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Tiivistelmä
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Tekijä: Tommi Brander
Päiväys: 23.4.2012

Tämä Pro gradu-tutkielma käsittelee Hamiltonin ja Jacobin yhtälöitä, jotka
kuvaavat mekaanisen järjestelmän kehitystä klassisen mekaniikan puitteissa. Hamil-
tonin ja Jacobin yhtälöitä käytetään myös säätöteoriassa sekä kvanttimekaniikassa.
Hamiltonin mekaaniikan kehitti Sir William Rowan Hamilton valon käytöksen
mallintamiseen ja Carl Gustav Jacob Jacobi kehitti sitä edelleen.

Tutkielmassa annamme ehdot, joiden nojalla Hopfin ja Laxin kaava antaa
ratkaisun Hamiltonin ja Jacobin yhtälöihin liittyvään alkuarvo-ongelmaan. Sen
jälkeen määritämme sopivan heikon ratkaisun käsitteen ja näytämme heikkojen
ratkaisujen olevan yksikäsitteisiä tietyillä ehdoilla. Lähestymme Hamiltonin ja Ja-
cobin alkuarvo-ongelmaa asettamalla variaatio-ongelman, jonka Hopfin ja Laxin
kaava ratkaisee. Osoitamme, että Hopfin ja Laxin kaavan antama ratkaisuehdokas on
Lipschitz-jatkuva ja toteuttaa dynaamisen ohjelmoinnin periaatteen, joka kytkee sen
optimaalisen säädön teoriaan. Sen jälkeen näytämme, että Hopfin ja Laxin kaavan
antama funktio todella ratkaisee Hamiltonin ja Jacobin yhtälön alkuarvo-ongelman.

Tärkeä työkalu Hopfin ja Laxin kaavan käsittelyssä on Legendren muunnos,
joka muuntaa funktion sen konveksiksi duaaliksi. Näytämme, että konvekseille ja
tarpeeksi nopeasti kasvaville funktioille Legendren muunnos sovellettuna kahteen
kertaan antaa alkuperäisen funktion takaisin. Tutkielmassa tutkitaan Hamiltonin ja
Lagrangen funktioita, jotka täyttävät nämä ehdot.

Lopuksi määrittelemme, mitä tarkoitamme heikolla ratkaisulla Hamiltonin
ja Jacobin yhtälön alkuarvo-ongelmaan. Määritelmässä käytämme semikonkaaveja
funktioita. Osoitamme, että alkuehtojen semikonkaavius tai Hamiltonin funktion
vahva konveksisuus takaavat heikkojen ratkaisuiden semikonkaaviuden, ja että
semikonkaaveja ratkaisuja voi olla vain yksi, kunhan alkuarvo-ongelma täyttää
sopivat säännöllisyysehdot.
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1 Introduction

In this master’s thesis I will present an existence and a uniqueness result for the
Hamilton-Jacobi equation and focus on two tools used in the proofs: Legendre
transformation and the Hopf-Lax formula. The thesis closely follows section 3.3 in
monograph [8].

The Hamilton-Jacobi partial differential equation is of the form

H(x,Dxu(x, α, t), t) + ∂tu(x, α, t) = K(α, t)

[18] where x is a vector, t the time variable, α a real-valued parameter, and H and
K given maps. The function u is unknown and Dxu and ∂tu are its derivatives with
regards to space and time, respectively. Hamiltonian mechanics were introduced by
Sir William Rowan Hamilton, originally to model the behaviour of light, and were
later developed further by Carl Gustav Jacob Jacobi [18].

Contemporarily the Hamilton-Jacobi equation is used in optimal control theory
[3], quantum theory and mechanics [18]. In mechanics the equation is used for finding
invariants or approximate invariants [18].

For methods of solving the equation, see e.g. sections 3.3 and 10 of the
monograph [8] and section 46 of the monograph [1].

We will consider a simplification of the Hamilton-Jacobi equation. We assume
some regularity and that the Hamiltonian H only depends on the gradient of u, the
time derivative of u only depends on the space variable x, and that K is identically
zero. We consider initial value problem with initial value g. That is, for given maps
g,H : Rn → R the problem we will investigate is

∂tu+H(Du) = 0 in Rn×]0,∞[ (1.0.1)
u = g on Rn × {0}. (1.0.2)

1.1 Hopf-Lax formula

To solve the initial value problem (1.0.1)–(1.0.2) we minimise the action, getting the
formula

u(x, t) = inf
{� t

0

L(ẇ(s)) ds+ g(w(0))
}

(1.1.1)

with infimum taken over all smooth functions w with w(t) = x. The formula can be
derived via optimal control [8]. Hopf-Lax formula gives one explicit solution to the
variational problem (1.1.1):

u(x, t) = min
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
.

Hopf-Lax formula was originally stated by Peter D. Lax in [15] and by Eberhard
Hopf for a special case in [11].

The formulae are equivalent, since both consider the initial conditions y = w(0),
and the path between two points is determined by minimising the energy, so we
only need to minimise over the initial value. Minimising over the initial value is
also consistent with an assumption of classical mechanics—that initial velocity and
position are sufficient to describe a closed system, which is also called Newton’s
principle of determinancy [1]. For more detail on the equivalence see the proof of
Theorem 4.2.1.
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The Hopf-Lax formula admits the dynamic programming principle (in analogy
with Theorem 1 in section 10.3. in the monograph [8])

u(x, t) = min
y∈Rn

(
(t− s)L

(
x− y
t− s

)
+ u(y, s)

)
,

which can be understood as dividing the optimisation problem into distinct compo-
nents.

The function u defined by the Hopf-Lax formula is Lipschitz continuous (given
certain restrictions on g and H). Hopf-Lax formula indeed gives a solution that is,
by Rademacher’s theorem (Theorem 2.2.5), almost everywhere differentiable.

1.2 Uniqueness

To study the uniqueness of solutions, we introduce the notion of semiconcavity. We
show the solution u given by the Hopf-Lax formula is semiconcave, if the initial value
g is semiconcave of if the Hamiltonian H is strongly convex. Under some regularity
assumptions we show the uniqueness of semiconcave Lipschitz continuous solutions
to the Hamilton-Jacobi equation.

1.3 Outline

The first section is the introduction. In the second section notation and various tools
are introduced; reader might do well to only skim the second section and return to
it when necessary or when a result is referenced. The third section contains physical
background and applications of the Hamilton-Jacobi equation, as well as connections
between the Legendre transformation and two sets of ordinary differential equations
used in physics: Euler-Lagrange equations and Hamilton’s equations.

In the fourth section we introduce the Legendre transformation and the Hopf-
Lax formula. We use Legendre transformation to show certain properties of the
Hopf-Lax formula, and then use these tools to establish regularity of solutions to
the Hamilton-Jacobi equation. This regularity justifies the notion of solutions, as we
show in the section.

In the fifth section we show that uniqueness does not hold for the solutions
of Hamilton-Jacobi equation in the current generality, so we introduce additional
regularity, semiconcavity, to guarantee uniqueness.

In the sixth section we mention some further developments of the theory.

2 Notation and preliminaries

In this section we introduce the notation and definitions used throughout the thesis,
and state theorems and lemmata that will be used later.

2.1 Vectors and matrices

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be vectors in Rn. By a · b we denote the
inner product of vectors, i.e. a · b =

∑n
i=1 aibi. By |a| we denote the norm in Rn. We

have the Cauchy-Schwarz inequality.
Theorem 2.1.1 (Cauchy-Schwarz inequality). Let a and b be vectors in Rn. Then

|a · b| ≤ |a||b|.

Let M be a matrix. We denote its transpose by MT .

2



Definition 2.1.2 (Positive semidefinite matrix). Let A and B be symmetric n× n
square matrices. We say A is positive semidefinite, denoted by A ≥ 0, if and only if
for all x ∈ Rn

xTAx ≥ 0.

We also write A ≥ B to mean A−B ≥ 0.
The following lemma can be proven by diagonalising the matrices.

Lemma 2.1.3. Suppose A and B are symmetric n×n-matrices, with 0 ≤ A ≤M1I
and B ≤M2I, where M1 and M2 are positive constants. Then

n∑
i,j=1

aijbij ≤ nM1M2.

