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Abstract

Current thesis presents computational studies of the torsional twist in single
walled carbon nanotubes (SWCNTs). Since SWCNTs can be viewed as rolled
up graphene sheets, our aim is to explain their torsion constants via shear mod-
ulus of graphene in pristine, and single- and double vacancy cases. In addition,
fundamental energy gap response to torsion is investigated. Calculations of
defected structures is computationally expensive as it requires larger simula-
tion cell with large number of atoms. To reduce the cost of computations we
take the advantage of chiral symmetry of nanotubes instead of translational one,
and faster performance of density-functional tight-binding method compared to
other computational methods. Shear modulus calculations show that its value
approaches that of graphene for large diameter tubes and is most sensitive to
size in case of armchair tubes. Vacancies diminish shear modulus for most of the
nanotubes and concentration-induced decrease has linear character regardless
of chirality. Studies on direction-dependent shearing of graphene reveals that in
the presence of double vacancy shear modulus has the biggest fluctuations from
its average value compared to pristine and single vacancy instances. Torsion
significantly modifies electronic structure as well - metallic tubes undergo tran-
sition to semiconducting state, during which band gap change is linear, peaking
and decreasing to zero again for most of the tubes. Results give the ground
for assumption that for large diameter tubes the peak values, reached during
torsion, converge.
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Chapter 1

Introduction

Carbon nanotubes, one of the most studied materials today, have been the subject of
wide interest for about two decades. The history traces back to the invention of C60
fullerene mass production method in 1990 [58] when aside C60 researchers noticed
unknown filamentous structures during fabrication. Nevertheless, they were treated
only as unnecessary by-products. No technology would allow investigations on such
a small scale at that time. Those spin-offs were first drawn attention and observed
by S.Iijima in 1991 using a high-resolution transmission electron microscopy [45] and
thus, concentric, seamless tubules with diameters up to a few tens of nanometer -
(multi-walled) carbon nanotubes were first discovered. After two years the discovery
was followed by another finding – synthesis of single-walled carbon nanotubes (SWC-
NTs) [46]. Since then the era of carbon nanotubes began. Over the years carbon
nanotubes (CNTs) have intrigued scientists with their amazing mechanical, thermal
and electrical properties.

However, as one of the most prominent American writers Alice Walker says: ‘In
nature, nothing is perfect and everything is perfect’. Defects like torsion, bending,
vacancies are unavoidable during the growth of CNTs. Such imperfections affect
their mechanical and electrical properties, as a result, performance of the CNT-based
nanodevices and nanomaterials must be different from the idealized case and might
be either beneficial or adverse. Consequently, it is of paramount importance to learn
how defects alter behavior of carbon nanotubes.

The discovery of these unique materials has intensified interest to other carbon
nanostructures, particularly to graphene - a single graphite sheet. It was first isolated
experimentally in 2004 by Geim and Novoselov [6] - the breakthrough leading to the
Nobel Prize award in 2010 [4]. Though it had been investigated for a long time before,
it was believed that graphene could not exist as a free-standing crystal and was unable
to form curved structures like fullerenes and nanotubes because of instability. Today,
graphene is another topic of intense interest in modern nanoscience and its stability
is no longer questionable.
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Graphene is the basis of all graphitic materials. Hence, another challenge is to
find out how defect-related characteristics of CNTs can be predicted based on those
of graphene.

1.1 Structures of graphene and single-walled

carbon nanotubes

Bonding is the main determiner of nature of any physical system. In addition, at
nanoscale, where every single atom matters, material properties are strongly depen-
dent on system size and geometry. In this section we explain bonding and geometrical
structures of graphene and SWCNTs.

Bonding

Carbon has four valence orbitals 2s, 2px, 2py, 2pz out of which s, px, py orbital interac-
tion, termed as sp2 hybridization, forms in-plane bonding (σ or occupied) and in-plane
untibonding (σ∗ or unoccupied) orbitals in a hexagonal lattice of graphene. σ bonds
are of covalent nature and are responsible for binding energy, as a result, for the elastic
properties of graphene.

pz, being perpendicular to the graphene plane, is unable to couple with the orbitals
that form σ states but interacts with neighboring pz orbitals (ppπ interaction) which

��bond

Carbon atoms

��bond

Figure 1.1: σ and π bonding in a hexagonal lattice of graphene. Figure is adopted from
reference 2.
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establishes delocalized out-of-plane bonding (π) and out-of-plane antibonding (π∗)
orbitals. π and σ bonds are illustrated in figure 1.1.

Similarly to graphene, σ bonds provide strong bonding of carbon atoms in a hexag-
onal manner in CNT wall, whereas π bonds perpendicular to the surface provide weak
interaction between SWCNTs in a bundle.

To conclude, the strength of σ bonds are responsible for cohesive energy and elastic
moduli of CNTs, whereas π bonds determine their electronic properties.

Geometry

SWCNTs can be viewed as rolled up graphene sheets as shown in figure 1.2. Rolling
direction is determined by the chiral vector

C = na1 +ma2, (1.1)

which seamlessly connects two crystallographically equivalent sites of graphene form-
ing a tube. a1 and a2 in the above expression represent the unit vectors of the plain
honeycomb lattice: |a1| = |a2| = a. n and m indices give the nomenclature for the
three types of nanotubes: armchair (n, 0), zigzag (n, n) and chiral (n,m). Each name
refers to the shape of the nanotube edge as depicted in figure 1.3.

The length of the chiral vector defines the circumference of the tube as

C = |C| = a
√
n2 +m2 + nm. (1.2)

Orientation of the hexagons on the surface of the tube is characterized by chiral angle
θ = arctan(

√
3 m
2n+m

). It can easily be shown that for armchair tubes θ = 300, for
zigzag tubes θ = 00 and for chiral ones 0 < θ < 300. Distances between carbon atoms
in the hexagonal lattice according to reference 47 are schematically presented in figure
1.4.

The diameter of a SWCNT is on the order of a few nanometers and can be calcu-
lated from the following expression:

d =
C

π
=

a

π

√
n2 +m2 + nm (1.3)

The length of a CNT can be over 18.5 cm [55], thus, 108 times larger than its
diameter. Because of such a small diameter-to-length ratio CNTs are considered as
one-dimensional structures.

1.2 Properties of carbon nanotubes

Out of plentiful remarkable properties of CNTs, in this section we only discuss elec-
tronic and mechanical as the rest are beyond the scope of the current thesis.



4 CHAPTER 1. INTRODUCTION

Figure 1.2: Rolling a graphene sheet into a nanotube. Figure is adopted from reference 11.

Figure 1.3: The three types of carbon nanotubes: armchair(a), zigzag(b), chiral(c). Figure
is taken from reference 5.
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Figure 1.4: Spacing between carbon atoms in graphene lattice according to reference 47.

Electronic Properties

Speaking generally, electronic properties of materials depend on the manner atoms are
arranged. An evident manifestation is graphene versus carbon nanotube: although
graphene is a zero-gap semiconductor (or, semi-metal) carbon nanotubes can not only
be semiconductors with different energy gaps but also metals depending on the rolling
direction of the graphene sheet. Based on tight-binding calculations it has been shown
that nanotubes for which

n−m = 3i, (1.4)

where i is an integer, are metallic, otherwise semiconducting [43, 33]. Such correlation
between electronic properties of CNTs and their geometry was explained in terms of
the band structure of a plane graphene sheet: when rolled in a tube, boundary condi-
tions require that wave-vectors along the tube circumference direction are quantized,
i.e. only k states fulfilling the condition Ck = 2πq are allowed, where q is an integer
and C is the chiral vector. These are the lines perpendicular to C. Their length,
number and orientation with respect to the lattice depend on the chiral indices.

