
7718344890681E-02 0.253

7 -0.1428936559845234 8.27503319130254

5450497003E-02 0.1108893800417289 4.9346245465005462E-0

72972663964E-02 9.2416709871758540E-02 6.7139780300295882E-02 6.01536996

054E-02 8.9391518140521486E-02 2.2244510792238464E-02 0.1188229642913993 -2.20566041531413

6422764381919334E-02 0.1580046393470845 -7.4922359570141817E-02 0.1814506627753005 -0.1146881246553039 0.1

796 -0.1242744300252916 0.2165135388732538 -0.1439988941901307 0.1784674154658049 -0.1356070320484810 9.0637380492921624E-02

935498 0.2236869963283322 -0.1187945655898588 0.1272433531936212 -7.2396621788028595E-02 -1.3682395059465127E-02 -2.4076881399272665E-02 -0.1

568788 -1.5248912271149211E-02 7.3597672893499179E-03 3.1345615752851858E-02 -0.1531593580076075 4.3338585712467841E-02 -0.2510474026403067 -5.313990872514066

054042526504951E-02 -5.8207607353118876E-02 9.5391135560133206E-03 -6.1038199671725864E-02 -9.8756975912743725E-03 -7.5429893158025896E-02 -4.6695700116981152E-03 -4.656363596

E-03 -6.1333936349257587E-02 3.7250148197339364E-02 -4.4832464717183287E-02 4.8630771133706667E-02 -4.8829896286232376E-02 3.4391666298911695E-02 -5.8457481213039571E-02 6.0968497235683379E-02

2 0.1328893744818780 2.2570410154456179E-03 0.1416837473986235 3.3351857184627945E-03 0.1389920128387990 -4.2154047094175714E-03 0.1421724636592114 1.0837834991545468E-02 0.1492282586884665 1.0593398053782600E

4.5266516597718243E-02 3.0822707147419412E-03 -3.2590779074023454E-02 -1.8724427812736514E-03 -3.2398765727233769E-02 -1.6187981434827744E-02 -1.8911179712594203E-02 -1.7404101106419979E-02 -1.5282845632125799E-02 -2.9687113021

94E-02 -9.9684082110975871E-03 0.1085152842412838 -9.3796240075859853E-03 0.1114971513403552 6.2962465676402876E-04 0.1226978588212817 1.3488729979116080E-03 0.1231865751199411 1.0869280945697881E-02 0.1333780907393360 1.0938546837144058E-02 0.

51280660777E-02 -2.6937492193615700E-02 2.2819117395722083E-02 -3.0695702500429557E-02 1.1353677387322873E-02 -2.0170771644343881E-02 5.7476562244477263E-03 -2.0501580541306408E-02 -5.3771824457798387E-03 -9.2912836420081558E-03 -7.5172912278464879E-03 -6.402351

8.4651199274009117E-02 -9.9960377068729848E-03 8.7681126967168690E-02 -2.3703408614499550E-04 9.9690477289404555E-02 1.0118318940367206E-04 0.1001791935459977 1.0162104473462632E-02 0.1119858676040216 1.0611095638070783E-02 0.1099814333854124 2.0620344423422195E-02 0.121255450

55990E-02 -1.4985163947144355E-02 3.8295402169192264E-02 -2.1587830978696355E-02 3.1954285201711556E-02 -1.4562230944322281E-02 2.3012790271043693E-02 -1.8102068109045289E-02 1.5381076728460010E-02 -9.9433388065199250E-03 9.5949594004254273E-03 -1.0412917818282054E-02 1.6622356544710541E-03 -1.6

96857732057510E-02 -8.5753478244612845E-03 6.4527514078946704E-02 -4.2694150422960947E-04 7.5847438599566441E-02 -4.0733004808692546E-04 7.6336155173893805E-02 8.7157513168160949E-03 8.8169843382788007E-02 9.5228889017158567E-03 8.6117348790092071E-02 1.9281892358315823E-02 9.8134538014566272E-02 2.0231695843209

02 5.0987623955851813E-04 4.1407673620398343E-02 -7.4883879520268809E-03 4.1514151062928696E-02 -4.3486716755551094E-03 3.0740829385415808E-02 -9.8577103192493010E-03 2.8233550811297359E-02 -5.2357317400689579E-03 2.0029881878941627E-02 -8.1162909494597209E-03 1.5837236833740921E-02 -2.3693988967499039E-03 1.0314314930448305E-02

7074698E-02 -5.7960354267266277E-03 4.4479317525908404E-02 -1.6470161890609492E-04 5.4001187101934432E-02 -3.3653454893663404E-04 5.4489903842362908E-02 6.6900894943641353E-03 6.5016230756976212E-02 7.7579291964033374E-03 6.3063007702864993E-02 1.5906335511511192E-02 7.4314351370721024E-02 1.7812498206870503E-02 6.9824534536371829E-02 2.684729457

93986018641832E-02 1.6448253263388821E-02 3.1122167335045185E-02 8.6200495505507416E-03 3.7918961090835847E-02 7.5696403809350594E-03 2.7018618472491512E-02 1.5920685157985526E-03 3.0355742671724452E-02 2.3079461547913420E-03 2.1313028951901857E-02 -1.6361546991717942E-03 2.1908843708115418E-02 6.5728153519858121E-04 1.4912160627270580E-02 -1.1664391663623920E-0

2E-03 2.6629382741986504E-02 -2.5914147048730599E-03 2.8898298744978401E-02 2.3997162466997648E-04 3.6094795727148819E-02 3.8461144653874392E-05 3.6583512391900962E-02 4.3602283322362288E-03 4.4968034265507259E-02 5.5408241807727802E-03 4.3270704399596085E-02 1.1172158137766872E-02 5.2645203918591801E-02 1.3652157577006052E-02 4.8507908170354185E-02 2.0440189438831299E-02 5.87109

820064169E-02 1.8831648532073728E-02 2.9798689766673780E-02 8.5861505658429860E-03 2.3624468782266525E-02 2.1231216171745688E-02 1.8114178317424744E-02 1.1879516453880917E-02 1.3202022399352382E-02 2.0797445157013282E-02 9.7136620708617345E-03 1.2596501815359561E-02 6.2196645184025958E-03 1.8190139915648905E-02 4.7293723052372373E-03 1.1331544036510235E-02 2.7485846865741986E-03 1.417852849187581

44446E-04 1.6135529568261888E-02 4.8583463231763378E-05 1.7866131072395850E-02 4.5801921560660456E-04 2.2858810334875357E-02 3.8985418984417117E-04 2.3347527096097238E-02 2.0539689592390768E-03 2.9387015425863208E-02 3.1812844381324092E-03 2.8095532495606243E-02 6.0126707228472199E-03 3.5071012951086278E-02 8.5804968053904123E-03 3.1592463542170768E-02 1.2516321092493976E-02 3.9425419215313132E-02 1.6

6.1519959197161543E-02 4.0744981791297208E-02 6.7743336533729229E-02 3.4667834844267928E-02 -6.3529934644912193E-03 2.4460053704832271E-02 -1.2718286916332896E-02 2.1968792156477453E-02 5.6980406706954733E-04 1.4029262706711444E-02 -5.2451546961883267E-03 1.2429876278621396E-02 4.6959350790567672E-03 6.8934301915104610E-03 -4.2430535447582764E-04 6.2313907854346191E-03 6.4173142015131277E-03 2.986654

81271892669E-03 1.2653751108329325E-03 1.0236765548648264E-02 2.0364151482017682E-04 1.3739667177011016E-02 4.0290496464741727E-04 1.4228384017720141E-02 8.6052245372856984E-05 1.8354847942423431E-02 1.0083713286989889E-03 1.7601679537606545E-02 1.4178070612855902E-03 2.2309529489887577E-02 3.5840074128313869E-03 1.9769296788250203E-02 4.7309303521510873E-03 2.5052828084725864E-02 8.5001250533242711E-

77E-02 1.9630745284995046E-02 5.3308874252520948E-02 5.3828102720134214E-03 5.9641793836641144E-02 1.4834253407251551E-02 6.9642358790543854E-02 2.5348596634460784E-02 -2.7479157016021955E-02 1.2775774058109625E-02 -2.9722538381657389E-02 1.4224894844393248E-02 -1.6866483627917303E-02 4.4444475762656444E-03 -1.8905518157783706E-02 6.3930695450947631E-03 -8.9678286464707543E-03 -5.5965217344091701E-04

8001328993950752E-04 3.9067823014805533E-03 -7.1611184307591102E-04 7.0674372344518774E-03 -1.6697553070013475E-04 7.5561540026818060E-03 -1.2989342610444737E-03 1.0725482300958947E-02 -6.9211817843023600E-04 1.0620878096701078E-02 -1.7538514332178503E-03 1.3786607233934843E-02 -3.9163433329965038E-04 1.2422679708937930E-02 -1.3341821343787951E-03 1.5621671749673676E-02 1.3940230385939903E-03 1.2450

185459480E-03 3.2911946108105959E-02 -7.9520976134910340E-03 3.5063235135200037E-02 -2.2728439536450467E-03 4.7900292428208632E-02 -1.7012486696342918E-02 5.1445612124700522E-02 -1.0141080310362148E-02 6.5447716964414468E-02 9.5202651540088508E-03 -4.3301051982254354E-02 -4.6200240527404990E-03 -4.1395180541315982E-02 8.2667056769797961E-04 -2.9860206069107803E-02 -9.9730852456259064E-03 -2.8073739394

641E-03 -3.7586611108104346E-03 -2.3701367131768519E-03 4.1291472473185923E-04 -1.4534070542444250E-03 9.0163150328230598E-04 -1.9673678937497676E-03 4.3954991167531720E-03 -1.7272303663384708E-03 5.0275102568596002E-03 -2.9233553384618262E-03 7.8096322377915559E-03 -2.6124627117838123E-03 7.8149806507459233E-03 -4.4545389823021017E-03 9.9191161725762263E-03 -3.3201549794798228E-03 8.6182603227110011E

0938547558360016E-02 -1.3170832709576176E-02 8.7984386710611758E-03 -1.1580431761170159E-02 2.1802790056545146E-02 -2.4090584343866083E-02 2.0586670412265147E-02 -2.1684801012351509E-02 3.6231006863408258E-02 -3.6175168588444717E-02 3.6333823849189942E-02 -3.2614095242623750E-02 5.4161201312217848E-02 -1.1970934291599827E-02 -5.3028422599490636E-02 -2.6673328531507945E-02 -4.7151415964672080E-02 -1.73

2879457135E-02 -4.6920353217705241E-03 -8.9365948075001891E-03 -3.4578050077157803E-03 -8.4478782201982561E-03 -1.9178371303171990E-03 -3.2699443847922166E-03 -2.0280717901438676E-03 -1.8333297478011097E-03 -1.8843335285718234E-03 1.9281334117015817E-03 -2.6779602020519564E-03 3.4541861883929819E-03 -3.9636081240334489E-03 5.7756755106890961E-03 -4.6778542978194110E-03 6.5916632082536558E-03 -7.337175

4E-03 -1.0771320543294112E-02 -1.3914686324566274E-02 -1.2840023941035996E-02 -3.3038328557782287E-03 -2.2387521336193799E-02 -8.9098540947367133E-03 -2.4282597791182491E-02 5.2936989876286467E-03 -3.5980901916358270E-02 3.3898561017555183E-04 -3.7278021063119129E-02 1.8100503470152955E-02 -5.0775151744647758E-02 1.4274387075371847E-02 -5.1065692820118164E-02 3.5307464060691969E-02 -3.7871745382392595

3251917020105957E-02 -7.4884302522902901E-03 -2.3459977771482839E-02 -6.0480714667328966E-03 -2.2971261383959930E-02 -1.2824358621650392E-03 -1.4930886461791115E-02 -1.6610394601050034E-03 -1.2639853319250816E-02 1.1638351907018324E-03 -6.5895858165596977E-03 -5.8419626719619262E-04 -3.4281619184919824E-03 1.4412100286359650E-04 4.9736686857544774E-04 -2.3363723274332756E-03 3.6205786989032336E-03 -3

83784E-02 -2.5269627438018337E-03 -2.8722027214611708E-02 -7.2314834230456076E-03 -2.2523833313051623E-02 -1.3279649836632804E-02 -3.1465328281898762E-02 -1.8629311036504625E-02 -2.1352727150035614E-02 -2.6953140209251773E-02 -3.0514461179164919E-02 -3.2461892828757645E-02 -1.6112697307643989E-02 -4.2759348734641524E-02 -2.4956635856418628E-02 -4.7944559725455922E-02 -6.1178568581006891E-03 -5.9782059

E-02 -5.8508185636078167E-02 -1.0465265194022830E-02 -4.4919298291509757E-02 -8.9761895334788625E-03 -4.4430581966019983E-02 -3.0918531190928287E-04 -3.2763200633033188E-02 -8.1951075272760786E-04 -2.9585386270550709E-02 5.6410338153230159E-03 -2.0240086486378331E-02 3.2724743321905169E-03 -1.5362955909339544E-02 7.2079125418127417E-03 -8.6291877015263439E-03 3.3714318270666611E-03 -3.0580744767298019

371476014667E-02 8.9228164694026609E-03 -3.2799085217978002E-02 2.9820760428805669E-03 -3.2206738875420256E-02 8.1979332738617175E-04 -4.2980060592571263E-02 -6.6769828150053554E-03 -3.8783878581680267E-02 -1.1243857058994937E-02 -5.0753047829702531E-02 -1.9767467506681874E-02 -4.2226493960511327E-02 -2.6500753800979732E-02 -5.4812063383127989E-02 -3.5505685225390743E-02 -4.1414081193423623E-02 -4.398

41E-02 -9.1213827016150911E-02 -1.3269475856030133E-02 -7.3981006649170289E-02 -1.1912434550431766E-02 -7.3492290434509666E-02 6.7219474525201904E-04 -5.8019469390353198E-02 2.0245772953853911E-04 -5.3939470244159210E-02 1.0664862951433998E-02 -4.0802671274896785E-02 8.1479188529986080E-03 -3.4163648782567585E-02 1.5987564925137566E-02 -2.3831369846212015E-02 1.1478827396524685E-02 -1.5720768

6994710693651601E-02 2.0532770738935682E-02 -2.5195653947042825E-02 1.4900388574201938E-02 -3.0439394146639404E-02 1.6928231340085208E-02 -4.1339736656820440E-02 8.8180577979281825E-03 -4.3851016238599619E-02 8.2814979859058037E-03 -5.6942133152756876E-02 -1.7654657251923998E-03 -5.5726621939425298E-02 -4.7296234446698509E-03 -7.0411993056246569E-02 -1.6116298420293447E-02 -6

614885723 -1.5545171262013900E-02 -0.1100005181429945 -1.4491467978569962E-02 -0.1095118013662257 1.2963617885225294E-03 -9.0725110645327692E-02 1.0518030210329326E-03 -8.5742592896070127E-02 1.5173478555707404E-02 -6.8959562460065182E-02 1.3052826504401861E-02 -6.0545657762848579E-02 2.4832034268310182E-02 -4.6412317599417559E-02 2.0514843731022078E-02 -3.57

03 2.9299540587856304E-02 -6.9228784971887116E-03 2.5444926718416524E-02 -1.7255158159661558E-02 3.1932650470785855E-02 -2.6606857599322055E-02 2.4756435094271913E-02 -3.5520375872727848E-02 2.8499904695586702E-02 -4.7992194133786470E-02 1.8498462079230241E-02 -5.4332893046999758E-02 1.9477755173662639E-02 -6.9361217682641224E-02 7.2642125408

72758562 -0.1510135944681450 -1.6352978942481750E-02 -0.1505248774955027 1.2030069694261164E-03 -0.1295566445317860 1.3726319737111428E-03 -0.1236917209024601 1.8071930601357828E-02 -0.1040733326657852 1.6896803859114903E-02 -9.3908547220789687E-02 3.1907952906653748E-02 -7.6439162574825026E-02 2.8711075852780595E-02 -6.31827

90E-02 3.1790802149669790E-02 5.3877791302883084E-03 4.2976016800016836E-02 -9.7751449439184546E-04 3.8106871466845264E-02 -1.4939224956450219E-02 4.6390745538118436E-02 -2.5184723032179272E-02 3.7913441029160368E-02 -3.8150021057530813E-02 4.3063342505664862E-02 -5.1828480240354899E-02 3.1535072332531520E-0

7702024596 -5.4239904967929499E-02 -0.1406173296969447 -0.1765487615663965 -8.1451553844223215E-03 -0.1798834073811873 2.3780594716755767E-03 -0.1520521902274170 1.1703918036599219E-02 -0.1511368038625490 2.3821715418120209E-02 -0.1215564512760449 2.9834549521848566E-02 -0.1155955938902834 4

488258590E-02 3.7471143684204365E-02 4.9142513072788087E-02 1.6665559900075198E-02 6.5997396333373939E-02 1.0398645707203426E-02 5.6727162421129088E-02 -9.7910402808454762E-03 6.9046468993961843E-02 -2.3131479291688711E-02 5.5984765541348798E-02 -4.0354968137662449E-02 6.262

835051374940E-02 -0.1859776470247778 -4.8137936933725374E-02 -0.1728049581721028 -0.2050592510162154 -8.7967779624360514E-03 -0.2087581552288907 2.7994471379282474E-03 -0.1810403442689582 1.4433854630574176E-02 -0.1779478736548933 2.7641790541085360E-02 -0.1

784722428950582E-02 7.7007839968598432E-02 6.0075101629858858E-02 7.3216716934179707E-02 3.4396925310714865E-02 9.1898912580532302E-02 2.6849190341626254E-02 8.1450928485157711E-02 -3.3804173443186279E-04 9.3113622347042485E-02 -1.6248132004

1987332431008769 -3.6095327618956591E-02 -0.2145353005063372 -4.7031474980652820E-02 -0.1994065159422409 -0.2322119091760496 -9.4484000995092715E-03 -0.2357290458918403 2.0656665323369018E-03 -0.2087617560948267 1.53188601

09352054788693E-02 8.5015133204398186E-02 0.1028255151529942 8.5384673650030940E-02 9.9546533335277354E-02 5.6567303617514428E-02 0.1177763834605846 4.8101901717590302E-02 0.1068341204325214 1.43891351383917

-0.2276767871681986 -3.0237240556865067E-02 -0.2399191141923294 -4.1575529809823618E-02 -0.2242105885420949 -0.2567246702974070 -1.0100022025444029E-02 -0.2593202502387414 -2.5060795839254

8357120 0.1101511243986223 0.1275585362898383 0.1112496802440087 0.1252253045393210 8.2015276758203109E-02 0.1402510502545146 7.3526914937898341E-02 0.1294244312176772 3.4

179E-02 -0.2599718624279308 -3.1295221821739709E-02 -0.2457366783441270 -0.2772853030887568 -1.0751644119409020E-02 -0.2780326260431504 -4.6142296812003523

6175 0.1350261369057808 0.1469499509380765 0.1091548565964804 0.1558621556512008 0.1021647273402273 0.1456000814305692 5.9922324240003794

465430826202 -0.2925538785047555 -1.1403265578702533E-02 -0.2903433129732294 -1.1572019869231183E-02 -0.2677141528725627

266160983756 0.1324332735158078 0.1519041450100205 9.0249206749344307E-02 0.1326339038090824 7.08604698

6650096853106 -2.1827808085330080E-02 -0.2737227221231757 -1.8427454762985265E-02 -0

6707875590 0.1098938925194008 0.1087386617376230 9.5800555678946880E

2061961572662093E-02 -0.2264127574003395 -7.1370659

2 0.1515304652991354 5.189291066845

02 -0.2094440438

0354185E-02 2.0440

31544036510235E-02 2.748584686574198
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ABSTRACT

Mönkölä, Sanna
Numerical Simulation of Fluid-Structure Interaction Between Acoustic and Elastic Waves
Jyväskylä: University of Jyväskylä, 2011, 136 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 133)
ISBN 978-951-39-4438-4 (nid.)
ISBN 978-951-39-4439-1 (PDF)
Finnish summary
Diss.

This study considers developing numerical solution techniques for the computer sim-
ulations of the fluid-structure interaction. The focus is especially on the efficiency of
the iterative methods based on exact controllability and spectral element methods. In
particular, the thesis concentrates on the coupling between two linear wave equations:
the scalar-valued equation concerning the propagation of acoustic waves and the vector-
valued equation modeling the propagation of waves in an elastic medium. These funda-
mental equations occur in a number of physical applications, such as acoustics, medical
ultrasonics, and geophysics.

We consider both transient and time-harmonic problems. Traditionally, the com-
plex-valued time-harmonic equations and low-order finite elements are used for solving
the time-harmonic problems. This leads to large-scale indefinite systems, for which it is
challenging to develop efficient iterative solution methods. Taking account of these diffi-
culties, we turn to time-dependent equations. It is known that time-dependent equations
can be simulated with respect to time until a time-harmonic solution is reached, but the
approach suffers from poor convergence. Thus, we accelerate the convergence rate by
employing the exact controllability method. The problem is formulated as a least-squares
optimization problem, which is solved with the conjugate gradient (CG) algorithm. Com-
putation of the gradient of the functional is done directly for the discretized problem. A
graph-based multigrid method is used for preconditioning the CG algorithm.

The accuracy of the method is improved by utilizing higher-order spectral elements
for spatial discretization. The degrees of freedom associated with the basis functions are
situated at the Gauss–Lobatto quadrature points of the elements, and the Gauss–Lobatto
quadrature rule is used. This leads to high accuracy and diagonal mass matrices, thus pro-
viding computational efficiency when combined with an explicit time-stepping scheme.

The software implementation of the methods is done side by side with the method
development. Problems related to the fluid-structure interaction between elastic materials
and acoustic waves are analyzed and solved by computer simulations, which are efficient
tools in the testing and optimizing of model parameters. For instance, in planning under-
water structures, the design process can be improved and the development cycle shortened
with computer aided modeling.

Keywords: exact controllability, spectral element method, coupled problem, numerical
simulation, fluid-structure interaction, acoustic, elastic, wave equation
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PREFACE

The collapse of the Tacoma Narrows bridge in 1940 is a classic example of what may hap-
pen if the fluid-structure interaction is neglected in the design process. Traditionally, these
kind of hazardous effects have been taken into account in building and manufacturing
processes by using experimental tests. For instance, wind tunnel tests are comparatively
expensive and require experimental efforts in contrast to computer simulations. This mo-
tivates using the computer simulations which are safe, fast, and cost-efficient when testing
and optimizing the design with respect to certain properties of products or structures.

In general, the purpose of computer simulations is to use implementations of the
numerical solution methods to imitate real-life phenomena. This can be accomplished by
presenting a physical phenomenon as a mathematical model which is simulated by using
the computer implementation of numerical solution methods (see Figure 1). Traditionally,
mathematical models and computer simulations are used for solving the problems having
a physical, biological or chemical background, but the application area is not restricted to
these sciences. Computer simulations can be applied for both training and entertainment
purposes. Surgeons are practicing with surgery simulators and pilots use flight simulators.
Computer and video games, as well as special effects in movies, are nowadays based on
computer simulations. Furthermore, computer simulations are useful in many industrial
processes for testing, safety engineering, and performance optimization. Accordingly,
using the computer simulations for industrial applications have effects also on national
economy. Modeling natural or human systems can be realized by computer simulations
to gain insight into the functioning of the systems. Weather forecasts and prognoses for
climate change are actually results of computer simulations with certain input values.
The related schemes can also be applied to show the effects of alternative conditions and
courses of action in, for instance, financial and medical systems and social sciences. To
get reliable simulation outputs, appropriate models, relevant methods, and valid input

physical phenomenon

mathematical model

numerical solution methods

simulation results

FIGURE 1 The physical phenomenon is presented as a mathematical model which is simulated
by using the computer implementation of numerical solution methods.
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information has to be defined carefully.
The development of numerical computing began actually before the advance of

modern computers. First, research was concentrated on modeling the phenomena and the
mathematical analysis of the models. Already at the beginning of this road, it was clear
that closed-form analytical solutions, computed by ”pen and paper”, are possible for only
a few simplifications of real-life problems. That is why numerical methods are needed.
The development of numerical solution methods and the related algorithms enables us
to consider new approaches and has the ability to offer more gain than the addition of
simple raw computing power. The modern and efficient methods offer advantages over
the earlier numerical approaches. Thus, larger and more demanding real-life problems,
including more realistic models arising from coupled systems of several media, can be
solved. Further, industrial applications are often considered in rather large and complex
geometries, and solving the problem may demand a considerable amount of computing
time and memory. Consequently, the method development is also a step towards better au-
tomatization in digital product development including design for manufacturing processes
and numerical optimization for improving the product properties. On the other hand, the
development of computing resources accelerates testing and verifying the robustness and
accuracy of the new methods. This, in its turn, evolves the research of numerical math-
ematics. Hence, progress in the research of mathematical theory is feeding the method
development, and vice versa.

Commercially available simulation software products are typically not based on
most recent innovations in numerical solution or software engineering technology. Be-
fore applying to the commercial products, the methods are tested to be robust and their
properties have to be well known. The algorithms are originally focused on finding so-
lutions on the computers available at that time. Recently, the development of computing
resources has been fast due to the needs of home entertainment and more realistic game
environments. Public needs have driven the price down. While more resources have been
available with the same price as earlier, it has been possible to improve the accuracy of
the numerical simulations or solve more demanding problems. Thus, the problems which
a few decades ago were computationally demanding are solved significantly faster with
today’s computers. Nevertheless, increasing the number of available CPUs and memory
is not enough as the size of the problem does not scale at the same pace as the available
resources.

The design process – as well as research and development – can be improved and the
development cycle shortened with computer aided modeling. Still, the experimental tests
form a remarkable stage in today’s manufacturing processes. Simplifying approximations
and assumptions are done within the numerical simulations, and also some experimental
testing is needed to guarantee the relevant selection of key characteristics and behaviors
applied in the mathematical models. Furthermore, defining material parameters is still a
challenging task in the modeling process, since the properties of some materials are not
well-known. Accurate models considering, for instance, phenomena with high intensity
acoustic fields, like ultrasonic cleaning, are still under development. This indicates that
further research related to accurate mathematical modeling, as well as efficient numerical
simulation and optimization methods, is required.



1 INTRODUCTION

Physical phenomena, such as deformation of elastic bodies, fluid flow and heat conduc-
tion, can be modeled by partial differential equations (PDE). A system consisting of re-
ciprocal interaction between physically heterogeneous components is a coupled problem.
Fluid-structure interaction (FSI) defines a coupled problem of a physical system, in which
the fluid flow causes the deformation of a solid structure, and the deformation of the struc-
ture, in turn, changes the fluid flow. This mutual interaction is modeled by combining
certain parts of the boundaries of the fluid and solid regions. A fluid region may surround
a solid region or be embedded into a solid region. Fluid-structure models can be found
in many applications on different fields of natural sciences and engineering. Typical en-
gineering applications are, for example, the response of bridges and large buildings to
the wind, the loading dynamics of airfoils in aircrafts and wind power turbines, and the
fluttering of the paper web during the paper making process. Even nuclear reactor safety
issues have been analyzed as fluid-structure interaction problems [18]. Applications in,
for example, biological systems include blood flow in elastic vessels [121, 154, 188] and
the mechanical processing of acoustic signals by the cochlea in the inner ear [40, 86].

1.1 Interaction between acoustic and elastic waves

In a general case, handling the fluid-structure interface is a challenging task. That is
why we restrict ourselves to small vibrations in solids and fluids, which can be mod-
eled by elastic and acoustic wave equations. In this case, moving coordinate systems are
not needed, and still, the coupled problems of elastic and acoustic wave equations cover
a remarkable field of the fluid-structure interaction problems. A number of industrial
and medical applications are based on vibrations created by ultrasonic transducers [102].
The vibrations cause intense effects, such as cavitation, streaming, and heating, which
are essential, for example, in ultrasound imaging, sonochemistry, cleaning and welding.
In medical sciences, ultrasound imaging data can be used to model computationally the
structure of human tissue [189]. The medical use of ultrasound includes also pain relief
and therapeutic purposes to destroy kidney stones and cancerous tissue [149]. There are
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FIGURE 2 Ship for underwater research with a sonar submarine. Image: xedos4 / FreeDigi-
talPhotos.net.

numerous ultrasound related applications in audio technology and echo sounding (see,
e.g., [138]). These kind of fluid-structure interaction simulations can be used also in
applications of audio acoustics design, such as the modeling of concert halls and audi-
toriums, loudspeakers, noise barriers, mobile phones, and acoustic materials. There are
also several noise reduction applications including car, elevator, and work machine cab-
ins, airplanes as well as propagation of noise from engines or machines [1, 57, 131, 119].
Computational models, based on FSI, are utilized also for geophysical exploration and
earthquake simulations [6, 126].

The mathematical models considering fluid-structure interaction between acoustic
and elastic waves have been in focus for a long time (see, e.g., [70]). The development
of the finite element models for this kind of fluid-structure interaction dates back to the
1960’s, when Gladwell and Zimmermann (see [88, 90]) considered the problem in vari-
ational form. The work was further developed by Gladwell and Mason in [89], and it
concentrated on applying the finite element method to the acoustic response of the bend-
ing of plates. In the early days of the development in the field of structural-acoustics, the
research was concentrated on modeling the phenomena and the mathematical analysis of
the models. Only simple finite element solutions were accomplished, since the computer
hardware formed the bottleneck for computer simulations. For alleviating the problem,
developing alternative methods and formulations came into existence.