2.2 Differentiation and integration

In this thesis, by the integral we mean the Lebesgue integral.
Theorem 2.2.1 (Dominated convergence theorem). Let the functions (fk)k∈N be
measurable and suppose there exists integrable g such that for all k fk ≤ g holds
almost everywhere. Suppose further that almost everywhere fk have the limit f as k
increases. Then f is measurable and

lim
k→∞

�
fk =

�
f,

where the integrals are taken over the domain where f, fk and g are measurable and
the inequalities and limits hold.

Proof can be found in e.g. [8], Theorem 5 in appendix E.
For measurable A ⊂ Rn with finite but positive Lebesgue measure |A| we

write the mean integral of an integrable function f : A→ R as
 
A

f dx =
1
|A|

�
A

f dx.

Let U ⊂ Rn×Rn×R be open (and nonempty). We denote by pi, i ∈ {1, . . . , n}
the first n variables, by xi, i ∈ {n+ 1, . . . , 2n} the second n variables, and by t the
variable numbered 2n+ 1. That is, (p, x, t) ∈ U with p, x ∈ Rn and t ∈ R.

For F : U → R differentiable at (p, x, t) ∈ U we write its partial derivatives
as ∂p1F, . . . , ∂pnF, ∂x1F, . . . , ∂xnF, ∂tF . For the gradient of F with regards to the
p-variables we write

DpF = (∂p1F, . . . , ∂pn
F )

and DxF is defined similarly.
For subsets of Rn×R we use similar notation, but write the gradient operator

with regards to first variables simply as D.
Notation ẋ means the derivative of x with regards to the time variable, which

is usually t or s.
Divergence of a differentiable vector-valued function f = (f1, . . . , fn) : A→ Rn,

with A an open subset of Rn, we write as

div f(x) =
n∑
j=1

∂xj
fj(x).

3



The Laplacian of a twice differentiable function g : A ⊂ Rn → R is defined as
divergence of the gradient of g:

∆g = divDg.

Lemma 2.2.2 (Product rule for divergence). Let A ⊂ Rn be an open set. For
differentiable f : A→ Rn and differentiable g : A→ R it holds that

div(gf) = f ·Dg + g div f.

Proof. The proof is a simple calculation:

div(gf) =
n∑
i=1

∂xi(gfi) =
n∑
i=1

(fi∂xig + g∂xifi) = f ·Dg + g div f.

The divergence theorem is also known by the names of Ostrogradsky, Gauss
or Green.
Theorem 2.2.3 (Divergence theorem). Suppose B ⊂ Rn is a ball with boundary
∂B and normal vector ν pointing outward from B. Further suppose that f : B → Rn
is continuously differentiable. Then

�
B

div f dx =
�
∂B

f · ν dS.

An elementary proof can be found in e.g. [12], chapter 0.d.
Lemma 2.2.4. Suppose A ⊂ Rn is open and f : A→ R is Lipschitz with constant
C. Then |Df | ≤ C whenever f is differentiable.

Proof. Let x ∈ A be a point where the function f is differentiable. Then (Df)(x)
exists and we suppose (Df)(x) 6= 0. We write D = (Df)(x), D1 = D/|D|, and
calculate

|f(x+ hD1)− f(x)|
h

≤ Ch|D1|
h

= C,

from which follows C ≥ |Df |.

We will use Rademacher’s theorem to provide regularity for solutions of the
Hamilton-Jacobi equation.
Theorem 2.2.5 (Rademacher’s theorem). Let A ⊂ Rn be open and f : A→ Rm be
Lipschitz. Then f is differentiable almost everywhere in A.

For proof see e.g. Theorems 4–6 in section 5.8 in [8].
The following theorem is originally by Grönwall [10].

Theorem 2.2.6 (Differential form of Grönwall’s inequality). Let T be positive and
η : [0, T ] → [0,∞[ absolutely continuous such that there are integrable functions
φ, ψ : [0, T ]→ [0,∞[ satisfying for almost all t

η′(t) ≤ φ(t)η(t) + ψ(t).

Then for all t

η(t) ≤
(
η(0) +

� t

0

ψ(s) ds
)

exp
(� t

0

φ(s) ds
)
.

The proof can be found in e.g. [8], inequality j in appendix B.
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2.3 Properties of functions

We introduce superlinearity and several notions of convexity and concavity. We also
define the Lipschitz continuous maps.
Definition 2.3.1. Let (X, dX) and (Y, dY ) be metric spaces. Then the mapping
f : X → Y is Lipschitz with constant L if and only if for all x1, x2 ∈ X we have
dY (f(x1), f(x2))) ≤ LdX(x1, x2).

We write Lip(f) for the optimal Lipschitz constant of a Lipschitz mapping f .
We define superlinear (also known as coercive) functions.

Definition 2.3.2 (Superlinearity). We say that the mapping f : Rn → R is super-
linear if and only if

lim
|x|→∞

f(x)
|x|

=∞.

We next define convex and concave functions. Later we will also define strongly
convex (Definition 2.3.8) and semiconcave (Definition 2.3.10) functions.
Definition 2.3.3 (Convexity and concavity). Let A ⊂ Rn be a convex set. We call
a function f : A→ R convex if and only if for all x, y ∈ A and for all λ ∈]0, 1[

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

We call a function f concave if and only if the function −f is convex.
The following result holds in finite-dimensional spaces.

Theorem 2.3.4. [Continuity of convex functions] A convex or concave function
f : A→ R is continuous on a convex open set A ⊂ Rn.

We refer to Theorem 10.1 of [17] for a proof.
The following theorem is originally by Jensen [13].

Theorem 2.3.5 (Jensen’s inequality). Let f : R→ R be convex, A ⊂ Rn open and
bounded, and g ∈ L1(A; R). Then

f

( 
A

g(x) dx
)
≤
 
A

f(g(x)) dx.

For proof see e.g. Theorem 2 in appendix B of [8].
Lemma 2.3.6. [Supporting hyperplane of a convex function] A convex function
f : A → R is supported by a hyperplane at every point, which means that for all
x ∈ A there is r ∈ Rn so that for all y ∈ A

f(y) ≥ f(x) + r · (y − x).

Proof proceeds by convex analysis: since f is convex, its epigraph is a convex
set, and therefore has a supporting hyperplane at every boundary point. For details
see for example [5, chapter 2.5.2].

The second derivative of a convex function is positive:
Lemma 2.3.7. For convex function f we have D2f ≥ 0 whenever the second deriva-
tive is defined. Conversely, if f is twice differentiable and D2f ≥ 0, then f is convex.

For proof, see e.g. Theorem 4.5 of [17].
Strongly convex functions are convex. Sometimes they are called uniformly

convex.
Definition 2.3.8 (Strong convexity). Let A ⊂ Rn be a convex set. We call a
function f : A → R strongly convex with constant m > 0 if and only if for all
x, y ∈ A and for all λ ∈]0, 1[

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− m

2
λ(1− λ)|x− y|2.
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Norm squared is an example of a strongly convex function.
Example 2.3.9. The function x 7→ |x|2 is strongly convex. To check this, first let
x and y be vectors in Rn and let λ be a positive number less than one. Since

|λx+ (1− λ)y|2 − λ|x|2 − (1− λ)|y|2 = −λ(1− λ)|x− y|2,

norm squared is strongly convex with constant 2.
Semiconcave function is concave by removing some fixed quadratic term.

Definition 2.3.10 (Semiconcavity). Let A ⊂ Rn be a convex set. We call a function
f : A→ R semiconcave with constant C ≥ 0 if and only if for all x, z ∈ A

f(x− z)− 2f(x) + f(x+ z) ≤ C|z|2.

In some cases another definition of semiconcavity is easier to verify.
Lemma 2.3.11. Let A be as above and f : A → R a function. The function f is
semiconcave with constant C if and only if the function

x 7→ f(x)− C

2
|x|2

is concave.
Proof can be found in [6] as Proposition 1.1.3.

2.4 Mollifiers and convolution

Mollifiers are smooth functions with special properties, used to construct sequences
of smooth functions approximating nonsmooth function, via convolution.
Definition 2.4.1 (Convolution). Let A ⊂ Rn, f : A → R and g : Rn → R be
measurable functions with f locally integrable and g having compact support. Their
convolution is defined as (f ∗ g)(x) =

�
A
f(y)g(x− y) dy and is a function on Rn.

Let n be a positive integer, A ⊂ Rn an open set and ε > 0. Write Aε =
{x ∈ A|dist(x, ∂A) > ε}, where ∂ indicates boundary and dist distance.
Definition 2.4.2 (Standard mollifier). We define η : Rn → R by

η(x) = Cexp

(
− 1

1− |x|2

)
for |x| < 1, and 0 elsewhere, with C chosen so that

�
Rn η(x) dx = 1.

