
153
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Applications of Virtualization
in Systems Design

Nezer Jacob Zaidenberg

JYVÄSKYLÄ STUDIES IN COMPUTING 153

Nezer Jacob Zaidenberg

UNIVERSITY OF

JYVÄSKYLÄ 2012

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Ylistönrinteellä, salissa YlistöKem4

kesäkuun 15. päivänä 2012 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in Ylistönrinne, hall YlistöKem4, on June 15, 2012 at 12 o'clock noon.

JYVÄSKYLÄ

in Systems Design
Applications of Virtualization

Applications of Virtualization
in Systems Design

JYVÄSKYLÄ STUDIES IN COMPUTING 153

JYVÄSKYLÄ 2012

Applications of Virtualization

UNIVERSITY OF JYVÄSKYLÄ

Nezer Jacob Zaidenberg

in Systems Design

Copyright © , by University of Jyväskylä

URN:ISBN:978-951-39-4763-7
ISBN 978-951-39-4763-7 (PDF)

ISBN 978-951-39-4762-0 (nid.)
ISSN 1456-5390

2012

Jyväskylä University Printing House, Jyväskylä 2012

Editor
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Zaidenberg, Nezer Jacob
Applications of Virtualization in Systems Design
Jyväskylä: University of Jyväskylä, 2012, 288 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 153)
ISBN 978-951-39-4762-0 (nid.)
ISBN 978-951-39-4763-7 (PDF)
Finnish summary
Diss.

In recent years, the field of virtualization has generated a lot of attention and has
demonstrated massive growth in usage and applications.

Recent modification to the underlying hardware such as Intel VT-x instruc-
tions and AMD-v instructions have made system virtualization much more effi-
cient. Furthermore, recent advances in compiler technology have led the process
virtual machine to dominate not only modern programming languages such as
C# and Java but also in “ancient" programming languages such as C, C++ and
Objective-C.

As a consequence of this trend, virtual services and applications using vir-
tualization have started to spread. The rise of technologies such as storage virtu-
alization, virtualization on clouds and network virtualization in clusters provide
system designers with new capabilities that were once impossible without vast
investment in development time and infrastructure.

This work describes several problems from the fields of Internet stream-
ing, kernel development, scientific computation, disaster recovery protection and
trusted computing. All of these problems were solved using virtualization tech-
nologies.

The described systems are state-of-the-art and enable new capabilities that
were impossible or difficult to implement without virtualization support. We
describe the architecture and system implementations as well as provide open
source software implementations.

The dissertation provides an understanding of both the strengths and the
weaknesses that are connected by applying virtualization methods to system de-
sign. Virtualization methods, as described in this dissertation, can be applicable
to future applications development.

Keywords: Virtualization, Storage Virtualization, Cloud Computing, Lguest, KVM,
QEMU, LLVM, Trusted computing, Asynchronous mirroring, Repli-
cation, Kernel Development, Prefetching, Pre-execution, Internet Stream-
ing, Deduplication

Author Nezer J. Zaidenberg
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Pekka Neittaanmäki
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Professor Amir Averbuch
Department of Computer Science
Tel Aviv University
Israel

Reviewers Professor Carmi Merimovich
Department of Computer Science
Tel Aviv-Jaffa Academic Collage
Israel

Professor Jalil Boukhobza
Department of Computer Science
Université de Bretagne Occidentale
France

Opponent Professor Juha Röning
Department of Electrical and Information Engineering
University of Oulu
Finland

ACKNOWLEDGEMENTS

Without the knowledge and assistance of the mentioned below, this work would
not have been possible. I would like to take this opportunity to recognize thank,
and acknowledge the following people and Institutions.

First and Foremost, it was a privilege to have Prof. Amir Averbuch as su-
pervisor. I wish to extend my gratitude to Amir for his support and assistance.
I have been working with Amir since 2001, when Amir tutored me during my
M.Sc thesis. Amir’s support throughout the years has made this work possible.

I wish to express my gratitude and warmest thanks toward my second su-
pervisor Prof. Pekka Neittaanmäki for his review, guidance and assistance with
all things big and small.

Chapter 3 presents LgDb, joint work with Eviatar Khen, a co-operation that
was very stimulating for both of us.

Chapter 4 presents AMirror, joint work with Tomer Margalit. Working with
Tomer was interesting and mutually beneficial.

Chapter 5 presents Truly-Protect, joint work with Michael Kiperberg. The
cooperation with Michael was very diligent and will also lead to more future
work.

Chapter 6 presents a LLVM-Prefetch, joint work with Michael Kiperberg
and Gosha Goldberg.

Chapter 7 presents PPPC system, joint work with Prof. Amir Averbuch and
Prof. Yehuda Roditi. The work is inspired by systems developed by vTrails. A
start-up I founded.

I would also like to thank the other collaborators I have worked with, that
is described in chapter 8, Tamir Erez, Limor Gavish and Yuval Meir.

Furthermore, this work wouldn’t have been complete without insightful,
helpful and often frustrating comments by my reviewers Prof. Jalil Boukhobza,
Prof. Carmi Merimovich and the comments of Prof. Tapani Ristaniemi as well as
countless other anonymous reviewers of our peer-reviewed papers and posters.

I would like to express my gratitude to the staff of the Department of Math-
ematical Information Technology for their help and assistance with solving ev-
eryday problems. Particularly Timo Männikkö for his review of the manuscript
and Kati Valpe and Rantalainen Marja-Leena for all their help.

Finally, I wish to thank my parents and my family and all my friends for
their moral support and interest in my work, especially my dearest partner Vered
Gatt for her patience, encouragement and review of the work and my brother Dor
Zaidenberg for his insightful comments.

I greatly appreciate the support of the COMAS graduate school, STRIMM
consortium and Artturi and Ellen Nyyssönen foundation that provided funding
for the research.

I owe a debt of gratitude to my faithful proof-reader, Ms. Shanin Bugeja. If
this monograph is reasonably free from error it is due in no small measure to her
meticulous and ruthless application of the red pen.

LIST OF FIGURES

FIGURE 1 The flow and the functional connections among the chapters
in the dissertation .. 24

FIGURE 2 Type I and Type II hypervisors .. 28
FIGURE 3 Process Virtualization.. 29
FIGURE 4 Multiple operating systems running on virtual environments

on a single system... 32
FIGURE 5 iPhone development using device and simulator 33
FIGURE 6 Desktop Virtualization .. 36
FIGURE 7 Microsoft Application Virtualization....................................... 38
FIGURE 8 Application virtual machine - OS and Application viewpoints .. 39
FIGURE 9 Common Language Runtime (CLR) Environment 40
FIGURE 10 Android (Dalvik) Environment .. 40
FIGURE 11 Using VIP via LVS... 42
FIGURE 12 Virtual Private Network (VPN). ... 43
FIGURE 13 Cloud Computing Environments ... 44
FIGURE 14 The LgDb System Architecture... 51
FIGURE 15 The LgDb System - x86 Privileges Levels 52
FIGURE 16 Flow Chart of Code Coverage Operation................................. 56
FIGURE 17 Flow Chart of Profile Operation ... 57
FIGURE 18 Generic replication System .. 66
FIGURE 19 Synchronous replication System ... 67
FIGURE 20 Asynchronous replication System... 68
FIGURE 21 Schematic Architecture of the AMirror Tool............................. 73
FIGURE 22 Why Volume Groups are Required ... 75
FIGURE 23 Deduplication on the Network Traffic 77
FIGURE 24 Saving of Bandwidth... 78
FIGURE 25 Just-In-Time Decrypting ... 92
FIGURE 26 Just-In-Time Decryption Performance. Program Running Time

in Seconds as a Function of Input Size. Note the Logarithmic
Scale. ... 100

FIGURE 27 Program Decryption Time (in cycles) Using AES and our Ci-
pher with Different Values of p. ` = 4. α = 14.......................... 101

FIGURE 28 Program Decryption Time (in cycles) Using AES and Our Ci-
pher with Different Values of p. ` = 4. α = 112. 102

FIGURE 29 (a) The original graph G. It has seven vertices. The subset L
of G vertices contains the vertices A, B, C and D colored gray.
(b) The L-minor of G. .. 114

FIGURE 30 Prefetching Library. PREFETCH enqueues the address in the
PREFETCH-QUEUE and in the error detecting queue. A worker
thread checks periodically whether the queue is not empty.
If so it dequeues the oldest address and accesses the corre-
sponding memory. If a page is not cached, FETCH increments
the counter that corresponds to the ID. Likewise, FETCH de-
queues an address from an error detecting queue and com-
pares it against its argument to reveal a prefetch thread that is
misbehaved. ... 117

FIGURE 31 Running time (in seconds) of the optimized version of bucket
sort algorithm versus the regular unoptimized algorithm. 119

FIGURE 32 Running time (in seconds) of the matrix multiplication algo-
rithm. .. 120

FIGURE 33 Running time (in seconds) of the indirect array access pro-
gram (on average for single iteration)...................................... 121

FIGURE 34 Regular non-optimized execution of the matrix multiplication
program. Only one core is utilized. Yellow means that the
core is idle, green means that the program calculations are per-
formed, cyan means that the I/O operations are performed,
red means that the OS calculations are performed. The green
sections are the CPU-bound segments and the cyan sections
are the I/O bound segments. ... 121

FIGURE 35 Optimized execution of the matrix multiplication program.
The execution begins with the main thread occupying the first
core. The prefetching threads start after 5 seconds and re-
places the main thread. The main thread runs on the second
core for about two minutes. Then, it is swapped with the main
computation. Yellow means that the core is idle, green means
that program calculations are performed, cyan means that I/O
operations are performed, red means that OS calculations are
performed. The green sections are the CPU-bound segments
and the cyan sections are the I/O bound segments. 122

FIGURE 36 Unicast streaming ... 126
FIGURE 37 CDN approach does not provide the solution for last mile con-

gestion. .. 126
FIGURE 38 Multicast streaming could provide a solution. 127
FIGURE 39 Only peer-2-peer streaming solves streaming problem on the

Internet. ... 128
FIGURE 40 PPPC data flow. .. 129
FIGURE 41 Results on high spread radio users ... 139
FIGURE 42 Results on low spread radio users .. 139
FIGURE 43 The beginning of the simulated test. 141
FIGURE 44 This image represents the system status upon reaching 1,000

clients .. 142
FIGURE 45 Minutes 12-17, 2000 clients. .. 143

FIGURE 46 This image shows the test results upon reaching maximum
clients limit .. 144

FIGURE 47 We sampled the system running every hour. 145
FIGURE 48 LRU vs. ARC on 1,2,4,8 CPUs. 15462400 Operations, 95% get

5% set, 745K window size. .. 148
FIGURE 49 LRU vs. ARC on 1,2,4,8 CPUs. 16650240 Operations, 85% get

15% set, 2439K window size. ... 148
FIGURE 50 The Diffie-Hellman key exchange illustrated 171
FIGURE 51 Block layer data structures ... 188
FIGURE 52 Generic make request flow .. 191
FIGURE 53 submit bio flow .. 192
FIGURE 54 Make request flow .. 193
FIGURE 55 Get request flow ... 197
FIGURE 56 Get request wait flow ... 198
FIGURE 57 Allocate request flow .. 199
FIGURE 58 Batching I/O flow... 200
FIGURE 59 Add request flow .. 202
FIGURE 60 Elevator insert flow... 203
FIGURE 61 Plug Device flow .. 204
FIGURE 62 Unplug Device flow ... 205
FIGURE 63 Unplug Device - Timeout flow ... 206
FIGURE 64 Run queue flow .. 207
FIGURE 65 Fetch request flow... 209
FIGURE 66 Peek Request flow... 210
FIGURE 67 Do ordered flow ... 212
FIGURE 68 Start ordered flow .. 213
FIGURE 69 Flush queue flow .. 214
FIGURE 70 Put request flow ... 216
FIGURE 71 Free request flow ... 217
FIGURE 72 End request flow... 219
FIGURE 73 Update request flow.. 220
FIGURE 74 End I/O flow.. 221
FIGURE 75 Finish request flow.. 222
FIGURE 76 Using Virt I/O in multiple hypervisors 243
FIGURE 77 Para-virtualization device drivers .. 243
FIGURE 78 5 Virt I/O drivers ... 244
FIGURE 79 Virt I/O driver anatomy ... 245

LIST OF TABLES

TABLE 1 Correlation Between `, φ and q. Here p = 0.2........................... 100
TABLE 2 struct bio (block I/O) members .. 181
TABLE 3 I/O driver interfaces ... 184
TABLE 4 The methods that the I/O scheduler implements 186
TABLE 5 The methods that the I/O scheduler implements 187
TABLE 6 Lguest lg.ko files... 226
TABLE 7 write LHREQ_INITALIZE pointers .. 253

LIST OF ALGORITHMS

ALGORITHM 1 Code Coverage Logic ... 54
ALGORITHM 2 Profiler Algorithm ... 58
ALGORITHM 3 VM Replication Logic ... 76
ALGORITHM 4 System 1 — VM Interpreter Run Loop 84
ALGORITHM 5 System 3 — VM Interpreter Run Loop 85
ALGORITHM 6 System 4 — VM Interpreter Run Loop 86
ALGORITHM 7 Key Exchange in System 5 .. 89
ALGORITHM 8 System 6 — Genuine Hardware and Software Verification . 90
ALGORITHM 9 Just-In-Time Decryption ... 92
ALGORITHM 10 Core I Thread .. 93
ALGORITHM 11 Core II Thread ... 94
ALGORITHM 12 Real time graph analysis ... 137
ALGORITHM 13 High level description of AES algorithm 169
ALGORITHM 14 Feige-Fiat-Shamir Identification Scheme 169
ALGORITHM 15 Diffie-Hellman algorithm ... 170
ALGORITHM 16 Initialize the guest.. 255
ALGORITHM 17 Real time graph analysis ... 283
ALGORITHM 18 Interface thread - main function 283
ALGORITHM 19 Parents Rehabilitation thread - main function 284

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF ALGORITHMS
CONTENTS

1 INTRODUCTION .. 19
1.1 Virtualization Methods for System Design 19
1.2 The Main Problems that are Solved .. 20

1.2.1 System 1: LgDb: Kernel Profiling and Code Coverage 20
1.2.2 System 2: Disaster Recovery Protection Using Asynchronous

Mirroring of Block Devices and Virtual Machines 20
1.2.3 System 3: Truly-Protect: Using Process VM for Trusted

Computing ... 20
1.2.4 System 4: LLVM-prefetch: Prefetching and Pre-execution .. 21
1.2.5 System 5: Peer-2-Peer Streaming 21

1.3 The Underlying Concepts.. 22
1.3.1 Virtualization .. 22
1.3.2 Trusted Computing.. 22
1.3.3 Cryptography ... 22
1.3.4 Linux Block Layer.. 22
1.3.5 LLVM ... 23
1.3.6 Lguest and Virt I/O ... 23
1.3.7 KVM and QEMU ... 23

1.4 Dissertation Structure ... 23
1.5 Contributions and papers from the dissertation 24

2 VIRTUALIZATION .. 26
2.1 Introduction to Virtualization .. 26
2.2 System Virtual Machines ... 31
2.3 Implementations of System Virtual Machines 32

2.3.1 Whole System Virtual machines – Emulators.................... 32
2.3.2 Hardware Virtualization... 34
2.3.3 Desktop Virtualization ... 34
2.3.4 Software virtualization ... 35
2.3.5 The Use of System Virtual Machines in Our Work............. 37

2.4 Process Virtual Machines... 39
2.4.1 The Use of Process Virtual Machines in Our Work 41

2.5 Storage Virtualization ... 41
2.5.1 The Use of Storage Virtualization in Our Work 41

2.6 Network Virtualization ... 41
2.6.1 Use of Network Virtualization in our solutions................. 43

2.7 Cloud Virtualization ... 43
2.7.1 Software as a Service .. 45
2.7.2 Platform as a Service .. 45
2.7.3 Infrastructure as a Service... 45

3 KERNEL DEBUGGER .. 47
3.1 Introduction... 47

3.1.1 Development Tools .. 47
3.1.2 Lguest .. 48
3.1.3 State-of-the-Art Solutions ... 48

3.2 Motivation ... 49
3.2.1 Code Coverage in the Kernel Space 49
3.2.2 Profiling in Kernel Space .. 49

3.3 LgDb: The "Virtual" Kernel Debugger... 50
3.3.1 Architecture .. 50
3.3.2 Forking Guests .. 52
3.3.3 Kernel Multitasking and Profiling 53

3.4 Tools ... 53
3.4.1 Code Coverage .. 53
3.4.2 Profiling.. 55

3.5 Related work.. 59
3.5.1 Debugging in virtual environment 59
3.5.2 LgDb vs. Gcov .. 59
3.5.3 LgDb vs. Oprofile .. 60
3.5.4 LgDb vs. LTTNG 2.0 and FTrace...................................... 60
3.5.5 LgDb vs. Performance Counters 61

3.6 Conclusion... 61
3.6.1 Performance Results .. 61
3.6.2 Innovation .. 62

3.7 Looking forward and LgDb 2.0 .. 62
3.8 Availability .. 63

4 ASYNCHRONOUS REPLICATION OF BLOCK DEVICES AND VM 64
4.1 Introduction... 64

4.1.1 Disaster Recovery problem, replication and VM replication 64
4.1.2 Terminology.. 65

4.2 Deduplication .. 68
4.3 Related work.. 68

4.3.1 Replication.. 68
4.3.2 Replication and Migration of Virtual Machine 69
4.3.3 Storage Concepts of Deduplication and CDP.................... 70

4.4 Design goals .. 70
4.4.1 Block Device Replication .. 71
4.4.2 Mirroring and Replication of VMs 71
4.4.3 Failing to meet RPO objective ... 72

4.5 System Architecture.. 72
4.6 VM Replication .. 74
4.7 Low Bitrate Considerations ... 76
4.8 Benchmarks ... 76
4.9 Future development ... 79
4.10 Availability .. 79

5 TRULY-PROTECT .. 80
5.1 Introduction... 80
5.2 Related work.. 81

5.2.1 Virtual machines for copy protection 81
5.2.2 Hackers usage of Virtualization....................................... 82
5.2.3 Execution Verification .. 82

5.3 System Evolution ... 82
5.3.1 Dramatis Personae ... 83
5.3.2 Evolution .. 84

5.4 Final Details ... 94
5.4.1 Scenario .. 94
5.4.2 Compilation .. 95
5.4.3 Permutation .. 95

5.5 Security ... 95
5.6 Assumptions in Modern CPUs... 96
5.7 Performance... 97

5.7.1 Version 3 Performance ... 98
5.7.2 Switch Instructions .. 98
5.7.3 Version 4 Performance ... 98
5.7.4 Comparison .. 99
5.7.5 Version 7 Performance ... 99

5.8 Example .. 100

6 LLVM PREFETCHING AND PRE-EXECUTION 106
6.1 Introduction... 106
6.2 Introduction... 107

6.2.1 CPU–I/O Performance Gap.. 107
6.2.2 Virtualization .. 108
6.2.3 Main Results ... 108

6.3 Pre-execution ... 109
6.4 Isolation of Pre-execution .. 110

6.4.1 Memory Isolation .. 111
6.4.2 I/O Isolation ... 111

6.5 Introduction to LLVM ... 111
6.6 Prefetching Threads Construction .. 112

6.6.1 Hot Loads ... 113
6.6.2 Slicing with LLVM ... 113
6.6.3 Threads Construction... 114

6.6.4 Optimizing the Termination Instructions 116
6.6.5 Effectiveness of Prefetching Threads................................ 116

6.7 I/O Prefetching Library .. 116
6.8 POSIX Implementation and Porting to other Platforms 119
6.9 Experimental Results .. 119
6.10 Case Study: Matrix Multiplication.. 122
6.11 Related Work ... 123
6.12 Conclusion... 124

7 APPLICATIONS IN PEER-2-PEER STREAMING 125
7.1 Introduction... 125
7.2 System design .. 127
7.3 PPPC System Overview .. 129

7.3.1 Data flow in the PPPC system ... 130
7.3.2 Detailed description of the DServer, CServer and theirs

components .. 130
7.3.2.1 Distributing server (DServer) 130
7.3.2.2 Coordinating Server (CServer) 131

7.3.3 Viewing a stream with PPPC - life cycle 131
7.3.4 Maintaining a Certain Level of QoS 132

7.4 Avoiding Flat Trees, Distress and Guaranteeing Certain Level of
QoS ... 132

7.5 Bad Parents & Punishments... 133
7.5.1 Bad Parent Rehabilitation ... 134
7.5.2 Distress Logic: Marking of Bad Parents............................ 134

7.5.2.1 Entering into a distress state 135
7.5.3 Bad Client ... 135

7.6 The algorithm .. 135
7.6.1 The structure of the Internet - from a Peer–2–Peer Streamer

Perspective ... 135
7.6.2 Minimum Spanning Trees of Clients 136

7.7 Related systems.. 137
7.8 Experimental results ... 138

7.8.1 Internet Radio Streaming.. 138
7.8.2 Video streaming .. 139
7.8.3 Simulated results ... 140

7.9 Conclusion and Future work ... 145

8 FUTURE WORK .. 146
8.1 Job control System for EGI... 146
8.2 Creating an Efficient Infrastructure as a Service Environment 146
8.3 Bridging Grid Platform as a service and Infrastructure as a Service147
8.4 Optimizing memcached .. 147

9 CONCLUSION .. 149

YHTEENVETO (FINNISH SUMMARY) ... 151

REFERENCES.. 152

APPENDIX 1 TRUST COMPUTING ... 164
1.1 Foundations... 164
1.2 Digital Rights Management and Copyright Protection 165
1.3 Trusted computing – When trusted hardware is available............. 165

1.3.1 CPUID in Intel processors .. 165
1.3.2 TCG and TPM ... 166
1.3.3 Market Penetration of Trusted Computing Environment ... 166

1.4 Trusted Computing – When The Trusted Component is Unavail-
able ... 166

1.5 Trusted Computing Concepts in our Systems 167

APPENDIX 2 CRYPTOGRAPHIC FOUNDATION 168
2.1 Encryption ... 168
2.2 American Encryption Standard (AES) .. 168
2.3 Identification Schemes .. 169
2.4 Key Exchange Techniques ... 170

APPENDIX 3 QEMU AND KVM .. 172
3.1 QEMU – internal design.. 172

3.1.1 QEMU and storage devices... 172
3.1.2 QEMU – Tiny Code Generator (TCG) 173
3.1.3 Serializing guests... 173

3.2 KVM ... 173
3.3 Using KVM and QEMU technologies in our systems 174

3.3.1 Guest serializations for VM migration 174

APPENDIX 4 LLVM - LOW LEVEL VIRTUAL MACHINE........................ 175
4.1 Motivation ... 175
4.2 System Design.. 175
4.3 Intermediate Representation.. 176
4.4 Compiler ... 176

4.4.1 GCC front-end... 176
4.4.2 Clang front-end ... 177
4.4.3 Just-in-time Compiler optimization 177

4.5 Code Generation .. 178
4.6 Virtual Machine Environment.. 178
4.7 Other tools ... 178
4.8 How LLVM is being used in our systems 178

4.8.1 LLVM-Prefetch .. 178
4.8.2 Truly-Protect ... 179

APPENDIX 5 LINUX BLOCK I/O LAYER ... 180

5.1 The Structure of the Block I/O Queue... 180
5.2 Typical Block Layer Use Scenario ... 181
5.3 Services the Block Layer Provides .. 182
5.4 The Block Layer Interface to Disk Drives 183
5.5 The I/O Scheduler (Elevator)... 185
5.6 File List ... 187
5.7 Data structure .. 188
5.8 Block I/O Submission ... 189
5.9 Get Request ... 194

5.9.1 Queue Congestion Avoidance and Batching Context 195
5.9.2 Congestion and starvation avoidance 195
5.9.3 Exception to Congestion Avoidance................................. 196

5.10 Add Request .. 196
5.11 Plug/Unplug Mechanism.. 201
5.12 Fetch Request ... 208
5.13 Barrier ... 208
5.14 Put Request.. 211
5.15 Complete Request .. 215
5.16 Linux Block Layer Usage In Our Systems.................................... 218

APPENDIX 6 LGUEST AND VIRT I/O ... 223
6.1 Lguest ... 223
6.2 The motivation behind Virt I/O and Lguest 223
6.3 Running Lguest.. 224
6.4 Lguest high level design and file list ... 224

6.4.1 The Guest Code ... 224
6.4.2 The Launcher Code.. 224
6.4.3 The Switcher Code... 225
6.4.4 The Host Module: lg.ko.. 225

6.5 The Guest .. 225
6.5.1 Guest – Host Communication ... 228
6.5.2 Interrupt Related Operations .. 229
6.5.3 CPU Instructions for interrupt handling 231
6.5.4 Page Table Operations.. 235
6.5.5 Time Related Operations .. 238
6.5.6 Patching ... 240

6.6 Drivers .. 242
6.6.1 Virt I/O .. 242
6.6.2 Adding a Device on Lguest... 245
6.6.3 Device configuration .. 248
6.6.4 Virtqueues .. 249
6.6.5 Virt I/O summary ... 250

6.7 The Launcher ... 250
6.7.1 Setting and Running the guest Using "/dev/lguest" 251
6.7.2 The Launcher Code.. 255

6.8 The Host.. 256
6.8.1 Initialization.. 257
6.8.2 Chapter:Lguest:Section:IDT .. 259
6.8.3 Running the Guest ... 259
6.8.4 Hypercalls .. 262
6.8.5 Interrupts and Traps .. 263
6.8.6 The Page Tables ... 266
6.8.7 Segments & The Global Descriptor Table 268

6.9 The Switcher .. 269
6.10 The Switcher Pages ... 269

6.10.1 The Host to Guest Switch ... 272
6.10.2 The Guest to Host Switch ... 275
6.10.3 The Guest’s IDT Gates.. 278

6.11 Lguest technologies in our system.. 278
6.11.1 Lguest as a kernel development platform......................... 279
6.11.2 Lguest serialization.. 279

APPENDIX 7 PPPC IMPLEMENTATION DETAILS 280
7.1 PPPC System Overview .. 280

7.1.1 Detailed description of the DServer, CServer and theirs
components .. 280

7.2 Distress Logic... 280
7.2.0.1 Actions taken on Distress state 280
7.2.0.2 State machines on distress state 281
7.2.0.3 Leaving Distress state.. 282

7.3 The algorithm .. 282
7.3.1 Multi thredaed algorithm structure 282

ACRONYMS ... 285

1 INTRODUCTION

Virtualization is an innovative method for system development that has attracted
a lot of buzz in recent years. In this dissertation, we present five challenging prob-
lems that are hard to solve without utilizing virtualization methodologies. These
problems which originated from trusted computing, high availability, kernel de-
velopment, efficient computation and peer-2-peer streaming, have very little in
common. However, these problems share common core infrastructure in their
proposed solutions. While all the solutions make use of virtualization, the exact
virtualization method varies from solution to solution.

We introduce five systems, which are classified as system, process, storage
and network virtualization, that solve these problems. In each case, virtualization
either increase the solution capabilities or reduced the development cycle time.

While we describe the virtualization approach that is being used for each
problem, the developed methodologies can be employed to tackle other problems
as well.

1.1 Virtualization Methods for System Design

Virtualization provides an abstraction layer or an indirection layer between the
running software and the hardware.

Virtualization abstraction provides the ability to insert operations that in
regular computing environment (without virtualization) are almost impossible
to perform.

We demonstrate how the power of indirection provided by the virtualiza-
tion layer is critical in providing constructive solution to each system that is de-
scribed in this dissertation.

20

1.2 The Main Problems that are Solved

In this section, we present the problems, The reasons why the problems are im-
portant and motivates their solution and finally the proposed solutions are briefly
described.

1.2.1 System 1: LgDb: Kernel Profiling and Code Coverage

User space developers are able to use many tools to profile and analyze their
code. Unfortunately, user space tools do not work on kernel development leaving
kernel developers without such gadgetry.

LgDb, described in chapter 3, is a tool that is based on Lguest. It allows ker-
nel developers to profile their code and use code coloring techniques for kernel
modules. System virtualization provides the ability to develop such a tool.

Lguest, which is the underlying technology that we used, is described in
Appendix 6.

1.2.2 System 2: Disaster Recovery Protection Using Asynchronous Mirroring
of Block Devices and Virtual Machines

Disaster recovery protection addresses the problem of losing as little data as pos-
sible while being capable of recovering the data as soon as possible in case of
disaster. Disaster can be defined as a wide variety of events ranging from server
thefts to fire or flood. In all cases of disaster, we can observe unexpected, perma-
nent or temporal lack of access to the servers in the primary site.

There are multiple "off-the-shelf" solutions to achieve disaster recovery for
the enterprise market. Such solutions include VMWare VMotion[Gle11] or Re-
mus for Xen[CLM+08], but there is no solution for disaster recovery protection
for home users or small businesses.

We developed the AMirror system discussed in chapter 4 that provides high
availability environment for block devices and virtual machines.

The system is unique compared to "off-the-shelf" systems because it can
work on a relatively low upload link and can provide reliability to home users
and small businesses.

AMirror focuses on the use of storage virtualization and system virtualiza-
tion for high availability and disaster recovery protection.

AMirror is implemented in the Linux block device layer discussed in Ap-
pendix 5. It is capable of replicating virtual machines running on Lguest and
QEMU/KVM. Lguest and QEMU/KVM are described in Appendixes 6 and 3.

1.2.3 System 3: Truly-Protect: Using Process VM for Trusted Computing

The "Trusted Computing" concept means using trusted hardware for providing
conditional access to a software system or digital media. Unfortunately, there are
no physical trusted computing environments available today, especially in home

21

user environments.
Chapter 5 describes the Truly-Protect system. Truly-Protect is a framework

that incorporates a process virtual machine that masks the running software in-
ternals from a malicious user.

Truly-Protect can serve as a framework for a conditional access or digital
rights management system. The use of a process virtual machine as a framework
for trusted computing is not new but Truly-Protect is unique compared to other
industrial products as it relies on cryptographic foundation instead of relying on
obscurity.

Truly-Protect relies on the cryptographic measures and assumptions about
the system itself, specifically it assumes that part of the CPU internal state (regis-
ters’ content) is hidden from the user. These assumptions allow Truly-Protect to
act as a VM-based conditional access/trusted computing environment.

Providing a trusted computing environment without virtual machine or
hardware support is impossible. Truly-protect attempts to bridge that gap. It
demonstrates the power of process virtual machines.

Appendix 1 describes the current status of trusted computing. Appendix 2
briefly describes the cryptographic methods and protocols used by Truly-Protect.

1.2.4 System 4: LLVM-prefetch: Prefetching and Pre-execution

Modern computational environments tend to have I/O-bound and CPU-bound
segments in the code. This observation leads developers to attempt to run in
parallel I/O-bound and CPU-bound code segments.

Unfortunately, there is no tool that can automatically merge CPU-bound
and I/O-bound segments. While programmers can usually do the job manually
it is impossible to redevelop and redesign all the programs for this goal. This fact
motivates the development of LLVM-prefetch.

In LLVM-prefetch, we use the power of the VM environment to construct
a pre-execution thread for data prefetching. Developing similar systems with-
out a VM requires a programmer time investment for manually creation of the
pre-execution threads. The use of virtual machines enables us to automate this
process.

LLVM-prefetch is another example that demonstrates the power of the pro-
cess virtual machine.

LLVM-prefetch is described in chapter 6. The Low Level Virtual Machine
(LLVM), which is the process virtual machine that is used as underlying infras-
tructure, is described in chapter 4.

1.2.5 System 5: Peer-2-Peer Streaming

The high cost of bandwidth and the lack of broadcast up link capacity is a major
problem faced by Internet broadcasters. Furthermore, the high cost of bandwidth
is the main reason that we do not see high quality live TV broadcast wide spread
on the Internet.

22

Peer-2-Peer streaming is a method to harness the power of cloud computing
for media streaming. In peer-2-peer streaming, the broadcasting servers stream
to selected number of top tier peers who deliver the stream to other peers. The
process repeats itself until massive number of peers receive the stream.

The Peer-2-Peer streaming system discussed in Chapter 7 is an excellent ex-
ample of using cloud computing and network virtualization for streaming. Ap-
pendix 7 describes low level design details and state machines of the peer-2-peer
streaming system.

The system design also maintains trusted computing and protection of dig-
ital rights for the broadcaster. Trusted computing is described in Appendix 1.

Chapter 8 describes the future work and systems that are currently under
development but are not ready yet for publication exposure, with some initial
results.

1.3 The Underlying Concepts

We provide a detailed description for some of the underlying concepts and tech-
nologies that are used in the individual systems. With the exception of the virtu-
alization chapter, the underlying concepts are described in the appendixes.

1.3.1 Virtualization

Virtualization is the common methodology for all the systems that we developed.
Chapter 2 discusses the different virtualization environments types and the dif-
ferent virtual machines. We also discuss how process and system virtual ma-
chines are implemented and survey common implementations.

1.3.2 Trusted Computing

Trusted computing is a concept that originated from information security. It
applies to scenarios where a content (software, media) owner wants to ensure
proper use of the contents. Truly-Protect provides a trusted computing environ-
ment based on process virtual machine.

Trusted computing is discussed in Appendix 1.

1.3.3 Cryptography

Truly-Protect relies on several cryptographic algorithms, which are described in
detail in Appendix 2.

1.3.4 Linux Block Layer

Linux Block Layer is the common interface for all disk drives under Linux. It is
described in detail in chapter 5. The Linux Block Layer is the underlying technol-

23

ogy for the AMirror system discussed in Appendix 4

1.3.5 LLVM

LLVM is an innovative compiler and run-time environment. The run-time envi-
ronment is based on a low-level virtual machine, a process virtual machine that
executes at near assembler level and provides plenty of compile-time, link-time
and run-time performance improvements.

LLVM is described in Appendix 4.

1.3.6 Lguest and Virt I/O

Lguest is a semi-educational Linux-on-Linux hypervisor developed initially in
[Rus] as a test bed for Virt I/O.

Virt I/O is the abstract interface for driver development under Linux.

We used Lguest as the underlying technology for our kernel development
tool set (LgDb). We also implemented our asynchronous mirroring for virtual
machines for Lguest. Lguest is described in Appendix 6.

1.3.7 KVM and QEMU

KVM [Kiv07] is a fully fledged, industrial grade virtualization environment that
resides in the Linux kernel.

QEMU [Bel05] is an emulation environment for virtual machines. Its latest
versions are closely coupled with KVM.

KVM and QEMU were used in our AMirror asynchronous mirror for repli-
cation of virtual machines across networks.

KVM and QEMU are described in Appendix 3.

1.4 Dissertation Structure

Chapter 2 provides a detailed introduction to virtualization technology as well
as virtual machines. The rest of the dissertation describes the innovative systems
1-5 that we developed. The known underlying technologies, which are required
by systems 1-5, are organized and described in the Appendixes.

Figure 1 presents the flow and functional connections between the various
chapters in the dissertation.

24

FIGURE 1 The flow and the functional connections among the chapters in the disserta-
tion

1.5 Contributions and papers from the dissertation

The technologies and systems, which were described in this dissertation, have
been submitted to peer-reviewed conferences. The personal contributions to the
systems, conferences and journals in which they were published are described
below.

LgDb The initial paper was published in SCS SPECTS 2011 [AKZ11a] and a
poster in IBM Systor 2011. Our second paper in the field which describes
LgDb 2.0 is in a final preparation stage. In LgDb 2.0 we have removed the
dependency on code injections and used a kernel debugger connected over
virtual serial port instead of hypervisor. My contributions include the con-
cept and the design of the system, debugging critical parts of the software,
authoring of the paper and its presentation in the SPECTS and Systor con-
ferences. Participation in the design of LgDb 2.0

Asynchronous mirror published as [AMZK11] in IEEE NAS 2011 with a Poster

25

demonstrating the work appearing in IBM Systor 2011. My contributions
included the system concept and internal design, debugging of critical parts
and authoring of the paper and its presentation in IBM Systor 2011.

Truly-Protect The initial paper was published in IEEE NSS [AKZ11b] and a sec-
ond paper presents additional system developments that was submitted to
IEEE System journal[AKZ12]. My contributions include the system concept
and design, debugging of critical parts, the GPGPU-enhancement for Truly
protect, authoring the paper and the presentation of Truly Protect in the
NSS conference.

LLVM-Prefetch This system concept was suggested by Michael Kiperberg, an
M.Sc student under my supervision. I participated in the system design and
development as well as in the system benchmarking. design. I authored the
system description document. This system has not been published yet.

PPPC The initial version of the system was presented in CAO 2011 as [ARZ11]
and a detailed system description will appear in P. Neittaanmäki’s 60th ju-
bilee publication[ARZ12]. My contributions include the system concept,
the system design, participating in the development of the algorithm, the
development of the system software and authoring of the papers.

2 VIRTUALIZATION

The term "virtualization" refers to the usage of a virtual rather than actual (phys-
ical) computer resource.

In this chapter, we will describe various forms of virtualization, virtualiza-
tion concepts, taxonomy of virtual machine types and modern implementations.

We differentiate between system virtual machines such as VMWare ESX
server [VMW] or Lguest [Rus] from process virtual machines such as the Java Vir-
tual Machine [LY99] or LLVM [Lat11]. Virtualization aspects in modern operating
system such as storage virtualization and network virtualization or virtualization
in clouds are described here as well.

2.1 Introduction to Virtualization

To begin our discussion on virtual machines, we will begin with a definition of
physical (non-virtual) machines. For a process, a machine is the physical hard-
ware it runs on coupled with operating systems with all the resources it provides.
For operating system (OS) components, we must distinguish between physical
resources such as main system memory or file systems on disk drives and virtual
resources. OS provides running processes with virtual resources such as virtual
memory or the virtual file systems. At the process level, the virtual memory or
files and paths on the virtual file system are as close as we can get to the physical
resources. Furthermore, normally a process has no access to "none-virtual" file
systems or memory.

Furthermore, we can distinguish between physical hardware that can be
located on physical devices and virtual hardware that runs on a hypervisor.

Of course, some hardware components may themselves be virtual such as
a virtual tape library which is a typical disk based system that emulates a tape
drive or a solid state disk posing as a mechanical magnetic disk drive with heads
and sectors.

In this dissertation, we will use the practical definition where a virtual ma-

27

chine is an environment that is used to execute a particular system (either a user
process or a complete system) in which at least some components are used via an
indirect abstraction layer.

The virtual machine will execute the system like the normal system it was
designed for. The virtual machine is implemented as a combination of a real ma-
chine with physical resources and virtualizing software. The virtual machine may
have resources that differs from the real machine. For example, a different num-
ber of disk drives, memory or processors. These processors may even execute a
different instruction set than the instruction set of the real machine. This is com-
mon in a emulator as well as in process virtual machines executing for example
Java byte-code instead of the machine instruction set.

The virtual machine does not guarantee and usually cannot provide identi-
cal performance to a physical system. Virtualization does not pose requirements
on the performance but merely on the ability to run software.

Since the virtualization environment is different for different types of sys-
tems such as process environment and system environment, there are many types
of virtual environment systems. Common virtualization environments include:

1. System virtual machine

(a) Emulation;
(b) Hardware virtualization;
(c) Desktop virtualization;
(d) Software virtualization.

2. Process virtual machine

(a) High level virtual machine;
(b) Low level virtual machine;
(c) Stack based virtual machine;
(d) Register based virtual machine.

3. Virtualization in grid and clouds

(a) Infrastructure as a service;
(b) Platform as a service;
(c) Software as a service.

4. Virtualization of hardware in OS components

(a) Memory virtualization;
(b) Storage virtualization;
(c) Data virtualization;
(d) Network virtualization.

A system virtual machine emulates a set of hardware instructions that allows
users to run their own operating systems and processes on a virtual environment.
A system virtual machine software is called hypervisor or Virtual Machine Moni-
tor (VMM). We must distinguish between Type-1 hypervisors, which act as oper-
ating systems and run directly on the hardware, and Type-2 hypervisors, which

28

FIGURE 2 Type I and Type II hypervisors

run as user processes under the host operating system. Industrial Type-1 hyper-
visors include VMWare ESX server, IBM VM operating system for mainframe and
Sony Cell level-1 OS on the PlayStation 3. Industrial Type-2 hypervisors include
VMWare Workstation, VirtualBox, KVM, etc.

A special case for type-2 hypervisors are the emulators. An emulator is
hardware and/or software that duplicates (or emulates) the functions of one com-
puter system on another computer system so that the behavior of the second sys-
tem is closely resemble the behavior of the first system. Emulators also run as
user processes. Bochs [DM08] and the original versions of QEMU [Bel05] are
examples of open source emulators.

Section 2.2 describes system virtual machines in greater detail and section
2.3.1 describes emulators. Appendix 6 describes the Lguest hypervisor, which
can serve as a reference for building hypervisors from scratch. Appendix 3 de-
scribes the KVM and QEMU hypervisors that are used in AMirror, which is our
asynchronous replication system and described in chapter 4. Type I and Type II
hypervisors are illustrated in Fig. 2.

As opposed to system virtual machines, in process virtual machines, the
virtualization software is placed on top of a running operating system and hard-
ware. It provides a complete execution environment for a process instead of an
operating system. The process virtual machine is different from standard library
or interpreter as it emulates both the user function calls as well as the operating
system interface such as system calls. A process virtual machine is illustrated in
Fig. 3.

The operating system itself provides a mesh of virtual interfaces to the hard-
ware ranging from virtual memory to virtual file systems. Most of these compo-

29

FIGURE 3 Process Virtualization

30

nents are provided for similar reasons we use process and system virtualization:
For example the virtual file system(VFS) provides an indirection layer between
disk file systems and the operating systems. The VFS allows multiple file sys-
tems support to be provided by the OS and merged transparently by the virtual
file system. Virtual memory allows each process to have its own independent
memory space. Virtual memory allows the user to use more memory then their
machine have by using swap space.

Virtual memory and file systems belong to the operating system scope. The
reader is referred to [Lov10] for a good reference on the virtual memory imple-
mentation in Linux and [RWS05] for a good reference on the virtual file system
on UNIX.

Two other parts of the operating system virtualization capabilities that are
not as well known are storage virtualization and network virtualization. Storage
virtualization is often implemented by the operating system and other storage
devices. When Storage virtualization is implemented by the operating system
using a component called Logical Volume Management (LVM). The LVM pro-
vides a logical method for managing space on mass-storage devices. "Logical"
here means managing the storage logically where user code does not access the
physical storage directly and therefore, the user process is not restricted by it but
instead the storage is accessed through an abstraction layer. Using the LVM ab-
straction layer allows the system administrator to define logical (virtual) volumes
instead of physical partition), and thus perform logical operations to control each
of them by changing its size or location, group a few logical volumes under the
same name for managing them together, provide features such as RAID or dedu-
plication, use cloud storage and more. The name "LVM" was first published by
HP-UX OS and it is interpreted as two separate concepts:

1. Storage managing administrative unit.
2. OS component that practically manages the storage.

Storage virtualization is discussed in detail in section 2.5. AMirror, which is de-
scribed in chapter 4, is a logical volume manager that is focused on replication.

Network virtualization is a process that combines hardware and software
network resources and network functionality into a single software-based ad-
ministrative entity which is a virtual network. Network virtualization ranges
from the simple acquirement of more than one IP using a single network adapter
to virtual private networks and creation of shared network interface for a cluster
for load balancing and high availability. Section 2.6 describes in greater detail
several network virtualization use cases.

Cloud computing is the next phase in the evolution of the Internet. The
"cloud" in cloud computing provides the user with everything. As opposed to
the standard Internet module in which the Internet provides the user with con-
tent that is saved and processed on the user machine in a cloud computing envi-
ronment, the "cloud" provides the user with infrastructure, computation power,
storage, software and anything else that the user may require.

Since the user needs to receive the power of the cloud in a medium that

31

the user can use, cloud computing usually provides virtual resource. Thus, vir-
tualization goes hand in hand with cloud computing. We use virtualization to
provide an abstraction layer for services provided by the cloud. Virtualization in
clouds is described in section 2.7. The PPPC system, which is described in chapter
7, is an example of a cloud based system.

2.2 System Virtual Machines

System virtual machines provide a complete system environment in which mul-
tiple operating systems, possibly belonging to multiple users, can coexist.

These virtual machines were originally developed during the 1960s and
early 1970s, and those machines are the origin of the term virtual machine widely
used today. Around that time, the requirement for building system virtual ma-
chines were set by Popek and Goldberg in [PG74].

By using system virtual machines, a single host hardware platform can sup-
port multiple guest OS environments simultaneously. At the time they were
first developed, mainframe computer systems were very large and expensive and
computers were almost always shared among a large number of users.

Different groups of users sometimes wanted different operating systems to
run on the shared hardware. Virtual machines allowed them to do so.

Alternatively, a multiplicity of single-user operating systems allowed a con-
venient way of implementing time-sharing among many users. As hardware
became much cheaper and more accessible, many users deserted the traditional
mainframe environment for workstations and desktops, and interest in these clas-
sic System Virtual Machines declined and faded.

Today, however, System Virtual Machines are enjoying renewed popularity.
Modern-day motivation for using system Virtual machines are related to the mo-
tives of old fashioned System Virtual Machines The large, expensive mainframe
systems of the past are comparable to servers in server farms.

While the cost of hardware has greatly decreased, the cost of cooling, power
(electricity) and man power for monitoring the servers has greatly increased.

Thus servers hosted in server farms are expensive and these servers may
be shared by a number of users or user groups. Perhaps the most important
feature of today’s System Virtual Machines is that they provide a secure way of
partitioning major software systems that run concurrently on the same hardware
platform.

Software running on one guest system is isolated from software running on
other guest systems.

Furthermore, if security on one guest system is compromised or if the guest
OS suffers a failure, the software running on other guest systems is not affected.
Thus, multiple users can run on a virtual environment on one server and each
user applications will run autonomously, unaffected by other users. Naturally,
running multiple users in a virtual environment on a single server allows mul-

32

FIGURE 4 Multiple operating systems running on virtual environments on a single sys-
tem

tiple customers to share the cost thus greatly reducing the maintenance cost of
servers in a server farm.

The ability to support different operating systems simultaneously, e.g., Win-
dows and Linux as illustrated in Fig. 4, is another reason some users find VM
appealing.

Other users use system virtual machines for additional purposes including
software development, sand boxing, etc.

2.3 Implementations of System Virtual Machines

2.3.1 Whole System Virtual machines – Emulators

In the conventional System Virtual Machines described earlier, all related sys-
tem software (both guest and host) and application software use the same ISA
as the underlying hardware. In some important cases, the ISA for the host and
guest systems is different. For example, the Apple PowerPC-based systems and
Windows PCs use different ISAs and even different CPU architectures. For ex-
ample, Power PC uses IBM Power chips which is a 64-bit RISC processor while
PCs use Intel 32bit x86 CISC instruction set. A modern example involves embed-
ded system developers such as iPhone developers that emulate the iPhone ARM
processor (32bit RISC processor) on modern Intel x86_64 processors that are 64bit

33

FIGURE 5 iPhone development using device and simulator

CISC processors.
Because software systems are so coupled with the hardware systems with-

out some emulation type, it is necessary to procure another system to run soft-
ware for both types of hardware. Running multiple systems will complicate the
usage and the development which act as a catalyst for an emulation approach to
virtualization.

These virtualization solutions are called called whole-system Virtual machines
because they essentially virtualize all software and hardware components. Be-
cause ISAs are different, both applications and OS code require emulation, e.g.,
via binary translation. For whole-system Virtual machines, the most common
implementation method is to place the VMM and guest software on top of a con-
ventional host OS running on the hardware.

An example of this type of virtual machine is the Apple iPhone simulator
that runs on top of the standard Apple Mac OS X that allows for the development
and the execution of iPhone applications. Figure 5 illustrates the iPhone simula-
tor which is a whole-system VM that is built on top of a conventional operating
system (OS X) with its own OS and application programs.

In the iPhone simulator, the VM software is executed as an application pro-
gram supported by the host OS and uses no system ISA operations. It is as if the
VM software, the guest OS and guest application(s) are one very large application
implemented on Mac OS X.

To implement a VM system of this type, the VM software must emulate the
entire hardware environment. It must control the emulation of all the instruc-
tions, and it must convert the ISA guest system operations to equivalent OS calls

34

made to the host OS. Even if binary translation is used, it is tightly constrained be-
cause translated code often cannot take advantage of the underlying ISA system
features such as virtual memory management and trap handling. In addition,
problems can arise if the properties of hardware resources are significantly differ-
ent in the host and in the guest. Solving these mismatches is a major challenge in
the implementation of the whole-system VMs.

2.3.2 Hardware Virtualization

Hardware virtualization refers to the creation of a virtual machine that acts like
a real computer with an operating system. Software executed on these virtual
machines is separated from the underlying hardware resources. For example, a
computer that is running Microsoft Windows may host a virtual machine that
looks like a computer with an Ubuntu Linux operating system. Subsequently,
Ubuntu-based software can be run on that virtual machine.

Hardware virtualization hides the physical characteristics of a computing
platform from users, instead showing another abstract computing platform.

The software that controls the virtualization were originally called to be
called a "control program", but nowadays the terms "hypervisor" or "virtual ma-
chine monitor" are preferred. (Since the OS is called the supervisor, the virtual-
ization software which sits "above" the OS is the hypervisor.)

In hardware virtualization, the term host machine refers to the actual ma-
chine on which the virtualization takes place. The term guest machine, refers to
the virtual machine.

Hardware virtualization is optimized with the inclusion of circuits in the
CPU and controller chips to enhance the running of multiple operating systems
(multiple virtual machines). Hardware virtualization support refers to the in-
clusion of instructions for saving and restoring the CPU state upon transitions
between the guest OS and the hypervisor.

Hardware virtualization support has been available in IBM mainframes since
the 70’s as well as on Sun high end servers and other machines. Hardware virtual-
ization became popular when Intel first included Intel Virtualization technology
in 2004. AMD followed suit in 2006 with AMD virtualization.

2.3.3 Desktop Virtualization

Desktop virtualization is the concept in which the logical desktop is separated
from the physical machine. One form of desktop virtualization, called virtual
desktop infrastructure (VDI), can be thought of as a more advanced form of hard-
ware virtualization: instead of direct interactions with a host computer via a
keyboard, mouse and monitor connected to it, the user interacts with the host
computer over a network connection (such as LAN, wireless LAN or even the
Internet) using another desktop computer or a mobile device. In addition, the
host computer in this scenario becomes a server computer capable of hosting
multiple virtual machines at the same time for multiple users. Another form,

35

session virtualization, allows multiple users to connect and log into a shared but
powerful computer over the network and use it simultaneously. Each is given a
desktop and a personal folder in which they store their files. Thin clients, which
are seen in desktop virtualization environments, are simple computers that are
designed exclusively to connect to the network and display the virtual desktop
system. Originally, thin clients lacked significant storage space, RAM and pro-
cessing power, but nowadays thin clients do significant processing and even GPU
processing and are not significantly inferior to a regular desktop. Desktop virtu-
alization, sometimes called client virtualization, conceptually, separates between
a personal computer desktop environment from a physical machine using the
client-server computing model. VDI is the server computing model which en-
ables desktop virtualization, encompassing the hardware and software systems
required to support the virtualized environment. The term VDI was coined by
the company VMWare and it is now an accepted term in the industry adopted by
Microsoft, Citrix and other companies.

Many enterprise-level implementations of this technology store the result-
ing "virtualized" desktop on a remote central server instead of on the local stor-
age of a remote client. Thus, when users work from their local machine, all the
programs, applications, processes, and data used are kept on the server and run
centrally. This allows users to run an operating system and execute applications
from a smart-phone or thin client which can exceed the user hardware’s abilities.

Some virtualization platforms allow the user to simultaneously run mul-
tiple virtual machines on local hardware such as a laptop, by using hypervi-
sor technology. Virtual machine images are created and maintained on a cen-
tral server and changes to the desktop VMs are propagated to all user machines
through the network, thus combining both the advantages of portability afforded
by local hypervisor execution and of central image management.

Running virtual machines locally requires modern thin-clients that posses
more powerful hardware that are capable of running the local VM images such
as a personal computer or notebook computer and thus it is not as portable as the
pure client-server model. This model can also be implemented without the server
component, allowing smaller organizations and individuals to take advantage of
the flexibility of multiple desktop VMs on a single hardware platform without
additional network and server resources.

Figure 6 demonstrates a desktop virtualization environment.

2.3.4 Software virtualization

Software virtualization or application virtualization is an umbrella term that de-
scribes software technologies that improve portability, manageability and com-
patibility for applications by encapsulating them in containers managed by the
virtualization abstraction layer instead of the underlying operating system on
which they are executed. A fully virtualized application is not installed on the
client system hard drive although it is still executed as if it was. During runtime,
the application operates as if it was directly interfacing with the original operat-

36

FIGURE 6 Desktop Virtualization

37

ing system and all the resources managed by it. However, the application is not
technically installed on the system. In this context, the term "virtualization" refers
to the software being encapsulated in an abstraction layer (application), which is
quite different to its meaning in hardware virtualization, where it refers to the
physical hardware being virtualized.

The virtualization application is hardly used in modern operating systems
such as Microsoft Windows and Linux. For example, INI file mappings were
introduced with Windows NT to virtualize, into the registry, the legacy INI files
of applications originally written for Windows 3.1. Similarly, Windows 7 and
Vista implement a system that applies limited file and registry virtualization so
that legacy applications, which attempt to save user data in a read-only system
location that was write able by anyone in early Windows, can still work [MR08].

Full application virtualization requires a virtualization layer. Application
virtualization layers replace part of the runtime environment normally provided
by the operating system. The layer intercepts system calls, for example file and
registry operations in Microsoft Windows, of the virtualized applications and
transparently redirects them to a virtualized location, often a single file. The
application never knows that it’s accessing a virtual resource instead of a phys-
ical one. Since the application is now working with one file instead of many
files and registry entries spread throughout the system, it becomes easy to run
the application on a different computer and previously incompatible applica-
tions can be run side-by-side. Examples of this technology for the Windows plat-
form are BoxedApp, Cameyo, Ceedo, Evalaze, InstallFree, Citrix XenApp, Nov-
ell ZENworks Application Virtualization, Endeavors Technologies Application
Jukebox, Microsoft Application Virtualization, Software Virtualization Solution,
Spoon (former Xenocode), VMware ThinApp and InstallAware Virtualization.

The Microsoft application virtualization environment is demonstrated in
figure 7.

Modern operating systems attempt to keep programs isolated from each
other. If one program crashes, the remaining programs generally keep running.
However, bugs in the operating system or applications can cause the entire sys-
tem to come to a screeching halt or, at the very least, impede other operations.
This is a major reason why application virtualization, running each application
in a safe sandbox, has become desirable.

2.3.5 The Use of System Virtual Machines in Our Work

LgDb [AKZ11a] described in chapter 3 uses the power of system virtual machine
as a platform for debugging and proofing Linux kernel modules.

In AMirror system [AMZK11] described in chapter 4 we use the power of
system virtualization to replicate a running virtual machine allowing near instan-
taneous recovery in case of system failure.

38

FIGURE 7 Microsoft Application Virtualization

391.2 Virtual Machine Basics 9 11

Figure 1.6 A Process Virtual Machine. Virtualizing software translates a set of OS and user-level instructions
composing one platform to another, forming a process virtual machine capable of executing programs
developed for a different OS and a different ISA.

real machine being emulated by the virtual machine, is referred to as the native
machine. The name given to the virtualizing software depends on the type of
virtual machine being implemented. In process VMs, virtualizing software is
often referred to as the runtime, which is short for "runtime software. ''2 The
runtime is created to support a guest process and runs on top of an operating
system. The VM supports the guest process as long as the guest process executes
and terminates support when the guest process terminates.

In contrast, a system virtual machine provides a complete system environ-
ment. This environment can support an operating system along with its poten-
tially many user processes. It provides a guest operating system with access to
underlying hardware resources, including networking, I/O, and, on the desk-
top, a display and graphical user interface. The VM supports the operating
system as long as the system environment is alive.

A system virtual machine is illustrated in Figure 1.7; virtualizing software is
placed between the underlying hardware machine and conventional software.
In this particular example, virtualizing software emulates the hardware ISA
so that conventional software "sees" a different ISA than the one supported
by hardware. In many system VMs the guest and host run the same ISA,
however. In system VMs, the virtualizing software is often referred to as the
virtual machine moni tor (VMM), a term coined when the VM concept was first
developed in the late 1960s.

2. Throughout this book, we will use the single-word form runtime as a noun to describe the
virtualizing runtime software in a process VM; run time (two words) will be used in the more
generic sense: the time during which a program is running.

FIGURE 8 Application virtual machine - OS and Application viewpoints

2.4 Process Virtual Machines

A process virtual machine, sometimes called an application virtual machine, runs
as a normal application inside an OS and supports a single process. It is created
when that process is started and destroyed when it exits.

Unlike a system virtual machine, which emulates a complete system on
which we launch an OS and run applications, a process virtual machine is deal-
ing with only one process at a time. It provides the process an ABI alternative to
the OS and Hardware ABI and is designed to run processes that use the virtual
ABI.

Figure 8 illustrates an application running in a native environment as the OS
perceives it (a running process) and as the application running on an application
virtualization environment perceives it (as an OS replacement).

Hardware independence can be achieved by running the process VM on
multiple platforms and running our own software using the VM ABI. Since we
use identical VM ABI across multiple platforms individual platform, API differ-
ences do not affect our application.

The process VM is an abstract computing machine. Like a real comput-
ing machine, it has an instruction set and manipulates various memory areas at
run time. This type of VM has become popular with the Java programming lan-
guage, which is implemented using the Java Virtual Machine (JVM).[LY99] Other
examples include the .NET Framework applications, which runs on a VM called
the Common Language Runtime (CLR)[Box02] and Google’s Android applica-
tions, which runs on a VM called Dalvik Virtual Machine (DVM). [Ehr10]. All the
above examples are "high level" virtual machines. By contrast "low level" virtual
machines also exist. "Low level" virtual machines are not aware of "high level"
programming language context terms such as classes and inheritance and instead
focus on portability and execution acceleration. LLVM which is the most popular
example of a Low level virtual machine is described in detail in appendix 4.

Figure 9 and figure 10 illustrate the popular CLR and Dalvik (Android) ap-
plication virtual machines respectively.

40

FIGURE 9 Common Language Runtime (CLR) Environment

FIGURE 10 Android (Dalvik) Environment

41

2.4.1 The Use of Process Virtual Machines in Our Work

Truly-protect[AKZ11b] is built on top of two "low-level" virtual machines. LLVM-
Prefetch(Described in chapter 6) is built on top of LLVM. Both LLVM-Prefetch
and Truly-Protect rely on the features of process virtual machines to operate in
the background in order to perform the task they were designed for.

2.5 Storage Virtualization

Storage virtualization is both a concept and term used within the realm of com-
puter science. Specifically, storage systems may use virtualization concepts as a
tool to enable better functionality and more advanced features within the storage
system. For example using Logical Volume Manager (LVM) allows the users to
treat multiple storage devices as a single logical entity without regard to the hi-
erarchy of physical media that may be involved or that may change. The LVM
enables the applications to read from and write to a single pool of storage rather
than individual disks, tapes and optical devices. Also called "file virtualization,"
it allows excess capacity on a server to be shared, and it can make migration from
one file server to another transparent to the applications.

Another commonly used feature of storage synchronization is information
life management. Storage replication allows the users to decide on which physi-
cal component (new/old) to record the data and how many copies to keep based
on the properties of the data.

When a file is moved off the hard disk, it is replaced with a small stub file
that indicates where the backup file is located.

2.5.1 The Use of Storage Virtualization in Our Work

The AMirror System[AMZK11] described in chapter 4 uses the power of storage
virtualization for disaster recovery purposes.

2.6 Network Virtualization

There are several cases were it is preferable to use virtual rather then physical
network resources. One of the most widely used example is IP-based load bal-
ancing such as LVS, The Linux Virtual Server[ZZ03]. Linux Virtual Server (LVS)
is an advanced load balancing solution for Linux systems. LVS is an open source
project started by Wensong Zhang in May 1998. The mission of the project is to
build a high-performance and highly available server for Linux using clustering
technology. The LVS cluster is industry grade proven solution that provides good
scalability, reliability and serviceability.

In LVS scenario multiple computers, all running Linux, are active in a clus-

42

FIGURE 11 Using VIP via LVS.

ter environment. The owner of the cluster would likely use the cluster as a single
computer were the load is shared between the computers in the cluster. Further-
more, should one or more of the computers in the cluster stop functioning, while
other remain operational there may be a drop in the cluster capacity to serve but
the cluster should still be able to serve all clients.

In the case the cluster owner uses LVS, a new VIP, Virtual IP is created for
the cluster. The LVS software is a load balancing request sent to the Virtual IP
across all active servers in the LVS cluster via the IPVS service (IP Virtual Server).
IPVS is major part of LVS software. IPVS is implemented inside the Linux Kernel.

Using VIP for clustering via LVS is illustrated in figure 11.
Another common use for network virtualization is creating VPNs (Virtual

Private Network). In this case, we would like to share resources and servers with
remote users without the burden of security authentication.

By creating a secure tunnel between the local site and remote site, we can
create Virtual Private Network. In the VPN environment remote computers look
like local computers to our security software. The VPN environment allows ac-

43

FIGURE 12 Virtual Private Network (VPN).

cess to file and resource sharing with remote computers. VPN is illustrated in
figure 12.

In each of the cases described above as well as in other cases of virtual pri-
vate network. We use an abstract interface to simulate a network component and
perform additional functions for the user.

2.6.1 Use of Network Virtualization in our solutions

PPPC, The Peer-2-Peer streaming system that we have developed uses virtual
multicast IP to send the stream transparently throughout the network. The virtual
multicast provide the abstraction layer for application layer allowing us to hide
the actual peer-2-peer streaming.

2.7 Cloud Virtualization

Cloud computing refers to resources (and shared resources), software, and com-
putation power that are provided to computers and other devices as a utility over
a The Internet.

