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ABSTRACT

The fibrous network of cardboard samples was studied with the aid of to-
mographic imaging. For analysing the samples a method of determing the
number of contacts between fibres in a planar fibrous network was intro-
duced. The model is based on the fact that deposited paper-like structures
tend to have predominantly planar fibre orientation. With this assump-
tion an expression of the mean segment length was derived in terms of the
average shortest path along fibres through the sample in the out-of-plane
direction.

The density profiles of cardboard samples were analysed by determing
four quantitative features, the solids content, standard deviation of the
solids content, slope and curvature. All the samples had a slope in the
same direction, i.e., they were denser at the bottom surfaces. Densification
seems to occur at both surfaces, as the curvature was larger for samples
with higher solids content.

Our measurements indicate that contact densities of the cardboards, i.e.,
the number of fibre-fibre contacts per unit volume are proportional to the
square of the solids content. This is in agreement with earlier models for
three-dimensional fibre networks.
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1. INTRODUCTION

The initial motivation for this Master’s Thesis was to investigate how to-
mography could aid studies of paper-like materials. Tomography is a rea-
sonably new tool for studying fibres and fibre networks, probably owing
to the recent improvement in tomographic imaging and the capability to
image paper-like materials with sufficient spatial resolution.

The research was focussed on a set of 8 cardboard samples. Although
it is widely known that the out-of-plane strength usually correlates quite
well with cardboard density [12, 14], there were samples that deviated
quite noticeably from this trend. The main purpose of this work was to
get insight into these cases. The out-of-plane strength of cardboard is an
important property in many cases of end use. Delamination can occur, for
example, at glue seams in packaging and in the coating process. Stresses
can also otherwise be subjected to cardboard in the out-of-plane direction.
It is also in the best interests of both the consumer and the manufacturer to
reduce production costs by using minimal amounts of raw materials while
maintaining the desired strength properties.

The process of forming paper-like materials starts with a suspension of
water, fibres and possible additives and fines. The initial solids content
of the suspension is less than one percent. In this concentration the solids
move around quite freely in the suspension. After the initial drainage of
water, the solid content increases to about 20 percent [14]. After drainage,
the fibres are more or less in place and cannot move freely. Thereafter fur-
ther water removal takes place by wet pressing and drying. The stochastic
nature of the forming of paper lies in the initial drainage. After the initial
drainage, fibrous networks formed this way have predominantly planar
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orientation. This layered planar structure of the final product has led to
the primary description of the paper structure as a two-dimensional net-
work [3].

Based on the assumption that cardboard consists of stiff fibres that all have
a planar orientation, we derived an equation for the total number of con-
tacts in a sample. The fibre network model used here is strongly based
on random fibre networks that follow a Poisson process [3]. The average
segment length between two adjacent fibre-fibre contacts was determined
by applying a distance transform on a tomographic image of the sample,
from which we determined the shortest paths between two parallel planes
along the fibres in the sample. From this data, the average segment length
of the network was derived assuming that sections of the path, which are
in the thickness direction of the sample, only appear at fibre-fibre contacts.
Four sets of samples were imaged with high resolution micro-computed
tomography (micro-CT) using two different magnifications.

A method for binarizing the tomographic images was developed based on
measured values for the area density of the samples, which was concluded
to be the most reliable measurement on the cardboards. By assigning the
solid content of the image with a fixed density, the area density of the
samples could be expressed as a function of the threshold gray value. The
same tomographic images were also used to determine the density pro-
files of the samples. From these density profiles four quantitative values
were determined. These were the mean solids content, standard deviation,
slope and curvature.

Our measurements indicate that the contact density, i.e., the number of
contacts per unit of volume, is proportional to the square of the solids
content of the network. Earlier theoretical models for random fibrous ma-
terials support this result.

It seems that the relation between solids content and contact density is
governed by fibre properties alone. Different additives may increase the
number of contacts formed in the papermaking process, but not without
increasing at the same time the density. From the density profiles we could



1. Introduction 3

conclude that the bottom surfaces of the samples were always denser than
the average density. Moreover, densification seems to occur at both sur-
faces.

The basics of tomography is covered in chapter 2. This includes the ba-
sic principles of tomography and a quality-based reasoning for the used
parameters in the measurements. In chapter 3 the properties of a two-
dimensional stochastic network is explained, and the theory is expanded
to include three-dimensional networks. The model for determining the
contact density from a tomographic image is introduced in chapter 4, and
the required image analysis is described in chapter 5. The measurements
preformed and their results are reported in chapter 6. Final conclusions
and an evaluation of the new method for determining the density of fibre-
fibre contacts are given in chapter 7.



2. X-RAY COMPUTED TOMOGRAPHY

X-ray computed tomography (x-ray CT) is an imaging method, where
the structure of the sample is derived from x-ray radiographs taken from
many different angles. Although the mathematics required was estab-
lished as early as 1917 by Radon, the first practical use of the method
was introduced much later. The first commercial device was developed by
Hounsfield in the early 1970’s and tomography soon became a frequently
used imaging method in medical science. Only recently has the resolution
of CT scanners become good enough to be suitable for imaging paper and
cardboard. Scanners with a resolution in a µm scale are called micro-CTs
or µCT. This chapter is intended to clarify the function of µCT devices and
to give reason for the imaging parameters used.

2.1 X-ray imaging

Generally desktop µCT devices consist of an x-ray source, a rotating sam-
ple holder and a detector fig. (2.1). By rotating the sample holder, ra-
diographs of the object can be taken from different angles. From these
radiographs, a reconstruction of the object is made.

2.1.1 Generation of X-rays

In all desktop CT scanners, the beam is produced with an x-ray tube. In
the simplest form, an x-ray tube consists of a cathode filament which emits
electrons that are collected at an anode plate, fig. (2.2). When electrons
strike the anode plate they deaccelerate, producing Bremsstrahlung and
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Fig. 2.1: The basic function of a CT device. Radiographs are taken of the sample
from different angles. The three dimensional structure of the sample is
reconstructed from these radiographs.

characteristic radiation depending on the anode material. The x-ray tube
emits photons in all directions, so a pinhole or collimator is needed to nar-
row the beam. This means that most of the emitted x-rays never encounter
the imaged sample.

2.1.2 Interaction with matter

X-ray imaging is based on x-ray attenuation. When monochromatic x-rays
pass trough a homogeneous object, the intensity of the beam follows the
Beer-Lambert law

I = I0e−µx, (2.1)

where I0 is the unattenuated beam, x the thickness of the object and µ

the linear attenuation coefficient. Rewriting eqn (2.1) in terms of the mass
attenuation coefficient µ/ρ

I = I0e−
µ
ρ ρx. (2.2)
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Fig. 2.2: Emitted electrons from the filament are accelerated towards the tar-
get anode. When they strike the target, they interact with the mate-
rial and deaccelerate, producing a spectrum of x-rays that consists of
Bremsstrahlung and characteristic peaks depending on the material of
the anode.

The mass attenuation coefficient is a material property that depends strongly
on the atomic number Z and the wavelength of the x-ray, λ.