We define ηε : Rn → R by

ηε(x) = ε−nη (x/ε)

and call them standard mollifiers.
Smoothening or mollification of a function is convolution of the function with

a mollifier.
Definition 2.4.3 (Mollification). Assume u : U → R is locally integrable. Its molli-
fication uε : Uε → R is the convolution ηε ∗ u.

Convolution commutes by change of variables, so we have uε = u ∗ ηε.
Lemma 2.4.4 (Properties of mollifiers). The following hold for locally integrable
mapping u:
• The function uε is infinitely differentiable in Uε.
• Almost everywhere uε → u as ε→ 0.

Proof can be found in [8], Theorem 6 in appendix C.
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Lemma 2.4.5. Let A ⊂ Rn be an open set and f : A→ R smooth. Then Dα(f∗ηε) =
Dα(f)∗ηε for any multi-index α with f at least |α| times continuously differentiable.

Proof. It suffices to to prove the lemma for the case |α| = 1. The other cases can be
proved by induction. Since

∂k(f ∗ ηε)(x) = ∂k

�
f(x− z)ηε(z) dz =

�
∂k(f(x− z)ηε(z)) dz

=
�
ηε(z)∂k(f(x− z)) dz =

�
ηε(z) (∂kf) (x− z) dz

= (ηε ∗ ∂kf) (x),

we are done.

A mollified Lipschitz function is still Lipschitz with the same constant and its
derivatives also converge.
Lemma 2.4.6. Let u be Lipschitz continuous with constant C. Then |Duε| ≤ C
and almost everywhere Duε → Du as ε→ 0.

Proof. For the first part we calculate for arbitrary x1, x2 ∈ Rn

|uε(x1)− uε(x2)| =
∣∣∣∣� ηε(y)u(x1 − y) dy −

�
ηε(y)u(x2 − y) dy

∣∣∣∣
=
∣∣∣∣� ηε(y)(u(x1 − y)− u(x2 − y)) dy

∣∣∣∣
≤
�
ηε(y)|u(x1 − y)− u(x2 − y)| dy

≤ C|x1 − x2|
�
ηε(y) dy = C|x1 − x2|,

where the integrals are taken over B(0, ε).
For the second part, we first mention that by Rademacher’s theorem (Theo-

rem 2.2.5) Du exists almost everywhere. Further, by Lemma 2.4.4 uε → u almost
everywhere and Duε is defined everywhere, so in particular all of these hold al-
most everywhere. By Lemma 2.4.5 for any k ∈ {1, . . . , n} (∂ku)ε = ∂k(uε), so by
Lemma 2.4.4 we only need to show that ∂ku is locally integrable. By Lemma 2.2.4
it is bounded and by definition it is a limit of a sequence of measurable functions
and therefore measurable. Therefore it is locally integrable.

Lemma 2.4.7. Let f : Rn × [0,∞[→ R be continuous and almost everywhere differ-
entiable. Suppose the mapping x 7→ f(x, t) is concave for all positive t. Then for all
t > 0 the mapping x 7→ fε(x, t) is concave.

Proof. Let (a, t), (b, t) ∈ Rn×]0,∞[. By the concavity assumption we know that the
mapping

α 7→ Df(αa+ (1− α)b, t) · (b− a)

is decreasing for α ∈]0, 1[ since the function restricted to a line is concave and has
decreasing one-dimensional derivative. We note that the function is differentiable
almost everywhere, so in particular it is possible that the gradient does not even
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exist. A calculation for x 6= y where integrals are taken over B(0, ε) proves the
theorem:

Dfε(x, t) · (y − x)−Dfε(y, t) · (y − x) = (Dfε(x, t)−Dfε(y, t)) · (y − x)

=
(
D

�
f(x− z, t− h)ηε(z, h) d(z, h)

−D
�
f(y − z, t− h)ηε(z, h) d(z, h)

)
· (y − x)

=
( �

Df(x− z, t− h)ηε(z, h) d(z, h)

−
�
Df(y − z, t− h)ηε(z, h) d(z, h)

)
· (y − x)

=
�

(Df(x− z, t− h)−Df(y − z, t− h)) · (y − x)ηε(z, h) d(z, h),

which is non-positive, since the integrand is non-positive. This implies that x 7→
fε(x, t) is concave. We used Lemma 2.4.5 in the calculation.

3 Physical background

Euler-Lagrange equations, Hamilton’s equations and the Legendre transformation
all concern the Hamiltonian H = H(p, x) and the Lagrangian L = L(q, x), where p
is generalised momentum, x is position and q holds the position for ẋ, velocity. The
Lagrangian can be interpreted as the difference between kinetic energy and potential
energy, while the Hamiltonian is the total energy of the system, which means the
sum of kinetic and potential energy. We refer to chapter 3 of [1] for more details.

Euler-Lagrange equations

− d

ds
(DqL(ẋ(s), x(s))) +DxL(ẋ(s), x(s)) = 0

give necessary and sufficient conditions for function x to be an extreme value of a
given functional. In our case the extreme values represent the motions of certain
mechanical system (section 13 in [1]). Hamilton’s equations{

ẋ = DpH(p, x)
ṗ = −DxH(p, x)

(3.0.1)

are one reformulation of classical mechanics and they are equivalent to Euler-Lagrange
equations, see section 15 of [1].

Let us now derive the Hamilton’s ordinary differential equations. Assume
the Lagrangian L : Rn × Rn → R to be twice continuously differentiable. For all
x0, y ∈ Rn and t > 0 define the admissible class

A = {w ∈ C2([0, t]; Rn)|w(0) = y, w(t) = x0}

and the action functional I : A→ R,

I(w) =
� t

0

L(ẇ(s), w(s))ds. (3.0.2)
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Theorem 3.0.8 (Euler-Lagrange equations). Suppose that function x ∈ A minimises
the action functional I. Then the function x solves the Euler-Lagrange equations

− d

ds
(DqL(ẋ(s), x(s))) +DxL(ẋ(s), x(s)) = 0. (3.0.3)

Proof. Let v : [0, t] → Rn, v(0) = v(t) = 0 be twice continuously differentiable
function. Since x ∈ A, x+ τv is also in the admissible class A for all real numbers
τ . Set i : R → R, i(τ) = I(x + τv). Now i(0) = I(x) is a minimum of the action
functional (3.0.2), and supposing it is differentiable at 0, i′(0) = 0.

Let us compute i′(0) by using the fundamental theorem of calculus. Since

i′(τ) =
d

dτ
I(x+ τv) =

d

dτ

� t

0

L(ẋ(s) + τ v̇(s), x(s) + τv(s)) ds

=
� t

0

d

dτ
L(ẋ(s) + τ v̇(s), x(s) + τv(s)) ds

=
� t

0

n∑
i=1

(∂qi
L)(ẋ(s) + τ v̇(s), x(s) + τv(s))v̇i(s)

+ (∂xi
L)(ẋ(s) + τ v̇(s), x(s) + τv(s))vi(s) ds,

we have for τ = 0

0 = i′(0) =
n∑
i=1

� t

0

(∂qi
L)(ẋ(s), x(s))v̇i(s) + (∂xi

L)(ẋ(s), x(s))vi(s) ds (3.0.4)

=
n∑
i=1

� t

0

− d

ds
((∂qi

L)(ẋ(s), x(s))) vi(s) + (∂xi
L)(ẋ(s), x(s))vi(s) ds

=
n∑
i=1

� t

0

vi(s)
(

(∂xi
L)(ẋ(s), x(s))− d

ds
((∂qi

L)(ẋ(s), x(s)))
)
ds.

Now suppose the claim is false; that is, for some i ∈ {1, ..., n} and for some s ∈ [0, t]

− d

ds
(∂qi

L(ẋ(s), x(s))) + ∂xi
L(ẋ(s), x(s)) 6= 0. (3.0.5)

By continuity of the expression (3.0.5) there is a small interval J ⊂ [0, t], s ∈ J , in
which the expression is strictly positive or strictly negative. By selecting a mollifier
v with support in J (Definition 2.4.2), we get a contradiction with equation (3.0.4).

We supposed that the function i is differentiable at 0, and now prove it. By
dominated convergence theorem 2.2.1 we only need to show that the difference
quotients 1

h (L(ẋ+ hv̇, x+ hv))− L(ẋ, x)) have a common integrable dominant for
small h.

