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ABSTRACT
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ISSN 1456-5390;152)

ISBN 978-951-39-4607-4 (nid.)
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Finnish summary

Diss.

Over the last decade, data mining has gone through a significant transformation
influenced by advanced data collection technologies. Today data mining faces
the challenge of dealing with increasingly complex data structures. As a result,
data often exhibits instability in measured attribute values (features). In other
words, the set of relevant features is not the same through the entire set of
domain examples. Considering this problem from another angle, data includes
regions with local properties that, in particular, differ from each other with
regard to the feature relevance profiles. Global models, therefore, cannot reflect
the essential knowledge about the data structure. This thesis presents a
description of the unstable feature relevance problem in classification tasks,
elaborating the concept of heterogeneous classification problems and
introducing different types of feature space heterogeneity. It also suggests a
multi-model solution derived from the definition of a subproblem as a group of
instances with easier class discrimination and lower complexity in the subspace
of locally relevant features. The solution is presented within an ensemble
learning framework. The search strategies, suggested for decomposition of
classification problems with unstable feature relevance, express different levels
of granularity with respect to classes. Evaluation of the candidate subproblems
is executed through profiles of feature relevance. These profiles are vectors of
weights obtained from feature merit measures and, alternatively, a result of
distance metric adaptation. Additional measures of complexity, including class
boundaries and density-based measures, are suggested to evaluate
decomposition and to serve as preliminary heterogeneity tests. This research
contributes towards reaching complementary data analysis goals on
classification problems and revealing important insights on the data structure
and its complexity. The effects on classification performance were studied
through numerous experiments on synthetic, benchmark, and real data from a
biomedical research domain. It was found that extraction of subproblems is
possible in many cases and it provides meaningful data partitioning results. In
many cases it also leads to improvement in predictive performance.

Keywords: feature relevance, feature selection, feature weighting, classification,
clustering, ensemble learning, data mining, knowledge discovery, machine
learning
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1 INTRODUCTION

Over the last decade, data mining and knowledge discovery went through an
enormous transformation influenced by rapid growth of web/e-commerce,
tremendous progress in biology, and an increased power of collecting, storing
and analyzing data in general (Piatetsky-Shapiro, 2007). With the advent of
high-throughput experimental technologies and of high-speed Internet
connections, generation and transmission of large volumes of data have been
automated. As a result, science, industry, and even individuals have to face the
challenge of dealing with large data sets, which are not only impractical for
manual analysis, but also challenging for some automated analysis techniques
(Kriegel et al., 2007). Since the first definition of the knowledge discovery
process (Fayyad et al., 1996), the concept of a "golden nugget" has evolved, and
knowledge has to be extracted now from increasingly complex data.

Modern automated methods for measurement, collection, and analysis of
data in all fields of science, industry, and economy are providing more and
more data with drastically increasing complexity of structure. This growing
complexity is justified on one hand by the need for a richer and more precise
description of real-world objects, and on the other hand by the rapid progress
in measurement and analysis techniques allowing versatile exploration of
objects. (Kriegel et al., 2007)

Intrinsic complexity of a problem may result from an insignificant amount
of data, too much data, or ambiguity due to classification problems. In addition,
complexity of data may be increased by different factors, including the
combination of different data types, accumulation of data from different
sources, data having been collected over different periods of time, integration of
data in heterogeneous databases, and the pre-processing for further analysis
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that sometimes may entail loss or redundancy in information. For example,
medical data may include biological analyzes, textual data coming from clinical
reports, and image data such as radiographies, echograms, or
electrocardiograms. Each type of information needs pre-processing in order to
consider these different data simultaneously, thereby encompassing all their
complexity.

