
0:0<x</t,  —b<y<p,

where ¢ and b are prescribed parameters. Assume that the considered part of

the band has constant thickness h.

Additionally assume that the band is represented as a rectangular elastic or-
thotropic plate having bending rigidities D1, D, and D3, or as a rectangular
orthotropic membrane with zero bending rigidities. The ”1” axis of the or-
thotropic material is aligned with the x direction, while the “2” axis is aligned
with the y direction (see Figure 1). The band is subjected to homogeneous ten-

sion, acting in the x direction. The sides of the band x = 0, —b <y < b and



x =4, —b <y < b are simply supported, and the sidesy = —b,0 < x < £ and

y =1b,0 < x </ are free of tractions.

The transverse displacement of the travelling band is described by the deflec-
tion function w, which depends on the coordinates x, y and time ¢. The differ-

ential equation for small transverse vibrations has the form

o*w 0’w 5 0%wW 0%w 0%w *w
where
*w o*w o*w
@ + 2D3 7ax28y2 + Dzaiy4 7 (2)

in the case of a plate. For the bending rigidities in (2), we have the expressions

E(ZU) = D1

(see, e.g., Timoshenko and Woinowsky-Krieger, 1959, p. 365)

w3 w3 w3

Dy = Ecll , Dy= Eczz , D3= 7 (C12+2Cep) , 3)

where Cj; are the elastic moduli. These can be expressed in terms of the Young
moduli Eq, E; and Poisson ratios v13, 151 as (see, e.g., Kikuchi, 1986, p. 187-189)

E E E
! 2 , Co=Cy = Y122

*17,@2:17 17/C66:Gl2'
— V12V — V12V21 — V12V21

(4)
In (4), E; (respectively E) is the Young modulus in the x (respectively y) direc-
tion, v1p (v21) is the Poisson ratio in the xy plane when the stretching is applied

in the x (y) direction, and Gy, is the shear modulus in the xy plane.

In the case of a membrane, the operator £ in equation (1) is omitted (£(w) = 0).
In equation (1), m is the mass per unit area of the middle surface of the band,

and Tyy, Tyy and Tyy are the in-plane tensions.

We assume that the deflection function w and its partial derivatives are small,
and that they satisfy the boundary conditions corresponding to simply sup-
ported boundariesat x = 0, —=b <y < band x = ¢, —b < y < b, and free
boundaries at —b < y < b, 0 < x < /. In the case of an orthotropic plate, the

boundary conditions read

2w
(w)x:O,Z =0, <ax2 > o =0, -b < y < b, (5)
x=0,¢



Material orientation

Figure 1: Axially moving elastic orthotropic band, simply supported at x = 0 and x = ¢.



o%w %w
L L ) _0, o0<x<¢ ®)
(ayZ ox? y==b

3
(a + B2 ?ﬂay) =0, 0<x</, )

where 1 and f; are mechanical parameters defined as

4G
Pr=v2, Pa=vi+t ?212(1 — Vio¥21) - (8)
As is well known, in the isotropic case we have Ey = E; = E, vip = 151 = v,
G =G =E/(2(1+v)) and, consequently, 1 = vand B =2 —v.
Huber (1923) showed that if the in-plane shear modulus Gy of an orthotropic
plate is approximated by the geometric average

EE
2(14 \/vpv)

the equations reduce to those of the isotropic plate. It is easy to show that

GH = (9)

this property holds for the time-dependent plate problem including axial mo-
tion, too. Because coordinate scaling is only required in the y direction (see
Timoshenko and Woinowsky-Krieger, 1959, p. 366 for the transformations),
the Coriolis term w,; generated by the axial motion of the plate introduces no
trouble for this approach. For the rest of this article, unless otherwise noted, it

is assumed that Gy; is an independent material parameter.

In the case of a membrane, the boundary condition at the rollers reads
(W)y—0,e =0, —b<y<b. (10)

On the free edges, classical membrane theory asserts (see, e.g., Sagan, 1961;
Weinstock, 2008 (reprint) (%—;’)y:ib =0 (0 < x < ¥). On the other hand, Shin
et al. (2005) have used a different condition for zero traction, which does not
contain the transverse displacement w. Below, we will see that in our case for
a membrane, the choice of the boundary condition on the free edges does not

matter.