Whether material is metallic or semiconducting is identified with the density of
states at Fermi energy. Fermi energy is defined by the K symmetry point which is
the meeting point of π and π∗ bands of graphene. Nanotube will be metallic if one
of the allowed k vectors crosses the K point in the Brillouin zone meaning that there
exists finite density of states (no energy gap) at Fermi level. If K point is outside the
allowed k vectors then CNTs are semiconducting with varying size of energy gaps. To
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Figure 1.5: Schematics of the first Brillouin zone of a graphene sheet. Lines satisfying
condition (1.4) are shown for zigzag (3,3) and armchair (3,0) tubes, indicating at their
metallic character. In case of chiral (4,2) tube K point is not crossed by either line meaning
semiconductivity of the tube. Figure is adopted form reference [25].

illustrate, allowed k vectors for (3,3), (3,0) and (4,2) nanotubes are shown in figure
1.5.

To mention once more, above discussion is within simple tight-binding model which
explains electronic properties of CNTs from the plane graphene and neglects curvature
effects. The main purpose of this approximation is to represent the electronic band
structure of the nanotube as the superposition of the graphene electronic energy bands
along the allowed k vectors, which together with boundary conditions around the
tube circumference results in either semiconducting or metallic tubes. Regardless of
its simplicity this model works very well for large diameter tubes (above 10 Å) [11].
However, if in graphene in-plane σ and out-of-plane π orbitals are orthogonal and
their interaction is excluded, carbon nanotubes represent a structure where carbon
atoms are situated on a cylindrical - curved surface, which means possibility of π
and σ orbital mixing, especially in small CNTs, where curvature is stronger and
more rehybridization occurs. Therefore, more fundamental calculations are needed
to predict electronic properties of small diameter CNTs. Even more, in the presence
of defects simple tight-binding approach might not be accurate enough since defects
significantly modify electronic structure of CNTs.

Mechanical Properties

Carbon nanotubes are one of the most stable materials in nature, at the same time,
having light weight and exceptional strength. They are known for their high elasticity,
with Young’s modulus on the order of 1 TPa [12, 22, 62] and tensile strength of 60
GPa [61]. Various studies have been performed to learn elastic moduli of pristine and
deformed CNTs, however, discrepancies in results are yet existent.
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Though simple graphene model is often used to describe mechanical properties of
CNTs, bending strain caused by curvature in tubes causes an out-of-plane distortion
of C-C bonds which results in rehybridization of the sigma bonds as mentioned above.
The smaller the diameter of the tube, the higher the bending strain is; and the higher
the rehybridization. This means deviating from perfect isotropy present in graphene
sheet. Accordingly, mechanical behavior is expected to be dependent on diameter
and/or helicity.

It must be underlined that the origin of elasticity is microscopic: despite treating
materials as continuous media in classical approach, in fact, elastic properties are
governed by the way atoms are bound to each other.

The review of the existing methods and results related to mechanical and electronic
properties of SWCNTs under torsion will be presented in Chapter 2.

1.3 Practical applications of CNTs

These unique one-dimensional structures have driven nanoscience towards new tech-
nologies and various innovations. Due to their unique mechanical, thermal and electri-
cal properties, CNTs are promising materials for versatile applications in nanoscience:

Because of peculiar electrical characteristics, CNTs can be used as an alternative
to the traditional semiconductors in micro-/nano-electronics. Nanotube based tran-
sistors are of particular interest. More information on carbon-based nanodevices can
be found in reference 36.

Thanks to the tiny size of the ending, CNTs provide single-atom resolution imaging
serving as probe tips of Atomic Force Microscopy (AFM). Moreover, their flexibility
avoids damaging of the probed surface when scanning, as well as damaging of the tip
itself [23].

CNTs are seen as good candidates for flat panel display screens whose performance
is based on the phenomenon of electron emission by CNTs in the presence of electric
field [53]. Realization of such screens was demonstrated by one of the world’s leader
companies, Samsung, though their mass production has not been started yet [20].

Several companies have successfully exploited nanocomposites (carbon fibers mixed
with nylon) as reinforcing materials, for instance, in hockey sticks [3]. Furthermore,
carbon fibers own excellent thermal conductivity that causes nanocomposite materials
to cool more slowly and evenly. This ensures better molding on micro scale and are
in use for the tiniest gears in watches [18]. More detailed overview of nanocomposites
can be found for example, in references 34 and 19.

CNTs are also promising prospects for hydrogen storage elements (hydrogen fuel
cells) aimed at development of renewable energy sources: when oxygen and hydrogen
interact in a fuel cell, production of electricity is accompanied with water release as
byproduct. Therefore, there is demand for a safe, temporary storage for hydrogen
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gas. CNTs are expected to be the best choice, as hydrogen atoms form week bonds
with carbon, they can easily be expelled by tuning temperature and pressure when
needed [13].

Medicine and robotics have benefited from mechanical properties of CNTs as well;
and have named them as candidates for artificial muscles. The idea lies in conversion
of the electrical energy to mechanical energy causing nanotube to move. Due to their
high tensile strength, CNTs would provide about 100 times stronger force than the
human muscle of the same size [17, 24].

Besides the above, CNTs are perfect chemical sensors, tiny and fast; in the presence
of certain gases (e.g. NO2, NH3) semiconducting CNTs exhibit significant change in
conductance, this means that by measuring conductance presence of gases can be
detected [64].

This is only a short overview to introduce the variety of practical applications and
the reasons for such popularity of CNTs not only in academic research but also in
industry.



Chapter 2

Previous work on torsional
properties of CNTs

Mechanical and electronic properties of distorted carbon nanotubes are still under
investigation. Current modeling approaches can be divided into three main categories:
atomistic modeling, analytical continuum mechanics and continuum mechanics based
on finite element modeling (FEM) [49, 44].

Principal techniques of the first one include classical molecular dynamics (MD),
Monte Carlo (MC) method, density functional theory (DFT) and their combinations.
All these methods are capable of modeling any problem associated with atomic mo-
tion, however, they are computationally demanding, as a consequence, limited to the
number of atoms and to the time scale.

Comparably cost-effective method when dealing with large systems and longer
durations is analytical continuum mechanics, which uses the theories of rods, beams,
shells, trusses, or curved plates. This approach treats the lattice as continuous medium
which in fact is discrete, and energies are obtained from analyzing the deformation of
a plane graphene. Clearly, despite computational efficiency, its validity is questionable
when applying to various problems: such assumptions neglect microscopic character
of bonding as well as interatomic forces, thus ignoring microscopic effects on the
mechanical response.

The third category, continuum mechanics based on FEMs uses finite elements such
as rods, beams, springs to model atomic bonds. The method has become successful
tool to learn elastic properties of CNTs.

Some of the representative studies related to shear modulus and fundamental band
gap calculations under torsion are discussed below, both in chronological order.

9
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Approaches to shear modulus calculations

Empirical force constant method used by Lu [30] has showed that elastic moduli of
SWCNTs are insensitive to helicity and diameter; and that shear modulus is compa-
rable to that of diamond. The nanotube geometry was obtained by mapping of the
graphite sheet onto a cylindrical surface, while atomic interactions near equilibrium
structure were represented as the sum of pairwise harmonic potentials; fitting param-
eters were determined by assuming equivalence of intraplane interactions in graphite
and short-range atomic interactions in CNTs. Thus, parameters based on graphite
calculations were employed. As an advantage of this method over MD simulations
was considered its applicability to nanotubes of different size and type.

