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In this paper we present the details of a simple lightweight implementation of so called sparse
forward mode automatic differentiation (AD) in the C++ programming language. Our im-
plementation and the well known ADOL-C tool (which utilizes taping and compression tech-
niques) are used to compute Jacobian matrices of two nonlinear systems of equations from
the MINPACK-2 test problem collection. Timings of the computations are presented and
discussed. Moreover, we perform the shape sensitivity analysis of a time-harmonic Maxwell
equation solver using our implementation and the tapeless mode of ADOL-C, which imple-
ments the dense forward mode AD. It is shown that the use of the sparse forward mode can
save computation time even though the total number of independent variables in this example
is quite small. Finally, numerical solution of an electromagnetic shape optimization problem
is presented.
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1. Introduction

Derivatives are important in many fields of scientific computing, including solution
of nonlinear equations, sensitivity analysis, and optimization. For example the so-
lution of computationally expensive shape optimization problems [? ] can often be
made more robust and efficient by the use of good quality derivative information.

Automatic (or algorithmic) differentiation (AD) is a technique to numerically
evaluate the derivatives of a function defined as a computer program exactly and
with minimal user intervention. It exploits the fact that the computer program can
be represented as a sequence of elementary arithmetic operations, and systemati-
cally applies the chain rule of differentiation to these operations. An introduction
to both theoretical and implementational aspects of AD can be found in [? ].

Automatic differentiation can be implemented using either operator overloading
or source transformation. Operator overloading exploits the possibility provided
by certain programming languages to redefine all arithmetic operators for user
defined types. One then redefines (overloads) all required operations such that
they implement not only the operation itself, but also the computation of necessary
derivative information.

∗Corresponding author. Email: jukka.i.toivanen@jyu.fi
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Original code AD version

double v1 = 1.0; addouble v1 = 1.0;

double v2 = 2.0; addouble v2 = 2.0;

double f; addouble f;

v1.declareIndependent();

v2.declareIndependent();

f = sin(v1*v1 + v2*v2); f = sin(v1*v1 + v2*v2);

Table 1. Original and differentiated versions of a simple calculation.

An example of this approach in C++ programming language is shown in Table 1,
where the original and the AD version of a simple computation are shown. One must
identify so called independent variables, i.e. variables with respect to which one
wishes to differentiate the code. Variables that depend on the independent variables
directly or indirectly are called active variables. They must be represented with a
special AD type, in this example called addouble. The part of the code performing
the actual computation remains exactly the same from the user point of view,
since the compiler takes care of calling the appropriate functions implementing the
derivative computation. This is an important feature of this approach when large
simulation codes are considered.

The operator overloading approach typically has some computational overhead,
since regular floating point variables have to be replaced by much more complicated
objects throughout the code. Some implementational tricks that can reduce the
overhead include the use of expression templates and traits [? ] and the use of
vectorization [? ].

Source transformation, on the other hand, requires running the original program
code through a preprosessor, which augments the code with the derivative compu-
tation routines. The augmented code is then compiled in a standard fashion. This
approach may produce somewhat more efficient code, and it can also be applied
in context with programming languages such as FORTRAN 77 that do not sup-
port operator overloading [? ]. However, such tool is much more complicated to
implement, which means that a typical end user in general has to rely on existing
tools.

1.1. Forward and reverse modes

Let us consider the differentiation of a computer program implementing a (vector)
function β = F (α), where α = (α1, . . . , αn) and β = (β1, . . . , βm). The execution of
the program can be considered as a sequence of assignments vi = φi(all relevant vj),
where φi is some elementary operation having typically one or two input variables
and v is a vector containing all variables present in the computation:

v = (v1, . . . vn︸ ︷︷ ︸
α

, vn+1, . . . , vn+p, vn+p+1, . . . , vn+p+m︸ ︷︷ ︸
β

).

The variables vn+1, . . . , vn+p are the intermediate variables created during the com-
putation. In the left of Table 2 the partition of the program shown in Table 1 into
elementary operations is presented.

Alternatively, the execution process can be seen as the solution of the system of
nonlinear equations

0 = E(v(α), α) ≡ (φi(v1, . . . vi−1, α) − vi)i=1,...,n+p+m (1)
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where φi is the ith elementary operation of the user’s code. For notational purposes
we assume that the first n elementary operations are the initializations φi = αi,
and the remaining p + m operations then depend on α only indirectly. Moreover,
we assume that the last m operations represent the assignment of the results of
F (α) to the dependent variables β.