Since v ∈ C2, both v and v̇ are are bounded on the compact interval, so there
is some constant C > 0 such that for all h ∈ R and for all s ∈ [0, t]

|(ẋ+ hv̇, x+ hv)− (ẋ, x)| ≤ C|h|.

Since the Lagrangian L is twice continuously differentiable, its derivative is continuous
and so L is Lipschitz on any subset of a compact set, such as

{(ẋ(s) + hv̇(s), x(s) + hv(s)) | s ∈ [0, t], |h| ≤M}
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for some positive M . Hence for all s ∈ [0, t]

|L(ẋ(s) + hv̇(s), x(s) + hv(s)))− L(ẋ(s), x(s))| ≤ CM |h|,

where CM is a positive constant that depends on the choice of M . Hence for all
s ∈ [0, t] and for |h| ≤M we have | 1h (L(ẋ+ hv̇, x+ hv))− L(ẋ, x))| ≤ CM , which is
sufficient to guarantee uniform integrability on a compact interval.

We call the solution x ∈ A of the Euler-Lagrange equations (3.0.3) a critical
point. Our goal is to derive Hamilton’s ordinary differential equations (3.0.1) from
the Euler-Lagrange equations.

Let x be a critical point and set p : [0, t]→ Rn,

p(s) = DqL(ẋ(s), x(s)). (3.0.6)

For the development of theory in this section we assume the following lemma
without proof:
Lemma 3.0.9. Let L : Rn × Rn → R be in C2(Rn × Rn). Then there is a unique
smooth mapping q : Rn × Rn → Rn that solves p = DqL(q, x). We write q = q(p, x).

Now we can define the Hamiltonian and prove the Hamilton’s equations.
Definition 3.0.10 (Hamiltonian). Given q and L as in the lemma 3.0.9, we define
the associated Hamiltonian H : Rn × Rn → R as

H(p, x) = p · q(p, x)− L(q(p, x), x). (3.0.7)

Theorem 3.0.11 (Hamilton’s equations). Functions x and p satisfy Hamilton’s
equations {

ẋ = DpH(p, x)
ṗ = −DxH(p, x).

(3.0.8)

.

Proof. Lemma 3.0.9 and equation (3.0.6) imply the equality ẋ = q. Hence for any
natural number i ∈ {1, . . . , n} we have

∂pi
H(p, x) = ∂pi

(p · q(p, x)− L(q(p, x), x))

= ∂pi

 n∑
j=1

pjqj(p, x)

− ∂piL(q(p, x), x)

= qi(p, x) +
∑
j

pj∂pi
qj(p, x)−

n∑
j=1

(∂qj
L)∂pi

qj(p, x)

= qi(p, x) +
∑
j

∂piqj(p, x)
(
pj − ∂qjL

)
= qi(p, x) = ẋi,

which proves the first set of Hamilton’s ordinary differential equations. To prove the
second set we calculate for any i ∈ {1, . . . , n}

−∂xi
H(p, x) = −

n∑
j=1

∂xi
(pjqj(p, x)) + ∂xi

L(q(p, x), x)

= −
n∑
j=1

pj∂xi
qj(p, x) +

n∑
j=1

∂qj
L(q(p, x), x)∂xi

qj(p, x) + ∂xi
L(q(p, x), x)

= ∂xiL(q(p, x), x) =
d

ds
∂qi
L(q(p, x), x) =

d

ds
pi = ṗi,
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where we used the Euler-Lagrange equations (3.0.3) and equation (3.0.6).

The Hamiltonian stands for the total energy of the system, so given a closed
physical system it should be constant with regards to time. Indeed it is:
Corollary 3.0.12. The Hamiltonian H(p, x) as a function of time s ∈ [0, t] is
constant.

Proof. It suffices to show that the time derivative of the Hamiltonian is identically
zero.

d

ds
H(p(s), x(s)) = (DpH)(p(s), x(s)) · ṗ(s) + (DxH)(p(s), x(s)) · ẋ(s) = 0

by Theorem 3.0.11.

4 Weak solution via Hopf-Lax formula

In this section we introduce a notion of weak solution. In our case, weak solution
is not necessarily everywhere differentiable, but does solve the equation almost
everywhere.

4.1 Legendre transformation

We now assume that the Hamiltonian H does not depend on the x variable—that
is, for all x, y, p ∈ Rn, H(p, x) = H(p, y) and we write H : Rn → R, H(p) = H(p, x)
for any x.

Let L : Rn → R be convex and superlinear. Then it is continuous by theorem
2.3.4. Our goal is to formulate the Lagrangian to be independent of x and to show
how the Lagrangian and the Hamiltonian relate to each other.
Definition 4.1.1 (Legendre transformation). Legendre transformation of the La-
grange’s function L is L∗ : Rn → R,

L∗(p) = sup
q∈Rn

(p · q − L(q)) .

The Legendre transformation is well-defined and, further, for every p ∈ Rn
there is q ∈ Rn where the supremum is reached.
Lemma 4.1.2.

L∗(p) = max
q∈Rn

(p · q − L(q))

Proof. Let us fix p ∈ Rn. The mapping q 7→ p · q − L(q) =: a(q) is continuous since
L is, so it reaches its maximum value on any compact set. Let us see what happens
when |q| grows:

p · q − L(q) = |q|
(
p · q
|q|
− L(q)
|q|

)
≤ |q|

(
|p| − L(q)

|q|

)
−→ −∞

by superlinearity of L as |q| → ∞.
So for q outside some sufficiently large closed ball p · q − L(q) ≤ −L(0) and so

the function a reaches its maximum within the large closed ball, as it is compact.

The simplest example of Legendre transformation is that of the function
x 7→ x2/2.
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Example 4.1.3. We define the Lagrangian L : Rn → R by L(q) = |q|2/2. Its
Legendre transformation is

L∗(p) = max
q∈Rn

(
p · q − 1

2
|q|2
)
.

The maximum is achieved when q = p. Thus we have

L∗(p) =
1
2
|p|2.

We can generalise this for the Lagrangian Ln(q) = 1
n |q|

n for real numbers
n ≥ 1, and further defining L∞(q) = 0 when |q| ≤ 1 and infinite otherwise. For
finite n > 1 we have

L∗n(p) =
(

1− 1
n

)
|p|

n
n−1 .

Thus we have (L∗n)∗ = Ln for n > 1. This also holds for n = 1 or ∞, given
the conventions established above. The next theorem states that this duality holds in
general.

We note that the cases n = 1 or ∞ are not in the scope of our definition of
Legendre transform, since they are not real-valued superlinear functions.

We proved that for each p there is q∗ such that value L∗(p) is reached, and that
it is the maximum of the mapping q 7→ p · q − L(q), still denoted by a. Therefore
the derivative of the mapping a vanishes there. In particular

DL(q∗) = Dq(p · q∗)−Da(q∗) = Dq

n∑
i=1

piq
∗
i = p.

We remark that q∗ may not be unique.
By Definition 3.0.10

H(p) = p · q(p)− L(q(p)) = L∗(p)

when we select q : Rn → Rn, q(p) = q∗.
Theorem 4.1.4 (Convex duality of the Hamiltonian and the Lagrangian). For
convex superlinear Lagrangian L with H = L∗ the Hamiltonian is convex and
superlinear. Further, L = H∗.

Proof. We start with the superlinearity of H. We want to show that for all M ∈ R
there exists a positive α0 so that for all α ≥ α0 and for all p ∈ Rn with |p| = 1 there
is q ∈ Rn such that

αp

|αp|
· q − L(q)

|αp|
= p · q − 1

α
L(q) ≥M.

Select q = 2Mp. Then what needs to be shown is that

2M − 1
α
L(2Mp) ≥M.

Since L is continuous, it is bounded on the closed ball B(0, 2M), not taking values
in excess of some positive K ∈ R. For α ≥ K/M

L(2Mp)
α

≤ K

α
≤M,
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so by selecting α0 = K/M we confirm that the Hamiltonian indeed is superlinear.
To establish convexity of the Hamiltonian, let β ∈]0, 1[ and p1, p2 ∈ Rn. Then

H(βp1 + (1− β)p2) = max
q∈Rn

((βp1 + (1− β)p2) · q − L(q))

= max
q∈Rn

(βp1 · q − βL(q) + (1− β)p2 · q − (1− β)L(q))

≤ β max
q∈Rn

(p1 · q − L(q)) + (1− β) max
q∈Rn

(p2 · q − L(q))

= βH(p1) + (1− β)H(p2),

which shows the convexity.
We still want to show that L = H∗. By Definition 4.1.1 and the equality

H = L∗, we have for all p, q ∈ Rn

L(q) +H(p) ≥ p · q,

from which it follows that

L(q) ≥ sup
p∈Rn

(p · q −H(p)) = H∗(q).