The attenuation of x-rays interacting with the specimen is primarily gov-
erned by three effects: photoelectric absorption, coherent scattering and
Compton scattering. The probability of such events happening all depend
strongly on the atomic number of the material and the energy of the x-ray.
Thus, for a polychromatic beam, attenuation has to be integrated over the
energy spectrum,

I =
∫

I0(E) e−
µ(E)

ρ ρx dE. (2.3)

However, calculating such integral is usually quite problematic. For prac-
tical purposes, an effective mass attenuation coefficient is used. This may
lead to some artefacts in the reconstruction such as beam hardening (low-
energy x-rays are more likely to be absorbed and cause the energy spec-
trum to ’harden’ as the beam passes through the specimen). The use of
an effective mass attenuation coefficient also gives reason for why it is im-
portant to image samples with the same parameters if any comparison is
going to be made.
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2.1.3 Imaging and reconstruction

For the sake of simplicity, let us assume a parallel monochromatic beam
passing through a sample. We can rewrite eqn (2.2) in a differential form,
i.e., the attenuation that occurs within a small thickness element ds is given
by

dI
I

= −µ

ρ
ρ ds = − f (x, y)ds. (2.4)

Now for any slice, a row in the radiograph represents a projection func-
tion, i.e., an integral over lines trough the sample

P(t) =
∫

line(t)
f (x, y)ds. (2.5)

Now consider a coordinate system that is a rotated with respect to the
(x, y) one, [

t
s

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
. (2.6)

For a rotation by angle θ the projection function now becomes

Pθ(t) =
∫ ∞

−∞
f (t, s)ds. (2.7)

The Fourier transform of the projection data for one slice at angle θ can be
written as

Sθ(ω) =
∫ ∞

−∞
Pθ(t)e−i2πωt dt. (2.8)

Substituting Pθ(t) of eqn (2.7) and transforming into the (x, y) coordinate
system by the relation eqn (2.6) we find that

Sθ(ω) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2πω(x cos θ+y sin θ) dxdy, (2.9)

which is conveniently just the two dimensional Fourier transform of a
function f (x, y)

F(u, y) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2π(ux+vy) dx dy, (2.10)
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Fig. 2.3: Sample and its two projections, one at angle 0, P0(t), and another at angle
θ, Pθ(t).

with the constraints u = ω cos θ and v = ω sin θ, which in this case de-
scribe the line of the projection. So for every Fourier transform of projec-
tion Pθ(t) we fill the frequency domain at angle θ. Consequently, collecting
an infinite number of projection data at different angles would result in a
complete Fourier transform of the object.
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2.1.4 Filtered backprojection

The most commonly used reconstruction method for tomographic images
is filtered backprojection or some algorithm based on it. Although most
desktop micro-CTs use cone beam geometry, the mathematics involved is
excluded here. In a fan beam geometry one may simply rearrange the
beams so as to get an approximation of a parallel beam geometry [9, 17].
Cone beam reconstruction is based on the approximation that by applying
some corrections to the projected data based on the beam geometry, fil-
tered backprojection can be used to acquire the reconstructed image [4, 9].

The inverse Fourier transform of F(u, v) is given

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(u, v)ei2π(ux+vy) du dv. (2.11)

Expressing this in polar coordinates by making the substitution u = ω cos θ

and v = ω sin θ, eqn (2.11), and by substituting the Fourier transform of
the projection at angle θ, Sθ(ω), for the Fourier transform F(ω, θ), one can
express the transform in the form

f (x, y) =
∫ π

0

∫ ∞

0
Sθ(ω)|ω|ei2πωt dω dθ. (2.12)

By substituting eqn (2.8) for Sθ(ω) and rearranging, we find that

f (x, y) =
∫ π

0

∫ ∞

0
Pθ(t′)Gθ(t− t′)dt′ dθ, (2.13)

where Gθ(t− t′) =
∫
|ω|ei2πω(t−t′) dω. This is the underlying idea of the

filtered backprojection. A filter, Gθ, is applied to the projections Pθ. The
result is ’smeared’ or backprojected onto the image as in fig(2.4) . The
reconstructed image consists of contributions of this backprojection from
each angle θ.

2.2 Xradia Micro-XCT-400

The micro-CT device for the measurements was the Xradia Micro-XCT-
400. The device is a quite flexible micro-CT system with a large range of
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(a) 2 projections (b) 10 projections

(c) 30 projections (d) 181 projections

Fig. 2.4: A slice of a ruby ball, reconstructed by using a varying number of pro-
jections.

capabilities. The device uses an standard x-ray tube with an acceleration
voltage up to 90 kV. It is equipped with four magnification objectives:
0.5x, 4x, 10x and 20x. The flexibility of the system enables studies of how
different parameters affect the resulting image quality as well as optimiza-
tion of parameters for a specific material.
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2.3 Image quality and parameters

For a system as flexible as the one used, it is important to know what pa-
rameters affect the quality of the resulting image. In medical science one
has to take into account that the dosage received by the patient must be
kept low. For use in material science this is not the case. Three parame-
ters were optimized: acceleration voltage, exposure time and the number
of projections. The recommended settings for the geometrical parameters,
i.e., source and detector distance were assumed optimal. The image qual-
ity tests were done with a magnification of 10x. For the tomographic im-
ages using the 4x objective, the same acceleration voltage was used. The
exposure time was adjusted so as to maximize the image quality while not
overexposing the CCD-chip, and the number of projections was chosen
based on the experimental results from the 10x measurements.

The imaging parameters used for the chosen samples were determined
experimentally by taking images with different settings. The measure of
quality used was the contrast to noise ratio defined as

CNR ≡ SA − S0

σ0
, (2.14)

where SA and S0 are the gray scale values of the signal and void, respec-
tively, and σ0 is the standard deviation of the void.

2.3.1 Tube voltage

A series of x-ray radiographs of a cardboard was taken with the different
acceleration voltage, varying from 20 kV to 90 kV with a constant power
of 4 W. No measurements were done with a voltages below 20 kV because
of the limitation in the maximum current. The sample was placed so that
a half of the field of view was screened by it. All radiographs were taken
without moving the sample between imaging. The values for determining
the CNR were measured from the same section (region of interest, ROI) of
the images.
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Fig. 2.5: Absorption coefficient of the seclected ROI as a function of tube voltage.
The higher the accelration voltage, the higher the probability for photon
transmission through the sample, which results in a smaller absorption
coefficient.

2.3.2 Exposure time

Measurements were done in the same way as for the tube voltage, but by
varying the exposure time in the range of 30 seconds to 10 minutes, i.e.,
from 6% to 80% of the capability of the CCD.

The probability of a photon to be detected is governed by two probabili-
ties. The number of photons at energy ē emitted by the x-ray source fol-
lows a Poisson distribution [8] with some mean value λ. The probability
that an emitted photon reaches and is counted by the detector is ρσ, where
ρ is the transmittance and σ is the detector efficiency. Combining these
probabilities, Poisson and binomial, it can be shown that the probability
P(x) that in one unit time exactly x photons are counted by the detector is
given by

P(x) =
(λρσ)x

x!
e−λρσ, (2.15)
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i.e., a Poisson distribution with the mean λρσ and a standard deviation
of
√

λρσ. This means that our measure of quality, eqn (2.14), behaves as
CNR ∝

√
λρσ. The result of this measurement is shown in fig. (2.6).

Fig. 2.6: CNR2 as a function of exposure time (counts). The results of the mea-
surements show that the square of the CNR is linearly dependent on the
number of counts. The error in the lower counts is likely to be caused by
inproper warmup of the source.

2.3.3 Number of projections

The effect of the number of projections was examined by taking a reference
image with 1850 projections. The radiographs were exported and new
data sets were made by using a fraction of the original radiographs. All
the tomographic images were reconstructed with the same parameters. A
ROI was made for measuring the signal by combining thresholded images
of the different reconstructions. The threshold gray value was chosen large
enough to be sure that the remaining voxels represent the signal. The void
was measured by defining 5 areas of empty space within the sample, and
using the same ROI for every image.
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Fig. 2.7: CNR as a function of the number of projections. The measurements de-
mostrate that after a sufficient number of projections the quality of the
reconstructed image does not seem to improve notably.

2.3.4 Chosen parameters for imaging cardboard

According to the manufacturer, the optimum operating power for the x-
ray tube is 4 W. As seen in fig. (2.5) the absorption coefficient of the card-
board sample increases with decreasing acceleration voltage, therefore an
acceleration voltage of 20 V was used. The exposure time and number of
projections was chosen based on three factors, viz., the manufacturer rec-
ommends not to use more than 50 % of the capability of the CCD-chip,
the quality does not seem to improve notably by increasing the number of
projections beyond 900, and for practical reasons the total scanning time
was desired to be less than 24h. The exposure time was chosen to be 90 s
and 4 projections were taken per degree of rotation resulting in a total of
745 projections.