We also assume that each variable is affected by exactly one assignment, i.e.
no variables are ever overwritten, and that the right hand side of the assignment
vi = φi does not depend on vi, i.e. there are no iterative assignments. However, in
the actual computer code such cases can still be allowed as long as proper care is
taken in the implementation of automatic differentiation. See [? ] for details.

Performing implicit differentiation to (1) we obtain that

∂v

∂α
= −

(
∂E

∂v

)−1 ∂E

∂α
= −



−I 0 0

B L − I 0

R T −I




−1 


I

0

0


 . (2)

The so called extended Jacobian can be written as

∂E

∂v
= C − I, where Cij =

∂φi(v1, . . . , vi−1)

∂vj
. (3)

Since variables are always evaluated before they are used as arguments, the oper-
ation φi only takes arguments having an index lower than i, and C is thus strictly
lower triangular. Since the elementary operations φi usually take at most two ar-
guments, the matrix C − I is also extremely sparse. For example the extended
Jacobian related to the code in Table 1 is shown in the right of Table 2.

v1 = 1 -1 0 0 0 0 0
v2 = 2 0 -1 0 0 0 0
v3 = v1*v1 2v1 0 -1 0 0 0
v4 = v2*v2 0 2v2 0 -1 0 0
v5 = v3+v4 0 0 1 1 -1 0
v6 = sin(v5) 0 0 0 0 cos(v5) -1

Table 2. The elementary operations (left) and the resulting extended Jacobian (right) for the code of Table 1.

It follows that the derivatives of the final variables of interest can be obtained as

∂β

∂α
= R + T (I − L)−1B. (4)

In the so called forward mode automatic differentiation one solves the lower trian-
gular system

(I − L)Z = B (5)

by forward substitutions, and computes

∂β

∂α
= R + TZ. (6)

Notice that in forward mode AD there is no need to explicitly assemble (2) as a
linear system. Instead the derivative information can be computed “on the fly”, i.e.
the derivatives of each intermediate variable can be computed when the generating
operation is executed. When some intermediate variable is no longer needed the
derivatives of that variable can also be deleted from memory.
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Alternatively, one may use the so called reverse mode, and solve the upper tri-
angular system

(I − L)T Z̃ = T T (7)

and compute

∂β

∂α
= R + Z̃T B. (8)

The reverse mode has theoretical advantages over the forward mode if m < n, since
(7) involves fewer right hand sides than (5). However, to solve (7) by backward
substitution, one must go through the computation in reverse order. One way to
implement this is to record the necessary information about the operations on a
so called “tape” during the execution of the program, and then traverse the tape
in reverse order.

In principle one can also consider other ways to solve the system (2). Such meth-
ods are not very common in practice since the size of the system is often extremely
large, which presents obvious problems regarding the storage of the system. Such
approaches may still be feasible when applied to relatively small systems arising
from the differentiation of some subroutine or code block inside a larger code. For
example LU factorization approach to the solution of the system (2) is discussed
in [? ].

1.2. Exploitation of sparsity

In (5) there are n and in (7) there are m right hand sides, both of which can be
extremely large numbers. This is the case especially when automatic differentiation
is used to compute the Jacobian of a nonlinear system of equations. Thus, solving
for all the right hand sides simultaneously presents some difficulties. However, in
many cases the Jacobian matrices are sparse, which should be somehow exploited.

One way to do this is the computation of Jacobians using compression [? , Chap.
8]. The idea is to first find out the sparsity pattern of the Jacobian. Using e.g. graph
coloring methods [? ] structurally orthogonal columns of the Jacobian (columns
that do not have non-zero entries on the same row) can then be grouped together
and represented by only one independent variable. In this way, the number of inde-
pendent variables, and thus the number of right hand sides in (5), can sometimes
be greatly reduced.

Another possibility is to exploit sparsity of the derivatives using sparse forward
propagation [? , Chap. 7]. The idea is to solve (5) for all right hand sides simul-
taneously, but to take advantage on the potential sparsity of the vectors ∂v/∂α.
The solution of (5) through forward substitutions can be written as

∂vi

∂α
=

∑

j

∂φi

∂vj

∂vj

∂α
. (9)

Here the summation goes through only those vj ’s on which the operation φi actually
depends (usually one or two variables).