Cloud computing is often modeled after a utility network such as a power
network, sewage network and other services where resources are subscribed to
and paid for based on the user consumption.

As demonstrated in figure 13 cloud computing is often characterized as ei-
ther

– Software as a Service

44

FIGURE 13 Cloud Computing Environments

45

– Infrastructure as a Service
– Platform as a Service

2.7.1 Software as a Service

Software as a Service (SaaS) is a software delivery model in which software and
its associated data are hosted over the Internet and are typically accessed by
clients using a web browser.

SaaS has become a common delivery model for most business applications,
including accounting, collaboration, customer relationship management (CRM),
enterprise resource planning (ERP), invoicing, human resource management (HRM),
content management (CM) and service desk management. SaaS has been incor-
porated into the strategy of mainly all leading enterprise software companies.

2.7.2 Platform as a Service

Platform as a service (PaaS) is the delivery of a computing platform and solution
stack as a service.

PaaS offerings facilitate deployment of applications without the cost and
complexity of buying and managing the underlying hardware and software. Fur-
thermore, the PaaS environment also handles provisioning hosting capabilities,
providing all of the facilities required to support the complete life cycle of build-
ing and delivering web applications and services entirely available from the In-
ternet.

PaaS offerings may include facilities for application design, application de-
velopment, testing and deployment. Paas may also offer services such as host-
ing or application services such as team collaboration, web service integration
and marshalling, database integration, security, scalability, storage persistence,
state management, application versioning, application instrumentation, devel-
oper community facilitation and disaster recovery.

The peer-2-peer platform described in chapter 7 is an example of a PaaS
module. Future versions of the AMirror system, described in chapter 4 that may
offer a central mirroring site for multiple users will also provide PaaS.

2.7.3 Infrastructure as a Service

Infrastructure as a service (IaaS) is a method to deliver computer infrastructure,
typically a platform virtualization environment, as a service. The infrastructure
is provided along with raw (block) storage and networking. This infrastructure
can later be used by the user to install a complete computation environment with
operating system software and data.

In an IaaS paradigm, clients don’t purchase servers, software, data center
space or network equipment. Instead clients buy those resources as a fully out-
sourced service. Suppliers typically bill such services on a utility computing ba-
sis; the amount of resources consumed (and therefore the cost) will typically re-

46

flect the level of activity or capacity.

3 KERNEL DEBUGGER

3.1 Introduction

In this chapter, we present the LgDb, a system for performance measurement.
Unlike many commercial system LgDb can be used for kernel module profiling.
Furthermore, LgDb can be used to ensure that all the code is executed during
testing for decision coverage testing. LgDb is built on top of Lguest, which is a
Linux-on-Linux hypervisor while being a part of the Linux kernel.

3.1.1 Development Tools

Modern user space developers enjoy a variety of tools that assist their develop-
ments while shortening the development cycle time. In this chapter we focus on
code coverage and profilers.

The Code coverage concept was introduced in [MM63]. fifty five percent of
the developers use code coverage tools as stated in a recent report [SW] . Auto-
matic tools such as Insure++ [Para] and Jtest [Parb] allow userspace developers
and testers to ensure that all the written code is indeed covered by some testing
suite. By guaranteeing that all the code was tested including code for exception
and error handling, software developers can eliminate dead code. Furthermore,
by testing all the exceptional cases, we guarantee that the system operates in a
predictable sense even when an exception occurs.

The Profiling concept is a subject of an on going active research [SE94]. Solu-
tions such as Rational quantify [IBM] and gprof [GKM] provide developers with
insight about code parts where the CPU spends most of its executing time. The
basic assumption is that almost every written piece of code can be optimized.
Therefore, by employing Profilers, developers can employ their time more effi-
ciently by optimizing only the parts that make a significant effect on the total
run-time.

48

3.1.2 Lguest

Lguest [Rus] is a simplified Linux-on-Linux para-virtualization hypervisor that
allows to run multiple Linux kernels on top of a system that runs Linux kernel.
The system, which runs the Lguest hypervisor, is called "host" throughout this
chapter.

Each kernel, which runs on Lguest is running on virtual hardware simulated
by the host. Otherwise it is identical to the host kernel. Each system hosted on
the host is called "guest" throughout this chapter.

Lguest was integrated into the Linux kernel and it meant to serve as a refer-
ence and educational hypervisor. Lguest supports only x86 environments.

3.1.3 State-of-the-Art Solutions

There are plenty of industrial and open source solutions for code coverage and
profiling. However, practically all of them deal specifically with user space de-
velopment.

Currently there is no industrial solution for profiling and testing coverage
for Linux kernel modules. Similar solutions in terms of architecture and services
provided include:

Valgrind [NS03] is an open source project. Valgrind allows to run a user space
code on a virtual environment. In addition, it allows many tools such as
memcheck and helgrind to run for code quality proofing. The Valgrind ap-
proach is very similar to ours in the sense that the code runs in a virtual
environment except that it only works for user space programs.

Oprofile [Opr] is an open source profiling environment that can be used for ker-
nel code. Oprofile is currently in alpha status. It is a statistical tool and
therefore uses a very different approach from our tool. Its immediate ad-
vantage over our solution is that it supports wider range of architectures.

Gcov [gcc] is part of the Linux Testing Project[LTP]. It is integrated into the gcc
compiler and enable checking coverage of both kernel space and user space
code. Gcov approach differs from LgDb as Gcov is a compiler based tool
and not a hypervisor based. LgDb also has different functionality since gcov
does not simulate failure at given points. This leaves the developer with
the task of simulating different cases and leaves the developer with The
remaining code segments that would rarely on never be covered in normal
testing. However, gcov can be used to detect dead code (segments that
cannot occur due to conflicting conditions) which LgDb cannot detect.

49

3.2 Motivation

3.2.1 Code Coverage in the Kernel Space

One basic coverage criteria is the decision coverage [Tea]. It verifies that each
"edge" in the program was tested (for example, each branch of an IF statement).
A result of this criteria is the path coverage [MRW06] criteria, which verifies that
every possible route through a given part of the code is executed.

The existing coverage tools require the compilation of the code with some
special libraries while simulating all cases where a request may fail. These tools
do what they are expected to do but fail to simulate across all paths. Some paths
cannot be tested in most real life scenarios due to the involved complexity in their
simulations. For example, it may be very difficult to cause a certain kmalloc to
fail with a certain combination of locked mutexes and other running threads.

Since simulation of all cases usually cannot be achieved within reasonable
effort, we are bound to encounter cases where some code cannot be tested for
coverage. For example, where we assume the program checks for return values of
some hardware operations indicating hardware failure or insufficient resources.
In order to simulate these conditions we would need to simulate hardware failure
or use all the system resources on specific time. Simulating these conditions may
be difficult.

3.2.2 Profiling in Kernel Space

Our goal is to build an instrumentation based profiler that is not statistically
based like Oprofile. Construction of an instrumentation based profiler is moti-
vated by the fact that it is more accurate than a statistical profiler while providing
more capabilities such as generating call graphs. Because a large portion of the
kernel’s functions are short such as handlers for instance, there is a fair chance
that they will not be executed during the occurrence of a sample event. Oprofile’s
user manual states this openly:"...sometimes a backtrace sample is truncated, or
even partially wrong. Bear this in mind when examining results" [Opr11]. In-
creasing the samples rate will produce more accurate results while slowing the
system.

Unfortunately, without virtualization, building an instrumentation based
profiler for the kernel is not a straightforward task.

When profiling a userspace process we use another process for analyzing
the "trace". On the other hand, tracing the supervisor with a user process is im-
possible.

A process that traces the supervisor can only trace the system while the
process is in a running state. Since the OS needs to be traced even when the
process is not running (in some cases, especially when the process is not running)
we cannot use the user space method in the kernel.

Another possible approach is to allow the supervisor to trace itself. This

50

can be done by using various type of messages and shared memory or by using
performance counters. The messages can be triggered using code injections all
over the kernel.

Allowing the supervisor to trace itself affects the supervisor run and nat-
urally upsets the inspected module run. Furthermore, if multiple threads are
running, we have to deal with locking for the profiling which is likely to affect
the inspected process as well.

We now present the LgDb and show how it can overcome all of the above
difficulties by using virtualization.

3.3 LgDb: The "Virtual" Kernel Debugger

Although LgDb stands for Lguest debugger it is not a standard debugger. Al-
though kernel debuggers exist none of them are integrated into the Linux kernel.
The reason for this is rather philosophical: kernel development should not be
easy [Lin]. Since we agree with this approach, our goal is to move kernel code
development to a virtualized environment. This will not make it easier but it will
increase the kernel’s reliability (code coverage) and efficiency (profiling). LgDb
is a proof of concept tool that achieves these objectives.

3.3.1 Architecture

LgDb is based on the Lguest hypervisor. We chose Lguest because Lguest has a
simple source code that enables us to extend its hypercalls relatively easy. Lguest
is a simple hypervisor that is kept on the kernel for pedagogical purposes. We
describe Lguest internal structure in detail in Appendix 6.

Even though LgDb is based on Lguest, LgDb’s architecture is simple and
can be easily ported to more industrial hypervisors such as Xen, KVM and VMWare.

Running on top of Lguest limits us to supporting only Intel 32bit architec-
ture but has the benefit of providing simple, easy to understand and modify ar-
chitecture that is stable. Furthermore, unlike industrial hypervisor, Lguest code
base is stable and changes are infrequent which eases our development process.

The host kernel, which runs LgDb, has a modified Lguest kernel module.
The host kernel is running at privilege level 0, which is the privilege level of
the OS in x86 platforms. Thus, the host kernel has full privilege permissions.
Furthermore, as per x86 architecture, no other kernel, specifically guest kernels,
have full privilege permissions.

The guest kernel is launched using a userspace application called Launcher.
From the host’s point of view, the Launcher is a guest. Every time that the
Launcher’s process is in "running" state it causes the hypervisor to switch to the
guest. The switch operation performs a context switch and switches all the regis-
ters with the saved guest state. When the launcher is preempted, the guest state
(CPU registers) is saved in memory and the host state is restored.

51

FIGURE 14 The LgDb System Architecture

In Lguest case, the guest runs at the x86 privilege level 1. A process at priv-
ilege level 1 has limited permissions (compared to the OS which runs at privilege
level 0). For example a process at privilege level 1 cannot access the hardware.
When the the guest kernel needs to perform a privileged instruction (such as
hardware access) it generates Hypercall. A hypercall is typically a request from
the guest to the host instructing the host to perform a privileged operation.

Thus, the hypercall provides a mechanism for a guest to host communica-
tion. LgDb is extending the hypercall mechanism to provide profiling and code
coverage information.

LgDb capitalizes on the hypercall mechanism and implements new hyper-
calls to provide code coverage and profiling. Thus, LgDb architecture requires
that an API will be add to generate the hypercall in the inspected kernel code.

By running the inspected kernel model on the guest and sending hypercalls
we can enlist the host to assist in the inspection of the guest.

52

FIGURE 15 The LgDb System - x86 Privileges Levels

3.3.2 Forking Guests

In order to support the code coverage tool we implemented a "forking" for the
Lguest guest. By forking we mean that at some point (when the hypercall is
received) a new identical guest is created. Both guests continue to run from the
forking point. The "parent" guest waits until the "child" finishes.

Forking a guest is quite simple. The inspected guest image is a segment
in the launcher’s memory. Forking the launcher process, with additional actions
like cloning I/O threads (called "virtqueues" in the Lguest world), creates an ex-
act copy of the inspected machine. When a hypercall requesting fork is received
at the host, the fork(2) system call is being invoked. At this point, the original
launcher process goes to sleep. As both guests share the same code, there is a need
to indicate to each guest which path to choose (we want the "child" guest will go
at a different path from the "parent" guest). This is done by using the hypercall
mechanism to return a unique value for each guest (at this case, a boolean value
is sufficient). The forking procedure does not end at user space as described. The
host kernel holds for each guest (i.e for each launcher process) its virtual hard-
ware state information. The information the host saves for each guest includes
the guest virtual CPU registers (instruction pointer, stack pointer) values, inter-
rupt and page tables and the kernel stack. When calling fork(2) in a launcher
process, all the guest relative data should be cloned in the Lguest kernel module
and assigned to the new launcher process.

When the "child" guest is done, the "parent" guest resumes execution from
the hypercall location (as both its memory image and kernel information were not

53

changed during the "child" execution), but with a different return value allowing
it to follow a different execution path. This is analogous to the POSIX command
fork(2).

Forking guests for different purposes was previously discussed in [LWS+09]
for different purposes and not for kernel based hypervisors.

3.3.3 Kernel Multitasking and Profiling

In section 3.2.2, we discussed multi-processing and claimed that if the profiling
is done by the kernel on itself we will require locking that will affect the traced
process. Since Lguest only runs on single launcher process then hypercalls are
always generated in a serial fashion and no such locking is done or required by
LgDb.

In order to support kernel profiling in a multitasking environment, LgDb
needs to support multiple threads entering the same code segment or charging
the same wallet across multiple kernel threads which it does.

However, there are two known issues with LgDb behavior in a multitasking
environment. Both issues occur because the hypervisor is not aware which kernel
thread is currently executing on the guest or even which kernel threads exist in
the guest.

When profiling kernel code, time is charged to the process when we charge a
certain wallet regardless of the process state. If the process is "ready", "waiting for
I/O" or otherwise not executing then it is arguable that we should not charge its
wallet. Fixing these issues requires generating messages to the hypervisor from
the scheduler and from the elevator. We did not implement the support for this
feature yet.

Another known issue is when a kernel module is being forked. In this case,
we need to be aware of the two processes and charge accordingly. The current
version of LgDb does not handle this case.

3.4 Tools

3.4.1 Code Coverage

While running the following code (taken from [SBP])

int init_module(void)
{

Major = register_chrdev
(0, DEVICE_NAME, &fops);

if (Major < 0) {
printk(KERN_ALERT
"Registering char device

failed with %d\n", Major);

54

return Major;
}
// more code follows

}

We expect register_chrdev to succeed most of the time. However, test pro-
cedure dictates that the "if" clause must also be executed during testing and its
result is monitored. How can we simulate the case when register_chrdev fails?

In order to solve such a case, we created a set of hypercalls to support a full
code coverage testing in the kernel module. When the hypercall is received in
the hypervisor, the hypervisor forks the running VM. The hypervisor first runs
the VM code with the hypercall failing to perform all code that should handle the
failed case.

The guest keeps running while generating logs that can be inspected by the
developer until a second hypercall is called to indicate that all the logs, which are
relevant to the case of the failed call, have been generated. The hypervisor now
terminates the guest VM (where the call failed) and resumes running the other
VM where the code runs normally.

Upon receiving the 3rd hypercall, which indicates that all code coverage
tests are complete or at any time during the running of the program, the user can
inspect the hypervisor log and find a detailed output of all the successful and all
the failed runs of the module.

Algorithm 1 Code Coverage Logic

Run Lguest hypervisor inside host Linux kernel
Run Guest in supervisor mode
while Coverage test not completed do

Guest generates a hypercall when reaching critical function
Hypervisor forks the running process and runs the failing process first
Guest checks if it should enter the successful or the failing branch code
if Guest fails in the branching point then

Run all relevant code to failing
Inform the hypervisor that child has to be terminated

else
run everything normally

end if
end while

The involved hypercalls are defined in the <lguestcov.h> header and in-
cludes

#define testCovStart \\
(function, failval, X...) \\
(lguest_cov_fork() ? \\
failval : function(X))

55

#define testCovEnd() \\
lguest_cov_end()

#define testCovFinish() \\
lguest_cov_fin()

By using the coverage functions in <lguestcov.h>, we can change the origi-
nal code example to the following and ensures that register_chrdev is checked in
successful and failing cases.

int init_module(void)
{

Major = testCovStart(register_chrdev,-1,
0 , DEVICE_NAME, &fops);

if (Major < 0) {
printk(KERN_ALERT
"Registering char device
failed with %d\n", Major);
testCovEnd();
return Major;

}

// more code follows
}

int clean_module(void)
{
// standard termination routine.

testCovFinish();
}

3.4.2 Profiling

LgDb approach to profiling is based on "wallets" similar to the TAU system de-
scribed in [SM06] but works in kernel space.

When profiling, we are interested in code sections where the majority of the
processing time is spent on. We use a profiler in order to detect congestion, or
find certain code segments to optimize.

The profiler is implemented using a hypercall that issue a report whenever
we enter a point of interest. This can be either a function or loop or any other part
of the program. In the hypervisor, we trace the time spent in each of those parts
using a "wallet". When we call our hypercall, we start charging time to a certain
wallet. When hypercall is called again, we stop charging time for this wallet.
Last, we can provide the user with trace of hypercalls that are typically running
when charging specific account.

56

FIGURE 16 Flow Chart of Code Coverage Operation

57

FIGURE 17 Flow Chart of Profile Operation

58

Algorithm 2 Profiler Algorithm

hypervisor keeps "wallets" to charge processing time to
When reaching interesting function, guest uses hypercall to report
Hypervisor charges time while guest is running
Guest sends hypercall when leaving a function

In order to use the LgDb profile routines, we provide the following API

// This function starts charging
void lguest_charge_wallet(int wallet);

// This function stop charging time
void lguest_stop__wallet(int wallet);

For example:

#define NETLINK 1
#define SCOPE_A 2
#define SCOPE_B 3

int func_a()
{

lguest_charge_wallet(SCOPE_A);
// code...

lguest_stop_wallet(SCOPE_A);
}

int funct_b()
{

lguest_charge_wallet(SCOPE_B);
// code

lguest_charge_wallet(NETLINK);
// code

lguest_stop_wallet(NETLINK);
// code

lguest_stop__wallet(SCOPE_B);
}

static int msg_cb
(struct sk_buff *skb,
struct genl_info *info)

{
lguest_charge_wallet(NETLINK);
// code
lguest_stop_wallet(NETLINK);

}

59

3.5 Related work

There are many user space programs that offer profiling and code coverage for
user space code. Some were mentioned in the introduction. In this section, we
will describe some of the virtualized testing tools for kernel developers and com-
pare LgDb with Oprofile and gcov/lcov that offer similar services in the Linux
kernel.

Oprofile and lcov are now officially a part of the Linux kernel though they
are considered "experimental". None of the virtualization environments for ker-
nel debugging have been accepted as an official part of the kernel.

3.5.1 Debugging in virtual environment

LgDb is unique in the sense that it offers a complete framework for testing and
debugging kernel applications. However, the notion of using an hypervisor to
assist in the development is not new.

Using Xen[BDF+03] for Linux kernel development where an unmodified
kernel runs as guest on the hypervisor is suggested by [KNM06]. While [KNM06]
work shares the same software architecture (inspected guest running on hypervi-
sor) it does not offer profiling and code coverage tools as offered by LgDb.

Using Oprofile on a KVM [Kiv07] hypervisor with the QEMU [Bel05] launcher
is discussed in [DSZ10]. Our system differs in the sense that it actually uses the
hypervisor as a part in the profiling environment allowing only inspected kernel
module measurements. XenOprof [MST+] is an open source similar tool that runs
Oprofile but uses Xen instead of KVM. Its internal components are described in
[MST+05].

VTSS++ [BBM09] is a similar tool for profiling code under VM. It differs
from all the above tools in the sense that it does not work with Oprofile but re-
quires a similar tool to run on the guest.

VMWare vmkperf[inc] is another hypervisor based performance monitor-
ing tool for VMWare ESX Server. Aside from the obvious difference between
VMWare ESX server (Type I hypervisor) and Lguest (Type 2 hypervisor), it is
not programmable and cannot measure specific code segment system usage and
therefore it is not related to our work.

3.5.2 LgDb vs. Gcov

LgDb enjoys a few of advantages over gcov. Firstly, gcov does not simulate fail-
ure, therefore, critical paths may not be covered. In this matter, LgDb could be
used to validate the system’s stability at all possible scenarios. Second, gcov is a
compiler specific tool when LgDb is (by concept) platform independent. Third,
LgDb allows for this ability to follow a specific path and therefore does not over-
flow the user with unnecessary information.

LgDb will probably not be useful for testing a driver code as the inspected

60

kernel uses virtual I/O devices and special drivers for them.

3.5.3 LgDb vs. Oprofile

LgDb enjoys a few architecture advantages over Oprofile. First, LgDb consumes
significantly less resources than Oprofile. In LgDb, the only source for profiling
overhead is associated with calling an hypercall.

Calling hyper call takes approximately 120 machine instructions for the con-
text switch between guest and host. Each profiling request contains 2 hypercalls
(one hypercall to start profiling and one hypercall to stop profiling) therefore each
profiling request should contain around 240 instructions. On the other hand,
Oprofile has overhead for each sample taken for handling the none maskable in-
terrupt. It also has overhead for the work of the Oprofile’s daemon. I.e. the user
space to analysis of the profiling data.

Second, LgDb is non-intrusive for kernel components that are not being pro-
filed.

Oprofile profiles the entire system and much of the NMI samples will prob-
ably take place in the context of processes and modules which are not being in-
spect. Thirdly, LgDb can merge calls from different functions into one wallet
such as network operations or encryption algorithms. Fourthly, it allows to pro-
file code segments that are smaller than a function.

Lastly, but most important, Oprofile is statistical based and thus it is less
reliable than LgDb.

Oprofile’s advantage is that any part of the kernel can be profiled. As stated
on the Gcov comparison, the profiling device driver code becomes impossible
with LgDb. Furthermore, Oprofile requires no changes to the inspected code
itself.

3.5.4 LgDb vs. LTTNG 2.0 and FTrace

The LTTng [Des] project aims at providing highly efficient tracing tools for Linux.
Its tracers help tracking down performance issues and debugging problems in-
volving multiple concurrent processes and threads. Tracing across multiple sys-
tems is also possible.

FTrace [Ros] is an internal tracer designed to help developers and design-
ers of systems find what is going on inside the kernel. FTrace can be used for
debugging or analyzing latencies and performance issues that take place outside
user-space.

LTTNG works by patching the kernel and by using kernel features such as
FTrace. LTTNG does not use virtualization. LTTNG requires a LTTNG patched
kernel and only works on a certain version.

By comparing LgDb to LTTNG we can profile parts of the kernel that were
prepared for LTTNG. LTTNG can also debug parts of the driver code that LgDb
cannot. From FTrace we can automatically get a lot more information than we
can automatically get from LgDb. It will require a lot of effort in FTrace. Further-

61

more, FTrace will always require code injections. Future version of LgDb, which
will use a kernel debugger, will not require code injection and can be completely
automated.

3.5.5 LgDb vs. Performance Counters

Performance Counters [GM] are special registers that can be used to measure in-
ternal performance in the kernel without using VM. The system can offer similar
benefits to our system with respect to profiling (but not code coverage) when the
hardware provides the registers.

One benefit of the hypervisor approach that is employed by LgDb is that
one can use the launcher to produce additional information such as call trees,
tracing the current number of running threads and providing information that
performance counters do not have the registers to use for keeping track of this
information. However, the current version of LgDb does not implement call trees.

3.6 Conclusion

We presented LgDb, which is a proof of concept tool for profiling and code cov-
erage based on lguest hypervisor.

LgDb demonstrate that kernel development using a virtual machine and
has many advantages and can ultimately lead to a more reliable and efficient
kernel code. We hope that LgDb will lead the way to "virtualizing" our kernel
developments.

3.6.1 Performance Results

Profiling and checking code coverage using this extension has very little overhead
where almost all of which is due to lguest. Compared with normal profilers or
kernel profilers in which the inspected process runs significantly slower than a
normal non profiled process, our profiler consume very little system resources.

It is hard to find generic benchmark for kernel only profiling without mea-
suring the effects of kernel profiling on running processes or the combination of
kernel and user processes.

We developed a synthetic benchmark in which matrices were multiplied in
the OS kernel. No effect on user process or any user work was measured.

The benchmark results in seconds where low measures are better:

native (without lguest), without profiling 53.008323746
lguest, without profiling 53.048017075
lguest, with profiling 53.160033226
native, with Oprofile 58.148187103

62

These results, which are expected. The low overhead generated by the sys-
tem was produced by the hypercall procedure. The overhead is low because only
the switcher code, which performs the guest to host switch was added. This
switch sums to 120 machine instructions for two hypercalls (profiling_start and
profiling_end) each goes both ways (guest-to-host, host-to-guest). 1

This benchmark is ideal for the system because it involves mathematical op-
erations only and no virtual I/O operations which would require communication
between the guest and the host.

In addition, this is unlike Oprofile that sends non maskable interrupts to
the inspected kernel. Unrelated kernel modules are unaffected by LgDb. When
running Oprofile, the performance of the entire system is degraded.

3.6.2 Innovation

The architecture, which is described in this thesis, runs a kernel code coverage
and profiling by using an hypervisor that is part of the profiling process, is a new
concept. Using hypervisor for code coverage is also a new concept.

Although tools for profiling and coverage kernel code already exist, LgDb
allows more features that were unavailable before (as stated in sections 3.5.3 and
3.5.2).

Furthermore, the concept of forking a running guest is new to lguest and can
be used to demonstrate features such as replication, recovery and applications.

3.7 Looking forward and LgDb 2.0

We continue our work on LgDb in order to achieve more reliable and efficient
kernel coding. Our main objectives are to detect causes in memory access viola-
tions, memory leaks and kernel "oops"es and assist in other situations where the
guest kernel crashed.

In LgDb 2.0 we connected LgDb with kernel debugger (KDB) via virtual se-
rial driver to the guest. By doing so we eliminated the need for code injections
by replacing the calls to hypercalls with breakpoints mechanism in the debugger.
We obtain all process information we need by reading the kernel module DWARF
file. In LgDb 2.0 we kept the hypercalls mechanism to allow for custom wallets
but they are no longer required. This feature alone makes LgDb much more us-
able. LgDb 2.0 is not ready to be pushed upstream yet and it will be pushed
shortly after this dissertation is published.

For kernel developers that use kernel debuggers, we would like to enable
the ability for the host launcher to access debug information on terminated guest
thus enabling LgDb to act as kernel debugger. We expect this feature to be re-
leased with LgDb 2.1 or other future version.

We also work on improved multitasking support by integrating it with the

1 30 machine instruction per direction per hypercall were needed

63

guest scheduler. This will allow us to distinguish between busy and idle time on
the guest and to profile multi-thread kernel modules.

3.8 Availability

LgDb is available from

http://www.scipio.org/kerneldebugger

4 ASYNCHRONOUS REPLICATION OF BLOCK
DEVICES AND VM

This chapter describes the AMirror system. AMirror is a system designed for
asynchronous replication of block devices and virtual machines. AMirror was
developed with Tomer Margalit for his M.Sc thesis. Replication of Lguest was
developed with Eviatar Khen for his M.Sc thesis. The system was published in
[AMZK11].

This chapter relies on technologies that are described in appendixes 3, 6 and
5.

4.1 Introduction

4.1.1 Disaster Recovery problem, replication and VM replication

Today, it is becoming more and more common for small offices and even home
users/offices to contain vital business data on organization servers. Since vital
data can not be lost, server administrators and business owners in such environ-
ments face the problem of protecting their data and their vital systems.

An administrator can attempt to protect data by using local mirroring (RAID)
of the vital data on to a secondary disk on the same system enabling survival of
single disk failures. However, even systems with redundant disks are still vul-
nerable to fires, theft and other local disasters. By local we mean disasters that
affect the entire site and not just a single computing component.

Usually, by Enterprise systems we mean multiple vendors that provide dis-
aster protection by replicating the disk into a remote site. When disaster strikes
on the primary site, the user will be able to recover his system from the disas-
ter recovery site. Enterprise systems provide not only data recovery but also full
system recovery for systems running on system virtual machines (hypervisors).

Recovering virtual machines in their running state allows for minimal re-
covery time and almost immediate operation continuity as the system is already

65

recovered for operational status. The advantages of replicating the whole vir-
tual machines system are two fold. Firstly, the user does not have to wait for the
system to boot reducing down time required before returning to operation con-
tinuity. Secondly, system restoration and reconfiguration can be skipped since
the system is already restored in a running state. Since the system is already
operational when recovered no additional down time for booting the servers is
expected.

The main difference between enterprise and small-office/home-office (SOHO)
systems from a disaster recovery point of view is that in an enterprise system we
can afford to replicate every byte that is written on the disk and in certain cases
even every byte that is written to the memory. SOHO users do not have the re-
quired resources and therefore have to settle for solutions that use bandwidth
more efficiently.

AMirror borrows from the enterprise world to the home user world by
bringing the enterprise level replication to the reach and bandwidth capacity of
SOHO users.

4.1.2 Terminology

Below is a short list of storage and virtualization terms used in this chapter.

Replication: Refers to the replication of raw data or higher level objects from
one site to another. Replication is demonstrated in figure 18.

Synchronous/Asynchronous replication: There are two ways to replicate data.

Synchronous Replication Ensures that every write is transferred to a re-
mote location before reporting write completion. The flow chart for
synchronous replication is shown in figure 19.

Asynchronous Replication buffers the writes and reports success immedi-
ately after a write has been buffered and written locally (but not to the
disaster recovery site). An asynchronous replication system can later
flush the buffer to the disaster recovery site and write it at its leisure.
The flow chart for asynchronous replication is shown in figure 20.

Synchronous replication has the benefit of having zero data loss in case of
disasters. Asynchronous replication has the benefit of reduced cost as less
bandwidth capacity is required. A secondary benefit of asynchronous repli-
cation is the possibility of having a greater distance between the primary
and disaster recovery sites. Since the speed of light is finite and most in-
stallations limit the extra latency that is acceptable due to mirroring, it is
rare to find a Synchronous Replication solution where the distance between
the primary and disaster recovery sites is greater than 50km. In contrast,
in asynchronous mirroring scenarios the distance between the primary and
the disaster recovery sites can be practically unlimited.

66

FIGURE 18 Generic replication System

Because of the nature of the target systems, we chose to use asynchronous
replication. In the reminder of this chapter, we use the terms replication and
asynchronous replication interchangeably.

Recovery Point Objective (RPO) is the maximal data size we consider as an ac-
ceptable loss in case of a disaster. We will measure RPO in terms of data
generated in MB even though it may be more common to address RPO in
terms of time.

Recovery Time Objective (RTO) is the length of time it takes to fully recover
the system after a disaster. Usually this includes the time required to obtain
the backups and the time required for recovery from backups and bringing
the system to an operational state.

Deduplication is a technique used to eliminate redundant data. In our case. we
use deduplication to avoid sending redundant data by detecting data that
already exists on the other end.

The Linux block device layer is the block I/O layer in Linux. This layer is lo-
cated below the file system layer and above the disk drivers layer. This layer
is common to all disks types and to all file systems.

67

FIGURE 19 Synchronous replication System

VM migration refers to the situation where a running VM is "moved", uninter-
rupted1 from the host it runs on to a different host.

VM replication refers to the repeated migration of a VM system every preset
time slice.

Lguest [Rus] is a lightweight Linux-on-Linux system hypervisor developed by
Rusty Russel[Rus]. Lguest is described in detail in Appendix 6.

QEMU-KVM KVM [Kiv07] is a virtualization framework that is developed in-
side the Linux kernel. It is sponsored and used by Red Hat. QEMU [Bel05]
is an open source system hypervisor that can use KVM. QEMU and KVM
are described in detail in Appendix 3.

Continuous Data Protection (CDP) refers to a backup environment that contin-
uously logs write operations. By marking snapshots on the log we can roll-
back to any snapshot. By rolling the log we can get to any snapshot.

1 There are likely to be environmental interruptions if the machine is moved to a different
network while being connected to an external host such as TCP/IP connection timeouts,
but we see these as being beyond the scope of the dissertation.

68

FIGURE 20 Asynchronous replication System

4.2 Deduplication

AMirror uses a design method called deduplication. Deduplication is the art of
not doing things twice. For example, in AMirror we are replicating blocks from
the primary site into the disaster recovery site. If a block is already transferred
then we do not want to transfer it again. We detect this by keeping hashes of all
the blocks already present in the disaster recovery site. If a hash is already found
in the disaster recovery site then we do not need to transfer the block again only
its ID.

There are plenty of Deduplication solutions in the storage and networking
world and AMirror is just another implementation of the deduplication concept.

4.3 Related work

4.3.1 Replication

The Linux kernel includes an asynchronous mirroring system from kernel 2.6.33
called DRBD [DRB10]. AMirror block level replication offers a similar design to
the design that DRBD offers in the sense that both provide a virtual block device

69

based on a physical block device that being replicated. Furthermore, AMirror
offers similar performance to DRBD when AMirror is running with data com-
pression and deduplication switched off. However, a key difference in the design
of AMirror and DRBD is that AMirror performs most logical decisions in the
user space allowing us to add several key features to AMirror that do not exist
in DRBD which is all kernel solution. Putting the logic in user space allows us
to add features such as CDP, volume group replication, data compression and
deduplication of blocks. These features are a vital part of our approach to low
bitrate replication.

There are plenty of other open and closed source replication solutions with
varying similarities to ours. Storage vendors provide their own proprietary repli-
cation solutions. For example, IBM’s PPRC [CHLS08] and EMC’s SRDF [Coo09]
are both replication protocols between high end storage servers while EMC Re-
coverpoint provides replication and CDP via SCSI write command replication.
While these solutions offer the same set of tools as we do (and more) they are
limited to hardware which is far beyond the reach of our target audience.

Replication can also occur in the file system level. For instance, Mirrorfs
[Jou07] and Antiquity [WECK07] are another file based logging approach for
replication.

There are also further distributed solutions for reliability such as Google file
system [GGL03] and HADOOP [SKRC10]. Google file system implements the
replication of data to recover from local node crashes in a cluster. Such cluster-
ing approaches are very useful in the enterprise level, especially, if the cluster is
deployed on several physical sites but are beyond the reach of our target users.

Mirroring in the OS level was implemented as well for example in Mosix
[BS11]. DRM [WVL10] is an object based approach for replication. We feel that
replication in the block level is superior to OS or filesystem replication. Block
level replications allows our "SOHO and home user" to use his favorite Linux
distribution and applications while using any file system that is suitable to his
needs and with minimal configuration requirements.

4.3.2 Replication and Migration of Virtual Machine

There is no live migration or replication support for Lguest in Linux kernel 2.6.38
though stubs for mirroring do exist.

The Kemari [TSKM08] project did some work on replicating QEMU-KVM.
The live migration in QEMU-KVM and Kemari is done on the same LAN when
the storage is shared. We alleviate this requirement by using our block device
replication.

There are several replication solutions in other hypervisors.
The Remus project [CLM+08] provides solutions for replicating Xen based

virtual machines. Similarly, the VMWare product line offers multiple (closed
source) products in the VMotion product line for VM replication. Other commer-
cial solutions include Novell’s PlateSpin and Oracle’s solution for VirtualBox.

Understandably, most other implementations have developed software for

70

the enterprise world. Because the target audience for these solutions is the enter-
prise market, the requirements for good system performance and minimal RPO
are emphasized. As a result, these systems replicate volumes of data that are un-
manageable by a normal home user or small office. On the other hand, we feel
that for most home users in most day-to-day usage the underlying hardware is
often idle. Therefore, we do not see the need to put the system performance as a
prime requirement. We also argue that for our target audience, RPO of the current
time minus approximately 5 minutes or so is sufficient for our target audience.

Lastly we see bandwidth as an expensive resource. We believe home users
will not be willing or able to pay for the replication uplink that is common in
enterprise environments. With these constraints in mind we designed our system.

4.3.3 Storage Concepts of Deduplication and CDP

The concept of CDP is well researched. Two recent implementations include
[LXY08, SWHJ09]. Industrial CDP products like EMC RecoverPoint serve many
purposes such as creating multiple restore points, elimination of the necessity of
backup windows, etc.

We require CDP as part of our solution in order to ensure that VMs migrate
consistent memory and storage.

Deduplication is also widely used in the industry, especially in virtual tape
libraries such as EMC Data Domain or IBM ProtectTIER and other such prod-
ucts. The common task of deduplication is to ensure that only one copy of iden-
tical data is kept. Deduplication [ZZFfZ06] was researched in object storage and
[ZMC11] demonstrates the PACK system for the deduplication of network traffic.
Our algorithm is much simpler than PACK due to the block based nature of our
storage in comparison to variable block size in PACK.

4.4 Design goals

We focused our design on features that will be useful and affordable to our target
audience. We did not care for features such as clusters or cloud support, etc.
Instead, we put a major emphasis on maintaining decent performance with low
bandwidth requirements.

We pushed the implementation of any feature that made sense to the block
device layer. Working on the block device layer allows our project to be used with
multiple hypervisors and any file system with minimal changes. We kept the
changes on the hypervisor level to a minimum by requiring only a way to serial-
ize the VM’s current state or accumulate the changes from the VM last recorded
state.

71

4.4.1 Block Device Replication

The following requirements were made for our block device replication product:

File system support: Supports any file system without modification to the file
system.

Application support: Supports any application using the block device without
modifications to the application.

Network support: Supports any network that provides TCP/IP connections be-
tween source and target.

Minimal recovery time: Recovery of the latest known position on the disaster
recovery site should take minimal time. Recovery to an older snapshot may
take longer.

CDP: In order to provide consistent recovery of a VM memory and storage, we
require the ability to take snapshots of the virtual machine memory and
storage at an exact point in time. Therefore, continuous data protection is
required.

Low bandwidth: Minimal amount of bandwidth should be used while replicat-
ing. It can be assumed that at least parts of the data can be deduplicated.
For example, loading a program to memory that already exists on the disk.

Support direction switch: The replication direction can be switched. This fea-
ture allows the user to work from home while replicating the data to his
office and vice versa as required.

4.4.2 Mirroring and Replication of VMs

From each of the supported hypervisors we need the following features to sup-
port migration and replication.

Serialize the state of a running VM: We must be able to save and load the state
of a running VM.

Freeze the VM state: We must be able to freeze the VM to take a consistent snap-
shot.

Detecting "dirty pages" between migrations: This feature is a "nice to have" and
is implemented by QEMU but not in Lguest. It saves us the need to scan the
entire memory for changes but as we implement Deduplication of pages,
pages that exist in the other end will not be transferred. This feature set
exists in QEMU (QEMU migration) and had to be implemented for Lguest.

72

4.4.3 Failing to meet RPO objective

Most industrial asynchronous mirror products define a maximal RPO that the
user is willing to lose in case of a disaster. The RPO is measured either in time
units or bytes. If we get more data then our upload rate can manage. This can
occur if the user is running something with heavy disk usage such as software
installation. Then AMirror can provide the user with the choice of permitting
the write to occur or causing the write to fail. If we allow the write to occur, we
cannot commit on the RPO guarantee if a disaster actually occurs.

Enterprise level replication solutions keep the RPO guarantee and causes
writes to fail. We feel that in home or SOHO environments, blocking the user
from writing is doing an ill service. We also feel that most massive disk I/O
operations in our target environments come from software installation or other
reproducible content. Therefore, we leave the requirement to cause write opera-
tions to fail or block as a configurable option with our default to allow the writes.

In such cases where we cannot meet the RPO, we notify the user, increase
the size of our logs and we hope to be able to deliver the backlog of the data as
soon as possible.

4.5 System Architecture

We consider two parts in our application: The asynchronous mirror for storage
product and the VM migration code.

We will discuss each part of the architecture separately.

Asynchronous mirror: The application consists of kernel space components and
user space components.

The kernel space components are in charge of generating logical, replicat-
ing, block devices to operate on. The kernel module intercepts block writes
to these block devices (by write(2), mmap(2) or any other means) and deliv-
ers the write operations to the user mode components. Reads are passed to
the underlying hardware without intervention.

The user mode components are responsible for acquiring write operations
from the kernel module and delivering them to the disaster recovery site
and for saving it at the disaster recovery site.

Lastly, a programmable console allows for the creation of block devices,
the creation of volume groups, the management of volume groups and the
generation of consistent backups using previous backups and the CDP log.

User space process: The user space part of the asynchronous mirror product
reads the shared buffer from the kernel and is responsible for delivery to
the disaster recovery site. It is also in charge of doing deduplication and
compression.

73

RAID and other logical volumes

Async mirror layer

Physical
Volumes

Physical
Volumes

Read request
pass through

Shared buffer

KVM
kernel
stub

Kernel – Users boundary

QEMU
migration

Write
requests
replicated

Lguest
Kernel
Stub

Lguest
serializer

QEMU
Lguest

Launcher

Userspace
Replication daemon

Lguest
Volume

(local file)

Physical
Volumes
Physical
Volumes

QEMU
Volume

(local file)

Compression
Component

Other
User

Process
Data

Legend

KVM component

Lguest component

Linux component

Amirror component

FIGURE 21 Schematic Architecture of the AMirror Tool

74

A second user process is responsible for saving the changes on a local block
device at the disaster recovery site.

Kernel process: We use the AMirror kernel module. The Kernel module is re-
sponsible for exporting the kernel buffer and for the management of the
block devices. The AMirror kernel module is also responsible for queueing
the write operations into the kernel buffer.

Deduplication: We implement the deduplication layer in our solution because
we feel that VM memory tends to have identical contents throughout the
VM runtime.

We calculate the MD5 hash for each 8k page that we get and keep a set
of existing hashes. If identical hashes exist we do not transmit the data.
Instead, we only transmit the address where the page is located and the
page number.

CDP: Continuous data protection (CDP) is important to our solution because
we serialize the CPU and memory of the VM in a specific time to match
the VM storage. All the CDP implementations use some log form. When a
snapshot is created, a mark is placed on the log indicating a restore point.
When requested to restore to a certain point in time, we need to roll the log
until we reach the mark.

Volume group management: Our replication solution uses a single queue and
a single buffer for all the replicated block devices including VM disks and
memory that is placed in a single volume group. The concept of a shared
queue for all disks in the group ensures that if one disk lags no writes will
take place on the other disks in the same group. Thus, we ensure that the
system will always be recovered in a consistent state. Volume group man-
agement is illustrated in figure 22.

4.6 VM Replication

The abstract logic for replicating a VM is as follows:

75

FIGURE 22 Why Volume Groups are Required

76

Algorithm 3 VM Replication Logic

1: while VM is running do
2: Stop VM
3: Mark disk storage restore point (point in time snapshot)
4: Fork VM user process
5: if parent then
6: Start marking dirty pages for next replication.
7: The child replicates the kernel VM structures.
8: Resume VM, sleep until next replication time.
9: else

10: Read the VM Kernel memory and move to the other side.
11: Replicate VM main memory and other data (Virt queues etc.)
12: end if
13: end while

Individual VMs have minor differences and therefore differ slightly from
this model.

4.7 Low Bitrate Considerations

All prior and related solutions that we surveyed replicate every page modified
(dirty pages), and thus the bit rate of replicating a complete system may be con-
siderable. In theory, we may require the memory bus to be identical to the net-
work bus.

To save on bandwidth the following steps were taken:

We increased the RPO buffer size: In this way, we have more chances to elimi-
nate redundant writes.

We use references to blocks that already exists in the disaster recovery site: In
our implementation of block/page level deduplication, we keep a hash of
all the pages contents. Before a write is sent, we check if the contents of the
written page exist in another page. If a copy of the data already exists in
the disaster recovery site a reference to that page is sent instead of the page
content. This way we avoid the transfer of pages moved in memory.

We compress the transmitted data: If the user requires it, we use compression
to further reduce the bandwidth usage.

4.8 Benchmarks

The Asynchronous mirror solution utilizes almost 100% of the device speed when
doing read tests. We reach close to 100% of either disk or LAN speed when doing

77

FIGURE 23 Deduplication on the Network Traffic

78

FIGURE 24 Saving of Bandwidth

79

write tests on LAN. This is in comparison with the standard remote copy or ftp.
Activating compression and/or deduplication dramatically affects the per-

formance. Performance drops to about 10–20% of the original rate. We argue that
this rate should be sufficient for home users that do not have the uplink band-
width for a faster migration.

4.9 Future development

The AMirror solution lends itself to future extensions in the field of Cloud com-
puting. We plan to develop a windows based version of AMirror and use AMir-
ror as a Platform-as-a-Service environment for DRP.

4.10 Availability

The code for this project is available under dual GNU/BSD license. The Source-
forge project URL is:

http://amirror.git.sourceforge.net/git/gitweb-index.cgi

5 TRULY-PROTECT

5.1 Introduction

A rising trend in the field of virtualization is the use of VM based digital rights
and copy protection. The two goals of introducing VM to digital rights protection
are to encrypt and to obfuscate the program. Forcing the hackers to migrate from
a familiar x86 environment to an unfamiliar and obfuscated virtual environment
is intended to pose a greater challenge in breaking the software copy protection.

A generic and semi-automatic method for breaking VM based protection
is proposed by Rolles [Rol09]. It assumes that the VM is, broadly speaking, an
infinite loop with a large switch statement called the op-code dispatcher. Each
case in this switch statement is a handler of a particular op-code.

The first step a reverse-engineer should take according to Rolles method
is to examine the VM and construct a translator. The translator is a software
tool that maps the program instructions from the VM language to some other
language chosen by the engineer, for example x86 assembly. The VM may be
stack based or register based. The reverse-engineer work is similar in both cases.

Rolles calls language that the translators translates the code it reads into, an
intermediate representation (IR). The first step is done only once for a particu-
lar VM based protection, regardless of how many software systems are protected
using the same VM. In the second step, the method extracts the VM op-code dis-
patcher and the obfuscated instructions from the executable code. The op-codes
of these instructions, however, do not have to correspond to those of the transla-
tor: the op-codes for every program instance can be permuted differently. In the
third step, the method examines the dispatcher of the VM and reveals the mean-
ing of each op-code from the code executed by its handler. Finally, the obfuscated
instructions are translated to IR. At this point, the program is not protected any-
more since it can be executed without the VM. Rolles further applies a series of
optimizations to achieve a program which is close to the original one. Even by us-
ing Rolles’ assumptions, we argue that a VM, which is unbreakable by the Rolles’
method, can be constructed. In this chapter, we will describe how to develop

81

such a VM.
In this chapter, we do not try to obfuscate the VM. Its source code is pub-

licly available and its detailed description appears herein. We protect the VM by
holding secretly the op-code dispatcher. By secretly we mean inside the CPU in-
ternal memory. Holding the op-code dispatcher in secret makes it impossible to
perform the second step described by Rolles.

Moreover, we claim that the security of the system can be guaranteed under
the following assumptions:

– The inner state of the CPU cannot be read by the user.
– The CPU has a sufficient amount of internal memory.

The former assumption simply states that the potential attacker can not access the
internal hardware of the CPU. The second assumption however is more vague,
so the properties of such an internal memory are discussed in section 5.6.

This chapter has the following structure: Section 5.2 provides an overview
of related work. Section 5.3 outlines a step-by-step evolution of our system. Final
details of the evolution are provided in Section 5.4. Section 5.5 describes the se-
curity of the proposed system. Section 5.6 describes how to use different facilities
of modern CPUs to implement the required internal memory. The performance
is analyzed in section 5.7. Section 5.8 provides an example of a C program and its
corresponding encrypted bytecode.

5.2 Related work

5.2.1 Virtual machines for copy protection

The two goals of introducing VM to trusted computing are to encrypt and to
obfuscate the program. Forcing the hackers to migrate from a familiar x86 envi-
ronment to an unfamiliar and obfuscated virtual environment is intended to pose
a greater challenge in breaking the software copy protection.

However, not much has been published on the construction of virtual ma-
chines for digital rights protection as it would be counter productive for the ob-
fuscation efforts that were the main reason for using VMs. Hackers, on the other
hand, have opposite goals and tend to publish their results more often. Therefore,
we often learn about VM protection from their breakers instead of their makers.
For example, [sch] is the most complete documentation of Code Virtualizer inter-
nals available outside Oreans.

Examples of using virtualization for copy protection include the hypervi-
sor in Sony Play Station 3 [SON] and XBox 360. The Cell OS Level 1 is a system
virtual machine which is not exposed to the user. The XBox 360 hypervisor also
ensures that only signed code will be executed[DS07]. For PC software, Code Vir-
tualizer [Ore] or VMProtect [VMP] are both software protection packages based
on process virtual machines.

82

In all cases, very little was published by the software provider. However,
the means for attacking virtual machine protection has been published by PS3
hackers [bms10] and by Rolles [Rol] with respect to VMProtect.

5.2.2 Hackers usage of Virtualization

By running the protected software in a virtual environment it became possible to
disguise it as a different system. For example, running OS X on a standard hard-
ware using a VM disguised as an Apple machine [Gra08]. Protection methods
against virtualization were researched by [KJ03]. Inspecting and freezing CPU
and memory of a running system to obtain, for example, a copy of a copyrighted
media, is another threat faced by media protectors such as NDS PC Show [NDS].
It is also possible to construct malware that will obfuscate itself using a VM. How
malware obfuscated by VM can be detected is described in [SLGL09].

5.2.3 Execution Verification

Protecting and breaking software represent a long struggle between vendors and
crackers that began even before VM protection gained popularity. Users demand
a mechanism to ensure that the software they acquire is authentic. At the same
time, software vendors require users to authenticate and ensure the validity of
the software license for business reasons.

Execution verification and signatures is now a part of Apple Mach-O [App]
object format and Microsoft Authenticode [Mic]. It also exists as an extension to
Linux ELF [mil].

The trusted components have been heavily researched in industry [Tru] and
academia [SBPR08] among others with mixed results. Both software rights pro-
tectors and hackers were able to report on a partial success.

From the hackers’ camp, [Ste05] is a fundamental paper dissecting all Mi-
crosoft’s security mistakes in the first XBox generation.

5.3 System Evolution

In this section, we describe the evolution of the proposed system in several phases
which are fictional interim versions of the system. For each version, we describe
the system and discuss its advantages, disadvantages and fitness to today’s world
of hardware and software components.

We explore the means to improve the analyzed version and consider the
implementation details worth mentioning as well as any related work.

The first version describes the system broken by Rolles. The second version
cannot be broken by Rolles but has much stronger assumptions. The rest of the
evolution process consists of our engineering innovation. The sixth version is as
secure as the second one but requires only the assumptions of the first version.

83

In the seventh version, we propose a completely different approach: a just-
in-time decryption mechanism which incurs only minor performance penalty.

The last section presents a parallelization scheme for the sixth version, which
can theoretically improve its performance by utilizing an additional core present
at a potential CPU. This idea was not implemented and thus described at the end
of this section.

5.3.1 Dramatis Personae

The following are actors that participate in our system use cases:

Hardware Vendor manufactures. The Hardware Vendor can identify compo-
nents he manufactured. The Hardware Vendor is trust worthy. A possible
real world example is Sony as the Hardware Vendor of Play Station 3.

Software Distributor distributes copy protected software. It is interested in pro-
viding conditional access to the software. In our case, the Software Distrib-
utor is interested in running the software on one End User CPU per license.
A possible real world example is VMProtect.

“Game": The software we wish to protect. It may be a computer game, a copy-
righted video or other piece of software.

End User purchases at least one legal copy of the “Game" from a Software Dis-
tributor. The End User may be interested in providing other users with
illegal copies of the “Game". The End User is not trustworthy.

The goal of the system described herein is to prevent any of the End Users
from obtaining even a single illegal copy of the “Game".

VM: A software component developed and distributed by a Software Distribu-
tor.

VM Interpreter: A sub–component of VM that interprets the instructions given
by the “Game".

VM Compiler: A software component used by the software distributor to con-
vert a “Game" code developed in high level programming language to in-
structions interpretable by the VM Interpreter.

Malicious End User: The Malicious End User would like to obtain illegitimate
copy of the game. The VM Compiler, VM Interpreter and VM are tools
manufactured by the software distributor and hardware vendor that pre-
vent the Malicious End User from achieving her goal : a single unlicensed
copy. The Malicious End User may enlist one or more End User with legal
copies of the game to achieve her goal.

84

5.3.2 Evolution

The building of the system will be described in steps.

System Version 1 The VM Interpreter represents virtual, unknown instruction
set architecture (ISA) or permutation of a known instruction set such as
MIPS in our case. The VM Interpreter runs a loop:

Algorithm 4 System 1 — VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: choose the instruction handling routine
4: execute the routine
5: end while

The VM Compiler reads a program in a high level programming language
and produces the output in the chosen ISA.

System Version 1: Discussion Cryptographically speaking, this is an implemen-
tation of a replacement cipher on the instruction set. This method was de-
scribed by Rolles [Rol09] and used by VMProtect. Of course, the VM may
include several other obfuscating subcomponents that may even provide
greater challenge to a malicious user but this is beyond our scope. The pro-
tection is provided by the VM complexity and by the user’s lack of ability
to understand it and, as stated previously, in additional obfuscations.

Rolles describes a semi-automatic way to translate a program from the un-
known ISA to intermediate representation and later to the local machine
ISA. Understanding how the VM works is based on understanding the in-
terpreter. This problem is unavoidable. Even if the interpreter is imple-
menting a secure cipher such as AES, it will be unable to provide a tangible
difference as the key to the cipher will also be stored in the interpreter in an
unprotected form.

Therefore, it is vital to use a hardware component that the End User cannot
reach to provide an unbreakable security.

System Version 2 The Hardware Vendor cooperates with the Software Distribu-
tor. He provides a CPU that holds a secret key known to the software dis-
tributor. Furthermore, the CPU implements an encryption and decryption
algorithms.

The compiler needs to encrypt the program with the CPU’s secret key. This
version does not require a VM since the decryption takes place inside the
CPU and its operation is similar to that of a standard computer.

System Version 2: Discussion This version can implement any cipher including
AES, which is considered strong. This form of encryption was described by

85

Best [Bes80]. Some information about the program such as memory access
patterns can still be obtained.

This method requires manufacturing processors with cryptographic func-
tionality and secret keys for decrypting every fetched instruction. Such pro-
cessors are not widely available today.

System Version 3 This system is based on system version 2 but the decryption
algorithm is implemented in software. We alleviate the hardware require-
ments of system version 2. The CPU stores a secret key which is also known
to the Software Distributor. The VM Compiler reads the “Game" in high
level programming language and provides the “Game" in an encrypted
form where every instruction is encrypted using the secret key. The VM
knows how to decrypt the value stored in one register with a key stored in
another register.

The VM Interpreter runs the following loop:

Algorithm 5 System 3 — VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: decrypt the instruction
4: choose the instruction handling routine
5: execute the routine
6: end while

System Version 3: Discussion This version, is as secure as system version 2 as-
suming the VM internal state is stored at all times inside the CPU internal
memory.

If only the VM runs on the CPU then we can make sure that the state of
the VM such as its registers never leave the CPU. The VM just has to access
all the memory blocks incorporating its state once in a while. The exact
frequency depends on the cache properties.

This method dramatically slows down the software. For example, decrypt-
ing one instruction using AES takes up to 112 CPU cycles on a CPU core
without AES acceleration. However, Intel’s newest processors can reduce
the decryption time to 12 cycles per instruction with AES specific instruc-
tions.

System Version 4 System version 3 took a dramatic performance hit which we
now try to improve.

By combining versions 1 and 3, we implement a substitution cipher as in
version 1. The cipher is polyalphabetic and special instructions embedded
in the code define the permutation that will be used for the following in-
structions.

86

Similar to system version 3, we use the hardware for holding a secret key
that is known also to the Software Distributor.

The VM Interpreter runs the following code

Algorithm 6 System 4 — VM Interpreter Run Loop

1: while VM is running do
2: fetch next instruction
3: decrypt the instruction
4: if current instruction is not special then
5: choose the instruction handling routine
6: execute the routine
7: else
8: decrypt the instruction arguments using the secret key
9: build a new instruction permutation

10: end if
11: end while

System Version 4: Discussion Section 5.7 defines a structure of the special in-
structions and a means to efficiently encode and reconstruct the permuta-
tions.

Dependent instructions should have the same arguments as justified by the
following example which is extracted from the Pi Calculator described in
section 5.8):

01: $bb0_1:
02: lw $2, 24($sp)
03: SWITCH (X)
04: lw $3, 28($sp)
05: subu $2, $2, $3
06: beq $2, $zero, $bb0_4
07: ...
08: $bb0_3:
09: ...
10: lw $3, 20($sp)
11: SWITCH (Y)
12: div $2, $3
13: mfhi $2
14: SWITCH (Z)
15: sw $2, 36($sp)
16: $bb0_4:
17: sw $zero, 32($sp)
18: lw $2, 28($sp)

This is a regular MIPS code augmented with three special instructions on
lines 3, 11 and 14. The extraction consists of three basic blocks labeled

87

bb0_1, bb0_3 and bb0_4. Note that we can arrive at the first line of bb0_4
(line 17) either from the conditional branch on line 6 or by falling through
from bb0_3. In the first case, line 17 is encoded by X and in the second case,
it is encoded by Z. The interpreter should be able to decode the instruction
regardless of the control flow, thus X should be equal to Z. In order to char-
acterize precisely the dependencies between SWITCH instructions we define
the term “flow” and prove some facts about it.

Although, a flow can be defined on any directed graph, one might want
to imagine a control flow graph derived from some function. Then, every
basic block of the graph corresponds to a vertex and an edge connecting x
and y suggests that a jump from x to y might occur.

A flow comprises two partitions of all basic blocks. We call the partitions
left and right. Every set of basic blocks from the left partition has a cor-
responding set of basic blocks from the right partition and vice versa. In
other words, we can think of these partitions as of a set of pairs. Every pair
(A, B) has three characteristics: the control flow can jump from a basic block
in A only to a basic block in B; the control flow can jump to a basic block in
B only from a basic block in A; the sets A and B are minimal, in the sense
that no basic blocks can be omitted from A and B.

The importance of these sets emerges from the following observation. In
order to guarantee that the control flow arrives at a basic block in B with
the same permutation, it is enough to make the last SWITCH instructions of
basic blocks in A share the same argument. This is so, because we arrive at
a basic block in B from some basic block in A. The formal proof follows.

Definition 5.3.1. Given a directed graph G = (V, E) and a vertex v ∈ V. A flow
is a pair (Av, Bv) defined iteratively:

– v ∈ Av;
– If x ∈ Av then for every (x, y) ∈ E, y ∈ Bv;
– If y ∈ Bv then for every (x, y) ∈ E, x ∈ Av.

No other vertices appear in A or B.

A flow can be characterized in another way, which is less suitable for com-
putation but simplifies the proofs. One can easily see that the two defini-
tions are equivalent.

Definition 5.3.2. Given a directed graph G = (V, E) and a vertex v ∈ V. A
flow is a pair (Av, Bv) defined as follows: v ∈ Av if there is a sequence u =
x0, x1, . . . , xk = v s.t. for every 1 ≤ i ≤ k, there is yi ∈ V for which (xi−1, yi), (xi, yi) ∈
E. We call a sequence with this property a chain.

Bv is defined similarly.

We use the above definition to prove several lemmas on flows. We use them
later to justify the characterization of dependent SWITCHes.

88

Since the definition is symmetric with respect to the chain direction, the
following corollary holds.

Corollary 1. For every flow, v ∈ Au implies u ∈ Av.

Lemma 1. If v ∈ Au then Av ⊆ Au.

Proof A chain according to the definition is u = x0, x1, . . . , xk = v. Let
w ∈ Av and let v = x′0, x′1, . . . , x′k′ be the chain that corresponds to w. The
concatenation of these chains proves that w ∈ Au. Therefore, Av ⊆ Au.
�

Lemma 2. If Au and Av are not disjoint then Au = Av.

Proof A chain according to the definition is u = x0, x1, . . . , xk = v. Let
w ∈ Au ∩ Av. From the corollary, u ∈ Aw. The previous Lemma implies
that Au ⊆ Aw and Aw ⊆ Av, thus Au ⊆ Av. The other direction can be
proved in a similar manner. �

Lemma 3. If Au and Av are not disjoint or if Bu and Bv are not disjoint, then
Au = Av and Bu = Bv.

Proof We omit the proof since it is similar to the proof of the previous
lemma. �

Claim 1. Let G = (V, E) be a control flow graph s.t. V is the set of basic blocks and
(x, y) ∈ E if the control flow jumps from x to y. Two SWITCH instructions should
share the same argument if and only if they are the last SWITCH instructions in the
basic blocks u and v s.t. Au = Av. We assume that every basic block contains a
SWITCH instruction.

Proof Consider the instruction γ. We need to prove that the interpreter
arrives at γ with the same permutation regardless of the execution path
being taken.

If there is a SWITCH instruction α preceding γ in the same basic block then
every execution path passes through α in its way to γ, so the interpreter
arrives at γ with the permutation set at α.

If there is no SWITCH instruction preceding γ in its basic block w, then con-
sider two execution paths P and Q and let u and v be the basic blocks pre-
ceding w in P and Q, respectively. Denote by α the last SWITCH of u and by
β the last SWITCH of v.

Clearly w ∈ Bu and w ∈ Bv, and thus by the last lemma, Au = Av. There-
fore, α and β share the same argument and on both paths the interpreter
arrives at γ with the same permutation. �

89

The proposed system allows calling or jumping only to destinations known
at compile-time, otherwise the dependency graph can not be constructed
reliably. Nevertheless, polymorphic behavior still can be realized. Consider
a type hierarchy in which a function F is overridden. The destination ad-
dress of a call to F can not be determined at compile-time. Note however
that such a call can be replaced by a switch statement, that dispatches to the
correct function according to the source object type.

System Version 5 We rely on the previous version but give up on the assumption
that the CPU is keeping a secret key that is known to the software distribu-
tor. Instead we run a key exchange algorithm [Sch96b].

Algorithm 7 Key Exchange in System 5

1: The Software Distributor publishes his public key
2: The VM chooses a random number. The random number acts as the secret

key.The random number is stored inside one of the CPU registers.
3: The VM encrypts it using a sequence of actions using the software distributor

public key.
4: The VM sends the encrypted secret key to the Software Distributor.
5: The Software Distributor decrypts the value and gets the secret key.

System Version 5: Discussion The method is secure if and only if we can guar-
antee that the secret key was randomized in a real (non-virtual) environ-
ment where it is impossible to read CPU registers. Otherwise it would be
possible to run the program in a virtual environment where the CPU regis-
ters, and therefore, the secret key, are accessible to the user. Another advan-
tage of random keys is that different “Game"s have different keys. Thus,
breaking the protection of one “Game" does not compromise the security of
others.