3. STOCHASTIC FIBRE NETWORKS

The actual forming of a paper like fibrous material from an aqueous sus-
pension to a final product is really a three dimensional process. How-
ever, analyzing the final product one may easily notice that most papers
have a strongly two dimensional, layered structure [3]. Owing to this, the
standard way to approach the structure of paper like materials is by con-
sidering it a stack of two dimensional random fibre networks [11]. The
statistical geometry of a strictly two dimensional network is quite well
understood. Corte and Kallmes defined such a network to be one where
less than 1% is covered by more than two fibres [10]. In this chapter, the
geometry of two dimensional stochastic fibre networks is described and
some generalizations for three dimensional networks are introduced.

3.1 Two dimensional random fibre networks

3.1.1 Coverage

The standard model for describing a two dimensional random network of
fibres is by assuming that the fibre centres are positioned according to a
Poisson process and the fibre orientation has a uniform distribution [3].
To explain this let us consider an area A, where N f fibres are dropped
such that the distribution of the centres of mass of the fibres and of their
orientation are uniform. Now, for any point in area A, the probability that
exactly n fibres cover that point follows the binomial distribution,

Pc(n) =
(

Nf

n

)
(p)n(1− p)Nf−n, (3.1)
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where p is the probability for a single fibre to cover the chosen point. If
Nf is large, p is small and Nfp is of moderate magnitude, the distribution
reduces to the Poisson approximation of the binomial distribution,

Pc(n) ≈
(Nfp)ne−Nf p

n!
. (3.2)

The quantity Nfp is called the coverage of the fibre network, i.e., the aver-
age number of fibres covering a point. For a random network of this type
with mean coverage of c, the probability of finding coverage c = n is [3]
given by

Pc(n) =
c̄n

n!
e−c. (3.3)

The mean coverage can be expressed in form of the grammage, i.e. the
area density of the network, and fibre coarseness, i.e. the weigth per fibre
length, or in terms of the projected fibre area,

c̄ =
βwf

δ
=

Nfwflf
A

, (3.4)

where β is the grammage, wf the fibre width, δ the fibre coarseness and f
the fibre length.

3.1.2 Number of crossings per fibre

For a two dimensional randomly deposited network of long straight fi-
bres with an uniform distribution of orientation, Corte and Kallmes [10]
derived the total number of crossings in an area A containing Nf fibres
(nc).

For any given fibre, the probability that a deposited fibre intersects it is
given by

Pint =
l2
f

πA

∫ π

0
|sinθ|dθ =

2l2
f

πA
. (3.5)

Considering that the fibre cannot intersect itself, the number of events is
then 1/2Nf(Nf − 1). If the number of fibres is large, Nf >> 1, the number
of intersections is

nc = Pint
Nf(Nf − 1)

2
=

(Nflf)2

πA
. (3.6)
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Assuming that an intersection is always between two fibres, we find for
the number of crossings per fibre (ncf) the result

ncf =
2Nfl2

f
πA

. (3.7)

3.1.3 Segment length

Now consider a Poisson process along a fibre. For a fixed interval at length
x, and the mean number of crossings per unit length µ, the probability of
finding k crossings in the interval is [3] given by

P(k) =
(µx)k

k!
e−µx, k = 0, 1, 2, . . . . (3.8)

The probability of finding zero crossings in the interval is then

P(0) = e−µx, x > 0. (3.9)

Normalizing, we find that the probability of finding a gap of length x along
a fibre with a mean gap length of µ−1 is given by

Plength(x) = µe−µx, x > 0. (3.10)

If a fibre has a total of ncf intersections with other fibres, it is divided into
ncf + 1 segments. Using eqn (3.7), we find that the average segment length
lseg is given by

lseg =
lf

ncf + 1
=

lf
2(Nflf)2

πANf
+ 1

. (3.11)

If Nfl2
f >> A, i.e., the network is dense enough this can be expressed in

the form
lseg =

πA
2Nflf

. (3.12)
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3.2 Three dimensional random fibre networks

In a three dimensional network, all the crossings that appear in the projec-
tion of the network to the xy-plane are not connected, as distances in the
third dimension between the fibres disappear. In eqn (3.6) the total num-
ber of contacts was determined by counting all the intersections between
the fibres. If a network has local coverage 3 or greater, the assumption
overestimates the number of contacts. As an upper bound, we consider
the case where the fibres are flexible enough so that every possible contact
is made.

For every crossing with a coverage of two, the fibres have a total of one in-
tersection and there is one contact. For a crossing with coverage of three,
the fibres would have a total of three intersections and two contacts. Cor-
respondingly for a crossing with coverage of n, there is a total (n

2) inter-
sections and n− 1 contacts. We thus find that the number of contacts for
flexible fibres is given by

nb = aflexnc aflex =
∞

∑
2

Pc(x)
1− Pc(0)− Pc(1)

x− 1
(x

2)
, (3.13)

which can be written in the form (appendix (A.1))

nb = aflexnc aflex =
2

ec − c− 1
[Ei(c)− ln(c)− c− γ] , (3.14)

where Ei(x) is the exponential integral and γ is the Euler-Mascheroni con-
stant. This upper limit for the fraction of intersections that are in contact is
shown in fig. (3.1). As expected, the larger the coverage the more the net-
work deviates from the two dimensional approximation (mean coverage
∼ 0.5).

For stiffer fibres, only a fraction of the crossings are in contact. We denote
the fraction of actual contacts among the crossings in the projection by a
constant a as in ref. [20]. In this way we find for the number of contacts in
three dimensions the result

nb = anc a ≤ aflex. (3.15)
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Fig. 3.1: aflex as a function of mean coverage.

As explained in [13], for fibre networks of low coverage, the constant a
only affects the frequency of the Poisson distribution. As the thickness
of the network increases, it is no longer reasonable that the contacts are
uncorrelated. This will certainly contribute to some error in determining
the mean segment length, but owing to the lack of any other reasoned
length distribution, we will use the one described in eqn (3.10). Using
the same assumptions as in eqn (3.12), we can derive the average segment
length for a three dimensional network such that

lb =
1
a

πA
2Nflf

. (3.16)



4. SHORTEST PATH ANALYSIS

In this chapter expressions for the average segment length and number of
contacts for a network of stiff planar fibres are derived by considering the
shortest path along fibres between two parallel planes in a three dimen-
sional network.

4.1 Three dimensional fibre network

The total mass of a sample of cardboard is the sum of the masses of all
fibres (assuming that there are no other solid components). On the other
hand, we can calculate the mass of the cardboard via its density. In this
way we find that

Nfmf = Vφsρf, (4.1)

where Nf is the number of fibres, mf the average mass of a fibre, V a control
volume, φs the fraction of solids contents and ρf the density of the cell-wall.
The average number of fibres in a control volume is now given by

Nf =
Vφsρf

mf
=

Vφs

Aflf
, (4.2)

where Af is the average cross-sectional area of the fibres and lf the average
fibre length. As in eqn (3.11), the number of contacts (nbf) on a fibre can be
approximated such that

nbf =
lf
lb
− 1, (4.3)

where l is average segment length, i.e., the average distance between ad-
jacent contacts. Supposing that a contact is always between two fibres, we
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find that the total number of contacts in a control volume is given by

nb =
1
2
(

lf
lb
− 1)

Vφs

Aflf
. (4.4)

If the fibres are sufficiently long compared to the distance between adja-
cent contacts, we can simplify this expression such that

nb
∼=

1
2

Vφs

lbAf
. (4.5)

For small sample sizes the standard deviation of the grammage of the anal-
ysed samples is large compared to the grammage difference between dif-
ferent samples. With these uncertainties in the calibration (for the density)
of the gray scale values, we get quite large confidence bounds for both the
solids contents and the average segment length. These uncertainties mean
that direct comparison of results for different samples does not lead to a
conclusive outcome. We therefore define a new parameter, the ratio of seg-
ment length to density, that seems to depend much less on the threshold
gray value for solid used in the calibration.