In the sparse forward propagation approach the sum (9) is implemented as a lin-
ear combination of sparse vectors. This approach is often called dynamic exploita-
tion of sparsity, since there is no need to have any a priori sparsity information
or to perform any separate sparsity pattern detection phase. Instead the sparsity
pattern of each intermediate variable is determined at the run time.
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An implementation of such approach using the SparsLinC library and the
ADIFOR tool is presented in [? ]. A MATLAB implementation exploiting the
sparse matrix class for the storage of sparse derivative vectors is presented in [? ].

The sparse forward mode is sometimes criticized for having too much computa-
tional overhead for practical purposes [? ]. On the other hand, the approach offers
an elegant and user friendly way to exploit sparsity of the derivatives. We claim
that with a suitable implementation this approach has only a modest computational
overhead, and it is indeed suitable for practical purposes in many applications. The
rest of this paper deals with the verification of our claim.

2. Simple implementation of sparse forward mode

In this section we present our implementation of sparse forward mode automatic
differentiation. The implementation is simple and does not require any external
libraries for the handling of the sparse derivative vectors.

2.1. Index domain propagation

Consider an elementary binary operation w(α) = φ(u(α), v(α)), where α are the
independent variables. The chain rule of differentiation applied to the operation
gives

∂w

∂αj
=

∂φ

∂u

∂u

∂αj
+

∂φ

∂v

∂v

∂αj
. (10)

The partial derivatives ∂φ/∂u and ∂φ/∂v of elementary operations are known.
Therefore the partial derivatives ∂w/∂αj can be computed as long as the partial
derivatives of the arguments are known, which is always the case in forward mode
automatic differentiation.

The essence of the sparse forward mode is that the computation of ∇w :=
(∂w/∂α)T does not (necessarily) require going through all the independent vari-
ables. Simplifying the analysis of Griewank and Walther [? ], let us define the index
domain χ of a variable x as

χ(x) = {i | ∂x/∂αi 6= 0}. (11)

From (10) we immediately notice that χ(w) ⊂ χ(u)∪χ(v). The partial derivatives
rarely cancel out, and in the practical implementation we assume that χ(w) =
χ(u) ∪ χ(v). The sets χ(u) and χ(v) are in general not the same, which means
that in order to evaluate the gradient ∇w we must form the union χ(u)∪χ(v) and
compute the corresponding partial derivatives.

Our implementation of sparse forward mode automatic differentiation is in C++,
and is based on the operator overloading technique. We have defined a class
addouble, which holds the value of one real variable and its partial derivatives
with respect to the independent variables. The addouble objects carry along the
index domain information, which enables the computation and storage of only
non-zero partial derivatives.

We save the partial derivatives of a variable x in two vectors, x.ind and x.der. The
vector x.ind holds the indices χ(w), while x.der holds the derivatives x.der(i) =
∂x/∂αx.ind(i). The technique is illustrated in Table 3, where the ind and der vectors
of the intermediate variables related to the code example in Table 1 are shown.

With a proper implementation, the computational complexity of the evaluation
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Variable Value Ind Der
v1 1.0 {1} {1.0}
v2 2.0 {2} {1.0}
v3 1.0 {1} {2.0}
v4 4.0 {2} {4.0}
v5 5.0 {1, 2} {2.0, 4.0}
v6 -0.959 {1, 2} {0.567, 1.135}

Table 3. Values of the ind and der vectors.

of the gradient ∇w (with w = φ(u, v) and φ being an elementary operation) is
of the order O(|χ(w)|). Here | · | denotes the size of a set. In our implementation
we keep the elements of the vector ind in increasing order. This allows us to form
the union of two index domains in a time proportional to the size of the union
set, without the need to use temporary arrays of size n, such as the expanded real
accumulator used in [? ].

An example implementation of the evaluation of the gradient ∇w = φ(u, v) in
pseudo-code is shown as Algorithm 1. In the code we use the notation: x.ind = set
χ(x) in increasing order, x.der(i) = ∂x/∂αj with j = x.ind(i), x.N = size of the set
χ(x), and the vectors are assumed to be indexed starting from 1. The counters up,
vp and wp refer to the current index in u.ind, v.ind and w.ind respectively.