In order to ensure that measurements in data carry complete information
with respect to the entity or phenomenon being analyzed in the problem
domain, data is often collected with redundancy. Recent trends of data
collection are based on the paradigm “gather whatever possible data, whenever
you can”. The expectations are that gathered data will have value either for the
purpose collected or for a purpose not envisioned. As a result, dimensionality
of the data becomes high, while the number of representative examples needed
for a consistent problem description and acceptable predictive accuracy level
rises exponentially with the number of dimensions (Blayo et al., 1995).

In a variety of application domains, data mining deals with data sets
having unstable feature relevance across the set of instances with respect to
class discrimination (Apte et al., 1998; Lazarevi¢ & Obradovic¢, 2001a; Lazarevic¢
& Obradovi¢, 2001b). This problem has been recognized by data mining,
machine learning and pattern recondition communities for over a decade
gaining new meaning nowadays. Many large-scale data analysis problems
involve an investigation of relationships between attributes in heterogeneous
databases. Large data sets very often exhibit attribute instability, such that the
set of relevant attributes is not the same through the entire data space.

For example, in spatial databases different spatial regions may have
completely different characteristics. In medical diagnostics data, relevance of
attributes depends on context. In heterogeneous databases success of data
integration critically depends on the availability of accurate semantic
information on data contents (Kim & Seo, 1991). Integration often leads to
unstable feature relevance. Problem domains, where predictive models are
constructed from heterogeneous data, include bioinformatics, for example, gene
functional classification (Pavlidis et al., 2001) and prediction of proteins
interaction (Thierry-Mieg, 2000). An example from biomedical research is
classification of human cancer types using microarray gene expressions (Golub
et al., 1999; Ramaswamy et al., 2001). The number of such domains has lately
increased along with the new trends in data collection. Therefore, among the
most important characteristics of contemporary real data is heterogeneity due
to the data nature and/or source.

Heterogeneous data encompass complexity for modeling with a unimodal
approach (Ho et al., 2006; Ho & Basu, 2002). There is an ultimate need for
improved data analysis techniques which will effectively process
heterogeneous data reducing complexity of the analysis problems.

In data mining, a predictive model is constructed using a predefined set of
pattern representations (decision rules and trees, similarity-based and
probability-based models, and so on). The model is evaluated upon its ability to



14

discern patterns in the data being analyzed. Classification tasks in data mining
are predictive tasks, where the target variable to be predicted takes discrete
(categorical) values - classes. Other important analysis tasks, which often
accompany a classification task, are finding important dependencies between
features representing data, discovering meaningful patterns in data, and
acquisition of knowledge about the problem domain.

The approach explored in this thesis aims to discover new patterns in data
via decomposition of a complex classification problem onto a number of
simpler subproblems, where subproblems themselves serve as patterns or can
be viewed as forms of domain knowledge. In particular, classification
complexity of labeled data in supervised learning calls for seeking data
structure beyond class labels via decomposition of classification problems, that
is data partitioning.

This thesis addresses the problem of constructing effective predictive
models for heterogeneous data used for classification tasks, disregarding the
source of heterogeneity and prior knowledge regarding heterogeneity. In
practice, prior knowledge about the problem domain is fairly limited after data
passes through a number of pre-processing steps, for example, at the
integration stage in multiple heterogeneous database systems.

This chapter introduces the research work performed within the scope of
the thesis. Section 1.1 presents the motivation and considers efforts of other
researchers in this area. The research questions raised in this thesis are outlined.
In Section 1.2 the thesis statement is provided, describing research goal,
approach and methods, and a brief overview of the outcomes and contribution.
The thesis overview is presented in Section 1.3. Contributions made by the
author are summarized in Section 1.4. An overview of author’s published
works is provided in Section 1.5.

1.1 Motivation

Analysis of literature on machine learning, data mining, and knowledge
discovery from databases with respect to recent trends of data collection, new
application domains, and new developments enlightened various aspects of the
unstable feature relevance problem. It has motivated the study of classification
heterogeneity phenomenon in general following with development of a
theoretical background, solutions, and details of their practical application. A
few most important aspects are highlighted below.