System Version 6 This version is built on top of the system described in the pre-
vious section. Initially, we run the verification methods described by Ken-
nell and Jamieson [KJ03].

Kennel and Jamieson propose a method of hardware and software verifica-
tion that terminates with a shared “secret key" stored inside the CPU of the
remote machine. The method is described in algorithm 8.

Using the algorithm of Kennel and Jamieson we can guarantee the genuin-
ity of the remote computer, i.e. the hardware is real and the software is not
malicious.

A simpler way to perform such a verification is described below. In order
to ensure that the hardware is real we can require any CPU to keep an iden-
tifier which is a member of a random sequence. This will act as a shared
secret in the identification algorithm. The algorithm is performed by the

90

Algorithm 8 System 6 — Genuine Hardware and Software Verification

1: The OS on the remote machine sends a packet to the distributor containing
information about its processor.

2: The distributor generates a test and sends a memory mapping for the test.
3: The remote machine initializes the virtual memory mapping and acknowl-

edges the distributor.
4: The distributor sends the test (a code to be run) and public key for response

encryption.
5: The remote machine loads the code and the key into memory and transfers

control to the test code. When the code completes computing the checksum,
it jumps to a (now verified) function in the OS that encrypts the checksum
and a random quantity and sends them to the distributor.

6: The distributor verifies that the checksum is correct and the result was re-
ceived within an allowable time, and if so, acknowledges the remote host of
success.

7: The remote host generates a new session key. The session key acts as our
shared secret key, concatenates it with the previous random value, encrypts
them with the public key and then sends the encrypted key to the distributor.

VM without knowing the identifier itself. Identification algorithms are de-
scribed in greater details in [Sch96c].

In order to ensure the authenticity of the software, we can initiate the chain
of trust in the CPU itself as in the XBox 360. The CPU will initiate its boot
sequence from an internal and irreplaceable ROM. The memory verified by
algorithm 8 should reside in the internal memory of the CPU. This issue is
discussed in greater detail in section 5.6.

System Version 6: Discussion System 6 alleviates the risk of running inside a
VM that is found in system version 5.

System Version 7 Modern virtual machines like JVM [LY99] and CLR [Box02],
employ just-in-time compilers to increase the performance of the program
being executed. It is natural to extend this idea to the just-in-time decryp-
tion of encrypted programs. Instead of decrypting only a single instruction
each time, we can decrypt an entire function. Clearly, decrypting such a
large portion of the code is safe only if the CPU instruction cache is suf-
ficiently large to hold it. When the execution leaves a decrypted function
either by returning from it or by calling another function, the decrypted
function is erased and the new function is decrypted. The execution contin-
ues. The benefit of this approach is obvious: every loop that appears in the
function is decrypted only once, as opposed to being decrypted on every
iteration by the interpreter. The relatively low cost of decryption, allows
us to use a stronger and thus less efficient cryptographic functions, making
this approach more resistant to crypt-analysis.

91

This approach uses the key-exchange protocol described in system version
6. We assume that there is a shared secret key between the Software Dis-
tributor and the End User. The Software Distributor encrypts the binary
program using the shared key and sends the encrypted program to the End
User. The virtual machine loads the program to the memory in the same
fashion that the operating system loads regular programs to main memory.
After the program is loaded and just before its execution begins, the virtual
machine performs the following steps:

1. Make a copy of the program’s code in another location.
2. Overwrite the original program’s code with some value for which the

CPU throws an illegal op-code exception, e.g. 0xFF on x86.
3. Set a signal handler to catch the illegal op-code exception.

We call the memory location containing the illegal op-codes as the “text
segment" or "T". The copy, which was made on the first step, is called the
“copy segment" or "C". After performing these steps, the program execution
begins and then immediately throws an illegal op-code exception. This, in
turn, invokes the handler set on step 3.

This mechanism is similar to just-in-time compilation. The handler is re-
sponsible for:

1. Realizing which function is absent.
2. Constructing it.

The first step can be done by investigating the program stack. We begin
by finding the first frame whose instruction pointer is inside T. The list of
instruction pointers can be obtained through the “backtrace" library call.
Next, we have to identify the function that contains this address. This can
be done either by naively traversing the entire symbol table giving us linear
time complexity, or by noting that this problem can be solved by the “inter-
val tree" data structure [CLRS01]. The “interval tree" provides a logarithmic
complexity: each function is a memory interval that contains instructions.
The instruction pointer is a point and we want to find an interval that inter-
sects with this point.

After finding the function F to be constructed in T, we can compute its loca-
tion in C, copy F from C to T and finally decrypt it in C.

Note that in contrast to just-in-time compilers, we need to destroy the code
of the previously decrypted function before handling the new function. The
easiest way to do this is to write 0xFF over the entire text segment.

System version 7: Discussion Nowadays, when CPUs are equipped with megabytes
of cache, the risk of instruction eviction is low even if the entire functions of
moderate size are decrypted at once. Moreover, we propose to hold in the
cache several frequently used functions in a decrypted form. This way, as
can be seen in Fig. 26, we improve the performance drastically. We did not

92

FIGURE 25 Just-In-Time Decrypting

Algorithm 9 Just-In-Time Decryption

1: while Execution continues do
2: The program is copied from T to C.
3: T is filled with illegal instructions.
4: Illegal op-code exception is thrown and the operating system starts han-

dling this exception.
5: The execution is transferred to the VM handler.
6: T is filled with illegal instructions.
7: Intersection is found between the instruction pointer and an interval in the

interval tree.
8: The corresponding function is copied from C to T and decrypted.
9: end while

93

explore in-depth the function erasure heuristic, i.e. which functions should
be erased upon exit and which should remain. However, we believe that
the naive approach described below will suffice, meaning it is sufficient to
hold the most frequently used functions such that the total size is limited
by some fraction of the cache size. This can be implemented easily by al-
locating a counter for each function and counting the number of times the
function was invoked.

Parallel System: Future Work Modern CPUs consist of multiple cores and a cache
is shared between these cores. This system is based on system version 6 that
tries to increase its performance by utilizing the additional cores available
on the CPU.

The key observation is that the decryption of the next instruction and the ex-
ecution of the current instruction can be done in parallel on different cores.
In this sense, we refer to the next instruction as the one that will be executed
after the execution of the current instruction. Usually, the next instruction
is the instruction that immediately follows the current instruction.

This rule, however, has several exceptions. If the current instruction is
SWITCH, then the next instruction, decrypted by another thread, is decrypted
with the wrong key. If the current instruction is a branch instruction, then
the next instruction, decrypted by another thread, will not be used by the
main thread. We call the instructions of these two types “special instruc-
tions". In all the other cases, the next instruction is being decrypted while
the current instruction is executed.

These observations give us a distributed algorithm for the interpreter:

Algorithm 10 Core I Thread

1: while VM is running do
2: read instruction at PC + 1
3: decrypt the instruction
4: wait for Core II to execute the instruction at PC
5: erase (write zeros over) the decrypted instruction
6: end while

Even better performance can be achieved in systems where the CPU chip
contain CPU and GPU. (system on Chip) In such cases GPGPU-version of
Truly protect can be achieved where the GPU decipher the instruction that
are executed by the CPU. (This is the reason why we require system on
chip. We cannot allow deciphered instructions to travel on a bus) Using
block AES ciphers great speed up can be achieved.

System Version 7: Discussion We did not implement the proposed system and
it is a work in progress. Clearly, it can substantially increase the system
performance. Note that we benefit here from a polyalphabetic cipher, since
it is practically impossible to use a block cipher like AES in this context.

94

Algorithm 11 Core II Thread

1: while VM is running do
2: if previous instruction was special then
3: decrypt instruction at PC
4: end if
5: fetch next instruction at PC
6: choose instruction handler routine
7: execute instruction using handler routine
8: if previous instruction was special then
9: erase (write zeros over) the decrypted instruction

10: end if
11: wait for Core I to decrypt the instruction at PC + 1
12: end while

Block ciphers operate on large portions of plaintext or ciphertext, so they
may require the decryption of many instructions at once. After branching
to a new location, we will have to find the portion of a program that was
encrypted with the current instruction and decrypt all of them. Obviously,
this is far from being optimal.

5.4 Final Details

5.4.1 Scenario

In this section, we provide a scenario that involves all the dramatis personae. We
have the following participants: Victor — a Hardware Vendor, Dan — a Software
Distributor, Patrick — a programmer developing PatGame and Uma — an End
User.

Uma purchased a computer system supplied by Victor with Dan’s VM pre-
installed as part of the operating system. Patrick, who wants to distribute his
“Game", sends it to Dan. Dan updates his online store to include PatGame as a
new “Game".

Uma, who wants to play PatGame, sends a request for PatGame to Dan via
his online store. Dan authenticates Uma’s computer system, possibly in cooper-
ation with Victor, as described in system version 6. After the authentication is
completed successfully, Uma’s VM generates a random secret key R, encrypts it
with Dan’s public key D and sends it to Dan. Dan decrypts the message obtain-
ing R. This process was described in version 5. As described in version 4, Dan
compiles the PatGame with the key R and sends it to Uma. Uma’s VM executes
the PatGame decrypting the arguments of special instructions with R.

A problem arises when Uma’s computer is rebooted since the key R is stored
in a volatile memory. Storing it outside the CPU will compromise its secrecy and
thus the security of the whole system. We propose to store the key R on Dan’s

95

side.
Suppose Uma wants to play an instance of PatGame already residing on her

computer. Uma’s VM generates a random secret key Q, encrypts it with Dan’s
public key D and send it to Dan. Dan authenticates Uma’s computer. After the
authentication completes successfully, Dan decrypts the message obtaining Q.
Dan encrypts the stored key R with the key Q, using AES for example, and sends
it back to Uma. Uma decrypts the received message obtaining R, which is the
program’s decryption key. Thus the encrypted program doesn’t have to be sent
after every reboot of Uma’s computer.

5.4.2 Compilation

Since the innovation of this chapter is mainly the 4th version of the system, we
provide here a more detailed explanation of the compilation process. See section
5.8 for an example program passing through all the compilation phases.

The compiler reads a program written in a high level programming lan-
guage. It compiles it as usual up to the phase of machine code emission. The
compiler then inserts new special instructions, which we call SWITCH, at ran-
dom with probability p before any of the initial instructions. The argument of the
SWITCH instruction determines the permutation applied on the following code up
to the next SWITCH instruction. Afterwards, the compiler calculates the depen-
dencies between the inserted SWITCH instructions. The arguments of the SWITCH

instructions are set randomly but with respect to the dependencies.
The compiler permutes the instructions following SWITCH according to its

argument. In the final pass we encrypt the arguments of all SWITCHes by AES
with the key R.

5.4.3 Permutation

In order to explain how the instructions are permuted, we should describe first
the structure of the MIPS ISA we use. Every instruction starts with a 6-bit op-
code that includes up to three 5-bit registers and, possibly, a 16-bit immediate
value. The argument of the SWITCH instruction defines some permutation σ over
26 numbers and another permutation τ over 25 numbers. σ is used to permute the
op-code and τ is used to permute the registers. Immediate values can be encoded
either by computing them as described by Rolles [Rol09] or by encrypting them
using AES.

5.5 Security

The method described by Rolles requires a complete knowledge of the VM’s in-
terpreter dispatch mechanism. This knowledge is essential for implementing a
mapping from bytecode to intermediate representation (IR). In the described sys-

96

tem, a secret key, which is part of the dispatch mechanism, is hidden from an ad-
versary. Without the secret key, the permutations are constructed secretly. With-
out the permutations the mapping from bytecode to IR can not be reproduced.

The described compiler realizes an auto-key substitution cipher. This class
of ciphers is on one hand more secure than the substitution cipher used by VM-
Protect, and, on the other hand, does not suffer from the performance penalties
typical to the more secure AES algorithm.

As discussed by Goldreich [Gol86], some information can be gathered from
memory accessed during program execution. The author proposes a way to hide
the access patterns, thus not allowing an adversary to learn anything from the
execution.

In an effort to continue improving the system performance we have consid-
ered using an efficient Low Level Virtual Machine (LLVM) [LA04]. Unfortunately
modern virtual machines with efficient just-in-time compilers are unsuitable for
software protection. Once the virtual machine loads the program, it allocates data
structures representing the program which are stored unencrypted in memory.
Since this memory can be evicted from cache at any time, these data structures
become a security threat in a software protection system.

5.6 Assumptions in Modern CPUs

We posed two assumptions on the CPU that guarantee the security of the entire
system. This section discusses the application of the system to the real world
CPUs. In other words, we show how to use the facilities of modern CPUs to
imply the assumptions.

Let us first recall the assumptions:

– The inner state of the CPU can not be read by the user.
– The CPU has a sufficient amount of internal memory.

As to the later assumption, we should first clarify the purpose of the internal
memory. In essence this memory stores three kinds of data. The first one is the
shared secret key. The second is the state of the virtual machine, specifically the
current permutation and the decrypted instruction. The third kind of data is some
parts of the kernel code and the VM code. The reason behind the last kind is less
obvious, so consider the following attack.

An attacker lets the algorithm of Kennel and Jamieson to complete success-
fully on a standard machine equipped with a special memory. This memory can
be modified externally and not by the CPU. Note that no assumption prohibits
the attacker to do so. Just after the completion of the verification algorithm the
attacker changes the memory containing the code of the VM to print every de-
crypted instruction. Clearly this breaks the security of the proposed system. Ob-
serve that the problem is essentially the volatility of critical parts of the kernel
code and the VM code. To overcome this problem we have to disallow modifica-

97

tion of the verified memory. Since the memory residing inside the CPU can not
be modified by the attacker, we can assume it to remain unmodified.

Note that the first and the second kinds which hold the shared secret key
and the VM’s state should be readable and writeable, while the third kind which
holds the critical code should be only readable.

On Intel CPUs, we propose to use registers as a storage for the shared secret
key and the VM’s state and to use the internal cache as a storage for the critical
code.

To protect the key and the state we must store them in registers that can be
accessed only in kernel mode. On Intel CPUs only the special purpose segment
registers can not be accessed in user mode. Since these registers are special we can
not use them for our purposes. However on 64-bit CPUs running 32-bit operating
system, only half of the bits in these registers are used to provide the special
behaviour. The other half can be used to store our data.

The caching policy in Intel CPUs can be turned on and off. The interesting
thing is that after turning it off the data is not erased from the cache. Subsequent
reads of this data return what is stored in the cache even if the memory has been
modified. We use this property of the cache to extend the algorithm of Kennel
and Jamieson not only to validate the code of the kernel and the VM before the
key generation, but also to guarantee that the validated code will never change.
Two steps should be performed just after installing the virtual memory mapping
received from the distributor in verification algorithm: loading the critical part of
the kernel and the VM into the cache and turning the cache off. This behaviour
of Intel CPUs is documented in section 11.5.3 of [Int12].

The first assumption disallows the user to read the above-mentioned inter-
nal state of the CPU physically, i.e. by opening its case and plugging wires into
the CPU’s internal components. Other means of accessing the internal state are
controlled by the kernel, and so are guaranteed to be blocked.

5.7 Performance

In this section, we analyze in details the performance of the proposed cipher.
Throughout this section we compare our cipher to AES. This is due to recent ad-
vances in CPUs that make AES to be the most appropriate cipher for program
encryption [Int10]. We provide both theoretical and empirical observations prov-
ing our algorithm’s supremacy.

We denote the number of cycles needed to decrypt one word of length w
using AES by α.

The last subsection, compares system version 7 to a regular, unprotected
execution.

98

5.7.1 Version 3 Performance

Consider version 3 of the proposed system and assume it uses AES as a cipher.
Every instruction occupies exactly one word such that n instructions can be de-
crypted in nα cycles.

5.7.2 Switch Instructions

As described above, the switch instruction is responsible for choosing the current
permutation σ. This permutation is then used to decrypt the op-codes of the
following instructions.

Some details were omitted previously, since they affect only the system’s
performance but do not affect its security or overall design:

– How does the argument of a SWITCH instruction encode the permutation?
– Where is the permutation stored inside the processor?

Before answering these questions we introduce two definitions:

Definition 5.7.1. Given an encrypted program, we denote the set of all instructions
encrypted with σ by Iσ and call it color-block σ.

Definition 5.7.2. Given a set I of instructions, we denote by D(I) the set of different
instructions (those having different op-codes) in I.

The key observation is that it is enough to define how σ acts on the op-
codes of D(Iσ), which are instructions that occur in the color-block σ. Likewise,
we noticed that some instructions are common to many color-blocks, while others
are rare.

Denote by F = { f1, f2, . . . , f`} the set of the ` most frequent instructions. Let
R(I) be the set of rare instructions in I, i.e. R(I) = D(I)− F. The argument of
SWITCH preceding a color-block σ has the following structure (and is encrypted
by AES as described in version 5):

σ(f1), σ(f2), . . . , σ(f`),
r1, σ(r1), r2, σ(r2), . . . , rk, σ(rk)

where R(Iσ) = {r1, r2, . . . , rk}. If σ acts on m-bits long op-codes, then the length
of σ’s encoding is φ = (`+ 2k)m bits. Thus, it’s decryption takes (`+2k)m

w α cycles.

5.7.3 Version 4 Performance

Consider a sequence of instructions between two SWITCHes in the program’s con-
trol flow. Suppose these instructions belong to Iσ and the sequence is of length
n. The VM Interpreter starts the execution of this sequence by constructing the
permutation σ. Next, the VM Interpreter goes over all the n instructions, decrypts
them according to σ and executes them, as described in version 5.

99

The VM Interpreter stores σ(f1), σ(f2), . . . , σ(f`) in the CPU registers and
the rest of σ in the internal memory. This allows decryption of frequent instruc-
tions in one cycle. Decryption of rare instructions takes β+ 1 cycles where β is the
internal memory latency in cycles. Denote by q the number of rare instructions in
the sequence.

We are now ready to compute the number of cycles needed to decrypt the
sequence:

σ construction:
(`+ 2k)m

w
α +

frequent instructions: (n− q) +
rare instructions: q(β + 1)

5.7.4 Comparison

On MIPS op-codes are m = 6 bits long and w = 32. The best available results for
Intel newest CPUs argue that α = 14 [Wik]. Typical CPUs’ Level-1 cache latency
is β = 3 cycles. The correlation between `, φ and q is depicted in table 1.

We have noticed that most of the cycles are spent constructing permutations,
and this is done every time SWITCH is encountered. The amount of SWITCHes,
and thus the time spent constructing permutations, varies with the probability p
of SWITCH insertion. The security, however, varies as well. Figure 27 compares
program decryption time (in cycles) using AES and our solution with different
values of p.

Note that on CPUs not equipped with AES/GCM [Wik], like Pentium 4,
α > 112. In this case our solution is even more beneficial. Figure 28 makes the
comparison.

5.7.5 Version 7 Performance

The performance is affected mainly by the amount of function calls, since each
call to a new function requires the function decryption. This performance penalty
is reduced by allowing several functions to be stored in a decrypted form simul-
taneously.

Figure 26 compares the running times of the same program in 3 configura-
tions and with inputs of different sizes. The program inverses the given matrix
using Cramer’s rule. The program consists of three functions computing deter-
minant, minor, and finally inversion of a square matrix. The determinant is com-
puted recursively, reducing the matrix order on each step by extracting its minor.
We run this program on matrices of different sizes.

The three configurations of the program include:

1. Non-encrypted configuration — just a regular execution.
2. Encrypted configuration allowing two functions to reside in the cache si-

multaneously.

100

3. Encrypted configuration allowing a single function to reside in the cache
simultaneously.

5 6 7 8 9
10−2

10−1

100

101

Input Size

R
un

ni
ng

Ti
m

e
(s

ec
)

Non Encrypted
Encrypted 2 in Cache
Encrypted 1 in Cache

FIGURE 26 Just-In-Time Decryption Performance. Program Running Time in Seconds
as a Function of Input Size. Note the Logarithmic Scale.

TABLE 1 Correlation Between `, φ and q. Here p = 0.2

` 0 1 2 3 4 5 6
φ 58 39 42 41 58 46 48
q
n 100% 70% 50% 34% 34% 26% 21%

5.8 Example

We provide a detailed example of a program passing through all the compilation
phases. The original program is written in C. It computes the sum of the first 800
digits of π.

int main(){
int a=10000,b,c=2800,d,e,f[2801],g,s;

for(;b-c;) f[b++]=a/5;

for(;d=0,g=c*2;c-=14,e=d%a){
for(b=c;

d+=f[b]*a,f[b]=d%--g,d/=g--,--b;
d*=b);

s += e+d/a;

101

0.05 0.1 0.15 0.2 0.25 AES

400

600

800

1,000

1,200

FIGURE 27 Program Decryption Time (in cycles) Using AES and our Cipher with Dif-
ferent Values of p. ` = 4. α = 14.

}

return s;
}

The corresponding output of the compiler is listed below. It is a combination of
MIPS assembly and MIPS machine instructions. The leftmost column contains
the instruction number. The second column contains the machine instruction.
The rightmost column contains the assembly instruction. Block labels are em-
phasized.

Instructions of the form

addiu $zero, $zero, ...

are an implementation of the SWITCH instruction. Colors correspond to the per-
mutation that should be applied to the instructions.

For example, consider the instruction at 000c. It sets the current permutation
to 5 (corresponding to gray color). As a result, all following instructions (up to
the next SWITCH) are colored gray. Note that the instruction at 000c is not colored
gray, since it should be encoded by the previous permutation (pink, correspond-
ing to number 4 and set at 0005).

After the instructions are permuted according to their colors, the final phase
takes place: the compiler encrypts special instructions’ arguments using AES
with the secret key.

$main (1)

0001 24000002 addiu $zero, $zero, 2

0002 24000003 addiu $zero, $zero, 3

102

0.05 0.1 0.15 0.2 0.25 AES

0.2

0.4

0.6

0.8

1

·104

FIGURE 28 Program Decryption Time (in cycles) Using AES and Our Cipher with Dif-
ferent Values of p. ` = 4. α = 112.

0003 27bdd400 addiu $sp, $sp, -11264
0004 24022710 addiu $2, $zero, 10000
0005 24000004 addiu $zero, $zero, 4

0006 afa00010 sw $zero, 16($sp)
0007 24030af0 addiu $3, $zero, 2800
0008 afa20014 sw $2, 20($sp)
0009 afa3001c sw $3, 28($sp)

$bb0_1 (4)

000b 8fa20018 lw $2, 24($sp)
000c 24000005 addiu $zero, $zero, 5

000d 8fa3001c lw $3, 28($sp)
000e 00431023 subu $2, $2, $3
000f 10020000 beq $2, $zero, $bb0_4

0011 3c026666 lui $2, 26214
0012 34426667 ori $2, $2, 26215
0013 8fa30014 lw $3, 20($sp)
0014 8fa40018 lw $4, 24($sp)
0015 00620018 mult $3, $2
0016 00001010 mfhi $2
0017 00400803 sra $3, $2, 1
0018 24000006 addiu $zero, $zero, 6

103

0019 0040f801 srl $2, $2, 31
001a 27a50030 addiu $5, $sp, 48
001b 00801000 sll $6, $4, 2
001c 24840001 addiu $4, $4, 1
001d 24000004 addiu $zero, $zero, 4

001e 00621021 addu $2, $3, $2
001f 00a61821 addu $3, $5, $6
0020 afa40018 sw $4, 24($sp)
0021 ac620000 sw $2, 0($3)
0022 0800000a j $bb0_1

$bb0_3 (7)

0024 8fa20020 lw $2, 32($sp)
0025 24000008 addiu $zero, $zero, 8

0026 8fa30014 lw $3, 20($sp)
0027 0043001a div $2, $3
0028 00001012 mflo $2
0029 8fa30024 lw $3, 36($sp)
002a 8fa42bf8 lw $4, 11256($sp)
002b 00621021 addu $2, $3, $2
002c 00821021 addu $2, $4, $2
002d afa22bf8 sw $2, 11256($sp)
002e 8fa2001c lw $2, 28($sp)
002f 2442fff2 addiu $2, $2, -14
0030 afa2001c sw $2, 28($sp)
0031 8fa20020 lw $2, 32($sp)
0032 8fa30014 lw $3, 20($sp)
0033 24000009 addiu $zero, $zero, 9

0034 0043001a div $2, $3
0035 00001010 mfhi $2
0036 24000005 addiu $zero, $zero, 5

0037 afa20024 sw $2, 36($sp)

$bb0_4 (5)

0039 afa00020 sw $zero, 32($sp)
003a 8fa2001c lw $2, 28($sp)
003b 00400800 sll $2, $2, 1
003c afa22bf4 sw $2, 11252($sp)
003d 10020000 beq $2, $zero, $bb0_8

104

003f 8fa2001c lw $2, 28($sp)
0040 afa20018 sw $2, 24($sp)

$bb0_6 (5)

0042 8fa20018 lw $2, 24($sp)
0043 27a30030 addiu $3, $sp, 48
0044 00401000 sll $2, $2, 2
0045 00621021 addu $2, $3, $2
0046 2400000a addiu $zero, $zero, 10

0047 8c420000 lw $2, 0($2)
0048 8fa40014 lw $4, 20($sp)
0049 8fa50020 lw $5, 32($sp)
004a 00440018 mult $2, $4
004b 2400000b addiu $zero, $zero, 11

004c 00001012 mflo $2
004d 00a21021 addu $2, $5, $2
004e afa20020 sw $2, 32($sp)
004f 8fa42bf4 lw $4, 11252($sp)
0050 2484ffff addiu $4, $4, -1
0051 afa42bf4 sw $4, 11252($sp)
0052 8fa50018 lw $5, 24($sp)
0053 00a01000 sll $5, $5, 2
0054 0044001a div $2, $4
0055 00001010 mfhi $2
0056 00651821 addu $3, $3, $5
0057 ac620000 sw $2, 0($3)
0058 8fa22bf4 lw $2, 11252($sp)
0059 2400000c addiu $zero, $zero, 12

005a 2443ffff addiu $3, $2, -1
005b afa32bf4 sw $3, 11252($sp)
005c 8fa30020 lw $3, 32($sp)
005d 0062001a div $3, $2
005e 00001012 mflo $2
005f afa20020 sw $2, 32($sp)
0060 24000007 addiu $zero, $zero, 7

0061 8fa20018 lw $2, 24($sp)
0062 2442ffff addiu $2, $2, -1
0063 afa20018 sw $2, 24($sp)
0064 10020000 beq $2, $zero, $bb0_3

105

0066 8fa20018 lw $2, 24($sp)
0067 2400000d addiu $zero, $zero, 13

0068 8fa30020 lw $3, 32($sp)
0069 00620018 mult $3, $2
006a 00001012 mflo $2
006b 24000005 addiu $zero, $zero, 5

006c afa20020 sw $2, 32($sp)
006d 08000041 j $bb0_6

$bb0_8 (5)

006f 8fa22bf8 lw $2, 11256($sp)
0070 27bd2c00 addiu $sp, $sp, 11264
0071 03e00008 jr $ra

We discussed several steps toward software protection. Our system did not
include obfuscation procedures beyond using a VM. Therefore, very little can be
said about our system protection and performance compared to industrial prod-
ucts that use obfuscation procedures as a means of primary protection. Obfusca-
tion is an integral component and may provide the bread and butter of many real
life products. Since such measures may increase the challenges faced by software
hackers, we make no claim regarding the vulnerability of such products.

Our system is designed only to mask the code of the software from a mali-
cious user. The system can be used to prevent the user from either reverse engi-
neering the “Game" or to create an effective key validation mechanism. It does
not prevent access to the “Game” data which may be stored unprotected in mem-
ory. Even if the entire “Game" is encoded with this system, a player may still
hack the “Game” data to affect his high score, credits or “lives". A different en-
cryption mechanism, which can be protected by Truly-Protect, can be added to
prevent it. This was not covered in the chapter. For similar reasons, the system
cannot be used to prevent copying of copyrighted content, such as movies and
audio, unless the content is also encrypted. It can be used to mask decoding and
decryption properties.

An interesting side effect of the Truly-Protect system is in using similar tech-
nology in virus, spyware and other malicious software. If we run malware via en-
crypting virtual machine it may be very hard to identify the malware and protect
the user against it.

While the system can indeed mask the virus software, there are three de-
fenses that are still available to the user.

1. The software distributor of the VM has to be reliable.
2. The malware can still be detected by intrusion detection system and spy-

ware removal tools that analyze its behavior.
3. Software protection relies on [KJ03] to prevent running on VMs. If the user

is running on a VM the malware cannot run defeating its purpose by de-
fault.

6 LLVM PREFETCHING AND PRE-EXECUTION

We describe a system to speed up I/O bound scientific computation and num-
ber crunching. This system can be used to create a number of prefetch threads
running in parallel to the main computation.

The system is designed to run on a specific environment of I/O bound com-
putation with just one process running on designated number crunching ma-
chine. This system is not likely to be beneficial and may be harmful if the system
is not I/O bound or if other processes are running on the same machine as the
prefetching threads we run consume CPU power and may actually generate extra
load on the machine.

6.1 Introduction

Today applications find ample amount of CPU power but suffer greatly from I/O
latency. We propose to employ pre-execution to trade some of this CPU power
for I/O latency improvement: the I/O relative instructions are extracted from the
original program to separate threads. They are called prefetching threads. They
are faster than the original since they contain less instructions, which allows them
to run ahead of the main computation. We implemented LLVM-PREFETCH — a
virtual machine equipped with a just-in-time compiler that is able to:

(a) Find the I/O instructions that are benefited most from pre-execution.

(b) Construct multiple pre-execution threads for parallel prefetching.

(c) Synchronize between the pre-executed thread and the main computation.

(d) Terminate threads that do not improve the overall performance;

(e) Optimize the pre-executed threads aggressively based on the runtime data.
Our virtual machine derives from the Low Level Virtual Machine (LLVM)
project.

107

6.2 Introduction

6.2.1 CPU–I/O Performance Gap

Recent advances in CPU technologies provide scientific applications with great
power to achieve exciting results. However, I/O and disk technologies did not
improve at the same pace. This was repeatedly shown in [Lud04, May01, SR97,
Ree03, WG97, SCW05] among other sources proving that scientific computing
performance suffers greatly from I/O latency and poor response time.

The root cause for the performance degradation comes from the improve-
ment nature. While CPU rate and multi-core technology are developed at almost
exponential rate (according to or close by Moore’s law), I/O speed experiences
linear improvement. Today’s disks may be 2-3 times faster than disks manufac-
tured 10 years ago while CPUs today offer 4 times more cores.

The notably slower improvement rate of disk performance when compared
to CPU performance has created what is now known as the I/O wall or the per-
formance gap.

There have been massive efforts in reducing the I/O latency and improving
the I/O performance in multiple fields. In the physical level, multiple disks are
now used in the RAID environment allowing linear improvement in read and
write speed by the use of more spindles. Advances in network and in intercon-
nect technologies with the introduction of high speed interconnects such as Infini-
band [LMVP04], FCoE [DJ08], etc. have led to the use of caching and distributed
systems. Distributed file systems, such as Google file system [GGL03], Linux’s
Ceph [Wei07], IBM’s Global-Parallel file system (GPFS) [SH02], and other sys-
tems ([SKRC10, Clu02, CLRT00]). These systems use multiple disk storage from
remote interconnected locations. This distributed technique can usually increase
read and write throughput in linear proportion to the size of the cluster, however,
it cannot improve access latency since the data is still stored on high latency disk
drives.

Two physical approaches to reduce access latency are caching file pages in
memory and new solid state disk drives. Caching refers to storing data in RAM
instead of disk drive, typically where the data is located near the server cache. A
common implementation of this method is memcached [Fit04], which is found in
LiveJournal, Facebook and Wikipedia.

Using a caching server is a by product of a recent observation that for the
first time since computer networks were developed, they provide faster response
time than local disk. Caching allows for high performance and low latency access
to random data but comes with a very high price tag. However, when a dataset
is very large, a system to decide which files to load to the cache is still needed.

Using solid state disks is an interim solution for reducing access times that
still bears a very high price tag. Solid state disks today are found only on high
end servers and laptops and are yet to appear on mundane number crunchers.
Furthermore, even solid state disk drives are inefficient when compared to the

108

CPU power of even a modest number cruncher.
I/O access patterns of a distributed memory caching system include a large

number of small irregular accesses as shown in [KN94, Ree03]. Furthermore, the
problem of I/O modeling, condensing multiple I/O requests to a single request
and data sieving are handled in [TGL99, Ree03]. It is clear that in many cases, it
is impossible to combine small I/O requests due to the nature of the application.

In this chapter, we focus on I/O prefetching — another commonly used
technique to hide I/O latency by bringing I/O pages to memory long before
they are needed. Several previous studies on prefetching [DJC+07, EK90, May01,
Pat97, Ree03, PS05] demonstrated performance gains and successes. However,
as processor technology continues to improve and the performance gap widens,
more aggressive prefetching methods are required.

Today, the CPU computation rate is often a million times faster than disk
access time. CPUs today usually have several cores whose performance is mea-
sured in nanoseconds, while disk access time is still measured in miliseconds. A
huge gap creates the necessity for more complex systems to predict and prefetch
the pages needed for the running of the application. Furthermore, more complex
prediction systems now have the opportunity to be successful in prefetching the
required pages. This is due to the availability of 64bit systems, lower memory
prices, OS support for buffer caches and the aforementioned technologies such as
Infiniband and FCoE that provide much greater and cheaper I/O bandwidth.

6.2.2 Virtualization

Process virtual machines (VM) or application virtual machines run as normal ap-
plications inside the OS and support a single running process as opposed to a
system virtual machines such as KVM [Kiv07] or Xen [BDF+03] that run a com-
plete system.

A VM is created when the process is created and then it is destroyed when
the process is terminated. VM provides a platform independent programming
environment and means to access storage, memory or threading resources.

VM provides high level abstraction for programming languages such as
Java or C# via JVM [LY99] or CLR [Box02], respectively, or low level abstraction
for a programming language such as C that uses LLVM.

Furthermore, in some cases the VM acts as an agent that provides additional
services besides execution and platform independency. Such services may in-
clude distributed execution such as PVM [GBD+94], byte code verification [LY99]
and memory leaks and thread debugging [NS03].

6.2.3 Main Results

By considering all these new technology trends and observations, we propose a
pre-execution prefetching approach that improves the I/O access performance.
It avoids the limitation of traditional prediction-based prefetching approaches
that have to rely on perceivable patterns among I/O accesses. It is applicable

109

to many application types including those with unknown access patterns and
random accesses.

Several researchers have proposed to implement the prefetching technique
inside the pre-processor. However, this solution is either time-consuming, since
an huge amount of code should be emitted and compiled, or requires a profile-
driven compilation in order to locate the most critical spots where this technique
is then applied.

Our implementation is part of VM: the program compilation time remains
unchanged and no profiling phases are required. During the program’s execu-
tion, VM locates the critical spots — program instructions that will benefit most
from prefetching — and applies the prefetching technique to them.

The proposed approach runs several prefetching threads in parallel to uti-
lize the CPU power more aggressively. This was enabled by a dependency anal-
ysis technique, which we call layer decomposition.

The prefetching threads are then optimized by eliminating rarely used in-
structions. This is achieved through program instrumentation carried by the VM
during runtime.

The rest of the chapter is organized as follows: section 6.3 explains what
"pre-execution" is and how it can help I/O-bound applications. Section 6.4 presents
the means used to isolate prefetching threads from the main computation and
the reason behind the need for such an isolation. Section 6.5 introduces LLVM,
which is a framework we used for VM construction. The actual construction of
the prefetching threads is described in section 6.6. A library, which was devel-
oped to support VM, is described in section 6.7. Sections 6.9 and 6.10 present the
experimental results measured during the evaluation of our system. While the
former section gives a broad overview of the results, the later provides a detailed
analysis of a specific program execution. We review the related work in section
6.11. Conclusions are discussed in section 6.12.

6.3 Pre-execution

The runtime of a computer program can be seen as an interleave between CPU-
bound and I/O-bound segments. In the CPU-bound segments, the software
waits for some computation to be completed, and likewise, in I/O-bound seg-
ments, the system waits for the completion of the I/O operations [SGG08].

A well known idea is that if I/O-bound and CPU-bound segments can be
executed in parallel then the computation time can be significantly improved.
That is the key feature in the proposed approach: we would like the VM to auto-
matically to overlap the CPU-bound and the I/O-bound segments via prefetching
without the need for manual injections of functions like madvise(2).

Since we already discussed the performance gap between CPU and I/O,
we can assume that more often than not the system runs I/O bound segments.
We assume that during process runtime there is the available CPU power that

110

can be used for prefetching. Furthermore, we can also assume that the I/O has
significantly high latency while CPU has almost no latency so prefetching should
also contribute to eliminate system idle time.

The pre-execution of code is done by additional threads that are added to
the program by VM. This is called prefetching threads. The prefetching thread
is composed of I/O only related operations of the original thread. The original
source code is transformed by the Just-In-Time (JIT) compiler to obtain prefetch-
ing threads. The prefetching threads execute faster than the main thread be-
cause they contain only the essential instructions for data address calculation.
Therefore, prefetching threads are able to produce effective prefetches for the
main original computation thread. The prefetching threads are supported by the
underlying prefetching library that provides normal I/O function calls for the
prefetch counterparts. It collects speculated future references, generates prefetch
requests and schedules prefetches. The prefetching library can also track function-
call identifiers to synchronize the prefetching threads and the computation thread
I/O calls and force the prefetching threads to run properly.

The proposed prefetching approach has many technical challenges that in-
clude generating accurate future I/O references, guaranteeing expected program
behavior, constructing the pre-execution threads efficiently, synchronizing the
pre-execution threads with the original thread as necessary and performing prefetch-
ing with a library support. Finally, everything should be done while the program
runs. We address these challenges in the next sections.

6.4 Isolation of Pre-execution

This section explores various aspects of the prefetching threads construction main
problem: How to prefetch precisely the same pages as the main computation
without interfering with it? The actual method of thread construction is discussed
in section 6.6.

The prefetching threads run in the same process and at the same time as
the run of the main thread. Usually it is ahead of the main thread to trigger I/O
operations earlier to reduce the access latency of the original thread.

This approach essentially tries to overlap the expensive I/O access with the
computation in the original thread as much as possible. The main design consid-
erations include two criteria: correctness and effectiveness. Correctness means
that the prefetching must not compromise the correct behavior of the original
computation. Since the prefetching threads share certain resources with the main
thread such as memory address space and opened file handler, an inconsiderate
design of the prefetching might result in unexpected results. We discuss in detail
our design to guarantee that the prefetching does not disturb the main thread
with regards to memory and I/O behaviors. This design provides a systematic
way to perform prefetching effectively and to generate accurate future I/O refer-
ences.

111

6.4.1 Memory Isolation

We do not guarantee the correctness of the prefetch threads in the sense that they
can generate results that differ from the results of the main computation. There-
fore, we have to prevent these threads to alter the state of the main thread through
a shared memory.

Our method that deals with a shared memory is similar to [KY04, Luk04,
CBS+08, ZS01]. We remove all store instructions from the prefetching threads
to guarantee that the main thread’s memory will not be altered by any of the
prefetching threads, thus preserving from the main computation its correctness.

While this method alleviates the need for additional memory allocation and
managing, it decreases the accuracy of the prefetching threads. This inaccurate
behavior will not affect the correctness of the program though. It merely de-
creases the accuracy of the prefetching, and thus affects its effectiveness. We did
not research other methods of memory management.

However, as we shall will in section 6.7, the library used by the prefetching
threads can detect such as inaccurate behavior and terminates the misbehaving
threads. In this sense, the proposed optimization technique does not never cause
any harm.

6.4.2 I/O Isolation

To simplify the discussion and to focus on the methodology itself, we only deal
with memory-mapped files. We made this decision based on the fact that memory
regions are shared between all threads. Thus, by reading from files, prefetching
threads can alter the state of the main computation.

The underlying prefetching library provides functionality to support the
proposed approach. Specifically, it provides the PREFETCH function, which not
only prefetches data but also synchronizes between the prefetching threads and
the main computation.

We decided not to make strong assumptions regarding the operating system
in order to increase the portability of LLVM-PREFETCH.

6.5 Introduction to LLVM

The proposed solution is heavily based on the Low Level Virtual Machine (LLVM).
This section provides a short introduction to the most important elements in
LLVM.

LLVM is a compiler infrastructure that provides the middle layers of a com-
plete compiler system by taking intermediate representation (IR) code from the
compiler and emitting an optimized IR. This new IR can then be converted and
linked to the machine-dependent assembly code for a target platform. LLVM can
also generate binary machine code at runtime.

112

LLVM code representation is designed to be used in three different forms:
as an in-memory compiler IR, as an on-disk bytecode representation (suitable
for fast loading by a Just-In-Time compiler) and as a human readable assembly
language representation. This allows LLVM to provide a powerful IR for effi-
cient compiler transformations and analysis while providing natural means to
debug and visualize the transformations. The three different forms of LLVM are
all equivalent.

LLVM supports a language-independent instruction set and type system.
Each instruction is in a static single assignment form (SSA). This means that each
variable called a typed register is assigned once and then frozen. This helps in
simplifying the dependency analysis among variables. LLVM allows code to be
left for late-compiling from the IR to machine code in a just-in-time compiler (JIT)
in a fashion similar to Java.

LLVM programs are composed of "Module"s where each is a translation
unit of the input programs. Each module consists of functions, global variables
and symbol table entries. Modules may be combined together with the LLVM
linker, which merges function (and global variable) definitions, resolves forward
declarations and merges symbol table entries.

A function definition contains a list of basic blocks forming the Control Flow
Graph (CFG) for the function. Each basic block may as an option start with a label
giving the basic block a symbol table entry that contains a list of instructions and
ends with a terminator instruction such as a branch or function return.

Every instruction contains a possibly empty list of arguments. While in the
human readable assembly language, every argument is represented by a previ-
ously defined variable, the in-memory IR holds a pointer to the instruction defin-
ing this variable. Thus, the in-memory IR forms a data dependency graph, which
is required by the slicing mechanism.

6.6 Prefetching Threads Construction

Prefetching threads as well as prefetching instructions can be inserted manually.
Linux and most other operating systems support this feature while providing
madvise(2) or an equivalent API. However, the process of inserting such instruc-
tion is difficult, time consuming and bug prone.

In this section, we present a prototype design of a VM that is equipped with
a just-in-time compiler to address the challenges of constructing the prefetching
threads automatically and efficiently.

We augment the LLVM program execution with the program slicing tech-
nique that was discussed in [CBS+08, Wei84] to automatically construct prefetch-
ing threads. The program slicing technique was originally proposed for studying
program behavior since it knows which results depend on other results and it
can greatly assist in debugging and detecting a bugs’ root cause. Nowadays, pro-
gram slicing is a rich set of techniques for program decomposition, which allows

113

to extract instructions relevant to specific computation within a program. Pro-
gram slicing techniques rely on the Program Dependence Graph (PDG) [FOW87]
analysis. This is a data and control dependencies analysis which can be carried
out easily with LLVM.

The construction of the prefetching threads and choosing the code that runs
in the prefetching threads is, in its essence, a program slicing problem because the
prefetching threads are running a sub-set ("slice") of the original program where
I/O instructions are of interest.

6.6.1 Hot Loads

Since we deal with memory-mapped files, I/O operations are disguised as mem-
ory accesses specifically "load" instructions. If we can find the memory accesses
that cause the operating system to perform I/O operations, we will be able to
reveal the instructions that require prefetching. Then, if we slice the original pro-
gram with these load instructions and their arguments as slice criteria, we obtain
all I/O related operations. These I/O operations and the critical computations
might affect those I/O operations.

We call the load instructions that cause the operating system to perform
most I/O operations "hot loads". In order to find the hot loads, we use a profil-
ing technique. We instrument the original program with a counter for every load
instruction. Just before the load instruction, we insert a code that asks the oper-
ating system whether the page accessed by the load instruction resides in main
memory. If it does not, i.e. the operating system has to perform I/O operations
to fetch it, the corresponding counter is incremented by one.

After some time, we can pause the programs execution and traverse the
counters in order to find the load instructions that caused 80% of the I/O op-
erations which are the hot loads. Other load instructions either are not fetched
from a memory-mapped file or are rarely accessed. In any event, the benefit of
prefetching the corresponding memory addresses is insignificant, thus making it
unworthy to apply the prefetching technique to these instructions.

6.6.2 Slicing with LLVM

We begin this section with the definition of a slice.

Definition 6.6.1. Consider a set I of instructions. A slice with respect to I is a set
S(I) ⊇ I such that if i ∈ S(I) belongs to a basic block B then

1. All the i arguments are in S(I);
2. The termination instruction of B is in S(I);
3. If i branches, conditionally or not, to a basic block B′ then the termination in-
struction for B′ is in S(I).

It may seem that the first requirement is sufficient. Recall, however, that
every basic block should end with a termination instruction. This is why we
need the second requirement. Finally, if a basic block is empty it is automatically

114

A

X

Y

B

C

Z

D

(a) The graph G

A

B

C

D

(b) An L-minor of G

FIGURE 29 (a) The original graph G. It has seven vertices. The subset L of G vertices
contains the vertices A, B, C and D colored gray. (b) The L-minor of G.

removed, causing an error if some instruction branches to it. This is why we need
to retain at least one instruction in these blocks, giving us the need to have the
third requirement.

6.6.3 Threads Construction

We construct the prefetching threads by slicing with respect to a family of dis-
joint sets L1, L2, . . . , Ln of frequently used memory access instructions which are
the hot loads. Note that if the result of some load instruction is never used in the
slice then this load instruction can be replaced by a prefetch instruction which is
a request from the prefetch library to fetch a page that contains the given address
from the disk. The prefetch instruction does not fetch the page by itself but rather
places an appropriate request on the prefetch queue. Then, the library later de-
queues the request and fetches the page hopefully before it is needed by the main
thread.

We introduce now several definitions:

Definition 6.6.2. A graph G = (V, E) is a data dependency graph of some function
if V is the set of the function’s instructions and (x, y) ∈ E if y computes a value used
(directly) by x.

Specifically, we are interested in a subset of G vertices that correspond to
the hot loads and in the relations between them.

Definition 6.6.3. An L-minor of a data dependency graph G is the graph GL = (L, E)
for L ⊆ V(G) s.t. (x, y) ∈ E if G contains a path from x to y not passing through the
vertices in L besides x,y.

Figure 29 presents an example of L-minor.
If we are fortunate to have a cycle-free minor, then we can decompose its

vertices into disjoint sets such that the decomposition has a desirable property.

Definition 6.6.4. Given a tree T = (V, E). Its layer decomposition is a family of disjoint
sets covering the vertex set V = L1] L2] · · ·] Ln constructed as follows: L1 is the set
of T leaves, which are vertices with indgree 0, L2 is the set of T − L1 leaves, L3 is the set
of T− L1 − L2 leaves and so on.

115

Proposition 6.6.5. Let V = L1] L2] · · ·] Ln be the layer decomposition of the tree
T = (V, E). For every edge (x, y) ∈ E with x ∈ Li and y ∈ Lj we have i ≤ j.

Proof Assume in contradiction that there is an edge (x, y) ∈ E with x ∈ Li, y ∈ Lj
and i > j. From definition the layer Lj was built before the layer Li. Just before
the construction of Lj, both x and y were present in the tree. Thus, the indegree
of y was not 0. From the layer decomposition definition, y /∈ Lj which contradicts
the assumption. �

Proposition 6.6.5 enables us to construct sets that guarantee that after some point
in time, neither the main thread nor the prefetch threads will encounter a cache
miss due to a hot load. Let G be the data dependency graph, L be the set of all hot
loads and GL is the G L-minor. Assume, meanwhile, that GL is a tree and denote
by L1, L2, . . . , Ln its layer decomposition.

Theorem 6.6.6. There is a point in time after which no hot load encounters a cache miss.

Proof All slices (their hot loads, to be precise) access the same page sequence
p1, p2, . . . , pi, Slices, which access a different sequence, are terminated by the
prefetch library as described in section 6.7. We denote by ti,j the time at which
page pi was accessed by slice Sj. Note that Sj+1 contains all the instructions of
Sj and additional ones that compute the loads of the next layer. Moreover, the
prefetch instructions of Sj may appear in Sj+1 as load instructions. Thus, the slice
Sj is faster than Sj+1 by some factor, i.e. ti,j−1 < ti,j/cj for some cj > 1.

We assume that the computation is sufficiently long in the sense that for
every slice Sj and a time t almost all pages are accessed by this slice after t. More
formally, there exists an index r such that for all i ≥ r, ti,j > t.

Denote by T the maximal time needed to prefetch a page such that the fol-
lowing holds: if the page p was prefetched at time t0 then no access to p will
encounter a cache miss if the access occurs at time t > t0 + T. This occurs under
the assumption that no pages are evicted from the memory. This is guaranteed
by the prefetching library as described in section 6.7.

We claim that every slice Sj that starts from some point in time does not
encounter any cache miss. There exists r, which depends on j, such that for all
i ≥ r, ti,j−1 > T

cj−1 implying:

ti,j > ti,j−1cj = ti,j−1 + ti,j−1(cj − 1) > ti,j−1 + T

. In other words, page pi is accessed by slice Sj at least T seconds after it has been
accessed by slice Sj−1. From the definition of T, page pj resides in memory cache
when accessed by Sj. By choosing the maximum between all such r, we observe
that no thread encounters a cache miss on any page past and including pr. �

If GL is not a tree, then we compute the graph of its strongly connected compo-
nents H. The layer decomposition is applied to H rather than to GL, where for a
strongly connected component C the meaning of C ∈ Li is that all its vertices are
in Li.

116

6.6.4 Optimizing the Termination Instructions

As can be seen experimentally, a termination instruction may introduce unde-
sired instructions to the slice such as instructions that compute a result that is
not used in the near future and thus may be omitted. However, omitting these
instructions poses a dependency problem, since the result is an argument in the
termination instruction. Before describing the solution, we explain first how to
determine whether some result is likely to be used in the near future.

Recall that a basic block contains no termination instructions till its very
end, thus if some instruction of a basic block was executed then all of them should
be executed. By adding a counter to every basic block, we can determine for every
instruction how frequently it is executed. If some termination instruction was not
executed at all then we can (optimistically) assume that it will not be executed in
the near future, thus we can omit all the instructions that compute its arguments.

After removing the unnecessary instructions, we can take care of the termi-
nation instruction arguments. Clearly these arguments should be removed where
possible or replaced by some default value. The exact solution depends on the
termination instruction type.

Note that this optimization can not be performed at compile time which
makes our runtime approach beneficial. This method is similar to dynamic slicing
[XQZ+05].

6.6.5 Effectiveness of Prefetching Threads

The prefetching threads are able to run ahead of the original thread and are effec-
tive in fetching data in advance to overlap the computation and the I/O accesses
for the following reasons. As the previous discussion illustrates, the irrelevant
code to I/O operations is sliced away, which makes the prefetching thread to
contain only the essential I/O operations. Therefore, the prefetching I/O thread
is not involved in enormous computations and runs much faster than the main
thread. Secondly, the prefetch version of I/O calls are used within the prefetching
threads to replace normal I/O calls. These prefetch calls are implemented with
non-blocking accesses to accelerate the prefetching threads.

6.7 I/O Prefetching Library

This section discusses the design of the underlying library support for I/O prefetch-
ing. The goal of the library is to provide I/O functionality that is missing in the
operating system. Although some operating systems do provide a partial imple-
mentation of the library’s functionality, we chose to re-implement it in order to
achieve a high portability of our system. It enabled us to run the system on Linux,
Free BSD and Mac OS X with equal success.

The library provides only two functions: FETCH and PREFETCH. Both func-

117

FIGURE 30 Prefetching Library. PREFETCH enqueues the address in the PREFETCH-
QUEUE and in the error detecting queue. A worker thread checks periodi-
cally whether the queue is not empty. If so it dequeues the oldest address
and accesses the corresponding memory. If a page is not cached, FETCH in-
crements the counter that corresponds to the ID. Likewise, FETCH dequeues
an address from an error detecting queue and compares it against its argu-
ment to reveal a prefetch thread that is misbehaved.

118

tions have two arguments: ID, whose meaning is explained later, and an address
that should be either fetched (accessed synchronously) or prefetched (accessed
asynchronously). Figure 30 demonstrates the internal organization of the library.

The PREFETCH function enqueues the address in the PREFETCH-QUEUE. A
worker thread checks periodically whether the queue is non-empty. If so it de-
queues the oldest address and accesses the corresponding memory.

Recall that the optimization is performed in two phases:

1. Finding the hot loads;
2. Running slices to prefetch the hot loads.

The FETCH function has a different goal during each of the two phases.
During the first phase, the FETCH function counts the number of cache misses

encountered by each load instruction as follows. The main thread, which is the
only one during this phase, invokes the FETCH function just before each of its load
instructions, passing to it the memory address being accessed by the load instruc-
tion. The ID parameter we have mentioned previously is the unique identifier of
the load instruction that invoked FETCH. The FETCH function asks the operating
system whether the corresponding page resides in memory using POSIX’s MIN-
CORE system call. If the system call replies negatively, i.e. the page is not cached,
FETCH increments the counter that corresponds to the ID. When this phase is
completed, the counters are traversed to find the hot loads and the slices are con-
structed accordingly.

During the second phase, the function is looking for prefetch threads that
are misbehaved. Note that for every hot load instruction, there is exactly one call
to FETCH with some ID h and exactly one call to PREFETCH with the same ID h.
The sequence of addresses passed to these functions should be exactly the same.
A divergence of these sequences indicates that the corresponding prefetch thread
is misbehaving. The library compares the two sequences as follows. It allocates
a queue for each ID, which is a circular buffer that holds the addresses already
passed to PREFETCH but not yet passed to FETCH. On every invocation, PREFETCH

enqueues the address in the corresponding queue of the ID. FETCH dequeues
the address from the corresponding queue and compares it against its argument.
If the addresses are not equal then a misbehaved prefetch thread, which is the
thread that enqueued the address, is found.

The last responsibility of the library is to synchronize between the main
thread and the prefetching threads. Without synchronization, the prefetching
threads will populate the memory too fast causing eviction of previously prefetched
pages which were not yet accessed by the main thread.

The synchronization mechanism is simple: when the PREFETCH function
is called to check whether the corresponding buffer queue has at least ` elements
then if it is true it suspends the thread by waiting until the queue’s size decreases.
This mechanism guarantees that the hot loads and the corresponding prefetch in-
structions do not cause an eviction of pages that were prefetched but not yet used.
Other load instructions can affect the page cache. However, the effect of these in-
structions is minor since they are invoked rarely. Thus, to overcome this problem,

119

0 10 20 30

regular
optimized

FIGURE 31 Running time (in seconds) of the optimized version of bucket sort algo-
rithm versus the regular unoptimized algorithm.

it is enough to decrease a little the value of `. Note, that page cache is system-wide
and other I/O intensive applications might evict the prefetched pages. Thus, one
should ensure that no other I/O intensive applications are running at the same
time.

6.8 POSIX Implementation and Porting to other Platforms

POSIX and later versions of POSIX known as Single UNIX Specification are the
standard to which UNIX systems adhere. FreeBSD, Linux and Mac OS X are all
UNIX systems that implement the POSIX API.

The POSIX API includes the system call MINCORE which we rely on. The
MINCORE system call provides information about whether pages are core resi-
dent, i.e. stored in memory and access to those pages does not require I/O oper-
ations.

Provided the existence of MINCORE, it is relatively simple to port our soft-
ware to multiple platforms.

6.9 Experimental Results

We performed experiments to verify the benefits of the proposed prefetching
technique. The conducted experiments prove the necessity of having different
components of the proposed system. Some of the experiments were based on
synthetic programs that nevertheless represent a large class of real-life applica-
tions.

The simplest program BUK in our benchmark implements an integer bucket
sort algorithm, which is part of the NAS parallel benchmark suit [BBLS91]. This
program contains a single memory access instruction executed in a loop. A sin-
gle pre-execution thread is constructed to prefetch the data ahead of the main
computation. The obtained results demonstrate as shown in Fig. 31 that our
implementation of prefetching is effective in this case.

Next we want to show that the optimization should be applied only to those
memory accesses that cause many cache misses specifically called the "hot loads"
in our terminology. Other memory accesses have insignificant impact on the
overall program performance. Even a total removal of these instructions will

120

0 10 20 30 40 50

regular
too optimized

optimized

FIGURE 32 Running time (in seconds) of the matrix multiplication algorithm.

not reduce the running time notably. This is demonstrated by the matrix "multi-
plication" program. Formally, the program computes

N

∑
i=1

N

∑
j=1

N

∑
k=1

f (aik, bkj)

where aij, bij are elements of the matrices A and B, respectively, stored on a disk
row-by-row. Clearly, most cache misses are encountered due to accesses to B,
thus the optimizer constructs a pre-execution thread, which prefetches only the
elements of B. We compare this behaviour to a regular execution with no prefetch
threads and to an execution in which the elements of A are prefetched as well.
The obtained results demonstrated in Fig. 32 exhibit that our strategy is optimal
and it is not worse than the fully optimized execution. The figure demonstrate
The running time of both programs executed regularly (without optimizations),
with an unnecessary optimizations on both memory accesses and with a smart
optimization of a problematic memory access (our approach).

The main innovation in this chapter is the construction of parallel pre-execution
threads for prefetching. The third program in our benchmark shows the benefit
of using the parallel prefetching approach. This program compute

N

∑
i=1

abi·P ci

where a, b and c are arrays of N elements, P is the page size of the machine and all
the indices are computed modulo N. The program computes the products sums
of aj · ci where j = bi·P, i.e. the elements of b contain the indices of the elements in
a that should be multiplied with the elements of c. We have three memory-access
instructions α, β and γ that access the arrays a, b and c, respectively. Clearly,
only every P invocation of γ encounters a cache miss in comparison to every
invocation of β, and, probably, to every invocation of α. This is true with high
probability for random b and large N. The analysis suggests that α and β should
be pre-executed and γ should be ignored. Since the addresses of α depend of the
values of β, the proposed system constructs two pre-execution threads: the first
issues prefetch requests with the addresses of β while the second uses the values
of β (which should be prefetched by the first thread) to compute the addresses of
α and to issue the corresponding prefetch requests.

We examine differences among the performances of four systems:

1. Regular execution with no prefetch threads;

121

0 20 40

regular
beta

alpha
optimized

FIGURE 33 Running time (in seconds) of the indirect array access program (on average
for single iteration).

FIGURE 34 Regular non-optimized execution of the matrix multiplication program.
Only one core is utilized. Yellow means that the core is idle, green means
that the program calculations are performed, cyan means that the I/O op-
erations are performed, red means that the OS calculations are performed.
The green sections are the CPU-bound segments and the cyan sections are
the I/O bound segments.

2. A single prefetch thread that prefetches β;
3. A signal prefetch thread that executes β and prefetches α;
4. The proposed optimization (having two prefetch threads).

Figure 33 compares between the four executions under consideration.

1. A non-optimized (regular) execution;
2. An execution which does not prefetch β but prefetches α;
3. An execution which does not prefetch α but prefetches β;
4. Finally, the proposed execution which prefetches both α and β.

As can be seen in Fig. 33, parallelizing the pre-execution improves the perfor-
mance when sufficient computational power is available.

122

FIGURE 35 Optimized execution of the matrix multiplication program. The execu-
tion begins with the main thread occupying the first core. The prefetching
threads start after 5 seconds and replaces the main thread. The main thread
runs on the second core for about two minutes. Then, it is swapped with
the main computation. Yellow means that the core is idle, green means that
program calculations are performed, cyan means that I/O operations are
performed, red means that OS calculations are performed. The green sec-
tions are the CPU-bound segments and the cyan sections are the I/O bound
segments.

6.10 Case Study: Matrix Multiplication

We have run massive matrix multiplication benchmarks on an intel Quad Core i7
3.06 Ghz with 24 GB of RAM. The disks that were used in the benchmark were
Intel SSDs.

The matrix multiplication program demonstrates clearly the problem we
are trying to solve and the achieved performance. Essentially, our approach tries
to overlap the I/O-intensive program sections with CPU-intensive sections, by
utilizing an additional CPU core.

A typical program, in our case, the matrix multiplication program, is de-
scribed in section 6.9, is in general neither I/O-intensive nor CPU-intensive. Its
intensiveness type varies over time. As can be seen in Fig. 34, the program is
broadly half of the time I/O intensive and half of the time CPU-intensive. Since
the program is single-threaded, the second core is mostly idle. It executed some
background programs for example PCP Charts used to create graph and other
OS services.

Pre-execution uses the idle core to pre-execute the main computation and
prefetches the required data. Figure 35 shows CPU utilization during the op-
timized execution of the matrix multiplication program. The execution begins
where only the main computation is executing on the first core for 5 seconds.
During these 5 seconds, the optimizer collects profiling data for the optimization.
After these 5 seconds, the pre-execution thread is constructed and starts its exe-

123

cution on the first core. The main computation moves to the second core. The two
threads swap cores after about two minutes. The time axis can be divided into 30
seconds segments (intervals) of CPU-intensive sections of the main computation.
Note that these segments start with a CPU-intensive section in the prefetching
thread followed by an I/O-intensive section. In other words, the CPU-intensive
section of the main computation overlap (almost entirely) with the I/O-intensive
section of the prefetching thread.

6.11 Related Work

Initial work on prefetching in LLVM is described in [SH]. This work includes a
prefetch instruction similar to MADVISE in Linux but does not include any pre-
diction or slicing.

Outside the virtualization realm, there has been a great effort invested in
prefetching which can be classified into two main approaches: speculative ex-
ecution and heuristic based prediction as discussed in [May01]. Our approach
includes aspects of both.

The heuristic approach for prefetching uses observed patterns among past
history of I/O requests to predict future requests. Naturally, heuristic prefetch-
ing can only work if the application follows regular and perceivable patterns in
its I/O requests. When the application I/O requests follow random or unknown
patterns then obviously heuristic prefetching cannot improve the application per-
formance.