Popov et al. [51] deduced analytical expression for shear modulus using lattice-
dynamics method by comparing expressions for the velocities of the torsional sound
waves obtained through Born’s perturbation technique and for the sound waves ob-
tained from elasticity theory of infinite thin homogeneous cylinder. According to their
calculations shear modulus for zigzag tubes was larger than that of armchair tubes
for small radii, reaching converged value for bigger radii which was 6% smaller than
that of graphite determined experimentally.

Structural mechanics approach has revealed that shear modulus of zigzag and
armchair SWCNTs vary with the tube size, becomes independent of diameter above
2 nm and reaches the same value for zigzag and armchair nanotubes [29]. Within the
investigated range of diameter (0.4-2.0 nm) no significant dependence on helicity was
noted. In this approach assumption is that CNTs under load behave like space-frame
structures and can be described with classical mechanics. Covalent bonds between
carbon atoms are treated as connecting elements and carbon atoms are regarded as
joints of them. Based on the same model and employing modified Morse potential
similar results were obtained by Xiao et al. [60].

Based on the study utilizing FE approach, it was concluded that the shear moduli
of zigzag, chiral and armchair SWCNTs depend on both, diameter and chirality,
especially at diameters below 1.5 nm [50]. The dependence was explained as the
effect of curvature, which in turn depends on the tube diameter. With the increase of
diameter, shear moduli of all the tubes inclined to increase with the same trend and
retained their value above d=1.1 nm.

Numerous modifications are made to improve the efficiency and accuracy of FE
method:

According to To [49], FE modeling which treats SWCNTs as spatial cylindrical
frame structures, is very simple to use, economical and computationally efficient. To’s
approach takes into account the effect of Poisson’s ratio on the value of shear modulus.
The study claims that shear modulus is independent of diameter.

Energy-equivalent model was first proposed by Odegard et al. [35] who combined
computational chemistry and solid mechanics for simulating nanomaterials. The main
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idea was equating the molecular potential energy and the strain energy of the con-
tinuum elements. In contrast to molecular modeling, it has been proved to be very
efficient.

In a similar manner Wu et al. [59] calculated shear moduli of armchair and zigzag
nanotubes by equating the total and strain energies found from molecular mechanics
and continuum mechanics, respectively. Results demonstrated that shear modulus is
sensitive to the diameter of the nanotubes. It was also shown that the value of the
modulus approaches to that of graphite for large diameters.

Chandraseker et al. [10] compared an atomic-quasicontinuum method involving
empirical Tersoff-Brenner interaction potential and ab initio DFT based on unit cell
relaxations. In this study cylindrical reference configuration was assumed instead
of planar graphene sheet what allows anisotropy and change in strain energy due
to rolling up a graphene sheet into a nanotube. The work showed that the use of
empirical interatomic potential in the quasicontinuum method results in the strong
dependence of the outcome on the values of the fitted parameters, what reveals the
unreliability of quasicontinuum approach. However, both methods agreed that the
values of shear modulus were only slightly dependent on diameter as well as on chi-
rality.

Giannopoulus et al. [22] introduced non-continuum FE method utilizing atomic
microstructure of the nanotubes, where nodes were defined at carbon atom positions.
Interatomic interactions were modeled by treating bonds as three-dimensional lin-
ear elastic spring elements having three rotational and three translational degrees of
freedom. Thus, the study applies molecular mechanics directly and describes atomic
bonds via force constants. Armchair nanotubes owned slightly lower values of shear
modulus than zigzag nanotubes of the same diameter in case of small tubes. For large
diameter tubes shear modulus converged to that of graphene as most of the studies
indicate.

Atomistic-continuum modeling was introduced by Cheng et al. [12]. This model
incorporates MD simulation for simulating initial unstrained equilibrium state, and
finite element approximation for modeling static and dynamic behaviors. In this
study surface effects on CNTs mechanical properties are taken into account as they
are believed one of the main reasons of size dependence of material properties in
nanostructures. In addition, they considered the influence of weak in-layer van der
Waals interactions between atoms. The study revealed that shear modulus of zigzag
and armchair nanotubes increases with increasing the diameter and above d=1.8 nm
the value of shear modulus converges. Zigzag shear modulus was slightly larger than
that of armchair, which means its dependence on chirality.

Most recent study has offered combination of molecular structural mechanics
and finite element method which was aimed at developing a mechanical model for
graphene, CNTs, buckypapers and their composites; and at determining their elas-
tic moduli [62]. In the approach nanostructures are treated consisting of atoms as
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structural masses or joints; chemical bonds and electrostatic forces are presented as
mechanical elements (beams, trusses, springs). Since covalent bonds act linearly they
are modeled with beam elements, on the contrary, van der Waals bonds are nonlinear
and are therefore, modeled with nonlinear springs. Elastic moduli are obtained by
linking the potential energy of bonds and the strain energy of mechanical elements
similarly to reference 59. Bond energies and van der Waals bonds are calculated via
harmonic and Lennard-Jones potentials, respectively. The outcome of the study is
that shear modulus dependence on diameter is significant only for very small diame-
ters.

Practical realization of twist of SWCNTs is problematic because of technical dif-
ficulties arisen from the size of nanomaterials; accordingly, there is indeed a lack of
experimental data for describing twist in nanotubes. Among such rare studies is the
realization of a torsional pendulum attached to a SWCNT [14]. Twisting was accom-
plished using an electric field. Torsional spring constant was evaluated from theory
and device geometry and was found to be 3 · 10−18 Nm per radian (for d=1.5 nm).

The first experimental measurement of the shear modulus of SWCNT was pre-
sented by Hall et al. [7]. They applied electrostatic forces to exert torsional stress
on CNTs. The method was not novel but exploited different starting material than
was used in earlier studies. Shear modulus was calculated within FE approximation
by measuring the torque. The experiment demonstrated that SWCNT behaved as
a linear torsional spring and average value of shear modulus approached 0.41 ± 0.36
TPa (for d=0.97 nm).

In summary, despite variations in the values of the elastic modulus and its de-
pendency on chirality and tube diameter in different studies, the noted trend is that
for large diameter CNTs shear modulus approaches that of graphene; disagreements
appear at small sizes. This is on account of diverse assumptions, models, potentials,
parameters, tube thicknesses and even different definitions of shear modulus used.
That is why more reliable methods are needed for modeling specific nanostructures
such as CNTs; and finding such an approach is still an ongoing process.

Studies about torsional behavior in the presence of vacancies are hardly to be
found in literature. The only (to the best of our knowledge) study was carried out
recently by Zhang et al. [65]. They performed molecular dynamics simulation to learn
various kinds of defects including vacancies. The results showed that armchair CNTs
had higher shear modulus and were less sensitive to the presence of defects compared
to zigzag CNTs. It was noted that double vacancy diminishes torsional capacity more
than single vacancy.

Excellent reviews on mechanical properties of CNTs are provided in references
49, 44, 60.
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Approaches to fundamental band gap calculations

Not less attention is being paid to electronic properties of CNTs, especially to the
band gap calculations. Band gap of SWCNTs changes under influence of electric and
magnetic fields; and under mechanical strains [32].

Yet in 1999 Rochefort et al. [8] used Green’s function technique and observed
electronic band gap opening in (6,6) armchair nanotube during twist. Moreover, for
constrained geometry gap increased linearly with increasing twisting angle, reached
certain point and decreased linearly back to zero. Allowing relaxation in the twisted
tubes resulted in saturation after reaching the maximum. For energy calculations they
employed molecular mechanics approach and tight-binding DFT. Results showed that
the energy needed for even moderate twist was very large. For small twists energy
dependence on twisting angle was quadratic. In addition, structural relaxation was
found to have a very strong effect on the deformation energy; the energy of the relaxed
structure deviated from the quadratic law for large angles.