The flexibility of machine learning techniques makes them well suited to
applications where little is known a priori about the domain, and/or relevant
knowledge is hard to elicit (Domingos, 2002). The most important machine
learning elaboration for heterogeneous classification problems is that
computational power is often better when used to induce multiple models and
combine them, instead of adapting a single model (Kuncheva, 2004). Therefore,
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decomposition of a classification problem into subproblems for heterogeneous
data has been accomplished using an ensemble learning framework.

Currently, the theory of ensemble learning is being explored
enthusiastically. As part of this, hierarchical ensembles are being utilized,
allowing for improved classification performance as well as the extraction of
valuable domain knowledge about relationships and hierarchies among classes,
and feature relevance profiles for existing and encoded class combinations
(Ghosh, 2002).

Some aspects of the classification heterogeneity problem in contemporary
data have been pointed out in earlier machine learning works on local learning
and context-sensitive learning (Hastie & Tibshirani, 1996; Friedman, 1994;
Turney, 1993). At about the same time the problem was named “classification
heterogeneity” and its variations, feature space heterogeneity and class
heterogeneity, have been introduced (Apte et al., 1998). These notions were kept
for elaboration of the heterogeneity concept in the thesis. With the growth and
expansion of multiple heterogeneous database systems and large scale data
analysis problems, a vision of complex classification problems becomes an
interpretation of classification heterogeneity.

In several later works from the data mining and databases research
community, different perspectives of the heterogeneity problem have been
considered. Commonly, the solutions utilize domain knowledge and require
human expertise. Therefore, their application is often restricted to a certain
problem domain. For example, in Pavlidis et al. (2001) gene functional
classification is based on different types of genomic data (yeast phylogenetic
profiles and DNA microarray expression) which is analyzed after its
decomposition on subsets of domain examples using domain knowledge.

Performance of traditional ensemble learning techniques from different
categories of ensemble generation has been investigated in heterogeneous
classification problems, such as in Lazarevic¢ et al. (2000), and it has been shown
that ensemble generated manipulating features (attributes) are potentially
advantageous when feature relevance is unstable across the set of domain
examples. However, the proposed elaborations on the ensemble techniques
manipulating features (Opitz, 1999; O’Sullivan et al., 2000) build global models
disregarding grouping of instances (domain examples) at homogeneous
regions. Another approach (Lazarevi¢ & Obradovi¢, 2001a) is based on
constructing local models, each responsible for a particular region of a
heterogeneous data set. Applicability of this approach depends on the success
in discovering or approximating those homogeneous regions and their coverage
by the local predictive models.

The ensemble technique combining local feature selection and class
encoding for class heterogeneity developed in this thesis follows the approach
to construct local predictive models for homogeneous regions. A major
motivation for this approach is that the subproblems are typically much easier
to solve and interpret. Feature weighting, selection, or extraction, can be
performed individually for each subproblem as a step of local model
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construction. Decomposition of heterogeneous classification problems into
subproblems, constructing local models for each subproblem, and using these
models for prediction, determine the focus of this research.

This thesis covers the following research issues: variations of classification
heterogeneity, data characteristics for evaluating structure of heterogeneous
data, approaches to decomposition of heterogeneity using class encoding for
class heterogeneity, and the Bidirectional Data Partitioning technique for
feature space heterogeneity. Applicability of feature merit measures and data
complexity measures for subproblem evaluation, and the related search
strategies, is proven by the experimental results on the synthetic and real data.

This research is currently in the mainstream of major activities in data
mining, machine learning, and knowledge discovery from large heterogeneous
databases.

1.2 Thesis statement

Unstable feature relevance in classification tasks is the research problem being
investigated. In this thesis, it is considered to be an expression of classification
heterogeneity. Therefore, the problem is solved introducing the basic
heterogeneity types and their variations. A classification problem is regarded to
one of heterogeneity types based on prior domain knowledge, exploratory
analysis, preliminary heterogeneity tests, or an assumption and its verification
in case there is no other clue.