Various formulations exist for fluid-structure interaction between acoustic and elas-
tic waves. Typically, the displacement is solved in the elastic structure. The fluid can be
modeled, for example, by using fluid pressure, displacement, velocity potential or dis-
placement potential [67]. Two approaches, in which the displacement is solved in the
elastic structure, predominate in modeling the interaction between acoustic and elastic
waves. Expressing the acoustic wave equation by the pressure in the fluid domain leads
to the so-called non-symmetric formulation (see, e.g., [22, 151, 190]), while using the ve-
locity potential results in a symmetric system of equations (see, e.g., [39, 84, 165, 186]).
Most of the early presentations of structural-acoustics problems were based on the pres-
sure presentation in the fluid domain and the displacement presentation in the solid do-
main. Olson and Bathe presented in [166] an alternative scheme to use both the velocity
potential and pressure in the fluid region. It is also possible to utilize displacement in both
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domains as stated by [14]. Naturally, the models have been tailored corresponding to the
applications. For instance, gravity effects are employed by Andrianarison and Ohayon in
[7] and by Komatitsch and Tromp in [128].

Physical applications are often defined in unbounded, that is, exterior, domains. To
solve the problems numerically, it is a standard procedure to truncate the original un-
bounded domain [157]. An artificial boundary condition, which is an approximation of
the Sommerfeld-type radiation condition, is set on the exterior artificial boundary, and it
ensures that the solution approximates the restriction of the solution in the original un-
bounded region (see, e.g., [117, 152]). Typically, the conventional first-order absorbing
boundary condition is used. If more sophisticated boundary conditions and absorbing lay-
ers are needed, for instance, the second-order radiating boundary conditions introduced by
Engquist and Majda [64] or a perfectly matched layer (PML) presented, e.g., by Berenger
[21, 129, 108] are utilized. Other approaches for creating the artificial boundary are using
infinite element methods (IFEM) [8, 24, 85] or the Dirichlet-to-Neumann mapping [157].
The non-reflecting boundaries are considered, for instance, in a review article by Givoli
[87].

Computer simulation is an important component in testing and optimizing model
parameters. Various FSI models and solution strategies, depending on the application
area, have been developed for these purposes (see, e.g., [9, 34, 59]). The solution tech-
niques vary with the formulation, and they are adapted to achieve efficient numerical
simulations (see, e.g., [51]). Essentially, there are two strategies to solve the FSI prob-
lems. The equations governing the fluid domain and the structure domain can be solved
simultaneously. This monolithic approach [15, 26, 110, 116], or direct coupling, needs
implementation for the particular combination of physical problems. Another option is a
segregated approach [37, 155], or staggered iterative coupling, which enables using dis-
tinct solvers for the fluid domain and the structure domain. The solution of one domain is
used as a boundary condition for the other domain, and that is how the coupling informa-
tion is transferred from the one domain to the other. Obviously, the segregated approach
requires less memory than solving the problems simultaneously. However, coupling be-
tween the solvers has an important role in the efficiency of the method. When small
oscillation amplitudes are considered, linear models and simplified solution techniques
can be utilized.

1.2 Solution methods

A wide range of numerical methods have been used for solving time-harmonic wave
equations. These methods can be divided into boundary and domain-based methods.
Combinations of boundary and finite elements (see, e.g., [53, 198]) are typically used
in three-dimensional simulations to reduce the size of the computational problem. We
are especially interested in solving problems with varying material parameters. For such
problems, boundary-based methods are not directly applicable, whereas domain-based
methods, that is, field approaches are more flexible in this respect. Thus, we focus our
attention to domain-based formulations which can be discretized, for instance, by finite
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difference (FDM) or Galerkin finite element methods (FEM) (see, e.g., [100, 117]). Es-
pecially the FEM approximation and the solution of time-harmonic wave equations have
attracted a lot of attention during the past two decades (see, e.g., [185]).

Efficient solution methods, such as domain decomposition [19, 48, 69, 74, 75, 147],
fictitious domain (domain embedding) [17, 72, 109, 112], and multigrid [28, 62, 96,
124, 187], have been developed for solving the wave equations. Various types of the
domain decomposition methods (DDM) are applied for wave equations and higher-order
discretizations. For instance, the Schwartz methods (see, e.g., [142, 143, 196]) are gener-
alized to the spectral element discretization for the Helmholtz equation, for example, by
Cai, Casarin, Elliott, and Widlund [35] and for elastic waves, for example, by Pavarino
and Zampieri [171]. Mandel extended a modified finite element tearing and interconnect-
ing (FETI) approach for solving the time-harmonic fluid-structure interaction problems
[150]. Cummings and Feng proposed Jacobi and Gauss-Seidel domain decomposition
algorithms using linear combinations of the interface conditions for the coupling between
subdomains for the time-dependent fluid-structure interaction problem [52, 81]. The re-
lated methods for elastic and electromagnetic waves are presented by Bennethum and
Feng [20] and Després, Roberts, and Joly [58], respectively. Recently, dual-primal FETI
(FETI-DP) [73, 77, 76] and balancing domain decomposition by constraints (BDDC)
preconditioners are used with spectral element space discretization by Klawonn, Pavarino
and Rheinbach [125].

The early versions of iterative multilevel methods can be categorized as geometric
multigrid (GMG) methods, in which the actual coarsening of the given mesh is needed
for constructing the multilevel hierarchy (see, e.g., [29, 96, 187]). To attain independency
of the problems, algebraic multigrid (AMG) methods, in which the geometrical back-
ground of the problem is not needed, were developed by Stüben and his associates (see,
e.g., [178, 182]). Kickinger (see, e.g., [123]) developed a graph-based algebraic multigrid
method, in which the efficient computation of coarse level systems is attained by using
only the graph of the matrix for constructing the multilevel hierarchy. Recently, the multi-
grid methods have been widely used in many applications based on the wave equations.
Brandt and Livshits presented a multigrid method for standing wave equations in [28].
Multigrid schemes used for solving the Helmholtz problem are considered, for instance,
by Elman, Ernst, and O’Leary in [62], by Erlangga, Oosterlee, and Vuik in [65, 66], and
by Kim and Kim in [124]. McCormick and Ruge applied algebraic multigrid methods to
problems in computational structural mechanics in [156]. Han, Zhou, and Liu presented
a multigrid method for numerical solutions of the elastic wave equation in [97]. Mandel
and Popa extended the approach to the corresponding coupled fluid-structure interaction
problem in [151], whereas Heil considered a multigrid approach with more general fluid-
structure interaction problems in [110]. The spectral element method is considered in
conjunction with the multigrid approach by Fischer and Lottes in [83] and by Heys, Man-
teuffel, McCormick, and Olson in [113].

A modification of Kickinger’s method, presented by Martikainen, Pennanen, and
Rossi in [153], stabilizes the method by eliminating the equations corresponding to Dirich-
let boundary conditions. The method occupies the middle ground between geometric and
algebraic multigrid. The selection of coarse grid variables has a geometric flavor, but
the algebraic system is needed for constructing the multigrid cycle. With higher-order
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elements only the nearest neighboring nodes are considered when constructing the graph.
This graph-based multigrid (GBMG) preconditioner for solving the problems arising from
acoustic and elastic wave problems is considered by Airaksinen, Heikkola, Pennanen, and
Toivanen in [3, 5]. The method was shown to be practical for approximating the inverse
of a damped preconditioner with higher-order discretizations, especially when the fre-
quency is not very high. The discretization mesh or matrix itself can be used for defining
the graph. We have applied this approach at the preconditioning stage of the control al-
gorithm in conjunction with acoustic and elastic waves in [107, 162], respectively. In
this thesis, we extend the approach for solving a corresponding linear system of coupled
equations.

When the time-harmonic problems are considered, the methods mentioned above
are typically based on handling directly the complex-valued time-harmonic equations and
low-order finite elements (see, e.g., [25, 95, 98]). They all lead to large-scale discrete
problems with indefinite linear equations. Solving such problems with direct solution
methods, like LU or Cholesky factorization, requires a significant amount of computing
time and memory storage. Despite the robustness and the fixed number of computing
steps, the direct methods are inadequate for solving large scale problems. In contrast
to direct methods, iterative methods start from an initial guess and form successive ap-
proximations that converge to a solution within a particular tolerance. A comparatively
low requirement in terms of computational resources and more practical implementation
on parallel computers makes iterative solution methods an adequate choice over the direct
solution methods. As the discretization of the time-harmonic wave problem leads to indef-
inite systems, also the road of using iterative methods, such as GMRES or Bi-CGSTAB,
has its blocks. Efficient preconditioners are needed to guarantee a proper convergence
speed for the iterative methods.

An alternative for solving the complex-valued time-harmonic equations is to simu-
late the time-dependent equation with respect to time, until the time-harmonic solution is
reached (asymptotic approach). However, this approach suffers from poor convergence at
least in the case of large wavenumbers and complicated domains. The convergence rate
can be accelerated by using control techniques [33].

1.3 Controllability

Control theory refers to the concepts and methods that can be used for optimal design,
control and analysis of dynamical (i.e., time-dependent) systems. Systems having con-
trollable inputs and outputs are considered. That is, a system and its state can be manipu-
lated. The basic idea of controllability is to steer a dynamical system from an initial state
to a particular state by using an appropriate control. Controllability cases can be divided
into two categories, namely, exact and approximate controllability. Exact controllability
enables forcing the system from a preassigned initial state to a specific final state by some
control, whereas approximate controllability means that a final state belonging to an ar-
bitrary small neighborhood of the final state can be achieved by controlling the system.
Observability is closely related to controllability. It considers whether the initial state can
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be detected by using the measurements from the control and the final state. Propagation,
observation, and control issues of wave equations are reviewed by Zuazua in [200].

Exact controllability is a well-known and extensively researched topic within classi-
cal wave equations [33]. Exact controllability can be boundary [61, 91, 164, 175], internal
[101, 144, 145] or pointwise controllability, depending on where the control has been set.
Since pointwise controllability can be handled as a special case of internal controllability
near one point [68], both internal and pointwise controllability are also known as dis-
tributed controllability [141]. With exact controllability concept, control can be applied
to initial conditions. Thus, it is possible to find time-periodic solutions to wave equations
without solving the time-harmonic problems. The main idea of this method is inspired
by the Hilbert uniqueness method (HUM), which was introduced by Lions [140] as a
systematic method to address controllability problems for partial differential equations.

Usually, the controlling procedure is possible to realize in several ways. Optimal
control theory concerns finding the best (measured by a specific criterion) control, and
it is used in several areas such as shape design, inverse problems and controllability of
models described by the PDEs. A classical example of real-life optimal control problems
is to find an optimal way to bring a satellite to a desired trajectory so that the minimum
amount of fuel is consumed. In this thesis, we concentrate on a more academic example to
find a periodic solution for a coupled wave equation. In this case, the difference between
the initial condition and the terminal condition is minimized.

We follow the idea of Bristeau, Glowinski, and Périaux, presented in [30, 31, 32, 33,
92]. We avoid solving indefinite systems by returning to time-dependent equations and
utilize the exact controllability approach for solving the time-harmonic problems. For this
purpose, we use an algorithm which is based on control theory [140, 200]. The main idea
of the algorithm is to find initial conditions such that after one time period, the solution
and its time derivative coincide with the initial conditions. The controllability problem
is reformulated as a least-squares optimization problem which is solved by a conjugate
gradient (CG) algorithm. If an unpreconditioned CG algorithm is used, the number of
iterations grows rapidly with the order of the spectral element [146]. That is why we use
modern and computationally efficient methods, such as the graph-based multigrid method
[153], for preconditioning the algorithm. Another essential stage of the optimization
problem is computation of the gradient. We first discretize the wave equation and the
function to be minimized. Then, we compute the gradient directly for the discretized
problem by following the adjoint equation technique [172]. The exact controllability
approach has been shown to be robust but quite CPU time demanding since the solution of
forward and backward wave equations and preconditioning are required at each iteration
[33]. Theoretical background of combining the exact controllability method with discrete
exterior calculus for the generalized time-periodic wave equations is discussed in [169].

The exact controllability algorithm can be interpreted as a variation of the asymp-
totic approach with periodic constraints, in which the time-dependent equation is simu-
lated in time until the time-harmonic solution is reached. In practice, the residual of the
algorithm defines at each iteration how far the solution is from a periodic one. The resid-
ual is further used for control purposes to accelerate the convergence rate by giving an
impulse to the system. On the other hand, the scheme can be seen as a shooting method
for a transient two-point boundary value problem. This boundary value problem is re-
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placed by a sequence of initial value problems. The initial value problem is integrated
from the initial point to the other boundary. During the procedure, the initial guess is
changed to hit the target, that is, the terminal condition more accurately. The iterations
are continued until the desired accuracy is achieved.

1.4 Accuracy factors

The overall accuracy of the discrete solution given by the controllability method depends
on many factors. In order to concentrate on the spatial discretization we choose the test
problems in such a way that as many error factors as possible are eliminated. We try to
isolate the effects of those error factors which we can not eliminate.

The accuracy depends, among other things, on the spatial and temporal discretiza-
tion parameters, which are the mesh stepsize h, the order r of the spectral basis, and
the timestep Δt. A large time step allows to compute the solution utilizing only a small
amount of CPU time, but it may involve an error which deteriorates the accuracy of the
method. Hence, time steps small enough are used to dissipate the temporal error.

The relative error of finite element solutions consists of two error sources, which
are the approximation error and the pollution error [118]. To obtain accurate results, the
discretization mesh needs to be adjusted to the wavelength. The approximation error
of the hp-version [2] of finite element solutions in the H1 -seminorm is of order

(
κh
2r
)r,

where κ is the wavenumber, h is the mesh stepsize, and r is the order of the basis functions
[118]. Consequently, higher wavenumbers require finer meshes (i.e., smaller mesh step
size h) to reach sufficient accuracy. Typically, the accuracy is maintained by keeping a
fixed number of grid points in a wavelength �(x) = 2π

κ . Furthermore, the dimension of
the system increases rapidly as the wavenumber (and frequency) increases, which makes
the accurate solution even more challenging.

Another difficulty is the so-called pollution effect, that is, the wave number of the
numerical solution differs from the wave number of the exact solution. The error increases
as the wavenumber increases, which makes finding an accurate solution even more chal-
lenging. The pollution error is of order κ

(
κh
2r
)2r, and it becomes the dominant source of

the error at high wavenumbers. Hence, it deteriorates the accuracy when the wavenumber
κ increases even if the quantity κh is kept constant (see, e.g., [117]). It is known that the
pollution effect can not be avoided in two- and three-dimensional problems [12]. Thus, a
fixed error level would require keeping the quantity κ2h fixed, which leads to unaccept-
able computational costs for high frequency problems. That is why the pollution effect is
an important consideration in the finite element solution of time-harmonic wave problems
(see also [13, 117] and references there in).

Geometries with curved boundaries can not be represented exactly by a rectangular
mesh, which also causes error. We avoid this error component by using only geometries
with polygonal boundaries. Curvilinear geometries could be approximated accurately by
using elements with curved edges.

The least-squares optimization problem is not solved exactly, since the CG algo-
rithm is terminated after the given criterion is reached. This error component can be
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controlled by decreasing the stopping criterion of the iterative algorithm.
The approximation of the radiation condition leads to yet another error component.

We eliminate this factor in the accuracy considerations by using test problems with a
known analytical solution, which satisfies the absorbing boundary condition. The ap-
proximation of the radiation condition could be improved by using more sophisticated
boundary conditions or absorbing layers.

1.5 More innovative discretization schemes

Several modifications of the classical finite element method (FEM) have been used to
maintain the accuracy of the solution. These include such methods as the partition of
unity (PUM) [10, 11], Galerkin generalized least-squares [99], discontinuous enrichment
[199], discontinuous Galerkin [134, 43], and spectral collocation methods [42]. One way
to decrease the pollution effect is to modify the polynomial basis of the standard FEM
so that the local basis will consist of non-polynomial shape functions. This is done in
the discontinuous Galerkin method [43, 71, 78, 79, 134]. Ultra weak variational formu-
lation (UWVF) [38, 114, 115] uses standard finite element meshes and a new kind of
variational formulation on the interfaces between the elements. It reduces the memory
requirement compared with the standard FEM but might suffer from numerical instabil-
ity. Also spectral [36, 170] and collocation methods [13] are used to reduce the pollution
effect. Higher-order approximations, which are used to reduce the influence of the pollu-
tion effect, are considered on a general level, for example, by Šolín in [181]. Based on
the theoretical findings, presented by Demkowicz in [54, 55], Demkowicz and Oden de-
veloped hp-adaptive methods for structural-acoustics simulations in [56]. The work was
based on time-harmonic equations. Finite element discretization for displacements in the
solid domain was coupled with boundary element presentation for the pressure field in
the fluid region.

In both domains we specifically apply the spectral element method (SEM), which is
considered by Cohen in [44], for spatial discretization. The method provides for a conve-
nient treatment of complex geometries and varying material properties as well as high ac-
curacy. The basis functions are higher-order Lagrange interpolation polynomials, and the
nodes of these functions are placed at the Gauss–Lobatto collocation points. The integrals
in the weak form of the equation are evaluated with the corresponding Gauss–Lobatto
quadrature formulas. As a consequence of this choice, the spectral element discretization
leads to diagonal mass matrices significantly improving the computational efficiency of
the explicit time-integration used. Moreover, when using higher-order elements, the same
accuracy is reached with fewer degrees of freedom than when using lower-order finite
elements.

In [106], we used higher-order spectral elements for spatial discretization, derived
a new way to compute the gradient of the least-squares functional, and used a multigrid
method for preconditioning the conjugate gradient algorithm. The exact controllabil-
ity approach was applied to acoustic scattering problems, and the central finite differ-
ence (CD) scheme was used for time discretization. This time discretization scheme is
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second-order accurate and with a diagonal mass matrix also fully explicit, which is an
essential property for computational efficiency. Only matrix-vector products are needed
in time-dependent simulation, but the scheme needs to satisfy the Courant–Friedrichs–
Lewy (CFL) condition [50], which limits the length of the time step. When higher-order
spectral elements are used with the second-order time discretization, the temporal error is
larger than the spatial error, unless very small time steps are used. The accuracy of the
method was improved in [107] by using the fourth-order accurate Runge–Kutta method.
The explicitness of the method can be maintained with diagonal mass matrices, but still
the method is only conditionally stable. Comparison between shifted-Laplacian precon-
ditioning and the controllability method for computational acoustics is presented in [4].
According to the test results, the method based on exact controllability and spectral el-
ements performs well. In [162], the method was applied to the vector-valued problem
considering computational elasticity, and advances in preconditioning with the GBMG
method were studied in detail within the numerical experiments. The preconditioning is
shown to keeps the number of CG iterations independent of the order of spectral element
basis. This confirms also that the GBMG method is suitable for higher-order discretiza-
tions. In this thesis, the methods developed for solving acoustic and elastic problems in
separate domains, mainly presented in the papers [107, 162], are elaborated further and
the coupling between acoustic and elastic media is applied to the model.

1.6 Contributions in the articles related to this thesis

The main ideas of this thesis are based on the earlier published methods developed for
acoustic and elastic wave equations in separate domains without fluid-structure interac-
tion. The author is the corresponding contributor in the peer-reviewed international jour-
nal articles [106, 107, 162] as well as in the peer-reviewed international conference papers
[105, 159, 163] considering the topic. She has made the Fortran 90 implementation of the
control method including assembling the related global level matrix and vector data struc-
tures, run the computational tests as well as analyzed the test results presented in those
papers. The multigrid code realized in C programming language and provided by Janne
Martikainen and Anssi Pennanen was combined to the Fortran 90 code for solving the
linear system involved in preconditioning.

For the conference paper [103] considering the controllability method for the Helm-
holtz equation with spectral elements, the author carried out the numerical experiments.
The author wrote the first version of the articles devoted to acoustic scattering [106, 107],
for which the final preparation and modifications was done in co-operation with Erkki
Heikkola, who also provided local level building blocks for the spectral elements used in
the work. In [106], the central finite difference scheme was used for time discretization,
whereas the accuracy of the method was improved by using the fourth-order accurate
Runge–Kutta method in [107]. The author extended the method further to the Navier-
Cauchy equation, which she described in [162]. The sections considering the multigrid
preconditioner were written by Anssi Pennanen in the papers [104, 107, 161]. The other
parts of the co-authored articles mentioned in this section were written by the author,
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except for minor modifications suggested by the co-authors at the finalizing stage. The
author also prepared half of the manuscript, implemented the controllability algorithm
and carried out the corresponding comparative numerical tests and conclusions presented
in the article [4]. In that article, Tuomas Airaksinen performed the simulations related to
the shifted-Laplacian preconditioner and wrote the related parts of the manuscript.

The research and its reporting published in the journal paper [160] was based on
the ideas of the earlier research findings and carried out by the author herself. In that
paper, the author considered an extension of the methods tailored for acoustic and elastic
wave equations to the acousto-elastic interaction. Nevertheless, the reuse of the existing
codes was not reasonable, since the only way of doing that would have been calling, at
each time-step, both the solver for the scalar-valued Helmholtz equation concerning the
propagation of acoustic waves and the solver for the vector-valued Navier-Cauchy equa-
tion modeling the propagation of waves in an elastic medium and updating the interface
data. Therefore, a more efficient implementation, where the solution steps at each iter-
ation are combined into one solver, was implemented. Moreover, the coupling between
the earlier used paradigms, where the acoustic domain with pressure variables is coupled
with the elastic domain whose variables are presented as displacements, leads to unsym-
metric formulation, for which it is complicated to generate an efficient control model
for two-dimensional simulations. This is what motivated searching for more meaningful
approaches constituting this thesis.

In contrast to the author’s earlier publications, this thesis mainly consists of ex-
act controllability and spectral element methods that are applied to the efficient numer-
ical simulation of fluid-structure interaction problems. The coupling involved in fluid-
structure interaction problems makes applying the methods more complicated than when
considering acoustic and elastic waves without coupling. Particularly, the computer im-
plementations of acoustic and elastic waves are not straightforwardly extended to the cou-
pled problem. Consequently, several issues have to be taken into account, which makes
developing an efficient solution method for the fluid-structure interaction more challeng-
ing than in the uncoupled case. Thus, improvements are made compared with the earlier
published results presented in conjunction with elastic materials and acoustic waves.

1.7 Outline

The thesis is organized as follows. First, the mathematical models for acoustic and elastic
waves with some preliminaries are presented in Chapter 2. Then, the coupled problem
is constructed in Chapter 3. We discretize the coupled problem in a space domain with
spectral elements in Chapter 4. Since we are particularly interested in the time-dependent
wave equations, we consider the time discretization in Chapter 5. The time discretization
is accomplished using central finite differences in Section 5.1, whereas the fourth-order
Runge–Kutta scheme is applied in Section 5.2. We also make an effort for decreasing the
computing time by employing the fourth-order Adams–Bashforth (AB) method in Section
5.3. In Chapter 6, we expand the control approach to the coupled problem. The objective
functional is presented in Section 6.1. In Sections 6.2 and 6.3, we compute the gradient of
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the functional, an essential point of the method, using the adjoint state technique. The op-
timization algorithm is considered in Chapter 7. Computation of the initial approximation
for the optimization is described in Section 7.1, and the conjugate gradient algorithm is
presented in Section 7.2. The graph-based multigrid method is used for preconditioning
the conjugate gradient algorithm in Section 7.3. Numerical experiments concerning the
acousto-elastic propagation of time-harmonic waves show the efficiency of the algorithm
in Chapter 8. The concluding remarks are presented in Chapter 9.



2 ACOUSTIC AND ELASTIC WAVE EQUATIONS

Wave equations are partial differential equations which describe the propagation of var-
ious types of waves, such as acoustic, elastic and electromagnetic waves. This study
concentrates on formulations suitable for simulating the coupling between acoustic and
elastic waves. We focus in particular on two time-harmonic linear wave equations and
the mutual interaction between them. The scalar-valued Helmholtz equation concerns the
propagation of acoustic waves and the vector-valued Navier-Cauchy equation describes
the propagation of waves in an elastic medium.

In this chapter, we consider the basic relations of acoustic and elastic waves, as well
as the boundary conditions used to define well-posed and physically meaningful prob-
lems. Mathematical models of acoustic and elastic wave equations are based on the fun-
damental laws of continuum mechanics describing the conservation of mass, momentum,
and energy. All of these conservation laws are based on the Reynolds transport theorem
(see, e.g., [80]), and can be expressed for a vector or scalar-valued function u in a domain
Ω as

d
dt

∫
Ω

u dx =
∫
Ω

∂u
∂t

dx +
∫

∂Ω

(v · n)u ds = 0, (1)

where ∂Ω is the boundary of the domain Ω, n is the outward unit normal vector to the
boundary, and v is the velocity field. The mass m is defined as an integral of the density ρ

over the domain Ω. Thus, the mass conservation (continuity) is obtained by substituting
u = ρ into Equation (1). Since the linear momentum is the product of the mass m and
velocity v, the conservation of the linear momentum can be considered with u = ρv. The
angular momentum can be derived respectively and used to show the symmetry of the
stress tensor. If the momentum is not conserved, that is, the derivative of the momentum
is non-zero, there is a force acting on the body. In the case of energy conservation, u =
ρ(u + v2/2 + gz), where u is the thermodynamical internal energy of the system per
unit mass, v2/2 presents the kinetic energy per unit mass, g is gravity and z states for the
vertical distance from the zero level. Considering Ω as an infinitesimal volume results in
the differential equation forms of the conservation laws.

In what follows, we apply, in a conventional way, the differential equations of
the conservation laws to acoustic and elastic wave propagation in the two-dimensional
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isotropic media. Since the material is isotropic, material parameters are independent of
the coordinate system and the material has identical properties in all directions at a point.
We assume that the wave motions in these models consist of vibration-like movements.
Hence, velocity v, density ρ, and deformation have only comparatively small changes,
that is, small oscillations around the equilibrium state characterized by the steady-state
values. The steady-state values of the velocity and density are denoted by v0 and ρ0, re-
spectively. In addition, we assume that the domain is not moving, in other words, v0 = 0.
Since the changes in velocity and density, indicated as v̂ = v − v0 and ρ̂ = ρ − ρ0,
are small, the presentation leads to linear wave equations. Such small deformations are
considered that changes in the geometry of the domains can be neglected.

2.1 Acoustic wave equation

We consider acoustic wave propagation in fluid, which can be either a liquid or a gas
medium. Fluids are composed of moving and colliding molecules, but the fluid flow is
assumed to be a macroscopic flow with properties expressed as averages of the molecular
properties. Acoustic waves are small oscillations of pressure, which are associated with
local motions of particles in the fluid. That is why differential equations of acoustic
pressures are used for modeling the fluid domain. The Helmholtz equation, which we use
in the two-dimensional fluid media Ω f with the spatial variable x = (x1, x2) ∈ R2, can
be derived by simplifying the basic equations of fluid dynamics (see, e.g., [176, 194]).

We concentrate on fluid flows that are assumed to be irrotational and inviscid. Irrota-
tionality ensures that there are no circular movements causing crossing to the streamlines
of the wave. From the mathematical point of view this is expressed as ∇× v f = 0. Since
the fluid is inviscid, there is no friction between the fluid particles. The flow velocity is
assumed to be small implying ∇ · v f = 0, where v f is the velocity of fluid particles. We
also assume that no thermal diffusion is involved. Thus, the temperature varies only by
the pressure variations.

The steady-state values of the velocity and density are denoted by v f 0 = 0 and ρ f 0.
Taking these assumptions into account, we obtain the equation of continuity

∂ρ f

∂t
+ ∇ · (ρ f 0v f ) = 0, (2)

where t is time and ρ f is the density of fluid. This equation is known also as the equation
of mass conservation, describing that the mass is neither created nor destroyed within a
volume element.

Neglecting the gravity and supposing that variations of the pressure are small com-
pared with the steady-state pressure, the momentum conservation can be expressed as

∇p f = −ρ f 0
∂v f

∂t
, (3)

where p f is the pressure. After dividing Equation (3) by ρ f , approximating ρ f ≈ ρ f 0,
and taking divergence, we get the form
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∇ ·
(

1
ρ f

∇p f

)
= −∇ · ∂v f

∂t
. (4)

We assume that the thermodynamical processes corresponding to the changes in
pressure and volume are adiabatic. In other words, there is no heat transfer, and the
changes in the internal energy of the system can be covered by considering the acoustic
equation of state

∂p f

∂t
=

1
κρ f 0

∂ρ f

∂t
, (5)

where κ

(
ρ f

∂p f
ρ f ∂ρ f

)−1
= 1

c2ρ f
is the adiabatic compressibility depending on the speed

of sound c. Then, we substitute the time derivative of density from Equation (2) to the
equation of state (5), and get

1
ρ f c2

∂p f

∂t
= −∇ · v f . (6)

By taking the time derivative, we get

1
ρ f c2

∂2p f

∂t2 = −∇ · ∂v f

∂t
. (7)

From Equations (4) and (7) we form the wave equation. After adding a body force f , it
reads

1
ρ f c2

∂2p f

∂t2 −∇ ·
(

1
ρ f

∇p f

)
= f . (8)

We are going to solve the time-harmonic problem with a spatial variable x =
(x1, x2)T ∈ R2. The time-dependence of the pressure is in the form exp(iωt), where
i =

√−1 is the imaginary unit. We substitute p f (x, t) by p f = Pf (x) exp(iωt) and
f (x, t) by f = F(x) exp(iωt) in Equation (8). After assuming time-harmonic values of
the frequency ω, we get the time-harmonic Helmholtz equation

−κ2

ρ f
Pf −∇ ·

(
1
ρ f

∇Pf

)
= F. (9)

The wavenumber κ describes how many waves there are for a 2π unit. It is related
to the angular frequency ω and to the speed of sound c(x) by the formula κ(x) = ω

c(x) .