The speculative execution approach for prefetching is a more general ap-
proach. Theoretically, speculative execution can work for every application and
if done correctly it has a good chance to circumvent future I/O originated lags.

Our approach, which uses slicing and prefetching threads, is a speculative
execution approach while some decision making (in the case of termination in-
structions’ argument removal) is of heuristic origin.

Other speculative execution approaches for prefetching include the SpecHint
[Cha01] system and the prefetching TIP system [PGG+95].

Both SpecHint and TIP approaches demonstrate the feasibility of accurate
speculation of future I/O requests ahead of time in order to provide the informa-
tion for the underlying system so that I/O will be prefetched in advance. Both
of these methods are relatively conservative in terms of the number of CPU cy-
cles dedicated to prefetching. In comparison, our approach is significantly more
aggressive and provides better prefetching results.

The aggressive pre-execution approach has also been studied extensively in
[CBS07, KY04, ZS01, Luk04] to reduce memory access latency to attack the “mem-
ory wall” problem. Similarly to our system, these approaches contain source code
transformation and prefetching instruction injection. However, in our case, the
prefetching instructions are all inserted in separate threads.

124

6.12 Conclusion

The performance gap between CPU and I/O is already very significant and there
are no indications that it will be either eliminated or improved in the near future.

As long as disk performance is so far behind CPU power, I/O performance
will have significant effect on computation run time. As a result, more aggressive
and complex measures for I/O prefetching will be required.

Furthermore, programmers wages continue to be high. Thus, manual inser-
tion of prefetching instruction into the code is expensive.

LLVM-prefetch addresses the performance gap issue by overlapping com-
putation with future disk access pre-executed in parallel.

The main contributions of the system described in this chapter are:

1. We propose an innovative pre-execution approach for trading computing
power for more effective I/O use. This approach allows the VM to pre-
execute operations and automatically prefetches the needed pages without
programmer intervention;

2. We present system implementation benchmarks. It was tested and its per-
formance is compared to naive running of the program and to specific run-
ning of the same program after prefetching instruction insertion by the pro-
grammer;

3. The system was implemented for LLVM;
4. A careful design consideration for constructing the pre-execution thread

and a VM with JIT compiler for automatic program slicing is presented.
This system can later be re-implemented for other environments such as
JVM, CLR, etc;

5. The proposed environment was tested on several popular UNIX systems.

The above described approach shows a great promise, especially with the recent
trend in using process virtual machines. Decreasing I/O latency provides great
improvements in computation times and allows the VM to do so automatically
and it decreases the cost of man power. The experimental results confirm that
the proposed approach is beneficial and has real potential to eliminate I/O access
delay, expedites the execution time, and improves system performance.

7 APPLICATIONS IN PEER-2-PEER STREAMING

We describe here a system that builds peer-2-peer multicast trees. The system
proposes a unique algorithm that incorporates a real time, priority based sched-
uler into graph theory. The system includes robust implementation that supports
multiple platforms. The system proposes a fine example of the power of cloud
computing and to network virtualization.

Special considerations were given to conditional access and trust computing
concerns.

The algorithm described in section 7.6.2 is a joint effort with Amir Averbuch
and Yehuda Roditi.

Implementations details are given in Appendix 7

7.1 Introduction

The bandwidth cost of live streaming prevents cost-effective broadcasting of rich
multimedia content to Internet users.

For Internet streaming, the old-fashioned client-server model puts a huge
cost burden on the broadcaster. In the client-server model, a client sends a re-
quest to a server and the server sends a reply back to the client. This type of
communication is at the heart of IP[Pos81a] and TCP[Pos81b] protocol, and most
of UDP[Pos80] traffic as well. In fact almost all upper layers of communica-
tion such as HTTP[FGM+99], FTP[Bhu71], SMTP[Pos82] etc and the client-server
model contains this type of communication well. The client-server communica-
tion model is known as unicast where a one-to-one connection exists between the
client and the server. If ten clients ask for the same data at the same time, ten
exact replicas of the same replies will come from the server to each of the clients
as demonstrated in figure 36. This model remains the same regardless of the
number of concurrent requests from the same number of unique clients, placing
additional stress on the server with each additional user.

Furthermore, The problem exists to a much greater extent in live stream-

126

Streaming
Server

RTSP
RTP

RTSP
RTP

RTSP
RTP

FIGURE 36 Unicast streaming

Streaming
Server

CDN
exit

CDN
Entry

CDN exit

Still
conjested!

With one stream per client...
CDN doesn't help

FIGURE 37 CDN approach does not provide the solution for last mile congestion.

ing scenarios with large crowds of listeners such as sport events etc. as caching
techniques such as proxies do not work with live streaming.

These problems also arise even when Content Delivery Networks (CDNs)
are used for replicating static content to other servers at the edge of the Internet.
Even when CDNs are used every client is still served by one stream from a server
, resulting in the consumption of a great amount of bandwidth (see figure 37).
These infrastructure and cost challenges place a significant hurdle in front of ex-
isting and potential Web casters. While the media industry is seeking to bring
streaming content with TV-like quality to the Internet, the bandwidth challenges
often restrict a feasible, profitable business model.

In order to reduce the dependence on costly bandwidth, a new method of
Internet communication was invented called "multicast". Rather than use the
one-to-one model of unicast, multicast is a "one-to-selected-many" communica-

127

Streaming
Server

Multicast
Enabled
Network

Single
Multicast
Stream

FIGURE 38 Multicast streaming could provide a solution.

tion method. However, multicast is not available on the current Internet infras-
tructure IPv4 and may never be available outside private networks. An example
of how multicast streaming looks like is demonstrated in figure 38.

A solution commonly proposed is to operate Internet users as "broadcasters"
using peer–2–peer[Zai01, FL08, Liu07] connections as an ad-hoc CDN.

In this chapter, we describe our system that implements peer-2-peer stream-
ing and our algorithm that handles network events.

7.2 System design

The software industry has already anticipated the need for cost-effective, high-
quality streaming and has developed applications that support multicast. Our
peer-2-peer streaming system, called PPPC (Peer-2-Peer Packet Cascading) by-
passes the lack of multicast in IPv4 internet by providing multicast-like capabili-
ties via peer-2-peer, and allows use of the already available multicast software.

The concept of peer-2-peer streaming is a distributed architecture concept
designed to use the resource of a client’s (a home user with desktop computer
or laptop) upstream in order to alleviate congestion in the broadcaster streaming
server. Using the client upstream doesn’t affect the client ability to surf or down-
load files. The upstream resource is usually idle for most clients not involved in
peer-2-peer activity, such as bittorrent [Coh03] or e-donkey.

128

FIGURE 39 Only peer-2-peer streaming solves streaming problem on the Internet.

In a peer-2-peer streaming system, the server only serves a fraction of se-
lected simultaneous clients requesting the same stream and turns them into relay
stations. Hereafter, the other clients who are requesting the same data will be
served from one of the clients who received the stream first.

The clients shall only maintain a controlled connection to the server for re-
ceiving control input and reporting information. Also, we shall use every client
as a sensor, to detect stream rate drops, reporting the problem, and complement-
ing the missing packet from either the PPPC router or another client. It is vital
to detect any streaming issues in advance before the Media Player has started
buffering or the viewer has noticed anything. Therefore, by following Peer-2-
peer streaming concept and serving a fraction of the users, the server can serve a
lot more users with the same bandwidth available. This is shown in figure 39.

Peer-2-peer packet cascading, or PPPC, is an implementation of the peer-
2-peer concept to the streaming industry. PPPC provides reliable multicasting
protocol working on and above the standard IP layer. A PPPC system consists
of the PPPC router. and the PPPC protocol driver. The PPPC router stands be-
tween a generic media server, such as MS Media Server, a Real Media server or a
QuickTime server, and the Viewers. (see figure 40).

The PPPC driver is in charge of the distribution of data and the coordination
of the clients.

In an PPPC live stream, the PPPC router will receive a single stream from
the media server and will route it directly to several "root-clients". These clients
will then forward the information to other clients and so on and so forth. Users

129

FIGURE 40 PPPC data flow.

connecting to each other will be relatively close network-wise. In this method,
the data is cascaded down the tree to all users while the PPPC router only serves
directly (and pays bandwidth costs) for the root clients. As users join and leave,
the trees are dynamically updated. Moreover, the more users join the event, the
PPPC router can build better trees saving even more, eliminating the financially
terrible linear connection between cost of streaming and number of users.

7.3 PPPC System Overview

Peer-2-Peer Packet Cascading is a system designed to provide audio and video
streaming clients with the capability to receive data from other clients and relay
other clients to them. PPPC system consists of the PPPC router and PPPC Driver.
The PPPC router contains two logical components the Coordinating Server (CServer)
and Distributing Server (DServer).
PPPC driver installed on a client workstation (any standard PC) consists of thin
client software that handles the reception and relay of the packets, and also "feeds"
them to any Media Player. The client does not interact with a media player, it
only delivers packets to the media player. Coordinating Server (CServer), is a
command and control system in charge on all PPPC drivers listening to a single
stream. CServer is responsible for all the decisions in the system. For example, for
a given client, from which client it should receive data, and to which client should
it transfer data, how the tree should be rebuilt after a new client arrived, what to
do if a client in the middle of the tree was disconnected, and what happens when
any given client reports he has problems with receiving stream from his parent.
Distributing Server (DServer) is a data replication and relay system. DServer
receives a multicast (data-only) stream and encapsulates the data in PPPC format
(recognized by PPPC driver). DServer delivers the encapsulated packets to the
roots of PPPC clients’ trees (root clients). The CServer decides who are the root

130

clients.

7.3.1 Data flow in the PPPC system

In a PPPC system, PPPC router must receive a data-only stream (i.e. no meta-
data) from a generic media server and is responsible for delivering the stream
to clients. In some ways, a PPPC router acts very much like a multicast capable
router. (Data-only stream is required because a stream with meta-data will re-
quire the decoding of the stream and the right meta-data to be sent to each of the
clients thus missing the system generality goal.)

Most standard media servers can provide data only stream, either directly
or via a "multicast" option. DServer in our system will receive the multicast
stream or other data only stream and pass it forward to the root clients. The PPPC
drivers running on root clients workstations pass the stream to other drivers on
other clients. Therefore, each client acts as a small server, reusing DServer code
for this purpose.

When a PPPC driver, regardless of whether the PPPC driver also forwards
the stream to other clients, receives the stream, it will forward it to the media
player pretending to be the original media server using multicast or fake IP if
necessary. This is not real network traffic, but local traffic on local host blocked
in the kernel. Then, the media player will receive the stream and will act as if it
received the stream directly from the media server. The PPPC driver will send a
stream just like a media server.

Thus, media server sends a standard (usually multicast) data stream, and
media player receives a standard stream. This enables the system to work with
any media server, any media player and any codec etc, without the need to have
any specific integration.

7.3.2 Detailed description of the DServer, CServer and theirs components

One instance of the server handles one media stream. Multiple instances of the
server are possible in order to handle more than one stream. Parts (entities)
within the Server communicate with each other by TCP enabling them to run
on several computers.

7.3.2.1 Distributing server (DServer)

The Distributing Server transfers the stream contents to root clients and serves
as a backup source for clients (DServer is also a backup server). It contains two
physical components:

– A single Receiver, which gets the raw data from media server via Multicast
or UDP. The DServer Receiver then encapsulates the data arriving from the
Media Server in PPPC packets (recognized by PPPC clients.)

– One or more distributors which receive the information directly from re-
ceiver and serve the root clients.

131

The distributors share packet relay and connection code with the drivers, but
they are the only entities that are allowed to receive the stream directly from the
receiver.

The separation of DServer components to receiver and multiple distribu-
tors is suggested in order to provide optimal scalability and allows the deploy-
ment of the distributors across several CDN sites.

7.3.2.2 Coordinating Server (CServer)

The Coordinating Server maintains the control connection with every client. It
decides which clients connect between them, i.e., it constructs the PPPC tree. Our
algorithm is implemented within the CServer. CServer updates dynamically the
PPPC tree on such events as connection/departure of clients, unexpected discon-
nections, etc.

CServer, similar to the DServer, also contains two components:

– A single centralized main module, where all the users (of a single stream)
data is saved. Main module provides all the logic and decisions to the sys-
tem.

– One or more Proxy who receives client connections and pass requests and
responses to/from CServer’s main module.

In a large scale PPPC system, where several proxies can exist each maintains a
connection to a large group of clients. Main module is the only place where com-
plete information and decision making regarding all clients is kept for decision
making regarding the clients tree. Reports on clients connections and disconnec-
tions are handled by the main module.

The PPPC driver is a very light client which consumes very little system
resources apart from the relatively free upstream.

7.3.3 Viewing a stream with PPPC - life cycle

This life cycle assumes that the clients select the stream using WWW.

1. The user accesses a page on WWW which provides him with stream infor-
mation.

2. The file is silently downloaded to the user’s computer.
3. PPPC driver parses the file which includes a standard media-player activa-

tion file. PPPC driver reads CServer and DServer IP address as well as other
parameters and invokes the standard media player to handle the stream.

4. The client connects simultaneously to the CServer and DServer.
5. DServer sends data to the client which is immediately displayed to the user.
6. In a certain event1 a CServer decides to rebuild the PPPC client trees.
7. CServer sends to the client messages with information about its new stream

source (another client or the DServer) and possibly address of other clients
that should be served the stream.

1 For example, after some other new clients arrived, or old clients disconnected.

132

8. A client connects to specified clients and starts to receive information from
the parent and relays it to its children. The arrival of data is viewed through
the Media Player to the user.

9. CServer may decide during the operation to rebuild the tree and sends again
the corresponding messages to the client, which disconnects its older con-
nections and creates newer ones.

10. When the user decides to stop viewing the stream, the PPPC client recog-
nizes it and sends the message ‘I’m going to disconnect" to the CServer and
quits. Meanwhile, the CServer updates the clients’ tree if necessary.

7.3.4 Maintaining a Certain Level of QoS

In order to maintain and guarantee a certain level of QoS we will add a stream
rate detection unit to every client. The stream rate is published by the CServer
when clients join the stream. If a client detects that the stream rate has dropped
below a certain level, he will be connected to DServer to complement the missing
packets or as an alternative stream source. Numerous reasons cause the packet
rate to be dropped: parent disconnection (packet rate drops to zero), sudden drop
in packet rate when the parent used his upstream to send an email, or a high CPU
load on the parent machine. He might also report that his previous parent was a
"bad parent", then the CServer will not assign new children to a "bad parent".

Switch between parents and going to DServer should be done very fast
(within the streaming buffer time found in the client). If all packets arrived before
the buffer expire, the user will never notice the switch between the parents.

We will describe the exact method in which "bad parents" are detected in
section 7.5.

7.4 Avoiding Flat Trees, Distress and Guaranteeing Certain Level
of QoS

In this section we describe all the system engineering issues which are connected
to the appearance of what we call "flat trees". Flat trees are trees that have a very
large number of root clients compared to the total number of clients and very
small number of peer-2-peer connections. We will also describe how these issues
are solved.

We encountered several reasons for having extremely flat trees, most of
them were related to our goal to achieve a high level of QoS. This section de-
scribes our solution, which provides high streaming quality to clients who can
receive the stream. This is done while we maintain peer-2-peer connection with a
high bandwidth saving ratio. We realized that QoS and the flat trees problem are
closely connected. Several problems have been identified:

– Parents that can not serve clients constantly received new clients which
caused decrease in QoS.

133

– Parents which declared bad parents, never received new clients and caused
to have flat trees.

– Clients that were unable to view the stream pass from parent to parent de-
clared them all to be bad parents (hereby bad clients). Such a client can
easily mark all clients in a tree as bad parents which will surely result in a
flat tree.

– In case of a transmission problem in the upper layers of the tree, many
clients in lower layers of the tree did not receive the stream and report their
parents to be bad parents. This causes to multiplicities of bad parents.

– Clients that detected problems are usually not the direct children of the
clients that caused the problem. Thus, many of the clients were declared
to be bad for no apparent reason. (Same as above!).

– Due to the above conditions lower layers of the tree received poor quality
stream.

As we can see from above, most of the problems occurred due to faulty behavior
when served by an unsatisfying packet rate. We shall hereby call this situation
distress.

7.5 Bad Parents & Punishments

When a client reports to the CServer that his parent does not provide him with
sufficient packet rate, the CServer will mark the parent as a bad parent. In this
case the bad parent’s maximum children number is set to its current children
number.

The client, that reported the bad parent, will also connect to the DServer ei-
ther to compliment the missing packets or to replace its current bad parent with
DServer. Therefore, bad parent cannot have any more children. We will not dis-
connect any of the other children he already had. We will allow new children to
replace one of the old ones if they were disconnected. If previous client did not
have any children then he will have no children anymore.

We "punish" bad parents so harshly to prevent any connection of new clients
to them. Thus, we avoided a situation where a client connected to several "bad
parents" before receiving the stream. Thus, the QoS was degraded.

The isolation of bad parents plays a very important role in guaranteeing
high QoS. We realized that a stream is never disrupted in real world scenarios by
the sudden disconnection of parents or fluctuations in their upstream. However,
bad parents were often one of the main reasons for having flat trees. Clients could
not find themselves a suitable parent, because all possible parents were marked
as bad parents and could not accept any new children. This frequently happened
when a client had faulty uplink and reported several parents as bad or when
we streamed radio stream (audio only) and the users used their computers for
other purposes while listening. These other usages often caused high cpu load
or temporary use of the uplink and thus temporary faulty stream.‘ Therefore, we

134

gave a chance for a bad parent to recover. We set a punishment time stamp where
the punishment time was assigned to each of the bad parents. To recover from
this situation we introduce bad parents rehabilitation process (see section 7.5.1).
There are many temporary situations such as sending and e-mail which hogs
the upstream, starting Microsoft Office, which causes a CPU surge for couple
of seconds, and many more. A "bad parent" can recover from this "temporary"
situations. This should not prevent him from future productive service to clients.

7.5.1 Bad Parent Rehabilitation

There are many reasons for punishing a client which marks it as bad parent in the
system. Nevertheless, we realized that the punishment mechanism on the PPPC
network should be temporary. Network turns to free over time as activities that
consumed the client uplink are completed. We shall associate a time stamp with
the punishment time when a client is punished. After a period of time we will
rehabilitate the parent and allow it to receive new connections.

The rehabilitation thread is in charge of bad parents rehabilitation. The sug-
gested time period for rehabilitation in our experience is between 5 and 15 min-
utes.

7.5.2 Distress Logic: Marking of Bad Parents

A distress state is the state in which a client does not receive enough information
within a PACKET_RATE_CALCULATION_PERIOD. There are two variables that
dictate distress state

1. Parent distress is a boolean variable that indicates whether the parent sent
any indication of entering into a distress state.

2. Current distress is a variable that may be equal to either no-distress, light
distress, or major distress.

These variables introduce six different distress states:

No distress - The standard state. Packet rate is fine and the father has not in-
formed otherwise.

Light distress - The state that occurs when the client receives less packets then
DISTRESS_MIN_PACKET_RATE and there is no notification from the par-
ent that he reached similar state.

Parent distress - The parent indicates that he is in a light distress state but the
information still flows fine.

Parent and light distress - Indicates that both the current client and its father
experienced light distress.

Major distress - Indicates that current packet rate is below MIN_PACKET_RATE.

Major and parent distress - Indicates that current packet rate is below
MIN_PACKET_RATE and the parent is also experiencing difficulties.

135

7.5.2.1 Entering into a distress state

A packet rate threshold, DISTRESS_MIN_PACKET_RATE, is used to determine
the upper bound of entering into a "light distress" state. A client in "light distress"
does not complain about bad parent, but opens a connection to the DServer to
complement missing packets from there. The client only sends a "Bad Parent"
message when packet rate reaches MIN_PACKET_RATE, then it connects to the
DServer (hereby major distress).

When a client enters into a distress state it will inform its children about its
state. When a client enters into a major distress it will not report his parent as a
bad parent if his parent is also in a distress state.

7.5.3 Bad Client

Some clients, for whatever reasons may be, are simply unable to receive the
stream. Reasons may vary from insufficient downstream, congestion at the ISP
or backbone, busy CPU, poor network devices or others.

Those clients will reach major distress state regardless of the parent they
were connected to. In this can an "innocent" parent will be marked as "bad" par-
ent. In order to prevent this from happening we add new logic to the PPPC
driver.

The client should stop complaining about bad parents when the problem is
was its own ability to receive the stream.

If a client enters major distress when receiving a stream from DServer or if
3 clients were not able to serve given client within a certain time frame (we used
1 minute) then the client will stop complaining about bad parents.

7.6 The algorithm

7.6.1 The structure of the Internet - from a Peer–2–Peer Streamer Perspective

The Internet nodes that view the stream, each come from an location with Internet
connection, often such organization is the user home. The system we developed
is capable of detecting multiple nodes in the same location (such as two users
in the same LAN or home) via multicast messages. The system insure that on
any location only one users will stream in or out of the location. This way we
eliminate congestion and as a by product guarantee only one user in each location
is visible to the algorithm.

Connections between Internet nodes tends to be loss packets (It is typical
to have about 1% packet loss) and add latency. Furthermore, not all connections
are equal. When connecting to a "nearby" user we can expect significantly less
latency and packet loss then when connecting to a "far" user. Latency, specifically,
is increased and can differ from a few milliseconds to hundreds of milliseconds

136

depending on the network distance.
We will now define near and far in Internet terms. Each Internet connection

belongs to an "autonomous system". An autonomous system is usually an ISP2

and sometimes a large company (such as HP or IBM) that is connected to at least
two other autonomous systems. Two users from the same autonomous systems
will be considered nearby.

We have created two additional levels of hierarchy.
Below the autonomous system we have created a "subnet" level. Each IP

address belongs to a subnet that define a consistent range of IP addresses. Au-
tonomous systems gets their IP range as a disjoint union of subnets. Often each
subnet belongs to a different location that can be very far from each other (Such
as the east and west coast of the US). Thus, when possible, we prefer to connect
to a user from the same Subnet.

Autonomous systems are interconnected. Some autonomous systems can
be considered "hubs" connected to many other autonomous systems. We have
created "Autonomous System Families" centered on the hubs. (containing all
autonomous systems that connect to the hub) When a user from the same au-
tonomous system can’t be found we will prefer a user from the same Autonomous
System Family (hereby ASF).

An autonomous system usually belongs to more then one autonomous sys-
tem family.

Thus, we chose clients to connect to each other, we prefer clients that share
a subnet. If none is found we prefer clients that belong to the same autonomous
system, If none is found we prefer clients that belong to the same autonomous
system family. Clients that have no shared container will be considered far and
will not connect to each other.

7.6.2 Minimum Spanning Trees of Clients

The algorithm uses containers that hold all clients in a certain level. Since we
can consider all clients that share a container and doesn’t share any lower level
container to be of identical distance from each other We can store all clients in a
container in "heap-min" and only consider the best client in each heap to connect
to. Best client will be considered using distance from source and best available
up link.(best up link considering other peers served by client)

The algorithm 12 strives to maintain the graph as close to the MST as pos-
sible while responding to each new request (vertex joining, vertex removal) in
nano-seconds. Indeed our solution often involves finding an immediate solution
such as connecting directly to the source and improves the solution over time
until it reaches the optimal state. The proposed algorithm can handle very large
broadcast trees (millions of listeners) in near optimal state. As server load in-
creases (with more users connecting to the stream) we may be further away from
the optimal solution but we will not be too far and the stream quality for all users
will be well tested.
2 Internet service provider

137

Algorithm 12 Real time graph analysis

1: Read the subnet to autonomous systems and the autonomous systems to au-
tonomous systems family files. Store information in a map.

2: Create global data structure spawn interface thread and parents rehabilitation
thread and interface thread.

3: while Main thread is alive do
4: if There are new requests then
5: handle new request, touch at most 100 containers.
6: Inform interface thread when you are done.
7: else
8: if there are dirty containers then
9: clean at most 100 containers

10: inform interface thread when you are done
11: else
12: wait for new request
13: end if
14: end if
15: end while

Clean and dirty in the algorithm sense are containers that are optimal and
containers that are sub optimal for a variety of reasons.

For example assuming a client has disconnected. We will try to handle the
disconnection by touching no more then 100 containers, by connecting all the
"child" nodes directly to the source. We will mark all the container containing
the nodes as dirty. At some point we will clean the container and fix any none
optimal state.

7.7 Related systems

We have been involved with Peer-2-Peer streaming company vTrails ltd that has
operated in peer-2-peer streaming scene in 1999-2002. vTrails no longer operates.
Many of the concepts and system design may have originated in the authors pe-
riod with vTrails though the system have been written from scratch.

In recent years several peer-2-peer streaming system have been proposed,
some with similar design. Our main contribution in this work is the peer-2-peer
algorithm designed to calculate graph algorithms based on real time approaches.
Some system approach such as the handling of distress state is also innovative.

ChunkySpeed[VFC06] is a related system that also implements peer-2-peer
multicast, in a robust way. Unlike PPPC ChunkySpeed doesn’t take internet dis-
tances into account.

ChunkCast[CWWK06] is another multicast over peer-2-peer system. ChunkCast
deals with download time which is a different problems all together. (In stream-
ing, guaranteed constant bitrate is required. This requirement doesn’t exist in

138

content download which is not vulnerable to a fluctuation in download speed
and only the overall download time really matters.

Climber[PPK08] is a peer-2-peer stream based on an initiative for the users
to share. It is in our experience that user sharing is not the main problem but
rather the main problem is that broadcasters are not willing to multicast their
content on peer-2-peer networks. Thus Climber does not solve the real problem.

Microsoft[PWC04] researched peer-2-peer streaming in multicast environ-
ment and network congestion but had a completely different approach which
involved multiple sub stream for each stream based on the client abilities.

Liu et al [LBLLN09] recently researched P2P streaming servers handling of
bursts flash crowds which is easily handled by the algorithm easily thanks to it’s
real time capabilities.

7.8 Experimental results

The PPPC system strives to provide QoS over bandwidth savings. We will con-
nect clients to the DServer directly whenever the stream they receive from an-
other client is not stable enough. Therefore, bandwidth saving is only best effort
and we do not offer any guaranteed results.

One can construct a network where no user has the available Internet up-
load connection to serve any other users. However, this case has never appeared
in our testing. Usually a saving ratio (1− Rootclients

TotalClients) of at least 50% and up to 99%
can be expected.

Following are several results that we got in real world experimental testing
and in simulated networks. They should demonstrate what a user can expect in
average scenario.

7.8.1 Internet Radio Streaming

Internet radio streaming is characterized by a relatively low bitrate streaming.
In this benchmark, we limited each user to serve to no more than 3 other users
the stream. The goal is avoid what the users may consider as too much abuse of
their uplink. However, even with this limitation we proved that 70% bandwidth
saving is feasible on 100-200 radio users spread around the world and up to 99%
saving when the users are all local users. This difference can be attributed in part
to our algorithm that does not handle users as "connectable" outside of an Au-
tonomous System Family. Therefore, when we had many users we could always
found somebody to connect the user to. Something we weren’t able to do with
relatively small number of world wide users.

Figure 41 demonstrate the system life time and bandwidth saving with high
spread of users. These results were obtained daily on a classical music radio
station with world wide spread of listeners Figure 42 demonstrate the system
life time and bandwidth saving with low spread of users. These results were

139

obtained during the daytime on a local radio station with listeners are mostly
local users from Israel. We found it frequent that more then one stream was used
when we had remote listeners. (People from abroad etc.)

FIGURE 41 Results on high spread radio users

FIGURE 42 Results on low spread radio users

7.8.2 Video streaming

Video streaming is more demanding between peer-2-peer links. Streaming high
quality video to multiple users on internet links may often be beyond the ability
of some users.

When video streaming benchmarks in Enterprises and Universities were
running, we were able to reach 92% saving on enterprise streaming.

Furthermore, we always had no more then 1 connection to each enterprise
location at any given time.

140

The following benchmark represent an online class given by the IUCC (Inter
University Computation Center) in Israel. No more then 1 connection was made
to each separate academic institute.

7.8.3 Simulated results

We produced the following results on a complete system with simulated clients.
In this test, we produced clients from 20,000 different subnets that were picked
randomly from the entire Internet. These subnets may or may not belong to any
common ASF.

At this test, we produced 2000 clients where 2 clients join every second and
the average lifetime of a client is 1,000 seconds. 1% of the client were bad par-
ents. A client could support either 0, 1, 2, or 3 clients with equal chances. Packet
loss between normal clients was not simulated in this benchmark, but bad par-
ents were unable to serve clients. In this simulated benchmark, we did video
streaming.

Figure 43 demonstrate the system behaviour over time as it starts accumu-
lating clients. We are starting a buildup of random clients with spread IPs. (The
network was simulated off course but the algorithm received random IP address
belonging to random IPs worldwide)

141

FIGURE 43 The beginning of the simulated test.

Figure 44 demonstrates the system’s behavior as the number of clients grows
over time. As more clients were added, we can see that the number of the root
clients for which the Internet broadcaster consumes bandwidth, grows as the
number of clients grows. However, the saving ratio (rootclients

totalclients) actually improves
as the number of clients increases. That is because we can now find more local
clients for each new IP that we receive.

Figure 45 demonstrates the next 6 minutes as the number of clients in the
graph grows. We see more of the same, i.e. the saving ratio improves as the
number of clients grows.

142

FIGURE 44 This image represents the system status upon reaching 1,000 clients

143

FIGURE 45 Minutes 12-17, 2000 clients.

When the predicted maximum clients number is for this experiment (2000)
is reached, the system is still stable in bandwidth saving and the number of root
clients is as demonstrated in figure 46. The stability in saving ratio and the system
remains over time.

144

FIGURE 46 This image shows the test results upon reaching maximum clients limit

We left the system running for a few hours. We checked the results every
hour and saw no real change in either the stream quality or in the bandwidth
consumption. These results are demonstrated in figure 47. The saving ratio of the
system remains stable.

145

FIGURE 47 We sampled the system running every hour.

While the system was running, we kept a client connected to a stream. The
stream quality was flawless at all times.

Other experiments with more clients and different attribute produce similar
results.

7.9 Conclusion and Future work

We have demonstrated how significant amount of the broadcaster bandwidth can
be saved by the peer-2-peer streaming, while the broadcaster maintain a complete
list of all stream participants (for billing and DRM purposes).

We demonstrated real life scenario where the broadcaster could save around
70% of the streaming bandwidth.

We feel more research may be in place to provide Trusted Computing peer-
2-peer streaming environment where the stream is never passed in a way that an
outsider can intercept the none encrypted stream.

8 FUTURE WORK

We continue to develop the systems mentioned in this work. Usually future ex-
tensions of the existing systems were mentioned in each chapter. Additionally,
we will continue our work on other virtualization systems. Some of the systems
that we currently work on are described below.

8.1 Job control System for EGI

The European Grid Initiative (EGI) is a multination project based in CERN to pro-
vide massive computation environment for research institutes all over Europe.

The GRID system has no online scheduler or job management system forc-
ing users to trace each of the job submitted manually. Furthermore, no limitation
is currently applied on job submitted even by new and inexperienced users that
may flood EGI with random, uselss and often duplicate jobs.

Together with Tamir Erez and Zeev Vaxman Fisher (who heads Israel Grid
consurtium) we have developed a job management and submission that is al-
ready deployed and widely used by several researchers in Israel. The work is
now completed with the cooperation of Redhat.

The final version of the system will be published shortly and offered to other
national grid organizations. (NGO)

8.2 Creating an Efficient Infrastructure as a Service Environment

Our work on Lguest and Asynchronous mirror replication led us to observing the
amount of shared memory pages across multiple running VMs that share similar
OS. In such cases most of the storage and memory will be indentical (with the
sole exception being the pages that are actually developed particularly for this
VM.)

147

This project has recently began.

8.3 Bridging Grid Platform as a service and Infrastructure as a Ser-
vice

Current EGI grid infrastructure is great platform-as-a-service service providing
massive amount of processing power for those who need.

But some users simply cannot use the grid as platform-as-a-service is not
suitable for them. Some users needs specific environment requiring infrastructure-
as-a-service.

Our work involves running a system virtual machine on EGI infrastructure
with memory and storage deduplication allowing users to actually submit virtual
machines snapshots as jobs for the grid.

This project has recently began.

8.4 Optimizing memcached

Memcached [Fit04] is a clustered key-value storage caching environement that
was developed after the observation that nowdays the network is often signifi-
cantly faster then the storage (disks) and a distributed cached (which may involve
a network request to a nearby host) outperforms the caching environment were a
local cache miss causes immediete disk access.

Memcached does improve performance greatly but uses only a naive LRU
caching algorithm. Our work involves increasing memcached performance by
replacing the memcached caching algorithm with more efficient algorithms such
as ARC[MM03]. The clustered nature of memcached makes this problem more
interesting.

This project is currently in it’s implementation phase. Initial results demon-
strate about 20% improvement compared to memcached caching as demonstrated
by figures 48 and 49.

148

FIGURE 48 LRU vs. ARC on 1,2,4,8 CPUs. 15462400 Operations, 95% get 5% set, 745K
window size.

FIGURE 49 LRU vs. ARC on 1,2,4,8 CPUs. 16650240 Operations, 85% get 15% set,
2439K window size.

9 CONCLUSION

We presented five systems for solving specific problems where each system used
a different virtualization form as a critical design feature.

LgDb: In the LgDb tool, we used a system virtual machine that provides a con-
trolled debug environment for Linux kernel modules. In LgDb, the virtu-
alization abstraction allows the software developer to disengage from the
hardware layer to provide an execution environment for the development
tools. During the work on LgDb, we realized that while virtualization can
be beneficial to kernel modules development, The virtualization layer fails
to provide a suitable environment for device drivers debugging.

AMirror: In the AMirror system, we used the abstraction provided by our log-
ical volume manager (storage virtualization) to create self replicating block
devices. Furthermore, by using Lguest and QEMU/KVM system virtualiza-
tion environments, we were able to insert an abstraction layer for the whole
system migration. In this system, virtualization did not introduce any lim-
itations. However, using virtual machines (instead of physical machines)
typically introduces a slight performance penalty.

Truly-Protect: In the Truly-Protect environment, we used the process virtual
machine to create an encrypted execution environment. The encrypted ex-
ecution environment affected the system performance but also provided us
with a trusted computing environment without the need to have specialized
hardware.

LLVM-Prefetch: In the LLVM-Prefetch system, we used a process virtual ma-
chine to pre-execute program instructions. This process usually boosts ap-
plication performance as it allows computation and I/O to be performed
simultaneously. However, if the application is already coded to allow par-
allel execution of computation and I/O, then the use of LLVM-Prefetch may
result in performance degradation due to the extra threads created by the
system.

150

PPPC: In the PPPC system, we used network virtualization and cloud comput-
ing that provides a platform as a service environment. In PPPC, the net-
work virtualization layer provides a multicast network where none existed
in IPv4. It also cuts the link between the broadcaster and the audience, thus,
it introduces problems from trusted computing perspective that the system
is meant to take care of.

Each system, that was presented in this dissertation, introduced a programming
problem followed by a system that provides the solution. Each solution used vir-
tualization that serves as "one extra level of indirection". This reinforces David
Wheeler’s fundamental theorem of Computer Science. i.e.: "All problems in com-
puter science can be solved by another level of indirection" [Spi07].

We believe that the methods, which were described herein, will be beneficial
to system designers.

On the other hand, adding the virtualization layer component introduced
new problems such as the inability to get native debug device drivers in LgDb
and performance degradation in Truly-protect.

Thus, in addition, we validated Kelvin Henney’s Corollary "All problems in
computer science can be solved by another level of indirection ... except for the
problem of too many layers of indirection".

151

YHTEENVETO (FINNISH SUMMARY)

Esittelemme tässä väitöskirjassa useita järjestelmiä, jotka hyödyntävät virtual-
isointiteknologian eri piirteitä. Järjestelmäkäyttö vaihtelee tekijänoikeussuojauk-
sesta, täystuhosta toipumisesta ja Linux-ytimen kehitystyökaluista joukkovies-
timien suoratoistoon ja tieteellisen laskennan optimointiin. Järjestelmät käyttävät
useita virtualisoinnin piirteitä, kuten sovellusvirtuaalikoneita, järjestelmävirtu-
aalikoneita, tallennusvirtualisointia, pilvilaskentaa ja niin edelleen.

Jokaisessa järjestelmässä on jokin ainutlaatuinen virtualisoinnin piirre, mutta
ne myös havainnollistavat tärkeitä menetelmiä järjestelmäsuunnittelijoille. Kaikissa
järjestelmissä virtualisointia käytetään “uuden epäsuoruuden tason” lisäämiseen.
Lisäämällä tämän “uuden epäsuoruuden tason” voimme käyttää sellaisia työkaluja,
joita emme voisi muuten hyödyntää. Virtualisointitekniikat ovat osoittaneet ole-
vansa elintärkeitä työkaluja kaikissa kehitetyissä järjestelmissä.

Monissa tapauksissa järjestelmän ajo tai kehittäminen on mahdotonta tai se
olisi ainakin ollut huomattavasti vaikeampaa, jos virtualisointia ei olisi lainkaan
käytetty. Monissa näissä järjestelmissä virtualisointi johtaa myös heikentyneeseen
toimintaan ja suoritustehoon. Käsittelemme täten myös virtualisoinnin seurauk-
sia ja kustannuksia.

Väitämme, että virtualisointi on tärkeä työkalu, jota suunnittelijat eivät voi
jättää huomiotta suunnitellessaan tulevaisuuden järjestelmiä. Kaikki tämän väitöskir-
jatyön puitteissa kehitetyt järjestelmät ovat vapaasti käytettävissä GNU GPL –
lisenssin alla.

152

REFERENCES

[AB] Christian Rechberger Andrey Bogdanov, Dmitry Khovra-
tovich. Biclique cryptanalysis of the full
aes. urlhttp://research.microsoft.com/en-
us/projects/cryptanalysis/aesbc.pdf.

[AKZ11a] Amir Averbuch, Eviatar Khen, and Nezer Jacob Zaidenberg. LgDB -
virtualize your kernel code development. In Proceedings of SPECTS
2011, June 2011.

[AKZ11b] Amir Averbuch, Michael Kiperberg, and Nezer Jacob Zaidenberg.
An Efficient VM-Based Software Protection. In NSS 2011, 2011.

[AKZ12] Amir Averbuch, Michael Kiperberg, and Nezer Jacob Zaidenberg.
An Efficient VM-Based Software Protection. In submitted, 2012.

[AMZK11] Amir Averbuch, Tomer Margalit, Nezer Jacob Zaidenberg, and Evi-
atar Khen. A low bitrate approach to replication of block devices and
virtual machines. In Networking, Architecture and Storage (NAS), 2011
IEEE Sixth International Conference on, 2011.

[And01] R. Anderson. Security Engineeringm – A guide to building dependable
distributed systems. John Wiley and Sons, 2001.

[And02] Andrew “bunnie" Huang. Keeping secrets in hardware: the mi-
crosoft xboxtm case study. Technical report, Massachusetts Insti-
tute of Technology, 2002. http://web.mit.edu/bunnie/www/proj/
anatak/AIM-2002-008.pdfa.

[App] Apple Ltd. Mac OS X ABI Mach-O File Format Reference.
http://developer.apple.com/library/mac/#documentation/
DeveloperTools/Conceptual/MachORuntime/Reference/
reference.html.

[ARZ11] Amir Averbuch, Yehuda Roditi, and Nezer Zaidenberg. An algo-
rithm for creating a spanning graph for peer-2-peer internet broad-
cast. In Proccedings of CAO2011: CCOMAS Thematic Conference on
Computational Analysis and Optimization, 2011.

[ARZ12] Amir Averbuch, Yehuda Roditi, and Nezer Zaidenberg. An algo-
rithm for creating a spanning graph for peer-2-peer internet broad-
cast. In Computational Analysis and Optimization: Dedicated to Professor
P. Neittaanmaki on his 60þBirthday, 2012.

[BBLS91] D.H. Bailey, J. Barton, T. Lasinski, and H. Simon. The nas parallel
benchmarks. Technical Report RNR-91-002, NASA Ames Research Cen-
ter, 1991.

http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-008.pdfa
http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-008.pdfa
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

153

[BBM09] Stanislav Bratanov, Roman Belenov, and Nikita Manovich. Virtual
machines: a whole new world for performance analysis. Operating
Systems Review, 43:46–55, 2009.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In Proc. of SOSP 2003, pages 164–177, 2003.

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
FREENIX Track: 2005 USENIX Annual Technical Conference, 2005.

[Bes80] Robert M. Best. Preventing software piracy with crypto-
microprocessors. In Proceedings of IEEE Spring COMPCON 80, pages
466–469, February 1980.

[Bhu71] A.K. Bhushan. File Transfer Protocol. RFC 114, April 1971. Updated
by RFCs 133, 141, 171, 172.

[bms10] bushing, marcan, and sven. Console hacking 2010 ps3 epic fail. In
CCC 2010: We come in peace, 2010.

[Box02] D. Box. "Essential .NET, Volume 1: The Common Langugage Runtime".
Addison-Wesley, 2002.

[BS11] A. Barak and A. Shiloh. Mosix. http://www.mosix.org, 2011.

[CBS07] Yong Chen, Surendra Byna, and Xian-He Sun. Data access history
cache and associated data prefetching mechanisms. In SC ’07 Pro-
ceedings of the 2007 ACM/IEEE conference on Supercomputing, 2007.

[CBS+08] Yong Chen, Surendra Byna, Xian-He Sun, Rajeev Thakur, and
William Gropp. Hiding i/o latency with pre-execution prefetching
for parallel applications. In SC ’08 Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008.

[Cha01] F. Chang. Using Speculative Execution to Automatically Hide I/O La-
tency. Carnegie Mellon, 2001. PhD dissertation CMU-CS-01-172.

[CHLS08] Donald Chesarek, John Hulsey, Mary Lovelace, and John
Sing. Ibm system storage flashcopy manager and pprc man-
ager overview. http://www.redbooks.ibm.com/redpapers/pdfs/
redp4065.pdf, 2008.

[CLM+08] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High availability via
asynchronous virtual machine replication. In 5th USENIX Sympo-
sium on Network Systems Design and Implementation, 2008.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Interval tree. In Introduction to Algorithms (2nd ed.), chap-
ter 14.3, pages 311–317. MIT Press and McGraw-Hill, 2001.

http://www.mosix.org
http://www.redbooks.ibm.com/redpapers/pdfs/redp4065.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4065.pdf

154

[CLRT00] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev
Thakur. Pvfs: A parallel file system for linux clusters. In IN PRO-
CEEDINGS OF THE 4TH ANNUAL LINUX SHOWCASE AND CON-
FERENCE, pages 391–430. MIT Press, 2000.

[Clu02] Cluster File System Inc. Lustre: A scaleable, high performance file
system, 2002. whitepaper.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. Technical
report, Bittorrent inc, May 2003.

[Coo09] EMC Cooperation. Implementing emc srdf/star pro-
tected composite groups on open systems. http:
//japan.emc.com/collateral/software/white-papers/
h6369-implementing-srdf-star-composite-groups-wp.pdf, 2009.

[CWWK06] Byung-Gon Chun, Peter Wu, Hakim Weatherspoon, and John Kubia-
towicz. Chunkcast: An anycast service for large content distribution.
In Proccedings of IPTPS 06’, 2006.

[Des] Mathieu Desnoyers. Linux trace toolkit next generation manual.
http://git.lttng.org/?p=lttv.git;a=blob_plain;f=LTTngManual.html.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644–654, November 1976.

[DJ08] Claudio DeSanti and Joy Jiang. Fcoe in perspective. In ICAIT ’08
Proceedings of the 2008 International Conference on Advanced Infocomm
Technology, 2008.

[DJC+07] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong
Zhang. Diskseen: Exploiting disk layout and access history to en-
hance I/O prefetch. In 2007 USENIX Annual technical conference,
2007.

[DM08] Stanislav Shwartsman Darek Mihocka. Virtualization without direct
execution or jitting: Designing a portable virtual machine infrastruc-
ture. Technical report, http://bochs.sourceforge.net/, 2008.

[DRB10] DRBD. http://www.drbd.org, 2010.

[DS07] Felix Domka and Michael Steil. Why Silicon-Based Security is still
that hard: Deconstructing Xbox 360 Security. In CCC 2007, 2007.

[DSZ10] Jiaqing Du, Nipun Sehrawat, and Willy Zwaenepoel. Performance
profiling in a virtualized environment. In Proceedings of USENIX Hot-
Cloud 2010, 2010.

[Eag07] Michael J. Eager. Introduction to the dwarf debugging format. Tech-
nical report, PLSIG UNIX International, February 2007.

http://japan.emc.com/collateral/software/white-papers/h6369-implementing-srdf-star-composite-groups-wp.pdf
http://japan.emc.com/collateral/software/white-papers/h6369-implementing-srdf-star-composite-groups-wp.pdf
http://japan.emc.com/collateral/software/white-papers/h6369-implementing-srdf-star-composite-groups-wp.pdf
http://git.lttng.org/?p=lttv.git;a=blob_plain;f=LTTngManual.html
http://bochs.sourceforge.net/
http://www.drbd.org

155

[Ehr10] David Ehringer. The dalvik virtual machine architecture. Technical
report, Google, March 2010.

[EK90] Carla Schlatter Ellis and David Kotz. Prefetching in file systems for
mimd multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1, 1990.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFCs 2817, 5785, 6266.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux Jour-
nal, 2004, August 2004.

[FL08] Chen Feng and Baochun Li. On large-scale peer-to-peer streaming
systems with network coding. ACM Multimedia, 2008.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems, 9:319–349, 1987.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidyalingam S. Sunderam. PVM: Parallel Virtual Ma-
chine A Users’ Guide and Tutorial for Network Parallel Computing. MIT
Press, 1994.

[gcc] gcc developers. gcov. http://gcc.gnu.org/onlinedocs/gcc/Gcov.
html.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In Proceedings of 19th ACM Symposium on Op-
erating Systems Principles, 2003.

[GKM] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof
– a call graph execution profiler. http://docs.freebsd.org/44doc/
psd/18.gprof/paper.pdf.

[Gle11] Kyle Gleed. vmotion - what’s going on under the
covers? http://blogs.vmware.com/uptime/2011/02/
vmotion-whats-going-on-under-the-covers.html, 2011.

[GM] Thomas Gleixner and Ingo Molnar. Performance counters. http://
lwn.net/Articles/310176/.

[Gol86] Oded Goldreich. Toward a theory of software protection. In Proceed-
ings of advances in cryptology – CRYPTO86, 1986.

[Gra08] Alexander Graf. Mac os x in kvm. In KVM Forum 2008, 2008.

[IBM] IBM. Quantify (rational purifyplus). http://www-01.ibm.com/
software/awdtools/purifyplus/enterprise/.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
http://blogs.vmware.com/uptime/2011/02/vmotion-whats-going-on-under-the-covers.html
http://blogs.vmware.com/uptime/2011/02/vmotion-whats-going-on-under-the-covers.html
http://lwn.net/Articles/310176/
http://lwn.net/Articles/310176/
http://www-01.ibm.com/software/awdtools/purifyplus/enterprise/
http://www-01.ibm.com/software/awdtools/purifyplus/enterprise/

156

[inc] VMWARE inc. Vmkperf.

[Int10] Intel Cooperation. Breakthrough aes performance with intel aes new
instructions, 2010.

[Int12] Intel Cooperation. IntelÂ® 64 and IA-32 Architectures Developer’s
Manual: Vol. 3A. 2012.

[Jou07] Nikolai Joukov. mirrorfs. http://tcos.org/project-mirrorfs.html,
2007.

[Kiv07] Avi Kivity. Kvm: The kernel-based virtual machine. In Ottawa Linux
Symposium, 2007.

[KJ03] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of the 12th USENIX Security
Symposium, 2003.

[KN94] David Kotz and Nils Nieuwejaar. Dynamic file-access characteristics
of a production parallel scientific workload. In Supercomputing ’94
Proceedings of the 1994 conference on Supercomputing, 1994.

[KNM06] Nitin A. Kamble, Jun Nakajima, and Asit K. Mallick. Evolution in
kernel debugging using hardware virtualization with xen. In Ottawa
Linux Symposium, 2006.

[KY04] Dongkeun Kim and Donald Yeung. A study of source-level compiler
algorithms for automatic construction of pre-execution code. ACM
TRANS. COMPUT. SYST, 22, 2004.

[LA03] Chris Lattnar and Vikram Adve. Architecture for a next-generation
gcc. In First Annual GCC Developer Summit, May 2003.

[LA04] Chris Lattner and Vikram Adve. LLVM: a compilation framework
for lifelong program analysis & transformation. In GCO ’04 interna-
tional symposium on Code generation and optimization: feedback-directed
and runtime optimization, 2004.

[Lat07] Chris Lattnar. Llvm 2.0 and beyond! In Google tech talk, July 2007.

[Lat08] Chris Lattnar. LLVM and Clang: next generation compiler technol-
ogy. In Proc. of BSDCan 2008: The BSD Conference, May 2008.

[Lat11] Chris Lattnar. LLVM and Clang: advancing compiler technology.
In Proc. of FOSDEM 2011: Free and Open Source Developers’ European
Meeting, February 2011.

[LBLLN09] Fangming Liu, Lili Zhong Bo Li+, Baochun Li, and Di Niu*. How
p2p streaming systems scale over time under a flash crowd? In
Proccedings of IPSTS 09’, 2009.

http://tcos.org/project-mirrorfs.html

157

[Lin] Linus Turvalds. About kernel debuggers. ttp://lwn.net/2000/
0914/a/lt-debugger.php3.

[Liu07] Y. Liu. On the minimum delay peer-to-peer video streaming: How
realtime can it be? In Proc. of ACM Multimedia, 2007.

[LMVP04] Jiuxing Liu, Amith Mamidala, Abhinav Vishnu, and Dhabaleswar K
Panda. Performance evaluation of infiniband with pci express. IEEE
Micro, 25:2005, 2004.

[Lov10] Robert Love. Linux Kernel Development. Addison-Welsey, June 2010.

[LTP] LTP developers. Linux testing project. http://http://ltp.
sourceforge.net/.

[Lud04] Thomas Ludwig. Research trends in high performance parallel in-
put/output for cluster environments. In 4th International Scientific
and Practical Conference on Programming, 2004.

[Luk04] Chi-Keung Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading processors.
In ACM SIGARCH Computer Architecture News - Special Issue: Proceed-
ings of the 28th annual international symposium on Computer architecture
(ISCA ’01, volume 29, 2004.

[LWS+09] H. A. Lagar-Cavilla, Joseph A. Whitney, Adin Scannell, Philip
Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and
M. Satyanarayanan. Snowflock: Rapid virtual machine cloning for
cloud computing. In 3rd European Conference on Computer Systems
(Eurosys), 2009.

[LXY08] Xu Li, Changsheng Xie, and Qing Yang. Optimal implementation
of continuous data protection (cdp) in linux kernel. In Networking,
Architecture and Storage (NAS), 2008 IEEE International Conference on,
pages 28–35, 2008.

[LY99] T. Lindoholm and F. Yellin. "The Java Virtual Machine Specification,
2nd ed.". Addison–Wesley, 1999.

[May01] John M May. Parallel I/O for High Performance Computing. Morgan
Kaufmann, 2001.

[Mic] Microsoft Cooperation. Windows authenticode portable executable
signature form. http://msdn.microsoft.com/en-us/windows/
hardware/gg463180.aspx.

[mil] millerm. elfsign. http://freshmeat.net/projects/elfsign/.

[Mit05] Chris Mitchell. Trusted computing. The Institution of Engineering and
Technology, 2005.

ttp://lwn. net/2000/0914/a/lt-debugger.php3
ttp://lwn. net/2000/0914/a/lt-debugger.php3
http://http://ltp.sourceforge.net/
http://http://ltp.sourceforge.net/
http://msdn.microsoft.com/en-us/windows/hardware/gg463180.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463180.aspx
http://freshmeat.net/projects/elfsign/

158

[MM63] J. C. Miller and C. J. Maloney. Systematic mistake analysis of digital
computer programs. Communications of the ACM, 3:58–63, 1963.

[MM03] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning,
low overhead replacement cache. In Proccedings of USENIX FAST 03,
2003.

[MR08] Alex Ionescu Mark Russinovich, David A. Solomon. Windows Inter-
nals: Including Windows Server 2008 and Windows Vista, Fifth Edition
(Pro Developer). Microsoft Press, 2008.

[MRW06] M. A. Hennell M. R. Woodward. On the relationship between two
control-flow coverage criteria: all jj-paths and mcdc. Information and
Software Technology, 48:433–440, 2006.

[MST+] Aravind Meno, Jose Renato Santos, Yoshio Turner, G. John Janaki-
raman, and Willy Zwaenepoel. Xenoprof. http://xenoprof.
sourceforge.net/.

[MST+05] Aravind Meno, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoe. Diagnosing performance overheads
in the xen virtual machine environment. In VEE, volume 5, pages
13–23, 2005.

[NDS] NDS. PC Show. http://www.nds.com/solutions/pc_show.php.

[NS03] Nicholas Nethercote and Julian Sewardb. Valgrind: A program su-
pervision framework. Electronic Notes in Theoretical Computer Science,
89:44–66, October 2003.

[Opr] Oprofile’s developers. Oprofile: a system profiler for linux. http:
//oprofile.sourceforge.net/news/.

[Opr11] Oprofile developers. Interpreting call graph. In Oprofile user guide,
chapter 5.3. Oprofile, 2011.

[Ore] Oreans Technologies. Code Virtualizer. http://www.oreans.com/
products.php.

[Para] Parasoft. Insure++. http://www.parasoft.com/jsp/products/
insure.jsp?itemId=63.

[Parb] Parasoft. Jtest. http://www.parasoft.com/jsp/products/jtest.jsp/.

[Pat97] R H Patterson. Informed Prefetching and Caching. Carnegie Mellon,
1997. PhD dissertation CMU-CS-97-2004.

[Pea02] Siani Pearson. Trusted computing platforms, the next security solu-
tion. Technical report, Hewlett-Packard Laboratories, 2002.

http://xenoprof.sourceforge.net/
http://xenoprof.sourceforge.net/
http://www.nds.com/solutions/pc_show.php
http://oprofile.sourceforge.net/news/
http://oprofile.sourceforge.net/news/
http://www.oreans.com/products.php
http://www.oreans.com/products.php
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.parasoft.com/jsp/products/jtest.jsp/

159

[PG74] G. J. Popek and R. P. Goldberg. Formal requirements for virtual-
ization third-generation architecutres. Communications of the ACM,
pages 412–421, July 1974.

[PGG+95] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky,
and Jim Zelenka. Informed prefetching and caching. In In Proceed-
ings of the Fifteenth ACM Symposium on Operating Systems Principles,
pages 79–95. ACM Press, 1995.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[Pos81a] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
Updated by RFC 1349.

[Pos81b] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168, 6093.

[Pos82] J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August
1982. Obsoleted by RFC 2821.

[PPK08] Kunwoo Park, Sangheon Pack, and Taekyoung Kwon. Climber: An
incentive-based resilient peer-to-peer system for live streaming ser-
vices. In Proccedings of IPTPS 08’, 2008.

[PS05] Athanasios E. Papathanasiou and Michael L Scott. Aggressive
prefetching: an idea whose time has come. In Proceedings of 10th
Workshop on Hot Topics in Operating Systems, 2005.

[PWC04] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. Sup-
porting heterogeneity and congestion control in peer-to-peer multi-
cast streaming. In Proccedings of IPTPS 04’, 2004.

[Ree03] Daniel A Reed. Scalable Input/Output: Achieving System Balance. The
MIT Press, October 2003.

[Roe11] Kevin Roebuck. Encryption. Tebbo, 2011.

[Rol] R. E. Rolles. Unpacking VMProtect. http:/http://www.openrce.
org/blog/view/1238/.

[Rol09] Rolf Rolles. Unpacking virtualization obfuscators. In Proc. of 4th
USENIX Workshop on Offensive Technologies (WOOT ’09), 2009.

[Ros] Steven Rostedt. ftrace - function tracer. http://lxr.linux.no/linux+
v3.1/Documentation/trace/ftrace.txt.

[Rus] Rusty Russell. Rusty’s remarkably unreliable guide to Lguest. http:
//lguest.ozlabs.org/lguest.txt.

[Rus08] Rusty Russell. virtio: towards a de-facto standard for virtual i/o
devices. Electronic Notes in Theoretical Computer Science, 42, July 2008.

http:/http://www.openrce.org/blog/view/1238/
http:/http://www.openrce.org/blog/view/1238/
http://lxr.linux.no/linux+v3.1/Documentation/trace/ftrace.txt
http://lxr.linux.no/linux+v3.1/Documentation/trace/ftrace.txt
http://lguest.ozlabs.org/lguest.txt
http://lguest.ozlabs.org/lguest.txt

160

[RWS05] Stephan A. Rago Richard W. Stevens. Advanced Programming for the
UNIX Environment 2nd Edition. Addison–Wesley Professional, 2005.

[San] Santa Cruz Operations Inc. SYSTEM V APPLICATION BINARY IN-
TERFACE.

[SBP] Peter Jay Salzman, Michael Burian, and Ori Pomerantz. Linux ker-
nel module programming guide. http://tldp.org/LDP/lkmpg/2.6/
html/.

[SBPR08] Mudhakar Srivatsa, Shane Balfe, Kenneth G. Paterson, and Pankaj
Rohatgi. Trust management for secure information flows. In Proceed-
ings of 15th ACM Conference on Computer and Communications Security,
October 2008.

[sch] scherzo. Inside Code Virtualizer. http://rapidshare.com/files/
16968098/Inside_Code_Virtualizer.rar.

[Sch96a] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[Sch96b] Bruce Schneier. Key–exchange algorithms. In Applied Cryptography
2nd ed., chapter 22. Wiley, 1996.

[Sch96c] Bruce Schneier. Key–exchange algorithms. In Applied Cryptography
2nd ed., chapter 21. Wiley, 1996.

[SCW05] Xian-He Sun, Yong Chen, and Ming Wu. Scalability of heteroge-
neous computing. In ICPP ’05 Proceedings of the 2005 International
Conference on Parallel Processing, 2005.

[SE94] Amitabh Srivastava and Alan Eustace. Atom: A system for building
customized program analysis tools. In PLDI ’94 Proceedings of the
ACM SIGPLAN, pages 196–205. ACM, 1994.

[SGG08] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating
Systems Concepts. Wiley, July 2008.

[SH] Nathan Snyder and Q Hong. Prefetching in llvm final report. http:
//www.cs.cmu.edu/~qhong/course/compiler/final_report.htm.

[SH02] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system
for large computing clusters. In Proceedings of the Conference on File
and Storage Technologies(FAST’02, pages 231–244, 2002.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of 26th
IEEE (MSST2010) Symposium on Massive Storage Systems and Technolo-
gies, 2010.

http://tldp.org/LDP/lkmpg/2.6/html/
http://tldp.org/LDP/lkmpg/2.6/html/
http://rapidshare.com/files/16968098/Inside_Code_Virtualizer.rar
http://rapidshare.com/files/16968098/Inside_Code_Virtualizer.rar
http://www.cs.cmu.edu/~qhong/course/compiler/final_report.htm
http://www.cs.cmu.edu/~qhong/course/compiler/final_report.htm

161

[SLGL09] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Au-
tomatic reverse engineering of malware emulators. In Proc. of the
30th IEEE Symposium on Security and Privacy, 2009.

[SM06] S. Shende and A. D. Malony. The tau parallel performance sys-
tem. International Journal of High Performance Computing Applications,
20(2):287–331, Summer 2006.

[SON] SONY Consumer Electronics. Playstayion 3. http://us.playstation.
com/ps3/.

[Spi07] Diomidis Spinellis. Another level of indirection. In Andy Oram
and Greg Wilson, editors, Beautiful Code: Leading Programmers Ex-
plain How They Think, chapter 17, pages 279–291. O’Reilly and Asso-
ciates, Sebastopol, CA, 2007.

[SR97] Evgenia Smirni and Daniel A. Reed. Workload characterization of
input/output intensive parallel applications. In Proceedings of the 9th
International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 169–180. Springer-Verlag, 1997.

[Ste05] Michael Steil. 17 Mistakes Microsoft Made in the XBox Security Sys-
tem. In 22nd Chaos Communication Congress, 2005.

[SW] Ben Smith and Laurie Williams. A survey on code coverage as a
stopping criterion for unit testing. ftp://ftp.ncsu.edu/pub/tech/
2008/TR-2008-22.pdf.

[SWHJ09] Yonghong Sheng, Dongsheng Wang, Jin-Yang He, and Da-Peng Ju.
Th-cdp: An efficient block level continuous data protection system.
In Networking, Architecture and Storage (NAS), 2009 IEEE International
Conference on, pages 395–404, 2009.

[Tea] FAA Certification Authorities Software Team. What is a “decision"
in application of modified condition/decision coverage (mc/dc)
and decision coverage (dc)? http://www.faa.gov/aircraft/air_
cert/design_approvals/air_software/cast/cast_papers/media/
cast-10.pdf.

[TGL99] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective i/o in romio. In FRONTIERS ’99 Proceedings of the The 7th
Symposium on the Frontiers of Massively Parallel Computation, 1999.

[Tim] Tim M Jones. Virtio: An i/o virtualization framework for linux par-
avirtualized i/o with kvm and lguest.

[Tru] Trusted Computing Group. TPM Main Specification. http://www.
trustedcomputinggroup.org/resources/tpm_main_specification.

http://us.playstation.com/ps3/
http://us.playstation.com/ps3/
ftp://ftp.ncsu.edu/pub/tech/2008/TR-2008-22.pdf
ftp://ftp.ncsu.edu/pub/tech/2008/TR-2008-22.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

162

[TSKM08] Yoshiaki Tamura, Koji Sato, Seiji Kihara, and Satoshi Moriai. Kemari:
Virtual machine synchronization for fault tolerance. http://www.
osrg.net/kemari/download/kemari_usenix08_poster.pdf, 2008.