For both the plate and membrane cases, in equation (1), Ty, Ty, and T,y are
in-plane tensions related to the corresponding stress tensor components oyy,

0xy and oy, by the expressions
Tox =hoxx, Toy=hoyy, Ty =hoy. (11)

The in-plane stresses 0y, 0xy and 0y, are assumed to satisfy the standard equi-

librium equations

ao'xx ao'xy . any ao'yy -
Y + By 0, e + 3y 0. (12)
with the boundary conditions
(Uxx)x:(),g =To, (o'xy)x:(],g =0, -b<y<b, (13)
(‘Tyy)y:ib =0, (”xy)y:ib =0, 0<x</, (14)

where Tj is prescribed positive parameter. Taking into account the behavioural
equation of the plane theory of elasticity and the boundary conditions (13) and

(14), we have for the considered orthotropic band the tension field
Tex = T, Ty =Ty =0, (x,y) € Q. (15)

As is well known, the in-plane displacements u, v, oriented respectively along
the axes x and y, are related to the stresses by means of the generalized Hooke’s
Law
ou v ou v
= [— _— = — —_— 1
Oxy Ces (a]/ + ax> s Oyy Clzax +C228yr (16)

where C;; are the elastic moduli (4). In the following, we will use Maxwell’s

Jou v
=Cy1=— +Cip—,
Oxx 13- +C2 3y
relation
Eyvo1 = Epvyn 17)
In the computations, we will use E;, E; and vy, as independent parameters,

and calculate v; from equation (17).

In this study, we will use a prescribed tension Ty. However, note that by using
equations (12) and (16), it is possible to show that, if instead of a prescribed ten-

sion Ty we have a prescribed displacement 1 at x = ¢, the generated tension



field has the form (15) and its value is

o [ ChHY) _uo
To_h£<C11 o =hJEr. (18)

Therefore, our results are applicable to this case, too.

The boundary conditions used in deriving (18) were (14) and the following:
oxy = 0atx = 0,0 and u|y—9 = 0, u|y—y = up. By (4) and (17), the last form
in (18) follows easily. We see that the only material parameter that affects the
homogeneous tension field generated by the prescribed displacement is the
Young modulus in the longitudinal direction. Compare (18) with Ty = h*fE

for an isotropic material.

For the computations, we introduce the characteristic bending rigidity Dy (some

positive constant) and the dimensionless bending rigidities

_D Dy _Ds

H; = H, = —= H; = . 1
1= Dy ) 3= D, (19)

We will use the choice Dy = Dy below.

Equation (1) becomes

0w *w 5 N ?w Dy To
Sp A+ Wos + (V- C) S5+ —2Lo(w) =0,  C=y/-L, ()

ot? ox ox
where . ] \
o*w JI*w JI*w
=H— +2H3——— + Hh— . 21
EO(Z’U) 1 ax4 + 3ax28y2 + 2 a]/4 ( )

Note that the considered plate boundary value problem (20) - (21), (5) - (7), is
homogeneous and invariant with respect to the symmetry operation y — —y
and, consequently, all solutions of the problem can be considered as symmetric

or antisymmetric functions of y, i.e.

w(x,y,t) =w(x, —y,t) or w(x,y,t) = —w(x, —y,t). (22)

10



3. Divergence velocity of a membrane

Consider the case of a rectangular orthotropic membrane. We omit the bending

terms from (20):

*w 0%w 5\ 0°w Ty
g Mgt (B -C) G =0 =y @)

This equation is considered with the homogeneous boundary condition (10).

Let us represent the solution of the dynamic boundary-value problem (23), (10),

as (Bolotin, 1963)
w(x,y, ) = W(x,y)e", (24)

or in the equivalent form
w(x,y,t) = Wixy)e", (25)
where w is the frequency of small transverse vibrations and
s=iw (26)

is the complex characteristic parameter. To investigate the dynamic behaviour
of the membrane, we insert the representation (25) into equation (23) and bound-

ary condition (10). We have

oW ’W
2 2 A2 _
ST +25Vo 5 + <VO C ) £7 =0, @7)
(W)y—0,e =0, —-b<y<b. (28)

We multiply the left-hand side of equation (27) by W and perform integration
over the domain Q) (0 < x < ¢, —b <y < b) to obtain

/w2d0+2svo/ W—dQ+<VO c2 /W—dQ_O (29)

The second and third integrals in equation (29) are evaluated with the help of

integration by parts and the boundary conditions (28). We have

W
/ W= d=0, (30)

11



2W oW\ 2
/QWW dQ_—/Q(ax) dQ. (31)

Using the equalities (29) — (31) and performing elementary transformations, we

obtain the following expression for the characteristic index:

Jo (29)" a0

= (v -¢) Jo W2d0

(32)

If s becomes zero, we have the steady state solution (buckling) with frequency

w = 0 at some velocity Vy = VgV The value of this divergence velocity is

vgivzcz,/%:,/%lsl, (33)

where in the last form equation (18) has been used.

estimated as

4. Static analysis of stability loss of a plate

In the following, we will perform static analysis of stability loss of a plate. The
problem is formulated as the eigenvalue problem for the partial differential
equation
0w
2 —
(mVO - :ro) = + DoLo(w) =0 (34)

with the boundary conditions (5) — (7). To determine the minimal eigenvalue,

£2
r=2t= o (mv-1) (35)

of the problem (5) — (7), (34), and the corresponding eigenfunction w = w(x, y),
known as the divergence or buckling form, we apply the following representa-
tion:

w=w(xy) = fy) sin (77) , (36)
where f (y) is an unknown function. The fact that the solution is a half-sine
in the longitudinal direction is well-known in the isotropic case; see e.g. Lin
(1997). It is easy to see that the same form is applicable for the orthotropic

plate. What remains to be determined is the unknown cross-section f(y).