Now we can define a parameter k such that

k ≡ φslb
z0

=
1
a

πAf

2dz0
, (4.6)

where z0 is an effective fibre width. It is evident from fig. (4.1) that this
constant, when determined from a tomographic reconstruction of a sam-
ple of cardboard as in section 4.2, depends much less on the threshold used
in the segmentation of the image than either lb

z0
or φs. With the introduc-

tion of parameter k and dividing eqn (4.5) by V we can express the contact
density as

nb

V
∼=

1
2Afz0k

φ2
s . (4.7)

4.2 Model for paths along fibres in a fibre network

It is well known that in paper like deposited structures the fibres have pre-
dominantly planar orientation [14]. We can thus to a good approximation
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Fig. 4.1: lb
z0

plotted against φs for the tomographic data of sample 1. The five
distinguishable groups of data are the results for different threshold
gray scale values. The normalized standard deviation for k is about 1%
(dashed line) which is less than a half of that for either φs or lb

z0
.

assume that cardboard consists of stiff fibres that all lie along the xy-plane.
The quintessential idea is that along a path through fibres in such a fibre
network, the only z-displacements of the path appear at fibre-fibre con-
tacts.

A contact at point i will lead to a point in the next fibre directly below the
contact by an amount of zi. Adjacent contacts are separated by a horizontal
distance li (fig. (4.2)). The 3-d distance between two neighbouring contacts
is thus given by

pi =
√

z2
i + l2

i . (4.8)

To reach the target plane, we need to have a total z-displacement of d,
where d is the distance between the two planes. The total displacement in
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Fig. 4.2: If the z-orientation in the fibre network is negligible, the only displace-
ments in the z-direction along a path through fibres appear at fibre-fibre
contacts.

the z-direction is the sum of the displacements at contacts,

d = ∑
n

zi = nzave, (4.9)

where n is the number of contacts along the path and zave is the average
z-displacement at a contact. The total path length is given by

p = ∑
n

pi = npave (4.10)

Combining eqns (4.9) and (4.10), we find that

p
d
=

pave

zave
=

∑i

√
l2
i + z2

i

d
. (4.11)

Now the problem is to derive the average distance between adjacent con-
tacts, lave, from the measurable parameters pave and zave.

For each contact, we have assumed that the adjacent contact along a path
is always on the other side of the fibre. For a uniform distribution along
the length between adjacent contacts on one side of the fibre, the expected
value for the distance to the nearest contact is lb1/4 with lb1 the distance
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between the adjacent contacts on the opposite side of the fibre. As de-
scribed in sec. 3, the distribution of fibre segment lengths follows a Pois-
son process and is thus given by eqn.(3.10).

The probability that a contact is located between two adjacent contacts on
the opposite side separated by distance lb1 is proportional to the distance
lb1. For long fibres we find that the probability for a point along the fi-
bre to be located between two contacts on the opposite side separated by
distance lb1 is given by

P(lb1) =
1

lb1
2 e
− lb1

lb1 lb1, (4.12)

where lb1 is the mean distance between contacts on one side. Assuming a
constant contact depth, z0, we find that the expected value for pi, i.e. pave,
is given by

EV(pi) =
∫

P(lb1)pi(lb1)dlb1 =
∫ 1

lb1
2 e
− lb1

lb1 lb1

√
(

lb1

4
)2 + (z0)2 dlb1.

(4.13)

With the substitution y = lb1
z0

we can write eqn (4.13) in the form

EV(pi)

z0
=
∫ z2

0

lb1
2 e
− z0y

lb1 y
√
(

y
4
)2 + (1)2 dy. (4.14)

The solution to this integral is shown in appendix A.2 and is of the form

EV(pi)

z0
(x) =

π

2

(
H1(t)−

t
2

(
H0 − H2 +

t
2
√

πΓ(5
2)

)
− tN2(t)

)
, (4.15)

where Hi(βµ) are i order Struve functions and Ni(βµ) i order Neumann
functions and t = 4 z0

lb1
.

Assuming that all contacts can be divided into contacts on either the top
or the bottom side of the fibre, we find that the number of contacts on one
side of the fibre is

none side =
lf

lb1
− 1. (4.16)
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Assuming that, on the average, fibres have an equal amount of contacts on
both sides, we find that

nbf =
lf
lb
− 1 = 2none side = 2

(
lf

lb1
− 1
)

. (4.17)

Solving for lb and assuming long fibres we find that the average segment
length for the fibre network is

lb ∼=
1
2

lb1. (4.18)

4.3 Non-planar fibre networks

If the fibres of the network are flexible or have a non-zero orientation in the
z-direction, segments of fibres are not strictly planar. Let us assume that
this can effect be described by a mean segment angle in the z-direction.
This means that, assuming that the shortest path does not contain any
backward going segments, the z-displacement along the path is larger
than z0. This effective z-displacement fig. (4.3) can be expressed in the
form

zi,eff = li sin α + z0 cos α. (4.19)

The expected value for this effective displacement using the same segment
length distribution as in eqn (4.12) is given by

EV(zeff) =
∫ 1

lb1
2 e
− lb1

lb1 lb1(
lb1

4
sin α + z0 cos α)dlb1 = lb1

sin α

2
+ cos αz0.

(4.20)

When determining p
d from the measured paths, we are actually measuring

pave
zeff

. Rearranging we find that

pave

z0
=

pave

zeff
(cos α +

lb1 sin α

2z0
). (4.21)

This results in an overestimation of the density of contacts if the fibrous
network consists of flexible fibres or if the fibres have an orientation in
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Fig. 4.3: Z-displacement in the case of a flexible fibre.

the z-direction, see fig. (4.4). There are many inaccuracies in this kind of
estimation, e.g., it is not reasonable to assume that the shortest path will
continuously propagate towards the target plane. If a contact leads to an
inclined fibre then on the average a half of the nearest contacts lie in a
direction opposite to the propagation direction. Even so, assuming that
this kind of average angle approach is valid, it is not clear how the angle α

could be determined.
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Fig. 4.4: Overestimation of the contact density as a function of the ratio p/d when
the fibres are assumed stiff and planar if the segments are inclined by an
angle of 5o, 10o and 15o. If the fibres are flexible or have an orientation
in the z-direction the assumption that the only z-displacements of the
shortest path appear at fibre-fibre contacts does not apply.



5. IMAGE PROCESSING

Reconstructed tomographic images may not be as such suitable for analy-
sis. The sample holder is for instance always a bit inclined and the card-
board sample is therefore not straight. Raw tomographic images are also
often quite noisy, and this can lead to inaccurate analysis if not dealt with.
One of the more problematic challenges when using tomographic images
is the calibration of gray scale values for getting the true material density.
There are various factors that contribute to this problem including use of
polychromatic light, source stability and various artefacts. This is a known
problem in x-ray tomography. For instance, in medical science it is com-
mon to use a phantom in tomographic imaging, i.e., an object with known
material densities and absorption properties similar to those of the sam-
ple analysed. The image of the phantom can be used to more accurately
identify material components in the reconstructed image of the sample.
Using a phantom in the case of paper-like materials is a method worth
considering in the future, because it could easily result in a more accurate
estimation of the density of the imaged samples.

5.1 Image analysis

The reconstructed tomographic images were filtered for noise reduction
using a method based on the variance of the local gray scale values [5].
This method measures first the standard deviation (variance) of gray scale
values in a region of chosen size to be filtered. The performed smooth-
ing of that region depends on the measured variance so that, if it is large
compared to a set threshold that corresponds to the variance related to
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random noise, the smoothing of gray scale values is small, and vice versa.
The result of this kind of filtering is that edges do not become blurred, but
the noise in homogeneous areas is reduced. The filtered images were ro-
tated manually so that the imaged cardboard lay in the xy-plane. From
the processed image a region was cropped from the middle of the sample
so that the selection did not include any cut marks, bended edges or other
unwanted features.

The top and bottom surfaces were determined using the Carpet program
[1], which is a program that lets a flexible surface ascend on the image.
To reduce the effect of pinholes the parameters, viz., driving force and
surface tension of the surface were chose so that the ascending plane was
relatively stiff. The number of iterations was chosen large enough to make
sure that the carpet will find its equilibrium position. The planes, in which
between the image analysis was made, were chosen by averaging the sur-
face determined using the carpet program. These planes are specified in
tables C.1 and C.2.