The corresponding wavelength is given by �(x) = 2π
κ(x) . The wavenumber characterizes

the oscillatory behavior of the solution and increases if the frequency f (x) = c(x)/�(x)
of the wave increases.

The Helmholtz equation (9) is a fundamental equation for time-harmonic wave
propagation, and it can be solved for a broad band of frequencies. It occurs in a num-
ber of physical applications, such as underwater acoustics, medical ultrasonics, and geo-
physics. It can also be used to model the scattering of time-harmonic acoustic waves by
an obstacle.
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The complex-valued total acoustic pressure field Pf is the sum of the scattered wave
Pf scat and the incident plane wave Pf inc. The time-harmonic incident plane wave can be
given by Pf inc(x) = exp(iω · x), where ω gives the propagation direction. The angular
frequency equals the euclidean norm of ω, that is, ω = ‖ω‖2. Then, the function F in
the equation above is of the form

F(x) = −κ(x)2

ρ f (x)
Pf inc(x) −∇ ·

(
1

ρ f (x)
∇Pf inc(x)

)
. (10)

An irrotational vector field has a scalar potential, and the vector field is the gradient
of its scalar potential. Since the velocity field is assumed to be irrotational, we can define
the velocity potential φ such that v f = ∇φ. Substituting this to Equation (6) and elim-

inating the pressure in terms of the velocity potential φ such that p f = −ρ f
∂φ
∂t result in

another form of the acoustic wave equation

1
c2

∂2φ

∂t2 −∇ · (∇φ) = fφ. (11)

The advantage of using this formulation is that the velocity field can be presented as
functions of φ and pressure as a function of ∂φ

∂t . Consequently, the acoustic sound intensity
expressed as the product of pressure and velocity, I = p f v f , can be reformulated as

I = −ρ f
∂φ
∂t ∇φ.

By replacing φ(x, t) by φ = Φ(x) exp(iωt) and fφ(x, t) by fφ = FΦ(x) exp(iωt)
in Equation (11), that is, separating the scalar field to the space and the time-dependent
components, we get for Equation (11) the following time-harmonic counterpart

−κ(x)2Φ −∇2Φ = FΦ. (12)

2.2 Elastic wave equation

An elastic material responds to an applied force by deforming and returns to its original
shape upon the removal of the applied force. Thus, there is no permanent deformation
within elastic behavior. The relative geometric deformation of the solid is called a strain
and forces that occur in the solid are described as stresses. If the 3D configuration pos-
sesses some symmetry, we can often simplify the model into a 2D one. In the case of a
thin solid, we have a plane stress situation. If the solid is thick, a plane strain can be con-
sidered. The linear theory of elasticity [136] represented by the Navier-Cauchy equation
models mechanical properties in a structure Ωs assuming small deformations. With this
theory several phenomena, such as seismic waves in the earth [130] and ultrasonic waves
used to detect flaws in materials, can be described.

In this section, we will present the fundamental equations of the theory of linearized
elasticity and derive the Navier-Cauchy equation, which governs the propagation of time-
harmonic waves in elastic solids [94, 135].
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In 1678, Robert Hooke, on the basis of experiments with springs, stated a rule
between extension and force. This rule, commonly referred to as generalized Hooke’s law,
says that stress is a linear function of strain, where the stress assumes small displacements,
and has the following form:

σ(us) = Cε(us), (13)

where the vector field us = (us1(x), us2(x))T denotes the two-dimensional displace-
ment depending on the spatial variable x = (x1, x2) ∈ R2, σ(us) is the stress tensor, C
is the elastic moduli tensor and ε(us) is the strain tensor. In isotropic media, the elastic
moduli tensor C is invariant under rotations and reflections.

Diagonal components of σ(us) present normal stresses and the other components
present shear stresses [120]. The strain tensor is defined through the derivatives of the
displacement vector usi such that

ε(usik) =
1
2

(
∂usi
∂xk

+
∂usk
∂xi

+
∂usl
∂xi

∂usl
∂xk

)
. (14)

For small strains, | ∂us i
∂xi

| � 1, the strains are related to the displacements by the linearized
strain tensor ε, which is defined by

ε(us) =
1
2

(
∇us + (∇us)T

)
=

(
∂us1
∂x1

1
2( ∂us1

∂x2
+ ∂us2

∂x1
)

1
2( ∂us1

∂x2
+ ∂us2

∂x1
) ∂us2

∂x2

)
, (15)

where ∇us is the Jacobian matrix of us. A normal strain εii = ∂us i
∂xi

is the change of
length in the xi-direction divided by the length in the xi-direction, and the shear strain
εij = εji = 1

2( ∂us i
∂xj

+ ∂us j
∂xi

) tells that the angle between xi and xj axis would be diminished
by 2εij. This approximation does not apply in situations of deformations involving large
angle shears.

The tensor C is a fourth-order tensor of elastic constants of the medium with compo-
nents Cijkl = λsδijδkl + μs(δikδjl + δilδjk), where δij is the Kronecker delta and i, j, k, l =
1, . . . , 2. In general, Cijkl would have 34 = 81 independent components in R3. Because
of the symmetry of stress and strain tensors Cijkl = Cjikl = Cijlk, and Cijkl = Cklij by
energy considerations. This reduces the number of material constants to 21 in the three-
dimensional case and to 6 in the two-dimensional case. For isotropic two-dimensional
material, the number of essential elastic constants reduces to two and Equation (13) can
be written in the form

σ(us) = λs(∇ · us)I + 2μsε(us)

=

(
(2μs + λs) ∂us1

∂x1
+ λs

∂us2
∂x2

μs( ∂us1
∂x2

+ ∂us2
∂x1

)
μs( ∂us1

∂x2
+ ∂us2

∂x1
) (2μs + λs) ∂us2

∂x2
+ λs

∂us1
∂x1

)
, (16)
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where I is identity matrix and λs and μs are the Lamé parameters. The Lamé parameters
λs = C1122 and μs = C1212 can be expressed also as

μs =
E

2(1 + ν)
, λs =

Eν

(1 + ν)(1 − 2ν)
, (17)

where E is the Young modulus and ν is the Poisson ratio 0 < ν < 1
2 . The Young modulus

E is a measure of the stiffness of the solid. It describes how much force is needed to attain
the given deformation. The Poisson ratio is a measure of the compressibility of the solid.
It is the ratio of lateral to longitudinal strain in a uniaxial tensile stress.

The speed of pressure waves (P-waves) cp and the speed of the shear waves (S-
waves) cs can be presented as functions of the Lamé parameters and pressure, such that

cp =

√
λs(x) + 2μs(x)

ρs(x)
, cs =

√
μs(x)
ρs(x)

. (18)

The P-waves move in a compressional motion, while the motion of the S-waves is per-
pendicular to the direction of wave propagation [191].

The conservation of the linear momentum can be presented in the form

ρs

(
∂vs

∂t
+ vs · ∇vs

)
−∇ · σ(us) = f, (19)

where ρs(x) is the density, ( ∂vs
∂t + vs · ∇vs) is the material derivative of velocity and f

is the source function. For small deformations, we can assume that vs · ∇vs ≈ 0 and
vs ≈ ∂us

∂t . Supposing that the body is subject to a body force f, the equation of motion
can be presented in the form:

ρs
∂2us

∂t2 −∇ · σ(us) = f, (20)

where components of the stress tensor σ(us) are

σij =
E

1 + ν
εij +

Eν

(1 + ν)(1 − 2ν)
εkkδij = 2μsεij + λsεkkδij, i, j = 1, 2.

In general, we assume the medium to be heterogeneous. Thus, the partial derivatives in
∇ · σ apply to λs and μs as well as to the displacement. In a homogeneous medium, the
formula has a simpler form, and Equation (20) can be presented in the component form
as follows:

⎧⎨⎩ −(2μs + λs) ∂2us1
∂x2

1
− μs

∂2us1
∂x2

2
− (μs + λs) ∂2us2

∂x1∂x2
+ ρs

∂2us1
∂t2 = f1,

−(2μs + λs) ∂2us2
∂x2

2
− μs

∂2us2
∂x2

1
− (μs + λs) ∂2us1

∂x1∂x2
+ ρs

∂2us2
∂t2 = f2.

We consider the propagation of time-harmonic waves with angular frequency ω >
0 such that the time-dependence is exp(iωt). Consequently, we get the time-harmonic
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version of Equation (20) by replacing us(x, t) by us = Us(x) exp(iωt) and f(x, t) by
f = F(x) exp(iωt). Then, the stress tensor σ(us) is

σ(us) = (λs(∇ · Us)I + μs(∇Us + (∇Us)T)) exp(iωt) = σ(Us) exp(iωt), (21)

or, in the component form,

σjk(us) =

(
λs

(
∂us1

∂x1
+

∂us2

∂x2

)
δij + μs

(
∂us j

∂xk
+

∂usk
∂xj

))
exp(iωt),

where j = 1, 2. Now, the propagation of time-harmonic waves in an elastic and isotropic
body can be governed by the Navier-Cauchy equation

−ρsω
2Us −∇ · σ(Us) = F, (22)

having components

−ρsω
2Us j +

2

∑
k=1

∂σjk(Us)
∂xk

= Fj, j = 1, 2. (23)

If the time-harmonic incident plane wave is given by Usinc(x) = (exp(iω · x), exp(iω ·
x))T, the function F in the equations above is of the form

F(x) = −ω2ρs(x)Usinc(x) −∇ · σ(Usinc(x)). (24)

Inserting the time-harmonic stress tensor as given by (21) into the time-harmonic
equation of motion (22) and assuming constant material parameters, we yield to the fol-
lowing form of the Navier-Cauchy equation:

−ρsω
2Us − μs∇2Us − (μs + λs)∇(∇ · Us) = F, (25)

which can be written in the component form

⎧⎨⎩ −(2μs + λs) ∂2us1
∂x2

1
− μs

∂2us1
∂x2

2
− (μs + λs) ∂2us2

∂x1∂x2
− ρsω

2Us1 = F1,

−(2μs + λs) ∂2us2
∂x2

2
− μs

∂2us2
∂x2

1
− (μs + λs) ∂2us1

∂x1∂x2
− ρsω

2Us2 = F2.
(26)

The wave equation in fluid media can also be derived as a special case of the elas-
ticity Equation (20). The displacement vector uf in the fluid domain can be replaced by
the corresponding pressure p f = −λ f∇ · uf. Then we have to take into account that in
the solid media μs > 0, whereas in the fluid media μ f = 0. In other words, we assume
that there are no S-waves in fluids. That is because inviscid fluids have no internal friction
and therefore can not support shear stresses. Taking the divergence of Equation (20) and
substituting Equation (16) into Equation (20) yield to the wave equation in fluid media

1
ρ f c2

∂2p f

∂t2 −∇ ·
(

1
ρ f

∇p f

)
= f , (27)

where the wave speed c =
√

λ f
ρ f

and the source term f = −∇ · f f .



31

2.3 Physical boundary conditions

The equations need to be completed by the boundary conditions to get a well-posed and
physically meaningful problem. The boundary conditions can be divided into the con-
ditions on physical boundaries and artificial boundaries. In this section, we consider the
physical boundary conditions, and the artificial boundary conditions are discussed in Sec-
tion 2.5. Further, the coupling conditions on the interface boundary are derived in Chapter
3.

The Dirichlet and the Neumann boundary conditions are examples of the physical
boundary conditions. Because of their simplicity, they are also the most common bound-
ary conditions imposed on a model problem. The Dirichlet boundary conditions give
the value of the unknown at the given boundary. In the acoustic domain, the Neumann
boundary conditions give the value of the gradient of the unknown at the boundary. In
the elastic domain, the homogeneous Neumann boundary condition models a free bound-
ary, where there are no external forces. The Robin boundary condition, also known as
the impedance boundary condition, is a linear combination of the Dirichlet and Neumann
boundary conditions.

When the scattering of acoustic pressure waves by a bounded obstacle Θ is consid-
ered, the boundary condition on the surface of the obstacle Γ0 f depends on its acoustic
properties. The problem setting is illustrated in Figure 3, and the boundary condition can
be stated as a general form

WPf = y0, on Γ0 f , (28)

where the operator W sets the boundary condition and y0 is the source function. With
a sound-soft obstacle the total pressure is zero on the surface Γ0 f , which implies the
homogeneous Dirichlet boundary condition with y0 = 0 and W equal to the identity
operator I . The sound-hard obstacle leads to the Neumann boundary condition with
y0 = 0 and

W =
∂

∂n f
, (29)

where n f is the outward pointing unit normal vector on the boundary Γ0 f . The third
alternative is the Robin boundary condition presented with the acoustic admittance β,
which is inversely proportional to the surface impedance. The time-harmonic version of
the corresponding boundary condition is

W = iκ(x)β +
∂

∂n f
, (30)

whereas its time-dependent form, used in conjunction with the time-dependent pressure
variable p f , is

W =
β

c(x)
∂

∂t
+

∂

∂n f
. (31)
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FIGURE 3 Scattering by the obstacle Θ in the exterior domain G = R2 \ (
Θ ∪ Γ0 f

)
.

For the elastic wave equation the physical boundary conditions can be defined re-
spectively. In the case of elastic scattering, we denote the boundary of the obstacle by Γ0s,
and the boundary condition is regarded as

WUs = g0, on Γ0s. (32)

Then, the Dirichlet boundary condition is considered with W = I , the Neumann bound-
ary condition is set with W = As, where

As =
(

(2μs + λs)ns1 μsns2
λsns2 μsns1

)
∂

∂x1
+

(
μsns2 λsns1
μsns1 (2μs + λs)ns2

)
∂

∂x2
, (33)

and the Robin boundary condition is achieved for the time-harmonic problems by

W = iωρs(x)βBs + As, (34)

where Bs is a symmetric positive definite 2 × 2-matrix [64, 173], which can be computed
by

Bs =
(

ns1 ns2
ns2 −ns1

)(
cp 0
0 cs

)(
ns1 ns2
ns2 −ns1

)
, (35)

where ns = (ns1, ns2)T is the outward pointing normal vector on Γ0s. The corresponding
time-dependent operator of the Robin boundary condition for the elastic wave equation is
of the form

W = ρs(x)βBs
∂

∂t
+ As. (36)

For both the acoustic and elastic waves, we can see that β = 0 actually corresponds
to the Neumann boundary condition. In the special case β = 1, the operator W approx-
imates the waves propagating without reflections, which is further considered in Section
2.5.

2.4 Time-harmonic equations in exterior domains

Acoustic and elastic wave problems are formulated in unbounded, that is, exterior, two-
dimensional domains. The mathematical formulation of exterior problems, including the
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conditions of existence and uniqueness of the solution, are presented, for instance, in
[49, 137, 174, 192, 193, 195]. In this chapter, we first describe this theory in the case of
acoustic waves, which are modeled by the Helmholtz equation. Then, the elastic wave
problem is treated in a similar manner.

We consider the scattering of a time-harmonic acoustic plane wave by a bounded,
open obstacle Θ ⊂ R2. We denote the boundary of the scattering obstacle by Γ0 f . Fur-
thermore, we define the weighted function spaces in the exterior domain G = R2 \(
Θ ∪ Γ0 f

)
for a, b ∈ R and k ∈ N as follows:

L2
loc(G) = { f ∈ L2(D) for all compact sets D ⊂ G},

L2
a(G) = { f ∈ L2

loc(G) such that ρa f ∈ L2(G)},

L2
<a(G) =

⋂
b<a

L2
b(G), L2

>a(G) =
⋃
b>a

L2
b(G),

Hk
loc(G) = { f ∈ Hk(D) for all compact sets D ⊂ G},

Hk
a(G) = { f ∈ Hk

loc(G) such that f , f ′, . . . , f (k) ∈ L2
a(G)},

H̊k
a(G) = {the closure of C∞

0 (G) in the norm of Hk
a},

Hk
<a(G) =

⋂
b<a

Hk
b(G), H̊k

<a(G) =
⋂
b<a

H̊k
b(G),

where ρ(x) = (1 + r2)1/2 is a weight function with r = ‖x‖2. Then, we discuss the
exterior Dirichlet problem for the Helmholtz equation with constant coefficients

−κ2Pf (x) −∇2Pf (x) = F, in G, (37)

Pf (x) = 0, on Γ0 f , (38)

where F ∈ L2
loc(G) and κ > 0. In addition, we need the Sommerfeld radiation condition

(see, e.g., [180])

−iκPf +
∂Pf

∂r
∈ L2

>−1/2(G) (39)

where i is the imaginary unit, and the radial derivative is defined by

∂

∂r
=

x · ∇
r

. (40)

Definition 3.1 The outgoing solution to the exterior Dirichlet problem for Equation (37)
with F ∈ L2

loc(G) is the function Pf ∈ H̊1
<−1/2(G) which satisfies the condition (39) and∫

G

(
∇Pf · ∇φ̄ − κ2Pf φ̄

)
dx =

∫
G

Fφ̄ dx, ∀ φ ∈ C∞
0 (G). (41)

The spectrum of the negative Laplace operator, −∇2, for an exterior domain G is given
by the set [0, ∞). By self-adjointness of the operator and using Rellich’s estimate, it can
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be seen that this spectrum is continuous. Thus, the operator − (
κ2 + ∇2) is injective and

its range is dense in L2(G), but its inverse is not continuous. Since there does not exist a
solution for all F ∈ L2(G), we need to both reduce the set of admissible right-hand sides
and extend the solution space.

It is known that the exterior Dirichlet problems for the Helmholtz equation are
uniquely solvable if κ2 ∈ C \ [0, ∞). Since all the complex numbers with nonzero
imaginary part belong to this resolvent set (complement of the spectrum), there exists
a unique solution for (37)-(38), in H̊1(G) for all F ∈ L2(G), where κ2 is replaced by
(κ2 + iτ) ∈ C with τ > 0. Thus, we put the Helmholtz equation in the form

−
(

κ2 + iτ
)

Pf τ
−∇2Pf τ

= F, (42)

and use the limiting absorption principle [60] to show that Pf = limτ→0 Pf τ
exists in

some weaker topology. This principle is well defined for all F ∈ L2
>1/2(G), and we

obtain a unique solution to the Dirichlet problem for the Helmholtz equation for any
κ > 0.

Although the elastic wave problem is more complicated, it can be treated basically
in the same way as the Helmholtz problem (see, e.g., [193]).

Remark 2.4.1 Proving the existence and uniqueness of the solution for the exterior prob-
lems with varying coefficients, such as

−κ(x)2

ρ f (x)
Pf −∇ ·

(
1

ρ f (x)
∇Pf

)
= F, in G,

Us = 0, on Γ0 f ,

and

−ω2ρs(x)Us −∇ · σ(Us) = F, in G,
Us = 0, on Γ0s,

is more challenging than for the problem with constant coefficients, but it can be done by
using an approach related to the methodology described above.

For computing purposes, the exterior problems defined in unbounded domains are trun-
cated to a finite domain by boundary conditions, which are discussed in the next section.

2.5 Artificial boundary conditions

In wave propagation applications, the scattered waves are going out from the domain
without reflections. To solve the scattering problem numerically, we need an artificial
boundary condition that is an approximation of the Sommerfeld radiation condition. In
the d-dimensional case, the Sommerfeld radiation condition can be stated, for instance,
for the scalar-valued scattered pressure wave field Pf scat as

lim
r→∞

r
d−1

2

(
∂Pf scat

∂r
+ iκ(x)Pf scat

)
= 0, (43)



35

where r is the radial coordinate. The artificial boundary condition is set on the exterior
artificial boundary, and it ensures that the solution either presents exactly or approximates
the restriction of the solution in the original unbounded region. In practice, the choice of
a suitable artificial boundary condition is a compromise between accuracy, computational
efficiency, and the ease of implementation.

An exact (transparent) artificial boundary condition can be presented, for instance,
as a Dirichlet-to-Neumann mapping. As the name of the method reflects, the relation
between the unknown function and its normal derivative is considered on the artificial
boundary. The conventional way of constructing the Dirichlet-to-Neumann mapping for
computations is using a finite sum of terms in which the Hankel functions are involved
(see, e.g., [122]). Since the resulting system of linear equations is not sparse, this ap-
proach demands sufficiently large computational effort and memory storage.

Perfectly matched layer [21] and absorbing boundary conditions (see, e.g., [8, 24,
25, 64, 85, 98, 129]) are examples of approximate artificial boundary conditions. In what
follows, we concentrate on truncating the original unbounded domain with absorbing
boundary conditions. The problem setting for acoustic scattering problems in bounded
domains is illustrated in Figure 4, where Θ ⊂ R2 denotes the obstacle and Ω f ⊂ R2

is the domain between the obstacle and the absorbing boundary Γe f . The boundary of
the obstacle is denoted by Γ0 f . On Γe f , we impose the conventional first-order absorbing
boundary condition [64],

iκ(x)Pf +
∂Pf

∂n f
= Yext, on Γe f , (44)

where Pf denotes the (complex-valued) total acoustic pressure field, n f is the outward
normal vector to Ω f , and Yext is the source term due to the incident plane wave. If the
time-harmonic incident plane wave is given by Pf inc(x) = exp(iω · x), the function Yext
is of the form

Yext(x) = iκ(x)Pf inc(x) +
∂Pf inc(x)

∂n f
. (45)

Γef

Γ0f

Ω f
Θ

FIGURE 4 Obstacle Θ, domain Ω f , and the two parts of the boundary ∂Ω f = Γ0 f ∪ Γe f of the
domain Ω f .
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For the one-dimensional case, this boundary condition absorbs the waves exactly. In two
dimensions, the formula gives an approximation of the phenomenon.

On the artificial boundary of the structure domain, Γes, we impose the corresponding
first-order absorbing boundary condition

iωρs(x)BsUs + σ(Us)ns = Gext, on Γes, (46)

where Bs is a matrix defined by the formula (35), and ns = (ns1, ns2)T is the outward
pointing normal vector on Γes. Coefficients cp and cs represent the speed of the pressure
waves (P-waves) and the speed of the shear waves (S-waves), respectively. The source
function Gext is of the form

Gext(x) = iωρs(x)BsUsinc(x) + σ(Usinc(x))ns. (47)

When displacements are considered in both domains, we recall that in the fluid

domain S-waves vanish, P-waves are represented as c =
√

λ f
ρ f

, and the Lamé parameter

corresponding to μs is μ f = 0. Thus, in the fluid domain we can use the respectively
modified form of Equation (35) as follows:

B f =

(
cn2

f 1 cn f 1n f 2

cn f 1n f 2 cn2
f 2

)
. (48)

It is worth mentioning that the first-order absorbing boundary condition is the sim-
plest alternative and not very accurate in approximating the Sommerfeld type radiation
condition in a general two-dimensional case. To reduce reflections on the artificial bound-
ary, higher-order absorbing boundary conditions could be utilized (see, e.g., [16, 63, 87]).
However, the first-order absorbing boundary condition is an adequate choice for the pre-
sentation of the methods considered in this thesis.



3 COUPLED PROBLEM

The domain Ω modeling the geometry of the FSI phenomena is divided into the solid part
Ωs and the fluid part Ω f (see Figure 5). When a wave coming from the fluid domain
confronts the elastic domain, it is not totally reflected, but part of it passes to the elastic
domain and turns to elastic vibrations. The analogous action is seen when the elastic
wave propagates to the fluid, although usually the reflections from fluid to structure are
minor when compared with the reflections from structure to fluid. To be more precise, the
magnitude of the reflection depends on the difference between the densities and the wave
speeds of the materials. Thus, the reflections are more significant from comparatively stiff
structures than for more flexible obstacles.

Various formulations exist for the fluid-structure interaction between acoustic and
elastic waves. Typically, the displacement is solved in the elastic structure. The fluid
can be modeled using finite element formulations based on fluid pressure, displacement,
velocity potential or displacement potential [67]. Two approaches, in which the displace-
ment is solved in the elastic structure, predominate in modeling the interaction between
acoustic and elastic waves. Expressing the acoustic wave equation by the pressure in
the fluid domain leads to a non-symmetric formulation (see, e.g., [22, 126, 151, 190]),
while using the velocity potential results in a symmetric system of equations (see, e.g.,
[39, 84, 166, 186]).

Solution methods are tailored, depending on the formulation, to achieve efficient
numerical simulations. The symmetric formulation provides the opportunity to solve
time-dependent equations governing the fluid domain and the displacement of the struc-

ΩfΩs
Γ i

FIGURE 5 The domain Ω is divided into the solid part Ωs and the fluid part Ω f .
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ture simultaneously (monolithic approach or direct coupling). In this case, the software
implementation is required for the particular combination of physical problems. With
non-symmetric formulation the time-dependent equations can be solved separately. This
approach allows to utilize pre-existing solvers or black-box components which are devel-
oped for acoustic and elastic problems separately. This approach is suitable for very large
problems since it requires less memory than solving the problems simultaneously. Still,
an efficient transfer of the boundary conditions at the interface between solving acoustic
and elastic problems plays a crucial role of the overall method’s performance. In what
follows, we first consider the boundary conditions corresponding to the coupling inter-
face, and then present the mathematical models for transient coupled problems as three
different formulations. Also the weak formulations and energy identities are presented.
The equations for the corresponding time-harmonic models are briefly given in Appendix
1.

3.1 Coupling conditions

On the interface Γi between fluid and solid domains, normal components of displacements
and forces are balanced:

us · ns + uf · n f = 0, (49)

σ(us)ns + σ(uf)n f = 0. (50)

Since μ f = 0, we get σ(uf) = λ f∇ · ufI = −p fI . After using Equation (50), the
balance of normal forces is of the form

σ(us)ns = p f n f . (51)

To get the continuity across the interface, we differentiate (49) twice with respect to time
and use Equation (20), where the body force is assumed to be zero on Γi, to get

ρ f (x)
∂2us

∂t2 · ns =
∂p f

∂n f
. (52)

If the velocity potential φ is used in the fluid part, we set p f = −ρ f (x) ∂φ
∂t in

Equation (51) and differentiate (49) with respect to time and use equation ∂uf
∂t = v f =

∇φ to get the following interface conditions:

σ(us)ns = −ρ f (x)
∂φ

∂t
n f , (53)

∂us

∂t
· ns = − ∂φ

∂n f
. (54)

By combining equations of linear acoustics and elastodynamics, presented in the
previous chapter, with the contact and boundary conditions, we get the coupled problem.
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3.2 Non-symmetric formulation

With pressure-displacement formulation the coupled problem is

1
ρ f (x)c(x)2

∂2p f

∂t2 −∇ ·
( 1

ρ f (x)
∇p f

)
= f , in Q f = Ω f × [0, T], (55)

p f = 0, on γ0f = Γ0f × [0, T], (56)

1
c(x)

∂p f

∂t
+

∂p f

∂n f
= yext, on γe f = Γe f × [0, T], (57)

ρ f (x)
∂2us

∂t2 · ns −
∂p f

∂n f
= 0, on γi = Γi × [0, T], (58)

ρs(x)
∂2us

∂t2 −∇ · σ(us) = f, in Qs = Ωs × [0, T], (59)

us = 0, on γ0s = Γ0s × [0, T], (60)

ρs(x)Bs
∂us

∂t
+ σ(us)ns = gext, on γes = Γes × [0, T], (61)

σ(us)ns − p f n f = 0, on γi = Γi × [0, T]. (62)

In addition to the system (55)-(62), we take into account the initial conditions

p f (x, 0) = e f 0, in Ω f , (63)
∂p f

∂t
(x, 0) = e f 1, in Ω f , (64)

us(x, 0) = es0, in Ωs, (65)
∂us(x, 0)

∂t
= es1, in Ωs. (66)

A coupled model like this is used, for instance, in [126]. For the existence and uniqueness
of the solution for the problem (55)-(62), we refer to [82], and for the corresponding
time-harmonic problem to [52] and [148].

For the weak formulation of the system (55)-(62) we introduce the function spaces
V and V by

V = {v ∈ H1(Ω f ) such that v = 0 on Γ0 f }, (67)

V = {v ∈ H1(Ωs) × H1(Ωs) such that v = 0 on Γ0s}. (68)

By multiplying Equation (55) with any test function v in the space V, and (59) with any
test function v in the space V, using Green’s formula results in
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∫
Ω f

1
ρ f (x)c(x)2

∂2p f

∂t2 v dx +
∫

Ω f

1
ρ f (x)

∇p f · ∇v dx −
∫
Γ f

1
ρ f (x)

∂p f

∂n f
v ds =

∫
Ω f

f v dx,

∫
Ωs

ρs(x)
∂2us

∂t2 · v dx +
∫

Ωs

Cε(us) : ε(v) dx −
∫
Γs

σ(us)ns · v ds =
∫

Ωs

f · v dx.