One of the most recent studies [32] suggested analytical derivation of the energy
gap under small torsional strain within π-tight binding (π-TB) approximation. This
method takes into account interactions of the nearest, the second and the third neigh-
bors of each carbon atom, hence being sufficiently accurate. The study showed that
the values of the band gaps in case of different chiralities change linearly with tor-
sional strain. However, for different chiral vectors different levels and gradients in
band gap change were observed, more precisely, if the remainder of m−n

3
was equal

to 1, the gradient was negative, if −1, gradient was positive. In addition, greater
radius resulted in greater shift in the band gap. Magnitude of the slope decreased
with increasing the chiral angle. For bigger strains an abrupt change of the gradient
sign was observed. This change was explained with interchanging of sub-bands that
stand at the edges of conduction and valence bands.

Another recent study of torsion-induced band gap changes involving tight-binding
calculations was carried out by Wang et al. [54]. They obtained analytical expression
for energy gap of armchair and zigzag tubes using transfer matrix method. They
represented a nanotube as a generalized honeycomb lattice on cylinder where straight
line is replaced by a geodesic line and atomic positions are determined according to a
cylindrical manifold, thus, taking into account curvature effects. Translation symme-
try was realized using screw operation along tube axis. The method considers only
nearest-neighbor hoppings for π-electrons modified by curvature effect and deforma-
tion. They observed linear relationship between the energy gap and twist for armchair
nanotubes. In addition, it was noted that the energy gap corresponding to the same
twist for smaller radius SWCNTs had smaller value. Chiral and zigzag tubes also
revealed an increase with increasing twist. The small gaps were observed for pristine
chiral and zigzag tubes which were predicted to be metallic according to tight-binding
model of plain graphene described in section 1.2. Appearance of a gap in these tubes
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is due to the curvature effect since it changes an overlap among π electron wavefunc-
tions. Thus truly metallic are only armchair (m=n) CNTs and those, for which 1.4
condition is satisfied are semimetals with small energy gaps. The same was observed
experimentally earlier [31].

Another approach for simulating torsions in CNTs is density functional tight-
binding method (DFTB) combined with objective MD, which exploits helical sym-
metry instead of translational used in standard MD [16]. Energy band gap variation
within this method had the same character as in above-mentioned studies: increasing
linearly, reaching maximum halfway and, finally, decreasing to zero.



Chapter 3

Computational Methods

Since our work is performed within density-functional based tight-binding (DFTB)
scheme, in this chapter we will first discuss both, density-functional theory (DFT) and
its modification, DFTB. Afterwards we will overview symmetries related to SWCNTs
which has a crucial role in the efficiency of our computations. In the last part of
the chapter we will describe the two deformations we are interested in: shear, to be
applied to graphene sheet, and torsion, to be applied to SWCNT.

3.1 Density-functional tight-binding method

DFTB scheme is the approximation of DFT obtained by parameterization [42]. It
is our choice because of high computational speed and inherited accuracy. Moreover,
its advantages over other schemes encompass reliability, transferability, independency
of types of atoms, universality - it can be applied to ground state calculations to
determine electronic structure as well as to excited state calculations to determine
optical spectra in molecular systems. Before moving to DFTB we will briefly describe
the many-body problem as an introduction to how it all began.

DFT: the origin of DFTB

Since 1990’s the standard approach to many-body quantum mechanical problems has
become density functional theory. DFT allowed to study much larger systems then
it was possible within traditional ab initio methods and maintained the accuracy of
its forerunner. The idea underlying DFT is to employ functional ∗ of electron density
instead of many-electron wave function. Hence, if earlier Schrödinger equation for N

∗Functional by definition is mapping from vector space usually to the field of real numbers. If
vector space is a space of functions, then functional can be explained as function of the function,
returning scalar output. Square brackets are often used to denote inputs of the functionals.

15
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electron system involved 3N variables, DFT reduced the problem to the only variable,
the electron density.

General many-body Schrödinger equation involves kinetic energies of electrons and
nuclei, electron-electron and nucleus-nucleus Coulumb interactions; and the potential
acting on electrons exerted by nuclei. Obviously, such an equation is overly compli-
cated to solve. An excellent, extremely useful approximation is Born-Oppenheimer
(BO) approximation according to which nuclei, because of their big masses compared
to electrons, can be treated as stationary (having fixed positions). Based on this
assumption electron and nuclear parts of Schrödinger equation can be separated, i.e.
many-body problem reduces to many-electron problem:

ĤΨj = EjΨj (3.1)

where Ψj are many-electron wavefunctions, Ej eigenenergies of the system and Ĥ is a

many-electron Hamiltionian consisting of four terms: kinetic term T̂ , electron-electron
Coulomb interaction V̂ee, electron-nuclei interaction V̂e−nuclei and electron interaction
to external field V̂f

†

Ĥ = T̂+V̂ee+V̂e−nuclei+V̂f =
N�

i=1

1

2
∇2

i

� �� �
T̂

+
�

i�=j

1

|ri − rj|
� �� �

V̂ee

−
N�

i=1

M�

m=1

Zm

|ri −Rm|
+ Vf

� �� �
V̂ext

(3.2)

Here, Zm is the charge of nucleus m at position Rm, ri are positions of electrons, V̂ext

denotes the whole external potential on them.
Though BO approximation alleviated existing many-body problem, solving the

many-electron Schrödinger equation was still enormously heavy task, especially for
large systems.

Density functional theory revolutionized the many-body problem development.
The starting point of DFT is Hohenberg-Kohn theorem which states that there exists
unique correspondence between the ground state electron density n0(r), the elec-
tron wavefunction Ψ and the external potential Vext [38]. Moreover, electron density
uniquely defines all the ground state observables of the system through the wavefunc-
tion. In one word, once the ground state electron density is known, all the ground
state properties of a system are known.

Then total energy within DFT is given by the following expression:

E[n] = F [n] + Vext[n] = T [n] + Vee[n] +

�
n(r)

�
−
�

m

Zm

|ri −Rm|
+ Vf

�
dr(3.3)

†Equations are written in atomic units, i.e. e = � = me = 1.
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As ground state energy means the lowest available energy for the system, applying
variational principle and minimizing expression (3.3) with respect to electron density
gives the ground state electron density n0 and ground state energy E[n0] ≡ E0.
Nonetheless, this procedure is again cumbersome. Therefore, approximations had
to be made. Soon after appearing Hohenberg-Kohn theorem, W. Kohn and L. J.
Sham suggested the scheme that simplifies the variational principle routine for in-
teracting electrons in external potential [57]. Based on Hellman-Feynman theorem ‡

they introduced the model system of non-interacting fictitious electrons in effective
(single-particle) external potential whose many-body wavefunction yields the same
electron density as the original interacting-electron system, hence, the two systems
having identical ground state densities:

�
−1

2
∇2 + vs[n](r)

�
φi(r) = �iφi(r) (3.4)

n(r) =
�

i

|φi(r)| (3.5)

where, vs[n] is a single particle potential functional and is represented as the sum of
the external potential vext[n], the potential due to all-electron density vee[n] and the
potential that can be referred as correction in order to take into account many-body
effects (exchange-correlation) vxc[n]:

vs[n](r) = vext[n] + vee[n] + vxc[n] (3.6)

Equations (3.4)-(3.6) are termed Kohn-Sham equations. They require self-consistent
solution; That is, calculations start with initial guess for ground state density and cor-
responding Kohn-Sham potential vs is found. According to new vs, new density is
calculated and the routine repeats until convergence in electron density and potential
is reached.