Algorithm 1 Gradient evaluation

up ← 1
vp ← 1
wp ← 0
while ((up ≤ u.N) or (vp ≤ v.N))

if (vp > v.N) then
ind ← u.ind(up)
ud ← u.der(up)
vd ← 0
up ← up + 1

else if (up > u.N) then
ind ← v.ind(vp)
vd ← v.der(vp)
ud ← 0
vp ← vp + 1

else if (u.ind(up) < v.ind(vp)) then
ind ← u.ind(up)
ud ← u.der(up)
vd ← 0
up ← up + 1

else if (v.ind(vp) < u.ind(up)) then
ind ← v.ind(vp)
vd ← v.der(vp)
ud ← 0
vp ← vp + 1

else
ind ← u.ind(up)
ud ← u.der(up)
vd ← v.der(vp)
up ← up + 1
vp ← vp + 1

end if
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wp ← wp + 1
w.ind(wp) ← ind

w.der(wp) ← ∂φ
∂u

* ud + ∂φ
∂v

*vd
end while
w.N ← wp

The algorithm produces the vector w.ind, which is automatically in increasing
order, and computes the corresponding partial derivatives. This is a simple refer-
ence implementation and probably has room for optimization, but there indeed are
only O(1) operations for each non-zero partial derivative of w.

The implementation of unitary operations such as sin or exp is easier than
binary operations, as no union of index domains has to be formed. Considering an
elementary unitary operation w = φ(u) we can simply assume that χ(w) = χ(u),
and the partial derivatives are obtained as

∂w

∂αj
=

∂φ

∂u

∂u

∂αj
(12)

for all j ∈ χ(u).

2.2. Memory allocation

Next we present three possible approaches for the allocation of memory for the
addouble objects.

(1) In the simplest (static) implementation each addouble object has a fixed
space for the vectors ind and der. This space has to be larger than the
absolute maximum size of the index set of any active variable, and this
maximum has to be known at compile time. Exceptions are variables that
are known to have dense derivative vectors. For an example of such variables
see the note on the handling of partially separable functions in Section 2.3.
Fortunately there are usually only few of these kind of variables, and it
is often known in advance which variables belong to this class. Therefore
these variables can be represented using objects of a different type.

(2) In a completely dynamic approach the space needed for the derivatives
of the variable w could be allocated dynamically when assignment to the
variable w is made. One problem with this approach is that the size of the
index set χ(w) of a result variable of a computation w = φ(u, v) is not
known in advance, but only after the Algorithm 1 is executed. One could
first compute ind and der vectors of the results variable in large temporary
arrays and then allocate only the amount of space actually needed for the
derivatives of the result variable. This approach would completely avoid
the allocation of extra space, but has the drawback of having to perform
an extra phase of copying the information to the result variable.

(3) Alternatively, one can use the dynamic approach and overestimate the size
of the index set |χ(w)| by |χ(u)| + |χ(v)|. One can then allocate the space
before executing Algorithm 1 and store the derivative information directly
into the result variable.

In our tests we have found out that dynamic memory allocation often causes
significant overhead, and therefore we decided to use the static approach. Before the
compilation of the code, the user must specify an overestimate to the maximum size
of the index domain of any active variable. All active variables then have that much
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room for the derivatives. Fortunately, the maximum number of active variables
alive at each moment during the computation is usually quite modest, since most
of the intermediate variables are used only as arguments to following elementary
operations, and are destroyed quite soon after they are created. Therefore allocating
the derivative arrays of the active variables based on a relatively rough overestimate
is usually feasible.

2.3. Partially separable functions

A class of functions that deserves special attention are partially separable functions
[? ]. Let a function f be represented as a sum

f =
m∑

i=1

fi (13)

where each gradient ∇fi is sparse. Then f is called partially separable. Quite often,
however, the gradient ∇f of a partially separable variable is dense, i.e. has O(n)
non-zero components.

A typical example of such a variable in the finite element setting is an integral
type functional depending on the discrete solution:

f =

∫

Ω
g(uh) where uh =

n∑

i

qiϕi, (14)

q are the degrees of freedom and ϕ are the basis functions. Such functional de-
pends on all the degrees of freedom whose associated basis functions have support
belonging to the domain of integration Ω. However, in the finite element setting
integrals are computed elementwise:

f =

∫

Ω
g(uh)dx =

∑

i

∫

Ki

g(uh)dx

︸ ︷︷ ︸
fi

, (15)

where the summation goes through the elements Ki constituting Ω. In the element
Ki the function uh depends only on a few degrees of freedom, and therefore the
gradient of fi with respect to q is sparse.

The derivatives of each fi in (13) can be efficiently computed using the sparse
forward mode AD. On the other hand, it is more efficient to represent the gradi-
ent of the left hand side f as a dense vector. Namely, adding an entry to a dense
vector can be implemented as an O(1) operation, whereas adding a new entry to
our sparse vector may require moving all existing entries. To this end we have im-
plemented a separate class to represent variables having a dense derivative vector,
and overloaded the += operator to enable efficient summation of sparse gradients.