After substituting the boundary conditions, we get the following weak formulation: Find
(p f , us) satisfying (p f (t), us(t)) ∈ (V × V) for any t ∈ [0, T] and

a f (p f , v) −
∫
Γi

∂2us

∂t2 · nsv ds = f f (v), (69)

as(us, v) −
∫
Γi

p f n f · v ds = fs(v), (70)

where

a f (p f , v) :=
∫

Ω f

1
ρ f (x)c(x)2

∂2p f

∂t2 v dx +
∫

Ω f

1
ρ f (x)

∇p f · ∇v dx (71)

+
∫

Γe f

1
c(x)ρ f (x)

∂p f

∂t
v ds,

f f (v) :=
∫

Ω f

f v dx +
∫

Γe f

1
ρ f (x)

yextv ds, (72)

as(us, v) :=
∫

Ωs

ρs(x)
∂2us

∂t2 · v dx +
∫

Ωs

Cε(us) : ε(v) dx (73)

+
∫

Γes

ρs(x)Bs
∂us

∂t
· v ds,

fs(v) :=
∫

Ωs

f · v dx +
∫

Γes

gext · v ds. (74)

The energy identities can be derived from the weak formulations. By summing up
(69) and (70) and making substitutions v =

∂p f
∂t , us = ∇us, and v = ∂∇us

∂t we can
derive, in the one-dimensional case, the energy equation

Es f (p f , us) = Ef (p f ) + Es(us) (75)

=
1
2

∫
Ω f

(
1

ρ f c

∣∣∣∂p f

∂t

∣∣∣2+ 1
ρ f

∣∣∣∂p f

∂x1

∣∣∣2) dx +
1
2

∫
Ωs

(
ρs

∣∣∣ ∂

∂x
∂us

∂t

∣∣∣2+ (λs + 2μs)
∣∣∣∂2us

∂x2
1

∣∣∣2) dx.

Since the formulation is non-symmetric, deriving the energy equation in the two-dimen-
sional case is more complicated.
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3.3 Symmetric formulation - velocity potential in the fluid domain

The energy formulation is further used in Chapter 6, where we present the exact control-
lability approach for solving the time-harmonic wave problem. Thus, we turn to a more
convenient choice from the controllability point of view and present a symmetric formu-
lation, in which we use the velocity potential φ in the fluid domain instead of the pressure
p f . By proceeding in this way, the coupled problem can be presented as

1
c(x)2

∂2φ

∂t2 −∇ ·
(
∇φ

)
= fφ, in Q f = Ω f × [0, T], (76)

φ = 0, on γ0f = Γ0f × [0, T], (77)
1

c(x)
∂φ

∂t
+

∂φ

∂n f
= yφext, on γe f = Γe f × [0, T], (78)

∂us

∂t
· ns +

∂φ

∂n f
= 0, on γi = Γi × [0, T], (79)

ρs(x)
∂2us

∂t2 −∇ · σ(us) = f, in Qs = Ωs × [0, T], (80)

us = 0, on γ0s = Γ0s × [0, T], (81)

ρs(x)Bs
∂us

∂t
+ σ(us)ns = gext, on γes = Γes × [0, T], (82)

σ(us)ns + ρ f (x)
∂φ

∂t
n f = 0, on γi = Γi × [0, T]. (83)

Furthermore, we complete the time-dependent system (76)-(83) by the initial conditions

φ(x, 0) = eφ f 0, in Ω f , (84)
∂φ

∂t
(x, 0) = eφ f 1, in Ω f , (85)

us(x, 0) = es0, in Ωs, (86)
∂us(x, 0)

∂t
= es1, in Ωs. (87)

This kind of coupled model is used, for instance, in [39, 186, 84].
When the formulation with velocity potential and displacement is used, the weak

form is: Find (φ, us) satisfying (φ(t), us(t)) ∈ (V × V) for any t ∈ [0, T] and

aφ f (φ, v) +
∫
Γi

∂us

∂t
· nsv ds = fφ f (v), (88)

as(us, v) +
∫
Γi

ρ f (x)
∂φ

∂t
n f · v ds = fs(v), (89)
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for any (v, v) ∈ (V × V) and t ∈ [0, T], where

aφ f (φ, v) :=
∫

Ω f

1
c(x)2

∂2φ

∂t2 v dx +
∫

Ω f

∇φ · ∇v dx +
∫

Γe f

1
c(x)

∂φ

∂t
v ds, (90)

fφ f (v) :=
∫

Ω f

fφv dx +
∫

Γe f

yφextv ds. (91)

Further, we multiply (88) by ρ f (x), sum up (88) and (89), and make substitutions v = ∂φ
∂t

and v = ∂us
∂t to get for the coupled two-dimensional domain Ω f

⋃
Ωs the total energy

Eφs f (φ, us) = Eφ f (φ) + Es(us) (92)

=
1
2

∫
Ω f

(
ρ f (x)
c(x)2

∣∣∣∂φ

∂t

∣∣∣2+ ρ f (x)
∣∣∣∇φ

∣∣∣2) dx +
1
2

∫
Ωs

(
ρs(x)

∣∣∣∂us

∂t

∣∣∣2+ Cε(us) : ε (us)
)

dx.

The derivative of the total energy is

d
dt

Eφs f (φ, us) = −
∫

Γe f

ρ f (x)
c(x)

∣∣∣∂φ

∂t

∣∣∣2 ds −
∫

Γes

ρs(x)
∂us

T

∂t
Bs

∂us

∂t
ds

+
∫

Ω f

ρ f (x) fφ
∂φ

∂t
dx +

∫
Γe f

ρ f (x)yφext
∂φ

∂t
ds +

∫
Ωs

f · ∂us

∂t
dx +

∫
Γes

gext · ∂us

∂t
ds.

For fφ = 0, yφext = 0, f = 0, and gext = 0, the energy dissipates due to the absorbing
boundary conditions on the boundaries Γe f and Γes. That is, d

dt Eφs f (φ, us) ≤ 0 is ful-
filled, and the problem at hand is stable. In the special case d

dt Eφs f (φ, us) = 0, the energy
is conserved and for a given initial solution (eφ f , es)T holds Eφs f (φ, us) = Eφs f (eφ f , es)
for all t. For certain non-negative right-hand side terms fφ, yφext, f, and gext the energy
is non-dissipative, which may cause stability issues.

3.4 Symmetric formulation - displacement in both domains

Another option is to use displacements in both domains. This is considered, for instance,
in [177], and the coupled form is
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ρ f (x)
∂2uf

∂t2 − c2ρ f (x)∇ · (∇ · uf) = f f , in Q f = Ω f × [0, T], (93)

uf = 0, on γ0f = Γ0f × [0, T], (94)

ρ f (x)B f
∂uf

∂t
+ c2ρ f (x)(∇ · uf)n f = y f ext, on γe f = Γe f × [0, T], (95)

us · ns + uf · n f = 0, on γi = Γi × [0, T], (96)

ρs(x)
∂2us

∂t2 −∇ · σ(us) = f, in Qs = Ωs × [0, T], (97)

us = 0, on γ0s = Γ0s × [0, T], (98)

ρs(x)Bs
∂us

∂t
+ σ(us)ns = gext, on γes = Γes × [0, T], (99)

σ(us)ns + c2ρ f (x)(∇ · uf)n f = 0, on γi = Γi × [0, T], (100)

with the initial conditions

uf(x, 0) = eu f 0, in Ω f , (101)
∂uf

∂t
(x, 0) = eu f 1, in Ω f , (102)

us(x, 0) = es0, in Ωs, (103)
∂us(x, 0)

∂t
= es1, in Ωs. (104)

The weak form is: Find (uf, us) satisfying (uf(t), us(t)) ∈ (V f × V) for any
t ∈ [0, T] and

au f (uf, v f ) +
∫
Γi

σ(us)ns · v f ds = fu f (v f ), (105)

as(us, v) +
∫
Γi

c2ρ f (x)(∇ · uf)n f · v ds = fs(v), (106)

for any (v f , v) ∈ (V f × V) and t ∈ [0, T], where

au f (uf, v f ) :=
∫

Ω f

ρ f (x)
∂2uf

∂t2 · v f dx +
∫

Ω f

c2ρ f (x)(∇ · uf))(∇ · v f ) dx (107)

+
∫

Γe f

ρ f (x)B f
∂uf

∂t
· v f ds,

fu f (v f ) :=
∫

Ω f

f f v f dx +
∫

Γe f

y f extv f ds. (108)

The divergence of the variable in the fluid domain is involved in the weak formulation.
That is why it needs to be square-integrable. Thus, we define the function space V f by
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V f = {v ∈ H(div, Ω f ) × H(div, Ω f ) such that v = 0 on Γ0 f }. (109)

Again, we sum the variational formulations (105) and (106) and make substitutions v f =
∂uf
∂t and v = ∂us

∂t to get the corresponding energy formulation. The total energy for the
coupled domain Ω f

⋃
Ωs in the case of the pure displacement formulation is

Eus f (uf, us) = Eu f (uf) + Es(us) (110)

=
1
2

∫
Ω f

(
ρ f (x)

∣∣∣∂uf

∂t

∣∣∣2+ c2ρ f (x)
∣∣∣∇ · uf

∣∣∣2) dx

+
1
2

∫
Ωs

(
ρs(x)

∣∣∣∂us

∂t

∣∣∣2+ Cε(us) : ε (us)
)

dx.

Consequently, the derivative of the total energy is

d
dt

Eus f (uf, us) = −
∫

Γe f

ρ f (x)
∂uf

T

∂t
B f

∂uf

∂t
ds −

∫
Γes

ρs(x)
∂us

T

∂t
Bs

∂us

∂t
ds

+
∫

Ω f

f f
∂uf

∂t
dx +

∫
Γe f

y f ext
∂uf

∂t
ds +

∫
Ωs

f · ∂us

∂t
dx +

∫
Γes

gext · ∂us

∂t
ds.



4 SPATIAL DISCRETIZATION

Discretization methods play a crucial role in the efficiency of the controllability method.
The key factor in developing efficient solution methods is the use of high-order approxi-
mations without computationally demanding matrix inversions. We attempt to meet these
requirements by using the spectral element [44] method (SEM) for space discretization.

The SEM was pioneered in the mid 1980’s by Patera [168] and Maday [146], and
it combines the geometric flexibility of finite elements [120, 132] with the high accuracy
of spectral methods [36]. When using the SEM, the computational domain is typically
divided into non-overlapping quadrilateral elements, but also triangular elements can be
used [27, 127]. Contrary to the quadrilateral spectral elements, mass matrices are not
generally diagonal with triangular elements [183]. Spectral triangles and tetrahedrons
providing mass lumping are constructed and applied for a seismic application of the time-
dependent acoustic wave problem by Mulder, Chin-Joe-Kong, and van Veldhuizen in [41].

Whether mass matrices are diagonal or not, the computational effort is larger on
triangular elements than on quadrilateral elements. The reason for this is that triangles
are not tensor-product elements, and hence the computation of the derivatives involves
all collocation point values on elements. Consequently, the cost of computing derivatives
is higher on triangles than on quadrilaterals. Moreover, the accuracy has been observed
to be slightly better on quadrilaterals than on triangles, and the condition number of the
stiffness matrices grows faster for triangles than quadrilaterals [167]. At present, it seems
that when polygonal elements are considered, the triangle-based SEM is competitive with
the quadrilateral one only if the domain Ω has a curved shape. Curvilinear geometries
could be approximated accurately by using elements with curved edges. However, the
elements with curved edges are left for future work, and we concentrate on polygonal
elements in this thesis. These are the reasons why we have chosen to use quadrilateral
elements and the associated polynomial spectral basis. A detailed comparison of the
SEM on quadrilaterals and triangles is made in [167], and quadrature formulas needed for
quadrilateral and triangle-based methods are recently presented, for instance, in [44] and
[184], respectively. The mixed form of the spectral element method is utilized by Cohen
and Fauqueux for acoustics in [46] and for linear elasticity in [47].

For stability and convergence analysis see [197] in the case of acoustic and [42] in
the case of elastic waves.
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In order to produce an approximate solution for the problem, the given domain
is discretized into a collection of elements. The elements are associated with a mesh,
which defines the geometry of the domain. In principle, the error of the approximation
decreases as the size of the elements decreases while the number of elements increases.
Neighboring elements are connected by particular points, which are called nodes. The
elements and nodes are numbered both locally and globally and geometric properties,
such as coordinates, are generated.

After the domain is decomposed into elements, a local polynomial basis is introduced in
each element. The basis functions consist of sets of polynomials and are used to give the
discrete values of the approximated solution. In particular, the geometry of the elements
is described by a mapping of a reference element onto a possible deformed element in
the physical coordinates. When the mapped basis functions coincide with the geometry
functions, the element is referred to as isoparametric. As, for instance, in [127], we
locate the degrees of freedom corresponding to the basis functions at the Gauss–Lobatto
integration points of the elements (see Figures 6-7). With the Gauss–Lobatto integration
rule, this makes the mass matrices diagonal without reducing the order of accuracy. Thus,
the inversion of the mass matrix is a trivial and computationally efficient operation.

4.1 Discrete weak formulation

The computational domain Ω is divided into Ne quadrilateral elements Ωi, i = 1, . . . , Ne,
such that Ω =

⋃Ne
i=1 Ωi, that is, the mesh coincides with the domain exactly. After the

domain Ω is divided into a finite number of elements, each element is associated with
a finite number of nodes. For the discrete formulation, we define the reference element
Ωref = [0, 1]2 and invertible affine mappings Gi : Ωref → Ωi such that Gi(Ωref) = Ωi.
Each of Ne elements is individually mapped to the reference element, and we make use

FIGURE 6 Spectral element of order r = 1. FIGURE 7 Spectral element of order r = 4.



47

of the affine mapping to make transformations from the physical domain to the reference
domain, and on the contrary. The mapping between the reference element and the ith
element is defined such that Gi(ξ, ζ) = x = (x1, x2) ∈ Ωi.

The variable which we use in the solid domain is the displacement us(x, t). Thus,
the number of degrees of freedom (DOF) in the solid domain, N̂s, is in the two-dimensional
domain twice the number of discretization points in the solid domain Ns. The total num-
ber of degrees of freedom, that is, N̂, depends on the variable of the fluid domain. If
the fluid domain is modeled by using pressure p f (x, t) or velocity potential φ(x, t),
we have scalar values at each spatial discretization point, and the number of degrees
of freedom in the fluid domain, expressed as N̂f , is equal to the number of discretiza-
tion points in the fluid domain Nf . Using the vector-valued displacement uf(x, t) in the
fluid domain doubles the number of degrees of freedom in the fluid domain. In other
words, N̂f = 2Nf . Therefore also the memory consumption for computing the pure
displacement-displacement interaction is higher than in the case of the other couplings
considered.

Furthermore, if the formulation with displacement in both domains is considered,
the divergence of the variable in the fluid domain is involved in the weak formulation
(105)-(106). Since uf ∈ V f = {v ∈ H(div, Ω f )× H(div, Ω f ) such that v = 0 on Γ0 f },
we would need a scheme that approximates the functions in H(div, Ω f ) × H(div, Ω f )
better than the spectral element method does. For instance, Raviart-Thomas finite ele-
ments, which are used for acoustic wave equations in [133], could be used for this pur-
pose. Furthermore, the Raviart-Thomas elements are not a good choice for discretizating
the solid domain. Nevertheless, the coupling conditions should be satisfied at the inter-
face of the two domains. That is, we would need to change the discretization approach
in the solid domain as well, to make the degrees of freedom coincide or fulfill the cou-
pling conditions, for example, by using Lagrange multipliers as it is done in [23]. The
approaches needed for that kind of coupling are out of the scope of this thesis, and that
is why we have left these observations for future work. In what follows, we concentrate
on the two remaining formulations, and model the fluid domain in terms of pressure or

5 10 15 20 25

4 9 14 19 24

3 8 13 18 23

2 7 12 17 22

1 6 11 16 21

Ωs

5 10 15 20 25

4 9 14 19 24

3 8 13 18 23

2 7 12 17 22

1 6 11 16 21

Ωf

16 15 14 13 12 11

17 33 34 35 36 10

18 29 30 31 32 9

19 25 26 27 28 8

20 21 22 23 24 7

1 2 3 4 5 6

16 15 14 13 12 11

17 33 34 35 36 10

18 29 30 31 32 9

19 25 26 27 28 8

20 21 22 23 24 7

1 2 3 4 5 6

FIGURE 8 An example of the global numbering of nodes and elements in structure and fluid
domains divided into quadrilateral elements.
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velocity potential.
The spectral element method is obtained from the weak formulation of the pressure-

based model (69)-(70) or the velocity potential -based model (88)-(89) by restricting the
problem presented in the infinite-dimensional spaces V and V into the finite-dimensional
subspaces Vr

h ⊂ V and Vr
h ⊂ V, respectively, such that

Vr
h = {vh ∈ V such that vh|Ωi ◦ Gi ∈ Qr}, (111)

Vr
h = {vh = (vh1, vh2) ∈ V such that vhk|Ωi ◦ Gi ∈ Qr, k = 1, 2}, (112)

where

Qr(Ωi) = {v(ξ, ζ) =
r

∑
p=0

r

∑
q=0

apqξ pζq, apq ∈ R} (113)

is the set of polynomial basis functions of order r in each variable in space. The dimension
of the space Vr

h is the number of space discretization points, whereas the dimension of the
space Vr

h is twice the number of space discretization points. The dimensions of the spaces
Vr

h and Vr
h are N̂f and N̂s, respectively. It is also worth mentioning that the special case

r = 1 corresponds to the bilinear finite elements.
Based on the definitions presented above, we can write the semidiscrete weak for-

mulation, for instance, for the problem (55)-(62), as follows: Find (p f h, ush) satisfying
(p f (t)h, us(t)h) ∈ (Vr

h × Vr
h) for any t ∈ [0, T] and

a f (p f h, vh) −
∫
Γi

∂2ush
∂t2 · nsvh ds = f f (vh), (114)

as(ush, vh) −
∫
Γi

p f hn f · vh ds = fs(vh), (115)

for all (vh, vh) ∈ (Vr
h × Vr

h) and t ∈ [0, T]. The discrete variables p f h and ush are ap-
proximated as linear combinations of the corresponding nodal values and the basis func-
tions ϕi, i = 1, . . . , Nf and ψi, i = 1, . . . , Ns. The basis functions ϕn (and, respectively,
ψn) are constructed with the help of the basis functions ϕ̂jk, j, k = 1, . . . , r + 1, defined
on the reference element Ωref. These functions are Lagrange interpolants of the Gauss–
Lobatto integration points in Ωref and can be written as a product of two one-dimensional
basis functions which are polynomials of order r. Then, for each basis function ϕn for Vr

h
we can identify a basis function ϕ̂jk such that ϕn|Ωi ◦ Gi = ϕ̂jk. In the next section, we
take a closer look for constructing these basis functions by following the presentation by
Cohen in [44].

4.2 Polynomial basis

In order to compute the elementwise integrals in the reference element, we introduce a
set of Gauss–Lobatto (GL) points ξi ∈ [0, 1], i = 1, . . . , r + 1 in each direction of the
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TABLE 1 GL points ξi and weights wi of the interval [0, 1].

i

r 1 2 3 4 5

1
ξi 0 1

wi
1
2

1
2

2
ξi 0 1

2 1

wi
1
6

2
3

1
6

3
ξi 0 5−√

5
10

5+
√

5
10 1

wi
1

12
5
12

5
12

1
12

4
ξi 0 7−√

21
14

1
2

7+
√

21
14 1

wi
1

20
49

180
16
45

49
180

1
20

5
ξi 0 21−

√
21(7+2

√
7)

42
1
2 −

√
147−42

√
7

42
1
2 +

√
147−42

√
7

42
21+

√
21(7+2

√
7)

42 1

wi
1

30
63

20(14+
√

7)
63

280−20
√

7
63

280−20
√

7
63

20(14+
√

7)
1

30

reference element. The rth order GL quadrature points in the one-dimensional reference
element [0, 1] are the zeroes of x(1 − x)L

′
r(2x − 1), where x ∈ [0, 1] and

L
′
r(x) =

2r − 1
r

(
Lr−1(x) + xL

′
r−1(x)

)
− r − 1

r
L
′
r−2(x) (116)

is the derivative of the rth degree Legendre polynomial Lr defined on the reference ele-
ment. The sequence of polynomials Lr is given by the recursion formula

⎧⎨⎩
L0(x) = 1,
L1(x) = x,
Lr(x) = 2r−1

r xLr−1(x) − r−1
r Lr−2(x), r > 1.

(117)

In practice, the GL points ξi and the corresponding weights,

wi =
1

r(r + 1)(Lr(2ξi − 1))2 , i = 1, . . . , r + 1, (118)

are computed beforehand for the particular values of r used in the computations. Then, the
values are entered into the computer implementation. The exact values for r = 1, . . . , 5
are presented in Table 1.

We use the Lagrangian method of interpolation for defining a polynomial of order
r, the values of which can be determined at r + 1 space discretization points. The one-
dimensional rth order basis functions on the interval [0, 1] are constructed as a set of
Lagrange interpolants (see Figure 9) associated to the point ξi such that
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 0

 1

 0  1
ξ

(a) r = 1

 0

 1

 0 (7-√⎯⎯21)/14 1/2 (7+√⎯⎯21)/14  1
ξ

(b) r = 4

FIGURE 9 One-dimensional Lagrangian interpolants of degree r. Each of the r + 1 functions
has the value one at one GL quadrature point and zero at the other GL quadrature
points.

ϕ̂j(ξi) =
r+1

∏
p=1,p �=j

(
ξi − ξp

ξ j − ξp

)
, j = 1, . . . , r + 1. (119)

The basis functions are uniquely determined by the requirement that each function has
the value one at one GL quadrature point and zero at the other GL quadrature points

ϕ̂j(ξi) = δij =
{

1 if i = j
0 if i �= j.

(120)

Then, the piecewise polynomial approximation p f h of the pressure variable on the refer-
ence element can be approximated as

p f h(ξ) =
r+1

∑
j=1

ϕ̂j(ξ)p f (ξ j). (121)

The quadrature points and the set of basis functions of the reference element in
higher dimensions are achieved by products of the (r + 1) one-dimensional Lagrange
interpolants ϕ̂j(ξi), j = 1, . . . , r + 1. For example, in the two-dimensional case the La-
grange interpolant associated with the ijth grid node is defined as

ϕ̂ij(ξ, ζ) = ϕ̂i(ξ)ϕ̂j(ζ) =
r+1

∏
p=1,p �=i

(
ξ − ξp

ξi − ξp

) r+1

∏
q=1,q �=j

(
ζ − ξq

ξ j − ξq

)
, j = 1, . . . , r + 1.
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The coordinate system in the reference element is formed by ξ and ζ. The coordinate
of the ith grid node in the direction of ξ is marked as ξi, whereas ζ j is the coordinate of
the jth node in the direction of ζ. By definition, these polynomials have the fundamental
property that they vanish at all but one of the GL points. In the two-dimensional case, p f h
is approximated by the interpolation formula

p f h(ξ, ζ) =
r+1

∑
i=1

r+1

∑
j=1

ϕ̂ij(ξ, ζ)p f (ξi, ζ j). (122)

4.3 Semidiscretized equation

By u ∈ RN̂ we denote the global block vector containing the values of the variables in
both fluid and structure domains at time t at the Gauss–Lobatto points of the quadrilateral
mesh. The weak formulation for both the problem (55)-(62) and the problem (76)-(83)
can now be rewritten in the matrix form

M∂2u
∂t2 + S ∂u

∂t
+ Ku = F . (123)

If the time-harmonic equations are considered, the corresponding matrix form after the
space discretization is (

−ω2M + iωS + K
)

U = �, (124)

such that � exp(iωt) = F .
In the case of the formulation with pressure and displacement, entries of the N̂ × N̂

matrices M, S , and K, and the right-hand side vector F , are given by the formulas

M =

⎛⎝ (Ms)11 0 0
0 (Ms)22 0

(Afs)1 (Afs)2 M f

⎞⎠ , S =

⎛⎝ (Ss)11 (Ss)12 0
(Ss)21 (Ss)22 0

0 0 S f

⎞⎠ ,

K =

⎛⎝ (Ks)11 (Ks)12 (Asf)1
(Ks)21 (Ks)22 (Asf)2

0 0 K f ,

⎞⎠ , F =
(

fs
f f

)
,

where the Nf × Nf matrix blocks corresponding to the fluid domain are

(M f )ij =
∫

Ω f

1
ρ f (x)c(x)2 ϕi ϕjdx,

(S f )ij =
∫

Γe f

1
ρ f (x)c(x)

ϕi ϕjds,

(K f )ij =
∫

Ω f

1
ρ f (x)

∇ϕi · ∇ϕjdx,
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where i, j = 1, . . . , Nf . The Nf -dimensional right-hand side vector corresponding to the
fluid domain is

(
f f
)

i =
∫

Ω f

f ϕidx +
∫

Γe f

yefϕids.

The 2Ns × 2Ns block matrices and the 2Ns-dimensional vector representing the elastic
waves are

Ms =
(

(Ms)11 0
0 (Ms)22

)
, Ss =

(
(Ss)11 (Ss)12
(Ss)21 (Ss)22

)
,

Ks =
(

(Ks)11 (Ks)12
(Ks)21 (Ks)22

)
, fs =

(
(fs)1
(fs)2

)
,

which have the components

((Ms)11)ij =
∫

Ωs

ρs(x)ψjψi dx,

((Ms)22)ij =
∫

Ωs

ρs(x)ψjψi dx,

((Ss)11)ij =
∫

Γes

ρs(x)
(

cpn2
s1 + csn2

s2

)
ψjψi ds,

((Ss)12)ij =
∫

Γes

ρs(x)(cp − cs)ns1ns2ψjψi ds,

((Ss)21)ij =
∫

Γes

ρs(x)(cp − cs)ns1ns2ψjψi ds,

((Ss)22)ij =
∫

Γes

ρs(x)
(

cpn2
s2 + csn2

s1

)
ψjψi ds,

((Ks)11)ij =
∫

Ωs

(
λ

∂ψj

∂x1

∂ψi

∂x1
+ 2μ

(
∂ψj

∂x1

∂ψi

∂x1
+

1
2

∂ψj

∂x2

∂ψi

∂x2

))
dx,

((Ks)12)ij =
∫

Ωs

(
λ

∂ψj

∂x2

∂ψi

∂x1
+ μ

∂ψj

∂x1

∂ψi

∂x2

)
dx,

((Ks)21)ij =
∫

Ωs

(
λ

∂ψj

∂x1

∂ψi

∂x2
+ μ

∂ψj

∂x2

∂ψi

∂x1

)
dx,

((Ks)22)ij =
∫

Ωs

(
λ

∂ψj

∂x2

∂ψi

∂x2
+ 2μ

(
1
2

∂ψj

∂x1

∂ψi

∂x1
+

∂ψj

∂x2

∂ψi

∂x2

))
dx,
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((fs)1)i =
∫

Ωs

f1ψi dx +
∫

Γes

gext1ψi ds,

((fs)2)i =
∫

Ωs

f2ψi dx
∫

Γes

gext2ψi ds,

where i, j = 1, . . . , Ns. The matrices arising from the coupling between acoustic and
elastic wave equations are Afs and Asf, for which holds that

((Afs)1)ij = −
∫
Γi

ns1ψj ϕi ds,

((Afs)2)ij = −
∫
Γi

ns2ψj ϕi ds,

((Asf)1)ij = −
∫
Γi

n f 1ϕjψi ds,

((Asf)2)ij = −
∫
Γi

n f 2ϕjψi ds.

For Afs, i = 1, . . . , Nf and j = 1, . . . , Ns, whereas for Asf, i = 1, . . . , Ns and j =
1, . . . , Nf .

The computation of the elementwise matrices and vectors involves the integration
over the elementwise subregions. Evaluating these integrals analytically is usually com-
plicated, even impossible. That is why a numerical integration procedure is used. In
practice, we replace the integrals by finite sums, in which we use Gauss-Lobatto weights
and nodal points. The values of these sums are computed element by element with the
Gauss-Lobatto integration rule. Collocation points are now the nodes of the spectral ele-
ment. All but one of the shape functions will be zero at a particular node. Thus, for i �= j,
(M f )ij = 0 and (Ms)ij = 0 meaning that the matrices M f and Ms are diagonal. Fur-
thermore, the matrix M is a lower triangular block matrix with diagonal blocks. Thus,
the inverse of the matrix M is also a lower triangular block matrix with diagonal blocks,

M−1 =

⎛⎜⎝ (Ms)−1
11 0 0

0 (Ms)−1
22 0

−M−1
f (Afs)1(Ms)−1

11 −M−1
f (Afs)2(Ms)−1

22 M−1
f

⎞⎟⎠ ,

and explicit time stepping with central finite differences requires only matrix-vector mul-
tiplications.

In practice, the stiffness matrix K is assembled once at the beginning of the simu-
lation. It is stored by using the compressed column storage including only the non-zero
matrix elements. The other options would have been using a mixed spectral element for-
mulation [45, 47].
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In the case of the formulation with velocity potential and displacement, the entries
of the N̂ × N̂ matrices M, S , and K, and the right-hand side vector F , are given by the
formulas

M =

⎛⎝ (Ms)11 0 0
0 (Ms)22 0
0 0 M f

⎞⎠ , S =

⎛⎝ (Ss)11 (Ss)12 (Asf)1
(Ss)21 (Ss)22 (Asf)2
(Afs)1 (Afs)2 S f

⎞⎠ ,

K =

⎛⎝ (Ks)11 (Ks)12 0
(Ks)21 (Ks)22 0

0 0 K f ,

⎞⎠ , F =
(

fs
fφ f

)
,

where the Nf × Nf matrix blocks corresponding to the fluid domain are

(M f )ij =
∫

Ω f

ρ f (x)
c(x)2 ϕi ϕjdx,

(S f )ij =
∫

Γe f

ρ f (x)
c(x)

ϕi ϕjds,

(K f )ij =
∫

Ω f

ρ f (x)∇ϕi · ∇ϕjdx,

where i, j = 1, . . . , Nf . The Nf -dimensional right-hand side vector corresponding to the
fluid domain is (

fφ f
)

i =
∫

Ω f

ρ f (x) fφ ϕidx +
∫

Γe f

ρ f (x)yφextϕids.