5.2 Calibration

For calibrating the gray scale values of the tomographic images, we con-
cluded that the most reliable measurement on the samples is their area
density, more commonly known as the grammage. The underlying idea is
that, using grammage as the reference value, we can assign a real density
to each gray scale value. Grammage (ρA) is defined as the mass of a square
meter of cardboard,

ρA =
m
A

=
Vsρf

A
, (5.1)

where Vs is the total volume of fibres, ρf is the density of the cell wall and
A the area of the analysed sample. For a binary image we find that

ρA =
φsVs3ρf

As2 , (5.2)

where φs is the solids content of the image, V and A are the volume and
area of the image in voxels and pixels, respectively, and s is the pixel size.
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Simplifying eqn (5.2) we find that the grammage can be expressed as the
sum of the grammage for separate slices,

ρA = ∑
i

φisρf, (5.3)

in which φi is the solids contents of the ith xy -plane. Assuming now that
the average cell wall density is the same for all samples, we get an indi-
vidual threshold T for every tomographic image. Based on the literature
[14], we chose a cell wall density of 1500 kg/m3. Thresholding each im-
age separately by using the corresponding threshold T, we can determine
ρA(T).

The standard deviation of the grammage for a sample of area A is given
by [14]

σρ =

√
Nmf

A
=

√
ρA A

f mf

A
=

√
ρAmf

A
. (5.4)

The fibre coarseness and length of the samples were estimated to be 0.25 µg/m
and 2 mm, respectively. An example of thresholding is shown in fig. (5.1).
The maximum and minimum threshold values, Tmax and Tmin were cho-
sen such that ρA(Tmax) < ρA − σρA and ρA(Tmin) > ρA + σρA (tables C.4
and C.5). For the first two sets of samples, three additional values were
chosen near the value of mean grammage.

There were three reasons for why we chose to use binary images for the
calibration. Fist of all, the gray scale values of the reconstructed images
do not depend linearly on the density. Therefore the benefit of the ad-
ditional information preserved by not thresholding is questionable. Sec-
ondly, even if the gray scale values would be accurately calibrated, we
would still have the problem of thresholding. The third reason was that
the gray scale value of voids in the image contribute to the sum of the gray
scale values. Because of imaging artefacts, the local mean gray scale value
of the void is not constant over the image, it is relatively small near fibres
and relatively large in areas away from any fibres. Owing to this, subtrac-
tion of the gray value from that of the void requires information about the
sample that cannot be directly measured.
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Fig. 5.1: Threshold gray value against grammage for sample 1. Because 8-bit
images were used, the results were interpolated linearly between data
points.

5.3 Distance transform

Distance transforms are operators normally applied to binary images. The
result of such a transform is a representation, where a chosen set of fore-
ground pixels (2D) or voxels (3D) have the value of the shortest distance
to a chosen object. In this case, the object is chosen to be the voxels in an
xy-plane, which belong to the solid phase in the image. In other words,
the distance transform is applied so that every voxel representing fibres
in the cardboard is assigned a value that is the length of the shortest path
along the fibre network to the target plane.

Chamfer distance transforms are commonly used to approximate Euclid-
ian distances. They are based on the approximation that the chosen dis-
tance for a given voxel can be computed from those of its neighbours. A
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Chamfer mask can be defined as a set of weighted legal displacements for
a voxel, in this case displacements leading to voxels representing fibres.
Such masks are represented in fig. (5.2). The Chamfer distance between
two voxels is then the smallest sum of the possible weighted displace-
ments that can be used to connect the voxels. To approximate the Euclid-
ian distance one has to scale the Chamfer distance. Usually the scale is
taken to be the same as the weight in the directions of the unit vectors but
optimization requires the minimization of the error in respect to both the
Chamfer weights and the scale factor [15].

(a) 2D Chamfer mask (b) 3D Chamfer mask

Fig. 5.2: Chamfer masks for two and three dimensions. The starting voxel is lo-
cated in the center and the values represent the Chamfer distance from
the center to the neighbouring voxels.

Starting from the solid phase voxels of the chosen plane, the algorithm as-
signs to all of its legal neighbours the corresponding value of the Chamfer
mask plus the value of the starting voxel, fig. (5.3). If the assigned value
is smaller than the value that already exists in the voxel, the existing value
is replaced by the new assigned value. Solid phase voxels without a value
assigned to them are considered to have an infinite value.

As a result of this procedure for a binarized tomographic image, we find
a distance map, where every voxel has a value that represents its Chamfer
distance to the target plane along the fibre network. With the chosen mask,
the approximate Euclidian distance is one third of the sum of the weighted
displacements.
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Fig. 5.3: An illustration of the distance transform on a 2D image. The solid phase
pixels (voxels) are shaded and the object is represented as a row of zeros
at the bottom. The Chamfer distance to a pixel is the smallest sum of
weighted displacements (fig. (5.2(a))) that connects it to the object.



6. EXPERIMENTAL METHODS

Tomographic images allow for a detailed analysis of the cardboard struc-
ture. After careful calibration of the gray scale values, different samples
can be compared with one another. It is possible to do many analyses
based on the tomographic reconstructions. These include density profiles,
pore structure and surface roughness. In this work analysis is focused on
the contact densities and the density profiles.

6.1 Cardboard samples

The cardboards analysed comprised eight samples. These samples were
all manufactured in the same way and with the same pulp, but contained
different additives. The known characteristic parameters of the samples
are shown in table B.1. Notice that even though all the samples have a
similar grammage, their apparent densities and z-strengths vary appre-
ciably. When the z-strength is plotted against apparent density, most of
the samples fall on the same curve, but samples 2,3 and 4 do not follow
from this trend as is evident from fig. (6.1).

6.2 Measurements

All the sample sets were cut from the cardboards and imaged with an
Xradia Micro-XCT-400 using a magnification of 10x or 4x. The imaging
parameters are shown in table (6.1). After reconstruction, the resulting to-
mographic images had a voxel size of 2.2 µm (10x) or 2.5 µm (4x). The
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Fig. 6.1: Measured relavite z-strength agaist apparent density for the analysed
cardboard samples. Samples 2,3 and 4 do not follow the trend shared
by the other samples.

size of the portion of the tomographic images suitable for analysis, i.e., the
part of the image not containing any cuts or bends from sample prepara-
tion, was about 1 mm2 (10x) or 14 mm2 (4x).

6.2.1 Density profiles

The density profile, or more accurately the solids content profile, of the
cardboard samples was determined by measuring the solids content φs,
separately for each cross section of the thresholded tomographic images.
The profile was determined between two planes determined by the carpet
program as the top and bottom surfaces of the samples. The profiles for
all the samples studied are shown in appendix D.1. The threshold value
used in the binarization of the tomographic images was chosen using the
mean grammage of the cardboard as a reference.
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Tab. 6.1: Imaging parameters for the sample sets
set # 1 2 3 4

Magnification 10x 10x 4x 4x
Tube voltage [kV] 20 20 20 20
Exposure time [s] 90 90 20 20

Number of projections 745 745 1189 1981
Voxel size [µm3] 2.19743 2.19743 2.51383 2.51383

For all the density profiles in the z-direction, four quantitative features
were determined: mean solids content, φs, variance, σφs , slope and curva-
ture. The slope was taken from the derivative of a first order polynomial
least-squares fit. The curvature was taken from the second derivative of
a second order polynomial fit. The results are shown in the appendix D.1
(tables D.1, D.2, D.3 and D.4).

6.2.2 Contact density

Because the solids content is not equal in the top and bottom layers, the
shortest path is not an injective function. This means that the distribution
of shortest paths from top to bottom is not equal to the distribution from
bottom to top. It depends on the solids content in the planes considered.

Let us assume that we have planes A and B such that φsA < φsB. Now the
shortest paths from B to A will include all the paths from A to B because
they are the shortest paths between these planes. The remainder of the
paths will by definition be longer than any of the paths from A to B. Be-
cause of this dependence on the chosen planes, the distance transform for
the images of sets #1 and #2 was also taken from the two nearest planes to
the ones that were determined using the carpet program (tables C.2, C.1).
There were no significant differences between the results for the planes
determined by the carpet algorithm and the neighbouring planes.