12



It follows from (36) that the desired buckling form w satisfies the boundary
conditions (5). Using dimensionless variables =  and y = nib and the
relations (6), (7), (34)-(36), we obtain the following e1genvalue problem for the

unknown function f(#):

d*f d?f
4 2 - = —1<n<
VHdn 2;4H3d172+(H1 AN f=0, 1<y<1, (37)
d2
Qﬂmg—ﬁu> =0, (38)
n==x1
& f w)
2
<L g —o. (39)
( d’7 d?’] n==x1
We denote )
d d
£a(f) = g 2 .

To show that the eigenvalues A of £1(f) are non-negative, we proceed us-
ing general ideas from Chen et al. (1998), who proved a similar result for an

isotropic stationary plate.

We introduce the bilinear form a( f, g) that corresponds to the strain energy of

a plate (see Timoshenko and Woinowsky-Krieger, 1959, p. 377),

1 B dZ = dZ
aUgwi/[Hﬁg—ﬁ&ff— Bg ke
1, OF 42 4/ d g
where
B1+2By, = Hs.

Performing integration by parts on (40), we obtain

! d*f d>f
= *Hy—5 —2W*Hs——% + H
a(f, ) [1 {# 2qy8 2 gy H IS &dy.
Thus, the form a(f, g) can alternatively be defined as

a(f,g) = (£1(f),8)

13



where the inner product (-, - ) is

1
(u,v) = / uody.
-1
The operator £ (f) is easily seen to be self-adjoint, and the form a( f, g) induces

a positive semidefinite norm a(f, f),

! v s
a(f,f) = /71 [Hl f—n V2 g + p Ha (1 = vipvan) a2
+44*B, df 2] dy >0.
This implies that the eigenvalues of £1(f) are nonnegative. That is,
A>0, (41)

for all eigenvalues A of the problem (37) — (39), which governs the cross-sectional
eigenfunctions f(y) and the corresponding eigenvalues of the buckled, moving

orthotropic plate.

The particular solutions of the ordinary differential equation (37) have the form

f = Ae, p= ﬁ (42)

where A is an arbitrary constant and « is a solution of the following biquadratic

algebraic characteristic equation:
Hox* —2H3x* + (Hy —A) =0 (43)

that is written as

Ki:% 14+ 1_HZ(H712_)‘) _ b 14 1_M . (44)
H, HZ

where the upper (lower) signs correspond to each other.

The solutions x4 are real-valued, if we have the following range for A:
2

H
/\minzl_iag)\glf)\max/ (45)
Hp

14



corresponding to a real-valued eigenfunction f. The lower limit Ani, is non-
positive,

Amin <0 7

if

G2 > Gy
By (41) and (45), in the case that the shear modulus Gy, is greater than or equal
to the geometric average shear modulus Gy, we may seek the lowest eigen-

value in the range

0<A<1T, (46)

as was done in the isotropic case (Banichuk et al., 2010). On the other hand, it
is also possible that

G12 < GH

(for some measurements of Gy, for paper materials, see Yokoyama and Nakai,

2007; Bonnin et al., 2000; Seo, 1999; Mann et al., 1980). In this case, we have

)\min >0 ’

which will produce complex solutions ¥+ and complex eigenfunctions if A is
in the range

0<AL /\min .
Numerically, however, it is seen that this interval contains no solutions.

From (42), (44) we obtain that the general solution can be represented in the

form
i

Kt L3 _r
fOr) = Are FT + dge B 4 age T 4 Age B (47)
with unknown constants A, Ay, Az and Ajy.

The eigenvalue boundary value problem (37) — (39) is invariant under the sym-
metry operation ¥ — —1, and consequently the eigenforms (EFs) can be clas-
sified into functions that are symmetric, f°, or antisymmetric, f*, about the

origin.

15



Using the relations (37) — (39), (47), we obtain a general representation for the
function f*(7) and linear algebraic equations for determining the constants A°

and B®:

f5(n) = A® cosh % + B® cosh % (48)
s 2 Ki s 2 K; _
A (K+ [31) cosh P +B (K_ [31) cosh P 0 (49)
A%k, (k2 — By) sinh “* 4 Bk (k2 — By)sinh = =0, (50)
+ (12— po) sinh 22 + B (2 — o) sinh

where A® and B® are unknown constants. Note that due to the symmetry (or
antisymmetry) of the solution f, we have only two independent unknown con-
stants, instead of the four in the general representation (47) where the symme-

try considerations had not yet been applied.