Forces acting on atoms, as a consequence of Helmann-Feynmann theorem, can
be calculated as the derivative of Hamiltonian with respect to nuclear coordinates.
Finally, KS equations transform many-electron problem to single-particle problem.
More detailed discussions on DFT can be found in references 52, 9, 37.

‡Hellmann-Feynman theorem relates the derivative of total energy with respect to parameter
λ to the expectation value of the derivative of Hamiltonian with respect to the same parameter:
∂E
∂λ =

�
ψ∗(λ) ∂Ĥλ

∂λψ(λ)dτ . The outcome of the theorem is that if electron distribution is known, forces

can be determined through the principles of classical electrostatics.
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Tight-binding formalism of DFTB

Without going into details we will focus on the main points of DFTB. More detailed
derivation of DFTB and the examples of applications are given, for instance, in ref-
erences 21 and 40.

DFTB scheme starts with representing KS orbitals Ψa of the system for eigenstate
a as the linear combination of atomic orbitals φν :

Ψa(r) =
�

ν

caνφν(r). (3.7)

In other words, DFTB uses minimal basis set, i.e to each angular momentum state
only one radial function corresponds. In case of translationally periodic lattices equa-
tion (3.7) can be rewritten using Bloch’s waves:

Ψa,µ(k, r) =
1√
N

�

T

exp(ik · T )φµ(r − T ) (3.8)

where T describes the translation periodicity of the lattice and φµ are atom-centered
localized basis functions. Using such basis total energy of DFT expressed with equa-
tion (3.3) transforms to DFTB total energy:

EDFTB = EBS + ECoulumb + Erep (3.9)

where the first term is the band-structure energy, the energy with neutral electron
density and without charge transfer in Hamiltonian. The second term represents the
energy due to charge fluctuations which contains in itself mainly Coulomb interaction
and exchange-correlation. The third term is repulsive energy for the pair of atoms,
which is fitted to certain reference systems and is parametrized using DFT.

Minimizing EDFTB via variational principle, KS equations transform to a set of
algebraic equations: �

v

caν(Hµν − �aSµν) = 0 ∀µ, a (3.10)

Hµν = H0
µν +

1

2
Sµν

�

K

(γIK + γKJ)ΔqK , µ ∈ I, ν ∈ J (3.11)

whereH0
µν =< φµ|H0|φν > are matrix elements of Hamiltionian which in tight-binding

approach are parameters (numbers). Sµν represent overlap matrix elements; ΔqK is
excess charge on atom K and γIK(γLJ) describes Coulumb interaction between atoms
I and K (L and J).

As it is seen from equations (3.10) and (3.11), overlap is not generally zero, Sµ,ν =
< φµ|φν >�= δνµ. Calculating overlap integral is based on numerical integration of
Slater-Koster integrals. Obtained values are stored in a table only once for all orbital
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pairs. Then, by interpolation overlap can be obtained for any geometry. Hµν are
computed in two-center approximation. This means that only nearest neighbors are
taken into consideration. Hamiltonian matrix elements are parametrized directly from
DFT, similarly to Sµν . Thus, avoiding heavy calculations of integrals at each step as
it is done in DFT.

Equations (3.10) and (3.11) need to be solved self-consistently alike standard DFT:
calculations start with initial guess for ΔqK according to which Hµν is found. Next,
from equations (3.10) new caν is obtained which gives new value for ΔqK . Iterations
repeat until convergence is reached.

Forces can again be found by taking gradients of EDFTB with respect to atomic
positions.

To summarize, in DFTB total energy of the system is composed of three terms:
band structure, repulsive and Coulomb energies, each dependent on atom pairs and
their separations only. Matrix elements and repulsive potentials are derived from
DFT. Due to pre-parameterization, DFTB is a few orders faster than DFT without
sacrificing accuracy too much.

3.2 Symmetries of carbon nanotubes

Whatever the high performance computer is used existing today, simulating large
systems is still limited by the insufficiency of computational resources. It is doubtful if
technology would ever be possible to remove these limits unless certain novel approach
from the side of theory is made. The way to reduction of computational costs (thus
increasing the limiting size of the system) goes through symmetries. §From quantum-
mechanical point of view this means that the wavefunction must be invariant with
respect to symmetry operation.

For instance, well-known Bloch’s theorem allows to simulate translation-periodic
systems using a unit cell containing only a few atoms: within such a symmetry the
solutions of the Schrödinger equation can be represented as the product of the plane
wave exp(i · k) and the function uk having the lattice periodicity: ¶

ψk(r) = uk(r)exp(i · r) (3.12)

where k is the wavevector. Thus, thanks to Bloch’s theorem instead of considering
the whole system, only one cell can be analyzed to find the function uk(r); next, by
modulating with plane wave, wavefunction of the whole system can be determined.

§Symmetry, in terms of molecules means that upon atomic permutations the system returns to
the state indistinguishable from the initial. Such an operation is termed symmetry operation.

¶Discussion on Bloch’s theorem can be found in any solid state physics textbooks, for example,
in reference [27].
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Figure 3.1 illustrates how three-dimensional translation-periodic system can be gen-
erated using a single simulation cell described with the three translational vectors T1,
T2 and T3.

Despite all, translational periodicity is not always the best choice, especially in
case of cylindrical and helical systems, such as nanotubes, DNA helix, nanotori, bent,
twisted nanomaterials. For example, translational unit cell of (10,9) helical nanotube
would contain 1084 carbon atoms [15], obviously, even this small nanotube requires
huge computational resources. Hence, the challenge is to find the smallest unrepeat-
able unit of the system which using symmetry transformations and imposing proper
boundary conditions will produce information (wavefunction) about the whole system.

With this goal White et al. [15] were the first to use helical and rotational symme-
tries instead of translational in their tight-binding calculations of the band gaps for
semiconducting CNTs. They introduced the construction of a nanotube by initially
mapping only two atoms on the surface of the cylinder and next, applying the two
symmetry operations as depicted in figure 3.2.

The two-atom mapping was further used by Popov [41] for calculating electronic
band structure and the dielectric function of small- and moderate-radius SWCNTs us-
ing symmetry-adapted non-orthogonal tight-binding scheme. Non-translational sym-
metries were used also by Zhang and Dumitrica [63] for investigating elastic properties
of relaxed and distorted CNTs.

How exactly can this be exploited in computations? If Bloch’s theorem simplifies
calculations for the bulk owning translational symmetry, it is logical to predict that
there must exist similar deductions for the systems with other types of symmetries;
Thus, to state once again, the way to accomplishment is to first find the smallest unit
cell which via symmetry operations will construct the entire system; next, to perform
all the calculations within this unit cell; finally, to make symmetry-based implications

Figure 3.1: Generating translation-periodic system using simulation cell defined with vectors
T1, T2 and T3 (T3 perpendicular to the sheet plane).
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Figure 3.2: Mapping a pair of atoms on a cylindrical surface for generating nanotube.
Atom O turns into atom A via rotation by angle φ1 around the tube axis and translation at
distance t1. Analogously, atom O coincides with atom B for the screw operation described
with φ2 and t2. Picture is taken from reference 41.
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to predict the wavefunction of the entire system.