[VFC06] Vidhyashankar Venkataraman, Paul Francis, and John Calandrino.
Chunkyspread: Multi-tree unstructured peer-to-peer multicast. In
Proccedings of IPTPS 06’, 2006.

[VMP] VMPSoft. VMProtect. http://www.vmprotect.ru.

[VMW] VMWare. Vmware. http://www.vmware.com.

[WECK07] Hakim Weatherspoon, Patrick Eaton, Byung-Gon Chun, and John
Kubiatowicz. Antiquity: Exploiting a secure log for wide-area dis-
tributed storage. In Proceedings of the 2nd ACM European Conference
on Computer Systems (Eurosys ’07), 2007.

[Wei84] M. Weiser. Program slicing. IEEE Trans. on Software Engineering SE-
10, 4, 1984.

[Wei07] Sage A Weil. Ceph: Reliable, Scalable, and High-Performance Distributed
Storage. University of California, Santa Cruz, December 2007. Ph.d
Thesis.

[WG97] David E. Womble and David S. Greenberg. Parallel I/O: An intro-
duction. Parallel Computing, 23, 1997.

[Wik] Wikipedia, the free encyclopedia. AES Instruction Set.

[WVL10] Qingsong Wei, B. Veeravalli, and Zhixiang Li. Dynamic replication
management for object-based storage system. In Networking, Archi-
tecture and Storage (NAS), 2010 IEEE Fifth International Conference on,
pages 412 – 419, 2010.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhonggiang Wu, and Lin
Chen. A brief survey of program slicing. ACM SIGSOFT Software
Engineering Notes, 30, 2005.

[Zai01] Nezer J. Zaidenberg. sFDPC - a P2P approach for streaming applications.
Tel Aviv University (M.Sc thesis), September 2001.

[ZMC11] Eyal Zohar, Osnat Mokryn, and Israel Cidon. The power of predic-
tion: Cloud bandwidth and cost reduction. In Proc. of SIGCOMM
2011, August 2011.

[ZS01] Craig Zilles and Gurindar Sohi. Execution-based prediction using
speculative slices. In Proceedings of the 28th Annual International Sym-
posium on Computer Architecture, 2001.

http://www.osrg.net/kemari/download/kemari_usenix08_poster.pdf
http://www.osrg.net/kemari/download/kemari_usenix08_poster.pdf
http://www.vmprotect.ru
http://www.vmware.com

163

[ZZ03] Wensong Zhang and Wenzhuo Zhang. Linux virtual server clusters:
Build highly-scalable and highly-available network services at low
cost. Linux Magazine, November 2003.

[ZZFfZ06] Ke Zhou, Qiang Zou, Dan Feng, and Ling fang Zeng. Self-similarity
in data traffic for object-based storage system. In Networking, Ar-
chitecture, and Storages, 2006. IWNAS ’06. International Workshop on,
2006.

APPENDIX 1 TRUST COMPUTING

Trusted computing is a branch of the computer security field. Historically, com-
puter security has dealt with software security between users in multiple user
computer systems.

This has led to the development of concepts such as permission systems,
access control lists and multi-level security policies developed and incorporated
into operating systems.

With the reduced price of computers and their ubiquity, the majority of we
people own computer systems at home. This has led to new kind of security
research. Systems were designed to protect their owner against viruses, attacks,
and, recently, spam and malware.

As computer became more common, demand for rich content and home
user software has increased. Willing to supply this demand, content owners
started to seek means to deliver content (games, media content etc.) while en-
forcing digital rights.

Purchasing software and media services over the Internet requires infras-
tructure capable of securing the transactions and ensuring protected intellectual
property will be used according to license.

In a sense, trusted computing is different from other security models. In
previous security cases we tried to secure the user from other malicious users or
from malicious software that may attack the user data. In trusted computation,
we try to secure content belonging to content owner and provide the user with
conditional access mode, or, as some point out, we protect the system against its
owner.

Thus, in a trusted computing environment we assume the hardware owner
himself may be malicious (wishing to create illegal copies of the software) and try
to protect the content against such users.

This chapter does not claim to be a complete reference on trusted comput-
ing. We refer the reader to [Mit05] for a more complete work on trusted comput-
ing. We wish to provide some basic foundation about the environment in which
our system described in 5 operates.

APPENDIX 1.1 Foundations

Anderson defines trusted system in [And01]:

A trusted system or component is defined as one whose failure can break
the security policy.

A trustworthy system is a system who will not fail.

The TCG defines trusted system as follows:

A trusted system or component is one that behaves in the expected way for
particular purpose.

165

From the above definitions it follows that we look for systems having a trusted
component that cannot be tempered by the system owner. A software vendor
should be able to use the trusted component to write trusted software that ensure
proper digital rights.

APPENDIX 1.2 Digital Rights Management and Copyright Protec-
tion

Copy protection, also known as content protection, copy obstruction, copy pre-
vention or copy restriction, refers to techniques used for preventing reproduction
of software, films, music, and other media, usually for copyright reasons. Dig-
ital rights management (DRM) refers to technologies whose purpose is to limit
the usage of some digital content or device. DRM software components are em-
ployed by hardware manufacturers, publishers, copyright holders and individ-
uals. The term can also refer to restrictions associated with specific instances of
digital works or devices.

Companies such as Sony, Amazon.com, Apple, Microsoft, AOL and BBC
use digital rights management. There are multiple forms of copy protection and
DRM methods such as serial numbers or key files, encrypted content and others.

In 1998 the Digital Millennium Copyright Act (DMCA) was passed in the
United States to impose criminal penalties on those who circumvent encryption.

While DRM and copyright protection software are essential part of the dig-
ital world and even though most countries have criminal laws against breaking
such systems, copyright systems and DRM systems are attacked by hackers con-
stantly leading to a development of new copy protection systems.

APPENDIX 1.3 Trusted computing – When trusted hardware is avail-
able

Pearson defines a trusted computing platform in [Pea02] as

a computing platform that has a trusted component, which it uses to create
a foundation of trust for software processes.

Indeed when the user hardware has a trusted component software vendors and
digital rights owner can use the trusted components to enforce trust.

Several attempts have been made to develop trusted computing platforms
for home users.

APPENDIX 1.3.1 CPUID in Intel processors

The first attempt to create a trusted computing environment in the user home
was carried over by Intel.

166

Intel tried to augment its CPUID instruction to include a unique processor
identifier.

CPUID is an x86 instruction for CPU identification. The instruction’s main
use is to determine the capabilities of the CPU to execute special instructions such
as MMX, SSE and other instructions which are not common to all x86 processors.

In their Pentium III processors, Intel introduced a new behaviour to the
CPUID instruction, which returned the processor’s serial number. This number
could serve as a trusted hardware component. Unfortunately due to privacy con-
cern the above behaviour of CPUID was disabled in later processors (including
processors that are widespread today). Furthermore the CPUID instruction has
never provided the serial number on AMD processors and many other non-Intel
x86 compatible processors.

APPENDIX 1.3.2 TCG and TPM

The most significant attempt at trusted computing thus far has been by the Trusted
Computing Group (TCG). The TCG is an industrial group that defines and pub-
lishes standards in the field of trusted computing.

TCG has published the standard for the Trusted Platform Module (TPM).
TPM is a hardware module that needs to be installed on the customer’s machine
to enable a TCG supported trusted computing environment. Software compo-
nents can query the TPM module in order to identify and authenticate the owner
and ensure the owner identity and ensure rightful use of protected content.

Unfortunately, the TPM penetration is very low — it practically does not
exist in home-users’ machines today.

APPENDIX 1.3.3 Market Penetration of Trusted Computing Environment

Overall, as we have seen, the market is not ready for trusted computing hard-
ware. There are significant objections regarding privacy concern as well as cus-
tomers not willing to pay for trusted computing platform.

In today’s world, if trusted computing means using trusted hardware then
the world is not ready.

In the next section we will demonstrate attempts made by companies to
achieve a trusted computing environment using standard components.

APPENDIX 1.4 Trusted Computing – When The Trusted Compo-
nent is Unavailable

When the trusted component is unavailable (as is the case with most user com-
puter systems) we have to begin our trusted computation environment based on
standard components.

We no longer rely on the components to be unbreakable but rather very

167

difficult to break. Instead we have to rely on the complexity of some component
so that it will be too expensive or too complex for the hackers to attack.

Several companies use obscurity as a means to defend their code. Doing
meaningless instructions on some registers or threads, running program counters
in non standard CPU registers and in a non linear way (jumps between instruc-
tions, moving the program counter backwards etc.) as a means of masking the
true work they are doing.

Such methods have received mixed success. Some companies have been
able to rely on obfuscation for quite a while without being broken (for example
NDS PC-Show). Others have already been broken by hackers several times.

Naturally it is very hard to prove anything on systems that rely on obfusca-
tions.

Other systems choose to rely on other components such as the OS, external
plug or USB dongle for copy protection. Practically all of these were broken by
hackers and such systems are not widely used any more.

Yet more systems make assumptions about the complexity of the hardware
itself. Typical assumptions include assumptions that the CPU or GPU state is too
complex for the user to break. Therefore as long as the CPU or GPU registers
are not compromised, we can begin our chain of trust in that component. This
assumption is found reliable in several products including Sony PlayStation 3
and Microsoft XBOX 360.

Other assumptions of the sort include relying on a special ROM chip on the
motherboard (broken in Sony PlayStation 1 and Sony PlayStation 2) or relying
on the system bus to be "super-fast" so that the user cannot tap into it (broken in
Microsoft XBOX[And02])..

From all the above assumptions, the only assumption that could be accept-
able is that the CPU or GPU registers can be considered trustworthy if we prevent
the system from being virtualized.

Luckily, Kennell[KJ03] has provided us with the means to prove that a sys-
tem is running on genuine (none virtualized) hardware.

APPENDIX 1.5 Trusted Computing Concepts in our Systems

Truly-protect, described in chapter 5 is a trusted computing environment. In
Truly-protect the chain of starts includes the user CPU. Truly-protect allows the
running of encrypted programs via a virtual machine without allowing the user
to know what the instructions are that actually take place.

Our peer-2-peer streaming platform discussed in chapter 7 required taking
trusted computing consideration into the system design.

APPENDIX 2 CRYPTOGRAPHIC FOUNDATION

This chapter discusses the cryptographic foundations used in the Truly-protect
system described in chapter 5.

The presentation here is not complete, and we refer the reader to [Sch96a,
Roe11] for a more details.

APPENDIX 2.1 Encryption

Encryption is the process of transforming information (referred to as plaintext)
using an algorithm (called a cipher) to make it unreadable to anyone except those
possessing special knowledge, usually referred to as a key.

The result of the process is encrypted information (in cryptography, referred
to as ciphertext). The reverse process, i.e., to make the encrypted information
readable again, is referred to as decryption (i.e., to make it unencrypted).

APPENDIX 2.2 American Encryption Standard (AES)

AES, an acronym for the American Encryption Standard, is a commonly used en-
cryption method. AES was selected as a standard by National Institute for Stan-
dards and Technology (NIST) to supersede the previous cryptography standard,
DES.

AES is based on a design principle known as a substitution permutation net-
work, which can be implemented efficiently in both software and hardware [6].

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits.
AES operates on a 4x4 column-major order matrix of bytes, termed the state. Most
AES calculations are done over a finite field. The AES cipher comprises several
transformation rounds that convert the plaintext into a ciphertext. Each round
consists of several processing steps, including one that depends on the encryption
key. A set of reverse rounds can be applied to transform the ciphertext back into
the plaintext using the same encryption key.

Since [AB] had shown that it is enough to check "only" one fourth of all pos-
sible keys to break AES, cryptographers have declared this encryption method
as broken. However, it is still safe for every practical use, since not only regu-
lar computers but even clusters are not able to break AES encryption thus the
vulnerability is not practical.

169

Algorithm 13 High level description of AES algorithm
KeyExpansion - Round keys are derived from the cipher key using Rijndael’s
key schedule
Initial Round - AddRoundKey - each byte of the state is combined with the
round key using bitwise xor
for all Rounds but first and last do

SubBytes - a non-linear substitution step where each byte is replaced with
another according to a lookup table.
ShiftRows - a transposition step where each row of the state is shifted cycli-
cally a certain number of steps.
MixColumns -a mixing operation which operates on the columns of the state,
combining the four bytes in each column.
AddRoundKey

end for
Final Round (no MixColumns)
SubBytes
ShiftRows
AddRoundKey

APPENDIX 2.3 Identification Schemes

Identification scheme refers to a method in which communicating parties recog-
nize each other. Identification schemes are used to prevent masquerading attacks
— in which a malicious user pretends to be somebody else.

Identification schemes are extremely important in DRM and conditional ac-
cess environments.

We describe here the Feige-Fiat-Shamir identification scheme that can be
used in Truly-protect and refer the reader to [Sch96a] for other identification
schemes.

The Feige-Fiat-Shamir protocol is:

Algorithm 14 Feige-Fiat-Shamir Identification Scheme
1: Peggy picks a random r, when r is less than n.
2: Peggy compute x = r2modn
3: Peggy sends x to Victor.
4: Victor sends Peggy a random binary string k−bits long: b1, b2, ..., bk.
5: Peggy computes y = r ∗ (sb1

1 ∗ sb2
2 ∗ ... ∗ sbk

k)modn.
6: Peggy sends y to Victor.
7: Victor verifies that x = y2 ∗ (vb1

1 ∗ vb2
2 ∗ ... ∗ vbk

k)modn.
8: Peggy and Victor repeat this protocol t times, until Victor is convinced that

Peggy knows s1, s2, ..., sk.

The chance that Peggy can fool Victor is 1 in 2kt.

170

APPENDIX 2.4 Key Exchange Techniques

Truly protect uses a key-exchange scheme to exchange keys with the software dis-
tributor. We present here a simple example of key exchange techniques that can
be used in Truly-protect and refer the reader to [Sch96a] for other key-exchange
techniques.

Diffie-Hellman[DH76] is the first public-key algorithm ever invented. Diffie-
Hellman relies on the fact that it is much easier to calculate (discrete) exponents
than logarithms. The algorithm is simple: first, Alice and Bob agree on a large
prime, n and g, such that g is primitive mod n. These two integers do not have to
be secret; Alice and Bob can agree to them over some insecure channel. They can
even be common among a group of users. It does not matter. Then, the algorithm
2.4 goes as follows:

Algorithm 15 Diffie-Hellman algorithm
1: Alice chooses a random large integer x
2: Alice sends Bob X = g ∗ xmodn
3: Bob chooses a random large integer y
4: Bob sends Alice Y = g ∗ ymodn
5: Alice computes k = Y ∗ xmodn
6: Bob computes k′ = X ∗ ymodn
7: Both k and k′ are equal to gxymodn.

The following illustration demonstrates the Diffie-Hellman scheme.
No one eavesdropping on the channel can computes g ∗ x ∗ ymodn. At worst

they can know n, g, X, andY. Unless an eavesdropper compute the discrete loga-
rithm and recovers x or y they do not solve the problem. So, k is the secret key
that both Alice and Bob computed independently.

171

FIGURE 50 The Diffie-Hellman key exchange illustrated

APPENDIX 3 QEMU AND KVM

QEMU[Bel05] is a machine emulator. QEMU relies on dynamic binary transla-
tion and allows for reasonable execution speed for emulated binaries. QEMU
provides CPU emulation and a set of device drives. Thus QEMU can be con-
sidered an hypervisor. QEMU can be used in conjunction with a virtualization
platform such as Xen or KVM.

The KVM (Kernel Virtual Machine)[Kiv07] is an industrial grade virtualiza-
tion environment implemented in the Linux kernel. KVM operates as a Linux
kernel module that provides a user space process access to the hardware virtual-
ization features of various processors. Coupling KVM with QEMU allows QEMU
to offer viable para-virtualization for x86, PowerPC, and S/390 guests. When the
target architecture is the same as the host architecture, QEMU can make use of
KVM particular features, such as acceleration.

QEMU was developed by Fabrice Bellard. KVM was released by Qumranet.
Qumranet was bought by RedHat in 2008 and Red Hat now control the KVM
code base. KVM is maintained by Avi Kivity and Marcelo Tosatti. Both products
are released under Open source licenses.

Both KVM and QEMU are living, evolving projects. This chapter describes
the system status as of version 0.15 of QEMU and KVM that ships with Linux
kernel 3.0.0

APPENDIX 3.1 QEMU – internal design

QEMU has two operating modes:

User mode emulation In this mode QEMU runs single Linux or Darwin/-
Mac OS X programs that were compiled for a different CPU. System calls are
thunked for endianness and for 32/64 bit mismatches. Fast cross-compilation
and cross-debugging are the main targets for user-mode emulation.

Computer emulation In this mode QEMU emulates a full computer system,
including peripherals. It can be used to provide virtual hosting for several virtual
computers on a single computer. QEMU can boot many different guest operating
systems, including Linux, Solaris, Microsoft Windows, DOS, and BSD. QEMU
supports emulation of several hardware platforms, including x86, x86-64, ARM,
Alpha, ETRAX CRIS, MIPS, MicroBlaze, PowerPC and SPARC.

APPENDIX 3.1.1 QEMU and storage devices

QEMU stores virtual hard disk images in a proprietary format (qcow or qcow2).
These only take up disk space that the guest OS actually uses. This way, an emu-

173

lated 120 GiB disk can still take up only several hundred megabytes on the host.
The QCOW2 format also allows the creation of overlay images that record the
difference to another base image file which is not modified. This can be useful to
have the possibility of reverting the disk’s contents to an earlier state. For exam-
ple, a base image could hold a fresh install of an operating system that is known
to work, and the overlay images are worked with. Should the guest system be
unusable for example as a result of a virus attack, the overlay can be deleted and
recreated, restoring the system to a stable state.

APPENDIX 3.1.2 QEMU – Tiny Code Generator (TCG)

The Tiny Code Generator (TCG) aims to remove the shortcomings of relying on a
particular version of GCC or any compiler, instead of relying on particular com-
piler versions. QEMU has incorporated the code generator part of the compiler
into other tasks performed by QEMU in run-time. The architecture translation
task thus consists of two parts: blocks of target code (TBs) being rewritten in TCG
ops - a kind of machine-independent intermediate notation, and subsequently
this notation being compiled for the host’s architecture by TCG. Optional opti-
mization passes are performed between them.

TCG requires dedicated code to support each supported architecture. Ad-
ditionally TCG requires that the target instruction translation be rewritten to take
advantage of TCG ops.

Starting with QEMU Version 0.10.0, TCG ships with the QEMU stable re-
lease.

APPENDIX 3.1.3 Serializing guests

QEMU allows guest operating systems to be serialized for guest migration sup-
port as well as saving and loading guests.. However, QEMU compresses the
guest memory blocks which renders deduplication of guests impossible.

APPENDIX 3.2 KVM

The Kernel-based Virtual Machine (KVM)[Kiv07] is a virtualization infrastruc-
ture for the Linux kernel. KVM supports native virtualization on processors with
hardware virtualization extensions. KVM originally supported x86 and x86_64
processors and has been ported to other platforms such as S/390, PowerPC and
IA-64.

A wide variety of guest operating systems work with KVM, including many
flavors of Linux, BSD, Solaris, Windows and OS X.

Limited para-virtualization support is available for Linux and Windows
guests using the Virt I/O framework. This supports a para-virtual Ethernet card,
a para-virtual disk I/O controller, a balloon device for adjusting guest memory-

174

usage, and a VGA graphics interface using SPICE or VMware drivers. Linux
2.6.20 (released February 2007) was the first to include KVM

Unlike Lguest, KVM is an industrial grade hypervisor and has a signifi-
cantly larger code base.

APPENDIX 3.3 Using KVM and QEMU technologies in our sys-
tems

We are using QEMU as a system virtual machine platform for VM migration in
AMirror discussed in chapter 4.

APPENDIX 3.3.1 Guest serializations for VM migration

Both our Asynchronous mirror product and our current in-development infras-
tructure as a service product relies on KVM and QEMU migration and guest se-
rialization.

APPENDIX 4 LLVM - LOW LEVEL VIRTUAL MACHINE

The Low Level Virtual Machine (LLVM) is an optimized compiler and execution
infrastructure[LA04].

LLVM, originally designed for C, C++ and Objective-C, supports now many
more programming languages including Fortran, Ada, Haskell, Java, Python and
more.

The LLVM project was founded by Vikram Adve and Chris Lattner at the
University of Illinois at 2000, and released under BSD-like open source license. In
2005 Apple Inc. hired LLVM project founder Chris Lattner and started supporting
the project, which was later integrated into Apple’s Mac OS X operation system.
Today LLVM is an integral part of apple development tools for both Mac OS X an
iOS.

LLVM is a live project that changes constantly. The majority of this chapter
describes LLVM 2.9 and is based among others on [Lat11].

APPENDIX 4.1 Motivation

LLVM developers felt existing compilers, mainly GCC, were based on old and
complicated code base. Old compilers were not designed to be modular and
therefore, changing a specific component or a behaviour was difficult. Further-
more, due to the aging code base and complicated structure, compilation times
were very long.

APPENDIX 4.2 System Design

LLVM’s primary goal was to build a set of modular compiler components for
each of the compiler tasks, including code generation for different architectures
(x86, ARM, PowerPC, etc.), generating ELF[San] and other executable formats,
generating DWARF[Eag07] debug symbols, linking, just-in-time compiling and
optimizing, I/O handling and front ends for various programming languages.

These compiler components were easy to construct and were shared among
several compilers. Furthermore, the right tools for one implementation may not
be suitable for another, so each implementation can now share the right tools for
the job.

Dividing a large system as compiler to a smaller components has several
benefits. Firstly, development of smaller components is much easier, and allows
the code to be maintained easily and for its documentation to remain readable.
Secondly, many components can be reused by compiler for different languages:
once the language processor has generated intermediate representation (LLVM
assembly) then the same optimization steps can run regardless of the original

176

programming language. Similarly the LLVM intermediate representation can be
translated to many different architectures with all architectures benefiting from
LLVM’s just-in-time compiler and other optimizations simply by replacing the
machine code emitter component.

The LLVM community is a strong, industrial supported community that
provides help to developers wishing to create new compiler tools.

APPENDIX 4.3 Intermediate Representation

The intermediate representation is designed to provide high-level information
about programs that is needed to support sophisticated analyses and transfor-
mations, while being low-level enough to represent arbitrary programs and to
permit extensive optimization in static compilers.

LLVM provides an infinite set of typed virtual registers in Static Single As-
signment (SSA) form, which can hold values of primitive types. SSA form pro-
vides the data flow graph, which can be utilized by various optimizations, in-
cluding the one incorporated in LLVM-prefetch. LLVM also makes the control
flow graph of every function explicit in the representation. A function is a set
of basic blocks, and each basic block is a sequence of LLVM instructions, end-
ing in exactly one terminator instruction. Each terminator explicitly specifies its
successor basic blocks.

LLVM defines three equivalent forms of the intermediate representation:
textual, binary, and in-memory (i.e., the compiler’s internal) representations. Be-
ing able to convert LLVM code between these representations without informa-
tion loss makes debugging transformations much simpler, allows test cases to
be written easily, and decreases the amount of time required to understand the
in-memory representation.

APPENDIX 4.4 Compiler

The LLVM compiler supports two front ends. The traditional GNU GCC front
end and it’s own Clang front end.

APPENDIX 4.4.1 GCC front-end

LLVM was originally written to be a replacement for the code generator in GCC
stack[LA03]. Using the standard GCC front-end allows LLVM to support many
programming languages including Ada, Fortran, etc.

Using the GCC front-end we relay on GCC to compile the programming lan-
guage to intermediate representation and we use LLVM infrastructure to compile
the intermediate representation, link and execute the byte code.

This front-end is now deprecated and the Clang front-end is preferred.

177

APPENDIX 4.4.2 Clang front-end

Clang is the new interface for LLVM to compile C-derived languages (C, C++,
Objective-C). With the second version of LLVM, its community started to replace
the old llvm-gcc 4.2 interface in favor of the newer Clang front end[Lat07]. Clang
is a completely new environment not based on GCC sources.

The motivation behind Clang development includes easier integration with
modern integrated development environment, wider support for multi-threading,
and clearer error messages.

APPENDIX 4.4.3 Just-in-time Compiler optimization

LLVM performs compiler and runtime optimizations. for example take this code
designed to switch between two BGRA444R to BGRA8888 video formats.

for each pixel {
switch (infmt) {

case RGBA5551:
R = (*in >> 11) & C
G = (*in >> 6) & C
B = (*in >> 1) & C

...
}
switch (outfmt) {

case RGB888:

*outptr = R << 16 |
G << 8 ...

}
}

This code runs on every pixel and performs both switch statements on each pixel.
LLVM can detect that the switch is unnecessary since it always results in the same
branch. Removing the switch statements collapses the code to

for each pixel {
R = (*in >> 11) & C;
G = (*in >> 6) & C;
B = (*in >> 1) & C;

*outptr = R << 16 |
ï¿Œï¿Œï¿Œï¿Œï¿ŒG << 8 ...
ï¿Œ}

This compiler optimization may result in up to 19.3x speed-up and 5.4x average
speed up according to [Lat08].

178

APPENDIX 4.5 Code Generation

Before execution, a code generator is used to translate from the intermediate rep-
resentation to native code for the target platform, in one of two ways. In the first
option, the code generator is run statically, to generate high performance native
code for the application, possibly using expensive code generation techniques.

Alternatively, a just-in-time Execution Engine can be used which invokes
the appropriate code generator at runtime, translating one function at a time for
execution.

LLVM-prefetch uses the Execution Engine to generate native code for the
newly constructed program slice.

APPENDIX 4.6 Virtual Machine Environment

As its name suggests LLVM is a "low-level" virtual machine. In contrast with
other popular virtual machines such as JVM[LY99] or CLR[Box02], LLVM doesn’t
provide memory management and abstraction. LLVM relies on the user to handle
these issues.

LLVM includes an interpreter, just-in-time compiler and ahead-of-time com-
piler. LLVM allows the user to use native shared libraries, even those not com-
piled for LLVM.

APPENDIX 4.7 Other tools

The LLVM project includes a rich tool-chain that includes LLDB — a debugger,
and various other tools for linkage, library, and binary manipulation. These tools
were not critical part in the efforts and are only briefly described for complete-
ness.

APPENDIX 4.8 How LLVM is being used in our systems

We are using LLVM in LLVM-prefetch system. We have also considered using
LLVM in Truly-Protect but found it unsuitable for this purpose.

APPENDIX 4.8.1 LLVM-Prefetch

We use LLVM run-time optimization environment to construct and run our pre-
execution threads. LLVM’s intermediate representation allowed to construct the
dynamic slices of the program easily.

179

APPENDIX 4.8.2 Truly-Protect

We considered using LLVM in Truly-protect. Unfortunately, LLVM holds the
intermediate representation of the program in the memory in an unprotected
form. The intermediate representation is not just a buffer stored in the mem-
ory but rather an object graph incorporating covering a significant portion of
LLVM’s code. Thus, wrapping these objects with a cryptographic layer is not
cost-effective.

APPENDIX 5 LINUX BLOCK I/O LAYER

Linux block I/O layer is an inside layer that resides between the layers that re-
quest I/O operations such as file systems (usually) and the disk drives.

From the file system perspective it provides identical interfaces to all storage
devices regardless of storage medium. From the disk perspective it is the only
interface that generate requests to the disks.

This chapter describes state of the kernel 2.6.35 which is the version we used
for AMirror development. (chapter 4)

Due to the complete lack of documentation on the block layer internals and
due to the fundamental nature of the block layer in our system, this chapter pro-
vides a complete documentation of the block layer.

The block layer shadows the layer that makes the request (the file system)
from the layer that commits the I/O (the disk). All I/O requests directed to block
devices (which includes all disk and tape drives) go through the block I/O layer.

The block layer is a "queue of requests" where the queue is represented by a
huge structure called "struct request_queue" which is essentially:

1. Double linked list of "requests" (using kernel list_head link structure) these
request were submitted by the upper layers and need to be executed by the
block devices. (Hard drives for example)

2. A set of pointers to specific methods defined by the device driver to execute
operations on a queue.

3. A pointer to an I/O scheduler module, that is a set of methods which (in
addition to the basic functions defined in the block layer) manage the queue
(Order the requests in the queue, the minimal time when some request can
be fetched from the queue etc.), the I/O scheduler may allocate and manage
its own data structures per queue, and to store requests there to put them
back into the queue at some specific points only.

APPENDIX 5.1 The Structure of the Block I/O Queue

The I/O queue consists of a list of requests. Each request is a structure that is
managed inside the drivers and block layer. The structure that is known to the
file systems and page cache is called struct bio (for block I/O) and struct bio
consists of an array of structures called io_vecs. Each member of the I/O vec
contains a page, offset from the beginning of the page and length of the data in a
page.

181

TABLE 2 struct bio (block I/O) members

Member Usage
request_queue Doubly linked list of request.
request bio List of (adjacent) bios.
Bio Vector of i/o (io_vec)
buffer_head The buffer in memory usually resides in kernel space but

may be in user space for the case of direct I/O
io_vec page , offset , length
Page Pointer to address_space (which is a page cache), Pointer to

buffer_head (which may be linked in a circled list (by means
of *b_this_page field). The page usually represents a block
of 4KB whose beginning address divides evenly on 4096 (or
8 sectors) , that is why the direct I/O blocks should comply
with this limitations also.

All the addresses and lengths defined in the block layer are in granularity
of complete sectors. Sectors are the minimal unit a disk / DMA controller may
process, usually 512 bytes.

APPENDIX 5.2 Typical Block Layer Use Scenario

Struct bio request is submitted to the block layer, by calling to submit_bio() (de-
tailed in 5.8). When bio is submitted the block layer verifies the bio integrity. The
block later checks that the bio is sent to a block device that is actually a partition.
If it is sent to a partition it remaps the sectors in the bio to the actual addresses
(adds the partition offset). The block layer then calls __make_request() (see sec-
tion 5.8) to build a request struct from a bio struct and push it into a request
queue. At first make_request() may do some memory re mappings (bouncing
highmem/lomem) then asks the I/O scheduler if this bio is adjacent to some
existing request, if so it merges this bio into the existing request (Under the as-
sumption that the request is made to a magnetic hard disk were seeking has
high cost) and accounts for merged requests. Otherwise the block layer calls to
get_request_wait() (see section 5.9) to allocate a new request structure . If the
queue is full the Block layer process will sleep until the queue will free up and
only then will get a desired structure. When a new structure is allocated it is
pushed into queue by means of __elv_add_request() (see section 5.9).

The I/O device may then be plugged or unplugged (see section 5.11). When
the request_fn() callback function is called (by generic_unplug_device() for exam-
ple) the driver starts to fetch requests from the queue by calling to blk_fetch_request()
(see fetch request section). Then the block layer transforms the request into a scat-
ter gather list by a call to blk_rq_map_sg() ,passes this list to a DMA controller
and then goes to sleep. When the DMA controller raises an interrupt reporting

182

successful completion of a request a device driver then completes the request by
calling to blk_end_request() (see completion section). The driver then fetches and
starts to process next request from a queue. The function blk_end_request() calls
the completion methods of all the bios in the request, accounts for completed re-
quest, response time of a request and number of completed bytes. Afterward we
free and deallocate the request by calling to blk_put_request()(see section 5.14).

APPENDIX 5.3 Services the Block Layer Provides

The block layer provides the following services to the upper layer dependent on
it. (such as file system)

partition remapping Correct I/O request addresses to physical address to ac-
count for partition location on the disk.

highmem/lomem remapping] If the DMA controller does not support highmem
(above 4GB) the memory is remapped.

Bidirectional requests(bidi) support Some devices may both read and write op-
erations in one DMA, thus a request in the opposite direction may be ap-
pended to another request by the block layer.

Timeout handling A time limit is appended to each request and when it times
out a special method is called to handle the error case.

Integrity checking An integrity payload may be appended to each request. The
integrity payload can be used to check its validity (upon reading).

Barrier requests Special requests can be submitted to force all requests in the
queue be flushed, and to define a strict order on a request, such that no re-
quest that arrives after the barrier will be serviced before the flushing pro-
cess finishes.

Tag management for tagged (TCQ) requests The block layer can add tags to de-
fine the order on the requests and to ensure the requests will be serviced by
a disk device (for queue management / flushing purposes). TCQ applies
to SCSI devices. SATA devices define a similar method for their internal
queues management called NCQ.

Elevator The block layer includes the I/O scheduler (also called elevator. The
block layer is highly flexible and has the ability to change its behavior al-
most entirely by defining new I/O schedulers.

Cgroups The block layer manages priorities between processes (actually groups
of processes) , for block I/O and to make a per process group block for I/O
accounting (implemented inside CFQ I/O scheduler only).

183

Per partition I/O accounting (separately for reads and writes) The block layer tracks
total I/O operations completed, total bytes completed, cumulative response
time, total merges and queue sizes.

Handle partial requests completion some devices can not complete a request in
one DMA command. Thus it is necessary to have the option to complete
only a partial number of bytes of the request and track multiple fragments
for request completion.

queueing The block layer is responsible for requeuing the existing requests in
separate drivers queue.

APPENDIX 5.4 The Block Layer Interface to Disk Drives

The following methods are defined by each I/O driver (such as disk controller
driver). These methods are the interfaces that the block layer has with the under-
lying disk drive layer.

184

TABLE 3 I/O driver interfaces

Method Usage
request_fn_proc *re-
quest_fn

The entry point to the driver itself. When called, the
driver should start executing I/O request. The I/O
requests are fetched from the queue one by one. (see
section 5.11)

make_request_fn
*make_request_fn

Pushes a bio into a queue (see section 5.8) (usually
__make_request()).

prep_rq_fn *prep_rq_fn May process the request after it is fetched from the
queue. (see section 5.12) For most devices this func-
tion is NULL.

unplug_fn *unplug_fn Unplug event handler (see section 5.11) For most de-
vices this is generic_unplug_device()).

merge_bvec_fn
*merge_bvec_fn

This function is not called by the block layer (but it is
called by I/O drivers) The code comments - "Usually
queues have static limitations on the max sectors or seg-
ments that we can put in a request. Stacking drivers may
have some settings that are dynamic, and thus we have to
query the queue whether it is OK to add a new bio_vec to a
bio at a given offset or not. If the block device has such limi-
tations, it needs to register a merge_bvec_fn() to control the
size of bio’s sent to it".

prepare_flush_fn *pre-
pare_flush_fn

Called before a block layer issues a flush on a queue.
(see section 5.13).

softirq_done_fn
*softirq_done_fn

Called on a completion of a software irq on a block
I/O.

rq_timed_out_fn
*rq_timed_out_fn

Called when the requests timed outs for error han-
dling, (see start_request method in section 5.12 , and
finish_request method in section 5.15).

dma_drain_needed_fn
*dma_drain_needed

From the comment to this function. "Some devices
have excess DMA problems and can’t simply discard (or
zero fill) the unwanted piece of the transfer. They have to
have a real area of memory to transfer it into..." This func-
tion should return true if this is a case, if so the queue,
"silently" appends a buffer dma_drain_buffer of size
dma_drain_size into each scatter_gather list.

lld_busy_fn *lld_busy_fn "...Check if underlying low-level drivers of a device are busy
this function is used only by request stacking drivers to
stop dispatching requests to underlying devices when un-
derlying devices are busy..." Returns true if the device is
busy.

185

APPENDIX 5.5 The I/O Scheduler (Elevator)

The is a set of methods, which order and make decisions about each step of the
I/O request life cycle. i.e. allocation, insertion into queue, merging with other
requests, fetching from queue, completion and deallocation.

The I/O scheduler acts as an "elevator" in which the request "goes up and
down" queues. Therefore the name elevator is used for the I/O scheduler in the
kernels and both terms will be used interchangeably in this work.

The Linux kernel developers intention was to make I/O scheduler store the
requests inside its own data structures and then put the requests back into a main
queue during the call to make_request, however as time and version went by
schedulers (especially CFQ) became so complicated that many of the block lay-
ers logic , was re-implemented inside them. For example CFQ (The default I/O
scheduler) stores many queues and calls directly to devices driver request_fn()
(by run_queue() for ex.) while giving the driver one of its internal queues as a
parameter (which overrides the plug/unplug mechanism). So currently the I/O
scheduler is more closely tied to the block layer and therefore we cover it. The
kernel currently contains 3 implementations of I/O schedulers:

noop The Noop scheduler takes no decision (does nothing) it manages a FIFO
queue and responses are handled in first come first served policy.

CFQ (complete fair queuing) hashes between the requests and the ids of the
processes that issued them (I/O contexts), stores queue for each hashed en-
try and service them in a round robin manner. This I/O scheduler is the
elevator analog of the CFS in task scheduling in Linux.

deadline The older I/O scheduler. This I/O scheduler processes I/O requests
with emphasis on the completion deadline.

186

TABLE 4 The methods that the I/O scheduler implements

Function Usage
elevator_merge_fn Called on query requests for merge with a bio
elevator_merge_req_fn Called when two requests are merged. The request

that gets merged into the other will be never seen
by the I/O scheduler again. I/O-wise, after being
merged, the request is gone.

elevator_merged_fn Called when a request in the scheduler has been in-
volved in a merge. It is used in the deadline sched-
uler to re-position the request if its sorting order has
changed.

elevator_allow_merge_fn Called when the block layer tries to merge bios. The
I/O scheduler may still want to stop a merge at this
point if the merge will results in some sort of inter-
nal conflict. This hook allows the I/O scheduler to do
that.

elevator_dispatch_fn Fills the dispatch queue with ready requests. I/O
schedulers are free to postpone requests by not fill-
ing the dispatch queue unless the "force" argument
is non-zero. Once dispatched, I/O schedulers are not
allowed to manipulate the requests as they belong to
generic dispatch queue.

elevator_add_req_fn Called to add a new request into the scheduler
elevator_queue_empty_fn Returns true if the merge queue is empty.
elevator_former_req_fn Returns the request before the one specified in disk

sort order.
elevator_latter_req_fn Returns the request after the one specified in disk sort

order.
elevator_completed_req_fn Called when a request is completed.
elevator_may_queue_fn Returns true if the scheduler wants to allow the cur-

rent context to queue a new request even if it is over
the queue limit.

elevator_set_req_fn Allocate elevator specific storage for a request.
elevator_put_req_fn Deallocate elevator specific storage for a request.
elevator_activate_req_fn Called when device driver first sees a request. I/O

schedulers can use this callback to determine when ac-
tual execution of a request starts.

elevator_deactivate_req_fn Called when device driver decides to delay a request
by requeuing it

elevator_init_fn Allocates elevator specific storage for a queue.
elevator_exit_fn Deallocates elevator specific storage for a queue.

187

APPENDIX 5.6 File List

The block layer code is located under ./block/ directory in the kernel source tree.
Headers files, like blkdev.h are located under ./include/linux/

TABLE 5 The methods that the I/O scheduler implements

File Contents
blk-barrier.c Barrier request management , queue flushing
blk-cgroup.c, blk-cgroup.h Cgroup block I/O management
blk-core.c Main functions of the block layer
blk-exec.c Helper functions and wrappers
blk.h Definitions and static inline methods
blk-integrity.c Integrity functionality
blk-ioc.c I/O context, links between a process and a spe-

cific I/O request, used for request allocation (see
section 5.9) and by CFQ I/O scheduler

blk-iopoll.c I/O multiplexing
blk-lib.c Helper functions and wrappers
blk-map.c Memory mapping functions between bios and

requests
blk-merge.c Functions to merge adjacent requests and

blk_rq_map_sg()
blk-settings.c Initialization of the data structures
blk-softirq.c Software IRQ
blk-sysfs.c /sys filesystem entries that refer to the block

layer
blk-tag.c Tagged requests management
blk-timeout.c Timeout management for error handling
bsg.c Block layer SCSI generic driver
cfq.h, cfq-iosched.c CFQ I/O scheduler
compat_ioctl.c Ioctl compatibility
deadline-iosched.c Deadline I/O scheduler
elevator.c Common I/O schedulers functions and wrap-

pers
genhd.c Gendisk data structure. Gendisk is the abstract

base class for all disk drives.
ioctl.c IOCTL implementation
noop-iosched.c No-op I/O scheduler
scsi_ioctl.c IOCTL for scsi devices.

188

APPENDIX 5.7 Data structure

The following figure describe the block layer data structure relations

V

F

S

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

s

t

r

u

c

t

i

n

o

d

e

s

t

r

u

c

t

s

u

p

e

r

_

b

l

o

c

k

s

t

r

u

c

t

d

e

n

t

r

y

s

t

r

u

c

t

f

i

l

e

*

b

d

_

c

o

n

t

a

i

n

s

b

d

_

i

n

o

d

e

s

(

L

)

*

b

d

_

i

n

o

d

e

i

_

d

e

v

i

c

e

s

(

L

)

,

i

_

s

b

_

l

i

s

t

(

L

)

,

i

_

l

i

s

t

(

L

)

*

i

_

b

d

e

v

*

b

d

_

s

u

p

e

r

*

i

_

s

b

*

s

_

b

d

e

v

s

_

i

n

o

d

e

s

(

L

)

i

_

d

e

n

t

r

y

(

L

)

*

s

_

r

o

o

t

s

_

a

n

o

n

(

L

)

*

d

_

i

n

o

d

e

*

d

_

s

b

f

_

l

i

s

t

(

L

)

*

f

_

d

e

n

t

r

y

D

i

r

e

c

t

I

O

s

t

r

u

c

t

d

i

o

*

i

n

o

d

e

P

a

g

e

c

a

c

h

e

s

t

r

u

c

t

p

a

g

e

s

t

r

u

c

t

a

d

d

r

e

s

s

_

s

p

a

c

e

s

t

r

u

c

t

b

u

f

f

e

r

_

h

e

a

d

s

t

r

u

c

t

r

a

d

i

x

_

t

r

e

e

_

r

o

o

t

*

c

u

r

_

p

a

g

e

*

p

a

g

e

s

(

A

)

*

m

a

p

p

i

n

g

a

s

s

o

c

_

m

a

p

p

i

n

g

*

i

_

m

a

p

p

i

n

g

,

i

_

d

a

t

a

*

f

_

m

a

p

p

i

n

g

*

h

o

s

t

p

r

i

v

a

t

e

*

b

_

t

h

i

s

_

p

a

g

e

,

b

_

a

s

s

o

c

_

b

u

f

f

e

r

s

(

L

)

m

a

p

_

b

h

*

b

_

p

a

g

e

*

b

_

a

s

s

o

c

_

m

a

p

*

b

_

d

e

v

p

a

g

e

_

t

r

e

e

B

l

o

c

k

d

e

v

i

c

e

d

r

i

v

e

r

d

e

v

i

c

e

.

h

s

t

r

u

c

t

d

e

v

i

c

e

b

l

k

d

e

v

.

h

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

_

o

p

e

r

a

t

i

o

n

s

?

i

n

t

(

*

o

p

e

n

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

f

m

o

d

e

_

t

)

;

?

i

n

t

(

*

r

e

l

e

a

s

e

)

(

s

t

r

u

c

t

g

e

n

d

i

s

k

*

,

f

m

o

d

e

_

t

)

;

?

i

n

t

(

*

l

o

c

k

e

d

_

i

o

c

t

l

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

f

m

o

d

e

_

t

,

u

n

s

i

g

n

e

d

,

u

n

s

i

g

n

e

d

l

o

n

g

)

;

?

i

n

t

(

*

i

o

c

t

l

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

f

m

o

d

e

_

t

,

u

n

s

i

g

n

e

d

,

u

n

s

i

g

n

e

d

l

o

n

g

)

;

?

i

n

t

(

*

c

o

m

p

a

t

_

i

o

c

t

l

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

f

m

o

d

e

_

t

,

u

n

s

i

g

n

e

d

,

u

n

s

i

g

n

e

d

l

o

n

g

)

;

?

i

n

t

(

*

d

i

r

e

c

t

_

a

c

c

e

s

s

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

s

e

c

t

o

r

_

t

,

?

?

?

?

?

?

v

o

i

d

*

*

,

u

n

s

i

g

n

e

d

l

o

n

g

*

)

;

?

i

n

t

(

*

m

e

d

i

a

_

c

h

a

n

g

e

d

)

(

s

t

r

u

c

t

g

e

n

d

i

s

k

*

)

;

?

v

o

i

d

(

*

u

n

l

o

c

k

_

n

a

t

i

v

e

_

c

a

p

a

c

i

t

y

)

(

s

t

r

u

c

t

g

e

n

d

i

s

k

*

)

;

?

i

n

t

(

*

r

e

v

a

l

i

d

a

t

e

_

d

i

s

k

)

(

s

t

r

u

c

t

g

e

n

d

i

s

k

*

)

;

?

i

n

t

(

*

g

e

t

g

e

o

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

s

t

r

u

c

t

h

d

_

g

e

o

m

e

t

r

y

*

)

;

?

/

*

t

h

i

s

c

a

l

l

b

a

c

k

i

s

w

i

t

h

s

w

a

p

_

l

o

c

k

a

n

d

s

o

m

e

t

i

m

e

s

p

a

g

e

t

a

b

l

e

l

o

c

k

h

e

l

d

*

/

?

v

o

i

d

(

*

s

w

a

p

_

s

l

o

t

_

f

r

e

e

_

n

o

t

i

f

y

)

(

s

t

r

u

c

t

b

l

o

c

k

_

d

e

v

i

c

e

*

,

u

n

s

i

g

n

e

d

l

o

n

g

)

;

?

s

t

r

u

c

t

m

o

d

u

l

e

*

o

w

n

e

r

;

r

e

q

u

e

s

t

_

f

n

_

p

r

o

c

*

r

e

q

u

e

s

t

_

f

n

;

m

a

k

e

_

r

e

q

u

e

s

t

_

f

n

*

m

a

k

e

_

r

e

q

u

e

s

t

_

f

n

;

p

r

e

p

_

r

q

_

f

n

*

p

r

e

p

_

r

q

_

f

n

;

u

n

p

l

u

g

_

f

n

*

u

n

p

l

u

g

_

f

n

;

m

e

r

g

e

_

b

v

e

c

_

f

n

*

m

e

r

g

e

_

b

v

e

c

_

f

n

;

p

r

e

p

a

r

e

_

f

l

u

s

h

_

f

n

*

p

r

e

p

a

r

e

_

f

l

u

s

h

_

f

n

;

s

o

f

t

i

r

q

_

d

o

n

e

_

f

n

*

s

o

f

t

i

r

q

_

d

o

n

e

_

f

n

;

r

q

_

t

i

m

e

d

_

o

u

t

_

f

n

*

r

q

_

t

i

m

e

d

_

o

u

t

_

f

n

;

d

m

a

_

d

r

a

i

n

_

n

e

e

d

e

d

_

f

n

*

d

m

a

_

d

r

a

i

n

_

n

e

e

d

e

d

;

l

l

d

_

b

u

s

y

_

f

n

*

l

l

d

_

b

u

s

y

_

f

n

;

d

e

v

i

c

e

.

h

s

t

r

u

c

t

d

e

v

i

c

e

_

d

r

i

v

e

r

?

i

n

t

(

*

p

r

o

b

e

)

(

s

t

r

u

c

t

d

e

v

i

c

e

*

d

e

v

)

;

?

i

n

t

(

*

r

e

m

o

v

e

)

(

s

t

r

u

c

t

d

e

v

i

c

e

*

d

e

v

)

;

?

v

o

i

d

(

*

s

h

u

t

d

o

w

n

)

(

s

t

r

u

c

t

d

e

v

i

c

e

*

d

e

v

)

;

?

i

n

t

(

*

s

u

s

p

e

n

d

)

(

s

t

r

u

c

t

d

e

v

i

c

e

*

d

e

v

,

p

m

_

m

e

s

s

a

g

e

_

t

s

t

a

t

e

)

;

?

i

n

t

(

*

r

e

s

u

m

e

)

(

s

t

r

u

c

t

d

e

v

i

c

e

*

d

e

v

)

;

*

p

a

r

e

n

t

*

d

r

i

v

e

r

G

e

n

e

r

i

c

b

l

o

c

k

l

a

y

e

r

P

a

r

t

i

t

i

o

n

t

a

b

l

e

g

e

n

h

d

.

h

s

t

r

u

c

t

d

i

s

k

_

p

a

r

t

_

t

b

l

A

c

c

o

u

n

t

i

n

g

,

/

p

r

o

c

/

d

i

s

k

s

t

a

t

s

g

e

n

h

d

.

h

s

t

r

u

c

t

d

i

s

k

_

s

t

a

t

s

m

e

m

o

r

y

p

o

o

l

f

o

r

f

r

e

e

r

e

q

u

e

s

t

s

b

l

k

d

e

v

.

h

s

t

r

u

c

t

r

e

q

u

e

s

t

_

l

i

s

t

P

a

r

t

i

t

i

o

n

g

e

n

h

d

.

h

s

t

r

u

c

t

h

d

_

s

t

r

u

c

t

*

p

a

r

t

(

A

)

*

l

a

s

t

_

l

o

o

k

u

p

*

b

d

_

p

a

r

t

_

_

p

e

r

c

p

u

*

d

k

s

t

a

t

s

o

r

d

k

s

t

a

t

s

_

_

d

e

v

D

i

s

k

(

b

l

o

c

k

d

e

v

i

c

e

)

,

d

r

i

v

e

r

e

n

t

r

y

p

o

i

n

t

g

e

n

h

d

.

h

s

t

r

u

c

t

g

e

n

d

i

s

k

*

r

q

_

d

i

s

k

p

a

r

t

0

*

p

a

r

t

_

t

b

l

*

d

r

i

v

e

r

f

s

_

d

e

v

*

f

o

p

s

A

q

u

e

u

e

(

l

i

s

t

)

o

f

r

e

q

u

e

s

t

s

,

d

r

i

v

e

r

e

n

t

r

y

p

o

i

n

t

b

l

k

d

e

v

.

h

s

t

r

u

c

t

r

e

q

u

e

s

t

_

q

u

e

u

e

*

q

u

e

u

e

r

q

A

l

i

s

t

o

f

b

i

o

s

b

l

k

d

e

v

.

h

s

t

r

u

c

t

r

e

q

u

e

s

t

*

n

e

x

t

r

q

,

q

u

e

u

e

l

i

s

t

(

L

)

q

u

e

u

e

_

h

e

a

d

(

L

)

b

a

r

_

r

q

*

l

a

s

t

_

m

e

r

g

e

*

o

r

i

g

_

b

a

r

_

r

q

p

r

e

_

f

l

u

s

h

_

r

q

p

o

s

t

_

f

l

u

s

h

_

r

q

*

q

*

r

q

_

d

i

s

k

A

n

a

r

r

a

y

o

f

b

i

o

_

v

e

c

s

b

i

o

.

h

s

t

r

u

c

t

b

i

o

*

b

i

_

n

e

x

t

*

b

i

o

*

b

i

o

_

t

a

i

l

*

b

i

o

,

*

b

i

o

_

l

i

s

t

*

b

i

_

b

d

e

v

P

a

g

e

,

o

f

f

s

e

t

i

n

p

a

g

e

,

l

e

n

g

t

h

b

i

o

.

h

s

t

r

u

c

t

b

i

o

_

v

e

c

b

l

k

t

r

a

c

e

_

a

p

i

.

h

s

t

r

u

c

t

b

l

k

_

t

r

a

c

e

*

b

i

_

i

o

_

v

e

c

b

i

_

i

n

l

i

n

e

_

v

e

c

s

[

0

]

*

b

v

_

p

a

g

e

b

l

k

_

t

r

a

c

e

I

O

S

c

h

e

d

u

l

e

r

e

l

e

v

a

t

o

r

.

h

s

t

r

u

c

t

e

l

e

v

a

t

o

r

_

q

u

e

u

e

e

l

e

v

a

t

o

r

.

h

s

t

r

u

c

t

e

l

e

v

a

t

o

r

_

o

p

s

e

l

e

v

a

t

o

r

.

h

s

t

r

u

c

t

e

l

e

v

a

t

o

r

_

t

y

p

e

e

l

e

v

a

t

o

r

.

h

s

t

r

u

c

t

e

l

v

_

f

s

_

e

n

t

r

y

?

e

l

e

v

a

t

o

r

_

m

e

r

g

e

_

f

n

*

e

l

e

v

a

t

o

r

_

m

e

r

g

e

_

f

n

;

?

e

l

e

v

a

t

o

r

_

m

e

r

g

e

d

_

f

n

*

e

l

e

v

a

t

o

r

_

m

e

r

g

e

d

_

f

n

;

?

e

l

e

v

a

t

o

r

_

m

e

r

g

e

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

m

e

r

g

e

_

r

e

q

_

f

n

;

?

e

l

e

v

a

t

o

r

_

a

l

l

o

w

_

m

e

r

g

e

_

f

n

*

e

l

e

v

a

t

o

r

_

a

l

l

o

w

_

m

e

r

g

e

_

f

n

;

?

e

l

e

v

a

t

o

r

_

b

i

o

_

m

e

r

g

e

d

_

f

n

*

e

l

e

v

a

t

o

r

_

b

i

o

_

m

e

r

g

e

d

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

d

i

s

p

a

t

c

h

_

f

n

*

e

l

e

v

a

t

o

r

_

d

i

s

p

a

t

c

h

_

f

n

;

?

e

l

e

v

a

t

o

r

_

a

d

d

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

a

d

d

_

r

e

q

_

f

n

;

?

e

l

e

v

a

t

o

r

_

a

c

t

i

v

a

t

e

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

a

c

t

i

v

a

t

e

_

r

e

q

_

f

n

;

?

e

l

e

v

a

t

o

r

_

d

e

a

c

t

i

v

a

t

e

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

d

e

a

c

t

i

v

a

t

e

_

r

e

q

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

q

u

e

u

e

_

e

m

p

t

y

_

f

n

*

e

l

e

v

a

t

o

r

_

q

u

e

u

e

_

e

m

p

t

y

_

f

n

;

?

e

l

e

v

a

t

o

r

_

c

o

m

p

l

e

t

e

d

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

c

o

m

p

l

e

t

e

d

_

r

e

q

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

r

e

q

u

e

s

t

_

l

i

s

t

_

f

n

*

e

l

e

v

a

t

o

r

_

f

o

r

m

e

r

_

r

e

q

_

f

n

;

?

e

l

e

v

a

t

o

r

_

r

e

q

u

e

s

t

_

l

i

s

t

_

f

n

*

e

l

e

v

a

t

o

r

_

l

a

t

t

e

r

_

r

e

q

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

s

e

t

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

s

e

t

_

r

e

q

_

f

n

;

?

e

l

e

v

a

t

o

r

_

p

u

t

_

r

e

q

_

f

n

*

e

l

e

v

a

t

o

r

_

p

u

t

_

r

e

q

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

m

a

y

_

q

u

e

u

e

_

f

n

*

e

l

e

v

a

t

o

r

_

m

a

y

_

q

u

e

u

e

_

f

n

;

 ?

e

l

e

v

a

t

o

r

_

i

n

i

t

_

f

n

*

e

l

e

v

a

t

o

r

_

i

n

i

t

_

f

n

;

?

e

l

e

v

a

t

o

r

_

e

x

i

t

_

f

n

*

e

l

e

v

a

t

o

r

_

e

x

i

t

_

f

n

;

?

v

o

i

d

(

*

t

r

i

m

)

(

s

t

r

u

c

t

i

o

_

c

o

n

t

e

x

t

*

)

;

?

s

s

i

z

e

_

t

(

*

s

h

o

w

)

(

s

t

r

u

c

t

e

l

e

v

a

t

o

r

_

q

u

e

u

e

*

,

c

h

a

r

*

)

;

?

s

s

i

z

e

_

t

(

*

s

t

o

r

e

)

(

s

t

r

u

c

t

e

l

e

v

a

t

o

r

_

q

u

e

u

e

*

,

c

o

n

s

t

c

h

a

r

*

,

s

i

z

e

_

t

)

;

D

A

T

A

S

T

R

U

C

T

U

R

E

S

4

9

5

0

*

e

l

e

v

a

t

o

r

*

o

p

s

*

e

l

e

v

a

t

o

r

_

t

y

p

e

l

i

s

t

(

L

)

o

p

s

*

e

l

e

v

a

t

o

r

_

a

t

t

r

s

FIGURE 51 Block layer data structures

189

APPENDIX 5.8 Block I/O Submission

Block I/O submission is the process of turning a bio into a request and inserting it
into the queue (see section 5.10). The functions that handle bio submission must
prepare the bio and pass the request in a form appropriate to a specific lower-level
driver. These functions are responsible for the following procedures:

1. Memory reallocation (high-memory to low-memory) of a request, if the
driver cannot hold a request in high memory (above 4GB) then the block
layer creates a copy of the bio with identical data (destination buffers/page)
in low-memory area, and defines its completion routine to restore the orig-
inal bio and copy (in the case of read request) the data back to the original
buffer for the application to use.

2. Perform bio verification, like limits on its size , checking whether it does not
extends the physical size of a device , or some threshold in queue. (the bio
will fail if it does not pass the verification.)

3. Partition remapping, the device driver doesn’t know about partitions. How-
ever, the addresses in the io_vec array of the bio are relative to the start of
the partition and should be corrected relative to the beginning of a physical
device. The block layer perform this correction.

submit_bio() is the block layer interface toward higher layers. (Usually the file
system and page cache which calls submit_bio through the submit_bh() function
call. These are the main interface the block layer provide the upper layers.

blk_make_request() Allocates a request and insert the whole bio chain. Direct
pointers, instead of a common list structure, chain the bios. A chain of
bios forms a request, this function assumes that the bio points to a chain
of bios. This chain is may be a part of some reassembled request by a stack-
ing drivers, such as software RAID. This function does not insert the request
into the queue and returns it to the caller.

blk_requeue_request() Requeue the bio request. Drivers often keep queuing
requests until the hardware cannot accept any more, when that condition
happens we need to put the request back in the queue. (See section 5.10).
This function clears the request timeout by stopping its timer (see section
5.9), clearing its completion flag state, and ending its tagged status(if it was
tagged), then this function requeues the request. (i.e. putting it back into
queue (see section 5.10)).

blk_insert_request() Practically unused. Inserts a soft barrier request into queue
(see section 5.10), from the comment to the function: "... Many block devices
need to execute commands asynchronously, so they don’t block the whole kernel
from preemption during request execution. This is accomplished normally by in-
serting artificial requests tagged as REQ_TYPE_SPECIAL in to the corresponding
request queue, and letting them be scheduled for actual execution by the request
queue. .."

190

generic_make_request() This function delivers a buffer to the right device driver
for I/O by receiving a new bio, getting the queue associated with it’s block
device, verifying the bio against the queue, performing the partition remap-
ping , and verifying it again and then trying to insert it into queue by calling
to q->make_request_fn().

The make request function is usually __make_request() but may be some
other function specified by the driver (for example some stacking drivers
for software RAIDS or network devices want to override the I/O scheduler)
, thus specifying their own make_request(). The comments to the function
say

"... generic_make_request() is used to make I/O requests of block devices. It is
passed a &struct bio, which describes the I/O that needs to be done.
generic_make_request() does not return any status. The success/failure status of the
request, along with notification of completion, is delivered asynchronously through
the bio->bi_end_io function (bio_endio() , req_bio_endio()). (see section 5.15)

The caller of generic_make_request must make sure that bi_io_vec are set to de-
scribe the memory buffer, and that bi_dev and bi_sector are set to describe the de-
vice address, and the bi_end_io and optionally bi_private are set to describe how
completion notification should be signaled.

generic_make_request and the drivers it calls may use bi_next if this bio happens
to be merged with someone else, and may change bi_dev and bi_sector for remaps
as it sees fit. So the values of these fields should NOT be depended on after the call
to generic_make_request. ..."

Generic make request is described in detail in the figure 52.

submit_bio() This function is the most common entry point to the block layer
and its logic is described in figure 53. submit_bio() makes some verifica-
tion and accounting and calls to generic_make_request(), this is the most
common method to submit bio into a generic block layer.

__make_request() This is the most commonly used function for making request.
It is described in detail in figure 54

__make_request() first performs the memory remapping on the request (from
high to low memory). Then, __make_request() calls the I/O scheduler in an
attempt to find a request for the bio to be merged with. If __make_request()
fails to find a bio request to merge with then __make_request() will allocates
a new request and inserts the new request into the queue (see section 5.10.
__make_request() also tries to merge sequential requests. This functionality
is defined in blk-merge.c.

blk_execute_rq_nowait(), blk_execute_rq() These functions insert a fully pre-
pared request at the back of the I/O scheduler queue for execution and do
not wait/wait for completion. When waiting for completion the function

191

static void __generic_make_request(struct bio *bio)

@Description - this is the actual entry point into the block layer

it receives a bio as a parameter , verifies it , if it refers to a partition remaps its pages

(adds the partition offset to each page sector) and pushes it into the queue by calling

to q->make_request() , that is generally should be defined by the driver , but in most cases

is implemented by __make_request.