The conditions for a non-trivial solution to exist in the form of (48) and (49), (50)
reduce to the determinant of the homogeneous system (49), (50) vanishing. The

zero determinant condition can be expressed as

CI)(’Y/ U, V12, El/ EZ/ GlZ) - ‘P(r)// V12, El/ EZ/ GlZ) =0 s (51)
where
K— K+

CD(’Y,,’M,UQ, Eq, Ep, GlZ) = tanh7coth—, (52)

ki (15— B2) (K2 — B1)
Y(v,v12,E1, E2,G12) = : (53)

K- (13 — B1) (k2 — B2)

Ky = Kt (,Y/ V12, El/ EZ/ GlZ)/ Ko = K— (’)’/ V12, E], EZ/ G12) .

This equation can be used to determine the eigenvalues A = 2 corresponding
to symmetric eigenfunctions with different values of the parameters y, v, Eq,
E; and Gpp. Note that there is no dependence on the parameter v, since it

depends on vy, E; and E; via Maxwell’s relation (17).

Similarly, using the relations (38) and (39), we can obtain a representation for
antisymmetric eigenfunctions f?(7), the equation for determining the corre-
sponding constants A% and B“, and the transcendental equation

1
= 4
(o 0, (54)

16



where @ and ¥ are the functions defined by (52)-(53). This equation can be
used for determining the eigenvalues corresponding to antisymmetric EFs.

These representations and equations differ from (48)—-(50) in the replacement

cosh — sinh  and sinh — cosh . (55)

5. Properties of the transcendental and algebraic parts

In the following, we will investigate the properties of the functions ® and ¥,
when A is in the range 0 < A < 1. Unlike in the isotropic case, the decoupling
between the geometric and material parameters is very minimal. The function
Y does not depend on y (geometry), but both ® and ¥ depend on all of the

independent material parameters (v12, E1, E; and Gip).

We start our examination by noting that (by direct calculation)

q)(/\min) =1 (56)
‘P(/\min) =1 (57)

and
CD(l) =0 (58)

regardless of the problem parameters. We defer the evaluation of the limit
Y(A — Amax) to the subsection on the algebraic part below, because, although
itis trivial to see that ¥ has a singularity there (because x_ — 0T as A — Amax),

to deduce its sign we need to know the sign of each of the terms in (53).

Let us fix the values of 113, E1, E; and Gy to those corresponding to some
given orthotropic material. The qualitative behavior of the functions ® and ¥
is illustrated in Figure 2. The range for 7y (defined by (35)) is obtained by taking
the square root of (45). Note that the x axis of the figure starts at ymin. In the
isotropic case in our earlier study, we had ymin = 0, which does not hold for

the general orthotropic case.

17



Y, Ve Y, Y

Ymin Ymax

Figure 2: Behaviour of ® and ¥ as a function of y when the parameters Dy, D,, D3, #, 1 and B2

are fixed. Qualitative drawing.

Figure 3 shows some examples of ® and ¥ plotted for some general orthotropic
materials. Note that as was discussed above, only ® depends on the aspect
ratio £/2b. We see that the case Gip = Gp behaves like the isotropic case, as
expected (compare Banichuk et al. 2010). When the value of G, deviates from
the Huber estimate, it is seen that when G1» < Gpg, the curvature of ® becomes
more pronounced, especially for a large aspect ratio (i.e., a long, narrow strip).
If G1, > Gy, the value of both functions at v = max (0, ymin) decreases, again

especially for a large aspect ratio in the case of P.

As 7y increases from Ymin t0 Ymax, the function ®(1y, 1) decreases continuously

and monotonically from 1 to 0, i.e.

9D (,
122(np) 20, é?yy) <0, 7Tmin <7 < Tmax (59)
cD(’)/min/ H) - (tanh K; Coth K+> =1
]/l Y="7min
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Figure 3: Behaviour of ® and ¥ for some orthotropic materials, at different aspect ratios ¢/2b and
different values for the in-plane shear modulus Gi,. For all cases, the other material parameters
are E; = 6.8 GPa,E; = 3.4 GPa and vi = 0.2,1p; = 0.1. Note that only ® depends on the
aspect ratio. Upper left: G = 0.85 Gy (note the scale for ). Upper right: G = Gg. Lower
left: Gy = 1.15 Gy, where Gy is the value given by the Huber estimate (9). The range of 7y is
max (0, Ymin) < ¥ < Ymax, based on (35), (41) and (45), and evaluated separately for each subfigure.
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D (Ymax, 1) = <tanh = coth KJF) =0
K Y="Ymax

The function ¥(-y) decreases monotonically from 1 to 0 in the interval ymin <

r)/ < r)/Z/ a
b4
1>¥(y) 20, a(j) <0, Ymin <Y<7z (60)
LII('Ymin) =1
Y(vz) =0,

whereas it increases monotonically in the interval 7, < 7 < Ymax and takes
values as large as are desired when ¥y — ymax,

¥ (7)
9y

0<Y¥(y) < oo, >0, 1.<7<l1 (61)

Y(yz) =0, lim Y(y)=o00.

Y~ Ymax

The function touches zero at the point

ye = \//SJZ.HZ —2B;Hs + Hy (62)

where j = 1,2. It will be shown below that - is unique. Thus both choices for

j obtain the same ;.