For class heterogeneity, it is assumed that a subset of relevant features
differs in homogeneous regions that correspond to different classes, or subsets
of classes. For contextual heterogeneity, it is assumed that there are contextual
features that specify subproblems. If the contextual features are not available,
and heterogeneity does not appear at the class level, which is feature space
heterogeneity, it is assumed that heterogeneity presence can be identified
exploring other data characteristics.

The main statement is that decomposition into subproblems representing
homogeneous regions can effectively model heterogeneous classification
problems. Decomposition is performed within an ensemble framework. It is
expected that ensemble learning will help to improve predictive performance,
while decomposition will help to reveal some structure or meaningful patterns
in data.

The main goal of this research is to develop a general approach for all
heterogeneity types, and suggest the solutions. This goal has subsidiary, more
specific research goals. The first goal is to develop the theoretical background
for the research problem. At this level, conceptual analytic research is applied to
investigate types and variations of heterogeneity, data characteristics that can
be associated with classification heterogeneity, and the benefits of combining
ensemble generation methods. At this research stage, various theories, models,
and frameworks applied in prior significant studies on the topic are considered,
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and the problem is formulated using the basic concepts, definitions, terms, and
notions.

The second goal is to propose practical solutions for the basic
heterogeneity types. This includes investigation of known techniques and
measures to be used as components of the suggested multi-model solutions,
development of the technique called Bidirectional Data Partitioning (BDP) as a
solution for feature space heterogeneity, and an empirical evaluation of
applicability of the proposed techniques. At this level, constructive and
experimental research approaches are applied.

The collection of data sets for the experimental study includes the
benchmark data sets used by the data mining, pattern recognition and machine
learning communities, the synthetic data sets representing different
heterogeneity types and other data properties of interest, and the real medical
and biomedical data sets in the field to cancer research.

The research results show that information-theoretic and geometrical data
characteristics used with an appropriate search strategy are applicable to
uncover data structure related to heterogeneity. The experimental results have
demonstrated that the proposed decomposition approach and the derived BDP
schemes perform better than a unimodal approach, and, by preliminary results,
better than some state-of-the-art ensemble techniques in terms of classification
accuracy. It was shown that in cancer survival analysis and in discovery of
cancer subtypes, BDP has a potential to provide meaningful results.

1.3 Thesis overview

In this section, a brief thesis overview is provided. Chapter 2 is devoted to
multi-model classification overlooking a traditional approach established in the
data mining community. This chapter provides an overview of concepts and
formalizes classification, clustering and feature selection tasks. The related basic
algorithms are described in Appendices. Introductory material is provided on a
relatively new perception of predictive problems accentuating data structure
and intrinsic complexity of a classification problem given a data set as a
marginal description of the observed phenomenon.

Ensemble learning is introduced as an established multi-model approach.
The rationale for using an ensemble of predictive models to accomplish
decomposition of classification problems is presented. Basic methods of
ensemble generation and combination of learning models are discussed. Three
major categories of ensemble methods are described in connection with the
proposed bidirectional partitioning technique, which can be viewed as a
combination of the three.

Chapter 3 introduces the classification heterogeneity problem that served
as a motivation for developing the bidirectional partitioning technique. The
problem is presented in theoretical generalized form. Variations of classification
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heterogeneity are described. Data structure for different heterogeneity cases is
given interpretation.

In particular, feature space heterogeneity is presented as unstable feature
relevance. Related literature overview is provided. Chapter 3 also introduces
three approaches to perform decomposition of heterogeneous classification
problems into subproblems related to three different heterogeneity types.
Search and evaluation, the two constituents of decomposition are discussed.
Feature merit measures used to encompass the evaluation part are described.
The ensemble technique combining local feature selection and class encoding is
developed using a formalized decomposition scheme. Different integration
strategies are outlined and a dynamic selection method of integration based on
the probability estimates is detailed.