Note - this function does not return any value since the completion of the aio occurs asynchronously

and can be tracked by its completion method (end_io()) , this method may complet a bio in the case of an error

Stacking drivers, may process the bio

and redirect it to another queue

ret

Complete bio with error, err

bio_endio(bio, err);

If the bio is set to be discarded

heck if the Discard io is supported by queue

bio_rw_flagged(bio, BIO_RW_DISCARD) &&

!blk_queue_discard(q)

true,err=-EOPNOTSUPP

Check if device exist (q!=?NULL)

q = bdev_get_queue(bio->bi_bdev);

true

NULL,err=-EIO

If its bytes cannot be discarded

Check if the bio is not bigger then some threshold in

queue

!bio_rw_flagged(bio, BIO_RW_DISCARD) &&

nr_sectors > queue_max_hw_sectors(q))

not NULL

true,err=-EIO

Check whether this bio extends beyond the end of the device.

bio_check_eod(bio, nr_sectors) true,err=-EIO

In debugfs you can configure a device to fail all requests

should_fail_request(bio) true,err=-EIO

If this device has partitions, remap block n

of partition p to block n+start(p) of the disk.

blk_partition_remap(bio);

false

Check if the bio integrity is enabled

and if so , prepare the payload / allocate

the buffers, if it fails , fail the bio

bio_integrity_enabled(bio)

&& bio_integrity_prep(bio)

true,err=-EIO

For tracing of stacking drivers

old_sector = -1;

?old_dev = 0;

false

Usually implemented by __make_request()

ret = q->make_request_fn(q, bio);

It is a stacking call , so trace the previous

and update the fields [Accounting]

if (old_sector != -1)

???trace_block_remap(q, bio, old_dev, old_sector);

??old_sector = bio->bi_sector;

??old_dev = bio->bi_bdev->bd_dev;

false

Check whether this bio extends

beyond the end of the device

after partition remapping

bio_check_eod(bio, nr_sectors) true,err=-EIOfalse

Tracing

trace_block_bio_queue(q, bio);

?struct request_queue *q;

?sector_t old_sector;

?int ret, nr_sectors = bio_sectors(bio);

?dev_t old_dev;

?int err = -EIO;

test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)

false

false

true,err=-EIOfalse

FIGURE 52 Generic make request flow

192

void generic_make_request(struct bio *bio)

Flattening the recursion

current->bio_list = bio->bi_next;

??if (bio->bi_next == NULL)

???current->bio_tail = ¤t->bio_list;

??else

???bio->bi_next = NULL;

__generic_make_request(bio);

bio = current->bio_list;

not NULL

There is at least 1 call to submit_bio

in the current stack so we add

this call to the list , and execute it later

in order to flatten the recursion

*(current->bio_tail) = bio;

??bio->bi_next = NULL;

??current->bio_tail = &bio->bi_next;

current->bio_tail

current->bio_tail = NULL;

not NULLNULL

NULL

void submit_bio(int rw, struct bio *bio)

@Description , the frontend method of the block layer

receives a fully initialized bio and submits it into the dispatch

queue of the bios block devices driver.

Note. the method does not retuen any value, and the state of the bio

can be tracked via its completion method which (may be) invoked asynchronously

Accounting if a request has data , and was not set to be discarded

Per task read accounting(bytes)

the write accounting occurs when

some process dirties a page in cache

(at page cache, rather then block level)

task_io_account_read(bio->bi_size);

rw & WRITE

count_vm_events(PGPGOUT, count);

count_vm_events(PGPGIN, count);

generic_make_request(bio);

int count = bio_sectors(bio);

bio->bi_rw |= rw;

bio_has_data(bio)

!(rw & (1 << BIO_RW_DISCARD))

BIO SUBMISSION

false true

false true

FIGURE 53 submit bio flow

193

bool queue_should_plug(struct request_queue *q)

@Description - Only disabling plugging for non-rotational devices(ssd for ex.) if it does tagging

as well, otherwise we do need the proper merging

return !(blk_queue_nonrot(q) && blk_queue_tagged(q));

int __make_request(struct request_queue *q, struct bio *bio)

@DESCRIPTION used as make_request_fn for most of the devices

(with an exception of stacking drivers (md/dm (software RAIDs) , network devices etc.

(devices that want to bypass the io scheduler)))

- treats the high memory / low memory conversions

- creates a request from a bio by either allocating a new request

 or merging it with an existing one (according to io scheduler decision)

- if a new request was allocated inserts it into queue

- plugs / unplugs the q upon the insertion

- may put a process to sleep due to a queue congestion

Create new request

Let the io scheduler , insert the request into queue

__elv_add_request

(q, req, ELEVATOR_INSERT_SORT, 0);

Set all the fields and flags in the

request according to bio (sectors count ,

buffer , direction , whether it is barrier etc...)

init_request_from_bio(req, bio);

Allocates an empty request

Returns with the queue unlocked

The process may sleep here

(if the queue is exhasted),

but it always returns with a new

request structure

req = get_request_wait(q, rw_flags, bio);

Accounting(/proc/diskstats , per partition)

account for a new request , increment the in_flight

and recalculate time and queue and io_ticks timer counters

drive_stat_acct(req, 1);

rw_flags = bio_data_dir(bio);

?if (bio_rw_flagged(bio, BIO_RW_SYNCIO))

??rw_flags |= REQ_RW_SYNC;

spin_lock_irq(q->queue_lock);

// some code to set cpu affinity

// for bio

queue_should_plug(q)

&& elv_queue_empty(q)

blk_plug_device(q);

false

true

Check if the device should be unplugged, if so unplug it and release the lock

bio_rw_flagged(bio, BIO_RW_UNPLUG)

|| !queue_should_plug(q)

__generic_unplug_device(q);

spin_unlock_irq(q->queue_lock);

true

false

check if the request can not be extended in the front

(added into the head of the requests bio list)

!ll_front_merge_fn(q, req, bio) true

check if the request can not be extended from the back

(added into the tail of requests bio list)

!ll_back_merge_fn(q, req, bio) true

Do the back merge

Try to merge the request

with a following one in the queue

if (!attempt_back_merge(q, req))

???elv_merged_request(q, req, el_ret);

tracing

trace_block_bio_backmerge(q, bio);

false

Merge the bio to the tail of the request

if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)

?blk_rq_set_mixed_merge(req);

req->biotail->bi_next = bio;

req->biotail = bio;

req->__data_len += bytes;

req->ioprio = ioprio_best(req->ioprio, prio);

if (!blk_rq_cpu_valid(req))

req->cpu = bio->bi_comp_cpu;

Accounting

(/proc/diskstats , per partition)

increment the number of merges

drive_stat_acct(req, 0);

Do the front merge

Try to merge a request

with a previous one in the queue

if (!attempt_front_merge(q, req))

???elv_merged_request(q, req, el_ret);

Merge the bio to the head of a request

if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {

?blk_rq_set_mixed_merge(req);

?req->cmd_flags &= ~REQ_FAILFAST_MASK;

?req->cmd_flags |= ff;

}

bio->bi_next = req->bio;

req->bio = bio;

req->buffer = bio_data(bio);

req->__sector = bio->bi_sector;

req->__data_len += bytes;

req->ioprio = ioprio_best(req->ioprio, prio);

if (!blk_rq_cpu_valid(req))

?req->cpu = bio->bi_comp_cpu;

tracing

trace_block_bio_frontmerge(q, bio);

false

Accounting

(/proc/diskstats , per partition)

increment the number of merges

drive_stat_acct(req, 0);

higmem / lowmem bouncing

if the pages are in highmem and

highmem DMA is not supported

by the device, copy its pages into lomem

and set bio completion method

to copy them back into the highmem

blk_queue_bounce(q, &bio);

The bio is barrirer but

ordered flush i.e. barrier requests

are not supported by the queue

complete the request with erorr

bio_endio(bio, -EOPNOTSUPP);

bio_rw_flagged(bio, BIO_RW_BARRIER)

|| elv_queue_empty(q)

elv_merge(q, &req, bio)

return 0;

bio_rw_flagged(bio, BIO_RW_BARRIER) &&

? (q->next_ordered == QUEUE_ORDERED_NONE)

spin_lock_irq(q->queue_lock);

true,the bio is either a barrier

or queue is empty -->

should allocate a new request

false,try to merge a

bio into an existing request

ELEVATOR_BACK_MERGE

ELEVATOR_NO_MERGEELEVATOR_FRONT_MERGE

false

true

FIGURE 54 Make request flow

194

unplugs the device or calls to request_fn directly after the insertion of a re-
quest into queue. These functions invokes __elv_add_request(). (see section
5.10)

APPENDIX 5.9 Get Request

The first step in submitting I/O to the block layer is to allocate a request. These
are the main goals of the mechanism:

1. Fast and efficient memory allocation.
2. Initializing request fields to default values.
3. Notifying the I/O scheduler about the new I/O.
4. Avoiding queue congestion.
5. Avoiding starvation of requests.

The 1stis achieved by using memory pool, the 3rdby calling to elv_set_request()
upon request allocation and the 4th and the 5th by using a special mechanism
called batching process or batching context.

A special data structure called request_list is managed in every queue for
request allocation: (include/linux/blkdev.h)

struct request_list {
/*
* count[], starved[], and wait[] are indexed by

* BLK_RW_SYNC/BLK_RW_ASYNC

*/
int count[2];

/*
* the number of requests currently allocated

* in each direction

*/

int starved[2];

/*
* whether a queue was unable to allocate a request in this

* direction * due to memory allocation failure or some

* I/O scheduler decision

*/

int elvpriv;
/*whether I/O scheduler should be notified ?*/

mempool_t *rq_pool;

195

/* memory pool for requests */

wait_queue_head_t wait[2];
/*
* wait queue for a tasks sleeping while

* waiting for some more requests to become

* free (failed to allocate a request at first time)

* The direction of each request is actually is whether

* it’s write = 1 or read, synchronous write=2

* i.e. the one that avoids write page-cache

* the counters in each direction are managed separately

* for more flexibility in congestion \ batching decisions.

*/
};

Allocation for the data structure is performed by "block_alloc_request()" and calls
to "blk_rq_init()" to initialize the fields. The I/O scheduler is also notified by
calling to "elv_set_request()" to allocate its private fields. Each queue status and
its triggered behavior is treated separately for both sync and async requests.

APPENDIX 5.9.1 Queue Congestion Avoidance and Batching Context

The main mechanisms of "get_request()" / "put_request() combination at
"get_request()" side is processed by a "get_request_wait()" and "get_request()"
functions and it works as following:

The queue is considered congested if in one of the directions it has allocated
more requests then the value of nr_congestion_on. The simplest way was to send
a process to sleep until a queue becomes decongested (i.e has less requests in the
specific direction) then nr_congetstion_off. However this could easily lead to a
starvation of some processes at high I/O rates. Thus a more flexible mechanism
is introduced:

APPENDIX 5.9.2 Congestion and starvation avoidance

Under the new approach for block device congestion the queue has 2 states: con-
gested and full. The queue is considered full when it has at least q->nr_requests =
BLKDEV_MAX_RQ = 128 requests, and the queue is considered congested when
it has at least q->nr_requests*7/8 = 112 requests. The congested queue is no
longer congested when it has at most q->nr_requests*13/16 = 104.

1. If a process notices that the queue will be congested after the allocation, it is
marked as congested, if in addition it will become full the process is marked
as batching.

2. If a process tries to allocate a request but the queue is already full the request
is then added to a kernel wait_queue in the appropriate direction of the
request_list of a queue. The process then goes to sleep then until the queue is

196

unplugged to process its requests and free them by put_request(see section
5.14). By calling put_request we awaken the processes in a wait_queue if
the queue becomes non-congested. When the process is awoken it becomes
a batching process.

3. A batching process can allocate at least 1 and at most 32 requests (despite
the queue been congested) within a predefined time.

4. Even with a lot of batching processes that are awakened one by one the
queue may end up with too many requests. Thus if a queue contains too
many requests (specifically 3/2*q- >nr_requests) the process is sent to sleep
despite being batching.

APPENDIX 5.9.3 Exception to Congestion Avoidance

The data regarding the state of a process is stored in an ioc field of type io_context
in task_struct. The I/O scheduler may override the congestion mechanism by
returning ELV_MQUEUE_MUST by elv_may_queue()

APPENDIX 5.10 Add Request

This is the main functionality of the I/O scheduler, given a request and a request
queue, the I/O schedulers put the request in the right position. The method that
does adds the request to queue is part of the general elevator API is
elv_add_request(). The add_request() function receives in addition to the request
and the queue where it should be inserted 2 additional parameters :

Plug whether the queue should be plugged before the insertion.

Where may take 4 possible values:

1. ELEVATOR_INSERT_FRONT - inserts the request to the front of a
main dispatch queue (no interference from the specific scheduler im-
plementation).

2. ELEVATOR_INSERT_BACK - forces the specific scheduler implemen-
tation to move all of the requests from its internal data structures to
the main dispatch queue, then it insert the request at the tail of the
main dispatch queue, and finally run the queue i.e unplug it and let
the driver process all the requests. (see section 5.11).

3. ELEVATOR_INSERT_SORT - let the specific implementation of a sched-
uler insert the request (into its own data structures).

4. ELEVATOR_INSERT_REQUEUE - does front insertion if the queue is
not orderly flushed at that very moment. Otherwise insert the request
into a position according to an ordered sequence (into the main dis-
patch queue). In addition it prevents the queue from being unplugged
immediately after.

197

block/blk-core.c

struct request *get_request(struct request_queue *q, int rw_flags,

???? struct bio *bio, gfp_t gfp_mask)

@q: the queue where the request should be allocated

@rw_flags:the direction of the request

@bio:practically unused

@gfp_mask:mask for mempool allocation

@return: allocated request on success , NULL on failure

@Description: The function is trying to allocate a new free request ,

it prevents the queue from being congested. i.e. become longer then some bound (nr_requests).

on success returns a newly allocated and initialized request

on failure returns NULL.(the failure is mainly due to a queueu congestion, but it also

may be due to memory shortage.

We have successfuly allocated a new request

we have allocated a request

in batching context decrease

the counter

ioc->nr_batch_requests--;

tracing

trace_block_getrq(q, bio, rw_flags & 1);

return rq;

ioc_batching(q, ioc)

false

true

The queue will be congested after the insertion

of this request,or it is already congested

Checks if the full queue flag is not set

!blk_queue_full(q, is_sync)

The queue will be congested after this allocation,

so set it as full, and mark this process as "batching".

This process will be allowed to complete a batch of

requests, others will be blocked

Set the full queue flag

blk_set_queue_full(q, is_sync);

Mark the process as batching

ioc_set_batching(q, ioc);

true

Set the queue as congested

blk_set_queue_congested(q, is_sync);

rl->count[is_sync]+1 >=

q->nr_requests

ioc = current_io_context(GFP_ATOMIC, q->node);

may_queue == ELV_MQUEUE_MUST

|| ioc_batching(q, ioc))

false true

false

If we unable to allocate a request

(due to lack of memory) despite of

the fact that no requests in the same direction

are allocated in a queue(request_list)

mark the request list of a queue as starved

in appropriate direction

if (unlikely(rl->count[is_sync] == 0))

rl->starved[is_sync] = 1;

if QUEUE_FLAG_ELVSWITCH is set the queue

doesn't use io scheduler(elevator) currently

and it is a simple fifo queue

priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);

?if (priv)

??rl->elvpriv++;

may_queue =

elv_may_queue(q, rw_flags);

struct request *rq = NULL;

struct request_list *rl = &q->rq;

struct io_context *ioc = NULL;

/*We regard a request as sync, if either a read or a sync write

rw_is_sync(rw_flags) = !(rw_flags & REQ_RW) || (rw_flags & REQ_RW_SYNC)*/

const bool is_sync = rw_is_sync(rw_flags) != 0;

rl->count[is_sync]+1 >=

q->nr_congestion_on

return NULL;

rl->count[is_sync] >=

(3 * q->nr_requests / 2)

rl->count[is_sync]++;

?rl->starved[is_sync] = 0;

rq = blk_alloc_request

 (q, rw_flags, priv, gfp_mask);

spin_lock_irq(q->queue_lock);

freed_request(q, is_sync, priv);

ELV_MQUEUE_NO

/*unlikely , no io schedualer returns this value*/

else

true

The queue is full and the process is not marked batching ,

thus you are not allowed to alloc the request

false

true,in any case

even if the

context is batching

do not allow

more then

2/3*q->nr_requests

to be allocated

false

rq != NULL

rq == NULL

memory alloc

failed

FIGURE 55 Get request flow

198

struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)

@return: the allocated request on success, NULL on failure

@Description: tries to allocate the request: locks the queue and calls to get_request_wait()

if __GFP_WAIT is set in gfp_mask or get_request() otherwise.

the queue must be unlocked on entrance.

returns with a queue unlocked.

struct request *rq;

spin_lock_irq(q->queue_lock);

gfp_mask & __GFP_WAIT

return get_request_wait(q, rw, NULL);

rq = get_request(q, rw, NULL, gfp_mask);

spin_unlock_irq(q->queue_lock);

return NULL;

return rq;

true

false

NULL

not NULL

struct request *get_request_wait(struct request_queue *q, int rw_flags,struct bio *bio)

@return: an new free allocated reauest initialised to default values

@Description: this function always retun an allocated request, however each time it failes to

make an allocation , it sends the process to sleep, this until a success.

it, together with get_request implement the batching mechanism

unplug the queue and sleep (schedule the process)

unplug the request queue

__generic_unplug_device(q);

add the current process to a wait_queue

DEFINE_WAIT(wait);

??struct io_context *ioc;

??struct request_list *rl = &q->rq;

??prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,

????TASK_UNINTERRUPTIBLE);

set the process as batching

so that it will be able to allocate

at least 1 request.unless it becomes starved

due to memory shortage

ioc = current_io_context(GFP_NOIO, q->node);

??ioc_set_batching(q, ioc);

tracing

trace_block_sleeprq(q, bio, rw_flags & 1);

Task schedualing + delay accounting

io_schedule();

spin_unlock_irq(q->queue_lock);

spin_lock_irq(q->queue_lock);

finish_wait(&rl->wait[is_sync], &wait);

const bool is_sync = rw_is_sync(rw_flags) != 0;

?struct request *rq;

rq = get_request(q, rw_flags, bio, GFP_NOIO);

rq return rq;

REQUEST ALLOCATION

NULL not NULL

FIGURE 56 Get request wait flow

199

void blk_rq_init(struct request_queue *q, struct request *rq)

@Description: initialize the request to default values

Initialize main fields , Lists, for SCSI commands , TCQ etc...

INIT_LIST_HEAD(&rq->queuelist);

?INIT_LIST_HEAD(&rq->timeout_list);

?rq->cpu = -1;

?rq->q = q;

?rq->__sector = (sector_t) -1;

?INIT_HLIST_NODE(&rq->hash);

?RB_CLEAR_NODE(&rq->rb_node);

?rq->cmd = rq->__cmd;

?rq->cmd_len = BLK_MAX_CDB;

?rq->tag = -1;

?rq->ref_count = 1;

request initial time for response time accounting

(/proc/diskstats , per partition)

rq->start_time = jiffies;

memset(rq, 0, sizeof(*rq));

struct request *

blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)

@q - the queue where the request will be allocated

@flags - the new request cmd flags

@priv - whether the queue currently uses an io scheduler(elevator) or its a simple fifo

@gfp_mask - mask for mempool allocation

@Description: allocates a new request , initializes it to default values and notifies the

io scheduler (if priv == true) about the allocation

Notify the io scheduler

elv_set_request(q, rq, gfp_mask)

struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask)

return NULL; blk_rq_init(q, rq);

rq->cmd_flags = flags | REQ_ALLOCED;

priv

return rq;

mempool_free(rq, q->rq.rq_pool);

rq->cmd_flags |= REQ_ELVPRIV;

NULL not NULL

truefalse

truefalse

FIGURE 57 Allocate request flow

200

block/blk-core.c

int ioc_batching(struct request_queue *q, struct io_context *ioc)

@q: the request queue where you want to allocate a trquest

@ioc: the current IO context

@Description: checks if the current(iocs) IO context is batching I.E.

can allocate a request despite the queue being congested

in practice a batching context (process)

will be batching for all of the queues

return 0;!ioc

ioc->nr_batch_requests

== q->nr_batching

return 1;

ioc->nr_batch_requests > 0

time_before(jiffies,

ioc->last_waited

+ BLK_BATCH_TIME)

true,the context is null==> not a batching

false

true,nr_batch_requests counter is full==>

thi is the first allocation since the

process became batching

the batching process should allocate

at least 1 request

false

false,the counter is empty

no more requests can be

allocated

true

true, the context is batching

false, the batching context has

timed out

void ioc_set_batching(struct request_queue *q, struct io_context *ioc)

@Description:sets ioc to be a new "batcher" if it is not one. This

will cause the process to be a "batcher" on all queues in the system.

i.e. the one that can allocate a new requests even if the queue is congested

in either of directions

sets the maximum amount of requests

a batching process can allocate

q->nr_batching = BLK_BATCH_REQ = 32

ioc->nr_batch_requests = q->nr_batching;

sets the time when the process became

batcher for timeout handling

ioc->last_waited = jiffies;

The process is already a batcher

return;

!ioc ||

ioc_batching(q, ioc)

truefalse

FIGURE 58 Batching I/O flow

201

In addition the method unplugs the queue, if the number of the requests in the
request queue exceeds the unplug threshold. elv_add_request() calls elv_insert()
which does the actual job. elv_add_requests() is called by elv_requeue_request()
which makes a little more logic and essentially masks the
ELEVATOR_INSERT_REQUEUE flag. In the block layer it is called by __make_request
and by similar functions like blk_insert_request or blk_insert_cloned_request etc.
These function do essentially the same thing but with less functionality (like by-
passing the scheduler, inserting an already existing / prepared request etc.).

APPENDIX 5.11 Plug/Unplug Mechanism

The idea behind the device plugging mechanism is simple: due to natural charac-
teristics of rotational block devices, it is much more efficient to issue the requests
in bursts i.e. when the queue length > 1. Bursts are efficient often due to the
length of time required for the seek operation of the device. Sometimes by wait-
ing for more requests, we can accumulate bursts and seek more efficiently.

Thus we want to prevent the requests from being served immediately after
it was submitted (if the queue length is small) and wait until (possibly) more
requests are added to the queue.

To do the this block layer simply raises a flag to notify the driver that it
should stop processing requests from the queue - this is referred to as device
plugging. The plugging occurs at certain conditions (see figures 61, 62) during bio
submission in "__make_request()". "elv_add_request()" . It will plug the device
also if the parameter is not set to 0.

However we do not want our bios to be starved and the unplugging mech-
anism is introduced:

1. When the device is plugged it starts a timer that when and timeout, pushes
an unplug method (usually generic_unplug_device()) , into work_queue
which schedules it to run.

2. In some cases the device is unplugged by direct calling to the unplug func-
tion (when the queue is exhausted for example) The generic_unplug_device()
method , when the call deletes the timer , clears the flag , and calls to re-
quest_fn() to process the requests in a queue by a block device driver one
by one.

Some times, I/O schedulers need to force the request_fn() to start producing the
requests. Thus the run_queue() method is introduced, it removes plug, and ei-
ther calls directly to request_fn() or if it was already called in the recursion stack,
schedules it within the same work queue.

202

void elv_add_request(struct request_queue *q, struct request *rq, int where,int plug)

unsigned long flags;

spin_lock_irqsave(q->queue_lock, flags);

__elv_add_request(q, rq, where, plug);

spin_unlock_irqrestore(q->queue_lock, flags);

void __elv_add_request(struct request_queue *q, struct request *rq, int where,int plug)

@Description - inserts the request into a dispatch queue by calling to elv_insert().

may change the where, position if the request is barrier or is not managed by io scheduler

For more information see elv_insert()

see next page

elv_insert(q, rq, where);

plug the queue

blk_plug_device(q);

this is not a barrier request

This request is not

managed by IO scheduler thus

ELEVATOR_INSERT_SORT

is not supported

where =

ELEVATOR_INSERT_BACK;

!(rq->cmd_flags &

REQ_ELVPRIV) &&

where ==

ELEVATOR_INSERT_SORT

true

This is a barrier request

this request is scheduling

boundary, update end_sector

???

q->end_sector = rq_end_sector(rq);

???q->boundary_rq = rq;

barriers implicitly

indicate back insertion

where =

ELEVATOR_INSERT_BACK;

this is HARDBARRIER

toggle ordered color

q->ordcolor ^= 1;

blk_barrier_rq(rq)

where ==

ELEVATOR_INSERT_SORT

blk_fs_request(rq) ||

 blk_discard_rq(rq)

q->ordcolor

rq->cmd_flags |=

 REQ_ORDERED_COLOR;

rq->cmd_flags &

(REQ_SOFTBARRIER

| REQ_HARDBARRIER)

plug

REQUEST INSERTION(INTO QUEUE)

truefalse

truefalse

true

truefalse

truefalse

false

false

truefalse

FIGURE 59 Add request flow

203

void elv_insert(struct request_queue *q, struct request *rq, int where)

@Description - inserts the reques rq , into the dispatch queue,

the position in the queue is decided by where which can be

SORT - specific io scheduler will decide where to position the request

FRONT - at the head of the main dispatch queue

BACK - at the tail of the main dispatch queue

(both served for barrier requests , to flush the queue)

REQUEUE - requeues the request into the main dispatch queue.

The method may take decisions about unplugging the device , or even

running the queue (calling directly or scheduling q->request_fn())

insert the request to the head

of the request queue

add the request to the front

of the request queue

list_add(&rq->queuelist, &q->queue_head);

rq->cmd_flags |= REQ_SOFTBARRIER;

insert the request to the tail of the request queue

We kick the queue here for the following reasons.

The elevator might have returned NULL previously

to delay requests and returned them now. As the

queue wasn't empty before this request, ll_rw_blk

won't run the queue on return, resulting in hang.

Usually, back inserted requests won't be merged

with anything. There's no point in delaying queue

processing.

__blk_run_queue(q);

force IO scheduler

to move all the requests

from its internal data structures

into the request queue

elv_drain_elevator(q);

add the request to the back of

the request queue

list_add_tail

(&rq->queuelist, &q->queue_head);

rq->cmd_flags |= REQ_SOFTBARRIER;

let the IO scheduler decide about the insertion

call IO scheduler to position the request inside its

internal data structures

Some ioscheds (cfq) run q->request_fn directly, so

rq cannot be accessed after calling

elevator_add_req_fn

q->elevator->ops->elevator_add_req_fn(q, rq);

mergeable requests

are added to a hash list

with a key , request

starting sector + number of sectors

in the request to allow elv_merge

find an adjacent request for a merge

candidate easily

elv_rqhash_add(q, rq);

if (!q->last_merge)

 q->last_merge = rq;

BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));

rq->cmd_flags |= REQ_SORTED;

q->nr_sorted++;

rq_mergeable(rq) truefalse

requeue the request

If ordered flush isn't in progress, we do front

insertion

list_add(&rq->queuelist, &q->queue_head);

Most requeues happen

because of a busy condition,

don't force unplug

of the queue for that case.

unplug_it = 0;

flush is in progress

requests should be requeued in ordseq order

find the position according to

ordseq sequence number

of where to add the request

list_for_each(pos, &q->queue_head) {

struct request *pos_rq = list_entry_rq(pos);

if (ordseq <= blk_ordered_req_seq(pos_rq))

break;

}

add the request after the position

found in previous step

list_add_tail(&rq->queuelist, pos);

ordseq = blk_ordered_req_seq(rq);

rq->cmd_flags |= REQ_SOFTBARRIER;

q->ordseq == 0 truefalse

unplug the device if

the queue is plugged

the request was not requeued

and the number of the requests

in the queue exceeds the unplug

threshhold

__generic_unplug_device(q);

?struct list_head *pos;

?unsigned ordseq;

?int unplug_it = 1;

trace_block_rq_insert(q, rq);

rq->q = q;

where

unplug_it && blk_queue_plugged(q)

int nrq = q->rq.count[BLK_RW_SYNC] +

q->rq.count[BLK_RW_ASYNC] - queue_in_flight(q);

nrq >= q->unplug_threshreturn;

ELEVATOR_INSERT_FRONT

ELEVATOR_INSERT_BACKELEVATOR_INSERT_SORT

ELEVATOR_INSERT_REQUEUE

true

true

false

false

FIGURE 60 Elevator insert flow

204

PLUG THE DEVICE

Plug the device

void blk_plug_device(struct request_queue *q)

deactivates the work of a block device driver on queue requests

until there will be "enough requests" in the q or an unplug timer

will timeout

Restart the timer for unplugging the q

mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);

Set the flag

to notify that the q is plugged

queue_flag_test_and_set

(QUEUE_FLAG_PLUGGED, q)

false

don't plug a stopped queue,

it must be paired with blk_start_queue()

which will restart the queueing

(start/stop q is another mechanism

for q activating/deactivating

by the underlying block device driver)

blk_queue_stopped(q)

return;

trace_block_plug(q);

false true

true , do nothing

if the q is already plugged

i.e. flag is set

FIGURE 61 Plug Device flow

205

int blk_remove_plug(struct request_queue *q)

@DESCRIPTION : clear the plug test bit and remove the unplug timer

@RETURN VALUE: 1 if the device was plugged upon entry to the function

otherwise returns 0

queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)

return 0;

del_timer(&q->unplug_timer);

return 1;

false true

void __generic_unplug_device(struct request_queue *q)

The stopped q cannot be plugged / unplugged

and should be started first

blk_queue_stopped(q))

Do nothing if the device is already unplugged

(i.e plug test bit is not set)

and is not rotational , i.e. SSD or any other

type of flash , or some virtual device

!blk_remove_plug(q) &&

!blk_queue_nonrot(q)

false

Call the device driver to process all

 the requests from q

q->request_fn(q);

return;

false

true

true

void generic_unplug_device(struct request_queue *q)

@DESCRIPTION: Linux uses plugging to build bigger requests queues before letting

 the device have at them. If a queue is plugged, the I/O scheduler

 is still adding and merging requests on the queue. Once the queue

 gets unplugged, the request_fn defined for the queue is invoked and

 transfers started.

unplugging / plugging the device = activating / deactivating block device driver

on the requests in the q

Do nothing if plug test bit is not set

blk_queue_plugged(q)

return;

spin_lock_irq(q->queue_lock);

__generic_unplug_device(q);

spin_unlock_irq(q->queue_lock);

UNPLUG THE DEVICE

false true

FIGURE 62 Unplug Device flow

206

Handle device unplug timeout

void blk_unplug_work(struct work_struct *work)

Usually generic_unplug_device()

q->unplug_fn(q);

?struct request_queue *q =

??container_of(work, struct request_queue, unplug_work);

trace_block_unplug_io(q);

int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)

@DESCRIPTION: schedule a work on kblockd work queue

return queue_work(kblockd_workqueue, work);

void blk_unplug_timeout(unsigned long data)

@DESCRIPTION: This is an implementation of - q->unplug_timer.function

whereas data is - (unsigned long)q;

it is called , each time q->unplug_timer timeouts.

It scheduales &q->unplug_work (which is generally blk_unplug_work)

into kblockd work queue which in turn calls to q->unplug_fn

that is usually generic_unplug_device

struct request_queue *q = (struct request_queue *)data;

trace_block_unplug_timer(q);

kblockd_schedule_work(q, &q->unplug_work);

FIGURE 63 Unplug Device - Timeout flow

207

void blk_run_queue(struct request_queue *q)

unsigned long flags;

spin_lock_irqsave(q->queue_lock, flags);

__blk_run_queue(q);

spin_unlock_irqrestore(q->queue_lock, flags);

void __blk_run_queue(struct request_queue *q)

@Description - if queue id not empty or stopped

removes the plug and calls to request_fn() to

process the requests from the queue

In the case request_fn

will call to run_queue() in recursion

we will recurse only once

cause otherwise QUEUE_FLAG_REENTER

will be set and unplug work_queue will treat

this case

q->request_fn(q);

queue_flag_clear(QUEUE_FLAG_REENTER, q);

let the unplug handling reinvoke the

handler shortly if we already got there

queue_flag_set(QUEUE_FLAG_PLUGGED, q);

kblockd_schedule_work(q, &q->unplug_work);

blk_remove_plug(q);

blk_queue_stopped(q)

return;

elv_queue_empty(q)

!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)

RUN QUEUE

truefalse

true

false

truefalse

FIGURE 64 Run queue flow

208

APPENDIX 5.12 Fetch Request

Fetch Request is the lowest level in block layer. It provides the main service for
the block device driver; given a queue fetch a request from it. Here are we appeal
to the most important mechanisms of the block layer which force the requests in
the queue to be issued in some specific order or postponed:

1. The I/O scheduler dispatch_fn() method moves requests from its data struc-
tures into a main dispatch queue, or does nothing if it wants to postpone the
requests it has.

2. Barrier mechanisms which by encountering special barrier requests force
cache-queue flushing/draining, keep the requests in order and prevent the
requests that arrived post barrier to be issued until all the requests that ar-
rive before the barrier are completed.

The main drivers function to obtain requests from the queue is blk_fetch_request()
it calls to blk_peek_request() which peeks some request from the queue or returns
NULL, if the queue is empty or one of the mechanisms (1,2) has decided to post-
pone the requests. If it is not NULL blk_start_request() is called to physically
remove the request from the queue, and start a timeout timer on it for error han-
dling.

blk_peek_request() This function is the core of the mechanism: it calls to
__elv_next_request() to peek a request from a dispatch queue (if it is NULL
then the function returns NULL) marks it as started, notifies the I/O sched-
uler about the new started request in flight, and calls to prep_fn() which
may be defined by the driver (for example to assign a tag to a request for
TCQ).

__elv_next_request() This function tries to peek at the first request in the dis-
patch queue if it succeeds it calls to blk_do_ordered() that checks whether
the request is a barrier and begins a flush/drain (see section 5.13) or if a
flush is already started it may return NULL instead of a request if it is out of
order (and then try to peek next request once again). If the dispatch queue is
empty it calls to scheduler dispatch_fn() to fill the queue with requests (the
I/O scheduler may refuse to do it even though it contains requests) and if it
does not fill the queue with any request it returns NULL, otherwise it starts
the process from the beginning.

APPENDIX 5.13 Barrier

The barrier request is used when the request queue (cache) is flushed. We use
the barrier so that no new incoming requests will be served until the flushing

209

void blk_dequeue_request(struct request *rq)

@DESCRIPTION dequeue the request from the dispatch queue

and increment the in_flight requests counter

struct request_queue *q = rq->q;

list_del_init(&rq->queuelist);

blk_account_rq(rq)

q->in_flight[rq_is_sync(rq)]++;return

truefalse

struct request *blk_fetch_request(struct request_queue *q)

@DESCRIPTION peek a request from the dispatch q

(with an aid of io schedualer), start the timeout

 and dequeue the request from the dispatch q

request *rq = blk_peek_request(q);

return NULL; blk_start_request(rq);

return rq;

NULL not NULL

void blk_start_request(struct request *req)

@DESCRIPTION start the timeout on a request

and dequeue it from the dispatch queue

Start the timeout for

error handling

blk_add_timer(req);

blk_dequeue_request(req);

req->resid_len = blk_rq_bytes(req);

blk_bidi_rq(req)

req->next_rq->resid_len = blk_rq_bytes(req->next_rq);

FETCH REQUEST

false true

FIGURE 65 Fetch request flow

210

struct request *blk_peek_request(struct request_queue *q)

@DESCRIPTION get the request from the dispatch q (io schedualer)

notify the io schedualer about the new request

and call to the drivers preparation routines (if nescessary)

Prepare the request

defer the request

q->dma_drain_size &&

blk_rq_bytes(rq) &&

!(rq->cmd_flags & REQ_DONTPREP)

--rq->nr_phys_segments;

true

kill the request

rq->cmd_flags |= REQ_QUIET;

blk_start_request(rq);

__blk_end_request_all(rq, -EIO);

ret = q->prep_rq_fn(q, rq);

BLKPREP_DEFER

BLKPREP_KILL

Drain buffer adds

additional segments

if the DMA controller

cannot handle data

smaller then some

rq->nr_phys_segments++;

????

q->end_sector = rq_end_sector(rq);

???q->boundary_rq = NULL;

The request is yet not started

thus this is the first time the driver

sees it, notify IO schedualer

and mark it as started

blk_sorted_rq(rq)

elv_activate_rq(q, rq);

rq->cmd_flags |= REQ_STARTED;

trace_block_rq_issue(q, rq);

struct request *rq;

?int ret;

return NULL;

return rq;

rq = __elv_next_request(q)

!q->boundary_rq ||

 q->boundary_rq == rq

!(rq->cmd_flags & REQ_STARTED)

rq->cmd_flags & REQ_DONTPREP

q->dma_drain_size &&

blk_rq_bytes(rq)

q->prep_rq_fn

true

false

false

BLKPREP_OK

NULL

true

not NULL

false

true

false

true

false

true

false

NULL

not NULL

struct request *__elv_next_request(struct request_queue *q)

@DESCRIPTION peek a request at the head of the dipatch queue

if its empty , call an io schedualer to fill it with requests

Barrier/flush mechanism entry point

(see barrier), rq may change

(and become NULL), if it is a barrier

request or a flushing process is in progress

and the request is out of order

blk_do_ordered(q, &rq)

Check if the request queue is not empty

!list_empty(&q->queue_head)

false

The queue is not empty , peek the first request

rq = list_entry_rq(q->queue_head.next);

true

Call the io schedulers dispatch_fn()

to fill the request queue with requests, if it has any

!q->elevator->ops->elevator_dispatch_fn(q, 0)

false

false

The io schedualer has

either nothing to fill in

or want to postpone some requests

return NULL;

struct request *rq;

return rq;

true

true

FIGURE 66 Peek Request flow

211

operation is completed. Therefore, a barrier request is the one that indicates to
the block layer that all the requests before it should be processed before all the
proceeding requests. Moreover no new request should be processed until the old
requests have been flushed.

To implement the barrier, the block layer introduces the barrier requests
which are created by setting a special flag in bio before the submission. The 2
main entry points of the barrier mechanism occur when the bio is submitted (see
__make_request() _elv_add_request in section 5.10) and when it is fetched by the
driver from out of the queue (see section 5.12). During the submission of a bio the
requests fields are set as barrier request (flags). In the add_request the request is
pushed into the front of the dispatch queue.

During the time we fetch request and before the returning of a fetched re-
quest it is conveyed to the blk_do_ordered() method which checks whether the
flush process has not already started. If the process has not started it checks
whether the request is a barrier, in which case it starts the flushing by calling to
start_ordered(). If the flushing is in progress, it checks whether the request can
be processed (in order of flushing ,(for ex. arrived before the barrier) if it is not it
postpones it by returning NULL.

For devices/drivers that support tagged queuing the responsibility to pro-
duce the requests in order is conveyed to the driver, by assigning appropriate
tags.

APPENDIX 5.14 Put Request

Put request complements get request. Its purpose is to free the request data struc-
tures. The main functions are:

1. Memory deallocation (free) of memory used by request data structure.
2. I/O scheduler notification (to release private request data)
3. I/O scheduler notification about requests completion.
4. Managing queue congestion / full statuses (together with get request)
5. Completing the I/O batching mechanism (presented in get request).

Request deallocation is the last step in the life of an I/O in the system. put_request
uses the same request_list data structure as get_request. When the request is
asked to be deallocated the Linux kernel first assures that there are no more ref-
erences to that request. If there are references the deallocation is stopped. Then
the I/O scheduler is notified about the completion of request.

blk_free_request() asks the I/O scheduler to free the memory it allocated for
its private fields and frees the request data structure returning the memory
to the memory pool. After resource deallocation is completed, the queue
state may be changed. The request lists count field (in the original requests
direction) is decremented and then checks if the queue is still congested or

212

b

o

o

l

b

l

k

_

d

o

_

o

r

d

e

r

e

d

(

s

t

r

u

c

t

r

e

q

u

e

s

t

_

q

u

e

u

e

*

q

,

s

t

r

u

c

t

r

e

q

u

e

s

t

*

*

r

q

p

)

@

D

e

s

c

r

i

p

t

i

o

n

-

i

f

f

l

u

s

h

i

s

n

o

t

i

n

p

r

o

g

r

e

s

s

a

n

d

a

r

e

q

u

e

s

t

i

s

n

o

t

a

b

a

r

r

i

e

r

d

o

e

s

n

o

t

h

i

n

g

a

n

d

r

e

t

u

r

n

t

h

e

r

e

q

u

e

s

t

a

s

i

s

.

I

f

t

h

e

f

l

u

s

h

i

s

n

o

t

i

n

p

r

o

g

r

e

s

s

a

n

d

t

h

e

r

e

q

u

e

s

t

i

s

b

a

r

r

i

e

r

,

s

t

a

r

t

s

o

r

d

e

r

e

d

f

l

u

s

h

T

h

e

o

r

d

e

r

e

d

f

l

u

s

h

i

s

i

n

p

r

o

g

r

e

s

s

!

b

l

k

_

f

s

_

r

e

q

u

e

s

t

(

r

q

)

&

&

r

q

!

=

&

q

-

>

p

r

e

_

f

l

u

s

h

_

r

q

&

&

r

q

!

=

&

q

-

>

p

o

s

t

_

f

l

u

s

h

_

r

q

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

B

Y

_

T

A

G

i

s

_

b

a

r

r

i

e

r

&

&

r

q

!

=

&

q

-

>

b

a

r

_

r

q

*

r

q

p

=

N

U

L

L

;

r

e

t

u

r

n

t

r

u

e

;

b

l

k

_

o

r

d

e

r

e

d

_

r

e

q

_

s

e

q

(

r

q

)

>

b

l

k

_

o

r

d

e

r

e

d

_

c

u

r

_

s

e

q

(

q

)

f

a

l

s

e

t

r

u

e

,

O

r

d

e

r

e

d

b

y

t

a

g

.

t

r

u

e

,

t

a

g

g

e

d

,

B

l

o

c

k

t

h

e

n

e

x

t

b

a

r

r

i

e

r

r

e

t

u

r

n

N

U

L

L

t

r

u

e

,

S

p

e

c

i

a

l

r

e

q

u

e

s

t

s

a

r

e

n

o

t

s

u

b

j

e

c

t

t

o

o

r

d

e

r

i

n

g

r

u

l

e

s

r

e

t

u

r

n

t

h

e

r

e

q

u

e

s

t

a

s

i

s

f

a

l

s

e

,

r

e

t

u

r

n

a

s

i

s

T

h

e

o

r

d

e

r

w

i

l

l

b

e

k

e

p

t

b

y

t

h

e

d

r

i

v

e

r

f

a

l

s

e

o

r

d

e

r

b

y

d

r

a

i

n

i

n

g

,

w

a

i

t

f

o

r

t

u

r

n

i

f

o

u

t

o

f

s

e

q

u

e

n

c

e

r

e

t

u

r

n

N

U

L

L

f

a

l

s

e

,

r

e

t

u

r

n

r

e

q

u

e

s

t

a

s

i

s

N

o

o

r

d

e

r

e

d

f

l

u

s

h

y

e

t

s

t

a

r

t

e

d

T

h

i

s

i

s

a

b

a

r

r

i

e

r

r

e

q

u

e

s

t

a

n

d

o

r

d

e

r

e

d

f

l

u

s

h

i

s

s

u

p

p

o

r

t

e

d

b

y

q

u

e

u

e

,

s

t

a

r

t

o

r

d

e

r

e

d

f

l

u

s

h

r

e

t

u

r

n

s

t

a

r

t

_

o

r

d

e

r

e

d

(

q

,

r

q

p

)

;

T

h

e

r

e

q

u

e

s

t

i

s

n

o

t

b

a

r

r

i

e

r

d

o

n

o

t

h

i

n

g

a

n

d

r

e

t

u

r

n

t

h

e

r

e

q

u

e

s

t

a

s

i

s

r

e

t

u

r

n

t

r

u

e

;

O

r

d

e

r

e

d

f

l

u

s

h

i

s

n

o

t

s

u

p

p

o

r

t

e

d

,

r

e

m

o

v

e

t

h

e

r

e

q

u

e

s

t

f

r

o

m

t

h

e

q

u

e

u

e

c

o

m

p

l

e

t

e

i

t

w

i

t

h

e

r

r

o

r

r

e

t

u

r

n

N

U

L

L

b

l

k

_

d

e

q

u

e

u

e

_

r

e

q

u

e

s

t

(

r

q

)

;

_

_

b

l

k

_

e

n

d

_

r

e

q

u

e

s

t

_

a

l

l

(

r

q

,

-

E

O

P

N

O

T

S

U

P

P

)

;

*

r

q

p

=

N

U

L

L

;

r

e

t

u

r

n

f

a

l

s

e

;

!

i

s

_

b

a

r

r

i

e

r

q

-

>

n

e

x

t

_

o

r

d

e

r

e

d

!

=

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

N

O

N

E

s

t

r

u

c

t

r

e

q

u

e

s

t

*

r

q

=

*

r

q

p

;

?

c

o

n

s

t

i

n

t

i

s

_

b

a

r

r

i

e

r

=

b

l

k

_

f

s

_

r

e

q

u

e

s

t

(

r

q

)

&

&

b

l

k

_

b

a

r

r

i

e

r

_

r

q

(

r

q

)

;

!

q

-

>

o

r

d

s

e

q

B

A

R

R

I

E

R

H

A

N

D

L

I

N

G

t

r

u

e

f

a

l

s

e

t

r

u

e

f

a

l

s

e

t

r

u

e

f

a

l

s

e

FIGURE 67 Do ordered flow

213

b

o

o

l

s

t

a

r

t

_

o

r

d

e

r

e

d

(

s

t

r

u

c

t

r

e

q

u

e

s

t

_

q

u

e

u

e

*

q

,

s

t

r

u

c

t

r

e

q

u

e

s

t

*

*

r

q

p

)

C

o

m

p

l

e

t

e

s

k

i

p

p

e

d

s

e

q

u

e

n

c

e

s

.

I

f

w

h

o

l

e

s

e

q

u

e

n

c

e

i

s

c

o

m

p

l

e

t

e

,

r

e

t

u

r

n

f

a

l

s

e

t

o

t

e

l

l

e

l

e

v

a

t

o

r

t

h

a

t

t

h

i

s

r

e

q

u

e

s

t

i

s

g

o

n

e

.

r

e

t

u

r

n

!

b

l

k

_

o

r

d

e

r

e

d

_

c

o

m

p

l

e

t

e

_

s

e

q

(

q

,

s

k

i

p

,

0

)

;

D

r

a

i

n

(

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

B

Y

_

D

R

A

I

N

)

&

&

q

u

e

u

e

_

i

n

_

f

l

i

g

h

t

(

q

)

r

q

=

N

U

L

L

;

s

k

i

p

|

=

Q

U

E

U

E

_

O

R

D

S

E

Q

_

D

R

A

I

N

;

P

r

e

f

l

u

s

h

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

R

E

F

L

U

S

H

q

u

e

u

e

_

f

l

u

s

h

(

q

,

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

R

E

F

L

U

S

H

)

;

s

k

i

p

|

=

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

R

E

F

L

U

S

H

;

r

q

=

&

q

-

>

p

r

e

_

f

l

u

s

h

_

r

q

;

B

a

r

r

i

e

r

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

B

A

R

r

q

=

&

q

-

>

b

a

r

_

r

q

;

b

l

k

_

r

q

_

i

n

i

t

(

q

,

r

q

)

;

i

f

(

b

i

o

_

d

a

t

a

_

d

i

r

(

q

-

>

o

r

i

g

_

b

a

r

_

r

q

-

>

b

i

o

)

=

=

W

R

I

T

E

)

?

?

?

r

q

-

>

c

m

d

_

f

l

a

g

s

|

=

R

E

Q

_

R

W

;

?

?

i

f

(

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

F

U

A

)

?

?

?

r

q

-

>

c

m

d

_

f

l

a

g

s

|

=

R

E

Q

_

F

U

A

;

i

n

i

t

_

r

e

q

u

e

s

t

_

f

r

o

m

_

b

i

o

(

r

q

,

q

-

>

o

r

i

g

_

b

a

r

_

r

q

-

>

b

i

o

)

;

r

q

-

>

e

n

d

_

i

o

=

b

a

r

_

e

n

d

_

i

o

;

e

l

v

_

i

n

s

e

r

t

(

q

,

r

q

,

E

L

E

V

A

T

O

R

_

I

N

S

E

R

T

_

F

R

O

N

T

)

;

s

k

i

p

|

=

Q

U

E

U

E

_

O

R

D

S

E

Q

_

B

A

R

;

t

r

u

e

f

a

l

s

e

P

o

s

t

f

l

u

s

h

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

O

S

T

F

L

U

S

H

q

u

e

u

e

_

f

l

u

s

h

(

q

,

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

O

S

T

F

L

U

S

H

)

;

s

k

i

p

|

=

Q

U

E

U

E

_

O

R

D

S

E

Q

_

P

O

S

T

F

L

U

S

H

;

r

q

=

&

q

-

>

p

o

s

t

_

f

l

u

s

h

_

r

q

;

t

r

u

e

f

a

l

s

e

r

e

m

o

v

e

t

h

e

o

r

i

g

i

n

a

l

r

e

q

u

e

s

t

a

n

d

s

a

v

e

i

t

i

n

t

h

e

f

i

e

l

d

i

n

t

h

e

q

u

e

u

e

b

l

k

_

d

e

q

u

e

u

e

_

r

e

q

u

e

s

t

(

r

q

)

;

?

q

-

>

o

r

i

g

_

b

a

r

_

r

q

=

r

q

;

?

r

q

=

N

U

L

L

;

F

o

r

a

n

e

m

p

t

y

b

a

r

r

i

e

r

,

t

h

e

r

e

'
s

n

o

a

c

t

u

a

l

B

A

R

r

e

q

u

e

s

t

,

w

h

i

c

h

i

n

t

u

r

n

m

a

k

e

s

P

O

S

T

F

L

U

S

H

u

n

n

e

c

e

s

s

a

r

y

.

M

a

s

k

t

h

e

m

o

f

f

.

E

m

p

t

y

b

a

r

r

i

e

r

o

n

a

w

r

i

t

e

-

t

h

r

o

u

g

h

d

e

v

i

c

e

w

/

o

r

d

e

r

e

d

t

a

g

h

a

s

n

o

c

o

m

m

a

n

d

t

o

i

s

s

u

e

a

n

d

w

i

t

h

o

u

t

a

n

y

c

o

m

m

a

n

d

t

o

i

s

s

u

e

,

o

r

d

e

r

i

n

g

b

y

t

a

g

c

a

n

'
t

b

e

u

s

e

d

.

D

r

a

i

n

i

n

s

t

e

a

d

.

q

-

>

o

r

d

e

r

e

d

&

=

~

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

B

Y

_

T

A

G

;

?

?

?

q

-

>

o

r

d

e

r

e

d

|

=

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

B

Y

_

D

R

A

I

N

;

q

-

>

o

r

d

e

r

e

d

&

=

~

(

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

B

A

R

|

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

O

S

T

F

L

U

S

H

)

;

(

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

B

Y

_

T

A

G

)

&

&

?

?

!

(

q

-

>

o

r

d

e

r

e

d

&

Q

U

E

U

E

_

O

R

D

E

R

E

D

_

D

O

_

P

R

E

F

L

U

S

H

)

s

t

r

u

c

t

r

e

q

u

e

s

t

*

r

q

=

*

r

q

p

;

?

u

n

s

i

g

n

e

d

s

k

i

p

=

0

;

?

q

-

>

o

r

d

e

r

r

=

0

;

?

q

-

>

o

r

d

e

r

e

d

=

q

-

>

n

e

x

t

_

o

r

d

e

r

e

d

;

?

q

-

>

o

r

d

s

e

q

|

=

Q

U

E

U

E

_

O

R

D

S

E

Q

_

S

T

A

R

T

E

D

;

!

b

l

k

_

r

q

_

s

e

c

t

o

r

s

(

r

q

)

*

r

q

p

=

r

q

;

t

r

u

e

f

a

l

s

e

f

a

l

s

e

t

r

u

e

FIGURE 68 Start ordered flow

214

Completion methods for barrier/flush requests , do essentially the same thing , notify io scheduler about the completion and call to blk_ordered_complete()

void pre_flush_end_io(struct request *rq, int error)

elv_completed_request(rq->q, rq);

blk_ordered_complete_seq

(rq->q, QUEUE_ORDSEQ_PREFLUSH

, error);

void bar_end_io(struct request *rq, int error)

elv_completed_request(rq->q, rq);

blk_ordered_complete_seq

(rq->q, QUEUE_ORDSEQ_BAR

, error);

void post_flush_end_io(struct request *rq, int error)

elv_completed_request(rq->q, rq);

blk_ordered_complete_seq

(rq->q, QUEUE_ORDSEQ_POSTFLUSH

, error);

bool blk_ordered_complete_seq

(struct request_queue *q, unsigned seq, int error)

@Description - completes all bytes on a barrier request if the flush sequence

is done

The sequence is done

Complete all the bytes

on a barier

Completes all bytes on a request

__blk_end_request_all(rq, q->orderr);

q->ordseq = 0;

rq = q->orig_bar_rq;

return true;

struct request *rq;

if (error && !q->orderr)

??q->orderr = error;

q->ordseq |= seq;

blk_ordered_cur_seq(q)

!= QUEUE_ORDSEQ_DONE

return false;false true

void queue_flush(struct request_queue *q, unsigned which)

@Description - inserts (according to which) a post_flush or

pre_flush barrier request to the head of the dispatch queue

that causes the flush of a queue

Insert the request into the front

of the queue

elv_insert(q, rq, ELEVATOR_INSERT_FRONT);

Prepare a barrier request

blk_rq_init(q, rq);

?rq->cmd_flags = REQ_HARDBARRIER;

?rq->rq_disk = q->bar_rq.rq_disk;

?rq->end_io = end_io;

Defined by the driver

q->prepare_flush_fn(q, rq);

struct request *rq;

?rq_end_io_fn *end_io;

which q = &q->post_flush_rq;rq = &q->pre_flush_rq;

end_io = post_flush_end_io;end_io = pre_flush_end_io;

QUEUE_ORDERED_DO_PREFLUSHQUEUE_ORDERED_DO_POSTFLUSH

FIGURE 69 Flush queue flow

215

full. If the queue is no longer congested or full then the appropriate flags
are cleared. In addition, if a queue is not full anymore and there are some
processes in a wait queue that was sent to sleep by get_request one of these
processes is woken up and removed from the wait queue.

If there are some starved processes in an opposite direction one of them
is also tried to be awaken if the queue is not full anymore in that (op-
posite) direction. The functions above happens through a combination of
freed_request() and __freed_request() functions. The behavior of a process
after it is awaken (i.e. it becomes batching etc.) is described in section 5.9.

APPENDIX 5.15 Complete Request

The complicated structure of a request is the main issue for a request completion.
Each request contains a list of bios, which in turn are an array of io_vecs and must
have the option of being completed partially, since not every driver may have the
ability to complete all the bytes in one DMA.

The below sequence is as follows (for a single direction request, bi direc-
tional request involves an extra two way wrapper and only adds complexity):

1. Some stacking driver wants to complete a number of bytes on a request
(but not to complete the whole request) , and not to remove it even if it is
completed.

(a) Account for the completion of a number of bytes.
(b) Iterate over requests bios and complete each one (by means of

req_bio_endio(), that does actually the same thing as step 1, but for a
bio, rather then request, and if all the bytes of a bio were completed
call its completion routine).

(c) Repeat until the request is completed (checked via number of bytes re-
quested), if a partially completed bio is encountered update its io_vecs
array index, to point the first uncompleted io_vec and possibly (if
some bytes of this io_vec were transferred) update its length and off-
set.

(d) Update requests length, sectors etc...

2. The driver wants to complete a number of bytes on a request

(a) call step 1
(b) If no uncompleted bios left in the request:

i. Account for request completion.
ii. Remove the request by means of blk_put_request() (see section

5.14

Step 1 is completed by a large function update_request(). Step 2 is completed by
blk_end_request() that calls for blk_finish_request() (2.2.1 , 2.2.2)

216

void blk_put_request(struct request *req)

unsigned long flags;

?struct request_queue *q = req->q;

spin_lock_irqsave(q->queue_lock, flags);

__blk_put_request(q, req);

spin_unlock_irqrestore(q->queue_lock, flags);

FREE THE REQUEST(PUT)

void __blk_put_request(struct request_queue *q, struct request *req)

@Notifies io scheduler about requests completion and free the

memory allocated to req.

Then if the queue is not congested(actually full) anymore and

there are process that are waiting for free requests

wake them up

Request may not have

originated from ll_rw_blk.

if not,it didn't come out

of our reserved rq pools

see next page

blk_free_request(q, req);

freed_request(q, is_sync, priv);

find the direction of the request (is_sync)

and whether it contains io schedulers

private data(priv)

int is_sync = rq_is_sync(req) != 0;

??int priv = req->cmd_flags & REQ_ELVPRIV;

more strange bugs

BUG_ON(!list_empty(&req->queuelist));

??BUG_ON(!hlist_unhashed(&req->hash));

strange bug

WARN_ON(req->bio != NULL);

Notify io schedualer that the request is completed

elv_completed_request(q, req);

!q

return;

--req->ref_count

req->cmd_flags

& REQ_ALLOCED

true, no queue no worries

false

true,there are still references

to this request, exit

false

false true

FIGURE 70 Put request flow

217

void __freed_request(struct request_queue *q, int sync)

the queue is not full

anymore in that direction

clear the full queue flag

blk_clear_queue_full(q, sync);

wake the tasks waiting

for a free requests in a

wait_queue

wake_up(&rl->wait[sync]);

waitqueue_active(&rl->wait[sync])

true

false

the queue is not congested

anymore in that direction

, clear the flag

blk_clear_queue_congested(q, sync);

struct request_list *rl = &q->rq;

rl->count[sync] <

queue_congestion_off_threshold(q)

rl->count[sync] + 1

<= q->nr_requests

return;

truefalse

truefalse

void freed_request(struct request_queue *q, int sync, int priv)

@Description: A request has just been released. Account for it, update the full and

 congestion status, wake up any waiters. Called under q->queue_lock.

if there any starved waiters in the opposite direction, wake them also

The request is managed by

io scheduler decrement their amount

???

rl->elvpriv--;

decrement the amount

of allocated requests

rl->count[sync]--;

There are some processes

that are starved for requests

in the opposite direction

try to wake them also

__freed_request(q, sync ^ 1);

struct request_list *rl = &q->rq;

priv

__freed_request(q, sync);

rl->starved[sync ^ 1]

return;

truefalse

true

false

void blk_free_request(struct request_queue *q, struct request *rq)

@description: deallocates the resources that were allocated to the

request rq. (optionally by io scheduler) , returns it to memory pool

deallocate the request

mempool_free(rq, q->rq.rq_pool);

request has some io schedualers

private data, free it

elv_put_request(q, rq);

rq->cmd_flags &

REQ_ELVPRIV

false true

FIGURE 71 Free request flow

218

Additional logic is added inside those functions to treat the tagged request
(release the tag for a completed request). The barrier requests are distinguished
from the regular requests since they do not have actual bios to complete.

APPENDIX 5.16 Linux Block Layer Usage In Our Systems

We used Linux block I/O layer in our asynchronous mirror product which is
described in Chapter 4.

In the asynchronous mirror project we essentially replicated block devices
across hosts. Using the block I/O layer for our asynchronous mirror software
allows us to support any hardware (SSD, magnetic disk etc.) and any higher
layer software. (File systems and other software that use block device directly
such as databases etc.)

219

b

o

o

l

b

l

k

_

e

n

d

_

r

e

q

u

e

s

t

(

s

t

r

u

c

t

r

e

q

u

e

s

t

*

r

q

,

i

n

t

e

r

r

o

r

,

u

n

s

i

g

n

e

d

i

n

t

n

r

_

b

y

t

e

s

)

r

e

t

u

r

n

b

l

k

_

e

n

d

_

b

i

d

i

_

r

e

q

u

e

s

t

(

r

q

,

e

r

r

o

r

,

n

r

_

b

y

t

e

s

,

0

)

;

b

o

o

l

b

l

k

_

e

n

d

_

b

i

d

i

_

r

e

q

u

e

s

t

(

s

t

r

u

c

t

r

e

q

u

e

s

t

*

r

q

,

i

n

t

e

r

r

o

r

,

u

n

s

i

g

n

e

d

i

n

t

n

r

_

b

y

t

e

s

,

u

n

s

i

g

n

e

d

i

n

t

b

i

d

i

_

b

y

t

e

s

)

@

D

e

s

c

r

i

p

t

i

o

n

-

c

o

m

p

l

e

t

e

s

a

n

r

_

b

y

t

e

s

o

n

a

r

e

q

u

e

s

t

(

s

e

e

u

p

d

a

t

e

_

r

e

q

u

e

s

t

)

a

n

d

i

f

a

l

l

t

h

e

b

y

t

e

s

i

n

a

r

e

q

u

e

s

t

a

r

e

c

o

m

p

l

e

t

e

d

r

e

m

o

v

e

s

a

n

d

c

o

m

p

l

e

t

e

s

i

t

b

y

c

a

l

l

i

n

g

t

o

f

i

n

i

s

h

_

r

e

q

u

e

s

t

(

)

I

f

t

h

e

r

e

q

u

e

s

t

i

s

b

i

d

i

r

e

c

t

i

o

n

a

l

,

d

o

t

h

e

s

a

m

e

f

o

r

t

h

e

r

e

q

u

e

s

t

i

n

t

h

e

o

p

p

o

s

i

t

e

d

i

r

e

c

t

i

o

n

w

i

t

h

b

i

d

i

_

b

y

t

e

s

i

n

s

t

e

a

d

o

f

n

r

_

b

y

t

e

s

T

h

e

r

e

a

r

e

s

t

i

l

l

s

o

m

e

b

y

t

e

s

t

o

p

r

o

c

e

s

s

,

r

e

t

u

r

n

r

e

t

u

r

n

t

r

u

e

;

A

l

l

t

h

e

b

y

t

e

s

w

e

r

e

c

o

m

p

l

e

t

e

d

f

i

n

i

s

h

t

h

e

r

e

q

u

e

s

t

s

p

i

n

_

l

o

c

k

_

i

r

q

s

a

v

e

(

q

-

>

q

u

e

u

e

_

l

o

c

k

,

f

l

a

g

s

)

;

b

l

k

_

f

i

n

i

s

h

_

r

e

q

u

e

s

t

(

r

q

,

e

r

r

o

r

)

;

s

p

i

n

_

u

n

l

o

c

k

_

i

r

q

r

e

s

t

o

r

e

(

q

-

>

q

u

e

u

e

_

l

o

c

k

,

f

l

a

g

s

)

;

r

e

t

u

r

n

f

a

l

s

e

;

?

s

t

r

u

c

t

r

e

q

u

e

s

t

_

q

u

e

u

e

*

q

=

r

q

-

>

q

;

?

u

n

s

i

g

n

e

d

l

o

n

g

f

l

a

g

s

;

b

l

k

_

u

p

d

a

t

e

_

b

i

d

i

_

r

e

q

u

e

s

t

(

r

q

,

e

r

r

o

r

,

n

r

_

b

y

t

e

s

,

b

i

d

i

_

b

y

t

e

s

)

t

r

u

e

f

a

l

s

e

b

o

o

l

b

l

k

_

u

p

d

a

t

e

_

b

i

d

i

_

r

e

q

u

e

s

t

(

s

t

r

u

c

t

r

e

q

u

e

s

t

*

r

q

,

i

n

t

e

r

r

o

r

,

?