The constant k(i) in eqn (4.7) was determined as an average over both
propagation directions using the mean solids content in the cross sections
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between the starting plane and plane i, and the mean shortest path be-
tween these planes,

2k(i) =

(
lb
( pi

i

) ∑i
j=1 φsj

i

)
top→bottom

+

(
lb
( pi

i

) ∑i
j=1 φsj

i

)
bottom→top

,

(6.1)
where lb

( pi
i
)

is the inverse function of eqn (4.15). Examples of the values
of k(i) are shown in fig. (6.2). The shape of these curves is likely to result
from the behaviour of the fraction of bonded crossings as a function of
sample thickness d. For a fibre network of thickness d, there is a distance
from the surface, d0, where all the fibres are completely within the sample
and the structure of the network in this region is not affected by surfaces.
This means that, if we denote the total thickness by d = x + 2d0 and let x
increase, the number of contacts should increase proportional to x, and we
find that

∂nb

∂x
=

∂

∂x
a(x)

2φ2A(2d0 + x)2

πA2
f

= C ; x > 0 (6.2)

with C an undetermined constant. This equation can easily be solved for
a (x):

a(x) =
[

C
D

x + C‘
]

1
(x + 2d0)2 , D =

2φ2
s A

πA2
f

, (6.3)

in which C′ is another undetermined constant. The parameter k was de-
fined in eqn (4.6) such that

k =
φslb
z0

=
πAf

2adz0
. (6.4)

Substituting in this expression the a = a (x) of eqn (6.3) with x = d− d0,
we find that

k =
φ2

s A
z0

d
C(d− 2d0) + C/D

; d > 2d0. (6.5)
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It is evident from fig. (6.2) for the k determined by image analysis from the
tomographic image of sample 6, that the function eqn (6.5), assuming that
d0 > 1

2D , describes quite well the numerically determined behaviour.

Fig. 6.2: k as a function of distance z between the chosen planar surfaces (planes)
for sample 6 from set 2, with a threshold gray scale value of 57 for the
planes determined using the carpet program and for their nearest planes.
It is evident that the effect of how the planes are chosen is noticeable only
for small values of z. The solid line is a fit by eqn (6.5) for the values of z
greater than 40.

The values for k were determined as averages over the different threshold
values used, tables C.4 and C.5. The results are shown in table D.5.
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6.3 Results

6.3.1 Shortest path analysis

When the contact densities for all the samples are plotted against solids
content, all the data seem to fall on a single curve, fig. (6.3). The constant
k was similar for all samples with a 3% standard deviation of the mean,
and the contact density (nb/V) seems to be proportional to the square of
the solids content. This is in agreement with earlier work on fibrous mate-
rials. In a study of the compressibility of wool, van Wyck [19] derived an
expression for mean length between contacts for nonplanar networks,

lb =
2V

πwfnflf
=

2Af

πwf

1
φs

. (6.6)

Using the same assumptions of long fibres as in section 4, the contact den-
sity can in this case be expressed in the form

nb

V
=

πwf

4A2
f

φ2
s . (6.7)

Similar relations between density and contact density is found also in
other work. Deng [3] mentions that Komori and Makashima also found
a similar relation while taking into account the flattening effect of orien-
tation under compression. Corte and Kallmes derived the contact density
for multiplanar sheets which consist of stacks of two dimensional sheets
[11].

In van Wyck’s model, the product lbφs is a constant that depends solely
on fibre geometry. This would be true also for the presented model if the
product ad could be expressed as a function of fibre geometry. As seen
from eqn(6.3), the required relation that a ∝ d−1 is fulfilled if d >> 2d0

and d2 >> C‘. If this is the case, the implication is quite notable. It would
mean that the contact density is coupled with the density of the fibrous
network in a rather strong manner, depending only on the geometry of the
fibres. The result, that different additives seem to alter the density of the
cardboard samples but not the constant k, supports this theory. Koubaa
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and Koran found a similar result [12] when measuring the internal bond
strength of paper. Papers made from the same type of pulp all fell roughly
on the same curve when their z-strength was plotted against the apparent
density, but differences between different kinds of pulp were noticeable.

Fig. 6.3: φ2
s k−1 plotted against solids content φs for all sample sets. The values

measured for k were quite similar for all the samples, with a 3.1% stan-
dard deviation of the mean.

Although both the contact densities (fig. (6.3)) and the average segment
lengths (fig. (6.4)) as measured here seem to support the proposed model,
it is worth mentioning that the ranges of their values were quite narrow.

6.3.2 Density profiles

Most noticeably, the differences in the density profiles between small sam-
ples from the same run is quite significant. This implies that the internal
differences in cardboard sheets do not only appear in the grammage, but
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Fig. 6.4: lb/z0 plotted against solids content φs for all sample sets.

there are also noticeable structural differences. There is as well a signifi-
cant discrepancy between the measured apparent density and the solids
contents determined from the tomographic images. Most significantly the
tomographic images of the sparse samples, 1 and 8, have a lower solids
content than the measurements for the apparent density indicate. Sec-
ondly, the apparent densities of samples 1 and 2 are the same, a result that
has not been observed in any of the tomographic images.

The amount of samples analysed is too small to make reliable conclusions
based on the density profiles, but there are still some observations worth
mentioning. All the solids contents profiles have a slope in the same direc-
tion: teh samples were denser at the bottom surface. A second observation
is that densification seems to occur at both surfaces. Also, the denser is the
sample, the larger is the curvature of the profile, see fig. (6.5).
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Fig. 6.5: The curvature of the density profile plotted against the mean solids con-
tent of the sample.

6.3.3 Correlation between the contact densities and measured z-strength

For the z-strength of cardboard we chose the results from a z-directional
tensile strength test. This strength is suitable for describing the internal
bond strength [12], and is not so dependent on the planar fibre orientation
as, e.g., the result of the Scott-bond test [2].

There is an evident lack of theoretical models for paper strength in the
out-of-plane direction. However, there have been reports of relationships
between different strength properties of paper [16], between in-plane ten-
sile strength and z-strength in particular.

The one of the most widely used equations related to the strength of a fibre
network is the Page equation [3]

1
T
=

9
8Z

+
Afρfg

bPlfRBA
, (6.8)

where T and Z are the finite-span and zero-span tensile strength, respec-
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tively, both expressed as a breaking length, Af is the fibre cross-sectional
area, g the gravitational acceleration, b the bond strength, P the fibre perime-
ter, lf the fibre length and RBA the relative bonded area. The Page equa-
tion is not suitable for describing the z-strength because of the assump-
tions made in the fibre orientation, but it gives a good idea of what the
underlying factors are. For an isotropic network, the tensile strength is
governed by the fact that, in breaking at a fibre level, either a fibre seg-
ment or a fibre-fibre bond must fail. Out-of-plane strength is generally a
few orders of magnitude less than fibre strength, and it is thus unlikely
that the stresses would be large enough for fibre failure to be of impor-
tance. We can safely assume that, for a planar network, the out-of-plane
strength is controlled by the bond strength.

This means that the tensile strength of cardboards should depend strongly
on RBA and thus also the number of bonds, because as

RBA =
nbAb

nfAtot
∝

nb

V
1
φs

, (6.9)

where Ab is the average area of a bond between two fibres and Atot is
the average surface area of a fibre. Neglecting the effect of the zero-span
tensile strength from eqn(6.8) and expressing it in the form of z-strength
(σz) as a function of contact density, eqn(4.7), we find that

σz ∝
φ2

s
k

. (6.10)

The results are shown in fig. (6.6). It seems that the measured z-strengths
of the cardboard samples satisfy quite well the relationship eqn (6.10).
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Fig. 6.6: Z-strength of cardboard samples plotted against φ2
s k−1 using the

weighted mean of the measuremed values as the data points (table D.7).



7. CONCLUSIONS AND DISCUSSION

It seems that the contact density of a fibrous network, determined in the
way introduced in this work, seems to be proportional to the square of
the solids content. The observation is in agreement with earlier theoretical
models for fibrous materials. Different additives do not seem to affect the
connectivity independent of the network density as the relation between
solids content and contact density was similar for all samples regardless
of the additives used.