Generalized Bloch’s Theorem

Recently, Koskinen and Kit [39] introduced revised Bloch’s theorem valid for any
system which is invariant under translation and/or rotations:

In a potential, that is invariant in symmetry operations Sn, the energy
eigenstates ψaκ at r and at r� = S−nr differ by a phase factor exp(iκ·n)

D̂(Sn)ψaκ(r) = ψaκ(S
−nr) = exp(iκ·n)ψaκ(r) (3.13)

Where D̂(Sn) is the invariant transformation of the potential: D̂(Sn)V (r) =
V (S−n) = V (r); Sn = Sn1

1 Sn2
2 ..., Si(i = 1, 2, ...) being any symmetry operation(s)

(translation, rotation, reflection and their combinations) and n=(n1, n2, ...).S
−n is the

inverse transformation of Sn. ψaκ(�r) with κ = (κ1, κ2, ...) are eigenstates of both,
D̂(Sn) and Ĥ as the two operators commute due to invariance.

Equation (3.13) entails that the wavefunction of a single unit cell determine the
electronic structure of the whole system, regardless of the shape of the unit cell. It is
analogous to the Bloch’s theorem with the difference that in Hamiltonian and overlap
matrix elements instead of k points κ (kappa) points appear, which is the result of
additional symmetries. Consequently, this is the only difference between the two total
energy expressions and high symmetry points k now become κ. To sum up, revised
Bloch’s theorem is generalization of well-known Bloch’s theorem beyond translational
symmetry and is the way to more efficient computations for distorted materials.

Unit cell of the system

In the remaining part of the section we will discuss simulation cell setups for cylindrical
and helical systems.

The two main coordinate transformations of our interest are rotation and trans-
lation:

Rotation operation Rαn rotates r with angle α around the axis circumscribed by
the vector αn so that r appears into nth image�:

rn≡Rαnr (3.14)

and �
αn = nα

n = (n, 0, 0)
(3.15)

�Image is termed the cell obtained by symmetry transformations of the simulation cell.
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Figure 3.3: Simulation cells generated from the principal cells described with angle α and
vector T . n = (n1, n2, 0) numerate the images of the principal cell n = (0, 0, 0). Figure is
taken from reference 26.

Such transformations generate simulation cell for 2D periodic systems characterized
with the only parameter α. The simulation cell is termed wedge simulation cell with
wedge angle α [26].

Translation operation TT means displacement of r with the given vector T :

rn ≡ TTr = r + T (3.16)

Depending on the combinations of rotations and 1D translations, either cylindrical
or helical nanostructures can be generated: The sequence of operations





αn = n1α

Tn = n2T α�T
n = (n1, n2, 0)

(3.17)

produce a system with cylindrical symmetry (figure 3.3a). Here, rotation and trans-
lation are made independently. While either





αn = nχ

Tn = nT χ�T
n = (n, 0, 0)

(3.18)
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or





αn = n1χ1 + n2χ2

Tn = n1T1 + n2T2 χ1�χ2�T
n = (n, 0, 0)

(3.19)

that is, coupled combinations of rotation and translation, generate helical systems
and the simulation cell is called chiral simulation cell (figure 3.3b).

More rigorous discussion on wedge and chiral simulation cell setups can be found
in reference 26.

3.3 Shear and torsion of plane and thin

cylindrical elastic objects

When atoms are displaced in a solid by external force, an opposite, restoring force is
induced which tries to return them in their equilibrium positions. Small deformations
are usually elastic, i.e. able to fully recover initial positions of the distorted atoms
after removing load. Our study is carried out within elastic range, therefore, we will
only consider this limiting case.

Elastic response of material is characterized with two basic quantities: stress,
defined as force per unit area and strain, a quantity characterizing the amount of
deformation that object experiences under stress compared to its initial geometry.
Classical approach is based on Hook’s law stating that stress is proportional to strain.
The constant of proportionality is called elastic modulus. One can interpret it as a
measure of material’s ability to resist mechanical load.

Depending on the type of deformation there exist three main moduli of elasticity
[48]:

Young’s modulus Y, describing tensile deformation and characterizing resistance
of a solid to uniaxial stretching (figure 3.4 a)). Bulk modulus K, characterizing hy-
drostatic compression (figure 3.4 b)). Shear modulus G, describing resistance of a
material to shear deformation (figure 3.4 c)). Our subject of interest is shear mod-
ulus. As it is seen shear means stress acting parallel to the surface which changes
angles but preserves the volume of a sample (or area in 2D which is our case). Shear
deformation is characterized with shear constant γs:

γs = tan θ =
Δx

h
(3.20)

where Δx is displacement and h is the distance between the sheared edges (figure
3.5). For small deformations tanθ ≈ θ.
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Figure 3.4: Three types of elastic deformations: (a) tensile, (b) hydrostatic compression,
(c) shear. They are characterized with Young’s modulus Y, Bulk modulus K and Shear
modulus G, respectively. Arrows indicate the direction of the applied force.

When considering cylindrical objects, torsion (termed also as uniaxial twist, or
simply, twist) can be understood as relative rotation of the two ends in opposite
directions around the tube axis, usually, one end is assumed to be fixed while the
other is rotated. Such kind of deformation is described with torsion constant :

γt =
rφ

h
(3.21)

where r is the radius of the cylinder, φ, the twisting angle, and h is the height of the
sample (figure 3.6).

Continuum mechanics relates shear modulus of a material to the torsion constant
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Figure 3.5: Shear characterized with angle θ: tanθ = Δx
h .

�

h

Figure 3.6: Twist of a cylinder with hight h characterized with angle φ.

via energy of the sample:

G =
1

V

δ2E

δγ2
, (3.22)

where V is the volume of the object.

3.4 Hotbit and Atomic Simulation Environment

Hotbit is a calculator for python module Atomic Simulation Environment (ASE)
with implemented DFTB code and generalized symmetries [1, 40, 28]. DFTB makes
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computations faster, while properly chosen symmetries help to significantly reduce
the number of atoms in a simulation cell.

Hotbit gives opportunity to model distorted nanomaterials with wedge and chiral
symmetries. Chiral simulation cell is used to generate carbon nanotubes and contin-
uous twist on them (as twist itself owns chiral symmetry).





Chapter 4

Results and Discussion

The reason why we are interested in the two particular deformations is the assumption
that twisting carbon nanotube becomes equivalent to shearing graphene sheet when
the tube diameter approaches infinity. We calculate shear moduli for both using
equation (3.22).

For small twists energy dependence on torsion obeys quadratic law [8]: E =
Cγ2 + Bγ + E0, where C and B are constants. B is small enough to be negligible,
corresponding to the assumption of perfectly isotropic lattice of graphene. Thus,
equation (3.22) becomes

G =
2C

V
. (4.1)

Our general scheme for finding values of G is as follows: After initial optimization,
first we calculate total energies during torsion in the range γ ∈ (−0.1, 0.1) with step
0.005, and with γ ∈ (0, 0.1) when torsion effect is the same in opposite directions;
next, we find coefficient C from E − γ curve using quadratic fit, finally, we define G
from equation (4.1). Similar procedure is carried out for shearing graphene.

Volumes are treated as volumes of a parallelepiped and that of a hollow cylinder for
graphene and nanotubes, respectively. We take the reference thickness t of these two
nanostructures to be equal to 3.4 Å, however, its value has no particular importance
in our calculations: as we are comparing shear moduli of graphene and those of
nanotubes, relative quantitative relationship between them would be the same for
arbitrarily chosen t. In fact, thickness of an one-atom layer nanostructure even lacks
physical sense.