Chapter 4 details the decomposition approach of bidirectional data
partitioning (BDP). This approach is introduced as optimization of class
separability in local regions implemented by means of local feature weighting
and clustering. Data partitioning via clustering at different levels of granularity
with respect to class labels is described. Two component classifier integration
schemes are presented. Practical implementation of BDP is detailed covering
different BDP schemes.

Chapter 5 provides case studies for empirical evaluation of the proposed
BDP technique and its multiple schemes. Implementation issues and related
experimental settings are described. Experiments are carried out on synthetic
and benchmark data sets. Class separability and complexity measures as
possible candidates for BDP’s evaluation function are studied. Evaluation of
superclass/subclass structure with BDP is presented.

Chapter 6 describes real data sets and experiments with BDP in medical
and biomedical domain. The related data pre-processing techniques are
discussed. The results are given extensive interpretation.

Chapter 7 is the thesis summary, with conclusions, limitations, and
prospective work. Background materials are included in the Appendices.

1.4 Contributions of the doctoral research

The main idea presented in this thesis is that heterogeneous classification
problems, the origins of unstable feature relevance, can be decomposed into
subproblems and approximated with a set of predictive models covering
homogeneous regions. Decomposition of a heterogeneous classification
problem to construct those models can be performed assuming presence of
certain data characteristics based on which the classification problem can be
related to a particular type of heterogeneity. In some cases, those characteristics
are a part of domain knowledge, in other cases they can be uncovered using
preliminary heterogeneity tests, or assumed and verified with respect to
performance of the suggested techniques.
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Author identifies three basic types of heterogeneous classification
problems: class heterogeneity, contextual heterogeneity, and feature space
heterogeneity. Variations of classification heterogeneity are defined based on
these three basic types and their combinations.

Author suggests and discusses sources of classification heterogeneity in
general and provides examples from medical and biomedical domains.

In the doctoral thesis, author has proposed a general solution for a case of
feature space heterogeneity, which is the hardest due to absence of key
information to perform decomposition. The technique implementing this
solution is named Bidirectional Data Partitioning (BDP). Approach to a
contextual heterogeneity decomposition suggested by the author is an evolved
version of the solution described in early work of Apte et al. (1998), where
heterogeneous classification problems were mentioned for the first time. An
advanced solution for contextual heterogeneity is among author’s topics for a
future research. In Licentiate thesis that preceded doctoral research, author has
suggested a solution for a simpler case of heterogeneity that appears at the class
level, a class heterogeneity variation, which is refined in the doctoral thesis. In
the doctoral thesis, author has shown that bidirectional partitioning approach is
applicable for all types and variations of heterogeneity.

A solution developed in this thesis has been applied to cancer survival
analysis and cancer genomics, and demonstrated encouraging results.

Out of this research, author has developed and implemented BDP as a
meta-classifier in the open-source non-commercial data mining project, WEKA.
Software implementing BDP will be improved and submitted for the next
release of the WEKA system. Author has extended functionality of other
modules in WEKA and added implementation of heterogeneity tests based on
class separability and geometrical complexity measures creating a preliminary
analysis component in WEKA.

Practical implementation of the proposed approach resulted in extended
functionality of the BDP technique. Integration into WEKA system, among
others, opened a possibility to perform integration of classifiers into ensemble
in different ways and covering homogeneous regions in data with multiple
models using WEKA’s concept of meta-classifier, different clustering and
feature selection techniques. With certain settings, BDP can also be reduced to
functionality of COSA, a subspace clustering technique. However, a separate
implementation of COSA in WEKA is planned. Many of the above possibilities
are not explored in this thesis, but provide a solid background for further
experiments.