The parameter k defined above because of the reliability of its determina-
tion from tomographic images, which describes the intrinsic connectivity
of the material in terms of the fraction of bonded crossings a, seemed to
be relatively constant over the whole set of samples with a 3.1% standard
deviation of the mean. This means that the contact density is governed by
the manner by which the network is formed, and this explains why ad-
ditives do not affect independently the density and the contact density of
cardboard.

In summary, there are three different factors of the raw materials that con-
tribute to the structure of the network: geometric properties, flexibility
and additives. For the geometric properties, the most prominent is the
ratio between the area of the fibre cross-section and the fibre perimeter, a
property that has already been noted in previous studies [7]. This is obvi-
ous, because assuming fibres do not collapse, networks formed with fibres
with thick cell walls will have a higher density than a similar network con-
sisting of fibres with the same perimeter but a thinner cell wall.

Increasing the flexibility of the fibres will increase both the contact density
and the sheet density [13]. In chapter 3 we derived the upper bound for
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the number of contacts in a flexible three-dimensional network.

The effect of the additives is consistent with the known behaviour of fibrils
and fines in papermaking. During the wet state of sheet formation fibrils
and fines fill spaces between fibres making bridges of bound water. This
increases the number of bonds formed during dewatering by increasing
the Campbell forces [18], i.e., the surface tension forces pulling fibres to-
gether. This will also compress the structure in the z-direction making the
sheet denser.

This result is important in practical applications. All the methods that
increase the out-of-plane strength of cardboard by increasing the contact
density of the sheet will result in a denser structure. It means that, in order
to obtain strong cardboard with large bulk (low density), one has to be able
to produce strong fibre-fibre bonds rather than many contacts.

From the density profiles we could conclude that differences between sam-
ples of the same cardboard were quite large for small sample sizes. This
indicates that, for more reliable results, one should analyse either larger or
a greater amount of samples. All the density profiles analysed here had
a slope in the same direction with similar steepness. This means that the
cardboards samples were all denser at the bottom regardless of the addi-
tives. Densification seems to have occurred at sample surfaces. This was
indicated by larger curvature of the density profiles of denser samples. We
cannot elaborate more on the densification results without knowing the
actual density or grammage of the imaged samples. This problem could
possibly be resolved by using a phantom when imaging the cardboards or
by imaging several samples simultaneously.

The most obvious inaccuracy of the method still lies in the binarization
of the images. It is also questionable if a simple threshold is sufficient
for binarizing the images, as artefacts such as beam hardening and phase
contrast alter the gray values of the fibres. While the use of a phantom
could allow for more exact calibration it does not solve all the problems.

The model for the shortest path is also a bit simplified. It assumes that the
shortest path is a sum of the shortest paths to the nearest fibres. This is
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not necessarily the case, as combinations of longer segments can lead to a
shorter overall path.

The approximation of planar fibres also causes some error as was seen in
section 4. Although a way to correct for this error was introduced through
an effective z-displacement, it is unclear how to determine an appropriate
bending angle for the fibres. It is also unclear how important this correc-
tion is for the samples imaged are but, e.g., a z-orientation of 5o results in
an overestimation of the contact density by about 10% if the fibre network
is assumed planar.



BIBLIOGRAPHY

[1] G. Chinga-Carrasco, H. Kauko, M. Myllys, J. Timonen, B. Wang,
M. Zhou, and J. O. Fossum. New advances in the 3D characterization
of mineral coating layers on paper. Journal of Microscopy, 232:212–224,
2008.

[2] J. M. Considine, D. W. Vahey, R. Gleisner, A. Rudine, S. R. du Roscoat,
and J.-F. Bloch. Z-direction fiber orientation in paperboard. Tappi
Journal, 34:25–32, 2010.

[3] M. Deng. Paper, An Engineered Stochastic Structure. TAPPI Press, At-
lanta, 1994.

[4] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam
algorithm. Optical Society of America, 1:612–619, 1984.

[5] R. C. Gonzales and R. E. Woods. Digital Image Processing. Prentice-
Hall, Inc, New Jersey, 2nd edition, 1993.

[6] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Prod-
ucts. Academic Press, London, 1965.

[7] J. He, W. J. Batchelor, and R. E. Johnston. An analytical model for
number of fibre-fibre contacts in paper and expressions for relative
bonded area (RBA). Journal of Material Science, 42:522–528, 2007.

[8] G. T. Herman. Fundamentals of Computerized Tomography. Springer,
London, 2nd edition, 2009.

[9] A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imag-
ing . IEEE PRESS, Electronic copy, 1999.



Bibliography 49

[10] O. Kallmes and O. Corte. Structure of paper I. The statistical Geome-
try of and Ideal Two Dimensional Fiber Network. TAPPI, 43:737–752,
1960.

[11] O. Kallmes and O. Corte. Structure of paper II. The statistical Geom-
etry of a Multiplanar Fiber Network. TAPPI, 43:737–752, 1960.

[12] A. Koubaa and Z. Koran. Measure of the internal bond strength of
paper/board. Tappi Journal, 78:103–111, 1995.

[13] J. Mäkinen. The Mechanical and Geometrical Properties of Fibrous Struc-
tures. PhD thesis, Department of Physics, University of Jyväskylä,
2001.

[14] K. Niskanen. Paper Physics. Fapet Oy, Jyväskylä, 1998.

[15] E. Remy and T. E. Optimizing 3D chamfer masks with norm con-
straints. In Int. Workshop on Combinatorial Image Analysis, Caen, France,
pages 39–56, 2000.

[16] S. P. Singh. Relationship of z-tensile strength with in-plane strenght
properties of paper. Indian Journal of Chemical Technology, 14:317–320,
2007.

[17] H. Turbell. Cone-beam reconstruction using Filtered Backprojection. PhD
thesis, Institute of Technology, University of Linköping, 2001.

[18] A. K. Vainio and H. Paulapuro. Interfiber bonding and fiber segment
activation in paper. BioRecources, 2:442–458, 2007.

[19] C. van Wyck. Note on the compressability of wool. The Journal of The
Textile Industry, 34:285–292, 1946.

[20] J. A. Åström, J. P. Mäkinen, H. Hirvonen, and J. Timonen. Stiffness of
compressed fiber mats. Journal of Applied Physics, 8:5056–5061, 2000.



Appendices

50



Appendix A

DERIVATION OF FORMULAE

A.1 The fraction of contacts for flexible fibres.

Substituting eqn (3.3) into eqn (3.13) we find that

aflex =
∞

∑
n=2

cn2(n− 1)!
n!n!(ec − c− 1)

=
2

ec − c− 1

∞

∑
n=2

cn

nn!
, (A.1)

The exponential integral can be expressed as a series

Ei(x) = γ + ln|x|+
∞

∑
n=1

cn

nn!
, (A.2)

where γ is the Euler-Mascheroni constant. Rearranging we can write eqn
(A.2) in the form

∞

∑
n=2

cn

nn!
= Ei(x)− γ− ln|x| − x. (A.3)

By substituting the sum in eqn (A.1) we find that

aflex =
2

ec − c− 1
[Ei(c)− ln(c)− c− γ] . (A.4)

A.2 The expected value of the path between adjacent
contacts.