We next want to show that L ≤ H∗. Let us expand H∗:

H∗(q) = sup
p∈Rn

(p · q −H(p)) = sup
p∈Rn

(p · q − L∗(p))

= sup
p∈Rn

(
p · q − sup

q0∈Rn

(p · q0 − L(q0))
)

= sup
p∈Rn

(
p · q + inf

q0∈Rn
(−p · q0 + L(q0))

)
= sup
p∈Rn

inf
q0∈Rn

(p · q − p · q0 + L(q0))

= sup
p∈Rn

inf
q0∈Rn

(p · (q − q0) + L(q0)) . (4.1.1)

The convexity of the Lagrangian L means that it is supported by a hyperplane (see
Lemma 2.3.6), that is, there is r ∈ Rn so that for all q0 ∈ Rn we have

L(q0) ≥ L(q) + r · (q0 − q),

which together with (4.1.1) gives

H∗(q) ≥ sup
p∈Rn

inf
q0∈Rn

(p · (q − q0) + L(q) + r · (q0 − q))

= sup
p∈Rn

inf
q0∈Rn

((p− r) · (q − q0) + L(q))

≥ inf
q0∈Rn

(0 · (q − q0) + L(q)) = L(q).

Example 4.1.5. Let L : R → R be defined by L(q) = e|q|. Now the Lagrangian is
convex and superlinear. We calculate the Legendre transformation L∗:

H(p) = L∗(p) = max
q∈R

(pq − L(q)) = max
q∈R

(
pq − e|q|

)
.
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We have by an easy calculation that

H(p) =


p(1− log (−p)) for p < −1
−1 for p ∈ [−1, 1]
p(log p− 1) for p > 1.

Though the dual of a convex function is convex, strict convexity is lost in this
example.

4.2 Hopf-Lax formula

In this section we solve the initial value problem

∂tu+H(Du) = 0 in Rn×]0,∞[ (4.2.1)
u = g on Rn × {0}. (4.2.2)

We assume that H : Rn → R is convex and superlinear and that g : Rn → R is
Lipschitz-continuous. We define the function u : Rn × [0,∞[→ R by

u(x, t) = inf
{� t

0

L(ẇ(s)) ds+ g(y)
∣∣∣∣w(0) = y, w(t) = x,w ∈ C1

}
. (4.2.3)

This choice follows from optimal control theory, see e.g. section 10.3 of [8].
Theorem 4.2.1 (Hopf-Lax formula). For u defined by equation (4.2.3) and for all
x ∈ Rn and for all t > 0

u(x, t) = min
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
. (4.2.4)

The right-hand side of the equation in the Theorem 4.2.1 is called the Hopf-Lax
formula, see Theorem 4 in [8, section 3.3].

Proof. Let us first show that u equals a slightly modified Hopf-Lax formula: one
with infimum instead of minimum. We accomplish this by considering a function w
that is linear between y and x and checking that it is optimal.

We define w : [0, t]→ R by

w(s) = y +
s

t
(x− y).

The function w clearly fulfills all requirements set in equation (4.2.3), and hence

u(x, t) = inf
{� t

0

L(ẇ(s)) ds+ g(y)|w(0) = y, w(t) = x,w ∈ C1

}
≤
� t

0

L(ẇ(s)) ds+ g(y) =
� t

0

L

(
x− y
t

)
ds+ g(y)

= tL

(
x− y
t

)
+ g(y)

for arbitrary y, which implies

u(x, t) ≤ inf
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
.
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We use Jensen’s inequality, Theorem 2.3.5, to prove the other direction, so
convexity of the Lagrangian is essential for the proof. Any continuously differentiable
w with w(t) = x has

L

(
1
t

� t

0

ẇ(s) ds
)
≤ 1
t

� t

0

L(ẇ(s)) ds,

and multiplying by t and adding g(y) gives

tL

(
1
t

� t

0

ẇ(s) ds
)

+ g(y) ≤
� t

0

L(ẇ(s)) ds+ g(y),

where � t

0

ẇ(s) ds = w(t)− w(0) = x− y

for y = w(0) by the fundamental theorem of calculus. Since w and thereby y were
arbitrary, we have

u(x, t) ≥ inf
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
,

and hence equality.
We still need to check that the infimum is reached. Let us consider the map

y 7→ tL

(
x− y
t

)
+ g(y), (4.2.5)

which is continuous because L and g are. We only need to show that the function
(4.2.5) takes large values when y is large. The claim follows from the facts that L is
superlinear and g is Lipschitz. The proof is similar to that of lemma 4.1.2. Writing
C for the Lipschitz constant of g we get

tL

(
x− y
t

)
+ g(y) ≥ |x− y| t

|x− y|
L

(
x− y
t

)
− C|y|

≥ |x− y| t

|x− y|
L

(
x− y
t

)
− C|y − x| − C|x|

= −C|x|+ |x− y|
(

t

|x− y|
L

(
x− y
t

)
− C

)
.

Now the claim follows from the superlinearity of the Lagrangian L.

Example 4.2.2. Let g : R → R be defined as g(x) = |x| and H : R → R as
H(x) = x2/2. Then the corresponding Lagrangian is, by Example 4.1.3, identical to
the Hamiltonian. Hence, by definition, we have

u(x, t) = inf
{� t

0

1
2
|ẇ(s)|2 ds+ |w(0)|

∣∣∣∣w(t) = x,w ∈ C1

}
,

which is hard to calculate in any obvious way. The Hopf-Lax formula makes the
calculation easy:

u(x, t) = min
y∈R

(
t

2

∣∣∣∣x− yt
∣∣∣∣2 + |y|

)
= min

y∈R

(
1
2t
|x− y|2 + |y|

)
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admits a minimising argument. By differentiating and checking separately the case
y = 0 we get

u(x, t) =


t
2 + |x+ t| for x < −t
1
2tx

2 for x ∈ [−t, t]
t
2 + |x− t| for t < x.

Lemma 4.2.3. For all t > 0 the mapping x 7→ u(x, t) is Lipschitz with constant
Lip(g).

Proof. Let t > 0 and x, x̂ ∈ Rn. Recall that g is assumed to be Lipschitz, and write
Lip(g) = C > 0. Then for z that is a minimiser in Hopf-Lax formula (4.2.4) for (x̂, t)
(see Theorem 4.2.1)

u(x, t)− u(x̂, t) = min
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
− tL

(
x̂− z
t

)
+ g(z)

≤ tL
(
x− (x− x̂+ z)

t

)
+ g(x− x̂+ z)− tL

(
x̂− z
t

)
+ g(z)

= g(x− x̂+ z)− g(z) ≤ C|x− x̂|.

By the same argument u(x̂, t)− u(x, t) ≤ C|x− x̂|.

Next we show the dynamic programming principle for the Hopf-Lax formula.
Lemma 4.2.4 (Dynamic programming principle). For all x ∈ Rn and for every
s ∈]0, t[

u(x, t) = min
y∈Rn

(
(t− s)L

(
x− y
t− s

)
+ u(y, s)

)
.

Proof. Let y ∈ Rn, t > 0, s ∈]0, t[ and select z ∈ Rn such that

u(y, s) = sL

(
y − z
s

)
+ g(z).

Since x− z = x− y + (y − z) = (t− s)x−yt−s + sy−zs , we have by the convexity of the
Lagrangian

L

(
x− z
t

)
≤
(

1− s

t

)
L

(
x− y
t− s

)
+
s

t
L

(
y − z
s

)
,

and therefore

u(x, t) = min
z∈Rn

(
tL

(
x− z
t

)
+ g(z)

)
≤ min
z∈Rn

(
(t− s)L

(
x− y
t− s

)
+ sL

(
y − z
s

)
+ g(z)

)
= (t− s)L

(
x− y
t− s

)
+ min
z∈Rn

(
sL

(
y − z
s

)
+ g(z)

)
= (t− s)L

(
x− y
t− s

)
+ u(y, s).