2.4. Code modification

We conclude this section with a summary of the steps that are required to modify
the original code into a one that is able to differentiate the result variables with
respect to given independent variables.

The independent variables must be represented with the addouble type, and
they must be declared to be independent before any actual computations take
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place. Throughout the code, each variable that depends on the independent vari-
ables must be defined to be of the addouble type instead of the regular double

type. For the simplicity of implementation, other doubles may also be represented
by addoubles, but unnecessary replacements will result in some decrease in com-
putational performance.

Compiler errors can be utilized to detect which variables need to be represented
by addoubles, since the compiler will give an error if an AD type variable is as-
signed to a regular double variable. This is why one should not define automatic
conversions from addouble type to a regular double, because such definitions make
it easy to accidentally lose some derivative information. Instead, a special routine
returning the value of the variable should be used in cases when a AD variable
must be converted into a regular double, for example to interact with external IO
routines.

Since addouble is a user defined type, all operations involving this type must be
explicitly defined (overloaded) before they can be used. Fortunately, the number
of different operations present in a typical code is quite modest. The header file
containing the definitions of the overloaded operations must be included into the
compilation of the program.

3. Differentiation test cases

In this section we compare the performance of our sparse forward mode implemen-
tation to the ADOL-C tool [? ]. Computations were performed on a HP ProLiant
DL585 server with 4 AMD Opteron 885 2.6 GHz dual core processors and 64 GB
memory. No parallelization was exploited in the codes. GCC compiler version 4.0.2
with the optimization flag O4 was used to compile all codes.

In all the examples fixed size arrays (see Subsection 2.2) were used for the storage
of the derivative information. A rather coarse overestimate 100 was used as the
amount of space that was allocated for the derivatives.

3.1. MINPACK-2 test problems

First we consider problems defined in the MINPACK-2 test problem collection
[? ]. Codes in the collection are originally written in FORTRAN, but for this
purpose a few of them were rewritten in C by the authors. The test problems
considered here represent systems of nonlinear equations. Each example code takes
as input the solution candidate vector x, and computes the corresponding residual
vector. In this test the Jacobian matrices related to these problems are computed
using our implementation of the sparse forward propagation and the ADOL-C tool.
Components of the input vector x are defined to be the independent variables, and
components of the residual vector are the dependent variables.

Let T (F ) be the wall clock time consumed to the computation of the residual
vector with the original code that uses regular double variables. Furthermore, let
T (J) be the wall clock time consumed to the computation of the Jacobian using the
AD version of the code. The so called runtime ratio of the Jacobian computation is
then defined to be T (J)/T (F ). Thus the runtime ratio is affected by the extra work
that is needed to compute the residual vector and its derivatives (i.e. the Jacobian)
instead of just the residual vector, and the computational overhead associated to
the specific AD implementation. Wall clock time is used instead of CPU seconds
because it takes into account also the time consumed to IO operations. To get
more accurate timings, the computations were executed 20 times, and the average
computation time was used to calculate the runtime ratio.
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Figure 1. Runtime ratios for the FIC test problem.

We utilize the sparse_jac driver of ADOL-C, which computes the Jacobian by
compression. Default options were used for the sparsity pattern computation. We
refer to [? ] for details on the ADOL-C tool. The compression technique involves
the detection of the sparsity pattern and a coloring phase, after which the eval-
uation of the Jacobian can be performed. For subsequent Jacobian computations
the sparsity pattern detection and coloring phases are not required anymore, if the
sparsity pattern of the Jacobian remains the same. Therefore the ADOL-C timings
are presented as two different values: the time consumed for the sparsity pattern
detection and coloring (denoted by ADOL-C Coloring in Figures 1 and 2), and
the time consumed on the evaluation of the Jacobian (ADOL-C Jacobian in the
Figures). The runtime ratio of the sparsity pattern detection and coloring phase is
defined similarly than in the case of the Jacobian computation.

Runtime ratios of MINPACK-2 problems called Flow in a Channel (FIC) and
Swirling Flow between Disks (SFD) are shown in Figures 1 and 2, respectively.
As explained in [? ], from the sparsity structure of the Jacobians related to these
problems it follows that the runtime ratios should be approximately constant with
respect to n when sparse derivative propagation or compression techniques are
used. Based on the Figures we can conclude that this really is the case with the
implementations considered here. In these examples the number of non-zeros per
row of the Jacobian does not grow with the number of independent variables. For
the FIC test case the number of non-zeros per row of the Jacobian was between
6 and 9, except for two rows representing boundary conditions and having only 1
non-zero. The number of colors (columns in the compressed Jacobian) was 9. For
the SFD test case the number of non-zeros per row was between 6 and 14, except
for three boundary condition rows, and the number of colors was 14.