The 2Ns × 2Ns block matrices and the 2Ns-dimensional vector representing the elastic
waves are exactly the same as in the non-symmetric formulation. The matrices arising
from the coupling between acoustic and elastic wave equations are Afs and Asf, for which
holds that

((Afs)1)ij =
∫
Γi

ρ f (x)ns1ψj ϕi ds,

((Afs)2)ij =
∫
Γi

ρ f (x)ns2ψj ϕi ds,

((Asf)1)ij =
∫
Γi

ρ f (x)n f 1ϕjψi ds,

((Asf)2)ij =
∫
Γi

ρ f (x)n f 2ϕjψi ds.

For Afs, i = 1, . . . , Nf and j = 1, . . . , Ns, whereas for Asf, i = 1, . . . , Ns and j =
1, . . . , Nf .



5 TIME DISCRETIZATION

After space discretization, the time-harmonic equations can, in principle, be solved by
either direct or iterative solvers. In practice, direct solvers are reasonable only for small
problems. For large problems, iterative methods and efficient preconditioners are needed.
Since developing efficient preconditioners is a challenging task, we return to another ap-
proach and use time-dependent equations for creating time-harmonic solutions. To con-
tinue towards that goal, we consider the time discretization in this chapter.

Previously, we used the central finite difference (CD) scheme for time discretization
of acoustic problems in [106], and comparison with the Runge–Kutta (RK) method for
disjoint acoustic and elastic domains was made in [107, 162]. With respect to the time
step Δt, the CD method is second-order accurate, while the RK method is fourth-order
accurate. Both methods lead to an explicit time-stepping scheme, and only matrix-vector
products are needed in time-dependent non-coupled simulations. These properties are es-
sential for computational efficiency. The drawback is that the schemes need to satisfy the
stability condition, which limits the length of the time step. In addition, the computational
effort of the RK method is approximately four times that of the the CD scheme at each
time step.

In this chapter, the time discretization of the semi-discrete equation is performed
with the central finite differences (CD) in Section 5.1 and with the fourth-order Runge–
Kutta (RK) method in Section 5.2. In Section 5.3, we make an effort for decreasing the
computing time with the fourth-order Adams–Bashforth (AB) method. After dividing the
time interval [0, T] into N time steps, each of size Δt = T/N, applying the appropriate
time discretization into the semidiscretized form (123), and taking into account the initial
conditions, we obtain the matrix form of the fully discrete state equation.

5.1 Central finite difference method

The spectral element approximation in space is combined with the standard second-order
central finite difference scheme in time by replacing the time derivatives in the semidis-
cretized form (123) at time iΔt by the following approximations
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∂u
∂t

≈ ui+1 − ui−1

2Δt
(125)

∂2u
∂t2 ≈ ui+1 − 2ui + ui−1

Δt2 , i = 0, . . . , N, (126)

where ui is the vector u at time iΔt. Taking into account the initial conditions, we obtain
the fully discrete state equation. It can be represented in the general matrix form for both
symmetric and non-symmetric formulations as

sCD(e, ŷ(e)) =⎛⎜⎜⎜⎜⎜⎜⎜⎝

I
1
2C M
B C D

. . . . . . . . .
B C D

B C D

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0

u1

...

...
uN

uN+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0
0 ΔtB
0 0
...

...
...

...
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

e0
e1

)
− Δt2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2 F 0

F 1

...

...
FN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0,

(127)

where ŷ = (u0, u1, . . . , uN, uN+1)T contains the vectors ui, the initial condition is e =
(e0, e1)T, and F i is the vector F at time t = iΔt. The matrix blocks B, C and D are
given by the formulas

D = M +
Δt
2
S , (128)

C = Δt2K− 2M, (129)

B = M− Δt
2
S , (130)

while I is the identity matrix. The form (127) is further used to derive the adjoint state
equation in Section 6.

Example 5.1.1 As a simplified example we present the efficiency of higher-order space
discretization with the central finite difference time discretization on the accuracy of a
two-dimensional problem

∂2p f

∂t2 −∇2p f = f , in Q f = Ω f × (0, T), (131)

p f = sin(ω(−2 t + x2
1 + x2

2)), on γ0f = Γ0f × (0, T), (132)
∂p f

∂t
+

∂p f

∂n f
= 0, on γe f = Γe f × (0, T), (133)

with the body force

f = 4ω
(
− cos(ω(−2t + x2

1 + x2
2)) + ω(−1 + x2

1 + x2
2) sin(ω(−2 t + x2

1 + x2
2))

)
,
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Γef

Γ0f

Ω  f

(a) Computational domain. (b) The coarsest mesh.

FIGURE 10 Geometry of the domain and the coarsest mesh used.

and the initial conditions

e0 = p f (x, 0) = sin(ω(x2
1 + x2

2)), (134)

e1 =
∂p f (x, 0)

∂t
= −2ω cos(ω(x2

1 + x2
2)). (135)

The formulation implies that the matrix and vector blocks, as well as the initial values,
corresponding to the structure domain vanish in (127). We have set the total time T =
0.001 and the number of time steps, each of size Δt = T/N, is N = 100. For the wave
number we use ω = 4π/5. In the center of the computational domain we have a bounded
circular sound-soft obstacle with radius 1/5 sin(π/4). The boundary of the scatterer is
denoted by Γ0f and the surrounding domain is bounded by an artificial boundary Γe f as
seen in Figure 10(a). The lower left corner of the domain is at the point (−1.0,−1.0)
and the upper right corner is at the point (1.0, 1.0). Thus, the analytical solution of the
problem is p f (x, t) = sin(ω(−2 t + x2

1 + x2
2)).

We carry out spectral basis order refinement (r-refinement) corresponding to the
SEM discretization by using the mesh shown in Figure 10(b) and increasing the order of
the spectral basis r from 1 to 5. For comparison, we perform the mesh step refinement
(h-refinement) corresponding to the classical FEM discretization with linear elements.
For this purpose, we construct a hierarchy of quadrilateral element meshes with smaller
and smaller element sizes by dividing the mesh stepsizes of each element of the coars-
est mesh shown in Figure 10(b) to 2, 3, 4 and 5 mesh stepsizes of equal length. Thus,
the numbers of degrees of freedom in these meshes are set to be the same as in the test
with r-refinement. Since the time-stepping scheme mainly involves matrix-vector multi-
plications, the number of degrees of freedom reflecting the mesh density is essential for
computational efficiency. That is why the comparison between the FEM and the SEM
discretizations is presented, in Figure 11, in terms of the number of degrees of freedom.
As the order of the polynomial basis increases, the maximum error between the numerical
solution and the analytical solution decreases. The error becomes smaller also with mesh
step refinement, but the convergence rate is higher for r-refinement than h-refinement.
Based on these results, it seems clear that, instead of refining the mesh with bilinear ele-
ments, it is better to increase the order of the basis to improve the accuracy.
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FIGURE 11 Maximum error computed as L∞-norms versus number of degrees of freedom. The
number of timesteps is fixed to be 100.

Remark 5.1.1 Since we use different definitions for the matrices M, S , and K with the
symmetric and the non-symmetric formulation, we arrive to the same state equation (127)
for both formulations. Despite that, efficient implementations of these formulations are
based on different solution procedures. In the case of the non-symmetric formulation, we
at each time step i compute first the displacement us

i and then the pressure p f
i from the

equations

Ms
us

i+1− 2us
i + us

i−1

Δt2 + Ss
us

i+1− us
i−1

2Δt
+Ksus

i +Asfp f
i = fi

s

M f
p f

i+1− 2p f
i + p f

i−1

Δt2 +S f
p f

i+1− p f
i−1

2Δt
+K f p f

i +Afs
us

i+1− 2us
i + us

i−1

Δt2 = fi
f ,

with the initial conditions

us
0 = es0,

us
1 − us

−1

2Δt
= es1,

p f
0 = e f 0,

p f
1 − p f

−1

2Δt
= e f 1,

where us
i, p f

i, fi
s, and fi

f are the vectors us, p f , fs, and f f at t = iΔt. Because the

matrice sums (Ms + Δt
2 Ss) and (M f + Δt

2 S f ) are diagonal, their inverses are obtained
simply by inverting each diagonal element.

The state equation for the formulation with velocity potential and displacement is

Ms
us

i+1 − 2us
i + us

i−1

Δt2 + Ss
us

i+1 − us
i−1

2Δt
+ Ksus

i + Asf
φi+1 − φi−1

2Δt
= fi

s

M f
φi+1 − 2φi + φi−1

Δt2 + S f
φi+1 − φi−1

2Δt
+ K f φi + Afs

us
i+1 − us

i−1

2Δt
= fi

φ f ,
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with the initial conditions

us
0 = es0,

us
1 − us

−1

2Δt
= es1,

φ0 = eφ f 0,
φ1 − φ−1

2Δt
= eφ f 1,

where us
i, φi, fi

s, and fi
φ f are the vectors us, φ, fs, and fφ f at t = iΔt. In this case, us

i+1

and φi+1 need to be solved simultaneously, thus involving the inversion of (M+ Δt
2 S) at

each timestep. If the boundaries of the computational domain consist only of horizontal
and vertical lines, the coefficient matrix (M + Δt

2 S) needed to invert at each timestep
can be implemented as a block matrix consisting of diagonal blocks. Then, us

i and φi can
be solved simply by using matrix-vector multiplications from the formulas

us
i =

(
I −D−1

s
Δt
2
AsfD−1

f
Δt
2
Afs

)−1

D−1
s

(
y1 − Δt

2
AsfD−1

f y2

)
,

φi = D−1
f

(
y2 − Δt

2
Afsus

i
)

, i = 1, . . . , N − 1,

where Ds = Ms + Δt
2 Ss and D f = M f + Δt

2 S f are diagonal matrices, and

y1 =
(

2Ms − Δt2KS

)
us

i +
(

Δt
2
SS −Ms

)
us

i−1 + Δt2fi
s +

Δt
2
Asfφ

i−1,

y2 =
(

2M f − Δt2K f

)
φi +

(
Δt
2
S f −M f

)
φi−1 + Δt2fi

φ f +
Δt
2
Afsus

i−1.

It would also be possible to uncenter one of the two first-order derivatives in time to
uncouple the problem. That approach would involve first-order difference approximations
and introduce some dissipation. That is why we neglect deeper considerations of the
uncentered schemes.

Example 5.1.2 We illustrate the computational cost of both symmetric and non-sym-
metric formulation by solving a time-dependent fluid-structure interaction problem both
expressing the acoustic wave equation by the pressure and by using the velocity poten-
tial in the fluid domain. The right-hand sides and initial conditions in Equations (55)-
(66) and (76)-(87) are defined to satisfy the analytical solution p f = ωρ f (x) sin(ω ·
x) cos(ωt), φ = − sin(ω · x) sin(ωt), and us = (cos(ω · x/cp(x)) cos(ωt), cos(ω ·
x/cs(x)) cos(ωt))T.

The problem is solved in a domain, which consists of the solid part Ωs = [−1, 0]×
[0, 1] and the fluid part Ω f = [0, 1] × [0, 1] (see Figure 12). We use square-element
meshes with mesh stepsize h = 0.1, and the element order is increased in both parts
of the domain from 1 to 5. The meshes are matching on the coupling interface Γi set
at x1 = 0 for x2 ∈ [0, 1]. On the other boundaries we have the absorbing boundary
conditions. The material parameters in the fluid domain are ρ f (x) = 1.0 and c(x) = 1.0.
In the solid domain, we use the values cp(x) = 6.20, cs(x) = 3.12, and ρs(x) = 2.7.
The angular frequency ω = 4π is the same for both media, and we set the propagation
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direction (1, 0) by the vector ω = (ω1, ω2) = (1, 0)ω. The time interval [0.0, 0.5] is
divided into 400 steps, each of size Δt = 0.00125, to guarantee the stability condition
also for the higher element orders.

When the pressure formulation is considered, the time marching involves only
matrix-vector multiplications, and actual matrix inversions are not needed. In the im-
plementation of the velocity potential formulation, a ”one-shot” method is required for
solving the linear system including us

i+1 and φi+1 at each timestep i = 1, . . . , N. In that
case, the matrix which is needed to be inverted is stored either as a band matrix or by
using the compressed column storage including only the non-zero matrix elements.

The Lapack LU decomposition routines dgbtrf and dgbtrs use the band ma-
trix storage mode. With these routines the memory and CPU time consumption increases
rapidly when the element order is increased (see Figure 13). The SuperLU library rou-
tines perform an LU decomposition with partial pivoting, and the triangular system solves
through forward and backward substitution. At this stage, we also utilize the sparsity of
the matrix by using the compressed column storage mode. Since all the non-zero elements
are not near the diagonal of the matrix, the compressed column storage mode requires less
storage and computing operations than the band storage mode. That is why the SuperLU
library gives a less demanding procedure for solving the linear system than the Lapack li-
brary. This is because the matrices arising from the space discretization and including the
coupling terms have, in general, a sufficiently large band width. Thus, a remarkably larger
amount of memory is needed for storing the sparse coefficient matrix in the band matrix
form used in conjunction with Lapack routines than in the compressed column storage
utilized with the SuperLU. Consequently, less time is needed when fewer elements are
employed in the solution procedure with the SuperLU. The performance of the Lapack
routines could be improved, for instance, by using an appropriate node numbering of the
mesh.

We conclude that the computational efforts are of the same order of magnitude
whether the problem in the fluid domain is solved with respect to pressure or whether we
use velocity potential formulation in conjunction with the linear solver provided by the
SuperLU library. The results of these experiments are carried out on an AMD Opteron
885 processor at 2.6 GHz.

Γ i

Γ es Γ ef

x1=0 Γ efΓ es

Γ es Γ efΩ    fΩ    s

FIGURE 12 The domain Ω is divided into the solid part Ωs and the fluid part Ω f .
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FIGURE 13 CPU time (in seconds) and memory (in kilobytes) consumed for solving a time-
dependent fluid-structure interaction problem with different formulations. The
number of timesteps is fixed to be 400, and square-element meshes with mesh step-
size h = 0.1 are used in both media.
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The comparison between numerical and analytical solution shows that in both media
the accuracy improves when the element order grows until a certain error level is reached
(see Figure 14). This error level, shown as a horizontal line in Figure 14, reflects the error
level of time discretization. Since we use a fixed number of timesteps at all element orders,
the error of time discretization becomes dominant for higher-order elements. Hence, finer
timesteps or higher-order time discretizations are needed in conjunction with higher-order
elements.

In principle, both symmetric and non-symmetric formulation should lead to the
same order of accuracy at each element order. The results obtained in the solid domain
and depicted in Figure 14(a) are perfectly in balance with this hypothesis. However, in
Figure 14(b) we see that in the fluid domain higher accuracy is obtained with the velocity
potential than with the pressure formulation at each element order. One reason for that
might be the derivation of the interface conditions. In the case of pressure formulation,
the displacement components in the formula (49) are differentiated twice with respect to
time. From the physical point of view, some information is lost in that procedure, and
linear growth of the displacement with respect to time is not eliminated at the interface.
However, the solutions of the pressure formulation seem to converge towards the ana-
lytical solution. Although the pressure formulation gives less accurate results than the
velocity potential formulation, it is still a plausible choice at some point. For instance,
the implementation process can be hastened when the pre-existing solvers of acoustic and
elastic problems can be harnessed in the implementation, and no additional linear solvers
are needed.

In what follows, we concentrate on further developing the symmetric formulation ex-
pressing the acoustic wave equation by the velocity potential in the fluid domain. In the
forthcoming examples with the central finite difference time-stepping, we use the im-
plementation in which the linear solver provided by the SuperLU library is used. The
non-symmetric pressure formulation is utilized for comparison purposes in Chapter 8.

5.2 Fourth-order Runge–Kutta method

The state equation (123) can be presented as a system of differential equations

∂y
∂t

= f (t, y(t)), (136)

where y = (u, v)T is a vector of time-stepping variables u and v = ∂u
∂t , and the function

f (t, y(t)) = ( f1(t, u, v), f2(t, u, v))T has components

f1(t, u, v) = v, (137)

f2(t, u, v) = −M−1 (Sv + Ku −F ) . (138)

To this modified form, we can apply the fourth-order Runge–Kutta method, which
is a Taylor series method. In general, the Taylor series methods keep the errors small, but
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FIGURE 14 Maximum errors, computed as L∞-norms, with respect to the element order. The
number of timesteps is fixed to be 400, and square-element meshes with mesh step-
size h = 0.1 are used in both media.
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there is the disadvantage of requiring the evaluation of higher derivatives of the function
f (t, y(t)). The advantage of the Runge–Kutta method is that explicit evaluations of the
derivatives of the function f (t, y(t)) are not required, but linear combinations of the val-
ues of f (t, y(t)) are used to approximate y(t). In the fourth-order Runge–Kutta method,
the approximate y at the ith time step is defined as

yi = yi−1 +
Δt
6

(k1 + 2k2 + 2k3 + k4) , (139)

where yi =
(

ui, ∂ui

∂t

)T
contains the global block vector ui, including the values of the

variables in both the fluid and the structure domain at the ith timestep, and its derivative
vi = ∂ui

∂t at time t = iΔt, i = 1, . . . , N. The initial condition is given by y0 = e =
(e0, e1)T, and kj = (kj1, kj2)T, j = 1, 2, 3, 4, are the differential estimates as follows:

(
k11
k12

)
=

(
f1(iΔt, ui, vi)
f2(iΔt, ui, vi)

)
, (140)(

k21
k22

)
=

(
f1(iΔt + Δt

2 , ui + k11
2 , vi + k12

2 )
f2(iΔt + Δt

2 , ui + k11
2 , vi + k12

2 )

)
, (141)

(
k31
k32

)
=

(
f1(iΔt + Δt

2 , ui + k21
2 vi + k22

2 )
f2(iΔt + Δt

2 , ui + k21
2 vi + k22

2 )

)
, (142)(

k41
k42

)
=

(
f1(iΔt + Δt, ui + k31, vi + k32)
f2(iΔt + Δt, ui + k31, vi + k32)

)
. (143)

In other words, in order to get the differential estimates (140)-(143), the function f
is evaluated at each time step four times by using the formulas (137)-(138), and then the
successive approximation of y is calculated by the formula (139). To make the applica-
tion of the adjoint equation technique in Section 6 more convenient, we present the fully
discrete state equation in the case of the Runge–Kutta time discretization as

sRK(e, ŷ(e)) =

⎛⎜⎜⎜⎜⎜⎝
I
N I

. . . . . .
N I

N I

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
y0

y1

...
yN−1

yN

⎞⎟⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎝
I
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠e −

⎛⎜⎜⎜⎜⎜⎝
0
F̂ 1

...
F̂N−1

F̂N

⎞⎟⎟⎟⎟⎟⎠= 0,

(144)

where ŷ = (y0, y1, . . . , yN−1, yN)T includes the vectors yi =
(

ui, ∂ui

∂t

)T
, e = (e0, e1)T

contains the initial values, and the matrix N and the vector F̂ i are defined by
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N = −

⎛⎜⎜⎝
Ĉ

2Ĉ
2Ĉ
Ĉ

⎞⎟⎟⎠
T ⎛⎜⎜⎝

I
B̂ I

B̂ I
2B̂ I

⎞⎟⎟⎠
−1 ⎛⎜⎜⎝

2B̂
2B̂
2B̂
2B̂

⎞⎟⎟⎠− I , (145)

F̂ i = −

⎛⎜⎜⎝
Ĉ

2Ĉ
2Ĉ
Ĉ

⎞⎟⎟⎠
T ⎛⎜⎜⎝

I
B̂ I

B̂ I
2B̂ I

⎞⎟⎟⎠
−1 ⎛⎜⎜⎜⎝

D̂i−1

D̂i− 1
2

D̂i− 1
2

D̂i

⎞⎟⎟⎟⎠ . (146)

The matrix blocks Ĉ and B̂ and the vector blocks D̂i are given by the formulas

Ĉ =
( −1

6I 0
0 −1

6I
)

,

B̂ =
(

0 −Δt
2 I

Δt
2 M−1K Δt

2 M−1S
)

,

D̂i =
(

0
ΔtM−1F i

)
,

where I is the identity matrix, F i is the vector F at time t = iΔt. The block-matrix form
(144) of the fully discrete state equation with the RK time-stepping is analogous to the
state equation (127). In practice, the solution yi at t = iΔt is achieved by first solving
k = (k1, k2, k3, k4)T from the equation

⎛⎜⎜⎝
I
Ĥ I

Ĥ I
2Ĥ I

⎞⎟⎟⎠
⎛⎜⎜⎝

k1
k2
k3
k4

⎞⎟⎟⎠ +

⎛⎜⎜⎝
2Ĥ
2Ĥ
2Ĥ
2Ĥ

⎞⎟⎟⎠ yi−1 −

⎛⎜⎜⎜⎝
D̂i−1

D̂i− 1
2

D̂i− 1
2

D̂i

⎞⎟⎟⎟⎠ = 0, (147)

where the matrix blocks Ĥ are given by the formula

Ĥ =
(

0 −Δt
2 I

Δt
2 M−1K Δt

2 M−1S
)

. (148)

Then, yi is solved from the equation

yi = yi−1 − (
R̂ 2R̂ 2R̂ R̂

)⎛⎜⎜⎝
k1
k2
k3
k4

⎞⎟⎟⎠ , R̂ =
( −1

6I 0
0 −1

6I
)

. (149)

If the matrix M is diagonal, as it is in the formulation with the velocity potential, the
only matrix inversion needed in time-stepping (e.g., M−1 in Equation (138)) is computed
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simply by inverting each diagonal element in the matrix M. This requires only n̂ floating
point operations, which is the number of diagonal elements in the matrix M, and known
as the number of degrees of freedom in the space discretization. Since the matrix S
contains only diagonal blocks and coupling terms, the operation count of the matrix-
vector product Sv is of order n̂. In the matrix-vector multiplication involving the sparse
stiffness matrix K, only non-zero matrix entries are multiplied, which requires the order of
r2n̂ operations. Besides these, 2n̂ additions and 3n̂ multiplications are needed for a single
evaluation of the function f . According to (139), the computation of yi needs 14n̂ floating
point operations. Thus, the computational cost for each timestep of the state equation is
of order O(r2n̂) also with the RK time-stepping. Although the computational cost is of
the same order for both the CD and the RK time-steppings, the number of floating point
operators needed for the RK is nearly four times that of the CD.

Example 5.2.1 We demonstrate how the efficiency of the method can be improved by
using the fourth-order Runge–Kutta scheme instead of the central finite difference time
discretization. In principle, the error of time discretization in the central finite difference
scheme is of order O(Δt3), whereas in the fourth-order Runge–Kutta method it is of order
O(Δt5). However, the error of space discretization limits the accuracy of the overall time-
stepping scheme as well, and the stability issue restricts choosing a feasible length of the
timestep. To better illustrate the error of time and space discretization, we continue with
Example 5.1.2, except that we change the mesh stepsize to h = 1/20 and use various
timestep lengths to observe stability and accuracy issues. The number of timesteps needed
for stability is first determined numerically by using 50i timesteps per time period, for
i = 1, 2, 3, . . . , until a stable solution is achieved. From these results, we can define
stability constant αr for each element order r such that

Δt
h

=
αr

max{c, cp, cs}
√

2
. (150)

The stability conditions corresponding to the largest stable timestep are given in Table
2. The stability region seems to be exactly the same with both the CD and the RK time-
stepping for the element orders r = 1, 2, 3 and differs only slightly for the higher-order
elements. The results reflect the well known CFL condition, and are in good agreement
with the experiments presented for acoustic waves with the CD time discretization by
Cohen in [44].

TABLE 2 Stability conditions for the CD and the RK time discretization schemes.

r 1 2 3 4 5
Number of
timesteps

CD 100 200 350 550 800
RK 100 200 350 600 900

αr
CD 0.8765 0.4383 0.2504 0.1594 0.1096
RK 0.8765 0.4383 0.2504 0.1461 0.0974
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FIGURE 15 Comparison between maximum errors with the CD and the RK time discretizations.
The mesh stepsize is fixed to be h = 1/20, and the timestep refinement gives a
series of numerical results with various lengths of the timestep for each element
order.

We start the computations with the largest stable timestep and then repeatedly add
the number of timesteps N = T/Δt by 300, until their number is larger than 3000.
Proceeding in this way, for each element order we achieve a series of numerical results
with various lengths of the timestep. The maximum errors between the numerical and
the analytical solution with respect to Δt/h are computed as L∞-norms. Accuracy of the
numerical solution is shown in Figure 15 as a function of the ratio between the time step
Δt and the mesh step size h for both the CD and the RK time-steppings with five element
orders r. Every curve represents computations with a particular spectral order which has
a characteristic discretization error. Naturally, the order of the space discretization error
decreases when higher-order elements are used. It is worth mentioning that errors are
somewhat smaller in the solid domain than in the fluid domain.
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It is seen that with the element orders r = 1 and r = 2 both time-stepping schemes
give the same accuracy even when sufficiently large timesteps are used. Moreover, this is
the accuracy of the space discretization since the error of spatial discretization dominates
with low-order elements. In other words, the temporal error is eliminated, and the maxi-
mum error with respect to the length of the timestep is not decreasing significantly even
if smaller timesteps are used.

Naturally, for each element order r the solution with the RK time-stepping is at
least as accurate as the one computed with the CD time-stepping. When higher-order
elements are used, results computed with the RK time discretization are more accurate
than the ones computed with the CD time discretization. Depending on the accuracy of
the time discretization, the error of temporal discretization might be dominating with large
timesteps. This is shown especially in the case of the CD time discretization with basis
orders r ≥ 3. In principle, also with these higher-order elements, the error curves turn
to horizontal lines, reflecting the accuracy of the space discretization, when the length
of the timestep is refined enough. In the case of the RK time discretization, the error of
space discretization is dominant even when long timesteps are used. With the RK time
discretization, very fine timesteps are needed only for r = 5 in the solid domain to achieve
the error level of spatial discretization.

With the help of the results depicted in Figure 15 we can extrapolate that very fine
timesteps are needed with the CD time discretization to eliminate the temporal error when
higher-order elements are involved. For r = 3, we would already need thousands of
timesteps with the CD time discretization to get the same accuracy as with the RK time
discretization with 350 timesteps. Tens of thousands timesteps are required to eliminate
the temporal error with the CD time discretization with r = 4. Respectively, for r = 5 we
need hundreds of thousands timesteps to achieve the error level of space discretization.
The values of kr, satisfying

Δt
h

=
kr

max{c, cp, cs}
√

2
, (151)

and eliminating the temporal error, are reported for different element orders in Table 3.
Since refining the timesteps means more evaluations, we are also interested in mea-

suring the CPU time needed in these simulations. The tests about CPU time consumption
are carried out on an AMD Opteron 885 processor at 2.6 GHz, and the results are seen
in Figure 16. To eliminate the temporal error for r = 1 and r = 2, less computation
time is needed with the CD time discretization than with the RK time discretization. With

TABLE 3 Constants kr eliminating the temporal error with the CD and the RK time discretiza-
tions.

r 1 2 3 4 5

kr
CD 0.8765 0.1096 0.0167 0.0017 0.0003
RK 0.8765 0.4383 0.2191 0.0730 0.0266
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FIGURE 16 Accuracy with respect to CPU time consumptions (in seconds) with the CD and
the RK time discretizations. The mesh stepsize is fixed to be h = 1/20, and the
timestep refinement gives a series of numerical results with various lengths of the
timestep for each element order.

higher-order elements, more remarkable time saving occurs by using the RK time dis-
cretization to attain the accuracy of the space discretization. Although the difference in
time consumption is not significant with sufficiently small number of degrees of freedom,
it can play an important role in large-scale real-life applications.

5.3 Fourth-order Adams–Bashforth method

Next, we make an effort for decreasing the computing time and still maintaining the high
accuracy provided by higher-order time discretizations. For this purpose, we present the
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fourth-order Adams–Bashforth method based on approximating the functions f (t, y(t))
by interpolating polynomials. It gives the solution y at the ith time step as

yi = yi−1 +
h

24

(
55 f

(
(i − 1)Δt, yi−1

)
− 59 f

(
(i − 2)Δt, yi−2

)
(152)

+ 37 f
(
(i − 3)Δt, yi−3

)
− 9 f

(
(i − 4)Δt, yi−4

) )
,

where yi =
(

ui, ∂ui

∂t

)T
contains the vector ui and its derivative vi = ∂ui

∂t at time t = iΔt,
i = 4, . . . , N. Hence, it is a multistep method that requires information at four previous
time steps implying that another method is needed for starting the time marching. At this
stage, we utilize the fourth-order Runge–Kutta method for computing the start-up values
y0, y1, y2, and y3 to initialize the multistep method. The state equation for the scheme is

sAB(e, ŷ(e)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
N I

N I
N I

− 9
12 B̂ 37

12 B̂ −59
12 B̂ 55

12 B̂ − I I
. . . . . . . . . . . . . . .

− 9
12 B̂ 37

12 B̂ −59
12 B̂ 55

12 B̂ − I I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

y3

y4

...
yN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
0
0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
e−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
F̂ 1

F̂ 2

F̂ 3

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
0

9
4 Ĉ −37

4 Ĉ 59
4 Ĉ −55

4 Ĉ 0
. . . . . . . . . . . . . . .