The research work described in this thesis comes from the original
author’s research that has been performed without collaborators since
publication of the Licentiate thesis in 2005. It has been presented in more than
ten Int. scientific conferences and published in seven single-author papers
referenced in this thesis. Some of those papers along with early papers
co-authored with other researches are mentioned in the next section.
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1.5 Summary of author’s selected published works

During the years of research related to the topic of this thesis a number of
research papers has been published. This summary highlights various aspects
of the unstable feature relevance phenomenon described in these publications.
The efforts toward developing a strategy for data decomposition and a
multi-model solution based on the theory of ensembles led to exploration of
alternative strategies that was not covered in the thesis. Some of them are
mentioned below.

The most recent paper (Skrypnyk, 2011) is devoted to analysis of various
class separability measures and their suitability as a criterion in bidirectional
data partitioning as well as an independent characteristic of a problem domain
with respect to heterogeneity presence. Easily separable classification problems
or problems with globally relevant subset of features are not subject to feature
space or class heterogeneity decomposition. Complexity measures, based on
heuristics not directly related to Bayes minimum error rate and exploring
geometrical properties of data are used to support the conclusions.

In Skrypnyk (2010) Bidirectional Data Partitioning (BDP) technique is
explored with DBSCAN weighted distance-based clustering on entire data set
with IPA-based merging procedure that joins subgroups in one go. The
criterion used in that version of BDP is based on a difference in intra- and
inter-class distances. Based on these results author have extended functionality
of BDP adding clustering inside classes, agglomerative merging procedure,
estimation of DBSCAN parameters inside classes and possibility to use
weighted distance-based k-Means clustering. In this paper, local feature
selection is performed using feature values overlap heuristics that has its
limitations, and does not produce meaningful results in case of nominal values.
Taking into account this fact, author has implemented a possibility to use an
external feature selection technique in groups of instances, perform feature
selection by means of feature weighting, or use a combination of both in current
version of BDP. Experiments with several benchmark data sets from UCI
repository were not particularly encouraging and it motivated additional
evaluation of data characteristics in these data sets. It was established that these
data sets are not suitable for heterogeneity decomposition. However, other data
sets have shown accuracy improvement and were used in further analysis
thereafter.

The paper by Skrypnyk (2008) mainly investigates feature weighting
based on the feature values span in each dimension as a measure of dispersion
for the ability to improve class discrimination in subspaces. It describes the
details of entropy-based regularization and investigates weights adaptation in
the local neighborhood using a case-based study. It also presents distance-based
selection of a local model for new instances. Based on these results, current
version of BDP has been supplied by a meta-classifier as an alternative method
of local model selection. Neighborhood purification procedure is described in
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order to cover for weight adaptation mistakes. Later, this led to experiments
with the f parameter and introduction of clustering inside classes.

In Skrypnyk (2007), a BDP’s prototype approach, Localized Selective
Partitioning based on the intra-class and inter-class ratio criterion and weights
based on feature values overlap is presented. An analytical solution cannot be
directly obtained for this criterion and it provides a suboptimal solution.

Papers by Skrypnyk (2009) and Skrypnyk & Ho (2006) are devoted to the
Stochastic Discrimination theory (Kleinberg, 1990) and the stochastic
discrimination multi-model technique based on the coverage optimization
paradigm. It has been concluded that stochastic component successfully used in
many ensemble techniques is capable of boosting predictive accuracy, but has
little potential in knowledge acquisition related to data structure required in
such disciplines as cancer genomics. When feature relevance is not equally
distributed among features, Random Subspace Method and stochastic
discrimination are not competitive to other techniques (Skrypnyk & Ho, 2003).
Research on stochastic discrimination is not included to this thesis.