Because 0 < & < 1 for all Ymin < ¥ < Ymax, the symmetric solution (51) is
only possible in the range where ¥ < 1. Likewise, the antisymmetric solution
(54) is only possible in the range where 1/Y < 1,i.e.,, ¥ > 1. Thus, the value
of v = o for which ¥ = 1, is of special interest. Note that at this point we
alsohave ¥ = 1/Y and thus ® — ¥ = ® — 1/Y. The functions defined by the
left-hand sides of (51) and (54) will therefore cross at the value ¢y = 7.

Note that (60), combined with the consideration in the previous paragraph, im-
plies that the eigenvalue <y, corresponding to the symmetric solution is always
lower than the eigenvalues y; and 7, corresponding to the antisymmetric solu-
tion. Additionally, since ®(Ymax, 1) = 0 and lim,, ., ¥ () = oo, the second
antisymmetric eigenvalue is yp = ymax. For the various values of 7 defined

above, we have the ordering Ymin < 7z < 7+ < Y0 < 71 < 72 = Ymax-
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An analytical expression for g can be found by using the definition (52) — (53)

and solving ¥2(y) = 1 for 7. Let us define the auxiliary expression

a = \/8,51 H, Hz + (ﬁ12 — 612+ ﬁzz) Hy*. (63)

Then, for the root 7 that interests us, the following expression holds:
1
B =5 ((B2—B1) a+2H — (B2 —4p1 p2+p2%) Ha—4p1Hs) . (64
Using the theory presented, it is possible to numerically find, by first solving .

from equation (51), the critical velocity (equation (35)) and the corresponding

buckling shape (equations (36), (44), (48) — (50)).
Behaviour of transcendental part: analytical consideration

Let us show that transcendental part ® is monotonically decreasing in the open
interval (Amin, Amax ). First, we define

_ Hy(H1 =)

, 65
e (65)

i.e. the square root expression in x3 in (44). We see that g(Amin) = 0 and
2(Amax) = 1. Between these extreme values, ¢(A) increases monotonously as

A increases.

We write (44) in the form

L (AEyVI=ci=1) )
C

2
KL = —

where we have defined the auxiliary constant
_ 2

Directly by differentiating (66), we have

o(xy) +1
oA 2H3\/T—c(1—-A)’

where the upper and lower signs correspond to each other. Note that the

(67)

square root expression in the denominator is g(A) in (65), and as discussed
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above, it takes on values in the range (0,1) as A € (Amin, Amax), and especially
is positive in our range of interest. Thus, (67) is always positive for k2 and

always negative for x> .

On the other hand, by rules of differentiation,

and thus
ok: _ 9(xd)
oA oA
Noting that x+ > 0 (in the special case of A = Anax, we have x_ = 0, but this

/ZKi .

point is not in our open interval), we have that the signs match:

oK+ (%)

sign —-= = sign —~

(68)

Now we turn our attention to ®. Differentiating the definition (52) with respect
to A, we have

o® 0 K Kt K-\ 0 Ky
R (tanh V) coth ? + (tanh ]/l> ETN (coth V)

:%.1.%(:0&&“%}1& _% 1 ooxy
cosh® = oA H H sinh® 7= ) ¢ A
In the first term on the right-hand side, 9x_ /dA < 0 (by (67) and (68)) while the
other factors are all positive, and in the second term, —1/ sinh? %’ < 0 while
all other factors are positive. Thus, both of the terms on the right-hand side are

negative and we conclude that

oD
- < 0 VA€ (Amin Amax) - (69)
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Behaviour of algebraic part: analytical consideration

The second part is the algebraic function ¥. We prove the following results:

1. Y has exactly one zero A,.

2. Y has exactly one singularity, which is located at A = Apayx, and its sign

is positive: N lim ¥(A) = +oco.

— Amax

3. If the zero A; € (Amin, Amax), then ¥ is monotonically decreasing in the

interval A € (Amin, Az), and monotonically increasing in the interval A €

(/\Z/ /\max ) .

Again, we begin with (44). We note that the coefficient in front of the expression

can be written as

Hjs Ds Gz
— === +2—=(1— .
H, D, V12 E, ( V121/21)

Let us define the constants

G G
A =H3/Hy =vyp +2E7122(1 —vpta1), B= 2E7122(1 —V1aV21) -

We see that
B1=A-B8B, Bo=A+B.

Using (70) and (65), definition (44) reduces to a more convenient form,
KL =A(1+g(A)).

Inserting (71) and (72) into the definition (53), we have

¢ _ VAT Fg)(Ag() —BY
A(T—g(0)(Ag(A) + B

(70)

(71)

(72)

(73)

All factors in (73) are always positive, except the second one in the numerator.

Thus, the function can only have one zero, which is located at such A, that

Ag(A;) — B = 0. The first result is therefore established.

To prove the second result, we note that there is exactly one singularity, caused

by the first term in the denominator as g(A) — 1, ie. as A — Amax. ¥ is
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continuous outside its singularities. Furthermore, from (73) we have that ¥ >
0 for all A for which the function is nonsingular. Because ¥ is continuous, the

singularity must have the positive sign.