9
4 Ĉ −37

4 Ĉ 59
4 Ĉ −55

4 Ĉ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
D̂1

D̂2

D̂3

D̂4

...
D̂N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

(153)

Example 5.3.1 Only one evaluation of the function f (t, y(t)) is needed at each timestep.
The values are stored to be used in the four following timesteps meaning that the memory
consumption is of the same order of magnitude than when the fourth-order Runge–Kutta
method is utilized. In theory, employing the fourth-order Adams–Bashforth time-stepping
scheme instead of the fourth-order Runge–Kutta method saves time. Nevertheless, the

TABLE 4 Stability conditions for the AB time discretization scheme.

r 1 2 3 4 5
Number of timesteps AB 500 1550 3250 5450 8250

αr AB 0.1753 0.0565 0.0270 0.0161 0.0106
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stability region is smaller for the fourth-order Adams–Bashforth than the fourth-order
Runge–Kutta method. The largest stable timesteps with the Adams–Bashforth method,
determined numerically in the same way as it is done in the previous example, are reported
in Table 4. This practical realization shows that the length of the timestep that guarantees
the stability conditions is much smaller with the Adams–Bashforth method than with the
Runge–Kutta method. The computations are continued by carrying out the simulations
with the Adams–Bashforth time discretization with smaller timesteps. That is, for the
element order r the addition of 300r timesteps is repeated until the number of timesteps
is larger than 3000r. The results are presented in Figure 17 as accuracy with respect
to CPU time consumption. For comparison, the results of the RK time discretization
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FIGURE 17 Accuracy with respect to CPU time consumptions (in seconds) with the RK and
the AB time discretizations. The mesh stepsize is fixed to be h = 1/20, and the
timestep refinement gives a series of numerical results with various lengths of the
timestep for each element order.
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from the previous example are also depicted there. Clearly, stability issues deteriorate the
efficiency of the AB time-stepping scheme. The CPU time used for the computation is in
favor of the RK time discretization, namely more than an order of magnitude longer time
is consumed to get the same accuracy with the AB time discretization than with the RK
time discretization. We can conclude that no improvement is achieved by utilizing the AB
time discretization.



6 EXACT CONTROLLABILITY APPROACH

The time-harmonic solution of the acoustic-elastic interaction problem is needed in many
applications. Our objective is to return to the time-dependent wave equation and achieve
the time-harmonic solution by minimizing the difference between initial conditions and
the corresponding variables after one time period. Thus, the basic idea is to have preas-
signed initial and final states such that beginning from the initial state, the final state can
be achieved by controlling the initial conditions. Proceeding in this way, the problem of
time-harmonic wave scattering can be handled with time-dependent equations as a least
squares problem, which can be solved by a conjugate gradient (CG) algorithm.

Solving the time-harmonic equation is equivalent to finding a time-periodic solution
for the corresponding time-dependent wave equation with the initial conditions

u(x, 0) = e0,
∂u(x, 0)

∂t
= e1. (154)

The time period corresponding to the angular frequency ω is given by T = 2π
ω . The

exact controllability problem for computing T−periodic solution for the wave equation
involves finding such initial conditions e0 and e1 that the solution u and its time derivative
∂u
∂t at time T would coincide with the initial conditions. Thus, we formulate the exact
controllability problem as follows: Find initial conditions e = (e0, e1)T such that the
weak formulation holds with the terminal conditions

u(x, T) = e0,
∂u(x, T)

∂t
= e1. (155)

The purpose of optimal control problems is to minimize an objective functional
(cost function) J defined in a control space Z. In practice, Z is a function space containing
real or vector-valued functions.
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6.1 Objective functional

The algorithm involves computation of the gradient of a least-squares functional J, which
is an essential stage of the algorithm. We have chosen to minimize the functional based
on the natural energy norm associated with the energy formulations given in Chapter
3. In this section we present, as an example, how the exact controllability approach is
applied to the symmetric fluid-structure interaction between the velocity potential and the
displacement. In principle, the same stages can be used in conjunction with the other
formulations. However, since the pressure-displacement formulation is non-symmetric, J
can be derived straightforwardly for that formulation only for the 1D model.

In order to define the optimal control, an objective functional corresponding to the
energy formulation (92) is defined as

J(e, ŷ(e)) =
1
2

∫
Ω f

(
ρ f (x)

∣∣∣∇(φ(x, T) − e f 0)
∣∣∣2 +

ρ f (x)
c(x)2

∣∣∣∂φ(x, T)
∂t

− e f 1

∣∣∣2) dx

+
1
2

∫
Ωs

(
2μs

∣∣∣ε(us(x, T) − es0)
∣∣∣2 + λs

∣∣∣∇ · (us(x, T) − es0)
∣∣∣2) dx

+
1
2

∫
Ωs

ρs(x)
∣∣∣∂us(x, T)

∂t
− es1

∣∣∣2 dx, (156)

where e = (e0, e1) ∈ Z and ŷ is the solution of the state equation. The optimal control
problem can then be reformulated as seeking the control that minimizes the objective
functional. The discrete counterpart of the objective functional (156) is

J(e, ŷ(e)) =
1
2

(
yN − e

)T

⎛⎜⎜⎝
Ks 0 0 0
0 K f 0 0
0 0 Ms 0
0 0 0 M f

⎞⎟⎟⎠(
yN − e

)
, (157)

where yi are given by Equation (127) or (144).
In order to solve the exact controllability problem, we use the least-squares formu-

lation

min
e∈Z

J(e, ŷ(e)), (158)

where ŷ(e) solves the transient initial value problem (state equation (127) or (144)) and
J(e, ŷ(e)) is the discretized objective functional. The result of the minimization problem
(158) is the optimal control e∗ and the corresponding state ŷ(e∗) is the optimal state.
The purpose is to minimize the functional J, which depends on the initial conditions both
directly and indirectly through the solution of the wave equation. Since the vector ŷ
depends linearly on the initial conditions e0 and e1, J is a quadratic functional. Thus,
solving the minimization problem (158) is equivalent to finding initial conditions e∗ ∈ Z
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TABLE 5 Number of degrees of freedom, number of timesteps for the time period T = 1/2,
and CPU time consumption (in seconds) used for computing the gradient by the cen-
tral finite difference approximation for different spectral orders r with the RK time
discretization scheme and angular frequency ω = 4π and mesh stepsize h = 1/20.

r 1 2 3
Number of degrees of freedom 1322 5043 11163
Number of timesteps 100 200 400
CPU time 1.80 · 104 2.47 · 105 2.24 · 106

such that the gradient of J is zero, that is,

∇J(e∗, ŷ(e∗)) = 0. (159)

Since J is a quadratic functional, (159) defines a linear system, and the minimization
problem can be solved by a conjugate gradient (CG) algorithm. Each iteration step
of the algorithm requires the gradient of J with respect to the control variables e0 =
(e01, e02, . . . e0(2Ns+Nf ) )

T and e1 = (e11, e12, . . . e1(2Ns+Nf )
)T. One option for computing

the gradient would be using the central finite difference approximation of the gradient of
the objective functional, that is,

dJ(e, ŷ(e))
deki

≈ J(e + ηêN̂k+i, ŷ(e + ηêN̂k+i)) − J(e − ηêN̂k+i, ŷ(e − ηêN̂k+i))
2η

,

(160)

where k = 0, 1, N̂ = 2Ns + Nf , i = 1, . . . , N̂, and η is the step length to the direction

of the (N̂k + i)th elementary vector êN̂k+i, and J is given by Equation (157). In that
case, computing the gradient of the objective functional (157) requires solving the state
equation four times per each degree of freedom.

Example 6.1.1 As the number of degrees of freedom grows, the computing time becomes
insufficiently long. To demonstrate this, we apply the central finite difference gradient
computation, defined by Equation (160), to the problem presented in Example 5.2.1 with
the RK time discretization (i.e., the variable yN shown in Equation (157) is computed
by Equation (144)). The CPU time consumption is presented in Table 5 for the element
orders r = 1, 2, 3. The lengths of the timestep are chosen to eliminate the temporal error
according to Table 3. For the spatial difference step we use η = 0.01, which affects the
accuracy of the finite difference approximation but not the CPU time consumption.

In order to implement an efficient algorithm, we proceed in more practical way and com-
pute the derivative of J by the adjoint equation technique. For condensing the formulation,
we represent the state equations (127) and (144) in the generic form

s(e, ŷ(e)) = 0, (161)
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where e = (e0, e1)T contains the initial values and ŷ contains the vectors ui in the case

of Equation (127) or the vectors yi =
(

ui, ∂ui

∂t

)T
in the case of Equation (144). The

state equation (161) is also called the forward equation because it is solved by advancing
forward in time. By s0(e, ŷ(e)) = 0 we denote the state equation in the special case with
F i = 0 for all i.

Using the standard adjoint equation technique of the optimal control theory (see,
e.g., [139]), we see that

dJ(e, ŷ(e))
dek

=
∂J(e, ŷ)

∂ek
− ẑT ∂s(e, ŷ)

∂ek
, k = 0, 1, (162)

where ẑ is the adjoint state vector containing the vectors pi presenting the adjoint state
variable at time iΔt. The vector ẑ is the solution of the adjoint equation

(
∂s(e, ŷ)

∂ŷ

)T

ẑ = ∇ŷ J(e, ŷ). (163)

The adjoint equation (163) requires advancing backward in time, so it is called the back-
ward equation [33].

Computing the gradient in the whole domain by the adjoint equation technique re-
quires computing the state and the corresponding adjoint state equation and some addi-
tional matrix-vector multiplications. The CPU time for computing the state equation is
approximately the same as for computing the corresponding adjoint state equation. This
computational cost is much larger than that needed for the additional matrix-vector mul-
tiplications. On the other hand, computing the gradient component with respect to the
variable ek with the finite difference approximation requires solving the state equation
twice per each degree of freedom. Hence, computing the gradient by the adjoint equation
technique takes only half of the time that is consumed for computing the gradient for each
degree of freedom with the finite difference formula.

6.2 Gradient for the central finite difference time discretization

In the case of the central finite difference time discretization corresponding to the matrix
form (127) the adjoint state equation is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 1
2C B
M C B

D . . . . . .
. . . . . . B

D C
D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p1

...

...
pN

pN+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
∂J

∂uN−1
∂J

∂uN
∂J

∂uN+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (164)
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where

∂J
∂uN−1 =

1
2Δt

M
(

e1 − ∂uN

∂t

)
, (165)

∂J
∂uN+1 =

1
2Δt

M
(

∂uN

∂t
− e1

)
, (166)

∂J
∂uN = K

(
uN − e0

)
. (167)

The gradient components for the central finite difference time discretization are then the
following:

dJ(e, ŷ(e))
de0

= K(e0 − uN) + p0, (168)

dJ(e, ŷ(e))
de1

= M
(

e1 − ∂uN

∂t

)
+ ΔtBT ∂p0

∂t
. (169)

6.3 Gradient for the fourth-order Runge–Kutta time discretization

In case of the fourth-order Runge–Kutta time discretization, the adjoint equation corre-
sponding to the state equation (144) is

⎛⎜⎜⎜⎜⎜⎝
I N T

I N T

. . . . . .
I N T

I

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
z0

z1

...
zN−1

zN

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
...
0
∂J

∂yN

⎞⎟⎟⎟⎟⎟⎟⎠ , (170)

where zi = (pi, ∂pi

∂t )T contains the solution of the adjoint equation and its time derivative
at t = iΔt, i = N, . . . , 0. The non-zero right-hand side terms are defined as

∂J
∂yN =

(
K(uN − e0)
M( ∂uN

∂t − e1)

)
.

Thus, the evolution in time with the adjoint state equation starts with the value zN, and
after one time period we get the solution z0. Then, we can compute the gradient compo-
nents for the fourth-order Runge–Kutta scheme, which are

dJ(e, ŷ(e))
de0

= K(e0 − uN) + p0, (171)

dJ(e, ŷ(e))
de1

= M
(

e1 − ∂uN

∂t

)
+

∂p0

∂t
. (172)
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In practice, k = (k1, k2, k3, k4)T is solved at each time step from the equation

⎛⎜⎜⎝
I ĤT

I ĤT

I 2ĤT

I

⎞⎟⎟⎠
⎛⎜⎜⎝

k1
k2
k3
k4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−R̂
−2R̂
−2R̂
−R̂

⎞⎟⎟⎠ zi+1, (173)

and zi is computed by the formula

zi = zi+1 − (
2ĤT 2ĤT 2ĤT 2ĤT )⎛⎜⎜⎝

k1
k2
k3
k4

⎞⎟⎟⎠ . (174)

Example 6.3.1 To show the benefit of the adjoint equation technique, we repeat the gra-
dient computations presented in Example 6.1.1 by using the adjoint equation technique
and compare the CPU time requirements. The results, carried out on an AMD Opteron
885 processor at 2.6 GHz and depicted in Figure 18, show that, for computing the gradi-
ent, the adjoint equation technique is several orders of magnitude faster than the central
finite difference approximation.
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FIGURE 18 CPU time (in seconds) for computing the gradient by the adjoint equation technique
and by the central finite difference approximation for the element orders r = 1, 2, 3
with the RK time discretization scheme and angular frequency ω = 4π. The
number of timesteps is chosen to eliminate the temporal error, and square-element
meshes with mesh stepsize h = 1/20 are used in both media.



7 OPTIMIZATION ALGORITHM

The optimization algorithms can be classified in several ways. The two major categories
are stochastic and deterministic optimization algorithms. Stochastic methods are suitable
especially for the problems involving probability or uncertainty. They are typically used
in the application areas where the model depends on unavailable or uncertain quantities,
such logistics or financial planning. We concentrate on deterministic algorithms in which
the model is fully specified. With these algorithms the solution procedure is reproducible,
that is, the same solution is obtained with a particular input information. These methods
can roughly be divided to direct and iterative ones. Further, the methods can be classi-
fied depending on the need of first or second derivatives (gradients or Hessian matrices),
which is related to the efficiency of the method. Usually, the methods utilizing derivative
information converge faster, but computing, for instance, Hessian matrices consumes a
considerable amount of computing time and memory. Another important point of view
along with the memory requirement and computational cost is the quality of the opti-
mization solution. Although global solutions are necessary in some applications, many
optimization methods attain only the local minimum. Convex optimization is a special
case in which the local solution is also the global solution.

In what follows, we briefly describe some methods suitable for unconstrained op-
timization and give reasons for using the conjugate gradient method for the problem at
hand. We consider minimizing the quadratic functional

J(e) =
1
2

eTAe − bTe + c, (175)

where A is a symmetric and positive definite matrix of size N̂ × N̂ and the vectors e,
b, and c are of size N̂. The Hessian matrix of J(e), including second derivatives, is
∇2 J(e) = A. As the matrix A is symmetric and positive definite, J(e) is convex and
it has a unique minimum at the point where the first derivative, the gradient of J(e), is
zero. Since the minimum value of the functional J(e) is obtained at the minimum point,
or minimizer,

e∗ = arg min
e∈RN̂

J(e),
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such that ∇J(e∗) = Ae∗ − b = 0, minimizing (175) is equivalent to solving a linear
system

Ae = b. (176)

Consequently, the minimum value of the functional is

J(e∗) = min
e∈RN̂

J(e) = −bTA−1b/2 + c.

In principle, if A and b are known explicitly, the linear system could be solved by
some direct method, such as LU decomposition. However, the main problem with direct
solution methods is how to find, for a large sparse matrix, a decomposition with only a few
non-zero elements to improve the efficiency of the method. This is the main reason why
iterative methods, beginning with an initial guess and generating a sequence of estimates
until reaching the solution, are preferred especially for solving large sparse linear systems.

There are several well known iterative methods, such as Newton and quasi-Newton
methods, steepest descent, and conjugate gradient method, that are suitable for solving
unconstrained optimization problems. If we focus on large problems, the set of feasible
optimization algorithms is restricted to the methods with small memory requirements. If
the Hessian matrix is not sparse, storing it may consume a considerable amount of mem-
ory when large problems are considered. In addition, constructing the Hessian matrix (or
its inverse) might be computationally expensive. Since the Hessian matrix or its approxi-
mation is needed to be stored in Newton-type methods, we neglect these methods at this
point.

Gradient information is worth utilizing in optimization if the gradient can be con-
structed in a computationally efficient manner. In the gradient-based iterative methods,
the initial value e0 is usually chosen arbitrarily, and the next solution candidate is a point
ei+1 which minimizes the objective functional from the previous point ei, i = 0, 1, . . . to
the given direction wi such that

ei+1 = ei + ηiwi, i = 0, 1, . . . (177)

where ηi ∈ R is a step length chosen to minimize J(ei+1). Once the direction is deter-
mined, finding the proper ηi is a minimization of a function of a single variable, in other
words, a line search problem in which the step length ηi can be solved by setting the
derivative of J(ei + ηiwi), with respect to ηi, to zero.

In the steepest descent method, the successive search directions are perpendicu-
lar to the previous direction. Consequently, the convergence slows down near the mini-
mum point. In the conjugate gradient method, choosing the new direction is improved by
adding a portion of the previous direction to the steepest descent direction. Hence, the
method uses gradient information but searches for the solution as a sequence of conjugate
directions needing only a small amount of storage space. It is a an orthogonal projec-
tion technique working in the Krylov subspace Kj(g0, A) = span(g0, Ag0, . . . , Aj−1g0),
where g0 = ∇J(e0) is the initial residual. Moreover, the CG method is sufficiently easy
to implement. Thus, the CG method provides a well-suited optimization algorithm for a
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sufficiently large problem with quadratic objective functional and linear state equation.
To guarantee the smooth initial approximation for the CG algorithm we use a transition
procedure, suggested by Mur [158], which is described in Section 7.1. The main princi-
ples of the CG method are presented in Section 7.2. For speeding up the convergence rate
of the CG algorithm, we use the graph-based multigrid method introduced in [153]. We
consider the preconditioned conjugate gradient algorithm and present a brief overview of
the multigrid method in Section 7.3.

7.1 Initial approximation

Although the CG method has been shown to be robust with respect to the initial values
in conjunction with the exact controllability approach (see, e.g., [33]), it is important
to have smooth initial approximations for e0 and e1, which satisfy the boundary condi-
tions. In [33], a special procedure suggested by Mur in [158, p. 950] was used leading
to faster convergence to the time-harmonic solution of scattering problems for harmonic
planar waves by purely reflecting non-convex obstacles. That is, they focused on acoustic
scattering with sound-soft obstacles and electromagnetic applications with perfectly con-
ducting obstacles. Now, we generalize the same procedure to the coupled problem, and
first define a smooth transition function θ(t), which increases from zero to one in the time
interval [0, Ttr] as follows:

θ(t) =
{ (

2 − sin
(
πt/2Ttr

))
sin

(
πt/2Ttr

)
, if 0 ≤ t ≤ Ttr,

1, if t ≥ Ttr.
(178)

The length of the time interval should be chosen as a multiple of the period T, that
is, Ttr = nT with n a positive integer. Then, for example in the case of the interaction
between acoustic and elastic waves, with the velocity potential -based formulation in the
fluid domain, we solve the following initial value problem:

1
c(x)2

∂2φ

∂t2 −∇2 = θ(t) fφ, in Q f = Ω f × [0, Ttr], (179)

φ = 0, on γ0f = Γ0f × [0, Ttr], (180)
1

c(x)
∂φ

∂t
+

∂φ

∂n f
= θ(t)yφext, on γe f = Γe f × [0, Ttr], (181)

∂us

∂t
· ns +

∂φ

∂n f
= 0, on γi = Γi × [0, Ttr], (182)

ρs(x)
∂2us

∂t2 −∇ · σ(us) = θ(t)f, in Qs = Ωs × [0, Ttr], (183)

us = 0, on γ0s = Γ0s × [0, Ttr], (184)

ρs(x)Bs
∂us

∂t
+ σ(us)ns = θ(t)gext, on γes = Γes × [0, Ttr], (185)
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σ(us)ns + ρ f (x)
∂φ

∂t
n f = 0, on γi = Γi × [0, Ttr], (186)

φ(x, 0) = 0, in Ω f , (187)
∂φ

∂t
(x, 0) = 0, in Ω f , (188)

us(x, 0) = 0, in Ωs, (189)
∂us

∂t
(x, 0) = 0, in Ωs. (190)

After solving the problem (179)-(190), the initial approximations for the control
variables e0 and e1 are constructed to consist of the solutions φ and us and their time
derivatives at time Ttr such that

e0
0 = (φ(x, Ttr), us(x, Ttr))

T ,

e0
1 =

(
∂φ

∂t
(x, Ttr),

∂us

∂t
(x, Ttr)

)T
.

If the obstacle Θ of the scattering problem is convex, there are no interacting reflections,
and already this initial procedure may converge rapidly to the time-harmonic solution.
However, in general the convergence is slow and we need to continue with the control
algorithm.

7.2 Minimization using the conjugate gradient algorithm

The CG method was originally introduced by Hestenes and Stiefel in 1952 [111] for
solving linear systems of the form (176), where A is a symmetric and positive definite
matrix of size N̂ × N̂ and the vectors e and b are of size N̂. In exact arithmetics, the CG
method was proposed as a direct method which converges in at most N̂ steps. In practice,
there are some rounding errors in the numerical procedure implying that the number of
iterations might be greater than N̂. However, with a favorable spectrum of A, the solution
is possible to achieve with the number of iterations far fewer than N̂.

The major advantages of the conjugate gradient method are its speed and simplicity.
It converges much faster than steepest descent and does not suffer from the inefficiencies
and possible instabilities that arise from using a fixed step size. Although it might be
slower than the second-order Newton and quasi-Newton minimization methods, it re-
quires only a small amount of additional storage space; only the current and previous
gradient and search vectors must be stored in addition to the weights.

The method can be generalized for solving a linear system Λe = b̂ with non-
symmetric and non-self-adjoint coefficient matrix Λ as well. In that case, the linear system
is multiplied by the adjoint of the coefficient matrix, that is, Λ∗, leading to a linear system
Λ∗Λe = Λ∗b̂ having symmetric and positive definite coefficient A = Λ∗Λ and right-hand
side vector b = Λ∗b̂. In the context of the control problem at hand, Λ can be interpreted
as the mapping related to the state equation, whereas Λ∗ represents the adjoint mapping.

In the conjugate gradient (CG) method, the first search direction is chosen to be
the direction of the steepest descent, that is, w0 = −∇J(e0). The successive direc-
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tions wi, i = 1, 2, . . . are generated to be conjugant with the matrix A. Thus, the inner
product of wi and Awj is zero, that is, (wi, Awj) = 0, i �= j meaning that the vectors
w0, w1, . . . , wN̂−1 are said to be A-conjugate. A set of non-zero A-conjugate vectors are
linearly independent and form a basis which spans the vector space of e. Assume we are
given a starting point e0 and a A-conjugate set {w0, w1, . . . , wN̂−1}. Since the vectors
w0, w1, . . . , wN̂−1 form a basis, we can write the vector representing the move from e0

to the minimum point e∗ as a linear combination of these vectors, in other words, we have

e∗ = e0 +
N̂−1

∑
i=0

ηiwi = ek +
N̂−1

∑
i=k

ηiwi, (191)

where ηi, i = 0, . . . , N̂ − 1 are scalars. Multiplying the previous equation by (wj)TA

and substituting b for Ae∗ gives

(wj)
T
(b− Aek) =

N̂−1

∑
i=k

ηi(wj)
T
Awi. (192)

If w0, w1, . . . , wN̂−1 were not A-conjugate, determining η0, η1, . . . , ηN̂−1 would involve
solving N̂ linear equations in N̂ unknowns. A-conjugacy eliminates the cross terms and
gives a closed form equation for ηi, i = 0, . . . , N̂ − 1 such that the line search parameter
is

ηi =
−(wi)Tgi

(wi)T
Awi

, (193)

where gi = Aei − b is the gradient of J at point ei. Since gi − gi−1 = A(ei − ei−1),
we can, in practice, compute the gradient by gi = gi−1 + ηi−1Awi−1. The new direction
is determined as a linear combination of the previous direction and the steepest descent
direction by using the scaling factor γi. By choosing a Fletcher–Reeves type formula for
computing γi and the stopping criterion measuring the relative norm of the residual such
that the iteration stops as

√
c
c0

< ε, we get the following algorithm:

Algorithm 1 CG algorithm

Compute the initial value e0 = (e0
0, e0

1)
T.

Compute the gradient g0 = Ae0 − b.

Set w0 = −g0.

Set c0 = −(w0, g0), c = c0 and i = 1.

Repeat until
√

c
c0

< ε

Compute the gradient update vi−1 = Awi−1.

Compute ηi−1 = c
(wi−1,vi−1) .

Update the control vector ei = ei−1 + ηi−1wi−1.

Update the residual vector gi = gi−1 + ηi−1vi−1.

Set vi = −gi.

Compute γi−1 = 1
c , c = −(vi, gi), γi−1 = cγi−1.
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Update minimizing direction wi = vi + γi−1wi−1.

Set i = i + 1,

where i refers to the number of iterations, the residual is −g, w is the search direction, and√
c
c0

is the relative euclidean norm of the residual, which is the gradient of the functional

J. Values of the control variables e at the ith iteration are denoted by ei
0 and ei

1. Smooth
initial approximations e0 = (e0

0, e0
1)

T for the algorithm are computed with a transition
procedure, which is presented in Section 7.1.

Since the matrix A is symmetric and positive definite, it defines an inner product
xTAy between vectors x and y in RN̂, which is referred to as an A-inner product. The
convergence of the CG method is dependent on the spectrum of the eigenvalues of the
matrix A. The convergence rate is bounded by the condition number κ which is given by
the ratio of the largest and smallest eigenvalue for symmetric and positive definite matrix
A by using the A-norm ||e||A =

√
(e, Ae). The theoretical convergence speed of the CG

method after i iterations is given by

||e∗ − ei||A ≤ 2||e∗ − e0||A
(√

κ− 1√
κ + 1

)i

, (194)

in which e∗ is the solution of the minimization problem and e0 is an arbitrary initial
condition [93]. It is worth mentioning that the formula gives only the upper limit for the
convergence, but from it we can at least conclude that the converge is fast if the value of
the condition number is close to one.

Consequently, for problems with a large condition number, we accelerate the con-
vergence rate by preconditioning. That is, we decrease the condition number by mul-
tiplying the linear problem Ae = b by a matrix L−1 meaning that instead of seeking
a solution from the space e0 + Kj(g0, A), where Kj is the j:th Krylov subspace defined
as Kj(g0, A) = span(g0, Ag0, . . . , Aj−1g0), we are seeking the solution from the space
e0 + Kj(L−1g0,L−1A). The geometrical interpretation of preconditioning is that we
minimize a functional with contourlines more spherical than in the case of the origi-
nal functional (for more information, see, e.g., [93]). The preconditioned version of the
conjugate gradient (CG) algorithm for solving the time-harmonic wave problems is as
follows:

Algorithm 2 Preconditioned CG algorithm

Compute the initial value e0 = (e0
0, e0

1)
T.

Solve the state equation s(e0, ŷ(e0)) = 0.

Solve the adjoint state equation
(

∂s(e0,ŷ(e0))
∂ŷ(e0)

)T
ẑ =

(
∂J(e0,ŷ(e0))

∂ŷ(e0)

)T
.

Compute the gradient g0 = (g0
0, g0

1)
T by the formulas (168)-(169) or (171)-(172).

Solve linear system with the preconditioner Lw0 = −g0.

Set c0 = −(w0, g0), c = c0 and i = 1.

Repeat until
√

c
c0

< ε
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Solve the state equation s0(wi−1, ŷ(wi−1)) = 0.

Solve the adjoint state equation
(

∂s(wi−1,ŷ(wi−1))
∂ŷ(wi−1)

)T
ẑ =

(
∂J(wi−1,ŷ(wi−1))

∂ŷ(wi−1)

)T
.

Compute the gradient update vi−1 = (vi−1
0 , vi−1

1 )T by the formulas (168)-(169)
or (171)-(172) .

Compute ηi−1 = c
(wi−1,vi−1) .

Update the control vector ei = ei−1 + ηi−1wi−1.

Update the residual vector gi = gi−1 + ηi−1vi−1.

Solve linear system with the preconditioner Lvi = −gi.

Compute γi−1 = 1
c , c = −(vi, gi), γi−1 = cγi−1.

Update minimizing direction wi = vi + γi−1wi−1.

Set i = i + 1.

In the above, ŷ is the solution of the state equation (127) or (144), ẑ = (p0, ∂p0

∂t ) is the
solution of the adjoint state equation (164) or (170), and the gradient variable g = (g0, g1)
is computed by the formulas (168)-(169) or (171)-(172). By s0(w, ŷ(w)) = 0 we denote
the state equation (127) or (144), where F i = 0 for all i.

Each conjugate gradient iteration step requires computation of the gradient of the
least-squares functional, ∇J by the formulas (168)-(169) or (171)-(172), which involves
the solution of the state equation (127) or (144) and the corresponding adjoint equation
(164) or (170), the solution of a linear system with the preconditioner, and some other
matrix-vector operations.