Decomposition strategies related and not related to class labels are
explored in (Skrypnyk, 2004; Skrypnyk, 2002a; Skrypnyk 2002b). Earlier works
are motivated by exploration of ensemble techniques in combination with
feature selection (Puuronen et al., 2001). Feature selection by means of ranked
feature merits is used as a part of ensemble feature selection. In order to
stabilize the results obtained by a cut-off threshold value, data driven adaptive
generation of candidate features has been used to stabilize the results in a range
of threshold values. Criterion for inclusion of additional feature candidates
besides those already included from the top of rank is directly related to
accuracy estimates. Favorable results on accuracy have been obtained. This and
other research work of that period explored stability of feature relevance in
subproblems. Different integration strategies, static and dynamic, selection and
voting, have been preliminary tested with decomposition into ensemble based
on locally relevant features in Tsymbal et al. (2001).
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2 MULTI-MODEL APPROACH TO CLASSIFICATION

The tools provided by machine learning, such as generalization, induction,
validation, bias considerations, are indispensable for knowledge discovery.
Data mining methods are based on machine learning techniques along with
statistical, pattern recognition, and other techniques.

Machine learning is a study of algorithms that automatically improve their
performance with experience (Hall, 1999). Prediction is a central task of those
algorithms. Building a model within the pattern representation is accomplished
by learning. Learning is not related to the exact representation of the data, but
to the process that generates the data. In other words, from the specific
knowledge provided by domain examples, an inductive learning method is
capable to obtain general domain knowledge. If the constructed model exhibits
good generalization, it is likely to make good predictions for new data.

Usually data items called instances (objects, or examples) are represented
as attribute-value pairs. In some tasks, a structured representation of the
domain objects is more natural. The term feature is used for a formal view of
the structured data representation. Structured representation means that an
instance is represented by a set of features taking some values. Each feature is a
particular dimension in which the instances viewed. Feature selection
techniques derived from machine learning provide one of the best solutions for
high-dimensional problems.

Research described in this thesis combines these important achievements
of machine learning in developing the approach to decomposition of
heterogeneous classification problems. This chapter introduces the basic
concepts and definitions of supervised and unsupervised learning algorithms.
Section 2.1 provides a formal description of the classification and clustering
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tasks in a single framework along with the related task of feature selection and
dimension reduction. The notion of feature relevance in classification is
explained. Sources of classification problem complexity are given a special
attention following by a closing subsection that considers performance
evaluation of learning algorithms.

2.1 Classification and related tasks

Often in data analysis it is useful to consider dividing the set of instances into
classes in a way that instances within a class are similar to one another. The
classification task occurs in a wide range of human activities when some decision
or forecast is made on the basis of currently available information, and a
classification procedure (or classification rule) is then some formal method for
repeatedly making such judgments in new situations. (Michie et al., 1994)
Classification tasks can generally be handled relatively well with machine
learning techniques (Halteren, 1999). In machine learning classification is
performed as inductive learning, or induction that is generalization from the
known to the unknown, so that appropriate responses to the unknown can be
formulated when it appears. For example, to determine whether an animal is a
giraffe people know to look for dark patches and horns rather than estimate its
tail or ears. Thus, patches and horns form the concept (generalization) of a
giraffe. Now the unknown new animal, which is a leopard having dark patches
also, cannot be assigned to the class “giraffe”, because it doesn’t have horns.

Statistical approach is generally characterized by having an explicit
underlying probability model, which provides a probability of being in each
class. Commonly, statistical classification models provide an estimate of the
joint distribution of the features within each class, which in turn provides a
classification rule. (Michie et al., 1994)

Classification methodology has been applied in many diverse disciplines.
In statistics, as well as in the applied fields, such as pattern recognition, it is
referred to as classification. In machine learning the corresponding term is
supervised learning. Data mining encompassing both, statistical and machine
learning techniques, relate classification to the prediction tasks along with
regression (Weiss et al., 1998).

In this thesis classification is considered as a task of predictive data
mining. The respective terms will be used throughout the text, borrowing when
appropriate the terms from machine learning, statistical decision theory and
information theory.