Since y was arbitrary, the result holds for all y and hence for their minimum.
To check the other direction fix (x, t) ∈ Rn×]0,∞[ and let w be the minimiser

in Hopf-Lax formula:

u(x, t) = tL

(
x− w
t

)
+ g(w).
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Set y = s
tx+(1− s

t )w, from which follow y−w
s = x−w

t and x−y
t−s = (1−s/t)(x−w)

t−s = x−w
t ,

and calculate

(t− s)L
(
x− y
t− s

)
+ u(y, s) = (t− s)L

(
x− w
t

)
+ inf
z∈Rn

(
sL

(
y − z
s

)
+ g(z)

)
≤ (t− s)L

(
x− w
t

)
+ sL

(
y − w
s

)
+ g(w)

= tL

(
x− w
t

)
+ g(w) = u(x, t).

Since u(x, t) is greater than the formula for given y, it is necessarily greater than
the minimum over all y.

By the variational equality (4.2.3) we have for all x ∈ Rn the equation
u(x, 0) = g(x). This is consistent with the Hopf-Lax formula (4.2.1) as shown in the
next lemma.
Lemma 4.2.5. Let u defined by the Hopf-Lax formula (4.2.4). Let us extend it as
u|Rn×{0} = g. Then it becomes a continuous function on Rn × [0,∞[.

Proof. Let us take arbitrary x ∈ Rn. Let t be positive real number. Then

u(x, t) = min
z∈Rn

(
tL

(
x− z
t

)
+ g(z)

)
≤ tL(0) + g(x)

from which by letting t→ 0 we get u(x, 0) ≤ g(x).
To check the other direction we select zt ∈ Rn to minimise

z 7→ tL

(
x− z
t

)
+ g(z)

for t > 0. Now zt approaches x as t → 0. If not, there would be M > 0 such that
there would be arbitrarily small t for which |zt−x| > M , and then by superlinearity
of the Lagrangian L we would have

tL

(
x− zt
t

)
+ g(zt)− g(x) ≥ |x− zt|

|x− zt|
tL

(
x− zt
t

)
− C|zt − x|

which grows to infinity as t vanishes. But this contradicts lim supt→0 u(x, t) ≤ g(x).
By superlinearity of L, there is R > 0 so that for all |z| > R it is true that L(z) ≥ 0.
In particular, L is bounded from below, that is, there is Lmin such that for all z we
have L(z) ≥ Lmin. Thus

u(x, t) ≥ tL
(
x− yt
t

)
− |g(yt)− g(x)|+ g(x) ≥ tLmin − C|yt − x|+ g(x),

which converges to g(x) as t→ 0.

Corollary 4.2.6. Lemma 4.2.4 also applies to the case s = 0. Thus, we have for
all x ∈ Rn and for all s ∈ [0, t[

u(x, t) = min
y∈Rn

(
(t− s)L

(
x− y
t− s

)
+ u(y, s)

)
.

Lemma 4.2.7. The function u defined by the Hopf-Lax formula (4.2.4) is Lipschitz.
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Proof. Let us take (x, t), (x, t̂) ∈ Rn × [0,∞[. Without loss of generality we can
assume t̂ < t. Let z0 be the minimiser in the Hopf-Lax formula (4.2.4). By Lemma
4.2.4, where we select s = t− t̂, we have

u(x, t)− u(x, t̂) = min
y∈Rn

(
t̂L

(
x− y
t̂

)
+ u(y, t− t̂)

)
− min
z∈Rn

(
t̂L

(
x− z
t̂

)
+ g(z)

)
≤u(z0, t− t̂)− g(z0)

= min
y∈Rn

(
(t− t̂)L

(
z0 − y
t− t̂

)
+ g(y)− g(z0)

)
≤(t− t̂)L(0).

For the other direction we use Lemma 4.2.3, which gives us control over the behaviour
of u as x varies. By lemma 4.2.4 with s = t̂ we get

u(x, t)− u(x, t̂) = min
y∈Rn

(
(t− t̂)L

(
x− y
t− t̂

)
+ u(y, t̂)− u(x, t̂)

)
≥ min
y∈Rn

(
(t− t̂)L

(
x− y
t− t̂

)
− C|x− y|

)
= (t− t̂) min

y∈Rn

(
L

(
x− y
t− t̂

)
− C |x− y|

t− t̂

)
,

so we only need to show that the function defined by formula h(z) : = L(z)−C|z| is
bounded from below. This follows from the superlinearity of L by the same argument
as before.

Now we know that the mappings x→ u(x, t) and t→ u(x, t) are Lipschitz with
constants that do not depend on x or t. This finishes the proof of the lemma.

4.3 Existence of a solution

Now we show the existence of a solution to the initial value problem

∂tu+H(Du) = 0 in Rn×]0,∞[ (4.3.1)
u = g on Rn × {0}. (4.3.2)

Lemma 4.3.1. The function u defined by the Hopf-Lax formula (4.2.4) is differen-
tiable almost everywhere on the set Rn×]0,∞[.

Proof. By Lemma 4.2.7, u is Lipschitz continuous and by Rademacher’s theorem,
Theorem 2.2.5, Lipschitz functions are differentiable almost everywhere.

Theorem 4.3.2 (Solving the Hamilton-Jacobi initial value problem). For x ∈ Rn,
t > 0 and u differentiable at (x, t) we have

∂tu(x, t) +H(Du(x, t)) = 0.

Proof. Let t, h > 0 and x, q ∈ Rn. We want to get control of the derivative of u, so
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by Lemma 4.2.4 we calculate

u(x+ hq, t+ h) = min
y∈Rn

(
(t+ h)L

(
x+ hq − y
t+ h

)
+ g(y)

)
= min
y∈Rn

(
hL

(
x+ hq − y

h

)
+ u(y, t)

)
≤ hL (q) + u(x, t)

and therefore
1
h

(u(x+ hq, t+ h)− u(x, t)) ≤ L(q),

from which by letting h→ 0 and relying on the differentiability of u we get

Du(x, t) · q + ∂tu(x, t) ≤ L(q).

Now, since q was arbitrary, by Theorem 4.1.4 we have

0 ≥ ut(x, t) + max
q∈Rn

(Du(x, t) · q − L(q)) = ∂tu(x, t) +H(Du(x, t)).

To show the other direction we can use similar techniques. Let x, t and h be
as before and s = t− h. We still need to control the derivative of u, so let a be a
vector in Rn to be specified later, and let us calculate

u(x, t)− u(a, s) = tL

(
x− z
t

)
+ g(z)− min

y∈Rn

(
sL

(
a− y
s

)
+ g(y)

)
.

Ideally we want to remove g from the equation, so we select y = z, and we also
want x−z

t = a−y
s , which is equivalent to a = s

tx+
(
1− s

t

)
z, providing us with the

estimate

u(x, t)− u(a, s) ≥ hL
(
x− z
t

)
.

Since u is differentiable at (x, t), dividing by h gives

u(x, t)− u(a, s)
h

=
u((x, t)− h(x−zt , 1))− u(x, t)

−h
≥ L

(
x− z
t

)
,

where letting h→ 0 and theorem 4.1.4 provide us with

Du(x, t) · x− z
t

+ ut(x, t) ≥ L
(
x− z
t

)
= max
p∈Rn

(
x− z
t
· p−H(p)

)
≥ x− z

t
·Du(x, t)−H(Du(x, t)).

This completes the proof.

Let us check that the Example 4.2.2 satisfies the Hamilton-Jacobi equation
outside a set of measure zero.
Example 4.3.3. We have the equation ∂tu+ |Du|2/2 = 0 and the mapping u : R×
[0,∞[→ R defined as follows:

u(x, t) =


t
2 + |x+ t| for x < −t
1
2tx

2 for x ∈ [−t, t]
t
2 + |x− t| for t < x

It is easy to check that u is a solution to the Hamilton-Jacobi equation outside
the set {(x, t) ∈ R× [0,∞[ | t = |x|}, which has measure zero.
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In summary, we have:
Theorem 4.3.4. Hopf-Lax formula (4.2.1) defines almost everywhere differentiable
Lipschitz-continuous solution to the initial value problem (1.0.1)–(1.0.2).

5 Uniqueness of solutions by semiconcavity

In section 4 we have shown that there exists at least one solution to the initial value
problem for the Hamilton-Jacobi equation. In this section we study the uniqueness
of solutions.
Example 5.0.5. Consider the initial value problem

u = 0 on Rn × {0} (5.0.3)

∂tu+ |∂xu|2 = 0 in Rn×]0,∞[. (5.0.4)

It is easy to see that for all a ≥ 0 the function u(x, t) = −a2t+ a|x| when at ≥ |x|
and u(x, t) = 0 otherwise, solves this problem.