Results of similar differentiation tests using the FORTRAN versions of the same
test problems are reported in [? ]. In that article the ADIFOR tool [? ] is used as a
version implementing the sparse forward propagation with the aid of the SparsLinC
library. Tests were run on two different platforms, and the runtime ratios 32.3 and
161.0 for the FIC problem and 25.2 and 156.0 for the SFD problem are reported.

From the Figures 1 and 2 we can see that the sparsity pattern detection and
coloring phase is a rather computationally expensive operation. However, it has to
performed only once in the case of consecutive Jacobian evaluations with a fixed
sparsity pattern. From the runtime rations we can calculate that performing three
or more Jacobian evaluations in the case of the FIC problem is already cheaper
using ADOL-C and the compression technique than using our implementation of
the sparse forward mode. In the case of the SFD problem four or more Jacobian
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Figure 2. Runtime ratios for the SFD test problem.

evaluations becomes cheaper using ADOL-C.
These test programs involve only very simple computations, and do not there-

fore take very long to execute. The average function evaluation times varied from
0.00032 to 0.015 seconds for the FIC test problem, and from 0.00047 to 0.022 sec-
onds for the SFD problem. In these cases the tape created by the ADOL-C tool
involves only relatively small amount of operations, and can easily fit into the mem-
ory. Next we will consider the differentiation of a much more complicated code, in
which case the tape becomes considerably larger.

3.2. Electromagnetic simulator

In this section we discuss the differentiation of a complete electromagnetic simulator
with respect to geometrical changes. The simulator is based on the so called method
of moments (MoM), which is a boundary element type method. For more details
on the techniques employed in the solver we refer to [? ], and discussion on the
sensitivity analysis of the solver and some optimization examples can be found in
[? ].

We consider a metallic perfectly conducting antenna in a homogeneous medium.
The antenna simulation problem is formulated as the electric field integral equation
(EFIE) for the unknown electric current density J as

(
−1

iωε0
∇S(∇s · J)(r) + iωµ0S(J)(r)

)

tan

= −E
p
tan(r), r ∈ S. (16)

Here tan denotes tangential field component on the surface of the antenna S, ∇s·
denotes the surface divergence, Ep is the primary electric field due to an excitation,
and S is the single-layer integral operator given by

S(F )(r) =

∫

S

G0(r, r′)F (r′) dS′, (17)

where G0 is the free space Green’s function.
Using the method of moments, the EFIE (16) can be reduced to a matrix equation

A u = b, (18)

where A is a full N×N complex valued system matrix, u is a N×1 complex vector
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containing the coefficients of the basis function representation of the unknown
current J , and b is a N × 1 excitation vector. In the numerical implementation
of the solver the surface is divided into planar triangular elements and the basis
functions are the Rao-Wilton-Glisson (RWG) functions [? ], denoted by ϕ1, . . . , ϕN .
The elements of the matrix A are given by

Amn =
1

iωε0

∫

S

∫

S

∇s · ϕm(r)G0(r, r′)∇s · ϕn(r′) dS′ dS+

iωµ0

∫

S

∫

S

ϕm(r) · ϕn(r
′)G0(r, r′) dS′ dS. (19)

Using a voltage gap feed (delta generator), the elements of the excitation vector
become

bm = −V lm, (20)

where V is the voltage at the port and lm is the length of the edge at the excitation
port. Here m runs through all edges at the port.

After solving the equation (18) one can calculate the response of the system
from the vector u. One might be interested for example in the optimization of the
antenna for a given input impedance [? ] or maximization of the antenna gain [? ].
Our aim is to find the sensitivity of the objective function with respect to variations
in the antenna geometry parametrized by means of some set of design variables α.

Since the objective functions usually depend on the design α implicitly through
the solution vector u, straightforward application of the automatic differentiation
to the whole evaluation procedure would require differentiation of the linear system
solver. This can be avoided by utilizing the well known adjoint sensitivity analysis
technique as follows.