?

?

?

u

n

s

i

g

n

e

d

i

n

t

n

r

_

b

y

t

e

s

,

?

?

?

?

u

n

s

i

g

n

e

d

i

n

t

b

i

d

i

_

b

y

t

e

s

)

T

h

e

r

e

a

r

e

s

t

i

l

l

s

o

m

e

b

y

t

e

s

t

o

p

r

o

c

e

s

s

r

e

t

u

r

n

r

e

t

u

r

n

t

r

u

e

;

T

h

e

r

e

a

r

e

s

t

i

l

l

s

o

m

e

b

y

t

e

s

t

o

p

r

o

c

e

s

s

i

n

t

h

e

o

p

p

o

s

i

t

e

d

i

r

e

c

t

i

o

n

r

e

t

u

r

n

t

r

u

e

;

I

f

t

h

e

r

e

q

u

e

s

t

i

s

b

i

d

i

r

e

c

t

i

o

n

a

l

u

p

d

a

t

e

b

i

d

i

_

b

y

t

e

s

i

n

t

h

e

o

p

p

o

s

i

t

e

d

i

r

e

c

t

i

o

n

b

l

k

_

b

i

d

i

_

r

q

(

r

q

)

&

&

?

b

l

k

_

u

p

d

a

t

e

_

r

e

q

u

e

s

t

(

r

q

-

>

n

e

x

t

_

r

q

,

e

r

r

o

r

,

b

i

d

i

_

b

y

t

e

s

)

t

r

u

e

T

h

e

r

e

q

u

e

s

t

i

s

c

o

m

p

l

e

t

e

S

e

e

d

t

h

e

p

s

e

u

d

o

r

a

n

d

o

m

n

u

m

b

e

r

g

e

n

e

r

a

t

o

r

a

d

d

_

d

i

s

k

_

r

a

n

d

o

m

n

e

s

s

(

r

q

-

>

r

q

_

d

i

s

k

)

;

b

l

k

_

u

p

d

a

t

e

_

r

e

q

u

e

s

t

(

r

q

,

e

r

r

o

r

,

n

r

_

b

y

t

e

s

)

r

e

t

u

r

n

f

a

l

s

e

;

R

E

Q

U

E

S

T

C

O

M

P

L

E

T

I

O

N

2

6

f

a

l

s

e

t

r

u

e

f

a

l

s

e

FIGURE 72 End request flow

220

block/blk-core.c

bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)

@req: the request being processed

@error: %0 for success, < %0 for error

@nr_bytes: number of bytes to complete @req

@Description:

 Ends I/O on a number of bytes attached to @req, but doesn't complete

 the request structure even if @req doesn't have leftover.

 If @req has leftover, sets it up for the next range of segments.

 This special helper function is only for request stacking drivers

 (e.g. request-based dm) so that they can handle partial completion.

 Actual device drivers should use blk_end_request instead.

 Passing the result of blk_rq_bytes() as @nr_bytes guarantees

 %false return from this function.

 @Return:

 %false - this request doesn't have any more data

 %true - this request has more data

Accounting

(/proc/diskstats , per partition)

increment the number of bytes transfered

by nr_bytes

blk_account_io_completion(req, nr_bytes);

?Complete the remaining bytes in the last uncompleted bio, update the fields and exit

no uncompleted bios

left in the request

the request is complete

reset the data_len and return

return false;

req->__data_len = 0;

complete bio_nbytes on bio

and update the bio->bi_idx

bio->bi_io_vec at bio->bi_idx

req_bio_endio(req, bio, bio_nbytes, error);

bio->bi_idx += next_idx;

bio_iovec(bio)->bv_offset += nr_bytes;

??bio_iovec(bio)->bv_len -= nr_bytes;

update sector only for

requests with clear

definition of sector

req->__sector += total_bytes >> 9;

mixed attributes always follow the first bio

req->cmd_flags &= ~REQ_FAILFAST_MASK;

??req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;

strange error

If total number of sectors is less

than the first segment

size, something has gone terribly wrong

req->__data_len = blk_rq_cur_bytes(req);

recalculate the

number of segments

blk_recalc_rq_segments(req);

!req->bio

bio_nbytes

req->__data_len -= total_bytes;

?req->buffer = bio_data(req->bio);

blk_fs_request(req) ||

blk_discard_rq(req)

req->cmd_flags & REQ_MIXED_MERGE

blk_rq_bytes(req) < blk_rq_cur_bytes(req)

return true;

NULLnot NULL

>0<=0

truefalse

truefalse

truefalse

iterate over a prefix of transfered bios in the request, (those whose total lenght

is <= nr_bytes) and complete them by calling req_bio_endio

if the last bio in the prefix is partially transfered iterate over its io_vecs

at the end of the run:

bio = req->bio contains the last untransfered/partially transfered bio.

bio_nbytes contains the number of bytes transfered in req->bio

total_bytes contains the initial value of nr_bytes

idx = bio->bi_idx + next_idx is the index of the last untrasfered io_vec in req->bio->bi_io_vec

nr_bytes is the number of bytes transfered in req->bio->bi_io_vec[idx] io_vec

all this bio is already

transfered, end it and

advance to the next one

req->bio = bio->bi_next;

???nbytes = bio->bi_size;

req_bio_endio(req, bio, nbytes, error);

next_idx = 0;

???bio_nbytes = 0;

This is the last transfered bio in the request

iterate over its io_vecs and check if all of them were transfered

(by checking the number of bytes), accumulate the

transfered bytes in this bio into bio_nbytes

Another strange error

BIO_BUG_ON(nbytes > bio->bi_size);

less bytes then in this bios iovec

were transfered, update the

variables and exit the loop

bio_nbytes += nr_bytes;

????total_bytes += nr_bytes;

int idx = bio->bi_idx + next_idx;

nbytes = bio_iovec_idx(bio, idx)->bv_len;

nbytes > nr_bytes

next_idx++;

???bio_nbytes += nbytes;

idx >= bio->bi_vcnt

true
false

false

Exit the loop

if the request has no more

(uncompleted) bios

(bio = req->bio)

int nbytes;

nr_bytes >= bio->bi_size

total_bytes += nbytes;

??nr_bytes -= nbytes;

bio = req->bio;

bio!=NULL&&

nr_bytes <= 0

break;

int total_bytes, bio_nbytes, next_idx = 0;

?struct bio *bio;

!req->bio return false;

blk_fs_request(req) req->errors = 0;

total_bytes = bio_nbytes = 0;

NULL

not NULL

truefalse

false

true, a previous io_vec was the last

one in the bio, exit the loop

true

truefalse

false

true

FIGURE 73 Update request flow

221

block/blk-core.c

void req_bio_endio(struct request *rq, struct bio *bio,unsigned int nbytes, int error)

@rq:request a bio is attached to

@bio:bio that nbytes should be completed on

@nbytes:the bytes to complete

@error:error code if any, 0 if no error

@Description:completes nbytes on a bio i.e.updates the bytes counter

advances the sector number and integrity payload to process an I/O in the next iteration

ends the request if no bytes left to process

This is a barrier request in progress

record the error , if any , and exit

if (error && !q->orderr)

???q->orderr = error;

Ok, this is not a barrier request in progress

update the bytes that left to transfer in bio

and advance the current sector and integrity.

end the io if nothing left to transfer

Nothing is left to transfer

end the I/O on the bio

bio_endio(bio, error);

Advance the integrity ,

if supported

if (bio_integrity(bio))

???bio_integrity_advance(bio, nbytes);

Update the bytes left

and advance the sector

bio->bi_size -= nbytes;

??bio->bi_sector += (nbytes >> 9);

???

set_bit(BIO_QUIET, &bio->bi_flags);

More bytes were transfered

then left in the bio ??????

nbytes = bio->bi_size;

clearly if an error occured the bio is not uptodate

and if it is not uptodate then some error occured

clear_bit(BIO_UPTODATE, &bio->bi_flags);

!test_bit(BIO_UPTODATE, &bio->bi_flags)

error = -EIO;

error

nbytes > bio->bi_size

rq->cmd_flags & REQ_QUIET

bio->bi_size == 0return;

struct request_queue *q = rq->q;

&q->bar_rq != rq

true

!=0=0

false

true

false

true

false

truefalse

truefalse

fs/bio.c

void bio_endio(struct bio *bio, int error)

@bio:?bio

@error:?error, if any

@Description:

 bio_endio() will end I/O on the whole bio. bio_endio()

 and call its completion method. It is the

 preferred way to end I/O on a bio, it takes care of clearing

 BIO_UPTODATE on error. @error is 0 on success.

Call the bios completion

method

bio->bi_end_io(bio, error);

clearly if an error occured the bio is not uptodate

and if it is not uptodate then some error occured

clear_bit(BIO_UPTODATE, &bio->bi_flags);

!test_bit(BIO_UPTODATE, &bio->bi_flags)

error = -EIO;

error

bio->bi_end_io

return;

true

!=0

=0

false

not NULL

NULL

FIGURE 74 End I/O flow

222

void blk_finish_request(struct request *req, int error)

@Description - finishes the request : accounting for

completion (ios , response time) , releases its tag

and deletes its timer. Then completes and removes it

by either calling to a predefined completion method(if exists)

or calling to put_request()

Treats a bidirectional requests as well.

Finish request and remove it

by means of put_request

Put request in the

opposite direction

__blk_put_request

(req->next_rq->q, req->next_rq);

blk_bidi_rq(req)

__blk_put_request(req->q, req);

truefalse

Request has a predefined

completion method , which will

treat the removal process

req->end_io(req, error);

Accounting

(/proc/diskstats , per partition)

increment the number of ios and

calculate and increment the number of

ticks (cummulative response time)

blk_account_io_done(req);

Delete the time out timer

blk_delete_timer(req);

???

BUG_ON(blk_queued_rq(req));

Release the tag for

tagged request

blk_queue_end_tag(req->q, req);

blk_rq_tagged(req)

laptop_mode &&

blk_fs_request(req)

laptop_io_completion();

req->end_io

truefalse

false true

not NULLNULL

FIGURE 75 Finish request flow

APPENDIX 6 LGUEST AND VIRT I/O

In this chapter we introduce Lguest and Virt I/O. Lguest is a small x86 32-bit
Linux hypervisor that was developed by Rusty Russell. Lguest allows running
Linux under Linux and demonstrating the para-virtualization abilities in Linux.

Lguest was built, at least partially, with academic purposes. The code is
very readable and thus lends itself easily for extensions. Lguest has been part of
the Linux kernel since Linux 2.6.20.

We have used Lguest in our asynchronous mirror system and in our kernel
profiler.

Virt I/O provides an abstraction layer for all virtual drivers under Linux,
regardless of hypervisor. We have developed a serial adapter based on virt I/O
and used it in our kernel profiler.

The purpose of this chapter is two-fold. First, we wish to describe Lguest to
demonstrate how system virtual machines work and how simple System virtual
machine (Lguest) can be constructed. Second, we explain Lguest’s internal design
which is critical for the two systems that we developed using Lguest.

APPENDIX 6.1 Lguest

Lguest is a type 2 hypervisor for Linux. The majority of Lguest code is imple-
mented as a single kernel module lg.ko. Lguest allows Linux kernel to run in-
side Lguest virtualization environment – just like we run a process in userspace.
Lguest is a 32bit product designed for x86 environment. Lguest64 is an experi-
mental 64bit product for x86-64 environment.

Lguest uses para-virtualization. The guest Linux OS uses a set of virtual I/O
drivers to communicate with the host OS. The motivation behind the creation of
Lguest was Russel’s, Lguest’s creator, attempt to standardize a set of APIs for
hypervisors to support Xen.

APPENDIX 6.2 The motivation behind Virt I/O and Lguest

In an effort to support Xen hypervisor and future hypervisors, Rusty Russel cre-
ated Lguest based on the prediction that future hypervisors will require common
interfaces for para-virtualization on the Linux kernel. Even though at the time
VMWare has already released VMI (Virtual Machine Interface) an open, stable
standard was desired. This is a single structure that encapsulates all the sensi-
tive instructions (functions pointers) which a hypervisor might want to override.
This was very similar to the VMI , but not identical. Rusty created Lguest as triv-
ial self-contained Linux-on-Linux hypervisor. Lguest lives in the kernel source
code. It runs the same OS for the guest and host and is contained in less then

224

ten thousands lines of code. Lguest is small enough to be considered educational
hypervisor and a test bed for paravirt_ops.

APPENDIX 6.3 Running Lguest

In order to run Lguest we need to recompile the kernel with Lguest support as
documented in documents/lguest/lguest.txt in the kernel tree.

Once the Lguest kernel module has been inserted to the running kernel we
can communicate with Lguest kernel module via the special file /dev/lguest.

Now we can create guests by calling ioctl(2) on the file.
The second thing we need in order to run guests is to create the guest boot

image. A large variety of boot images exist on the Internet with various version
of busybox and other tiny Linux distributions. The boot images can also be edited
to include new files needed for the guest.

APPENDIX 6.4 Lguest high level design and file list

Lguest consists of five parts:

1. The guest’s "paravirt_ops" implementation.
2. The virtual I/O devices and drivers.
3. The launcher which sets up, runs and services the guest.
4. The host module (lg.ko) which sets up the switcher and handles the kernel

side of things for the launcher.
5. The switcher which flips the CPU between host and guest.

APPENDIX 6.4.1 The Guest Code

In order to configure Lguest we need to include CONFIG_LGUEST_GUEST=y
into the kernel .config spec. This switch would compile [arch/x86/lguest/boot.c]
into the kernel. By including this file the kernel can now run as a guest at boot
time. While running as guest, the kernel knows that he cannot do privileged op-
erations. As a guest the kernel "knows" that it has to ask the host to do privileged
operations. [arch/x86/lguest/boot.c] contains all the replacements for such low-
level native hardware operations.

APPENDIX 6.4.2 The Launcher Code

The file [Documents/lguest/lguest.c] is the launcher code, a simple program that
lays out the "physical" (not actually physical but rather what the guest "thinks" is
"physical" it is actually process memory on the host that can be swapped.) Mem-
ory for the new guest by mapping the kernel image and the virtual devices. It

225

then the special file /dev/lguest to tell the kernel about the guest and control it.

APPENDIX 6.4.3 The Switcher Code

The file [drivers/lguest/x86/switcher_32.S] is the switcher. The switcher is
compiled as part of the "lg.ko" module. The switcher resides at 0xFFC00000 (or
0xFFE00000) astride both the host and guest virtual memory, to do the low-level
Guest<->Host switch. It is as simple as it can easily be made and is x86 specific.
What it does is switch the CPU registers state between guest and host processing.

APPENDIX 6.4.4 The Host Module: lg.ko

This kernel module contains the files:
We’ll now start to explore in core details Lguest. The document contains

many code samples. Most of them are not fully copied from the original kernel
source tree but rather have the important issues cut and pasted here coupled with
additional comments not present in the official kernel.

APPENDIX 6.5 The Guest

The guest starts with the kernel booting into "startup_32" in [arch/x86/kernel/
head_32.S]. It expects a boot header, which is created by the boot loader (The
launcher in Lguest case). When we configure CONFIG_PARAVIRT=y, "startup_32"
function preforms the following: it checks the ’BP_hardware_subarch’ field that
is part of the boot header, if it is set to ’1’, call "lguest_entry" which is the starting
point of the guest and is located at the [arch/x86/lguest/i386_Head.S].

__HEAD ENTRY(startup_32)
...
#ifdef
CONFIG_PARAVIRT
...
/*
* Paravirt-compatible boot parameters.

* Look to see what architecture we’re booting under.

*/
movl pa(boot_params + BP_hardware_subarch), %eax
set %eax to 1*/

...
movl pa(subarch_entries)(,%eax,4), %eax
subl $__PAGE_OFFSET, %eax
jmp %eax

subarch_entries:
.long default_entry

226

TABLE 6 Lguest lg.ko files

drivers/lguest/lguest_user.c This contains all the /dev/lguest code, whereby
the userspace launcher controls and communicates
with the guest.

drivers/lguest/core.c This contains the "run_guest()" routine which actu-
ally calls into the Host<->Guest Switcher and an-
alyzes the return, such as determining if the guest
wants the host to do something. This file also con-
tains useful helper routines.

drivers/lguest/x86/core.c This file contains the x86-specific lguest code for fu-
ture porting of lguest to other architectures

drivers/lguest/hypercalls.c Just as userspace programs request kernel opera-
tions through a system call, the guest requests host
operations through a "hypercall". As you’d expect,
this code is basically one big C switch statement.

drivers/lguest/segments.c The x86 architecture support segments. The seg-
ment handling code consists of simple sanity
checks.

drivers/lguest/page_tables.c The guest provides a virtual to physical mapping,
but we can neither trust it nor use it. This is because
the guest does not know what the physical ad-
dresses of his memory are, so he can map to places
where he shouldn’t. The host verifies and converts
the mapping here and then points the CPU to the
converted guest pages when running the guest.

drivers/lguest/
interrupts_and_traps.c There are three classes of interrupts:

1. Real hardware interrupts which occur while
we’re running the guest

2. Interrupts for virtual devices attached to the
guest

3. Traps and faults from the guest.

Real hardware interrupts are delivered to the host,
not to the guest. Virtual interrupts are delivered
to the guest, but Lguest makes them look identical
to how real hardware would deliver them. Traps
from the guest can be set up to go directly back to
the guest, but sometimes the host wants to see them
first, so we also have a way of "reflecting" them into
the guest as if they had been delivered to it directly.

227

.long lguest_entry
/* normal x86/PC */
/* lguest hypervisor */ /* Xen hypervisor */

.long xen_entry
num_subarch_entries = (. - subarch_entries) /

4 .previous
#endif /* CONFIG_PARAVIRT */

The routine "lguest_entry" is making an "initialization" hypercall to the host.

movl $LHCALL_LGUEST_INIT, %eax
/* put the hypercall index in eax*/
movl $lguest_data - __PAGE_OFFSET, %ebx
/* put the address of lguest_data in ebx */
int $LGUEST_TRAP_ENTRY
/* make a hypercall */

The hypercall mechanism will be explained shortly but we can already see that
it is using a software interrupt. "lguest_entry" then jumps to the C function
"lguest_init()" which is at [arch/x86/lguest/boot.c]. This function is the part of
the booting process that is specific to Lguest’s guest. It sets the "pv_info" struc-
ture (general information about the para-virtualization, like it is Lguest’s guest
and not to run at the most privileged level etc.), and most importantly to set up
all the lguest overrides for sensitive operations, the "pv_ops" interface.

__init void lguest_init(void) {
/* We’re under lguest. */

pv_info.name = "lguest";
/* We’re running at privilege level 1, not 0 as normal. */

pv_info.kernel_rpl = 1;
/*
* We set up all the lguest overrides for

* sensitive operations.

* These are detailed with the operations themselves.

*/
/* Interrupt-related operations */
...

pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
pv_irq_ops.irq_enable =

__PV_IS_CALLEE_SAVE(lg_irq_enable);
...
/* Intercepts of various CPU instructions */

pv_cpu_ops.load_gdt = lguest_load_gdt;
pv_cpu_ops.cpuid = lguest_cpuid;

...
pv_cpu_ops.start_context_switch =

paravirt_start_context_switch;

228

pv_cpu_ops.end_context_switch =
lguest_end_context_switch;
/* Page table management */

pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;

...
}

We would like to take a look of some interesting implementations of those func-
tions (the size and time limits this document would not allow for the review of
all of them. Instead we compensate by extensive documentation of the main fea-
tures) Before we go into the implementation we need to understand how our
guest contact the host to request privileged operations.

APPENDIX 6.5.1 Guest – Host Communication

The first method is called a "hypercall". It is usually preformed using a software
interrupt (like we saw at "lguest_entry") that causes a kernel trap. The hypercall
mechanism uses the highest unused trap code:

#define LGUEST_TRAP_ENTRY 0x1F /* LGUEST_TRAP_ENTRY=31 */

Traps 32 and above are used by real hardware interrupts. Seventeen hypercalls
are available. The hypercall number is put in the %eax register, and the argu-
ments (when required) are placed in %ebx, %ecx, %edx and %esi. If a return
value makes sense, its returned in %eax. The hypercalls are preformed using the
"hcall()" function in [arch/x86/include/arm/lguest_hcall.h].:

static inline unsigned long
hcall(unsigned long call, unsigned long arg1,
unsigned long arg2,

unsigned long arg3,
unsigned long arg4)
{
/* "int" is the Intel instruction to trigger a trap. */

asm volatile("int $" __stringify(LGUEST_TRAP_ENTRY)
/* The call in %eax (aka "a") might be overwritten */

: "=a"(call)
/* The arguments are in %eax, %ebx, %ecx, %edx & %esi */
: "a"(call), "b"(arg1), "c"(arg2), "d"(arg3), "S"(arg4)
/* "memory" means this might write somewhere in memory.

* This isn’t true for all calls, but it’s safe to tell

* gcc that it might happen so it doesn’t get clever. */
: "memory");

return call;
}

229

An example of a hypercall can be seen in the "lguest_entry" routine, where we
made the "int" instruction with the hypercall number (LHCALL_LGUEST_INIT)
in %eax, and the hypercall argument (the address of the variable "lguest_data")
in %ebx. There is a second method of communicating with the host: via "struct
lguest_data", which is in [include/linux/lguest.h]. Once the guest made the ini-
tialization hypercall in "lguest entry" (LHCALL_LGUEST_INIT), that tells the
host where "lguest_data" is. Both the guest and host use the "lguest_data" to
publish information.

Both guest and host need to know the location of "lguest_data" because
there are some functions that are called frequently, that are needed to transfer
information. If instead of publishing to "lguest_data" we would perform hyper-
call each time the functions are called and would slow things down. However
the guest and host can update fields inside "lguest_data" with a single instruc-
tion, and the host would check "lguest_data" before doing anything related to the
guest.

Example: we keep an "irq_enabled" (enable interrupts) field inside our
"lguest_data", which the guest can update with a single instruction (updating the
"lguest_data.irq_enabled" field). The host knows to check there before it tries to
deliver an interrupt. After we understand the two ways the guest and the host
communicate, let’s look at some interesting implementations of the PV_OPS in-
terface. Let us be reminded that all these operations are "sensitive", i.e. opera-
tions that the guest does not have the privilege to do, so when the guest needs
to perform them he would call one of these overriding functions. We sort these
operations by their type:

– Interrupt-related
– CPU instructions (and related operations)
– Page-table related
– Time related.

APPENDIX 6.5.2 Interrupt Related Operations

All interrupts that arrive during the guest run-time cause an immediate switch
to the host. The guest doesn’t even know that an interrupt has occurred. In
other words, the IDT table of the guest is simple and handles all interrupts with
a switch to the host. The host controls the guest "real" IDT. The host needs to
control the guest IDT as there are some interrupts that the guest cannot handle
(like hardware interrupts that are designated to the host OS) or interrupts that the
host must be aware of. The guest interrupt descriptor table is described in section
6.10.3.

Usually the OS has a programmable interrupt controller (PIC) as a hardware
device. The PIC allows the OS configurations like blocking specific interrupt and
prioritizes them. The host cannot let the guest control this device, so the guest’s
PIC would be virtual and very simple: it would allow only the enabling and
disabling of a specific interrupt.

230

/*
* This structure describes the lguest virtual

* IRQ controller.

* the full irq_chip interface is at

* [/include/linux/irq.h]

*/
static struct irq_chip lguest_irq_controller = {

.name = "lguest",
/* name for /proc/interrupts */

.mask = disable_lguest_irq,
/* mask an interrupt source */

.unmask = enable_lguest_irq,
/* unmask an interrupt source */
};

When a guest process would ask the PIC to disable an interrupt, what would
actually occur is that the guest tells the host not to deliver this interrupt to him.
This is done using the "lguest_data.interrupts" bitmap, so disabling (aka "mask-
ing") interrupt is as simple as setting a bit.

static void disable_lguest_irq(unsigned int irq)
{

set bit(irq, lguest_data.blocked_interrupts);
/* irq == interrupt index */
}

static void enable_lguest_irq(unsigned int irq)
{

clear_bit(irq, lguest_data.blocked_interrupts);
}

During the function "lguest_write_idt_entry()", which writes a descriptor (a gate)
to the "interrupt descriptor table" (pointed by the IDTR register), we can find an
example for a call to "hcall()" that performs a hypercall to the hypervisor. The
IDT tells the processor what to do when an interrupt comes in. Each entry in the
table is a 64-bit descriptor: this holds the privilege level, address of the handler,
and more. The guest simply asks the host to make the change because the host
controls the real IDT.

static void lguest_write_idt_entry(gate_desc *dt,
int entrynum,

const gate_desc *g)
{
/*
* The gate_desc struct is 8 bytes long:

* we hand it to the Host in two 32bit chunks

231

*/

u32 *desc = (u32 *)g;
/* Keep the local copy up to date. */
native_write_idt_entry(dt, entrynum, g);
/* This just memcpy g to dt*/

/* Tell Host about this new entry. */
/*
* each descriptor is 8 bytes, so we are going over the

* entries of the table, each entry is a struct with two

* unsigned long fields: a,b, which gives 8 bytes. The

* entry must be split like that to be compatible with the

* "hcall()" interface that can handle 4-byte parameters

*/
hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);

The rest of the interrupt related operations are similar and less interesting. The
guest can enable/disable interrupts using the calls to "irq_enable()"/"irq_disable()"
that change the value of the field "lguest_data.irq_enabled" to X86_EFLAGS_IF/0.

The host checks the value of this field before delivering an interrupt to the
guest.

APPENDIX 6.5.3 CPU Instructions for interrupt handling

The "iret" CPU instruction is the interrupt equivalent to the "ret" instruction. In-
stead of returning from a function call like "ret", "iret" returns from an interrupt
or a trap. When we use "int" instruction, it pushes the stack of the return ad-
dress (the interrupted instruction) and the EFLAGS register, which indicate the
processor’s current state. The EFLAGS register is pushed because the interrupt
may cause flags to change. Actually, in Linux’s case, the only relevant flag is IF
(interrupt flag): "int" sets it to 0 thereby preventing other interrupts to interfere
with the current interrupt handler. The "iret" first pops the IP (return address)
and CS (the code segment) to the interrupted instruction, and then pops EFLAGS
and returns to the caller atomically. The guest, on the other hand, would need to
use two instructions, because the guest is not using IF. The guest does not have
the privilege to change it so the guest uses the value at "lguest_data.irq_enabled"
instead. The guest needs one instruction to re-enable virtual interrupts, and then
another to execute "iret". The problem is that this is no longer atomic: we could
be interrupted between the two. The solution to this is to surround the code with
"lguest_noirq_start:" and "lguest_noirq_end:" labels. We tell the host, who is re-
sponsible for passing interrupts to the guest, that it is NEVER to interrupt the
guest between the labels, even if interrupts seem to be enabled. Assembly is used
in this case because a help register is needed, so we need to push its value to the
stack.

232

ENTRY(lguest_iret)
pushl %eax

/*
* a help register is needed to restore EFLAGES

* - push it

*/
movl 12(%esp), %eax

/* This is the location of the EFLAGES value */
lguest_noirq_start:

/*
* Note the %ss: segment prefix here.

* Normal data accesses use the "ds" segment,

* but that will have already been restored for

* whatever * we’re returning to (such as userspace): we can’t

* trust it. The %ss: prefix makes sure we use the stack

* segment, which is still valid.

*/
movl %eax,%ss:lguest_data+LGUEST_DATA_irq_enabled

/* copy EFLAGS to "lguest_data.irq_enabled" */
popl %eax
iret

/* after we update "lguest_data.irq_enabled", we can iret */
lguest_noirq_end:

The Intel architecture defines the "lgdt" instruction that loads the Global Descrip-
tor Table (GDT). GDT is a data structure used by the processor in order to define
the characteristics of the various memory areas used during program execution,
for example, the base address, the size and access privileges like execute and
write permissions. These memory areas are called segments in Intel terminol-
ogy. You tell the CPU where it is (and its size) using the "lgdt" instruction (there
is also a similar instruction to load the IDT) and several other instructions refer
to entries in the table. There are three entries which the switcher needs, so the
host simply controls the entire table of the guest. (The host has the mapping to
the physical base address). The guest them asks it to make changes using the
"LOAD_GDT_ENTRY" hypercall.

/*
* Notice that this method only LOADS the table to the host,

* writing a specific entry in the table is another method

* called "lguest_write_gdt_entry()"

*/
static void lguest_load_gdt(const struct desc_ptr *desc)
{

unsigned int i;
/*
* "desc" parameter, that represents a pointer to a

233

* descriptor table, is a struct with two fields.

* The first is "address" the virtual address of the table

* and the second is "size", the size of the table in bytes

*/
struct desc_struct *gdt = (void *)desc->address;

/*
* This is similar to the

* LHCALL_LOAD_IDT_ENTRY hypercall we saw

*/
for (i = 0; i < (desc->size+1)/8; i++)

hcall(LHCALL_LOAD_GDT_ENTRY, i,
gdt[i].a, gdt[i].b, 0);
}

The "lguest_load_tls()" function is presenting the "lazy mode" which is an opti-
mization for a sequence of hypercalls. There are three TLS (thread local storage)
entries in the GDT and they are used to allow a multi-threaded application to
make use of up to three segments containing data local to each thread (Threads
share the same address space, so this is very helpful). Those entries change on
every context switch, so we have a hypercall specifically for this case. This hy-
percall loads three GDT entries in one hypercall, so it saves two extra hypercalls
(hypercalls involve context switch and therefore are time consuming operations).

static void lguest_load_tls(struct thread_struct *t,
unsigned int cpu)
{

lazy_load_gs(0);
lazy_hcall2(LHCALL_LOAD_TLS,

__pa(&t->tls_array), cpu);
/* Notice the lazy_hcall() rather than hcall() */
}

"lazy_mode" is set when delivering hypercalls, that means we are allowed to de-
fer all hypercalls and send them as a batch as lazy_mode. Because hypercalls are
reasonably time consuming operations, batching them up so that only one context
switch is involved makes sense. The "lazy_hcall1-4()" functions check if we are in
"lazy mode", if we are not we call the regular "hcall()" then we use "async_hcall()"
that would add the call to a buffer of calls that would be flushed at the next
regular hypercall (usually would be the do-nothing LHCALL_FLUSH_ASYNC
hypercall). The number on the "laze_hcall" suffix is for the number of arguments
that the hypercall uses(1 to 4).

static void lazy_hcall1(unsigned long call,
unsigned long arg1)
{

if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
hcall(call, arg1, 0, 0, 0);

234

else
async_hcall(call, arg1, 0, 0, 0);

}
/*
* async_hcall() is pretty simple: We have a ring buffer

* of stored hypercalls which the Host will run though

* next time we do a normal hypercall.

* Each entry in the ring has 5 slots for

* the hypercall arguments, and a "hcall_status"

* word which is 0 if the call is ready to go, and 255

* once the Host has finished with it.

*
* If we come around to a slot which has not been

* finished, then the table is full and we just make the

* hypercall directly. This has the nice side effect

* of causing the host to run all the stored calls in the

* ring buffer which empties it for next time!

*/

static void async_hcall(unsigned long call,
unsigned long arg1, unsigned long arg2,
unsigned long arg3, unsigned long arg4)
{
/* Note: This code assumes we are */
/* using uni-processor. */

static unsigned int next_call;
unsigned long flags;

/*
* Disable interrupts if not already disabled:

* we don’t want an interrupt handler

* making a hypercall while we’re already doing one!

*/

local_irq_save(flags);
/* save the current flags */

if (lguest_data.hcall_status[next_call] != 0xFF) {
/*
* Table full, so do normal hcall which will flush table.

*/
/*
* When the Host handles a hypercall he also handles all

* the hypercalls that "lguest_data.hcalls" array store

*/
hcall(call, arg1, arg2, arg3, arg4);

} else {

235

lguest_data.hcalls[next_call].arg0 = call;
lguest_data.hcalls[next_call].arg1 = arg1;
lguest_data.hcalls[next_call].arg2 = arg2;
lguest_data.hcalls[next_call].arg3 = arg3;
lguest_data.hcalls[next_call].arg4 = arg4;

/*
* Arguments must all be written before we mark it

* to go

*/
wmb();

/*
* This would generate an assembly instruction

* guarantees that all previous store instructions

* access memory before any store instructions

* issued after the wmb instruction

*/
lguest_data.hcall_status[next_call] = 0;

/* mark this call as ready */
if (++next_call == LHCALL_RING_SIZE)
next_call = 0;

local_irq_restore(flags);
/* restore the previous flags */

}
}

Other CPU related operations are: reading and writing to the control registers c0,
c2, c3, c4 because sometimes the host needs to know the changes. Furthermore
the host does not allow the guest to use the CPUID instruction.

APPENDIX 6.5.4 Page Table Operations

The x86 architecture uses a three-level-paging, i.e in the first level, the "c3" control
register points to a page directory at a size of 4kb (1000 entries of 4 bytes each).
Each entry points to a second-level page table at a size of 4kb (1000 entries of 4
bytes each). Each entry (called PTE) points to the third-level which is the physical
page frame. A virtual memory address would look like this

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|<---- 10 bits --->|<---- 10 bits ---->|<--- 12 bits --->|

Adding the 12 bit of the offset to the page frame would give the physical ad-
dress. This virtual memory method creates a 4Gb address space. It turns out that
the x86 processors can support a larger address space of 64Gb (i.e 36 bits) using
Physical Address Extension (PAE). The addresses are held in 8 byte table entries
(to support the extended addresses and some more features, like security). In
Lguest design we want the table size would still be a page size (4Kb) so this gives
us 512 to table. This gives us half of the PTEs from the former method. Now,

236

we add another, forth, level of a four entries to the first level and the "c3" con-
trol register will point to it. The result is a four-level-paging with the hierarchy
of: Page-Upper-Directory(PUD)–> Page-Mid-Directory(PMD)–> PTE. A virtual
address would look like that:

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0
|2>|<--- 9 bits ---->|<---- 9 bits --->|<--- 12 bits----->|

Linux only supports one method or the other depending on whether the
CONFIG_X86_PAE is set. Many distributions turn it on, and not just for peo-
ple with large amounts of memory; the larger PTE allow room for the NX bit,
which lets the kernel disable execution of pages and increase security.

The kernel spends a lot of time changing both the top-level page directory
and lower-level page table pages. The guest doesn’t know physical addresses,
and maintains these page tables like usual. The guest also needs to keep the
host informed whenever it makes a change. The host will create the real page
tables based on the guests’ page table. The host page tables are called "shadow"
page tables and are covered in section 6.8.6 The next three functions show the
difference of handling addresses with PAE and without:

/*
* The guest calls this after it has set a second-level

* entry (pte), i.e to map a page into a process’

* address space. We tell the Host the top-level and

* address this corresponds to.

* The guest uses one page table per process, so we

* need to tell the Host which one we’re changing

* (mm->pgd).

* This is used AFTER the entry has been set.

* This function is responsible

* only to inform the Host about the change using the

* hypercall: LHCALL_SET_PTE

*/
static void lguest_pte_update(struct mm_struct *mm,

unsigned long addr, pte_t *ptep)
/*
* pte_t is a struct that represents a PTE, it has only

* two fields of unsigned long: pte_low, pte_high

*/
{
/* make the LHCALL_SET_PTE hypercall to inform the Host

* about changing the PTE

*/
#ifdef CONFIG_X86_PAE
/*
* PAE needs to hand a 64 bit page table entry,

237

* so it uses two args.

*/
lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,

ptep->pte_low, ptep->pte_high);
#else

lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr,
ptep->pte_low);

#endif
}
/*
* The guest calls: "lguest_set_pud()" to set a top-level

* entry and "lguest_set_pmd()"

* to set a middle-level entry, when PAE is activated.

*
* We set the entry then tell the Host which page we changed,

* and the index of the entry we changed.

*/

#ifdef CONFIG_X86_PAE
static void lguest_set_pud(pud_t *pudp, pud_t pudval)
{
/*
* put_t is an unsigned long. This action puts pudval

* (the new entry value)

* in the place pudp(the entry address)is pointing, i.e it

* updates the relevant PUD entry

*/
native_set_pud(pudp, pudval);
lazy_hcall2(LHCALL_SET_PGD,__pa(pudp)&0xFFFFFFE0,

(__pa(pudp) & 0x1F)/ sizeof(pud_t));
}

static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{

native_set_pmd(pmdp, pmdval);
/* #define PAGE_MASK (~(PAGE_SIZE-1))*/

lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));

}
#else
/*
* When we are NOT using PAE we need functions that set

* the top level and second level entries.

* The top level is handled the same as the middle-level.

* The guest calls "lguest_set_pmd()" to set a top-level

238

* entry when !PAE.

*/

static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{

native_set_pmd(pmdp, pmdval);
lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,

(__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
}
#endif

There are cases that the kernel changes a PTE directly. This is what
"lguest_set_pte()" does. This information of just the PTE has no use for the host
because cannot know which page table the PTE changing relates to (each pro-
cess has a page table). Therefore, the host is being ordered to clear all of his
page tables, using the hypercall LHCALL_FLUSH_TLB (clearing the page tables
is equivalent to a TLB flush on native hardware when a page entry is changed.
Fortunately, these calls are very rare.)

static void lguest_set_pte(pte_t *ptep, pte_t pteval)
{

native_set_pte(ptep, pteval); o
/* Set the address ptep value as pteval */

if (cr3_changed)
/*
* we don’t inform the Host if we are still in boot because

* it makes the boot 8 times slower.

*/
lazy_hcall1(LHCALL_FLUSH_TLB, 1);

}

APPENDIX 6.5.5 Time Related Operations

Another interesting interface type are time related interfaces. Lguest implements
some of them. For example, at the "lguest_init()" function, previously intro-
duced, we have this two settings: x86_platform.calibrate_tsc = lguest_tsc_khz;
"x86_platform" is from type "struct x86_platform_ops"
(defined at /arc/x86/include/asm/x86_init.h), an interface of platform specific
runtime functions:

struct x86_platform_ops {
unsigned long (*calibrate_tsc)(void);

/* get CPU’s frequency */
...
};

239

The preferred method to get the time is from the TSC register. The guest does
not have access to it, so the Host gets its value from the processor and updates
"lguest_data"

static unsigned long lguest_tsc_khz(void)
{

return lguest_data.tsc_khz;
}

The problem is that TSC is not always stable. In this case the kernel falls back to
a lower priority clock: "lguest_clock", where the guest read the time value given
to us by the host. The host gets him time from the hardware and updates the
"time" field in "lguest_data". This clock is implementing the "struct clocksource"
interface which is a hardware abstraction for a free running counter (defined at
/include/linux/clocksource.h):

static struct clocksource lguest_clock = {
.name = "lguest" ,

/* clocksource name */
.rating = 200,

/*
* rating value for selection (higher is better).

* 200 is a good rate(A correct and usable clocksource)

* but is lower than TSC

*/
.read = lguest_clock_read, /* returns a cycle value */

...
};

static cycle_t lguest_clock_read(struct clocksource *cs)
{

unsigned long sec, nsec;
/*
* Since the time is in two parts (seconds and

* nanoseconds), * we risk reading it just

* as it’s changing from 99 & 0.999999999

* to 100 and 0, and getting 99 and 0.

* As * Linux tends to come apart under

* the stress of time travel, we must be

* careful:

*/
do {

/* First we read the seconds part. */

sec = lguest_data.time.tv_sec;
rmb();

240

/*
* This read memory barrier,

* we can’t proceed before finishing this

*/
/* Now we read the nanoseconds part. */

nsec = lguest_data.time.tv_nsec;
rmb();

/* Now if the seconds part has changed, try again. */
} while (unlikely(lguest_data.time.tv_sec != sec));

/* Our lguest clock is in real nanoseconds. */
return sec*1000000000ULL + nsec;

}

Similar to the problem the guest has with the PIC, it doesn’t has a hardware event
device that can be controlled. i.e schedule time interrupts. The solution would
be similar to a virtual timer chip that would be controlled by the host. The code
below describes our primitive timer chip.

static struct clock_event_device lguest_clockevent = {
.name = "lguest",

/* ptr to clock even name */
.features = CLOCK_EVT_FEAT_ONESHOT,

/* support only single schedule, not periodic */
.set_next_event = lguest_clockevent_set_next_event,
.rating = INT_MAX,

/* give highest rating to this event */ ...
};

static int lguest_clockevent_set_next_event
(unsigned long delta, struct clock_event_device *evt)

{
...

/* Please wake us this far in the future. */
hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
return 0;

}

APPENDIX 6.5.6 Patching

Patching is a unique technique used in Lguest. We have demonstrated how the
pv_ops structure allows replacing simple native instructions with calls to the
host, all throughout the kernel. This mechanism allows the same kernel to run as
a guest and as a native kernel, but it slows the execution time because of all the in-
direct branches. A solution to that is patching. Patching is the system that allows
the host to voluntarily patch over the indirect calls to replace them with some-
thing more efficient. We patch two of the simplest of the most commonly called

241

functions: disable interrupts and save interrupts. We usually have 6 or 10 bytes
to patch into, but the guest versions of those operations are small enough that we
can fit comfortably. First we need assembly templates of each of the patch-able
guest operations, and these are in i386_head.S.

/*
* We create a macro which puts the assembler code between

* lgstart_ and lgend_ markers.

* These templates are put in the .text section:

* they can’t be discarded after boot as we

* may need to patch modules, too.

*/
.text
/* This appends the name lgstart/lgend to argument */
#define LGUEST_PATCH(name, insns...) \

lgstart_##name: insns; lgend_##name:;
\ .globl lgstart_##name; .globl lgend_##name

LGUEST_PATCH(cli,movl $0,
lguest_data+LGUEST_DATA_irq_enabled)
/*disable interrupts*/
LGUEST_PATCH(pushf,movl
lguest_data+LGUEST_DATA_irq_enabled, %eax)
/* save interrupts */

Next we will construct a table from the assembler templates [boot.c] and imple-
ment the patch routine:

/*
* This struct holds the start and end

* addresses of the patching functions

*/
static const struct lguest_insns {

const char *start, *end;
}
lguest_insns[] = {
/*
* PARAVIRT_PATCH returns the index (by bytes) of the

* patched functions on * the "paravirt_patch_template"

* struct, that is an interface of all the patchable

* functions (Actually it contains all the paravirt

* structures, like pv_irq_ops, pv_cpu_ops).

* So in order get the specific function index we

* use: pv_irq_ops.

*/
[PARAVIRT_PATCH(pv_irq_ops.irq_disable)] =

242

{ lgstart_cli, lgend_cli },
[PARAVIRT_PATCH(pv_irq_ops.save_fl)] =

{ lgstart_pushf, lgend_pushf },
};
/*
* Now, our patch routine is fairly simple.

* If we have a replacement, we copy it in and

* return how much of he available space we used.

*/

static unsigned lguest_patch(u8 type, u16 clobber,
void *ibuf, unsigned long addr, unsigned len)

{
unsigned int insn_len;
...

/*
* type is the patched function index on

* "paravirt_patch_template"

*/
insn_len = lguest_insns[type].end -

lguest_insns[type].start;
...

/* Copy in our instructions. */
memcpy(ibuf, lguest_insns[type].start, insn_len);
return insn_len;

}

We covered all interesting "paravirt_ops" operations. The rest of the "lguest_init"
are boot configurations. When the boot configuration is finished, a call is made
do "i386_start_kernel" (in head32.c), and proceed to boot as normal kernel would.

APPENDIX 6.6 Drivers

APPENDIX 6.6.1 Virt I/O

Virt I/O is an abstraction layer over devices in a para-virtualized hypervisor (Virt
I/O was developed by Rusty Russell in support to lguest). Having different hy-
pervisor solutions with different attributes and advantages (KVM, lguest, User-
mode Linux), tax the operating system because of their independent needs. One
of the taxes is the virtualization of devices. Rather than have a variety of device
emulation mechanisms for each device and each hypervisor, virt I/O provides a
common front end (a common term for the guest side) for these device emulations
to standardize the interface and increase the reuse of code across the platforms.
Using an identical virt I/O driver cross multiple hypervisor is demonstrated in

243

FIGURE 76 Using Virt I/O in multiple hypervisors

FIGURE 77 Para-virtualization device drivers

figure 76.
In para-virtualization, the guest operating system is aware that it is running

on a hypervisor and includes the front end drivers, i.e drivers that know they
are dealing with virtual devices. The hypervisor is the one that needs to emulate
the "real" devices so it implements the back-end drivers for the particular device
emulation (particularly because each hypervisor emulates differently). This is
demonstrated in figure 77

These front-end and back-end drivers are where virt I/O comes in. Virt I/O
provides a standardized interface for the development of emulated device access
to propagate code reuse and increase efficiency. Virt I/O is an abstraction for a
set of common emulated devices.

This design allows the hypervisor to export a common set of emulated de-
vices and make them available through an API. The guests implement a common
set of interfaces, with the particular device emulation behind a set of back-end
drivers. The back-end drivers need not be common as long as they implement
the required behaviors of the front end. Thus, the front end drives would be
common, allowing the integration to Linux and the back end drives would be
implemented by the different hypervisors.

244

FIGURE 78 5 Virt I/O drivers

In addition to the front-end drivers (implemented in the guest operating
system) and the back-end drivers (implemented in the hypervisor), virt I/O de-
fines two layers called "virtqueues" to support guest-to-hypervisor communi-
cation. At the first layer (called "virt I/O") is the virtual queue interface that
conceptually attaches front-end drivers to back-end drivers, it defines how they
should "speak" to each other via these virtual queues. Drivers can use zero or
more queues, depending on their need. For example, the virt I/O network driver
uses two virtual queues (one for receiving and one for transmitting), where the
virt I/O block driver uses only one. The second layer is the transport interface, i.e
what is expected from the implementation of the virtqueues. In Lguest the trans-
port is implemented as rings (called "vrings"). Notice that the virtual queues
could be implemented any implementation, as long as both the guest and hy-
pervisor implement it in the same way. Figure 78 demonstrate five front-end
drivers listed: block devices (such as disks), network devices, PCI emulation, a
balloon driver (for dynamically managing guest memory usage), and a console
driver. Figure 79 demonstrate Virt I/O/O driver internal structure. Each front-
end driver has a corresponding back-end driver in the hypervisor and each have
individual queues. The front-end drivers are the same for all guests. The back
end driver is hypervisor specific. As the figure demonstrate the front end drivers
approach the back end through "virt I/O" and the transport is responsible mov-
ing the data the the other side.

Virt I/O is now a increasing in popularity and invested effort and it is sup-
ported by many companies in the industry (RedHat, IBM, Citrix). Virt I/O is
described in greater detail in [Tim].

245

FIGURE 79 Virt I/O driver anatomy

APPENDIX 6.6.2 Adding a Device on Lguest

The guest needs devices to do anything useful. Since the guest cannot access
the physical (real) hardware devices. The host could emulate a PCI bus with
various devices on it (perhaps using QEMU[Bel05]), but that is a fairly complex
burden for the host and sub optimal for the guest, so we have our own simple
lguest bus emulation and we use "virt I/O" front-end drivers. Controlling the
virtual devices is through an I/O memory region. I/O memory region is used
by a device driver to control a device and to pass information between them.
Our devices are described by a simplified ID, a status byte, and some "config"
bytes (describe the device’s configuration), using "lguest_device_desc" structure
(in [/include/linux/lguest_device.h].

The I/O memory region is physically placed by the launcher just above the
top of the guest’s physical memory. The idea is that "lguest_device_desc" struc-
tures sit there and the guest can control the devices by these structures.

struct lguest_device_desc {
/*
* The device type: console, network, disk etc.

* Type 0 terminates.

*/
__u8 type;

246

/*
* The number of virtqueues (first in config array)

*/
__u8 num_vq;

/*
* The number of bytes of feature bits. Multiply by 2:

* one for host features and one for guest acknowledgment.

*/
__u8 feature_len;

/*
* The number of bytes of the config array

* after virtqueues.

*/
__u8 config_len;

/*
* A status byte, written by the guest.

*/
__u8 status;
__u8 config[0];

};

Fairly early in the guest’s boot, "lguest_devices_init()" is called to set up the lguest
device infrastructure. The guest wants to access the I/O memory region page eas-
ily (we currently have the physical address that the Launcher placed this page).
For this end, the host map that page frame (as said placed above the guest’s phys-
ical memory) and store the pointer with a virtual address in "lguest_devices".
The mapping is done using the "lguest_map()" function that actually envelopes
"ioremap()" and returns a magic cookie (32 bit address that is not guaranteed to
be usable directly as a virtual address) that could be passed to accessor func-
tions (with names like readb() or writel()) to actually move data to or from the
I/O memory. But on x86 architectures I/O memory is mapped into the kernel’s
memory space, so accessing the I/O memory is a straightforward pointer deref-
erence, and this pointer is "lguest_devices". Finally "lguest_devices_init()" calls
"scan_devices()" that for each device descriptor it finds in the descriptors page it
calls using "add_lguest_device()".

static
int __init lguest_devices_init(void)
{

...
/* Devices are in a single page above top of "normal" mem */

lguest_devices = lguest_map(max_pfn<<PAGE_SHIFT, 1);
scan_devices();
return 0;

}

247

The function "add_lguest_device()" is the core of the lguest bus emulation. It’s
purpose is to add a new device. Each lguest device is just a virtio device in other
words a device that knows how to talk with virtqueues, and a pointer to its entry
in the "lguest_devices" page.

struct lguest_device {
struct virtio_device vdev;

/*
* The entry in the lguest_devices page for this device.

*/
struct lguest_device_desc *desc;

};

First, a "lguest_device" is allocated. Then the "lguest_device" is assigned "vir-
tio_device" (vdev) and it’s contained set of routines for querying the device’s
configuration information and setting its status ("lguest_config_ops"). This pro-
cess demonstrate why "virtio" is good design: the guest controls the device with
these routines, but we supply the implementations to these routines according to
our device implementation. This mechanism allows a uniform front-end access
to devices.

The most important part in this function is the call to "register_virtio_device()"
in [/drivers/virtio/virtio.c] This is virtio code, not lguest code. Let us be re-
minded that the initial objective was to create a virtual device. The "virtio_device"
is not a device that Linux "knows" it is simply a linking layer between the guest
and the hypervisor. Therefore, each "virtio_device" struct holds a field of "struct
device" that is Linux’s representation for a device. "register_virtio_device()" gives
this "struct device" a unique name, and causes the bus infrastructure to look for a
matching driver. By complete ding this phase the device is now registered with
the system. In addition, the function also reset the virtio_device and acknowl-
edges it i.e sets the relevant bit at the status byte of the device (both using a rou-
tine we supplied with "lguest_config_ops").

static void add_lguest_device(struct lguest_device_desc *d
, unsigned int offset)
{

struct lguest_device *ldev;
ldev = kzalloc(sizeof(*ldev), GFP_KERNEL); ...

/*
* We have a simple set of routines for querying the

* device’s * configuration information and setting

* its status.

*/
ldev->vdev.config = &lguest_config_ops; ...

/*
* register_virtio_device() sets up the generic fields

* for the struct virtio_device and calls

248

* device_register().

* This makes * the bus infrastructure look for a

* matching driver.

*/

if (register_virtio_device(&ldev->vdev) != 0) {
printk(KERN_ERR "Failed to register lguest dev %u

type %u\n", offset, d->type);
kfree(ldev);

}
}

APPENDIX 6.6.3 Device configuration

After adding the device, the next step in using the device is performing the de-
vice configuration. The configuration information for a device consists of one or
more virtqueue descriptors, a feature bitmap, and some configuration bytes. A
virtqueue file descriptor consists of place, size, etc, and will be described in sec-
tion 6.6.4. The configuration bytes are set by the laucnher and the driver will look
at them during setup. All this configuration information is located at the descrip-
tors page frame (located after each device descriptor) and can be retrieved using
the functions (located in [lguest_device.c]): "lg_vq()", "lg_features()", "lg_config()".
The memory layout looks like the below (here, device 1 has two virtqueues and
device 2 has one virtqueue) :

first page frame ----------------------------
| Guest Physical Memory |

max page frame ----------------------------
| device descriptor |
| virtqueue 1 descriptor |

device 1 | virtqueue 2 descriptor |
| features bitmap |
| config bytes |
---------------------------- I/O MEMORY
| device descriptor | REGION PAGE

device 2 | virtqueue 1 descriptor |
| features bitmap |
config bytes
...

max page frame+1 ----------------------------

The device can be configured by the guest using "lguest_config_ops". This struct
serves as the front end for virt I/O configuration.

struct virtio_config_ops {

249

void (*get)(struct virtio_device *vdev, unsigned offset,
void *buf, unsigned len);

void (*set)(struct virtio_device *vdev, unsigned offset,
const void *buf, unsigned len);

u8 (*get_status)(struct virtio_device *vdev);
void (*set_status)(struct virtio_device *vdev,

u8 status);
void (*reset)(struct virtio_device *vdev);
int (*find_vqs)(struct virtio_device *,

unsigned nvqs, struct virtqueue *vqs[],
vq_callback_t *callbacks[], const char *names[]);

void (*del_vqs)(struct virtio_device *);
u32 (*get_features)(struct virtio_device *vdev);
void (*finalize_features)(struct virtio_device *vdev);

};

The configuration process starts with configuring the devices features. The guest
takes the features bitmap the host offers using "lg_get_features()", and copies the
driver supported features into the "virtio_device" features array (it has a this
field for this purpose). Therefore, as far as the front-end devices specific fea-
tures are configured. Once the device features are all sorted out the guest calls
"lg_finalize_features()". This features allows the guest to infrom the host which
of the device features it understands and accepts. This concludes the configura-
tion of the device features. Setting the configuration bytes is achieved using the
"lg_get()" and "lg_set()" routines. Controlling the device status is possible using
"lg_get_status()" and "lg_set_status()".

APPENDIX 6.6.4 Virtqueues

Virtqueues are the messaging infrastructure that virtio needs: Virtqueues pro-
vide means for the guest device driver to registers buffers for the host to read
from or write into (i.e send and receive buffers). Each device can have multi-
ple virtqueues: for example the console driver uses one queue for sending and
another for receiving.

Fast shared-memory-plus-descriptors virtqueue is already implemented in
the Linux kernel and are called "virtio ring" or "vring" (aptly named because it is
implemented as a ring buffer). Vring implementation can be found under driver-
s/virtio/virtio_ring.c. An extensive explanation about virt I/O can be found in
Rusty’s paper [Rus08].

The Launcher decides the exact location in the memory for the vring virtqueue
(they are always placed in pages above the device descriptor page) and the size
of the virtqueues. When a device is added "lg_find_vqs()" is called (it is part of
the "lguest_config_ops") and it uses "lg_find_vq()" to find the virtqueues that the
launcher had placed for the device to read the virtqueues sizes.

Now that the guest’s kernel knows the size and the address of the virtqueues
it tells [virtio_ring.c] with the function "vring_new_virtqueue()" to set up a new

250

vring at this location and size. After this phase the virtqueue is set and the host
and guest can communicate. A guest launcher of a 3rdparty hypervisor can pick
any implementation of virtqueues but lguest uses the vring implementation.

When the "virtio_ring" code wants to notify the host about any event, for
example, he put information in the buffer that the host needs, it calls "lg_notify()"
that makes a hypercall (LHCALL_NOTIFY). It needs to hand the physical address
of the virtqueue so the host knows which virtqueue the guest is using.

APPENDIX 6.6.5 Virt I/O summary

Virt I/O(virtio) is an abstraction layer that separates the device and driver im-
plementation between the guest and host. Using virtqueues the device driver
interface would be uniform regardless of the device functionality. (Since the im-
plementation of virtqueues in the hypervisor, virtqueues are hypervisor depen-
dent.)

When the guest process starts with the launcher, it places lguest device de-
scriptors, virtqueue descriptors and configuration, at the page above the guest’s
memory. The launcher also places the virtqueues at the pages above it. Upon
the guest startup the guest knows where his top page frame is, using the routine
"add_lguest_device()". The routine "add_lguest_device()" is compiled to the boot
code to create the virtio device infrastructure for the guest: the devices and the
virtqueues.

Using virtqueues infrastructure the guest does nothing to adjust itself to
lguest or any other hypervisor in any way: The I/O memory region was created
by the launcher via the routine "add_lguest_device()" that was compiled to it.
The launcher finds the devices, configures them using configuration routines (like
"lg_find_vqs()") that are lguest implementations to a guest interface and created
the virtqueue (vring).

The virtio driver control the device using the configuration memory re-
gion (mostly using "lg_set_status()") and moving data to the back end using the
virtqueues, all done via the virtio infrastructure. The hypervisor reads the status
changes and uses his privilege to control the real device, and also send/receive
data to the real device. (In order that different hypervisors can translate request
differently and perhaps improve efficiency but the guest would act the same re-
gardless of hypervisor.)

APPENDIX 6.7 The Launcher

The launcher is the host user space program that sets up and runs the guest. To
the host Lguest kernel module, the launcher *is* the guest.

251

APPENDIX 6.7.1 Setting and Running the guest Using "/dev/lguest"

The interface between the host kernel and the guest launcher is a character device
typically called /dev/lguest that is created by the host kernel. The launcher is
reading this device to run the guest, and writing it, to set up the guest and serve
it. The code responsible for this is located at [drivers/lguest/lguest_user.c]. All
the work performed by the kernel module is triggered by the read(), write() and
close() routines:

static const struct file_operations lguest_fops = {
.owner = THIS_MODULE,
.release = close,
.write = write,
.read= read,
};

static struct misc device lguest_dev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "lguest",
.fops = &lguest_fops,
};

/dev/lguest is a misc char device. All misc char devices share the major number
10 and differentiate themselves based on the minor number. It is registered using
"lguest_device_init" which calls "misc_register".

int __init lguest_device_init(void) {
return misc_register(&lguest_dev);
}

The "lguest_fops" operations are performed on a structure called "struct lguest".
The "struct lguest" contains information maintained by the host about the guest.

struct lguest {
struct lguest_data lguest_data;
struct lg_cpu cpus[NR_CPUS];
u32 pfn_limit;
/*
* This provides the offset to the base of

* guest-physical memory in the Launcher.

*/
void *mem_base;
unsigned long kernel_address;
struct pgdir pgdirs[4];
...
struct lg_eventfd_map eventfds;
const char *dead;
}

252

The key fields in struct lguest are

lguest_data the guest specific data saved on the host

lg_cpu virtual cpu specific information

mem_base, kernel address, pg_dirs memory information for the guest

lg_eventfd_map file descriptors for virtqueues.

The /dev/lguest file structure ("struct file") points to the "struct lguest" using
the field "private_data" pointer. When the launcher preforms a read/write he
needs to give as an argument, the "struct file", so accessing "struct lguest" is just
dereferencing the "private_data" pointer field.

We will examine how the struct lguest data is updated using I/O operations.

static ssize_t write(struct file *file,
const char __user *in, size_t size, loff_t *off)

{
/*
* Once the guest is initialized, we hold

* the "struct lguest" in the file private data.

*/

struct lguest *lg = file->private_data;
const unsigned long __user *input =

(const unsigned long __user *)in;
long req;
struct lg_cpu *uninitialized_var(cpu);

/* The first value tells us what this request is. */
if (get_user(req, input) != 0) return -EFAULT;
input++;

...
switch (req) {
case LHREQ_INITIALIZE:

return initialize(file, input);
case LHREQ_IRQ:

return user_send_irq(cpu, input);
case LHREQ_EVENTFD:

return attach_eventfd(lg, input);
default:

return -EINVAL;
}

}

The launcher sets up the guest using a write with the LHREQ_INITIALIZE header
that calls the "initialize()" function. The Launcher supplies 3 pointer sized values
(in addition to the header):

253

TABLE 7 write LHREQ_INITALIZE pointers

pointer Use
Base The start of the guest physical memory inside the

launcher memory.
pfnlimit The highest physical page frame number the guest

should be allowed to access. The guest memory lives
inside the Launcher, so it sets this to ensure the guest
can only reach its own memory.

start The first instruction to execute (that value of "eip" reg-
ister in x86)

Calling write with LHREQ_INITALIZE allocates "struct lguest" and initi-
ates it with the function’s arguments. It also allocates and initializes the guest’s
shadow page table. Finally, it sets the field "private data" of the file structure (the
first argument of "write()") to point "struct lguest".

One interesting field of "struct lguest" is "cpu", something like a virtual CPU.
The "cpu" filed of struct lguest contains the CPU id (in our case always 0, could be
changed when there is a full support at SMP) and the "regs" field that holds the
CPU registers. When "initialize()" is called, "initialize" calls "lg_cpu_start()" which
then allocates a zeroed page for storing all the guest’s CPU registers so that when
there is a switch from the host to the guest the hardware CPU will update it’s in-
ternal registers with the value of this page. (This is covered extensively in section
6.9). Then it calls "lguest_arch_setup_regs()" (located in [/drivers/lguest/core.c])
that initiates the registers.

/*
* There are four "segment" registers which the guest

* needs to boot: The "code % segment" register (cs)

* refers to the kernel code segment __KERNEL_CS, and

* the * "data", "extra" and "stack" segment registers

* refer to the kernel data segment __KERNEL_DS.

* The privilege level is packed into the lower bits.

* The guest runs at privilege level 1 (GUEST_PL).

*/

regs->ds = regs->es = regs->ss =
__KERNEL_DS|GUEST_PL;

regs->cs = __KERNEL_CS|GUEST_PL;
/*
* The "eflags" register contains miscellaneous flags.

* Bit 1 (0x002) is supposed to always be "1".