Hence we need to place more restrictions on g or H to guarantee uniqueness.

5.1 Semiconcavity

We use regularity of initial value g and that of the Hamiltonian H to establish the
semiconcavity (Definition 2.3.10) of u with respect to the variable x.
Lemma 5.1.1. Let g be semiconcave with constant C and u defined by the Hopf-Lax
formula (4.2.1). Then for all t > 0 the mapping x 7→ u(x, t) is semiconcave with
constant at most C.

Proof. Let t > 0 and x, z ∈ Rn. Let C be the semiconcavity constant of g. By
Theorem 4.2.1 and semiconcavity of g we have for the y that minimises (4.2.4) for
u(x, t)

u(x+ z, t) + u(x− z, t)− 2u(x, t)

= min
a∈Rn

(
tL

(
x+ z − a

t

)
+ g(a)

)
+ min
b∈Rn

(
tL

(
x− z − b

t

)
+ g(b)

)
− 2tL

(
x− y
t

)
− 2g(y)

≤g(z + y) + g(−z + y)− 2g(y) ≤ C|z|2.

Strong convexity of H also guarantees semiconcavity of u. To prove this, we
need a lemma that states how the Lagrangian is affected by the strong convexity of
the Hamiltonian.
Lemma 5.1.2. Let H be strongly convex with constant θ and let q1, q2 ∈ Rn be
arbitrary. Then

1
2

(L(q1) + L(q2)) ≤ L
(
q1 + q2

2

)
+

1
8θ
|q1 − q2|2.

Proof. By the definition 2.3.8 of strong convexity, where we set λ = 1/2, we have

H

(
p1 + p2

2

)
≤ 1

2
(H(p1) +H(p2))− θ

8
|p1 − p2|2.
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By Theorem 4.1.4 and Lemma 4.1.2 there exist p1 and p2 such that for j ∈ {1, 2}

L(qj) +H(pj) = qj · pj .

Let us estimate

1
2

(L(q1) + L(q2)) =
1
2

(p1 · q1 + p2 · q2)− 1
2

(H(p1) +H(p2))

≤1
2

(p1 · q1 + p2 · q2)−H
(
p1 + p2

2

)
− θ

8
|p1 − p2|2

≤1
2

(p1 · q1 + p2 · q2)− 1
4

(p1 + p2) · (q1 + q2)+

L

(
q1 + q2

2

)
− θ

8
|p1 − p2|2

=
1
4

((p1 · q1 + p2 · q2)− (p1 · q2 + p2 · q1))+

L

(
q1 + q2

2

)
− θ

8
|p1 − p2|2.

Therefore to prove the lemma it is sufficient to show that

1
4

((p1 · q1 + p2 · q2)− (p1 · q2 + p2 · q1))− θ

8
|p1 − p2|2 ≤

1
8θ
|q1 − q2|2,

which is equivalent to

0 ≤ 1
8θ
|q1 − q2|2 −

1
4

((p1 · q1 + p2 · q2)− (p1 · q2 + p2 · q1)) +
θ

8
|p1 − p2|2.

The above inequality holds, since

0 ≤

(
1√
8θ
|q1 − q2| −

√
θ

8
|p1 − p2|

)2

=
1
8θ
|q1 − q2|2 +

θ

8
|p1 − p2|2 −

1
4
|q1 − q2||p1 − p2|

≤ 1
8θ
|q1 − q2|2 +

θ

8
|p1 − p2|2 −

1
4

(q1 − q2) · (p1 − p2)

by Cauchy-Schwarz inequality 2.1.1. This completes the proof of the lemma.

Lemma 5.1.3. For stronly convex H with constant θ, and for u defined by the
Hopf-Lax formula (4.2.4), we have, for all t > 0, that the mapping x 7→ u(x, t) is
semiconcave with constant 1/tθ.

Proof. By the Lemma 5.1.2 we have

1
2

(L(q1) + L(q2)) ≤ L
(
q1 + q2

2

)
+

1
8θ
|q1 − q2|2,
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which, together with Lemma 4.1.2, implies

u(x+ z, t) + u(x− z, t)− 2u(x, t) = min
a∈Rn

(
tL

(
x+ z − a

t

)
+ g(a)

)
+

min
b∈Rn

(
tL

(
x− z − b

t

)
+ g(b)

)
− 2tL

(
x− y
t

)
− 2g(y)

≤t
(
L

(
x+ z − y

t

)
+ L

(
x− z − y

t

)
− 2L

(
x− y
t

))
≤2t

1
8θ

∣∣∣∣2zt
∣∣∣∣2 =

1
tθ
|z|2,

where y minimises (4.2.4) for u(x, t).

5.2 Weak solutions

The semiconcavity of u is of interest because it is sufficient to guarantee uniqueness of
solutions to the initial value problem (1.0.1)–(1.0.2), under extra conditions. Let us
define the weak solutions to the initial value problem and then show the uniqueness.
Definition 5.2.1. We say a Lipschitz-continuous function u : Rn × [0,∞[→ R is a
weak solution of the problem (1.0.1)–(1.0.2) if and only if all the following hold:

1. for all x ∈ Rn we have u(x, 0) = g(x);
2. for almost all (x, t) ∈ Rn×]0,∞[ we have ut(x, t) +H(Du(x, t)) = 0;
3. there is a constant C ≥ 0 so that for all x, z ∈ Rn and for all positive t it

holds that

u(x+ z, t)− 2u(x, t) + u(x− z, t) ≤ C
(

1 +
1
t

)
|z|2.

To show uniqueness we use mollifications of the solutions. Let uε be the
standard mollification of u in n+ 1 dimensions, see definition 2.4.3. We first prove
the following lemma:
Lemma 5.2.2. Let I be the n × n identity matrix and u a weak solution. Then
there is C ∈ R so that for all x ∈ Rn, ε > 0 and s > 2ε

D2uε(x, s) ≤ C
(

1 +
1
s

)
I.

Proof. By semiconcavity of u and Lemma 2.3.11, we know that for all t > 0 the
mapping

x 7→ u(x, t)− C

2

(
1 +

1
t

)
|x|2
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is concave. By lemmata 2.3.7 and 2.4.7 we have

0 ≤D2

((
C

2

(
1 +

1
s

)
|x|2 − u(x, s)

)
∗ ηε

)
=D2

�
B(0,ε)

((
1 +

1
s

)
C

2
|x− z|2 − u(x− z, s− h)

)
ηε(z, h) d(z, h)

=D2

( �
B(0,ε)

(
1 +

1
s

)
C

2
|x− z|2ηε(z, h) d(z, h)

−
�
B(0,ε)

u(x− z, s− h)ηε(z, h) d(z, h)
)

=

(
C

(
1 +

1
s

)
D2

�
B(0,ε)

1
2
|x− z|2ηε(z, h) d(z, h)−D2uε(x, s)

)
,

from which we obtain by Lemma 2.4.5

0 ≤C
(

1 +
1
s

) �
B(0,ε)

D2

(
1
2
|x− z|2

)
ηε(z, h) d(z, h)−D2uε(x, s)

=C
(

1 +
1
s

) �
B(0,ε)

Iηε(z, h) d(z, h)−D2uε(x, s)

=C
(

1 +
1
s

)
I −D2uε(x, s).

5.3 Uniqueness

Now we prove a uniqueness result for the weak solutions of the Hamilton-Jacobi
equation.
Theorem 5.3.1 (Uniqueness of weak solutions). Suppose the initial condition g is
Lipschitz and suppose the Hamiltonian H ∈ C2(Rn) is convex and superlinear. Then
there is at most one weak solution to the initial value problem (1.0.1)–(1.0.2).

Proof. Let u and ũ be weak solutions and (y, s) ∈ Rn×]0,∞[ be a point where
both u and ũ are differentiable. We write the difference as w = u− ũ. Then by the
fundamental theorem of calculus

∂tw(y, s) = ∂tu(y, s)− ∂tũ(y, s) = −H(Du(y, s)) +H(Dũ(y, s))

= −
� 1

0

d

dr
H(rDu(y, s) + (1− r)Dũ(y, s)) dr

= −
� 1

0

DH(rDu(y, s) + (1− r)Dũ(y, s)) · (Du(y, s)−Dũ(y, s)) dr

= −
� 1

0

DH(rDu(y, s) + (1− r)Dũ(y, s)) ·Dw(y, s) dr.