The derivative of a real valued objective function J with respect to design vari-
able αk is given by

dJ

dαk
=

∂J

∂αk

+ ℜ

[
(pT

(
∂b

∂αk

−
∂A

∂αk

u

)]
(21)

where the derivative ∂J /∂αk reflects the explicit dependence of J on the design
variable, and p is solved from the adjoint equation

AT p = (∇uJ ), with ∇uJ := ∇ℜuJ + i∇ℑuJ . (22)

Here ℜ and ℑ denote the real and imaginary parts of a complex variable respec-
tively, i is the imaginary unit, bar over a vector denotes complex conjugation and
T is the transpose without a complex conjugation. In this approach we only need
to differentiate the part of the code that computes the system matrix A and the
right hand side vector b with respect to the design variables.

As a differentiation test case we consider the so called Yagi-Uda antenna system
[? ], a sketch of which is shown in Figure 3. Parts of the antenna are, from left to
right, the reflector element, the driven element and a variable number of director
elements. Each of the elements is modeled as a three dimensional cylinder, and
discretized using a boundary mesh like the one shown in Figure 4.

First we consider differentiation with respect to the lengths of the antenna el-
ements l1, l2, . . . , ln. The nodal coordinates of the mesh are related to the design

12
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Figure 3. Sketch of the Yagi-Uda antenna system.

Figure 4. Boundary mesh of one of the antenna elements.

variable vector α by the relation

yj = yref
j ∗ αk (23)

where yj and yref
j are the y coordinates of the jth mesh node in the deformed mesh

and in the reference mesh respectively, and k is the index of the antenna element
that contains the mesh node j. In other words, each design variable affects the y
coordinates of all nodes belonging to one particular antenna element.

In terms of the previous notations, the dependent variables are now

β = {A11, A12, . . . , ANN , b1, . . . , bN}T , (24)

F is the assembly procedure, and the dependence of β on α is through the mesh
nodal coordinates.

Certain sparsity properties follow from the expression of the system matrix ele-
ments (19). Namely, the system matrix entry Amn depends only on the geometry
of the elements belonging to the support of ϕm or ϕn. Since the support of each
basis function belongs to exactly one antenna element, it follows that each system
matrix entry depends on either one or two design variables.

If the whole assembly process to calculate A and b is differentiated at once, the
disadvantage of the tape based approach becomes clear. Namely, taping the whole
process is extremely memory consuming. We performed a test with two antenna
elements (reflector and driven element). In this case there were only 264 basis
functions, but still the taping included a massive number of 188,736,243 operations,
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Figure 5. Runtime ratios for the electromagnetic simulator.

and as a result the ADOL-C tool wrote three files of sizes 69 MB, 180 MB, and
1.6 GB to the disk. The runtime ratio of this approach was 160.7, which can be
considered quite large since there are only two design variables. This was probably
due to the fact that the tape could no longer fit into the memory, but had to be
written to the disk.

Aside from the tape based approach we tested the tapeless mode offered by
the ADOL-C. It is basically an implementation of the traditional forward mode
automatic differentiation without exploitation of sparsity. This approach is actually
a quite natural choice for this example, since the total number of independent
variables is relatively small.

Our aim is to show that despite of the small total number of design variables
exploitation of the sparsity in the forward propagation still pays off. Figure 5 shows
the runtime ratios of the tapeless (dense) mode ADOL-C and our implementation
of the sparse forward mode as the number of antenna elements in the model is
increased. The runtime ratios are the averages over five different computations.

As expected due to the aforementioned sparsity structure of the variables, the
runtime ratio of the sparse forward mode remains approximately constant inde-
pendently of n. On the other hand, the tapeless mode of ADOL-C does not exploit
sparsity, but differentiates all active variables with respect to all independent vari-
ables. Therefore the runtime ratio of this approach grows with n. We can see, that
when the number of design variables exceeds seven, the sparse forward mode is
more efficient than the dense approach.

Notice that this is not in any way an extreme example. One can easily imagine
for example shape optimization problems where the design variables affect only a
very small portion of the computation domain. One could of course exploit such
sparsity manually by excluding the system matrix entries that are not affected
by the design variables from the differentiation, but this kind of approach would
require extra bookkeeping and be prone to errors. Utilizing the sparse forward mode
one can simply define the relations of the mesh nodes to the design variables, and
let the sparsity capturing technique make sure that only non-zero derivatives are
computed. This happens at the price of a relatively small computational overhead.