2.1.1 The classification task

Classification tasks in data mining are presented as specific goals, which are
related to the instances with known class labels to be used in construction of a
predictive model in order to assign class labels to the new instances. Thus,
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instances with known class labels should be available. Each new instance must
be assigned to one of a set of pre-defined classes based on observed instance
descriptors, features (or attributes). For the above example of animal
classification horns, patches, legs length and neck length are some of the
descriptive features.

The classification task is to construct a procedure that will be applied to a
sequence of instances in which each new instance must be assigned to one class
of a set of pre-defined classes based on observed features. Classification
produces categorical class labels wunlike regression that models
continuous-valued function.

A learning algorithm (or induction algorithm) forms the concept
description inducing some general function from the specific example data
called the training set, or a set of training instances. In concept learning, the
most studied machine learning approach, a target concept is a function over
instances according to which class labels are assigned according to the
underlying distribution. Concept description is a model (hypothesis, or
knowledge) that the learning algorithm has induced from the data. This model
for classification task takes a form of some discrete function, which
hypothesizes, or estimate, the true value of a class variable.

Suppose some functional dependence y = g(x) exists between features x
and a class variable y that is exemplified by the training instances.
Approximation of this functional dependence y = h(x) is built by a learning
algorithm L using the training set TR. As a result, a certain release of this model
called a classifier C is produced. The training set TR is a set of training instances
{1, ¥1)s ., iy ym)}, where x; are vectors of the form (x;q,..,%x;j, ..., Xin) ,
where x;; are feature values of x;, and M is the size of the training set TR.
Features will be further referred to as variables fij=1..N, where N is the
number of features. Class label y; is a special categorical feature taking its
values within the range delimited by the number of classes ,
y; € (¢4, ..., Cq, -, Cp), Where c; are the class values, d = 1...D. Other features
may take either categorical or numerical values which might be discrete or
continuous.

Classification is a two-step process. The first step is model construction, or
training. At this step, the training set TR containing instances (x;,y;) is used by
learning algorithm L to produce a model y = h(x) presented by classification
rule, decision tree, or analytical expression.

The second step is model usage, or application. During this step model
accuracy is estimated on the test set TE having the same representation as the
training set. Test set should be independent of the training set in order to have
more reliable estimates. The data can be partitioned onto the training and test
sets before model construction. The details are considered in Section 2.3.

For each instance from the test set (xj, yj) the estimate J; from the model
is obtained and compared with the known class value y;. Then the accuracy
rate or the error rate is calculated. The accuracy rate is the percentage of the
instances from the test set that are correctly classified by the model.
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Correspondingly, the error rate is the percentage of the instances from the test
set that are incorrectly classified by the model. The other measures for
evaluation of the constructed model, that is performance of the learning
algorithm, which is used to construct the model, are considered in Section 2.3.

A classification problem and its solution can be described in the terms
borrowed from decision theory, such as logical decision rule, and from
statistical decision theory, such as class boundary, decision boundary and
decision surface (or decision regions). Training instances can be schematically
represented as points in some space or probability distribution, for example, in
the feature space or its projection. Then class boundaries describe location of the
training instances of different classes in this space, the structure of data.
Decision surface demonstrates coverage of the data structure by a predictive
model constructed, i.e. by a classifier.

In order to view and comprehend a phenomenon a multidimensional data
representation comes handy in data mining. In classification and clustering
tasks data instances are considered as points in multidimensional space, where
axes are features or attributes. Multidimensional presentation of data from
practical classification tasks shows some structure that typically differs from
data created by random processes. For example, an image data represent an
important category of structured data. For image data processing typical
predictive methods involve split-and-merge approaches (Starck et al., 1998).
Instances in image data are pixels or regions of the image. Decomposition of an
image is a part of split-and-merge - an image is successively divided into
smaller regions until a homogeneity criterion is met. A homogeneity criterion
can be based on the pixel values or grey-levels within the corresponding image
region.

2.1.2 The clustering task

Clustering, or unsupervised learning, is applied in data mining in order to
discover unknown categories or groups in data based on s