For all j ∈ {1, . . . , n} we define

bj(y, s) =
� 1

0

∂jH(rDu(y, s) + (1− r)Dũ(y, s)) dr (5.3.1)
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and b = (b1, . . . , bn) : Rn × [0,∞[→ Rn. Thus

wt(y, s) = b(y, s) ·Dw(y, s),

which implies that almost everywhere

∂tw + b ·Dw = 0. (5.3.2)

Let φ : R → [0,∞[ be a smooth function and define v : Rn × [0,∞[→ [0,∞[ as
v = φ(w). Multiplying equation (5.3.2) by φ′(w) gives

0 = φ′(w)(∂tw + b ·Dw) = ∂tv + b ·Dv, (5.3.3)

which holds almost everywhere.
We define bε : Rn × [0,∞[→ Rn by

(bε)j(y, s) =
� 1

0

∂jH(rDuε(y, s) + (1− r)Dũε(y, s)) dr

for all j ∈ {1, . . . , n}. Adding bε ·Dv to (5.3.3), we have

∂tv + bε ·Dv = (bε − b) ·Dv,

which holds almost everywhere. By Lemma 2.2.2 we have

∂tv + div(vbε) = v div bε + (bε − b) ·Dv. (5.3.4)

Since H ∈ C2(Rn), we have

div bε =
n∑
j=1

∂j(bε)j =
n∑
j=1

∂j

� 1

0

(∂jH)(rDuε + (1− r)Dũε) dr (5.3.5)

=
� 1

0

n∑
j=1

∂j ((∂jH)(rDuε + (1− r)Dũε)) dr

=
� 1

0

n∑
j=1

(D∂jH)(rDuε + (1− r)Dũε) · ∂j(rDuε + (1− r)Dũε) dr

=
� 1

0

n∑
j=1

n∑
k=1

(∂j∂kH)(rDuε + (1− r)Dũε)(r∂j∂kuε + (1− r)∂j∂kũε) dr

≤
� 1

0

n∑
j=1

n∑
k=1

C0C1

(
1 +

1
s

)
dr ≤ C

(
1 +

1
s

)

by Lemma 2.1.3, with C0 = maxB(0,Cu) |D2H|, Cu = Lip(u), C1 is the constant C
in Lemma 5.2.2, and s > 2ε. Here we applied Lemma 2.4.6.

Next, let x0 ∈ Rn, t0 > 0, Cu the Lipschitz constant of u and Cũ the Lipschitz
constant of ũ, and define the real number

R = max {|DH(p)| | p ∈ Rn and |p| ≤ max{Cu, Cũ}}

and the ball
B = B(x0, R(t0 − t)).

24



Further, we set the function f : [0, t0[→ R by

f(t) =
�
B

v(x, t) dx

and split its derivative into two parts:

ḟ(t) =
�
B

∂tv(x, t) dx−R
�
∂B

v(x, t) dS.

The proof of the above equality is easy. Now we go back to equation (5.3.4). By
divergence theorem, Theorem 2.2.3,

ḟ(t) =
�
B

∂tv(x, t) dx−R
�
∂B

v(x, t) dS

=
�
B

v div bε + (bε − b) ·Dv − div(vbε) dx−R
�
∂B

v dS

=
�
B

v div bε + (bε − b) ·Dv dx−
(�

B

div(vbε) dx+
�
∂B

Rv dS

)
=
�
B

v div bε + (bε − b) ·Dv dx−
(�

∂B

vbε · ν dS +
�
∂B

Rv dS

)
=
�
B

v div bε + (bε − b) ·Dv dx−
�
∂B

(bε · ν +R)v dS.

By definition of R and bε, and by Cauchy-Schwarz inequality (Theorem 2.1.1), we
have bε · ν +R ≥ 0, and v is positive by definition, so by the previous calculation
and equation (5.3.5) for 2ε < t we have the estimate

ḟ ≤
�
B

v div bε + (bε − b) ·Dv dx ≤ C
(

1 +
1
t

) �
B

v dx+
�
B

(bε − b) ·Dv dx

= C

(
1 +

1
t

)
f +

�
B

(bε − b) ·Dv dx.

We will show that the integral in the above inequality vanishes as ε does. By
definitions of b and bε and the regularity assumptions we know that bε → b as ε→ 0.
To guarantee that the integral vanishes we use the dominated convergence theorem,
Theorem 2.2.1. Since u and ũ are Lipschitz, Lemmata 2.4.6 and 2.2.4 with the
continuity of the derivate of H imply that b and bε are bounded. Since we integrate
(x, t) over a compact set, the gradient of v is bounded, since φ is continuously
differentiable and w is Lipschitz, and v = φ(w). So we have by Cauchy-Schwarz
inequality, Theorem 2.1.1, that our integrand is bounded, and therefore for almost
every t ∈]0, t0[

ḟ(t) ≤ C
(

1 +
1
t

)
f(t).

Let ε be positive but less than t. So far, the function φ had been arbitrary.
Now we set φ to be 0 when its argument is at most ε(Lip(u) + Lip(ũ)), and positive
elsewhere. Since for all z ∈ Rn u(z, 0) = g(z) = ũ(z, 0), we have

v(z, ε) = φ(w(z, ε)) = φ(u(z, ε)− ũ(z, ε)) = 0
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because

|u(z, ε)− ũ(z, ε)| ≤ |u(z, ε)− u(z, 0)|+ |u(z, 0)− ũ(z, 0)|+ |ũ(z, 0)− ũ(z, ε)|
= |u(z, ε)− u(z, 0)|+ |ũ(z, 0)− ũ(z, ε)|
≤ ε(Lip(u) + Lip(ũ)).

Now by definition of f we have f(ε) = 0 and by Grönwall’s inequality, Theorem 2.2.6,
for all r ∈]ε, t[ it holds that

f(r) ≤ exp
(� r

ε

C

(
1 +

1
s

)
ds

)
f(ε) = 0,

which by our selection of φ indicates that for all x in B

|u(x, r)− ũ(x, r)| ≤ ε(Lip(u) + Lip(ũ)),

which implies that u and ũ are identical on the set B × {r}. Since t0 > t > r, we
can’t directly reach the point (x0, t0), but we do find r arbitrarily close to t0 and
u− ũ is continuous, so we have u(x0, t0) = ũ(x0, t0).

Combining Theorems 5.3.1, 5.1.1 and 5.1.3, we obtain the following theorem.
Theorem 5.3.2 (Hopf-Lax formula as weak solution). Let H : Rn → R be twice
continuously differentiable, superlinear and convex, and let g : Rn → R be Lipschitz
continuous. Suppose also that g is semiconcave or H strongly convex. Then u : Rn ×
[0,∞[→ R,

u(x, t) = min
y∈Rn

(
tL

(
x− y
t

)
+ g(y)

)
for positive t and u(x, 0) = g(x) for the initial condition, is the unique weak solution
of the initial value problem (1.0.1)–(1.0.2) for the Hamilton-Jacobi equation.

Example 4.2.2 provides the unique weak solution to initial value problem
for the Hamilton-Jacobi equation with the initial condition g(x) = |x| and the
Hamiltonian H(x) = |x|2.
Example 5.3.3. By Example 2.3.9 the Hamiltonian x 7→ |x|2 is strongly convex,
so by Theorem 5.3.2, Example 4.2.2 provides a unique weak solution. In particular,
the solution is semiconcave for all positive t with respect to variable x with constant
C(1 + 1/t), where C does not depend on t.

6 Generalisations

The current work could be generalised to several directions. Another perspective on
Legendre transformation can be found in e.g. [17], sections 12 and 26, and [9].

Hopf-Lax formula and thereby existence of solutions can be extended to
Hamiltonian that not only depends on the derivative, but also the function u itself;
see e.g. [4].

Hamilton-Jacobi equation admits a more general notion of solution, that is,
viscosity solution, which applies to more general Hamilton-Jacobi-Bellman equation
by Theorem 2 in chapter 10.3 of [8]. It was first developed by Crandall and Lions
in [7]. We refer to [3] for the connections between optimal control and viscosity
solutions of Hamilton-Jacobi-Bellman equations. Generalisations to other directions
and several applications can be found; see e.g. [2].

We refer to [6] for detailed discussions on the semiconcave functions, their
generalisations and also on their applications.
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