7.3 Preconditioning using the graph-based multigrid

The preconditioning is seen in the algorithm so that instead of the linear system Av = b,
we solve AL−1g = b. A good preconditioner L approximates the matrix A, but solving
the preconditioned problem is easier than solving the original linear system. Probably
the simplest choice for a preconditioner is a diagonal preconditioner L having the same
diagonal entries than the matrix A. Thus, multiplying by L−1 is simply dividing element-
wisely by its corresponding diagonal element. With L = I we have the unpreconditioned
situation which is easy to solve but suffers from poor convergence, and the number of it-
erations grows rapidly with the order of elements [146]. The special case L = A−1

returns to the same level of difficulty than the original problem, but it can be solved by
one iteration. While choosing a preconditioner, we, in general, need to choose between
a small number of iterations and long computing time for the preconditioning step or a
large number of iterations with a time-efficient preconditioner.

From the formula (157), we see that the functional depends on the initial condi-
tions both directly and indirectly through the solution of the linear wave equation. By
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substituting ŷ = Be + d into (157) and comparing with the formula (175), we get

A = (B− I)T
( K 0

0 M
)

(B− I), (195)

b = −dT
( K 0

0 M
)

(B− I), c =
1
2
dT

( K 0
0 M

)
(B− I)d. (196)

Since the block-matrix diag{K,M} is symmetric, also the matrix A, as presented above,
is symmetric.

We use a block-diagonal preconditioner

L =
( K 0

0 M
)

, (197)

which corresponds to the energy formulation (92). The solution of the linear system
with the block-diagonal preconditioner requires the solution of systems with the stiffness
matrix K and the diagonal mass matrix M. Efficient solution of linear systems with the
matrix K is critical for the overall efficiency of the control method. At this stage, we use
the GBMG method introduced in [153]. As the name of the method indicates, a number
of different grid levels are used on the domain, ranging between fine and coarse levels. A
sequence of linear problems

Klw̃l = G̃l (198)

is generated, corresponding to grid levels l = 0, . . . , k̃, where k̃ represents the coarsest
level. Each GBMG iteration starts with the finest level matrix K0, a right-hand side
vector G̃0, and an approximation w̃0. For a particular level l, the residual is given by
r̃l = G̃l −Klw̃l. This is used as the basis of a correction equation w̃l = w̃l + ẽl. The
error ẽl is related to the residual by Kl ẽl = r̃l. Unlike the classical geometric multigrid
methods [96, 187], in the GBMG the actual coarsening of the given mesh is not needed
for finding coarser grid levels.

The coarsening, that is, selecting the unknowns for coarser levels, is based on the
graph of the stiffness matrix, rather than on the actual values stored in the stiffness ma-
trix. This approach ensures fast computation of coarser level components. The coarsening
process operates in a geometric fashion by sequentially choosing a coarse node and elim-
inating the neighboring nodes of the graph. In selecting the unknowns for coarser levels,
the primary criterion is to take the node with minimum degree when eliminations are
taken into account. The secondary criterion is to follow the original node numbering.

The use of the multigrid methods for spectral elements has recently been studied
in [113]. The number of connections between unknowns of the problem increases when
higher-order elements are used. In this case, the coarsening strategy described above leads
to unacceptably coarse systems and the convergence factor of the multigrid approach de-
grades rapidly as the order of the approximation polynomials increases. We overcome
this problem by employing a graph constructed so that unknowns are connected to each
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other as if low-order finite elements were used in the discretization process. Only the un-
knowns corresponding to the nearest neighboring Gauss–Lobatto points are connected to
each other. Additionally, in vector-valued problems it is necessary to prevent mixing var-
ious types of unknowns also on coarser levels. This is achieved by giving the method an
initial graph where the sets of graph nodes corresponding to different types of unknowns
are not interconnected.

The grid transfer operators are the restriction operator R̃ and the prolongation op-
erator P̃. The matrices Kl, which are used at multigrid levels l = 0, . . . , k̃, are set as
an initialization step of the GBMG algorithm. For this purpose, we need the restriction
operator R̃l+1

l from the fine level l to the coarse level (l + 1)

R̃l+1
l =

(
Rl+1

l 0
0 Rl+1

l

)
, (199)

where the components of the restriction matrices Rl+1
l are

(
Rl+1

l

)
ij

=

⎧⎪⎪⎨⎪⎪⎩
1 for a fine grid point j which is a coarse grid point i,
1
k for a fine grid point j which is a neighbor of coarse grid

point i and has k neighboring coarse grid points,
0 otherwise.

(200)

When the fine level matrix Kl is known, the coarse grid operator is given by the Galerkin
formula Kl+1 = R̃l+1

l Kl(R̃l+1
l )T. The prolongation operator P̃l

l+1 from the coarse level
(l + 1) to the fine level l is chosen to be the transpose of the restriction,

P̃l
l+1 = (R̃l+1

l )T.

As a smoother of the GBMG we have used successive over-relaxation (SOR), with
over-relaxation parameter 1.2, unless mentioned otherwise. One iteration of the SOR
is used for pre- and post-smoothing. Additionally, at the beginning of every multigrid
iteration, four iterations of the SOR are used to smooth the solution initially. The so
called W-cycle [96, 179] is utilized as a multigrid iteration until the residual norm of the
solution is smaller than 10−6.

Example 7.3.1 For simplicity, we consider the acoustic wave problem,

−ω2Φ −∇2Φ = 0, in Ω f , (201)

Φ = exp(iω · x), on Γ0f, (202)

iωΦ +
∂Φ
∂n f

= i
(
ω1n f 1 + ω2n f 2 − ω

)
exp(iω · x), on Γe f , (203)

where ω = 1√
2
(1,−1) ω with angular frequency ω = 2π and the outward pointing

normal vector n f = (n f 1, n f 2). The domain Ω = Ω f , consisting of a fluid with density
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ρ f = 1 and wave speed c = 1, is defined so that the boundary surrounding it, Γe f ,
coincides with the boundary of the rectangle [0, 0]× [4, 4]. We have set a square obstacle,
having a side length of 2 and boundary Γ0f in the center of the domain Ω f . The function
Φ = exp(iω · x) satisfies the problem (201)-(203), and φ = cos(ωt − ω · x) is the
solution of the corresponding time-dependent equation, that is,

∂2φ

∂t2 −∇2φ = 0, in Q f = Ω f × (0, T), (204)

φ = cos(ωt − ω · x), on γ0f = Γ0f × (0, T), (205)
∂φ

∂t
+

∂φ

∂n f
= (ω − ω · n f ) sin(ωt − ω · x), on γe f = Γe f × (0, T), (206)

with the initial conditions

e0 = φ(x, 0) = cos(ω · x), (207)

e1 =
∂φ(x, 0)

∂t
= ω sin(ω · x). (208)

The system (204)-(208) is the state equation which can be presented in the form (127).
Further, we use the corresponding adjoint state equation (164) and compute the gradient
by the formula (168)-(169).
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FIGURE 19 Comparison between the computational effort of preconditioned and unprecondi-
tioned CG algorithm. CPU time in seconds is presented with respect to the number
of degrees of freedom.

To show the benefit of preconditioning, we compare the behavior of the implemen-
tation of Algorithm 1 and Algorithm 2. The computations corresponding to r-refinement
with h = 1/4 are carried out on an AMD Opteron 885 processor at 2.6 GHz. The length
of the time interval Ttr = 2T with T = 1 is used for computing the initial values. The
stopping criterion is ε = 10−5, and the time domain is divided into N = 300 steps for
each element order r.
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FIGURE 20 Proportion of CPU time (in percent) required by the GBMG cycles and computing
state (FWD) and adjoint state (BWD) in one CG iteration.

When the order of the polynomial basis increases or the mesh stepsize becomes
smaller, systems to be solved become larger, which causes the increase in CPU time. The
preconditioned minimization seems to be at least an order of magnitude faster than the
unpreconditioned one (see Figure 19). It is observed that the number of CG iterations
required to attain the stopping criterion grows with the number of degrees of freedom
in the unpreconditioned case, while in the preconditioned case the number of iterations
remains approximately constant. Consequently, the number of iterations is significantly
smaller with the preconditioning. On the other hand, at each iteration an additional linear
system is solved by GBMG. Nevertheless, the most of the CPU time is used for solving
state and adjoint state equations, and CPU time required by the GBMG preconditioner
is only a few percent of the CPU time for the whole algorithm. This is seen in Figure
20, which shows also the computational efforts of state (i.e., forward, FWD) and adjoint
state (i.e., backward, BWD) equations in one CG iteration. Besides these computations, a
negligible amount of CPU time is used for matrix-vector multiplications at each iteration.
Thus, significant savings result from the GBMG preconditioner.

When solving the state equation (127) or (144), M−1 is the only matrix inversion which
is involved in time-stepping. By N̂f we denote the number of degrees of freedom in the
fluid domain, whereas N̂s is the number of degrees of freedom in the structure domain.
If the matrix M is diagonal, it is inverted simply by inverting each of its diagonal ele-
ments. This requires only N̂ = N̂s + N̂f floating point operations, which is the number
of degrees of freedom in the space discretization. The operation count of a matrix-vector
product with any one of the matrices M, M−1, S , or S−1 (or some linear combina-
tion of these) is of order O(N̂). In the matrix-vector multiplication involving the sparse
stiffness matrix K, only non-zero matrix entries are multiplied, which requires the order
of r2N̂ operations. Besides these, some additions and multiplications are needed at each
time step. Thus, solving the state equation needs O(r2N̂) floating point operations at
each time step in the CD and the RK time-steppings. From this, we can conclude that
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the computational demand for computing the solution for the state equation with N time
steps is O(Nr2N̂). The number of computational operations needed for solving the ad-
joint state equation is obviously of the same order as that needed for solving the state
equation. On the whole, the computational cost for one iteration of the CG algorithm is
of order O(Nr2N̂). Assuming that the number of time steps N is fixed, the number of
iterations is approximately constant, and the element order r has small integer values, the
computational demand for the overall CG algorithm is O(N̂).

Example 7.3.2 We compare the simulation results with acoustic scattering by a sound-
soft obstacle with scattering by an elastic obstacle. We consider the acoustic wave equa-
tion with incident plane wave φinc(x, t) = cos(ω · x − ωt) implying yφext = (ω − ω ·
ns) sin(ω · x − ωt). Furthermore, there are no other source terms, that is, fφ = 0, f = 0,
and gext = 0.

The infinite domain is truncated by the boundary Γe f , and the computational do-
main is divided into square-elements, each having a side length h. The domain Ω with a
square obstacle with side length 2 (see Figure 21(a)) was defined such that the surround-
ing boundary Γe f coincided with the border of the square [0, 4]× [0, 4]. Scattering by two
semi-open obstacles (see Figure 21(b)) is solved in a domain with the artificial boundary
Γe f coinciding with the perimeter of the rectangle [0, 5] × [0, 4]. The internal width and
the height of each obstacle is 3/4 and 5/4. The thickness of the wall is 1/4, and the
distance between the obstacles is 1. In simulations with one non-convex semi-open ob-
stacle (see Figure 21(c)), the shape of the object resembles a tuning fork. The lower left
corner of the rectangular computational domain surrounding the obstacle is at the point
(0, 0) and the upper right corner is at the point (7.25, 3.75). The internal width and the
height of the obstacle are 5 and 5/4, and the thickness of the wall is 1/4. The obstacles
are centered in the computational domain and located at the perpendicular distance of 1
from the boundary Γe f . Thus, the lower left corner of the obstacle is at the point (1, 1)
in each case. If the scatterer is assumed to be sound-soft, the obstacles are surrounded by
the boundary Γ0f. When an elastic obstacle is involved, the obstacles defining the domain
Ωs are surrounded by the boundary Γi.

In these experiments, we have used the angular frequency ω = 4π, which implies
that the artificial boundary is located at distance 2� from the scatterer. Since the velocity
is higher in the solid medium than in the fluid medium, we need to use more timesteps to
satisfy the stability conditions when the elastic obstacle is considered (see Table 6). The
propagation direction is chosen to be ω = ω

(− 1√
2
, 1√

2

)
. We have set densities ρ f (x) =

1 and ρs(x) = 2.7 and the propagation speeds c(x) = 1, cp(x) = 5.95 and cs(x) = 3.12.
Thus, the fluid domain approximates to a water-like liquid, whereas the solid domain is
assumed to consist of a metallic material like aluminum. Time discretization is realized
with central finite differences. The stopping criterion is set with the relative norm

√
c/c0

and ε = 10−5.
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(a) Square obstacle.
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(b) Two non-convex semi-open obstacles.
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1.75

(c) Non-convex semi-open obstacle.

FIGURE 21 Geometrical shapes of the obstacles.

TABLE 6 Mesh stepsizes and number of timesteps for different spectral orders with ω = 4π.

r 1 2 3 4 5

Mesh stepsize h 1/80 1/40 1/28 1/20 1/16

Number of
timesteps N

CD sound-soft obstacle 90 270 300 320 320
CD elastic obstacle 400 800 1500 1700 2000
RK sound-soft obstacle 60 100 140 150 150
RK elastic obstacle 300 360 480 540 600
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We start by a special case of fluid-structure interaction, in which the structure is assumed
to be sound-soft. That is, we can model the interface of the two domains by simply replac-
ing the boundary Γi by the boundary Γe f . Thus, only the fluid variables are involved in
the computations when a sound-soft obstacle is considered. Then, we replace the sound-
soft obstacle by an elastic one with the material parameters ρs(x) = 2.7, cp(x) = 5.95
and cs(x) = 3.12 corresponding to aluminum. The number of iterations with different
scatterers is reported in Table 7.

TABLE 7 The number of iterations of the preconditioned CG algorithm in the case of the CD
and the RK time discretization with different scatterers.

Type of the obstacle Element order r
and time discretization 1 2 3 4 5

convex obstacle (square) sound-soft CD 216 208 142 143 178
elastic CD 107 105 101 102 104
sound-soft RK 59 75 74 76 75
elastic RK 111 115 107 107 109

non-convex semi-open obstacle sound-soft CD 217 208 188 229 332
elastic CD 199 192 192 193 193
sound-soft RK 211 300 301 300 299
elastic RK 189 188 188 188 188

two non-convex semi-open obstacles sound-soft CD 238 252 186 286 268
elastic CD 177 166 165 165 165
sound-soft RK 123 146 145 145 145
elastic RK 133 165 163 144 164

(a) Sound-soft convex obstacle. (b) Elastic convex obstacle.

FIGURE 22 Scattering by a convex obstacle with r = 3 and h = 1/28.
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As we can see, the number of iterations is substantially smaller in the case of con-
vex square scatterer than in the cases of non-convex scatterers. In all the experiments it
appears that preconditioning keeps the number of CG iterations bounded with respect to

(a) Sound-soft non-convex semi-open obstacle.

(b) Elastic non-convex semi-open obstacle.

FIGURE 23 Scattering by a non-convex semi-open obstacle with r = 3 and h = 1/28.

(a) Sound-soft non-convex semi-open obstacles. (b) Elastic non-convex semi-open obstacles.

FIGURE 24 Scattering by a system of two non-convex semi-open obstacles with r = 3 and
h = 1/28.
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r. Contour plots of the numerical solutions with the RK time discretization and r = 3
are presented in Figures 22-24. As we can see, there are differences in the wave motion
depending on whether the scatterer is modeled as a sound-soft or an elastic obstacle.



8 EFFICIENCY CONSIDERATIONS

In this chapter, we show numerical results of time-harmonic scattering applications in
order to validate the controllability method discussed in previous chapters and to demon-
strate some properties of the proposed algorithm. For each element order r, we construct
square-element meshes, which are matching on the interface Γi. The practical realization
of the algorithm is implemented in Fortran 95. Numerical experiments are carried out on
an AMD Opteron 885 processor at 2.6 GHz.

The specifications of the test cases are based on the test examples presented in
the previous chapters of this thesis, as well as on the earlier research results concern-
ing spectral elements and exact controllability approaches with acoustic and elastic wave
equations solved in separate domains. During the computations of acoustic and elastic
problems in separate domains, we have observed that with the higher-order spectral el-
ement method, a certain error level can be reached with lower computational work than
with the conventional FEM also when the central finite difference scheme is considered
for time discretization. Furthermore, the computational effort of the method has linear
dependence on the number of nonzero elements in the stiffness matrix, and the number
of preconditioned CG iterations appears to be independent of the order of the spectral
element basis, which confirms the efficiency of the GBMG preconditioner and makes the
solver feasible for higher-order discretizations.

Previously, in [106], we used the central finite difference scheme for time discretiza-
tion of an acoustic scattering by a sound-soft obstacle. The spectral element discretization
used in that article results in a global mass matrix which is diagonal by construction. That
time discretization scheme is second-order accurate and with a diagonal mass matrix also
fully explicit in time; the values for each time step are determined from the values of
the previous time steps. Only matrix-vector products are needed in time-dependent sim-
ulation, which leads to a very efficient implementation of the control algorithm. As a
drawback, the scheme needs to satisfy the CFL condition, which limits the length of the
time step (see [44] for details).

When higher-order spectral elements are used with the second-order time discretiza-
tion, very small time steps are needed to eliminate the temporal error. Since the second-
order accurate time discretization scheme restricted the efficiency of the overall control
approach with higher-order elements, the central finite difference scheme was compared
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with the fourth-order accurate Runge–Kutta method for the acoustic and elastic wave
equations in [107, 162], respectively.

In [4] it was confirmed that the method based on exact controllability and spec-
tral elements performs well when compared with shifted-Laplacian preconditioning. The
quadrilateral spectral elements required fewer discretization nodes than triangular finite
elements to obtain the same accuracy level. Consequently, the control method with spec-
tral elements gave more accurate results and used less memory than the shifted-Laplacian
method with triangular higher-order finite elements. Nevertheless, the CPU time con-
sumption for the controllability approach was larger than for the shifted-Laplacian method.

Now, the main focus of the numerical experiments is on the coupled fluid-structure
interaction problems. That is, we test how the coupling between the domains affects
the efficiency of the control method. Some preliminary experiments discussing acousto-
elastic scattering problems with exact controllability and spectral elements are published
in [160]. Coupling between the pressure and the displacement was discussed. It turned
out that finding a proper least-squares functional for the minimization problem of the non-
symmetric formulation is not a straightforward task in the two-dimensional domain. That
is why we minimized the functional related to the symmetric formulation arising from the
coupling between the velocity potential and the displacement. Because of the poor choice
of the least-squares functional, the number of iterations required to attain the stopping
criterion was extremely large. This is further verified in Section 8.1, and in the latter test
cases we prefer the symmetric formulation.

By the efficiency of the method we refer to the ratio between accuracy and the
computational work required to achieve that level of accuracy. The main goal of the
numerical experiments presented in the further sections is to study the accuracy of spatial
discretization and its effect on computational complexity. The overall accuracy of the
discrete solution given by the controllability method depends on the following factors:

- spatial discretization, which is performed by the spectral element method with mesh
density h and element order r,

- time discretization, which is performed by central finite differences or the fourth-
order Runge–Kutta scheme with timestep Δt,

- stopping criterion ε of the CG method,

- approximation of the geometrical boundaries,

- approximation of the radiation condition.

In what follows, we describe how the numerical experiments are defined to eliminate and
isolate the error factors.

In the articles [107, 162] we constructed artificial problems, the solutions of which
are known to be the plane wave, for acoustic and elastic problems separately. That is
how we eliminated the error caused by the absorbing boundary condition and were able
to study the effect of the spatial discretization. We presented the accuracy of the approxi-
mation and showed how to define the size of the timestep which eliminates the temporal
error. In this thesis, we slightly change the viewpoint since the accuracy issues are well
covered with the transient fluid-structure interaction problems in Chapter 5. Therefore,
in this chapter we focus on the influence of the control algorithm to the overall accuracy.
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TABLE 8 Mesh stepsizes, number of timesteps, and number of degrees of freedom for different
spectral orders with ω = 4π.

r 1 2 3 4 5

Mesh stepsize 1/20 1/10 1/7 1/5 1/4

Number of timesteps to
satisfy the stability condition

100 100 130 140 160

Number of degrees of
freedom

1323 1323 1452 1323 1323

Since geometries with curved boundaries can not be represented exactly by a rectangular
mesh, we use polygonal boundaries in the test experiments.

8.1 Convergence rate

First we show how important it is to choose a sufficient functional for minimization. We
use the functional (157), which is derived via the energy consideration for the symmetric
formulation, in which the velocity potential is used as a fluid variable. By minimizing
this functional, we solve the exact controllability problem in the case of the CD time
discretization with both the symmetric and the non-symmetric formulations, where the
state equations and the domains are the same as the ones used in Example 5.1.2. When
higher-order elements are used, good efficiency with high accuracy can be achieved by
using sufficiently large mesh stepsize [2]. This is why we use coarser mesh with higher
element order. In these computations, the resolution of the spatial discretization, that is,
degrees of freedom per wavelength, is approximately constant such that r/h ≈ 20. The
number of timesteps is chosen such that the CFL condition is satisfied (see Table 8).

The convergence history, shown in Figure 25, impresses that it is not reasonable
in conjunction with the non-symmetric formulation to use the functional derived to the
symmetric formulation. Although it seems to be possible to attain the solution also in that
way, the convergence rate is really slow. For instance, if we use the stopping criterion ε =
10−7, the non-symmetric scheme needs thousands of iterations, whereas approximately
one hundred iterations are needed in the case of the symmetric formulation to attain the
stopping criterion.

From Figure 26 we can further see that also the value of the objective functional
is several orders of magnitude smaller in the case of the symmetric formulation. Thus,
the natural energy functional seems to be a sufficient choice for minimization. The larger
number of iterations means heavier computational cost. Consequently, the efficiency of
the method is lost if the functional for minimization is not chosen properly. As deriving,
implementing and computing an appropriate functional for the non-symmetric formula-
tion is rather complicated, we conclude that the non-symmetric formulation is not well
suited for the control algorithm. However, it may work well with other solution ap-
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FIGURE 25 Comparison between the convergence histories of the relative euclidean norm of
the residual with respect to the number of iterations when the functional (157) is
minimized by the preconditioned CG algorithm with the non-symmetric and the
symmetric formulation.
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FIGURE 26 Values of the functional (157) with respect to the number of iterations in the case
of non-symmetric and symmetric formulations.
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proaches such that preconditioned iterative methods, such as GMRES or Bi-CGSTAB,
applied straight to the time-harmonic equations.

As we have shown in Example 5.1.2, presented in Chapter 5, the solutions achieved
by solving the time-dependent state equation is even more accurate in the case of the sym-
metric than non-symmetric formulation. This seems to be valid also for the time-harmonic
solutions computed via the control algorithm. That is, the error, depicted in Figure 27,
is larger in the case of non-symmetric formulation especially in the fluid domain. Thus,
the control algorithm is not ruining the phenomenon. What is remarkable, the error is
not decreasing significantly when the higher-order polynomial basis is used. Summing
up these features, we decide to concentrate on the examples considering the symmetric
formulation in the following numerical experiments.
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FIGURE 27 Errors between the solution of the control algorithm and the analytical solution
measured in the L∞ norm.

8.2 Analytical solution for time-harmonic fluid-structure scatter-
ing problems

Analytical solutions for scattering problems in the field of fluid-structure interaction exist
only for some simple geometries, like a circle. However, using them is sometimes reason-
able for testing the accuracy of numerical methods. In this section, we consider scattering
by an elastic circle Ωs, having radius as = 1, embedded in the center of an acoustic
domain Ω f which is truncated by a circular absorbing boundary of radius a f = 2 (see
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Figure 28). In the time-harmonic frame the problem can be modeled as

−κ(x)2Φ −∇2Φ = 0, in Ω f , (209)

−iκ(x)Φ +
∂Φ
∂n f

= YΦext, on Γe f , (210)

iωUs · ns +
∂Φ
∂n f

= 0, on Γi, (211)

−ω2ρs(x)Us −∇ · σ(Us) = 0, in Ωs, (212)

σ(Us)ns + iωρ f (x)Φn f = 0, on Γi, (213)

where i is the imaginary unit, ω is the angular frequency, and κ = ω/c is the wavenumber
describing how many waves there are in the fluid domain for a 2π unit. Respectively, we
can define wavenumbers in the solid domain κp = ω/cP and κS = ω/cS, where cp and
cs represent the speed of the pressure waves (P-waves) and the speed of the shear waves
(S-waves).

We test the accuracy of the control method in a circular domain with the incident
plane wave φinc(x, t) = cos(κx1 − ωt) implying yφext = κ(1 − n f 1) sin(κx1 − ωt).
The time-dependence is presented in the form eiωt, meaning that the relations between
time-dependent and time-harmonic variables are φ(x, t) = Re(Φ(x)e−iωt), leading to
YΦext(x) = −iκ(1 − n f 1)eiκx1 , and us(x, t) = Re(Us(x)e−iωt). An analytical solution
of the time-harmonic problem, accomplished by using the separation of variables, can be
presented in polar coordinates (r, α) by a Fourier series as follows (see, e.g., [115])

Φr(r, α) = eiκr cos α +
∞

∑
n=0

(
AnH(1)

n (κr) + BnH(2)
n (κr)

)
cos(nα), (214)

Usr(r, α) =

⎛⎝ ∑∞
n=0

(
Cn

(
Jn−1(κpr) − n

κpr Jn(κpr)
)

κp + Dn
n
r Jn(κsr)

)
cos(nα)

∑∞
n=0

(
−Cn

n
r Jn(κpr) − Dn

(
Jn−1(κsr) − n

κsr Jn(κsr)
)

κs

)
sin(nα)

⎞⎠ , (215)

where eiκr cos α = J0(κr) + ∑∞
n=1 2in Jn(κr) cos(nα) is the incident plane wave, Jn rep-

resents the Bessel functions and H(1)
n and H(2)

n are the Hankel functions. The coefficients

Γ ef

Γ i

Ω     s

Ω     f

a
af

s

FIGURE 28 The elastic circle Ωs surrounded by the acoustic media Ω f .
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TABLE 9 Number of timesteps and space discretization points for different spectral orders with
ω = 5π in the case of scattering by elastic obstacles in a circular domain.

r 1 2 3 4 5
Timesteps N for the CD time discretization 90 330 850 1370 1980
Timesteps N for the RK time discretization 60 140 270 430 600
Number of discretization point in Ωs 801 3137 7009 12417 19361
Number of discretization point in Ω f 832 3200 7104 12544 19520

(a) Control algorithm solu-

tion
√

us
2
1 + us

2
2

(b) Fourier series solution√
Re(Us1)2 + Re(Us2)2

FIGURE 29 Displacement amplitude solutions in the solid domain.

An, Bn, Cn, and Dn can be solved from the linear system

H
′(1)
n (κas)An + H

′(2)
n (κas)Bn − iω

a2
s

(
κpas Jn−1(κpas) − nJn(κpas)

)
Cn − iω

a2
s

nJn(κsas)Dn

=

{
−in J

′
n(κas), for n = 0,

−2in J
′
n(κas), for n = 1, . . . , ∞,

(H
′(1)
n (κa f ) − iκH(1)

n (κa f ))An + (H
′(2)
n (κa f ) − iκH(2)

n (κa f ))Bn = 0,

− iωρ f H(1)
n (κas)An − iωρ f H(2)

n (κas)Bn +
2μs

a2
s

((
n2 + n − κ2

s a2
s

2

)
Jn(κpas) − κpas Jn−1(κpas)

)
Cn

+
2μs

a2
s

n ((−(n + 1)) Jn(κsas) + κsas Jn−1(κsas)) Dn =
{

ωρ f in+1 Jn(κas), for n = 0,
2ωρ f in+1 Jn(κas), for n = 1, . . . , ∞,

− n
(
(−(n + 1)) Jn(κpas) + κpas Jn−1(κpas)

)
Cn−

(
n2+ n − κ2

s a2
s

2

)
Jn(κsas) − κsas Jn−1(κsas)Dn= 0,

constructed by substituting the formulas (214) and (215) into the boundary and coupling
conditions (210), (211), and (213) in polar coordinates. Derivatives of the Bessel and
Hankel functions are denoted as J

′
n and H

′
n, respectively.

The test simulation was run with angular frequency ω = 5π, element orders
r = 1, . . . , 5 (r = 1 corresponds to bilinear finite elements), and material parameters
ρ f (x) = 1 and ρs(x) = 2.7, c(x) = 1.5, cp(x) = 6.20 and cs(x) = 3.12. The computa-
tional domains are presented by rectangular meshes. The minimum and maximum mesh
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(a) Control algorithm solution φ (b) Fourier series solution Re(Φ)

FIGURE 30 Velocity potential solutions in the fluid domain.

stepsizes in the fluid domain are h f ,min ≈ 0.0833 and h f ,max ≈ 0.1963. Respectively,
the minimum and maximum mesh stepsizes in the solid domain are hs,min ≈ 0.0530
and hs,max ≈ 0.0982. The stopping criterion of the control algorithm is achieved when
the relative euclidean norm of the gradient of the least-squares functional is below 10−5,
whereas the Fourier modes n are computed until the relative difference attained by adding
the next mode to the series is below 10−5. The number of timesteps used for solving the
time-dependent state and adjoint equations is shown in Table 9.

The control algorithm solution in the solid domain with the RK time discretization
and r = 2 is illustrated in Figure 29(a), whereas the real part of the Fourier series solution
in the solid domain is shown in Figure 29(b). Respectively, the control algorithm solution
with the RK time discretization and r = 2 and the Fourier series solution of the values
of the velocity potential in the fluid domain are presented in Figures 30(a) and 30(b).
Naturally, there is no qualitative difference between the solutions attained by the control
algorithm and the Fourier series solution.