* Bit 9 (0x200) controls whether interrupts are

* enabled.

* We always leave interrupts enabled while

254

* running the guest.

*/

regs->eflags = X86_EFLAGS_IF | 0x2;
/*
* The "Extended Instruction Pointer" register says where

* the guest is running.

*/
regs->eip = start;

Once our guest is initialized, the launcher enables it to run by reading from /de-
v/lguest. The "read" routine is very simple and includes some checking like that
a write of LHREQ_INITIALIZE was already done, and that the guest is not dead
(using the "dead" field of the "cpu" struct). The most function called by the ini-
tialization process is "run_guest()" [drivers/lguest/core.c]. "run_lguest()" runs
the guest until something interesting happens such as a signal from the launcher
(an interrupt has received) or that the guest wants to notify something to the host
(so the guest must stop in order that the host would receive the message). We
would return to to "run_guest()" in section 6.8. Every time that the hypervisor
returns the control to the launcher, the launcher would run the guest using this
read.

The second write operation to /dev/lguest is interrupt related. The launcher
is responsible for managing the guest’s I/O, in other words managing its virtqueues.
When the Launcher have an interrupt that it needs to send to the guest (for exam-
ple the Launcher received a network packet) the launcher preforms a write to the
LHREQ_IRQ header and an interrupt number to /dev/lguest. This write would
command the host to send this interrupt to the guest.

The last reason for writing to /dev/lguest is related to guest notifications.
The launcher is responsible for handling virtqueues. When the guest does some
change in a virtqueue, the launcher needs to know about it. The guest can only
communicate with the host (via hypercalls). The solution is that each virtqueue
is attached to an event file descriptor (an event fd is useful when we what to
poll(2) for some event). This attachment would be a mapping of the virtqueue’s
physical address to the event fd. The mapped file descriptor would be stored
in the "eventsfd" field in "struct lguest". When the guest makes something that
the launcher needs to be informed about it would make the "LHCALL_NOTIFY"
hypercall with a parameter of the physical address of the virtqueue we want to
notify. The host finds the respective event fd and signal it. Now the virtqueue
know he has information to pass to the host. Notice that each virtqueue has a
launcher thread that listens to this event fd.

The launcher add an event fd using a write with the LHREQ_EVENTFD
header and two arguments: the physical address of the virtqueue we want to
notify and an event fd. This write calls "attach_eventfd()" that adds this specific
mapping to the existing map. At this time the launcher does not block readers
from accessing the map when we inserting the new event fd. Because this process

255

takes place currently only during boot, Blocking is not really a problem. Never-
theless, Rusty implemented a solution using Read-Copy-Update (RCU) synchro-
nization mechanism the Linux kernel provides.

The final piece of the "lguest_fops" interface code is the "close()" routine. It
reverses everything done in "initialize()". This function is usually called because
the launcher exited.

APPENDIX 6.7.2 The Launcher Code

The launcher code is executed in userspace.
The launcher malloc a big chunk of memory to be the guest’s "physical"

memory and stores it in "guest_base". In other words, guest "physical" == part of
the launcher process virtual memory.

Like all userspace programs, the launcher process starts with the "main()"
routine. The launcher "main()" function does the following:

– Figure from the the command line arguments, the amount of memory to
allocate and allocate this number of pages and an extra of 256 pages for
devices (One page is for the device page as referred at the previous chap-
ter and the rest are needed for the virtqueues). All the allocated pages are
zeroed.

– Setup command line devices: network device, block device and random
number generator device. This code is very boring and wouldn’t be pre-
sented here. It contains the setup of: the network device using a TUP device
and two virtqueues of sending and receiving; the virtual block device that is
implemented using reading and writing to a file with a single virtqueue for
scheduling requests; and the random number generator that have a single
virtqueue transferring chars from " /dev/random".

– Setup a console device. This is always done, regardless of command line
arguments. This code contains the console setup with two virtqueues for
input and output.

– Load the kernel image (supports both ELF file and bzImage). Map the initrd
image if requested (at top of physical memory) and set the boot header (a
"struct boot_params" that start at memory address number 0): "E820" mem-
ory map (in Lguest case it is simple - just one region for all the memory
but it can be complex in other hypervisors), the boot protocol version (2.07
supports the fields for Lguest), the "hardware_subarch" value (set to 1: re-
member the start of section 6.5).

– Initialize the guest

Algorithm 16 Initialize the guest

1: open /dev/lguest
2: write to the new file descriptor with the LHREQ_INITIALIZE header {(see

"initialize()" section 6.7.1).}

256

– Run the guest using "run_guest()". This is not the same "run_guest" function
described earlier that is called when reading from /dev/lguest. This is a
userspace function (that never returns) that is responsible to handling input
and output to the host, while the other "run_guest" is kernel space (host
code) that actually runs the guest. The launcher "run_guest" function runs
the userspace representation of the guest, serves its input and output, and
finally, lays it to rest.

static void __attribute__((noreturn)) run_guest(void)
{

for (;;) {
unsigned long notify_addr;
int readval;

/* We read from the /dev/lguest device to run the guest. */
readval = pread(lguest_fd, ¬ify_addr,

sizeof(notify_addr), cpu_id);
/* One unsigned long means the guest did HCALL_NOTIFY */

if (readval == sizeof(notify_addr)) {
verbose("Notify on address %#lx\n", notify_addr);
handle_output(notify_addr);

}
/* Anything else means a bug or incompatible change. */
else err(1, "Running guest failed");

}
}

The "read" operation start the kernel space "run_guest()"
(in [drivers/lguest/lguest_user.c]). This function runs the guest, but the run-
ning could be stopped for several reasons. One of the reasons is a notification of
the guest to the host (using LHCALL_NOTIFY). In this case, if the notification ad-
dress is mapped to an event fd (see section 6.7.1) so the event fd is signaled (using
"eventfd_signal()"
in [fs/eventfd.c]) we stay in the host in order to run the guest again. If not, the
host returns to the launcher with the "sizeof (unsigned long)" and handle the no-
tification with "handle_output()". An example of the use of notifications is the
launcher handling (using "handle_output()") notifications to device descriptors –
"the guest updated the device status" (for instance during boot time the guest set
the DEVICE_OK status bit which means that the device is ready to use).

APPENDIX 6.8 The Host

We will now describe the host code that handles the guest.

257

APPENDIX 6.8.1 Initialization

Examining Lguest init function we see

static int __init init(void)
{

int err;
/* Lguest can’t run under Xen, VMI or itself. */

if (paravirt_enabled()) {
printk("lguest is afraid of being a guest\n");
return -EPERM;

}
/*
* First we put the Switcher up in very high

* virtual memory.

*/
err = map_switcher();
...

/* /dev/lguest needs to be registered. */
err = lguest_device_init();
...

/* Finally we do some architecture-specific setup. */
lguest_arch_host_init();

/* All good! */
return 0;

}

The switcher is a few hundred bytes of assembler code which actually changes
the CPU registers (perform context switch) to run the guest, and then changes
back to the host when a trap or interrupt occurs, it is the heart of the virtualiza-
tion process. The Switcher’s code ("switcher.S") is already compiled somewhere
in the memory. The Switcher code (currently one page) and two pages per CPU
(information needed for the switch - see section 6.9) must be at the same virtual
address in the guest as the host since it will be running as the switchover occurs.
We need to decide where in the virtual memory that those pages would be placed
both in the host and the guest. It turns out that if we place the switcher pages at a
high virtual address it will be easier to set the guest’s page tables to map this ad-
dress to the physical location of the Switcher pages. This address is 0xFFC00000
(4MB under the top virtual address.

static __init int map_switcher(void)
{

int i, err;
struct page **pagep;

/*
* Map the Switcher’s code in to high memory.

258

*/
...
/*
* Now we reserve the "virtual memory area" we want:

* 0xFFC00000 (SWITCHER_ADDR). We might not get it in

* theory, * but in practice it’s worked so far.

* The end address needs +1 because

* __get_vm_area allocates an extra guard page,

* so we need space for that.

*/
switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES *

PAGE_SIZE, VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
+ (TO-TAL_SWITCHER_PAGES+1) * PAGE_SIZE);

/*
* This code actually sets up the pages we’ve allocated

* to appear at SWITCHER_ADDR. map_vm_area() takes the

* vma we allocated above, the kind of pages we’re

* mapping (kernel pages), and a pointer to our array of

* struct pages ("switcher_pages"). It increments that

* pointer, but we don’t care.

*/

pagep = switcher_page;
err = map_vm_area(switcher_vma,

PA-GE_KERNEL_EXEC, &pagep);
...
/*
* Now the Switcher is mapped at the right address.

* Copy to this virtual memory area

* the compiled-in Switcher code (from <arch>_switcher.S).

*/
...

memcpy(switcher_vma->addr, start_switcher_text,
end_switcher_text - start_switcher_text);

printk(KERN_INFO "lguest: mapped switcher at %p\n",
switcher_vma->addr);

/* And we succeeded... */
return 0;

...
}

After the switcher is mapped and the "/dev/lguest" device is registered (using
"lguest_device_init()"), the "init()" function needs to do some more i386-specific
initialization using "lguest_arch_host_init()". First, it sets up the Switcher’s per-
cpu areas. Each CPU gets two pages of its own within the high-mapped re-
gion(struct lguest_pages). These pages are shared with the guests. Much of this

259

is initialized by "lguest_arch_host_init()", but some depends on what guest we
are running (which is set up in "copy_in_guest_info()".

APPENDIX 6.8.2 Chapter:Lguest:Section:IDT

). These pages contain information that the Host needs when there is a switch
back to him like: the address and size of the host GDT, and the address of the
host IDT, and also information the the guest needs when it is running such as the
address and size of the guest GDT, the address of the guest IDT and the guest TSS
(task state segment).

Finally, "lguest_arch_host_init()" turn off "Page Global Enable". PGE is an
optimization where page table entries are specially marked to show they never
change. The host kernel marks all the kernel pages this way because it is always
present, even when userspace is running. Lguest breaks this assumption: without
the rest of the host kernel knowing, we switch to the guest kernel. If this is not
disabled on all CPUs the result will be weird bugs.

APPENDIX 6.8.3 Running the Guest

The main guest "run guest" run loop is called in the kernel when the launcher
reads the file descriptor for /dev/lguest.

int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{
/* We stop running once the Guest is dead. */

while (!cpu->lg->dead) {
unsigned int irq; bool more;

/* First we run any hypercalls the Guest wants done. */
if (cpu->hcall) do_hypercalls(cpu);

}
/*
* It’s possible the Guest did a NOTIFY hypercall

* to the Launcher.

* pending notify is the notification address.

* If there’s a mapping for it to an event fd,

* write to the fd, else return with

* "sizeof(cpu->pending_notify)" so the Launcher

* would handle it (using "handle_output()").

*/

if (cpu->pending_notify) {
/*
* Does it just needs to write to a registered

* eventfd (ie. the appropriate virtqueue thread)?

*/
if (!send_notify_to_eventfd(cpu)) {

260

if (put_user(cpu->pending_notify, user))
return -EFAULT;

return sizeof(cpu->pending_notify);
}

}
/* Check for signals */

if (signal_pending(current)) return -ERESTARTSYS;
/*
* Check if there are any interrupts which can

* be delivered now: if so, this sets up the

* handler to be executed when we next

* run the Guest.

*/

irq = interrupt_pending(cpu, &more);
if (irq < LGUEST_IRQS)

try_deliver_interrupt(cpu, irq, more);
/*
* All long-lived kernel loops need to check with this

* horrible thing called the freezer.

* If the Host is trying to suspend,

* the freezer stops us.

*/

try_to_freeze();
/*
* Just make absolutely sure the Guest is still alive.

* One of those hypercalls could have been fatal,

* for example.

*/

if (cpu->lg->dead) break;

/*
* If the guest asked to be stopped, we sleep.

* The guest’s clock timer will wake us.

*/

if (cpu->halted) {
set_current_state(TASK_INTERRUPTIBLE);

/*
* Just before we sleep, make sure no interrupt snick

* in which we should be doing.

*/

261

if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
set_current_state(TASK_RUNNING);

else continue;
schedule();

}
/*
* OK, now we’re ready to jump into the guest.

* First we put up the "Do Not Disturb" sign:

*/

local_irq_disable();
/* Actually run the guest until something happens. */

lguest_arch_run_guest(cpu);
/*
* Now we’re ready to be interrupted or

* moved to other CPUs

*/
local_irq_enable();

/* Now we deal with whatever happened to the Guest. */
lguest_arch_handle_trap(cpu);

/* Special case: Guest is ’dead’ but wants a reboot. */

if (cpu->lg->dead == ERR_PTR(-ERESTART))
return -ERESTART;

/* The guest is dead => "No such file or directory" */

return -ENOENT;
}

The procedure "lguest_arch_run_guest()" is the i386-specific code that setups and
runs the guest. When this function is called interrupts are disabled and we own
the CPU. The first thing the function does is to disable the SYSENTER instruction.
This instruction is an optimized way of doing system calls because it uses hard-
coded code segment descriptors to describe the target code segment (where the
service routine is), i.e access to the GDT (probably cached), protection check, etc...
is not needed, so a switch to kernel mode could be done by this instruction. This
instruction can’t run by the guest because it always jumps to privilege level 0. A
normal guest won’t try it because we don’t advertise it in CPUID, but a malicious
guest (or malicious guest userspace program) could, so we tell the CPU to disable
it before running the guest. We disable it by giving the hard-coded code segment
selector (The register is called MSR_IA32_SYSENTER_CS) the value 0, so every
memory reference would cause a fault.

262

The next thing "lguest_arch_run_guest()" runs the Guest using
"run_guest_once()". It will return when something interesting happens, and we
can examine its registers to see what it was doing. This is a switcher related code
and is be covered in section 6.10. Next we give back the MSR_IA32_SYSENTER_CS
register its default value - __KERNEL_CS, the kernel code segment descriptor so
the Host can do system calls using SYSENTER (i.e switching to kernel mode).

Finally, we check if the Guest had a page fault. If it did we must read the
value of the "cr2" register (holds the "bad" virtual address) before we re-enable in-
terrupts that could overwrite cr2. This concludes the work of
"lguest_arch_run_guest()".

Now "run_guest()" reenables interrupts. Next it calls
"lguest_arch_handle_trap()" to see why the guest exited. For example, the guest
intercepted a Page Fault (trap number 14). The guest could have two reasons for
a page fault. The first one is the "normal" reason: a virtual page is not mapped
to a page frame. In this case we inform the guest with the value of "cr" and he
takes care of it. The second reason is that the address is mapped, but because
the shadow page tables in the host are updated lazily the mapping is not present
there. In this case the host fixes the page table and does not even inform the guest
of the page fault.

APPENDIX 6.8.4 Hypercalls

The first thing "run_guest()" does is preform all the hypercalls that the guest
wants done, using a call to "do_hypercalls()". Hypercalls are the "fast" way for the
guest to request some thing from the host. There are normal and asynchronous
hypercalls and the do_hypercalls function handles both types.

void do_hypercalls(struct lg_cpu *cpu)
{
...
/* Look in the hypercall ring for the async hypercalls */

do_async_hcalls(cpu);
/*
* If we stopped reading the hypercall ring

* because the guest did a NOTIFY to the Launcher,

* we want to return now. Otherwise we do

* the hypercall.

*/
if (!cpu->pending_notify) {
do_hcall(cpu, cpu->hcall);
cpu->hcall = NULL;
}
}

The "do_hcall()" procedure is the core hyper call routine: where the guest gets
what it wants or gets killed or, in the case of LHCALL_SHUTDOWN, both. This

263

is a big switch statement of all the hypercalls and their handle. Examples for hy-
percalls are LHCALL_SENT_INTERRUPTS, LHCALL_SET_CLOCKEVENT and
LHCALL_NOTIFY.

There are also architecture specific handling (this was taken out from the
original implementation for future porting to other platforms) using
"lguest_arch_do_hcall()" (called from "do_hcall()"), for example
LHCALL_LOAD_GDT_ENTRY and LHCALL_LOAD_IDT_ENTRY.

Asynchronous hypercalls are handled using "do_async_hcall()". We look
in the array of the guest’s struct "lguest_data" to see if any new hypercalls are
marked "ready".

We are careful to do these in order: obviously we respect the order the guest
put them in the ring, but we also promise the guest that they will happen before
any normal hypercall (Which is why we call this before calling for a "do_hcall()").

The final note about hypercalls was already mentioned in section 6.5.2 the
KVM hypercalls. This mechanism was originally designed to replace the software
interrupt mechanism. The motivation for the change was to be able to support
live migration and SMP. KVM_HYPERCALL is a "vmcall" instruction, which gen-
erates an invalid opcode fault (fault 6) on non-VT CPUs, so the easiest solution
seemed to be an "emulation approach". In the new approach if the fault was really
produced by an hypercall (is_hypercall() does exactly this check), we can just call
the corresponding hypercall host implementation function. But these invalid op-
code faults are notably slower than software interrupts so a "patching (or rewrit-
ing) approach" was implemented. Using the "patching approach" every time we
hit the KVM_HYPERCALL opcode in while running the guest code trap number
6 is marked so "lguest_arch_handle_trap()" calls "rewrite_hypercall()" that patch
the instruction to the old "int 0x1f" opcode ("0xcd 0x1f"), so next time the guest
calls this hypercall it will use this faster trap mechanism.

APPENDIX 6.8.5 Interrupts and Traps

We will reexamine the interrupt handling part of "run_guest()" routine. First we
check, using "interrupt_pending()". If there are any pending interrupts, i.e in-
terrupt we got from the launcher (virtqueues interrupt using LHCALL_NOTIFY
hypercall) or a clock event interrupt from the guest (using
LHCALL_SET_CLOCKEVENT hypercall). It returns the first pending interrupt
that isn’t blocked (disabled) by the guest. It is called before every entry to the
guest, and just before we go to sleep when the guest has halted itself. If there
are any interrupts, the "run_guest()" calls "try_deliver_interrupt()". This function
diverts the guest to running an interrupt handler. If there are no "problems" (in-
terrupt enabled, the interrupt has a handler) a call to "set_guest_interrupt()" is
made. The "set_guest_interrupt()" routine delivers the interrupt or trap. The me-
chanics of delivering traps and interrupts to the guest are the same, except some
traps have an "error code" which gets pushed onto the stack as well. The caller
tells us if this is one. The interrupts are registered on the interrupt descriptor ta-
ble (IDT). "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this

264

interrupt or trap. The interrupt is split into two parts for backword compatibil-
ity reasons. Old versions of gcc didn’t handle 64 bit integers very well on 32bit
systems. Afterward receiving the interrupt the host sets up the stack just like the
CPU does for a real interrupt. Therefore, for the guest the situation is the same as
normal OS (without hypervisor). After the guest issue the standard "iret" instruc-
tion will return from the interrupt normally. Therefore, under Lguest the guest
deals with interrupts like normal Linux OS.

static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo
, u32 hi, bool has_err)
{

unsigned long gstack, origstack;
u32 eflags, ss, irq_enable;
unsigned long virtstack;

/*
* There are two cases for interrupts:

* one where the guest is already

* in the kernel and a more complex one where

* the guest is in userspace.

* We check the privilege level to find out.

*/

if ((cpu->regs->ss&0x3) != GUEST_PL) {

/*
* The guest told us their kernel stack with the

* SET_STACK hypercall: both the virtual address and

* the segment.

*/
virtstack = cpu->esp1;
ss = cpu->ss1;
origstack = gstack = guest_pa(cpu, virtstack);
push_guest_stack(cpu, &gstack, cpu->regs->ss);
push_guest_stack(cpu, &gstack, cpu->regs->esp);

} else {
virtstack = cpu->regs->esp;

ss = cpu->regs->ss;
origstack = gstack = guest_pa(cpu, virtstack);

}

/*
* Remember that we never let the guest actually disable

* interrupts, so the "Interrupt Flag" bit is always set.

* Thus, we copy this bit from the guest’s

* "lguest_data.irq_enabled" field into the eflags word.

265

* We saw the guest copy it back in "lguest_iret".

*/

eflags = cpu->regs->eflags;
if (get_user(irq_enable,

&cpu->lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF))

eflags &= ~X86_EFLAGS_IF;

/*
* An interrupt is expected to push three things on the stack:

* the old "eflags" word, the old code segment, and the old

* instruction pointer (the return address).

*/

push_guest_stack(cpu, &gstack, eflags);
push_guest_stack(cpu, &gstack, cpu->regs->cs);
push_guest_stack(cpu, &gstack, cpu->regs->eip);

/*
* For the six traps which supply an error code,

* we push that, too.

* When trapping them, set_guest_interrupt() would be called

* with "has_err" == true

*/

if (has_err)
push_guest_stack(cpu, &gstack, cpu->regs->errcode);

/*
* Now we’ve pushed all the old state, we change the stack,

* the code segment and the address to execute.

*/

cpu->regs->ss = ss;
cpu->regs->esp = virtstack + (gstack - origstack);
cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
cpu->regs->eip = idt_address(lo, hi);

/*
* There are two kinds of interrupt handlers: 0xE is an

* "interrupt gate" which expects interrupts to be

* disabled on entry.

*/

266

if (idt_type(lo, hi) == 0xE)
if (put_user(0, &cpu->lg->lguest_data->irq_enabled))

kill_guest(cpu, "Disabling interrupts");
}

In the "set_guest_interrupt()" function all references to ss refer to the stack seg-
ment that is copied around. We copy return address from interrupt to match the
situation the CPU did return from interrupt. In "set_quest_interrupt()" the host
made the kernel (interrupt handling) stack and the CPU appear to be at the exact
state as if a "real" interrupt occurred. When the Guest would be run next it would
start the interrupt handling.

Now that we’ve got the routines to deliver interrupts, delivering traps (like
page fault) is very similar. The last thing that the "run_guest()" run loop does is
call
"lguest_arch_handle_trap()" and tries to understand why the Guest exited.
The "lguest_arch_handle_trap()" function is implemented as a big switch state-
ment to cover all possible traps and how to handle them. Each trap that is not
handled by the host needs to be delivered to the Guest. Delivering the trap to the
guest is done by calling "deliver_trap()" that checks if the trap can be delivered, if
so it calls "set_guest_interrupt()" that makes the trap handler start the next time
the Guest would run.

APPENDIX 6.8.6 The Page Tables

We use two-level page tables for the Guest, or three-level with PAE (as discussed
in section 6.5.4. The Guest keeps page tables, but the host maintains the page
tables ones, that are called "shadow" page tables. That is a very guest oriented
name as these are the real page tables the CPU uses, although we keep them up
to date to reflect the guest’s.

Keeping the page table up to date is the most complicated part of the host
code. There are four interesting parts to this

1. Looking up a page table entry when the guest faults
2. Setting up a page table entry when the guest tells us one has changed
3. Switching page tables
4. Mapping the Switcher when the guest is about to run

Looking up a page table entry when the guest faults is implemented using
"lguest_arch_handle_trap()" (called in "run_guest()"), Lguest handle trap
number 14 which is a page fault in the Guest. There are two possible causes
for this trap. the first possible cause is the address is mapped on the guest
but is not mapped on the shadow table. The host only set up the shadow
page tables lazily (i.e. only as they’re needed) so we get trap 14 for this
reason frequently. The second possible cause is that there was a real fault
(this address has a mapping in the shadow table but the page is not in mem-
ory). When this trap occurs and the page does not exist in the host memory,

267

The host calls to "demand_page()" (in [/drivers/lguest/page_tables.c]) that
quietly fix the shadow tables. If the page fault occurred because the shadow
page table was not updated the return to the guest without the guest know-
ing about the fault. If this was a real fault the host needs to tell the guest,
give him the value of the cr2 register (the faulting address) and calls "de-
liver_trap()".

Setting up a page table entry when the guest tells us one has changed occurs when
the Guest asks for a page table to be updated (asking is after updating his
own table as explained in section 6.5.4). Lguest implements "demand_page()"
that will fill in the shadow page tables when needed, so we can simply dis-
pose shadow page table entries whenever the guest tells us they’ve changed.
When the guest tries to use the new entry it will fault and demand_page()
will fix it up. To update a top-level/mid-level entry the guest hypercalls
LHCALL_SET_PGD/LHCALL_SET_PMD that results in the host calling
"guest_set_pgd()"/"guest_set_pmd()" (in [/drivers/lguest/page_tables.c])
removing the relevant entry. Updating a PTE entry (by calling "guest_set_pte()"
as a result of LHCALL_SET_PTE hypercall) is a little more complex. The
host keeps track of several different page tables in the field "cpu->lg->pgdirs"
(the guest uses one for each process, so it makes sense to cache at least a
few). Each of these have identical kernel parts: i.e every mapping above
PAGE_OFFSET is the same for all processes. So when the page table above
that address changes, the host updates all the page tables, not just the cur-
rent one. This is rare so it is worth doing. The benefit is that when the host
has to track a new page table, he can keep all the kernel mappings. This
speeds up context switch immensely.

Switching page tables i.e changes the pointer to the top-level page directory: the
cr3 register is implemented using the LHCALL_NEW_PGTABLE hypercall.
Switching page tables occurs on almost every context switch. A call to
"guest_new_pagetable()" (in [/drivers/lguest/page_tables.c]) would first
try to find this page on the host’s page table cache. If "guest_new_pagetable"
finds the new page table in the host’s cache it just updates the "cpu->cpu_pgd"
field, else it calls "new_pgdir()" (in [/drivers/lguest/page_tables.c]). In
"new_pgdir" the host creates a new page directory. The host randomly
chooses a page from the cache to remove and instead puts in the new page.
If the page table is reused (and not a newly allocated one) the host releases
all the non kernel mapping using "flush_user_mapping()" The kernel map-
ping stays the same. When a kernel mapping is changed it is necessary
to change all the tables. In this case all the shadow tables are clearer. This
causes a lot of traps fixed by "demand_page()". Fortunately changing kernel
mapping is very rare.

Mapping the switcher when the Guest is about to run . The switcher code and
two pages for each CPU (This two pages make the "struct lguest_pages")
needs to be shared with the guest and host. These pages must have the same

268

virtual addresses in the host and the guest and are allocated at the top of the
virtual memory: 0xFFC00000 (SWITCHER_ADDR). The host already has
these addresses mapped to the switcher page frames of the current guest, it
just needs to make the guest’s last PGD entry (The top level entry that maps
SWITCHER_ADDR and above) of the shadow table to map this addresses
to the same place. After that the host and this guest will share these pages.
Sharing the pages is implemented using a call to
"map_switcher_in_guest()" (in [/drivers/lguest/page_tables.c]) that is called
from "run_guest_once".

APPENDIX 6.8.7 Segments & The Global Descriptor Table

The GDT is a table of 8-byte values describing segments. Once set up, these
segments can be loaded into one of the 6 "segment registers" in i386 architecture.
GDT entries are passed around as "struct desc_struct"s, which like IDT entries
are split into two 32-bit members, "a" and "b". The GDT entry contains a base (the
start address of the segment), a limit (the size of the segment - 1), and some flags.
The arrangement of the bits is complex.

The first part of the base is stored in the first 16 bits. Then the first part of
the limit is stored in the next 24 bits. Then we have 8 bits of flags, 4 bits (second
part of limit) another 4 bits of flags and finally a 2ndpart of the base address (extra
8 bits)

As a result, the file [/drivers/lguest/segment.c], that deals with segment in
lguest (all functions in this section are from this file), contains a certain amount
of magic numeracy.

The host never simply uses the GDT the guest gives it. The host keeps a
GDT for each CPU, and copy across the guest’s entries each time it wants to run
the guest on that CPU. Loading a new GDT entry is with "load_guest_gdt_entry()"
(invoked from LHCALL_LOAD_GDT_ENTRY hypercall). This process updates
the CPU’s GDT entry and mark it as changed. "guest_load_tls()" is a fast-track
version for just changing the three TLS entries. Remember from section 6.5.3 that
this happens on every context switch, so it is worth optimizing. The load three
GDT entries in one hypercall (LHCALL_LOAD_TLS) is such optimization.

After loading an entry, it needs to be fixed using "fixup_gdt_table()". There
are two fixes needed. The first is related to the privilege level. Segment descrip-
tors contain a privilege level. The Guest is sometimes careless when it loads the
entry and leaves the privilege level as 0 even though the guest running at privi-
lege level 1. If so, the host fix it. The second fix related to the "access" bit. Each
descriptor has an "accessed" bit. If the host don’t set it now, the CPU will try to
set it when the guest first loads that entry into a segment register. But the GDT
isn’t writable by the Guest (running at privilege level 1), so it must be done by
the host.

269

APPENDIX 6.9 The Switcher

The file [drivers/lguest/x86/switcher_32.S] is the switcher (compiled as part of
the "lg.ko" module). The switcher code which reside at 0xFFC00000 (or 0xFFE00000)
astride both the host and guest. The switcher does the low-level Guest<->Host
switch. It is as simple as it can be made and very specific to x86.

APPENDIX 6.10 The Switcher Pages

In Lguest runtime each CPU has two pages allocated at the top of the virtual
memory: 0xFFC00000 (SWITCHER_ADDR). These pages are visible to the guest
when it runs on that CPU. These pages contain information that the guest must
have before running and also information regarding the host that is needed for
the switch back. These two pages are abstracted with the "lguest_pages" struct:

struct lguest_pages {
/* This is the stack page mapped read-write in guest */

char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
struct lguest_regs regs;

/*
* This is the host state & guest descriptor page,

* read only in guest.

*/
struct lguest_ro_state state;

} __attribute__((aligned(PAGE_SIZE)));

struct lguest_regs {
/*
* Manually saved part.

* They’re maintained by the Guest

*/
unsigned long eax, ebx, ecx, edx;
unsigned long esi, edi, ebp;
unsigned long gs;
unsigned long fs, ds, es;
unsigned long trapnum, errcode;

/* Trap pushed part. */
unsigned long eip;
unsigned long cs;
unsigned long eflags;
unsigned long esp;
unsigned long ss;

}

270

struct lguest_ro_state {
/*
* Host information we need to restore when

* we switch back.

*/
u32 host_cr3;
struct desc_ptr host_idt_desc;
struct desc_ptr host_gdt_desc;
u32 host_sp;

/*
* Fields which are used when guest is running.

*/
struct desc_ptr guest_idt_desc;
struct desc_ptr guest_gdt_desc;
struct x86_hw_tss guest_tss;
struct desc_struct guest_idt[IDT_ENTRIES];
struct desc_struct guest_gdt[GDT_ENTRIES];

}

The "lguest_pages" pages, have to contain the state for that guest, so the host
copies the state in the switcher memory region (SWITCHER_ADDR) just before
it runs the guest using "run_guest_once()". The copy is done using the function
"copy_in_guest_info()" that calling is called by "run_guest_once". Copying the
guest state is the first thing that "run_guest_once()" does. First, this function saves
the "host_cr3" field on the "state" page. Second it calls "map_switcher_in_guest()".
Then it updates the IDT/GDT/TLS in the "state" page that were changed in the
guest since it last ran. After "copy_in_guest_info()" finishes, all the information
that the guest (and switcher) needs is on its designated CPU pages (the two CPU
pages an the SWITCHER_ADDR region). Finally we get to the code that actually
calls into the switcher to run the guest: "run_guest_once()":

static void run_guest_once(struct lg_cpu *cpu,
struct lguest_pages *pages)
{
/*
* This is a dummy value we need for GCC’s sake.

*/
unsigned int clobber;

/*
* Copy the guest-specific information into this CPU’s

* "struct lguest_pages".

*/
copy_in_guest_info(cpu, pages);

/*

271

* Set the trap number to 256 (impossible value).

* If we fault while switching to the Guest

* (bad segment registers or bug),

* this will cause us to abort the Guest.

*/
cpu->regs->trapnum = 256;

/*
* Now: we push the "eflags" register on the stack,

* then do an "lcall". This is how we change from using

* the kernel code segment to using the dedicated lguest

* code segment as well as jumping into the Switcher.

* The lcall also pushes the old code segment (KERNEL_CS)

* onto the stack, and then the address of this call.

* This stack layout happens to exactly match the stack

* layout created by an interrupt...

*/
asm volatile("pushf; lcall *lguest_entry"

/*
* This is how we tell GCC that %eax ("a") and %ebx ("b")

* are changed by this routine. The "=" means output.

*/
: "=a"(clobber), "=b"(clobber)

/*
* %eax contains the pages pointer.

* ("0" refers to the 0-th argument * above, ie "a").

* %ebx contains the physical address of the Guest’s top

* level page directory.

*/
: "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
/*
* We tell gcc that all these registers could change,

* which means we don’t have to save and restore them

* in the Switcher.

*/
: "memory", "%edx", "%ecx", "%edi", "%esi");

}

The "lcall" asm instruction pushes the IP and CS registers to the stack and put in
them the instruction operands. These operands are abstracted in "lguest_entry"
and match Intel’s "lcall" instruction:

static struct {
unsigned long offset;
unsigned short segment;

} lguest_entry;

272

This structure is initialized in "lguest_arch_host_init()" with the address of the
start of the switching code (at SWITCHER_ADDR after the mapping, not the
compiled code address) and the LGUEST_CS segment selector.

APPENDIX 6.10.1 The Host to Guest Switch

The file [drivers/lguest/x86/switcher.S] contains the low-level code which changes
the CPU to run the Guest code, and returns to the host when something happens.
This is the heart of the Lguest.

The entry point to the switcher is "switch_to_guest". Register %eax has the
"struct lguest_pages" (the register page and state page) that the guest can see.
Register %ebx holds the Guest’s shadow page table.

ENTRY(switch_to_guest)
/*
* 1) Save host registers: Segment registers, stack base

* pointer - push them to the stack (the Host’s stack).

* 2) Save the host’s current stack pointer - at field

* "host_sp" in the "state" page ...

* There are now five steps before us:

* Stack, GDT, IDT, TSS and last of all,

* the page tables are flipped.

*
* Stack: Our stack pointer must be always valid or else

* we’ll get NMI %edx does the duty here as we juggle,

* %eax is "lguest_pages", the Guest’s stack

* lies within (at offset LGUEST_PAGES_regs)

*/
movl %eax, %edx
addl $LGUEST_PAGES_regs, %edx
movl %edx, %esp

/*
* GDT and IDT: The addresses of the Guest’s tables

* that the host placed in the "state" page

* (see "copy_in_guest_info()")

* needs to be loaded to the CPU

*/

lgdt LGUEST_PAGES_guest_gdt_desc(%eax)
lidt LGUEST_PAGES_guest_idt_desc(%eax)

/*
* TSS: The TSS entry which controls traps must be loaded

* up with "ltr" now, after we loaded the GDT.

* The reason is that the GDT entry that TSS uses Changes

273

* type when we load it

*/

movl $(GDT_ENTRY_TSS*8), %edx
ltr %dx

/*
* The Host’s TSS entry was marked used; clear it again

* our return.

* PAGE TABLES: Once our page tables is switched,

* the Guest is alive! The Host fades

* as we run this final step. Remember that %ebx stores

* the physical address of the Guest’s top-level page

* directory

*/
movl %ebx, %cr3

/*
* Because the Guest’s page table is mapping the

* "register page" with the same virtual address

* like the Host, the stack pointer(%esp) is under

* all the Guest regs (the register page) so we can

* simply pop off all. To make this more obvious

* let’s look at the current state of the register

* page ("struct lguest_regs")

*/

// 0 -------------------------
// | STACK |
// | . |
// | . |
// %esp -----------------------
// | eax, ebx, ecx, edx |
// | esi, edi, ebp, gs |
// | fs, es, ds |
// | old trapnum, old errcode |
// | eip |
// | cs, |
// | eflags, |
// | esp, |
// | ss |
// 4K -------------------------

popl %eax
popl %ebx

274

popl %ecx
popl %edx
popl %esi
popl %edi
popl %ebp
popl %gs
popl %fs
popl %ds
popl %es

/*
* We increase the stack pointer by two words so the

* stack would contain only the information needed

* for the "iret". It leaves the trap number and

* its error above the stack.

* They would be updated before switching back to Host

*/
// now the register state is
// 0 -------------------------
// | STACK |
// | . |
// | . |
// %esp -----------------------
// | old trapnum, old errcode |
// | eip |
// | cs, |
// | eflags, |
// | esp, |
// | ss |
// 4K -------------------------

addl $8, %esp

// now the register state is
// 0 -------------------------
// | STACK |
// | . |
// | . |
// | old trapnum, old errcode |
// %esp -----------------------
// | eip |
// | cs, |
// | eflags, |
// | esp, |
// | ss |
// 4K -------------------------

275

/*
* although there was no "call" or "int" instruction

* that got us here, the "iret" instruction is

* exactly what we need. It make the code jump to the

* return address (%eip), switch privilege From Switcher’s

* level 0 to Guest’s 1(CS, EFLAGS)

* and because we decrease the priv level it

* also pops the stack state (ESP, SS) of

* the Guest before it finished his run

* (look at the "iret" instruction specification).

* The five registers are the stack’s slots so "iret"

* fits perfectly (actually I assume that it was the "iret").

* Notice that the NT flag in EFLAGS flag)

* so there is no task switch.

*/
iret

// Interrupts are back on. We are guest

APPENDIX 6.10.2 The Guest to Host Switch

We already demonstrated that the guest traps to the host with a hypercall that
is a software interrupt. When an interrupt occurs the processor pushes the 5
state registers (the same registers from the host to guest switch) to the stack
which TSS hold (ss0 and esp0). The function "lguest_arch_host_init()" (in [driver-
s/lguest/x86/core.c]) assigns "esp0" the bottom of the "registers page", just were
we need it. So after an interrupt the "registers page" would look like this:

0 -------------------------
| STACK |
| . |
| . |
| old trapnum, old errcode |
esp -------------------------
| eip, |
| cs, |
| eflags, |
| esp, |
| ss |
4K -------------------------

Now the processor would approach the guest’s interrupt table, to the relevant
gate. The interrupt handlers push the trap number (and error) to the stack and
jump to the switcher code that returns to the host. So before the jump to the
switch code the "registers page" would look like this:

0 -------------------------

276

| STACK |
| . |
| . |
| old trapnum, old errcode |
esp -------------------------
| new trapnum, new errcode |
| eip, |
| cs, |
| eflags, |
| esp, |
| ss |
4K -------------------------

There are two paths to switch back to the host, yet both must save Guest state
and restore host so we put the routine in a macro:

#define SWITCH_TO_HOST
/* We save the Guest state: all registers first \

* Laid out just as "struct lguest_regs" defines */ \
pushl %es; \
pushl %ds; \
pushl %fs; \

...
pushl %ebx; \
pushl %eax; \

/* find the start of "struct lguest_pages" so*/ \
/* we could access easily to its fields*/ \

movl %esp, %eax; \
andl $(~(1 << PAGE_SHIFT - 1)), %eax; \

/* Save our trap number: the switch will obscure it*/ \
/* (In the host the guest regs are not mapped here)*/ \
/* %ebx holds it safe for deliver_to_host */ \

movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \
/* Return to the host page tables */ \

movl LGUEST_PAGES_host_cr3(%eax), %edx; \
movl %edx, %cr3; \

/* Switch to host’s GDT, IDT. */ \
lgdt LGUEST_PAGES_host_gdt_desc(%eax); \
lidt LGUEST_PAGES_host_idt_desc(%eax); \

/* Restore the host’s stack where its saved regs lie*/\
movl LGUEST_PAGES_host_sp(%eax), %esp; \

/* Last the TSS: our host is returned */ \
movl $(GDT_ENTRY_TSS*8), %edx; \
ltr %dx; \

/* Restore now the regs saved right at the first.*/ \

277

/* notice that we changed the stack pointer. */ \
/* this values are from the host’s stack */ \

popl %ebp; \
popl %fs; \
popl %gs; \
popl %ds; \
popl %es; \

The first way to reach this switch when the guest has trapped (Which trap was it
information has been pushed on the stack). We need only to switch back, and the
host will decode why the Guest came home, and what needs to be done.

return_to_host: SWITCH_TO_HOST
/*
* Go back to "run_guest_once()" to see that

* we left the stack layout exactly match the stack

* layout created by an interrupt. So iret is what

* we need to come back to "run_guest_once()",

* i.e return to the host code

*/
iret

The second path is an an interrupt with some external causes (an interrupt unre-
lated to the guest, could be an interrupt for the host, another guest etc). First, we
must return to the host using "SWITCH_TO_HOST". However this is insufficient.
We can not ignore this interrupt and we need to make the host call this interrupt
handler.

deliver_to_host: SWITCH_TO_HOST
/*
* But now we must go home via that place where that

* interrupt was supposed to go if we had not been

* ensconced, running the Guest.

* Here we see the trickiness of run_guest_once(): The

* host stack is formed like an interrupt With EIP, CS

* and EFLAGS layered. Interrupt handlers end with

* "iret" and that will take us back to

* run_guest_once().

* But first we must find the handler to call!

* The IDT descriptor for the host has two bytes for

* size, and four for address. So after that %edx

* will hold the IDT address.

*/
movl (LGUEST_PAGES_host_idt_desc+2)(%eax), %edx

/*
* We now know the table address we need.

278

* Also, SWITCH_TO_HOST saved the trap’s number inside

* %ebx. This put in %edx the handler’s address.

*/
leal (%edx,%ebx,8), %eax
movzwl (%eax),%edx
movl 4(%eax), %eax
xorw %ax, %ax
orl %eax, %edx

/*
* We call the handler now:

* its "iret" drops us home.

*/
jmp %edx

APPENDIX 6.10.3 The Guest’s IDT Gates

We define the IDT gates of the guest in order to make the right switch between the
two options ("return_to_host" or "deliver_to_host"). When we create the Guest’s
IDT at the switch pages ("struct lguest_ro_state") with the function "copy_traps()"
"copy_traps()" is called from "copy_in_guest_info()" which is called just before
calling "run_guest_once()" We use the array "default_idt_entries". In the "de-
fault_idt_entries" array each entry contain an interrupt handler address. Hence,
each entry will contain: a jump to "return_to_host" or "deliver_to_host" depend-
ing on the interrupt generated. The only interrupt that is not handled by both is
NMI (none maskable interrupt).

In this case we use "handle_nmi" that just returns and hopes to stay alive.
Notice that before jumping the handler push the trap number (and error) to its
designated place in the registers page (the stack).

The Switcher initiates "default_idt_entries" with the following division:

– Interrupts handled with "return_to_host" : 0, 1, 3–31 (processor detected
exceptions: divide error, debug exception, etc), 128 (system calls).

– Interrupts handled with "deliver_to_host" : 32–127, 129–255 (hardware in-
terrupts)

– Interrupts handled with "handle_nmi" : 2 (none maskable interrupt)

APPENDIX 6.11 Lguest technologies in our system

Lguest provides an easy to extend infrastructure for system virtualization. Unlike
KVM Lguest code base is relatively small and easy to understand and modify.

279

APPENDIX 6.11.1 Lguest as a kernel development platform

We have used Lguest as a platform for kernel profiling and code coverage system
discussed in chapter 3 and published in [AKZ11a].

In order to use Lguest as a debugging platform we had to augment hyper-
calls to support profiling operations. Our current work on the LgDb system (to
eliminate the need for code injections) is using Linux kernel debugger connected
over serial port implemented on top of Virt I/O.

APPENDIX 6.11.2 Lguest serialization

As we have seen a running guest in the launcher consists of memory, register
inside Lguest struct, and virt queues status. By saving the contents of the memory
and adding interface to save and load the lguest and virt-queues one can develop
infrastructure for serializing (saving and loading) guests.

We have developed this infrastructure and use it in two separate projects;
our asynchronous replication of virtual machine discussed in chapter 4 and pub-
lished in [AMZK11].

APPENDIX 7 PPPC IMPLEMENTATION DETAILS

We present here several design details and state machines not covered in chapter
7.

APPENDIX 7.1 PPPC System Overview

Peer-2-Peer Packet cascading is system designed to provide audio and video
streaming clients with the capability to receive data from other clients and re-
lay them to clients PPPC system is divided to PPPC router and PPPC Driver.
The PPPC router contains two logical components the Coordinating Server (also
called CServer) and Distributing Server (also called DServer).
PPPC driver installed on a client workstation (any standard PC) and consists of
thin client software that handles the reception and relay of the packets, and also
“feeds" them to any Media Player. The client do not interact with a media player,
it only delivers packets to the media player. Coordinating Server (CServer), is a
command and control system in charge on all PPPC drivers listening to a single
stream. CServer is responsible for all the decisions in the system. For example, for
a given client, from which client it should receive data, and to which client should
it transfer data, how should the tree be rebuilt after a new client arrived, what to
do if a client in the middle of the tree was disconnected, what happens when
any given client reports he has problems with receiving stream from his parent.
Distributing Server (DServer) is a data replication and relay system. DServer
receives a multicast (data-only) stream and encapsulates the data in PPPC format
(recognized by PPPC driver). DServer delivers the encapsulated packets to roots
of PPPC clients’ trees (root clients). The CServer decides who are the root clients.

APPENDIX 7.1.1 Detailed description of the DServer, CServer and theirs com-
ponents

One instance of the server handles one media stream. Multiple instances of the
server are possible in order to handle more than one stream. Parts (entities)
within the Server communicate with each other by TCP enabling them to run
on several computers.

APPENDIX 7.2 Distress Logic

APPENDIX 7.2.0.1 Actions taken on Distress state

No distress No action is taken. If connected to DServer for re-request, discon-
nect.

281

Parent distress Send parent distress messages to children. Initiate parent distress
timer for 15 seconds Resend message every 2 seconds.

Light distress Send parent distress messages to children. Resend message every
2 seconds. Go to DServer to complement missing packets.

Light+parent distress Send parent distress messages to children. Resend mes-
sage every 2 seconds. Disconnect from DServer(if connected).

Major distress Send parent distress messages to children. Resend message ev-
ery 5 seconds. Go to DServer to receive stream. Disconnect from parent.
Declare parent to be a bad parent.

Major + parent distress Send parent distress messages to children. Resend mes-
sage every 5 seconds. Go to DServer to receive stream. Disconnect from
parent.

APPENDIX 7.2.0.2 State machines on distress state

No distress During no distress state 3 events are possible

Parent distress message arrived - move to parent distress state.

Packet rate went below DISTRESS_MIN_PACKET_RATE - move to light dis-
tress state.

Packet rate went below MIN_PACKET_RATE = move to major distress state.(This
should happen very rarely, because client will pass through light distress
state before moving directly to major distress state!)

parent distress During parent distress state 4 things can happen

Timer expired - parent distress timer (initiated when entering the state) has ex-
pired. Return to no-distress state.

Parent distress message arrived - parent has sent another parent distress mes-
sage. Re-install timer.

Packet rate drops below DISTRESS_MIN_PACKET_RATE - enter light+parent
distress state.

Packet rate went below MIN_PACKET_RATE - enter major+parent distress state.

Light distress There are 3 possible events.

Parent distress message arrived - enter light+parent distress state.

Packet rate goes above DISTRESS_MIN_PACKET_RATE - enter no distress state.

Packet rate went below MIN_PACKET_RATE - enter major distress state.

282

Light + parent distress There are 4 possible events.

Timer expired - parent distress timer (initiated when entering the state) has ex-
pired. Return to light distress state.

Parent distress message arrived - parent has sent

another parent distress message. Re-install timer.

Packet rate goes above DISTRESS_MIN_PACKET_RATE - enter parent distress
state.

Packet rate went below MIN_PACKET_RATE - enter major+parent distress state.

Major distress There is only one event which that has to do with major distress.
even if packet rate increases back to reasonable limits, we have decided to go to
DServer.

Connected to DServer - leave major distress state.

Other events are ignored.

Major + parent distress There is only one event which that has to do with
major distress. Even if packet rate increases back to reasonable limits, we have
decided to go to DServer.

Connected to DServer - leave major distress state.

Other events are ignored.

APPENDIX 7.2.0.3 Leaving Distress state

Once a client connects to a new parent or connects to DServer the client automati-
cally leaves all previous distress states and removes all pending distress timeouts.

Race condition While connecting to a new parent all distress states conditions
still remains(old packet rate is still low) Therefore we ignore distress state for two
seconds after moving to new connection.

APPENDIX 7.3 The algorithm

APPENDIX 7.3.1 Multi thredaed algorithm structure

The algorihtm fundamentals are presented in section 7.6.2. But the running algo-
rithm is slightly more complex.

The running algorithm is a multi threaded program with 3 threads.

283

1. The main thread is described in 7.6.2.
2. The algorithm interface thread is a thread tasked with network I/O that is

responsible for sending edges to clients.
3. The rehabilitation thread is responsible for removing bad parents status

from clients.

The threads structure

Main thread (same as 7.6.2 brought for completeness)

Algorithm 17 Real time graph analysis

1: Read subnet to autonomous systems and autonomous systems to au-
tonomous systems family files. Store information in a map.

2: Create global data structure spawn interface and parents rehabilitation thread
and interface thread.

3: while Main thread is alive do
4: if There are new requests then
5: Handle new request, touch at most 100 containers.
6: Inform interface thread when you are done.
7: else
8: if there are dirty containers then
9: Clean at most 100 containers

10: Inform interface thread when you are done
11: else
12: Wait for new request
13: end if
14: end if
15: end while

Algorithm interface thread This simple thread ensure algorithm won’t hang on
I/O operations. The main function is call is described in algorithm 18

Algorithm 18 Interface thread - main function

Require: message queue to report data. new edges queue.
1: while interface thread is alive do
2: wait for signal for main thread.
3: SendEdgesToInterface()
4: end while

Parents Rehabilitation thread This thread is responsible for checking punished
clients and applying to them rehabilitation logic so that they can accept clients
again.

The rehabilitation thread is described in algorithm 19.

284

Algorithm 19 Parents Rehabilitation thread - main function

Require: punished clients queue.
1: while thread is alive do
2: if punished clients queue is empty then
3: Sleep for REHABILITATION_TIME - 1 seconds.
4: else
5: Check head of punished clients queue and calculate that client’s rehabil-

itation time.
6: Sleep until rehabilitation time of that client.
7: Rehabilitate client.
8: end if
9: end while

285

ACRONYMS

AES American Encryption Standard
ALSA Advanced Linux Sound Architecture
ARC Adaptive Replacement Caching
AS Autonomous System
AVM Application Virtual Machine (also PVM)
BSD Berkley Software Distribution
CDN Content Delivery Network
CFG Control Flow Graph
CFS Completely Fair Scheduling
CFQ Completely Fair Queueing
CLR Common Language Runtime
COM Component Object Module
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CPUID CPU Identification (x86 Instruction)
DCOM Distributed Component Object Module
DES Data Encryption Standard
DMCA Digital Millennium Copyright Act
DR site Disaster recovery site
DRM Digital Rights Management
DRP Disaster Recovery Protection
EGEE Enabling Grids for E-sciencE
EGI European Grid Initiative
GDT Global Descriptor Table
GNU GNU’s Not UNIX
GPL GNU PUBLIC LICENSE
GPU Graphical Processing Unit
GPGPU General Purpose GPU
I/O Input / Output
IaaS Infrastructure as a Service
IP Internet Protocol (networking)
IP Intellectual Property (Trust)
IR Intermediate Representation
IRQ Interrupt Request Queue
ISA Instruction Set Architecture
JDL Job Description Language (in EGI)
JIT Just-In-Time (Compiling)
JVM Java Virtual Machine
IDT Interrupt Descriptor Table
IPVS IP Virtual Server

286

KDB Kernel DBugger
KVM Kernel-based Virtual Machine
LLVM Low Level Virtual Machine
LRU Least Recently Used
LVM Logical Volume Manager
LVS Linux Virtual Server
NIST National institute for Standards and Technology
NMI Non-Maskable Interrupt
OS Operating System
OSS Open Source Software
P2P Peer-2-Peer
PaaS Platform as a Service
PAE Physical Address Extension
POSIX Portable Operating System Interface
PPPC Peer-2-Peer packet cascading
PS3 (Sony) PlayStation 3
PVM Process Virtual Machine (also AVM)
QEMU Quick Emulator
QoS Quality of Service
RAID Reliable Array of Independent Disks
RDP Remote Desktop Protocol
RPC Remote Procedure Call
RPO Recovery Point Objective
RTO Recovery Time Objective
SaaS Software as a Service
SATA Serial ATA
SCSI Small Computer Serial Interface
SOHO Small Office Home Office
SMP Symmetric Multiprocessing
SSD Solid State Disk
SuS Single Unix Specification
SVM System Virtual Machine
TCG Trusted Computing Group
TCG Tiny Code Generator (part of KVM)
TCP Transfer Control Protocol
TLS Thread Local Storage
TSS Task Stack Segment
TPM Trusted Platform Module
UDP User Datagram Protocol
V4L Video For Linux
V4L2 Video For Linux 2
VDI Virtual Desktop Infrastructure

VFS Virtual File System
VIP Virtual IP
VM Virtual Machine
VMM Virtual Machine Monitor (Hypervisor)
VMM Virtual Memory Manager (OS context)
VPN Virtual Private Network

INDEX

AES, 156
AMirror, 64
Application virtual machines, 39
Asynchronous B Replication, 65

Bad Parents (in PPPC), 134
Barrier, 196
Block layer - Barrier, 196
Block layer - device plugging, 189

Cloud Virtualization, 43
Continuous Data Protection, 74
Copyright Protection, 153
Cryptography, 156

Deduplication, 68
Desktop Virtualization, 34
Device plugging, 189
distress (in PPPC), 133
DRBD, 68

Elevator, 173
Emulators, 32
Execution Verification, 82

Ftrace, 60

Hardware Virtualization, 34

I/O scheduler, 173
Identification Schemes, 157
Infrastructure as a Service, 45

Key Exchange Techniques, 158
KVM, 161

LgDb, 47
LgDb 2.0, 62
Lguest, 211
Lguest hypercalls, 250
Lguest launcher, 238
Lguest switcher, 257
Linux block I/O layer, 168
LLVM, 163
LLVM Prefetching, 106
Logical Volume Manager, 30

LTTNG, 60
LVM, 30
LVS, 41

Memcached Optimizations, 147
multicast, 126

Network Virtualization, 30, 41

Oprofile, 60

Platform as a service, 45
PPPC, 125
Pre-execution, 109
Process virtual machines, 39

QEMU, 160

Recovery Point Objective(RPO), 66
Recovery Time Objective(RTO), 66
Replication, 65

Software as a Service, 45
Software virtualization, 35
Storage Virtualization, 41
Synchronous Replication, 65
System Virtual Machines, 31

TCG (Tiny Code Generator), 161
TCG (Trusted Computing Group), 154
TPM, 154
Truly-Protect, 80
Truly-Protect Scenario, 94
Trusted computing, 152

Virt I/O, 230
Virtual file system, 28
Virtual Memory, 28
Virtualization, 26
VM migration, 66
VM replication, 67
VPN, 42

288

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	Introduction
	Virtualization Methods for System Design
	The Main Problems that are Solved
	System 1: LgDb: Kernel Profiling and Code Coverage
	System 2: Disaster Recovery Protection Using Asynchronous Mirroring of Block Devices and Virtual Machines
	System 3: Truly-Protect: Using Process VM for Trusted Computing
	System 4: LLVM-prefetch: Prefetching and Pre-execution
	System 5: Peer-2-Peer Streaming

	The Underlying Concepts
	Virtualization
	Trusted Computing
	Cryptography
	Linux Block Layer
	LLVM
	Lguest and Virt I/O
	KVM and QEMU

	Dissertation Structure
	Contributions and papers from the dissertation

	Virtualization
	Introduction to Virtualization
	System Virtual Machines
	Implementations of System Virtual Machines
	Whole System Virtual machines – Emulators
	Hardware Virtualization
	Desktop Virtualization
	Software virtualization
	The Use of System Virtual Machines in Our Work

	Process Virtual Machines
	The Use of Process Virtual Machines in Our Work

	Storage Virtualization
	The Use of Storage Virtualization in Our Work

	Network Virtualization
	Use of Network Virtualization in our solutions

	Cloud Virtualization
	Software as a Service
	Platform as a Service
	Infrastructure as a Service

	Kernel Debugger
	Introduction
	Development Tools
	Lguest
	State-of-the-Art Solutions

	Motivation
	Code Coverage in the Kernel Space
	Profiling in Kernel Space

	LgDb: The "Virtual" Kernel Debugger
	Architecture
	Forking Guests
	Kernel Multitasking and Profiling

	Tools
	Code Coverage
	Profiling

	Related work
	Debugging in virtual environment
	LgDb vs. Gcov
	LgDb vs. Oprofile
	LgDb vs. LTTNG 2.0 and FTrace
	LgDb vs. Performance Counters

	Conclusion
	Performance Results
	Innovation

	Looking forward and LgDb 2.0
	Availability

	Asynchronous replication of block devices and VM
	Introduction
	Disaster Recovery problem, replication and VM replication
	Terminology

	Deduplication
	Related work
	Replication
	Replication and Migration of Virtual Machine
	Storage Concepts of Deduplication and CDP

	Design goals
	Block Device Replication
	Mirroring and Replication of VMs
	Failing to meet RPO objective

	System Architecture
	VM Replication
	Low Bitrate Considerations
	Benchmarks
	Future development
	Availability

	Truly-Protect
	Introduction
	Related work
	Virtual machines for copy protection
	Hackers usage of Virtualization
	Execution Verification

	System Evolution
	Dramatis Personae
	Evolution

	Final Details
	Scenario
	Compilation
	Permutation

	Security
	Assumptions in Modern CPUs
	Performance
	Version 3 Performance
	Switch Instructions
	Version 4 Performance
	Comparison
	Version 7 Performance

	Example

	LLVM Prefetching and Pre-execution
	Introduction
	Introduction
	CPU–I/O Performance Gap
	Virtualization
	Main Results

	Pre-execution
	Isolation of Pre-execution
	Memory Isolation
	I/O Isolation

	Introduction to LLVM
	Prefetching Threads Construction
	Hot Loads
	Slicing with LLVM
	Threads Construction
	Optimizing the Termination Instructions
	Effectiveness of Prefetching Threads

	I/O Prefetching Library
	POSIX Implementation and Porting to other Platforms
	Experimental Results
	Case Study: Matrix Multiplication
	Related Work
	Conclusion

	Applications in Peer-2-Peer streaming
	Introduction
	System design
	PPPC System Overview
	Data flow in the PPPC system
	Detailed description of the DServer, CServer and theirs components
	Distributing server (DServer)
	Coordinating Server (CServer)

	Viewing a stream with PPPC - life cycle
	Maintaining a Certain Level of QoS

	Avoiding Flat Trees, Distress and Guaranteeing Certain Level of QoS
	Bad Parents & Punishments
	Bad Parent Rehabilitation
	Distress Logic: Marking of Bad Parents
	Entering into a distress state

	Bad Client

	The algorithm
	The structure of the Internet - from a Peer–2–Peer Streamer Perspective
	Minimum Spanning Trees of Clients

	Related systems
	Experimental results
	Internet Radio Streaming
	Video streaming
	Simulated results

	Conclusion and Future work

	Future Work
	Job control System for EGI
	Creating an Efficient Infrastructure as a Service Environment
	Bridging Grid Platform as a service and Infrastructure as a Service
	Optimizing memcached

	Conclusion
	Yhteenveto (Finnish Summary)
	References
	Trust computing
	Foundations
	Digital Rights Management and Copyright Protection
	Trusted computing – When trusted hardware is available
	CPUID in Intel processors
	TCG and TPM
	Market Penetration of Trusted Computing Environment

	Trusted Computing – When The Trusted Component is Unavailable
	Trusted Computing Concepts in our Systems

	Cryptographic foundation
	Encryption
	American Encryption Standard (AES)
	Identification Schemes
	Key Exchange Techniques

	QEMU and KVM
	QEMU – internal design
	QEMU and storage devices
	QEMU – Tiny Code Generator (TCG)
	Serializing guests

	KVM
	Using KVM and QEMU technologies in our systems
	Guest serializations for VM migration

	LLVM - Low Level Virtual Machine
	Motivation
	System Design
	Intermediate Representation
	Compiler
	GCC front-end
	Clang front-end
	Just-in-time Compiler optimization

	Code Generation
	Virtual Machine Environment
	Other tools
	How LLVM is being used in our systems
	LLVM-Prefetch
	Truly-Protect

	Linux Block I/O Layer
	The Structure of the Block I/O Queue
	Typical Block Layer Use Scenario
	Services the Block Layer Provides
	The Block Layer Interface to Disk Drives
	The I/O Scheduler (Elevator)
	File List
	Data structure
	Block I/O Submission
	Get Request
	Queue Congestion Avoidance and Batching Context
	Congestion and starvation avoidance
	Exception to Congestion Avoidance

	Add Request
	Plug/Unplug Mechanism
	Fetch Request
	Barrier
	Put Request
	Complete Request
	Linux Block Layer Usage In Our Systems

	Lguest and Virt I/O
	Lguest
	The motivation behind Virt I/O and Lguest
	Running Lguest
	Lguest high level design and file list
	The Guest Code
	The Launcher Code
	The Switcher Code
	The Host Module: lg.ko

	The Guest
	Guest – Host Communication
	Interrupt Related Operations
	CPU Instructions for interrupt handling
	Page Table Operations
	Time Related Operations
	Patching

	Drivers
	Virt I/O
	Adding a Device on Lguest
	Device configuration
	Virtqueues
	Virt I/O summary

	The Launcher
	Setting and Running the guest Using "/dev/lguest"
	The Launcher Code

	The Host
	Initialization
	Chapter:Lguest:Section:IDT
	Running the Guest
	Hypercalls
	Interrupts and Traps
	The Page Tables
	Segments & The Global Descriptor Table

	The Switcher
	The Switcher Pages
	The Host to Guest Switch
	The Guest to Host Switch
	The Guest's IDT Gates

	Lguest technologies in our system
	Lguest as a kernel development platform
	Lguest serialization

	PPPC Implementation Details
	PPPC System Overview
	Detailed description of the DServer, CServer and theirs components

	Distress Logic
	Actions taken on Distress state
	State machines on distress state
	Leaving Distress state

	The algorithm
	Multi thredaed algorithm structure

	Acronyms