It must be emphasized that we consider continuum mechanics only for the defini-
tion of shear modulus which requires finite dimensions (equation (3.22)); since shear
and twist deformations characterize bulk, we treat graphene and nanotube as bulk,
having fixed volume, with the sole purpose to define shear and twist on them. Other-
wise, as the origin of deformation is intrinsically microscopic, we choose to calculate
energies, needed to determine shear modulus, and forces, needed for optimization,

29
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Figure 4.1: Single(a) and double(b) vacancies in carbon nanotubes aligned with the tube
axis.

quantum mechanically, using DFTB scheme as mentioned in the previous chapter.
Optimization is done via Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

In addition to pristine case, we perform studies on nanotubes with point defects:
single and double vacancies. Defects are situated along the tube axis with a distance
of approximately 15 Å between them as illustrated in figure 4.1.

Studies involve three sets of SWCNTs: (5,0), (10,0) and (15,0) zigzag tubes, (3,3),
(6,6) and (9,9) armchair tubes, and (4,2), (7,5) and (10,8) chiral tubes. In order to ob-
serve chirality and diameter effect during torsion, nanotubes are chosen in a way that
d(5,0)≈d(3,3)≈d(4,2)=d1, d(10,0)≈d(6,6)≈d(7,5)=d2, and d(15,0)≈d(9,9)≈d(10,8)=
d3, where d stands for the diameter of the tube.

In the following part of the chapter performed computational study will be pre-
sented. The work consists of four main parts: i) Determination of shear modulus
behavior under twist for perfect SWCNTs and comparison to that of graphene. ii)
Determination of shear modulus behavior under twist in the presence of point defects,
single vacancy (SV) and double vacancy (DV) cases. iii) Investigating shear modulus
dependence on shearing direction for pristine graphene, also for graphene with SV
and DV. iv) Finding electronic fundamental gap response to twist for perfect tubes.

Each problem is described and analyzed separately in the four sections of the
chapter preceding our expectations for the outcome. Obtained results are compared
to the information found in literature.
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Chirality (n,m) d1 Gd1 (n,m) d2 Gd2 (n,m) d3 Gd3

Zigzag (5,0) 0.39 0.491 (10,0) 0.78 0.509 (15,0) 1.17 0.509
Armchair (3,3) 0.41 0.432 (6,6) 0.81 0.509 (9,9) 1.22 0.516
Chiral (4,2) 0.41 0.474 (7,5) 0.82 0.485 (10,8) 1.22 0.499

Table 4.1: Obtained shear moduli for pristine nanotubes. Gs are given in units of TPa and
diameters in nm.

4.1 Shear modulus calculations for perfect

SWCNTs

CNT properties can not be straightforwardly concluded based on graphene because
of curvature effect present in the tube. Obviously, behavior of the curved surface can
not be identified with that of flat sheet. Moreover, the smaller the tube diameter,
the bigger the curvature and the stronger the effect is. Our assumption is that tor-
sion should become equivalent to shearing graphene for large diameters. Figure 4.2
shows computational results for pristine tubes. As it is seen, result agrees with our
expectations: shear moduli of all the nanotubes gradually approach that of graphene
as diameter increases, regardless of chirality.

At small diameters picture is different, G is dependent on chirality: armchair
nanotube has the smallest elastic modulus which turns out to be the most sensitive to
size, while shear modulus of zigzag nanotubes seem to be less dependent on diameter
and is higher than that of the other two tubes. This is in agreement with references
51 and 22, where zigzag tubes were reported to have the highest shear modulus at
small diameters. Convergence of shear moduli was confirmed in most of the studies,
for example, in reference 29 it was reached at d=2 nm, in reference 50 - at d=1.1 nm,
in reference 12 - at d=1.8 nm. According to our results convergence is reached at
d ≈1.2 nm, however, deducing exact limit from our studies would not be reasonable
at this point - significantly large data has to be investigated then. Computed values
of G are presented in table 4.1.

4.2 Shear modulus calculations in the presence of

single- and double vacancies.

As we have studied how deformation alters elastic properties of pure nanotubes, it
is important to check what kind of behavior would deformation together with point
defect exhibit. Vacancy is a missing atom from lattice site, this makes structure less
rigid than in perfect case, therefore, we expect that shear modulus for single vacancy
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Figure 4.2: Shear moduli of perfect SWCNTs and graphene. Graphene shear modulus
corresponds to shearing zigzag graphene sheet and is 0.517 TPa; Shearing in armchair
direction results in the value of 0.515 TPa which is not shown here to avoid overloading the
figure.

Chirality (n,m) d1 Gd1 (n,m) d2 Gd2 (n,m) d3 Gd3

Zigzag (5,0) 0.39 0.489 (10,0) 0.78 0.487 (15,0) 1.17 0.506
Armchair (3,3) 0.41 0.440 (6,6) 0.81 0.497 (9,9) 1.22 0.509
Chiral (4,2) 0.41 0.471 (7,5) 0.82 0.497 (10,8) 1.22 0.509

Table 4.2: Obtained shear moduli for the nanotubes with single vacancy. Gs are given in
units of TPa and diameters in nm.

must be diminished compared to pristine tubes, double vacancy is supposed to provide
even smaller moduli. In addition, we anticipate that G must increase with diameter:
since we are studying all the nanotubes with the same number of vacancies, for small
diameters vacancy concentration is bigger than for the larger ones. Figure 4.3 and
table 4.2 show obtained results for single vacancy case and corresponding numerical
values. Shear moduli increases with diameter especially for armchair tubes, however,
as in the case of pristine tubes zigzag nanotubes are almost independent of diameter,
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Figure 4.3: Shear moduli of armchair, zigzag and chiral SWCNTs with single vacancy.

Chirality (n,m) d1 Gd1 (n,m) d2 Gd2 (n,m) d3 Gd3

Zigzag (5,0) 0.39 0.483 (10,0) 0.78 0.488 (15,0) 1.17 0.512
Armchair (3,3) 0.41 0.443 (6,6) 0.81 0.487 (9,9) 1.22 0.502
Chiral (4,2) 0.41 0.450 (7,5) 0.82 0.483 (10,8) 1.22 0.502

Table 4.3: Obtained shear moduli for the nanotubes with double vacancy. Gs are given in
units of TPa and diameters in nm.

only slight change in G is observed. When compared to pure case, zigzag nanotubes
have decreased shear modulus for all sizes, armchair tubes show increase in G as well
as larger chiral tubes, thus no clear picture of the trend can be established about
armchair and chiral ones, which might be the outcome of small torsions. Zhang et
al. [65] also reported that armchair nanotubes where less sensitive to the presence of
defects than zigzag tubes.

Results for double vacancy and the values of G are shown in figure 4.4 and table
4.4, respectively. Here, chiral tubes show absolute decrease in modulus, and no strict
trend is noted for the other two types, however, decrease occurs in most of the tubes,
though the smallest armchair and larger zigzag tubes exhibit opposite.
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Figure 4.4: Shear moduli of armchair, zigzag and chiral SWCNTs with double vacancy.

Fixed separation between the point defects implies that the vacancy concentration
in the tubes of unequal diameter will be different: the smaller the tube, the less percent
of atoms are missing and the less rigid material is; Figures 4.5a and 4.5b depict that
regardless of chirality and the tube diameter shear moduli decreases almost linearly
with the increase of vacancy percentage. Linear approximation is particularly good
for small vacancy concentrations, below 1% for SV and below 2% for DV.

The trend slope is noted to be smaller for a pair-vacancy than that of single
vacancy, what predicts that nanotubes are more stable against the number of DVs.