To take a closer look at the accuracy, we consider the quantitative difference be-
tween the control algorithm and the Fourier series solution. These errors, measured using
the L∞ norm, are presented in the case of the CD and the RK time discretization in Fig-
ure 31. In principle, the accuracy of the spatial discretization increases with the element
order. The horizontal line in the error curves represents the level of the dominating error
source, which is caused by some factor other than the spatial discretization. Since the
Fourier series solution is defined to satisfy the artificial boundary condition on Γe f , the
influence of the radiation boundary condition to the error can be excluded. The possible
sources interrupting the convergence of the error level include the accuracy of time dis-
cretization, the stopping criterion of the Fourier series solution, and approximation of the
geometrical shapes. It is noteworthy that in this case both time discretization schemes
give equally accurate results for all the element orders. We also run some tests by tighten-
ing the stopping criterion of the Fourier series solution and using smaller timesteps with
both time-discretization schemes. Since these attempts did not improve the accuracy, we
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FIGURE 31 Errors between the control algorithm and the Fourier series solution measured in
the L∞ norm.

assume that approximating the curvilinear shapes of the domain by quadrilateral elements
limits the overall accuracy. In the next sections we take a closer look at the accuracy and
efficiency and isolate the different error sources.

8.3 Influence of the stopping criterion

According to the results shown in Table 3, we can choose the timestep to examine the
spatial discretization such that the error of time discretization is negligible. When using
the control algorithm with a constant stopping criterion for all element orders r, so small
timesteps are not reasonable. This is the case especially when concerning higher-order
elements with a sufficiently large stopping criterion ε. The reason for this is that the
stopping criterion limits the accuracy of the control method. Therefore, our aim is to
consider the stopping criterion and the length of the timestep for each spectral order.

To show how the stopping criterion of the algorithm influences the accuracy, we
solve with the control method the time-harmonic elasticity problem

−ω2ρs(x)Us −∇ · σ(Us) = F, in Ωs, (216)

Us = G0, on Γ0s, (217)

iωρs(x)BsUs + σ(Us)ns = Gext, on Γes, (218)

with ω = 2π, ω =
(
− 1√

2
, 1√

2

)
, ρ = 2.7, cp = 2, and cs = 1. The right-hand side

functions F, G0, and Gext are defined to satisfy

Re(Us) =

(
ω1 cos( ω

cp
�ω · x) + ω2 cos(ω

cs
�ω · x)

ω2 cos( ω
cp

�ω · x) − ω1 cos(ω
cs

�ω · x)

)
, (219)

Im(Us) =

(
ω1 sin( ω

cp
�ω · x) + ω2 sin(ω

cs
�ω · x)

ω2 sin( ω
cp

�ω · x) − ω1 sin(ω
cs

�ω · x)

)
. (220)
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FIGURE 32 Maximum errors obtained in the case of the CD and the RK time-stepping with four
different stopping criteria ε.

The boundary surrounding the domain Ω = Ωs, Γes, coincides with the boundary
of the rectangle [0, 0] × [4, 4]. We have set a square obstacle, having a side length of 2
and boundary Γ0s in the center of the domain Ωs. The domain is divided into rectangular
elements, and the ratio between the order of elements r and the mesh stepsize h is r/h ≈
20.

We have started computations with the largest stable timestep (see Table 2) and then
multiplied the number of timesteps N = T/Δt by two, until the problem for spectral or-
der r is solved with r + 3 different number of timesteps. Errors between the analytical so-
lution and the experimental result are computed as L∞-norms. Accuracy of the numerical
solution in the structure domain is shown in Figure 32 as a function of the ratio between
the time step Δt and the mesh step size h for both the CD and the RK time-steppings with
five element orders r and four different stopping criteria ε.

We have eliminated the error of approximation of the geometry by using polygonal
boundaries and the right-hand side functions satisfy the absorbing boundary condition.
Hence, as the order of the approximation in space increases, the solution becomes more
accurate until the effect of the stopping criterion or the error of time or space discretiza-
tion becomes dominant. For the element order r = 1, the error of space discretization is
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TABLE 10 Number of space discretization points for different element orders in pollution tests.

Element order r
1 2 3 4 ω

Number of space discretization points

5040 5040 5544 5040 2π

19680 19680 21672 19680 4π

77760 77760 85680 77760 8π

309120 309120 340704 309120 16π

Stopping criteria ε 10−3 10−4 10−5 10−6

FIGURE 33 Errors with respect to CPU time (in seconds) with angular frequencies ω =
{2π, 4π, 8π, 16π} such that ωh = rπ/10.

dominant over the error of time discretization for all stable lengths of the timestep. Then,
using the second-order and the fourth-order accurate time schemes leads to equally accu-
rate results. When higher-order elements are used, we can see the benefit of the RK time
discretization. We also notice that using a tight stopping criterion is just a waste of time
when low-order elements are used. For the element order r, the results would have been
equally accurate if the stopping criterion ε = 10−(r+2) had been used.

8.4 Pollution effect

Even though we have eliminated the main error sources, the pollution effect deteriorates
the accuracy of solutions with high frequency. That is, the computed wavenumber differs
from the wavenumber of the exact solution, and with high angular frequencies this part
of approximation error becomes dominant. To show that using higher-order elements
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alleviates this inaccuracy, we have performed another set of experiments with several
different angular frequencies and the resolutions of the mesh such that ωh = rπ/10 (see
Table 10). Furthermore, we use the stopping criterion ε = 10−(r+2), which is not limiting
the accuracy of the numerical solutions computed with the CG algorithm for the element
order r. The number of timesteps is chosen to eliminate the temporal error according to
Table 3.

The accuracy of the solution with the RK time discretization is presented in Fig-
ure 33 with respect to the CPU time. The CPU time for the algorithm grows with the
wavenumber. Naturally, the reason for this is the increase in the number of CG iterations.
As the wavenumber grows, the error increases for the all element orders. In the case of
classical finite element discretization, that is, r = 1, the error becomes considerably large
as the wavenumber increases. This happens even if ωh is kept constant. With higher
orders, the pollution effect is not eliminated but the accuracy is significantly better also
for high angular frequencies. Thus, better accuracy is achieved with less work, when
higher-order elements are used.



9 CONCLUSIONS

This study was concentrated on developing numerical solution techniques for simulating
the interaction between acoustic and elastic waves. The focus was in particular on the
mutual interaction between two time-harmonic linear wave equations: the scalar-valued
Helmholtz equation concerning the propagation of acoustic waves and the vector-valued
Navier-Cauchy equation describing the propagation of waves in an elastic medium. Sev-
eral formulations of the corresponding equations were presented, and the practicality of
them was considered mostly from an implementational point of view.

We considered the spectral element space discretization for both time-dependent
and time-harmonic equations considering acoustic and elastic wave propagation and the
fluid-structure interaction. The spectral element formulation, based on high-degree poly-
nomials, used in this thesis results in a global mass matrix that is diagonal by construction,
which leads to an efficient implementation. This is an advantage compared with the clas-
sical finite element method.

The temporal discretization for time-dependent equations was made by the second-
order accurate central finite difference scheme or the fourth-order accurate Runge–Kutta
or Adams–Bashforth approaches. The performance of the different time discretization
schemes was compared numerically. We found out that the Adams–Bashforth scheme
has such strict stability conditions that it is not a feasible choice at this stage. For the
other two time discretization schemes we defined the constants kr, for the element orders
r = 1, . . . , 5. It can be used for computing the length of the timestep that eliminates the
temporal error but is still large enough to maintain the efficiency.

To make good use of higher-order elements, also the time discretization should be
done with a higher-order scheme. As a rule of thumb we can say that the efficiency of the
overall method suffers from the error of time discretization if the order of the element is
greater than the order of the time discretization method used. The second-order central
finite difference time discretization method is efficient with finite elements, but when
high accuracy is needed, it is best to use the Runge–Kutta time discretization. It is also
worth mentioning that with the orders orders r ≥ 5 we should use even higher-order
time discretization schemes than considered in this thesis. However, in the simulations
independent of the time, the accuracy can be increased efficiently with the element orders
higher than 5.



109

We observed that with the higher-order spectral element method, a certain error
level can be reached with lower computational work than with the conventional finite
element method also when the central finite difference scheme is considered for time
discretization. The spectral element method requires fewer grid points per wavelength
to the same accuracy as the spectral element method. Consequently, accurate results are
reached by solving smaller systems, that is, fewer computational operations, which saves
the computing time.

Solving the time-harmonic problems was accomplished by using the time-depen-
dent equation and utilizing the exact controllability method by following the idea of Bris-
teau, Glowinski, and Périaux. That is, complex-valued indefinite linear systems were not
involved. The main idea of the method was to find such initial conditions that after one
time period the solution and its time derivative coincide with the initial conditions. We
reformulated the controllability problem as a least-squares optimization problem and used
a preconditioned conjugate gradient algorithm for solving the time-harmonic problem via
transient equations. The function to be minimized has shown to play a key role in the
efficiency of the method, and at this stage we applied the natural energy formulation. We
computed the gradient by first discretizing the wave equation and the function to be mini-
mized. Then, we computed the gradient directly for the discretized problem by following
the adjoint equation technique. The practical realization of the method was implemented
in Fortran 95.

The validation of the accuracy of the control approach is done by comparing the
results with the known analytical solutions. In the case of wave propagation, the exact
time-harmonic solution was computed by using the Hankel and Bessel functions. The
accuracy of the spatial discretization is shown to increase with the element order until
an error factor, such as time discretization, approximation of the geometrical shapes or
a stopping criterion, disturbs the approach. The test problems were chosen such that as
many error factors as possible were eliminated. With curvilinear geometries, the shapes
are not approximated accurately with the discretization presented here by the quadrilateral
elements. Thus, this presentation gives accurate results for the polygonal geometries, and
curvilinear elements should be applied when curvilinear geometries are involved.

The simulation results show that the number of iterations required to attain the stop-
ping criterion is independent of the element order. Furthermore, the computational effort
of the method seems to have linear dependence on the number of degrees of freedom, and
the number of preconditioned conjugate gradient iterations appears to be independent of
the order of the spectral element basis, which confirms also the efficiency of the graph-
based multigrid preconditioner and makes the solver feasible for higher-order elements.
We also noticed that it is feasible to use a less tight stopping criterion for the low-order
elements and, on the other hand, a more tight stopping criterion for the higher-order el-
ements. This results in better efficiency without loss of accuracy. With higher-order
elements, the pollution effect is not eliminated, but better accuracy is achieved with less
work, when higher-order elements are used.
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YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja, suomenkieliseltä nimeltään Akustisten ja elastisten aaltojen välisen
neste–rakenne-vuorovaikutuksen numeerinen simulointi, käsittelee tehokkaiden ratkaisu-
menetelmien kehittämistä nesteen ja kiinteän aineen välisen vuorovaikutuksen tietokone-
simulointiin. Tutkimus keskittyy akustisten ja elastisten aaltojen etenemistä kuvaavien
Helmholtzin yhtälön ja Navier–Cauchy-mallin muodostamaan kytkettyyn systeemiin, jota
voidaan hyödyntää monimutkaisten käytännön sovellusten tietokonesimuloinnissa. Näi-
den akustisia painekenttiä ja elastisia materiaaleja kuvaavien osittaisdifferentiaaliyhtälöi-
den avulla voidaan mallintaa ja simuloida esimerkiksi vedenalaisten rakenteiden kestä-
vyyttä, maanjäristysaaltojen etenemistä sekä työkoneiden ohjaamojen tai konserttisalien
akustisia ominaisuuksia. Lääketieteessä ultraäänitutkimusten antamaa tietoa käyttäen
voidaan laskennallisesti mallintaa kudosten rakennetta. Ultraääntä sovelletaan myös siki-
ötutkimuksessa, lihas- ja kudosvaurioiden hoitamisessa, kiputilojen lievittämisessä sekä
leikkaus- ja syöpähoidoissa. Kaikuluotauksessa ultraäänen avulla mitataan etäisyyksiä
sekä tutkitaan vesistön pohjaa ja kalaparvia.

Aikaharmonisten aalto-ongelmien ratkaisemisessa käytetään yleensä kompleksiar-
voisia aikaharmonisia malleja. Mallien käsitteleminen tietokoneella vaatii diskretointia,
laskenta-alueen jakamista laskentapisteisiin, joka on perinteisesti toteutettu äärellisten e-
lementtien menetelmällä. Tämä johtaa suuriin indefiniitteihin yhtälöryhmiin, joille on
hankala kehittää tehokkaita ratkaisumenetelmiä. Erityisen haastavaksi aaltoyhtälöiden
ratkaiseminen tulee aallon pituuden lyhentyessä, jolloin numeerisen ratkaisun ja todel-
lisen ratkaisun välinen virhe kasvaa. Ratkaisun tarkkuuden takaaminen tässä tilanteessa
edellyttää erityisen tiheää diskretointia, mikä puolestaan vaatii runsaasti laskentaresurs-
seja.

Tässä työssä aikaharmonisten aalto-ongelmien ratkaisemiseen sovelletaan säätö-
teoriaan perustuvaa tekniikkaa sekä modernimpaa, korkeamman asteen, elementtimene-
telmää. Tehtävän ratkaisemisessa ei käytetä aikaharmonisia aaltoyhtälöitä, vaan aika-
harmoninen tehtävä esitetään tarkan säädettävyyden tehtävänä ajasta riippuvan mallin
avulla. Tämän jälkeen tehtävä muotoillaan pienimmän neliön optimointiongelmaksi, joka
ratkaistaan liittogradienttimenetelmällä. Gradientin laskenta, joka on menetelmän keskei-
nen osa, suoritetaan liittotilatekniikalla. Menetelmän tehokkuuden lisäämiseksi liittogra-
dienttialgoritmi pohjustetaan lohkodiagonaalisella matriisilla, ja pohjustuksen yhteydessä
muodostuvat jäykkyysmatriisin sisältävät yhtälöt ratkaistaan graafipohjaisella monihila-
menetelmällä.

Paikkadiskretoinnissa käytettävän spektraalielementtimenetelmän kantafunktiot o-
vat korkeamman kertaluvun Lagrangen polynomeja, joiden nollakohdat sijoittuvat Gauss-
Lobatto-pisteisiin. Numeerisessa integroinnissa sovelletaan Gauss–Lobatto-integrointi-
sääntöä, joka tässä yhteydessä mahdollistaa diagonaalisten massamatriisien muodostami-
sen. Paikkadiskretoinnin jälkeen saatava semidiskreetti yhtälöryhmä diskretoidaan ajan
suhteen joko keskeisdifferensseillä tai neljännen kertaluvun Runge-Kutta-menetelmällä.
Käänteismatriisien muodostaminen diagonaalisille massamatriiseille on helppoa, mikä
yhdessä edellä mainittujen eksplisiittisten aikadiskretointimenetelmien kanssa mahdol-
listaa tehokkaan aikasimuloinnin. Koska tässä työssä aikaharmonisten yhtälöiden ratkai-
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semiseksi kehitetty menetelmä sisältää ajasta riippuvan aaltoyhtälön ratkaisemisen, edellä
mainittuja diskretointimenetelmiä voidaan käyttää myös ajasta riippuvien aaltojen lasken-
nallisesti tehokkaaseen simulointiin.

Esitettyjen menetelmien tehokkuutta vertaillaan numeeristen esimerkkien avulla.
Numeeriset tulokset osoittavat korkeamman kertaluvun elementtimenetelmän käytöstä ai-
heutuvan tehokkuuden. Spektraalielementtimenetelmän yhteydessä sama tarkkuus saavu-
tetaan vähemmällä määrällä laskentaoperaatioita kuin perinteisellä äärellisten elementtien
menetelmällä. Parhaan tehokkuuden saavuttamiseksi korkeamman kertaluvun elementti-
menetelmän yhteydessä on syytä käyttää myös korkeamman kertaluvun aikadiskretointia.



APPENDIX 1 TIME-HARMONIC COUPLED PROBLEM

With pressure-displacement formulation the coupled problem is

−κ(x)2

ρ f (x)
Pf −∇ ·

(
1

ρ f (x)
∇Pf

)
= F, in Ω f , (221)

Pf = 0, on Γ0 f , (222)

iκ(x)Pf +
∂Pf

∂n f
= Yext, on Γe f , (223)

ρ f (x)ω2Us · ns +
∂Pf

∂n f
= 0, on Γi, (224)

−ω2ρs(x)Us −∇ · σ(Us) = F, in Ωs, (225)

Us = 0, on Γ0s, (226)

iωρs(x)BsUs + σ(Us)ns = Gext, on Γes, (227)

σ(Us)ns − Pf n f = 0, on Γi. (228)

If we use the velocity potential Φ instead of pressure in the fluid domain, the coupled
form is

−κ(x)2Φ −∇2Φ = FΦ, in Ω f , (229)

Φ = 0, on Γ0 f , (230)

iκ(x)Φ +
∂Φ
∂n f

= YΦext, on Γe f , (231)

iωUs · ns +
∂Φ
∂n f

= 0, on Γi, (232)

−ω2ρs(x)Us −∇ · σ(Us) = F, in Ωs, (233)

Us = 0, on Γ0s, (234)

iωρs(x)BsUs + σ(Us)ns = Gext, on Γes, (235)

σ(Us)ns + iωρ f (x)Φn f = 0, on Γi. (236)

When also the fluid domain is modeled by the displacements, we get the equations

−ω2ρ f (x)Uf − c2ρ f (x)∇ · (∇ · Uf) = F f , in Ω f , (237)

Uf = 0, on Γ0 f , (238)

iωρ f (x)B f Uf + c2ρ f (x)(∇ · Uf)n f = Y f ext, on Γe f , (239)

Us · ns + Uf · n f = 0, on Γi, (240)

−ω2ρs(x)Us −∇ · σ(Us) = F, in Ωs, (241)

Us = 0, on Γ0s, (242)

iωρs(x)BsUs + σ(Us)ns = Gext, on Γes, (243)

σ(Us)ns + c2ρ f (x)(∇ · Uf)n f = 0, on Γi. (244)



APPENDIX 2 GLOSSARY OF ACRONYMS

AB Adams–Bashforth (discretization)

AMG Algebraic multigrid

BDDC Balancing domain decomposition by constraints

BWD Backward (adjoint state)

Bi-CGSTAB Biconjugate gradient stabilized (method)

CD Central finite difference (discretization)

CFL Courant–Friedrichs–Lewy (stability condition)

CG Conjugate gradient

CPU Central processing unit

DDM Domain decomposition method

DOF (Number of) degrees of freedom

FDM Finite difference method

FEM Finite element method

FETI Finite element tearing and interconnecting

FSI Fluid-structure interaction

FWD Forward (state)

GBMG Graph-based multigrid

GL Gauss–Lobatto quadrature

GMG Geometric multigrid

GMRES Generalized minimal residual (method)

HUM Hilbert uniqueness method

IFEM Infinite element method

LAPACK Linear algebra package

ODE Ordinary differential equation

PDE Partial differential equation

PML Perfectly matched layer

PUM Partition of unity method

RK Runge–Kutta (discretization)

SEM Spectral element method

SOR Successive over-relaxation

UWVF Ultra weak variational formulation



APPENDIX 3 GLOSSARY OF SYMBOLS

Absorbing boundary in fluid Γe f
Absorbing boundary in solid Γes
Accuracy constant for element order r kr
Acoustic admittance β

Acoustic sound intensity I
Adjoint state variable
(including p, in some cases also ∂p

∂t , at each timestep) ẑ
Affine element mapping to the ith reference element Gi
Adiabatic compressibility κ

Angle α

Angular frequency ω

Bessel functions Jn
Body force in fluid (time-dependent) f
Body force in fluid (time-harmonic) F
Body force in solid (time-dependent) f
Body force in solid (time-harmonic) F
Boundary condition operator W
Boundary of Ω ∂Ω
Bounded obstacle Θ
Coarsest multigrid level k̃
Condition number κ

Control space Z
Control variable e0
Control variable e1
Coordinate system in the reference element (ξ, ζ)
Cost function (objective functional, least-squares functional) J
Coupling interface (time-dependent) γi = Γi × [0, T]
Coupling interface (time-harmonic) Γi
Coupling matrix from fluid to solid Asf = ((Asf)1, (Asf)2)T

Coupling matrix from solid to fluid Afs = ((Afs)1, (Afs)2)T

Damping matrix in fluid S f
Damping matrix in solid Ss
Damping matrix in fluid and solid S
Density ρ

Density at the steady-state ρ0
Density at the steady-state in the fluid ρ f 0
Density at the steady-state in the solid ρs0
Density difference ρ − ρ0 ρ̂

Density in fluid ρ f
Density in solid ρs

Derivative of the rth degree Legendre polynomial L
′
r

Displacement in fluid (time-dependent) uf = (uf1, uf2)T

Displacement in solid (time-dependent) us = (us1, us2)T
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Displacement in fluid (time-dependent) U f
Displacement in solid (time-harmonic) Us = (Us1, Us2)T

Displacement in solid, incident (time-harmonic) Usinc
Domain Ω
Domain of the fluid media (time-dependent) Q f
Domain of the fluid media (time-harmonic) Ω f
Domain of the solid media (time-dependent) Qs
Domain of the solid media (time-harmonic) Ωs
Elastic moduli tensor C
Element Ωi
Elementary vector ê
Energy E
Energy Eφs f
Exterior domain G
Finest multigrid level 0̃
Frequency f
Function space, infinite, scalar-valued V
Function space, infinite, vector-valued V
Function space, infinite, vector-valued V f
Function space, finite, scalar-valued Vr

h
Function space, finite, vector-valued Vr

h
Gradient g = (g0, g1)T

Gradient update in optimization algorithm v = (v0, v1)T

Gravity g
Hankel function Hn
Identity matrix I
Imaginary part Im
Imaginary unit i =

√−1
Initial condition e = (e0, e1)T

Initial residual in optimization g0 = ∇J(e0)
Kronecker delta δij
Krylov subspace K
Lamé parameter λ in fluid λ f
Lamé parameter λ in solid λs
Lamé parameter μ in fluid μ f
Lamé parameter μ in solid μs
Largest mesh stepsizes in fluid h f ,max
Largest mesh stepsizes in solid hs,max
Legendre polynomial of degree r Lr
Mass m
Mass matrix in fluid M f
Mass matrix in solid Ms
Mass matrix in fluid and solid M
Matrix coefficient in quadratic functional (non-self-adjoint) Λ

Matrix coefficient in quadratic functional (self-adjoint) A
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Mesh stepsize h
Number of degrees of freedom, total N̂ = 2Ns + Nf
Number of degrees of freedom in fluid N̂f = Nf
Number of degrees of freedom in solid N̂s = 2Ns
Number of diagonal elements in the matrix M n̂
Number of discretization points in fluid Nf
Number of discretization points in solid Ns
Number of elements Ne
Number of timesteps N
Objective functional J
Order of the basis functions r
Optimal control (solution of minimization) e∗
Optimal state ŷ(e∗)
Outward unit normal vector n = (n1, n2)T

Outward unit normal vector in fluid n f = (n f 1, n f 2)T

Outward unit normal vector in solid ns = (ns1, ns2)T

Pointwise values of the fluid and structure adjoint state
variables p
Pointwise values of the fluid and structure state variables
(time-dependent) u
Pointwise values of the fluid and structure state variables
(time-harmonic) U
Poisson ratio ν

Preconditioner L
Pressure (time-dependent) p f
Pressure, incident (time-dependent) p f inc
Pressure, scattered (time-dependent) p f scat
Pressure (time-harmonic) Pf
Pressure, incident (time-harmonic) Pf inc
Pressure, scattered (time-harmonic) Pf scat
Prolongation operator from level (l + 1) to finer level l P̃l

l+1
Propagation direction ω = (ω1, ω2)
Radius r
Radius of circular fluid domain a f
Radius of circular solid domain as
Real part Re
Reference element Ωref = [0, 1]2

Restriction operator from level l to coarser level (l + 1) R̃l+1
l

Right-hand side of state equation (time-dependent) F
Right-hand side of state equation (time-harmonic) �

Right-hand side vector in fluid (time-dependent) f f
Right-hand side vector in fluid (time-harmonic) F f
Right-hand side vector in solid (time-dependent) fs = ((fs)1, (fs)2)T

Right-hand side vector in solid (time-harmonic) Fs = ((Fs)1, (Fs)2)T

Scaling factor in optimization γ
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Search direction in optimization w
Set of Gauss–Lobatto points ξi, i = 1, . . . , r + 1
Set of Gauss–Lobatto weights wi, i = 1, . . . , r + 1
Set of Lagrange interpolants ϕ̂j(ξi), j = 1, . . . , r + 1
Set of polynomial basis functions of order r Qr

Spatial variable x = (x1, x2) ∈ R2

Smallest mesh stepsizes in fluid h f ,min
Smallest mesh stepsizes in solid hs,min
Speed of pressure waves (P-waves) in solid cp
Speed of shear waves (S-waves) in solid cs
Speed of sound in fluid c
Stability constant for element order r αr
State equation s
State equation with zero right-hand side s0
Step length to optimization direction η

Stiffness matrix in fluid K f
Stiffness matrix in solid Ks
Stiffness matrix in fluid and solid K
Stopping criterion in optimization algorithm ε

Strain tensor ε

Stress tensor σ

Source function on boundary γ0 f (time-dependent) y0
Source function on boundary Γ0 f (time-harmonic) Y0
Source function on boundary γe f (time-dependent) yext
Source function on boundary Γe f (time-harmonic) Yext
Source function on boundary γ0s (time-dependent) g0
Source function on boundary Γ0s (time-harmonic) G0
Source function on boundary γes (time-dependent) gext
Source function on boundary Γes (time-harmonic) Gext
State variable
(including u, in some cases also ∂u

∂t , at each timestep) ŷ
Thermodynamical internal energy u
Test function in space V v
Test function in space V v
Test function in space V f v f
Time t
Time derivative of the pointwise values of
the fluid and structure variables v = ∂u

∂t
Timestep length Δt
Total time T
Transition function θ

Transition time interval length Ttr
Vector coefficient in quadratic functional b

Vector coefficient in quadratic functional c

Velocity potential (time-dependent) φ
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Velocity potential, incident (time-dependent) φinc
Velocity potential, scattered (time-dependent) φscat
Velocity potential (time-harmonic) Φ
Velocity potential, incident (time-harmonic) Φinc
Velocity potential, scattered (time-harmonic) Φscat
Velocity v
Velocity at the steady-state v0
Velocity at the steady-state in the fluid v f 0
Velocity at the steady-state in the solid vs0
Velocity difference v − v0 v̂
Velocity in fluid v f
Velocity in solid vs
Vertical distance from zero level z
Wavelength �
Wavenumber in fluid κ

Wavenumber of pressure waves (P-waves) in solid κp
Wavenumber of shear waves (S-waves) in solid κs
Young modulus E



APPENDIX 4 GLOSSARY OF NOTATIONS

Derivatives f ′(t, y(t)) = d f (t,y(t))
dt

Partial derivatives fxy(x, y, z) = ∂
∂y ( ∂ f (x,y,z)

∂x )

f (i,j)(x, y) = ∂j

∂yj (
∂i f (x,y,z)

∂xi )

Partial integration
∫ b

a f ′gdx = f g − ∫ b
a g′ f dx

Nabla operator ∇ = ex
∂

∂x + ey
∂

∂y + ez
∂
∂z ,

where ei is unit vector pointing in the
direction i of the basis coordinates.

Gradient of u ∇u = ex
∂

∂x + ey
∂

∂y + ez
∂
∂z u

= ∂u
∂x ex + ∂u

∂y ey + ∂u
∂z ez

= ( ∂u
∂x , ∂u

∂y , ∂u
∂z )

Divergence operator ∇·

Divergence of u ∇ · u =
(
ex

∂
∂x + ey

∂
∂y + ez

∂
∂z
) · (uxex + uyey + uzez)

= ∂ux
∂x + ∂uy

∂y + ∂uz
∂z

Laplace operator � = ∇ · ∇
= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Laplacian of u ∇2u = ∇ · (∇u)
= ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2

Double dot product u : v = ∑i ∑j uijvji
of tensors u and v

From the divergence theorem
∫

Ω ∇ · f dΩ =
∫

∂Ω f · n dΩ and by use of the product
rule ∇ · (v∇u) = ∇v · ∇u + v∇2u we get the Green’s first identity

∫
∂Ω

v
∂u
∂n

dS =
∫
Ω

∇v · ∇u dΩ +
∫
Ω

v∇2u dΩ,

where ∂u
∂n = n · ∇u and n is the unit outward pointing normal vector on the boundary

∂Ω. This is valid for any region Ω and any functions u and v.
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The space of square-integrable functions,

L2(Ω) = {v : Ω → Rn :
∫
Ω

|v|2 < ∞}.

The space of functions and derivatives in L2(Ω),

H1(Ω) = {v ∈ L2(Ω),∇v ∈ L2(Ω)}.

The space of functions in H1(Ω) vanishing on Γ, which is a part of the boundary of Ω,

H1
Γ(Ω) = {v ∈ H1(Ω), v|Γ = 0}.

The subspace of zero-mean functions in H1(Ω),
◦

H
1
(Ω) = {v ∈ H1(Ω),

∫
Ω

v = 0}.

The space of vector fields and divergences in L2(Ω),

H(div, Ω) = {v ∈ L2(Ω),∇ · v ∈ L2(Ω)}.
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