To finish this section, let us show that the third result holds. Note that the
special case A = B does not happen as long as v1; # 0, which holds for all

reasonable materials.

We will now consider the derivative of ¥ with regard to A. We will for now

assume that A; € (Amin, Amax)-

We obtain from (73) that

oY 378\ A(1-g(1))(B—Ag(A)) (B2 — A%g(A)2+4AB(g(A)? - 1))

oA (1-g(A)2) VA1 +8(A)(Ag(A) + B)?

(74)
Because all other terms are positive, we have for the sign of the derivative the

expression

sign %1: = sign [(B — Ag(A) (32 — A2¢(A\)2 +4AB(g(A)? — 1))] . (75)

Note that because g(A) is monotonically increasing (and thus dg/dA > 0), and
the zero of ¥ is located at A g(A;) = B, we see that

sign [Ag(A) — B] =sign [A —A,] . (76)
Thus, the sign of the expression A g(A) — B corresponds to whether A is less or
greater than A.

We can write the expression on the right-hand side of (75) as

(B—Ag(N) |[(B—Ag(1) (B+Ag(N) +44B (g -1)] . ()

If B—Ag(A) < 0,ie. A > A, the parenthetical expression on the right is
negative (note that the last term is always negative because g(A) < 1). Thus,

in this case we have

oY
ﬁ|A>/\Z >0.
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The other case B— Ag(A) > 0,i.e. A < A; is trickier, because then the paren-
thetical expression on the right hand side of (77) will have one positive and one

negative term. The expression represents a parabola with the variable g(A),

4AB — B?
g()\):i\/ngoi- (78)

Because g(A) > 0, we may discard the negative solution g, in (78). The ex-

and has zeroes at

pression is negative until g(1) becomes larger than the positive solution g; .

The last question that remains is whether this solution lies in our range. We
calculate (numerator) — (denominator) from the right-hand side of (78), again

look at the definitions (70), and recall that v1, > 0:
(4AB — B?) — (4AB— A?) = A2 - B> >0,

ie. the numerator is always larger than the denominator. Thus gj > 1 and
the parabola stays negative for our whole range. We have that the total sign is

negative and thus

oY
ﬁ|/\<)\z <0.

This completes the proof.

6. Numerical solution process

The numerical solution process was similar to the one for the isotropic case in

Banichuk et al. (2010), but now the general orthotropic equations were used.

The root v = 7+ of equation (51) was searched numerically in the interval
[Ymin + €1, Ymax — €2], where the numerical parameters ¢ jr j = 1,2, which were
used to avoid singularities, were small and determined adaptively based on
the sign of & — Y. The values were initialized as g = 108 for both j=12,
and each parameter ¢; was halved until the sign of ® — ¥ was positive at the

left end, and negative at the right end. Then a simple bisection search was
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used to locate the root. It was seen that this search for suitable ¢; was necessary
especially in the case where Gy, < Gp, because a fixed-size epsilon would skip
over the root in some parts of the parameter space (e.g. if E;/E; and vy, were

both small).

When G1p < Gy, it was verified that no roots existed in the tested cases in the

interval ¢ € [0, Ymin)- This was done by minimizing ||f(A)||> = f(A) - f(A),
where f(A) = ®(A) — ¥(A), starting from 30 linearly spaced initial guesses
in the mentioned interval. Here z denotes the complex conjugate of z. Local
minima larger than & were discarded, as were also any duplicates, and any
solutions y > ymin. Note that 7 = ymin is always a root, corresponding to the

trivial solution.

The critical value 7y was evaluated from the analytical expression (64), and the
root corresponding to the antisymmetric case, v = 71, was found numerically
from (54) using [0 + €, Ymax — €] as the search interval. In this case, the value

e = 10~ was used.

Once the eigenvalue 7, of the symmetric case was found, the corresponding
eigenfunction was constructed by inserting the eigenvalue into (44), (49) — (50).
It is possible to eliminate either A® or B® from one of the equations of the system
(49) — (50). Either equation can be chosen. Note that the other equation is

implicitly used by the zero determinant condition (51).

A numerically stable approach for choosing which constant to eliminate is to
test both possibilities, assigning A® = 1 (respectively B* = 1) and calculating B®
(respectively A®) from the equation system (using, e.g., the first equation). The
choice that gives a result that is smaller or equal to 1 is then the one that should
be kept. This is necessary, because depending on the problem parameters and
this choice, the other constant may be very large, which affects numerical ac-

curacy. (Values up to about 103" were seen.)

We evaluated w®(x, y) using this choice, and normalised the final result by scal-

ing the maximum value of w® to unity.
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7. Numerical results

When the material parameters Eq, Ep, and vy, are given, the other Poisson ratio
V1 can be found from the compatibility condition (17). We see, by numerical
tests, that the ratio of the Young moduli E; and Ej is the significant factor affect-
ing the buckling shape, no matter the absolute magnitudes of E; and E;. The
value of the in-plane shear modulus Gy, as a fraction of the Huber estimate

(9), is also seen to affect the buckling shape. See Figure 5.