With the substitution y
4 = x and 4 z0

lc1
= t into eqn (4.14) we get

(x) = t2
∫ ∞

0
xe−tx

√
x2 + 1 dx. (A.5)
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This can be written as a partial derivative with respect to t such that

EV(pi)

z0
(x) = t2 ∂

∂t

∫ ∞

0
−e−tx

√
x2 + 1 dx. (A.6)

From [6] we know that∫ ∞

0

xe−µx√
x2 + β2

dx =
βπ

2
[H1(βµ)N1(βµ)]− β ≡ F(µ, β), (A.7)

where H1(βµ) is the first order Struve function and N1(βµ) is the first
order Neumann function and the constraints for the constants |argβ| < π

2
and Reµ > 0. By choosing β = 1, µ = t and integrating by parts we find
that

F(µ, β) =
[
e−tx

√
x2 + 1

]∞

0
+
∫ ∞

0
te−tx

√
x2 + 1 dx, (A.8)

from which we can solve∫ ∞

0
te−tx

√
x2 + 1 dx =

F(µ, β) + 1
t

. (A.9)

By substituting into eqn (A.6) we find that

EV(pi)

z0
(x) = −t2 ∂

∂t
F(µ, β) + 1

t
. (A.10)

The derivatives of the modified Bessel functions can be expressed as

∂

∂x
N1(x) = −N2(x) +

1
x

N1(x) (A.11)

and
∂

∂x
H1(x) =

1
2
(H0 − H2 +

x
2
√

πΓ(5
2)
), (A.12)

with which we can express eqn (A.10) in the form

EV(pi)

z0
(x) =

π

2

(
H1(t)−

t
2

(
H0 − H2 +

t
2
√

πΓ(5
2)

)
− tN2(t)

)
. (A.13)
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CARDBOARD SAMPLES

Tab. B.1: The characteristics of cardboards and additives
Sample grammage [g/m2] density [kg/m3] z-strength [kPa]

1 154.4 308 1.00
2 153.0 308 1.18
3 155.2 315 1.37
4 151.8 319 1.40
5 152.9 327 1.46
6 156.4 329 1.50
7 153.2 333 1.57
8 152.2 311 1.07



Appendix C

IMAGE PROCESSING

C.1 Surfaces determined by the carpet algorithm

Tab. C.1: The top and bottom surfaces and the thickness of samples as determined
by the carpet program.

Set 1 Set 2
sample top bottom d top bottom d

1 71 291 221 53 270 218
2 61 259 199 66 268 203
3 51 258 208 51 254 204
4 57 258 202 64 265 202
5 72 262 191 60 249 190
6 62 253 192 55 258 202
7 68 255 188 53 243 191
8 57 268 212 72 269 198

C.2 Density calibration
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Tab. C.2: The top and bottom surfaces and the thickness of samples as determined
by the carpet program.

Set 3 Set 4
sample top bottom d top bottom d

1 51 242 192 52 241 190
2 57 232 176 56 235 180
3 59 230 172 55 233 179
4 61 231 171 71 243 173
5 72 238 167 66 225 160
6 66 232 167 67 234 168
7 65 235 171 69 238 170
8 57 244 188 71 251 181

Tab. C.3: Threshold gray scale values for sample set 1
sample ρA [kg/m2] σρA Threshold value

1 154.4 9.3 63 66 67 68 72
2 153.0 9.5 52 56 57 58 61
3 155.2 7.5 58 61 62 63 66
4 151.8 8.0 62 64 65 66 69
5 152.9 8.8 58 62 63 64 67
6 156.4 8.2 54 57 58 59 62
7 153.2 8.3 53 56 57 58 62
8 152.2 8.1 60 64 65 66 69
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Tab. C.4: Threshold gray scale values for sample set 2
sample ρA [kg/m2] σρA Threshold value

1 154.4 7.7 54 55 56 57 59
2 153.0 7.3 49 51 52 53 55
3 155.2 6.9 53 54 55 56 58
4 151.8 7.6 56 58 59 60 62
5 152.9 6.6 52 54 55 56 57
6 156.4 7.4 54 56 57 58 60
7 153.2 7.3 54 56 57 58 60
8 152.2 6.9 49 51 52 53 55

Tab. C.5: Threshold gray scale values for sample set 3
sample ρA [kg/m2] σρA Threshold value

1 154.4 2.5 101 102 104
2 153.0 2.3 94 95 97
3 155.2 2.3 91 93 94
4 151.8 2.4 97 98 100
5 152.9 2.3 94 96 97
6 156.4 2.4 92 93 95
7 153.2 2.4 99 100 102
8 152.2 2.4 101 102 104

Tab. C.6: Threshold gray scale values for sample set 4
sample ρA [kg/m2] σρA Threshold value

1 154.4 2.3 120 122 123
2 153.0 2.3 119 121 122
3 155.2 2.3 115 117 119
4 151.8 2.3 115 116 118
5 152.9 2.3 109 111 112
6 156.4 2.3 117 119 121
7 153.2 2.3 120 121 123
8 152.2 2.5 113 115 117
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RESULTS

D.1 Density profiles

Tab. D.1: Density profiles for sample set 1
sample mean std slope curvature

1 0.199 0.023 0.055 0.034
2 0.219 0.028 0.046 0.131
3 0.213 0.022 0.053 0.000
4 0.214 0.023 0.058 0.024
5 0.225 0.023 0.047 0.078
6 0.232 0.031 0.040 0.166
7 0.236 0.031 0.040 0.319
8 0.203 0.022 0.040 0.138

D.2 Contact densities
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Tab. D.2: Density profiles for sample set 2
sample mean std slope curvature

1 0.206 0.025 0.043 0.190
2 0.216 0.029 0.034 0.252
3 0.220 0.020 0.053 0.047
4 0.215 0.025 0.053 0.124
5 0.228 0.029 0.043 0.263
6 0.222 0.023 0.059 0.093
7 0.230 0.034 0.050 0.367
8 0.219 0.027 0.043 0.276

Tab. D.3: Density profiles for sample set 3
sample mean std slope curvature

1 0.197 0.010 0.007 0.099
2 0.212 0.017 0.026 0.200
3 0.220 0.024 0.067 0.205
4 0.217 0.016 0.024 0.189
5 0.224 0.016 0.031 0.158
6 0.230 0.020 0.030 0.247
7 0.221 0.017 0.020 0.225
8 0.198 0.013 0.018 0.123

Tab. D.4: Density profiles for sample set 4
sample mean std slope curvature

1 0.198 0.013 0.006 0.161
2 0.208 0.015 0.029 0.175
3 0.212 0.014 0.027 0.131
4 0.212 0.018 0.049 0.141
5 0.232 0.018 0.043 0.166
6 0.227 0.016 0.038 0.121
7 0.221 0.016 0.016 0.201
8 0.204 0.018 0.056 0.091
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(a) Profile 13 (b) Profile 14

Fig. D.1: Profiles 1

(a) Profile 23 (b) Profile 24

Fig. D.2: Profiles 2
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(a) Profile 33 (b) Profile 34

Fig. D.3: Profiles 3

(a) Profile 43 (b) Profile 44

Fig. D.4: Profiles 4
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(a) Profile 53 (b) Profile 54

Fig. D.5: Profiles 5

(a) Profile 63 (b) Profile 64

Fig. D.6: Profiles 6
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(a) Profile 73 (b) Profile 74

Fig. D.7: Profiles 7

(a) Profile 83 (b) Profile 84

Fig. D.8: Profiles 8
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Tab. D.5: The mean value and estimated error of parameter k
Set 1 Set 2

sample <k> δk <k> δk

1 0.229 0.002 0.215 0.0007
2 0.221 0.003 0.229 0.0011
3 0.217 0.004 0.2238 0.0001
4 0.218 0.004 0.219 0.001
5 0.2275 0.0004 0.225 0.001
6 0.228 0.002 0.232 0.003
7 0.2234 0.0005 0.235 0.001
8 0.2156 0.0005 0.229 0.001

Tab. D.6: The mean value and estimated error of parameter k
Set 3 Set 4

sample <k> δk <k> δk

1 0.2085 0.0005 0.2086 0.0001
2 0.2245 0.0004 0.2170 0.0004
3 0.2254 0.0003 0.2186 0.0002
4 0.2173 0.0006 0.2166 0.0002
5 0.2201 0.0001 0.2204 0.0004
6 0.2267 0.0008 0.2219 0.0002
7 0.2272 0.0004 0.2118 0.0005
8 0.2180 0.0001 0.2184 0.0006
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Tab. D.7: The weighted mean and estimated error of solids contents φs and pa-
rameter k

sample <φs> δφs <k> δk

1 0.198 0.003 0.2088 0.0001
2 0.211 0.003 0.2208 0.0003
3 0.216 0.003 0.2238 0.0001
4 0.215 0.003 0.2172 0.0001
5 0.224 0.003 0.2202 0.0001
6 0.228 0.003 0.2222 0.0002
7 0.222 0.003 0.2224 0.0003
8 0.202 0.003 0.2180 0.0001