4.3 Shear modulus response to the shearing

direction of graphene

Changing shearing direction of a graphene sheet corresponds to changing chirality
of a twisted tube. We describe it with angle α between x axis and the direction of
applied force. For example, shearing in x direction (α = 0) in our study is equivalent
to twisting zigzag tube, consequently, shearing in y(α = π/2) direction corresponds to
twisting armchair tube. All other directions correspond to twisting chiral tubes. Fig-
ure 4.6a presents calculations in the range α ∈ (0, π/2). This range fully characterizes
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Figure 4.5: Shear modulus change with single(a) and double(b) vacancy concentration.

shearing in any direction because of symmetry of a pristine graphene. Maximum de-
viation from the average value Gav=0.516 TPa is 1.16% and occures at maximum and
minimum values of G reached.

In case of single vacancy fluctuations are minor as found from figure 4.6b, from
minimum value - 0.4% and from maximum - 0.2%. This indicates at only slight
dependence on chirality of shear modulus in case of SV, which is also seen from figure
4.3 for larger diameter tubes.

Double vacancy causes more fluctuations as depicted in figure 4.6c. Here, de-
viations from minimum and maximum are 1.7% and 3.2%, respectively, which are
highest compared to the above two cases. Accordingly, we can predict that DV is
most sensitive to chirality at shear deformation for large tubes.
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Figure 4.6: Shear modulus variation depending on the shearing direction of perfect(a)
graphene and in the presence of single(b)- and double(c) vacancies. DV graphene shows
most sensitivity to shearing direction.
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Case Gmin(TPa) Gmax(TPa) Gav(TPa)
Pristine 0.510 0.522 0.516
SV 0.462 0.465 0.464
DV 0.459 0.482 0.467

Table 4.4: Interesting values of shear modulus for direction-dependent shearing of graphene.

4.4 Finding electronic fundamental gap response

to twist for perfect tubes

Deformation modifies not only elastic properties of a material but also electronic.
Bond distortion affects electronic structure, consequently, band gap variation is ex-
pected. It is already known that armchair nanotubes experience metal to semicon-
ductor transition during torsion [8],[16]. In this part of the work we investigate the
effect of twist on the energy gap for our sets of SWCNTs. We estimate band gap
from Density of States (DOS) calculations at each step of the deformation in the
same interval of torsion as above.

Metallic zigzag tubes (5,0)∗ and (15,0) did not exhibit any significant change in
DOS near Fermi level and remained metallic in the whole range of torsion, while Egap

of semiconducting (10,0) tube fluctuates with torsion as shown in figure 4.7a. Critical
point where increase starts is at γ = 0.02.

On the contrary, all armchair tubes maintain metallic behavior only until γ = 0.03,
which is followed by linear increase in Egap with almost the same slope for all the tubes,
reaching maximum, and decreasing linearly for (3,3) and (9,9) as figure 4.7b depicts.
Linearity can be explained with the tight-binding band structure of graphene, for
which dispersion relation near Fermi energy is linear due to the degeneracy of the
bands as presented in figure 4.8.

Chiral nanotubes behave similarly to armchair ones as seen from figure 4.7c, except
that the gap opening starts at negative values of torsion reminding about their specific
achiral symmetry.

The values of maximum gaps EΔgap reached for the tubes from zigzag and chi-
ral groups, corresponding to the same diameter, come closer as the tube diameter
increases, i.e. EΔgap=0.32 eV of (10,8) and EΔgap=0.33 eV of (9,9) are closest com-
pared to the other two pairs, while EΔgap=0.61 eV of (4,2) and EΔgap=0.42 eV have
the highest difference. Above discussion is visualized in figure 4.9. This raises the
supposition that for large diameter tubes the maximum energy gap reached during
torsion should converge.

∗It must be noted that in opposite to simple tight-binding model which predicts (5,0) to be
semiconducting (equation 1.4), DFTB reveals its metallic character caused by the small diameter.
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Figure 4.7: Energy gap response to torsion for zigzag, armchair and chiral nanotubes.
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Figure 4.8: Electronic band structure of graphene: degeneracy of conduction and valence
bands result in the linear relation between energy E and wave vector k in the vicinity of
Fermi level. Fermi level passes through the points where the two bands meet.

(e
V

)

Figure 4.9: The difference between the torsion-induced fundamental gap values disappears
with the increase of diameter for the same size of tubes with different chirality.

The figure also illustrates that biggest tubes exhibit smallest gaps which is the
case in metallic pristine tubes as well [56]. However, no gap-diameter correlation was
found in our study due the insufficient size of data.

The slope of the increase (decrease) of Egap in figure 4.7 according to simple tight-
binding model of graphene is equal to 3t0r, where t0 is the tight-binding hopping
element and r is the radius of the nanotube. Zhang et al. [16] found good agreement
between tight-binding prediction and DFTB calculations for cylinder idealized shape
of (12,12) nanotube. They found t0=2.72 eV which is close to 2.66 eV used by Yang et
al.. However, our study offers different results for the vales of hopping parameter than
mentioned above and deviates between 0.6-1.6 eV. Disagreements could be evoked by
the small range of torsion used in our studies where finer disturbances in electronic
structure are observed, and where simple tight-binding approach can not be applied.





Chapter 5

Summary and outlook

The main part of the thesis embraces literature review and performed computational
work. The first chapter includes the general discussion on carbon nanotubes and their
properties and explains the motivation for CNT research.

Chapter 2 overviews existing methods and results related to the thesis topic. The
need for further studies is inferred and emphasized; seeking the perfect way for mod-
eling mechanical and electronic properties of CNTs is still an ongoing process, despite
the number of methods attempted. This is implied by the variations in shear mod-
ulus calculation results and by the lack of studies of simultaneously distorted and
point-defected tubes.

Our approach to modeling deformed carbon nanotubes and the fulfilled work are
given in chapters 3 and 4, respectively. Symmetry-adapted Density-Functional Tight-
Binding method makes calculations fast without sacrificing accuracy. Therefore, we
consider it ideally suitable for performing studies on twisted carbon nanotubes.

Results for shear modulus calculations mostly agree with literature, namely, as
tube diameter increases its value becomes equal to that of graphene independently of
chirality, confirming that the properties of large diameter tubes can be explained based
on flat graphene. However, this is not the case at small diameters: armchair carbon
nanotubes exhibit the smallest shear modulus and are most sensitive to size compared
to their zigzag and chiral counterparts. On the other hand, zigzag tubes have the
highest modulus at small diameters and are least sensitive to size. However, in the
presence of vacancies armchair nanotubes had no any significant change in moduli.
General picture is that SV decreases shear modulus for most of the tubes, DV even
more. Shear modulus dependence on concentration of vacancies was also studied. The
outcome is linear decrease with the percentage of point defects, regardless of chirality.
As a future work, it would be interesting to conduct more detailed work on larger
data and to establish more solid relationship between the vacancy concentration and
shear moduli. This would give possibility to identify the presence of point defects
according to the known shear modulus for the known size of the tube.

41
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Chirality dependence is more rigorously studied by shearing the graphene sheet
in different directions, covering the whole characteristic range. The most sensitive to
direction variations was found graphene with DV, associating with nanotubes, this
predicts that tubes with DV must be most sensitive to chirality at large diameters.

The effect of torsion on electronic properties is expressed by inducing the electronic
band gap in initially metallic nanotubes. The changing character is linear, reaching
maximum at certain point. Results suggest that for large tubes the peak values of
opened band gaps must be the same for all affected tubes. The study could be further
extended to learn the band gap change in graphene under shear. Point-defect effect
on band gap of twisted nanotubes would also remain as future challenge.

In summary, the current thesis is an effort to get insight into torsional behavior
of SWCNTs. Once the defect related behavior is firmly resolved the way to tuning
nanotube properties via imperfections is opened, and better control of nanotube based
devices is possible. However, to achieve complete controllability there is yet much to
learn.
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