In addition to the material parameters, we have one geometric parameter, £/2b,
which describes the ratio of the plate’s length to its width. The effect of the
problem geometry on the displacement localisation phenomenon was investi-
gated in Banichuk et al. (2010). It was observed that when the plate is short
and wide (¢/2b small), the localisation is more pronounced, that is, most of the

displacement occurs near the free edges.

The same effect is observed to occur for the orthotropic model, so in order to
concentrate on the effect of orthotropy, we will not produce an aspect ratio
comparison here. In our following analysis, we will fix £/2b = 0.01 for the
rest of the discussion, as a representative numerical example that exhibits the
localisation effect. This is realistic for a short open draw in a paper machine

¢=01m,b=>5m).

The numerical results are arranged as follows. Figure 4 represents the case
of one isotropic material, similar to those presented in Banichuk et al. (2010),
and includes some orthotropic variants based on the Huber estimate (9). The
subfigure on the left shows the complete buckling shape, while the subfigure
on the right displays a slice of the shape at x = ¢/2 (corresponding to the
bolded line in the left subfigure). It is observed that when the Huber estimate
is used, the qualitative behaviour agrees with the isotropic case, as expected.
Quantitatively, we see the effect of the Young modulus ratio E; / E;. The smaller

the ratio is, the more the shape is localised near the free edges.

Figure 5 shows the effect of the in-plane shear modulus Gy, for general or-
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thotropic materials. The left column displays complete buckling shapes, while
the right column shows the strength of the localisation effect that was discussed
in Banichuk et al. (2010). As discussed above, the problem parameters affect-
ing the localisation effect are the aspect ratio £/2b, the Young modulus ratio

E1/E,, the Poisson ratio 115, and the in-plane shear modulus Gi;.

Briefly stated, the degree of localisation represents the variation of the dis-
placement in the width (y) direction. When localisation is high (in the relative
sense), most of the displacement occurs near the free edges. When localisa-
tion approaches zero, so does the ¥ dependence, and the displacement profile
approaches a cylindrical one. The degree of localisation is computed from a
numerical approximation of the integral [ Eb[l — f(y)] dy, where f(y) is the

cross-section. See Banichuk et al. (2010) for some more details.

As can be seen in figure 5, the result qualitatively matches the earlier one from
the isotropic case, in that the degree of localisation increases as the Poisson
ratios increase (i.e. as incompressibility increases). As a new result, we see that
the zone, where the relative strength of localisation rapidly increases, shifts
toward the right (i.e. toward larger values of v15) when the ratio G2/ Gy is

increased.
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Displacement at z = £/2; vi = 0.2

0/2b=0.01, E1 /By = 1,15 = 0.2, = 0.2,G12 = Gy _ _ _EUE2=05,v,,=040
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Figure 4: Reference case. Left, symmetric buckling shape for isotropic material, E = 5 GPa and
v = 0.2. Aspectratio ¢/2b = 0.01. Right, shape of the profile on the bold line of the left picture. The
solid line corresponds to the picture on the left. The dotted lines show the shape of the resulting
profile if the isotropic material is replaced with an orthotropic one, while keeping E; = 5 GPa and
112 = 0.2. The other Poisson ratio 151 is calculated from Maxwell’s relation (17), and for Gy, the

Huber estimate (9) is used.
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value Gy is evaluated separately for each point in each plot.
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Figure 5: Studied case. Effect of the in-plane shear modulus Gj,. The aspect ratio is £/2b = 0.01.
The Poisson ratio vy; is calculated from Maxwell’s relation (17). Top row: G2 = 0.7 Gy, middle
row: Gip = Gp, bottom row: Gy, = 1.3 Gy, where Gy is the value given by the Huber estimate (9).
Left column: symmetric buckling shape for material with E; = 6.8 GPa, E; = 3.4 GPa,vi; = 0.2.
Right column: relative strength of the localisation effect as a function of Young modulus ratio
E1/E; and the Poisson ratio v15. The effect has been plotted in the area where |/v15151 < 0.5. The

maximum localisation value is normalized to 1 for each subfigure separately, and the reference




Finally, let us compute the critical divergence velocity for dry paper (E; =
8 GPa, E; = 0.8 GPa, v15 = 0.8 (121 = 0.08)) with an aspect ratio of £/2b = 0.1,
thickness # = 10~* m and mass per unit area m = 0.08 kg/m?, moving in
a span of length / = 0.1 m, and subjected to a tension of Tp = 500 N/m.
The estimation (9) is used for the shear modulus Gi,. By solving equation (35)
for Vp and inserting these values, we obtain Vy ~ 79.11 m/s. We solved two
different isotropic limit cases, with E = E; = 8 GPaand E = E; = 0.8 GPa.
The other parameters were kept the same, and the used Poisson ratio was the
geometric average v = V = /v1pv21 = 0.4. The critical velocities were for the

first case V) &~ 79.12 m/s, and for the second case, Vjy ~ 79.06 m/s.