4. Optimization example

In this section we consider optimization of a Yagi-Uda array that has six elements.
The optimization problem is the minimization of the square of the absolute value
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of the so called scattering parameter S11 over a set of frequencies:

min
α

max
f

|S11(f , α)|2 (25)

where f = {0.26 GHz, 0.28 GHz, 0.3 GHz, 0.32 GHz}.
The scattering parameter is defined as follows:

S11 =
Z − Z0

Z + Z0
with Z = Y −1 and Y = −

1

V 2
bT u, (26)

where Z0 is the characteristic impedance of the feeding line Z0 = 50 Ω, T denotes
transpose of a column vector, V is the voltage of the feed, b is the excitation vector,
and u is the solution vector.

We take the design variables α to be the dimensions l1, l2, s1 and s2 (see Figure
3). The rest of the dimensions are fixed. Initial dimensions of the array are s1 =
s2 = s3 = s4 = s5 = s6 = 0.25, l1 = l2 = 0.45, and l3 = l4 = l5 = l6 = 0.406.

Our implementation of the sparse automatic differentiation was used to differen-
tiate the system matrix and excitation vector elements with respect to the design
parameters. Using that information, the differentiation of the scattering parameter
was easy due to the self-adjoint nature of the admittance Y (see [? ] for details).

First we verify the correctness of our sensitivity analysis technique, and compute
the sensitivity of |S11|

2 with respect to the design parameters in the frequency 0.26
GHz. The following sensitivities were obtained:

∂|S11|
2

∂α
= {0.8249,−5.9565,−0.3443,−0.1534}.

These results were compared against response level forward finite differences using
various step lengths. In Figure 6 are shown the gaps between the finite difference
approximations and the sensitivities computed using automatic differentiation in
the context of the adjoint approach. As we expect, the gaps diminish linearly as the
finite difference step length is decreased, since the truncation errors in the finite
difference approximations become smaller. For step lengths shorter than about
10−7 the round-off errors become significant in the finite difference computations,
and the gaps between the derivatives increase again. Around the step length 10−7

the gaps between the derivatives are very small, and we can conclude that the
sensitivities produced using the AD approach are correct.
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Figure 6. Gaps between derivatives produced using AD and the finite difference approximations.

Function fminimax of the MATLAB optimization toolbox was used to perform
the optimization. We used the medium scale version, which utilizes sequential
quadratic programming (SQP) as an optimization method. All parameters of the
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Figure 7. Initial and optimized performance of the antenna system over the frequency band.

optimizer were left to their default values. Constraints were posed such that l1,
l2 ∈ [0.406, 1], l1 ≥ l2 and s1, s2 ∈ [0.1, 1]. The optimizer took 15 iterations, and
needed 35 function evaluations. The optimal design was as follows: l1 = 0.549,
l2 = 0.494, s1 = 0.278 and s2 = 0.100.

In Figure 7 are shown the initial and optimized values of |S11|
2 over the con-

sider frequency band. We see that a clear improvement is obtained: the optimized
configuration exhibits much better performance in terms of the maximum absolute
value of the scattering parameter over the frequency band.

5. Conclusions

In this paper we have presented our implementation of the so called sparse forward
mode automatic differentiation. The approach exploits the sparsity by computing
only the non-zero partial derivatives of each intermediate variable created during
the computation. This approach does not require the so called taping, i.e. storing
information of all operations performed during the computation, nor does it need
any a priori sparsity information.

The sparse forward mode is sometimes criticized for having too much computa-
tional overhead for practical purposes. In this paper we have shown by numerical
examples that for our implementation of the approach the computational overhead
is somewhere around a factor of three, which can be considered quite reasonable.

We compared our implementation to the well known ADOL-C tool, which uses
taping and compression techniques. Comparisons show that ADOL-C is more ef-
ficient if several evaluations of the Jacobian with a fixed sparsity pattern are per-
formed, and if the tape created by ADOL-C can fit into the memory. However,
when differentiation of a complex electromagnetic solver was considered, the tape
based approach turned out to be impractical. Namely, the resulting huge tape had
to be written to the disk, causing a large run time overhead. On the other hand,
our implementation of the sparse forward mode completely avoids disk access, and
can be used for the differentiation of the electromagnetic solver without problems.
With this example we also showed that compared to dense forward mode auto-
matic differentiation, exploitation of the sparsity can pay off even in cases where
the total number of independent variables is quite small.

The automatic index domain capturing used in the sparse forward mode makes
the technique easy to use for the developer of the code, since it has very few
restrictions. For example, the developer does not have to manually keep track of
the dependencies of the variables, the evaluation of the function does not have to
be organized into a single subroutine, and the intermediate variables can be saved
in any kind of data structure.
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