8. Conclusion

In this study, the analytical solution originally developed for isotropic axially
moving plates, as reported in Banichuk et al. (2010), was extended to the gen-
eral orthotropic case. The case was general in the sense that the in-plane shear
modulus G, was assumed to be an independent material parameter. The an-
alytical approach allows for a fast solver, which can then be used for applica-
tions such as statistical uncertainty and sensitivity analysis, real-time parame-

ter space exploration, and finding optimal values for design parameters.

As a result of applying the developed analytical approach, an explicit expres-
sion for the limit velocity of stable axial motion was found, and the limit ve-
locity was computed for an example case. The critical regime was studied as
a function of the moduli of orthotropicity. Localised modes of instability of
the axially moving orthotropic plate were found in some range of the prob-
lem parameters, and the localisation effect was demonstrated with the help of

numerical examples.

It was shown analytically that the eigenvalues of the problem determining the
shape of the buckled cross-section are nonnegative. The transcendental and

algebraic parts of the analytical solution were analyzed in detail, and certain
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properties were shown to hold. These properties apply not only to the general
orthotropic case, but also to the earlier isotropic one. Thus, the present study

also adds details to the analysis in Banichuk et al. (2010).

The buckling shapes were found to depend significantly on the in-plane shear
modulus Gip. It was observed that if the ratio G12/ Gy, where G is the geo-
metric average shear modulus, is increased, then the degree of localisation of

the deformation to near the free boundaries decreases.

However, for estimation of the critical velocity, the orthotropicity of the mate-
rial was found to have a negligible effect. Thus, if one aims only to estimate
the critical velocity, the isotropic model is sufficiently accurate. The orthotropic
and isotropic buckling shapes were confirmed to be qualitatively similar. The
main difference was found in the expressions which represent the condition

that the boundary conditions are fulfilled.

Finally, some brief observations were made. It was noted that although a pre-
scribed tension value was assumed, the analysis easily generalizes to the case
where the x-direction displacement at one of the rollers is prescribed instead.
It was also briefly stated that the classical reduction technique, bringing the
equations to isotropic form in the case where the geometric average in-plane
shear modulus is used, works also for the dynamic case of an axially moving

orthotropic plate, despite the Coriolis effect that is present in this setting.

In the particular context of paper production, further expansion of the present
model is still needed to account for all of the relevant physical effects. Es-
pecially, the interaction between the travelling web and the surrounding air
should be taken into account. The effect of the viscoelastic nature of paper on

the instability behaviour is another possible topic for further investigation.
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Figure captions
Figure 1: Axially moving elastic orthotropic band, simply supported at x = 0 and x = £.

Figure 2: Behaviour of ® and ¥ as a function of y when the parameters Dy, D, D3, y,

B1 and B, are fixed. Qualitative drawing.

Figure 3: Behaviour of ® and ¥ for some orthotropic materials, at different aspect ratios
£/2b and different values for the in-plane shear modulus Gi,. For all cases, the other
material parameters are E; = 6.8 GPa, Ep = 3.4 GPa and v, = 0.2,v5; = 0.1. Note that
only @ depends on the aspect ratio. Upper left: Gjp = 0.85 Gy (note the scale for 7).
Upper right: G1, = Gg. Lower left: Gj, = 1.15 Gy, where G is the value given by the
Huber estimate (9). The range of 7y is max(0, Ymin) < ¥ < Ymax, based on (35), (41) and

(45), and evaluated separately for each subfigure.

Figure 4: Reference case. Left, symmetric buckling shape for isotropic material, E =
5 GPa and v = 0.2. Aspect ratio £/2b = 0.01. Right, shape of the profile on the bold
line of the left picture. The solid line corresponds to the picture on the left. The dotted
lines show the shape of the resulting profile if the isotropic material is replaced with an
orthotropic one, while keeping E; = 5 GPa and v, = 0.2. The other Poisson ratio v5; is

calculated from Maxwell’s relation (17), and for G, the Huber estimate (9) is used.

Figure 5: Studied case. Effect of the in-plane shear modulus Gy;. The aspect ratio is
£/2b = 0.01. The Poisson ratio vy; is calculated from Maxwell’s relation (17). Top row:
G1p = 0.7 Gy, middle row: Gy, = Gpy, bottom row: G, = 1.3 Gy, where Gy is
the value given by the Huber estimate (9). Left column: symmetric buckling shape for
material with E; = 6.8 GPa, E; = 3.4 GPa,vyp = 0.2. Right column: relative strength
of the localisation effect as a function of Young modulus ratio E; /E; and the Poisson
ratio v1p. The effect has been plotted in the area where ,/v15151 < 0.5. The maximum
localisation value is normalized to 1 for each subfigure separately, and the reference

value Gy is evaluated separately for each point in each plot.
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