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Chapter 1

Introduction

In this thesis we’ll consider the following linear parabolic partial differential equation
(PDE):

ut − div(A(x, t)Du) = 0, (1.1)

where u = u(x, t) : ΩT → R is a function. Here we have defined a cylinder
ΩT := Ω×T ⊂ Rn× [0,∞) where Ω is an open domain in Rn and T is an open interval.
The divergence div(·) and the gradient Du are understood to be taken with respect to
variable x only and furthermore we denote by A = A(x, t) the symmetric n×n− matrix
whose coefficients aij are measurable L∞-functions that obey the ellipticity condition

λ|ξ|2 ≤ (ξ , Aξ) ≤ Λ|ξ|2 (1.2)

for all ξ ∈ Rn and some constants λ,Λ > 0.

We’ll introduce some basic definitions and theorems that are needed later on in-
cluding Sobolev spaces W 1,p(ΩT ) and parabolic Sobolev spaces V p(ΩT ) in the second
chapter. In the third we consider the heat equation (3.1) that is equation (1.1) with
A being the identity matrix. We study the fundamental solution and prove the mean
value theorem.

In the fourth chapter, we prove the weak and the strong maximum principles and
Harnack’s inequality assuming that the coefficients aij of equation (1.1) are smooth and
depend only on the variable x.

The weak solutions of equation (1.1) are defined as follows.

Definition 1.0.1. We say that a function u(x, t) ∈ V 2(ΩT ) is a weak solution of equation
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(1.1) if equation ∫∫
ΩT

φtu− (Dφ , ADu) dt dx = 0 (1.3)

holds for every φ ∈ C∞0 (ΩT ).

In the fifth and final chapter we first prove the existence of weak solutions and then
Harnack’s inequality for equation (1.1), under the general assumption on measurable
coefficients aij satisfying the ellipticity condition (1.2).

To state Harnack’s inequality mentioned above, we make the following definitions.
Let D ⊂ Ω be compact and connected and let T− := (t1, t2) and T+ := (t3, t4) be two
subintervals of the time interval T := (T1, T2) such that

T1 < t1 < t2 < t3 < t4 ≤ T2.

We denote by D− := D × T− and D+ := D × T+ the two corresponding subcylinders
of the domain Ω× T . Now we are in position to state the main theorem of this thesis:

Theorem 1.0.2 (Harnack’s inequality). Any non-negative weak solution of equation
(1.1) satisfies the following inequality:

sup
D−

u ≤ C Λ+λ−1

inf
D+

u, (1.4)

where constant C = C(D,D−, D+) > 1.

Remarkable in this theorem is that C depends neither on u nor A. The proof of this
theorem is due to Moser [6], [7]. With this theorem one can prove the Hölder continuity
of the solutions of (1.1) [6, p. 108]. A good introduction to the history of this problem
can be found from [1].

2



Chapter 2

Preliminaries

2.1 Lp spaces
First define some norm spaces that we need to consider equation (1.1).

Definition 2.1.1. Let 1 ≤ p < ∞. Then the space Lp(Ω) includes every Lebesgue
measurable function f such that

||f ||Lp(Ω) :=

(∫
Ω

|f |p
) 1

p

<∞ .

Moreover the space L∞ contains every Lebesgue measurable function f such that

||f ||L∞(Ω) := ess supx∈Ω |f(x)| <∞ .

Remark 2.1.2. The definition above is a little bit vague in the sense that for Lp to be
a normed space, it is required that there exists a unique function f ∈ Lp such that
||f ||Lp(Ω) = 0. This is a problem since we know that ||f ||Lp(Ω) = ||g||Lp(Ω) whenever f
and g differ only in a set of a Lebesgue measure zero. However, we can overcome this
problem by introducing an equivalence relation, f ∼ g when f and g differ only in a set
of Lebesgue measure zero and defining [f ] =: f .

Perhaps the most useful tool to study Lp spaces is the Hölder inequality. We omit
the proof that can be found for example from [4, Theorem 3.2.1].

Theorem 2.1.3. Let 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. If f ∈ Lp(Ω), g ∈ Lq(Ω), then
fg ∈ L1(Ω) and

||fg||L1(Ω) ≤ ||f ||Lp(Ω)||g||Lq(Ω) . (2.1)
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Next we would like to define a parabolic Sobolev space V p from where we can find
the solutions of the equation (1.1). For this purpose we first define Lp spaces involving
time and the usual Sobolev-space W 1,p.

2.2 Lp spaces involving time
Definition 2.2.1 (Definitions). Let X be a real Banach’s space.

i) Function s : [0, T ]→ X is called a simple function, if it’s of the form

s(t) =
m∑
i=1

χEi(t)ui (0 ≤ t ≤ T ),

where every Ei is a Lebesgue measurable subset of [0, T ] and ui ∈ X for all
i = 1, . . . ,m.

ii) Function f : [0, T ] → X is strongly measurable, if there exist simple functions
sk : [0, T ]→ X such that

sk(t)→ f(t) for almost every 0 ≤ t ≤ T .

Definition 2.2.2. Space Lp(0, T ;X) consists of every strongly measurable function
u : [0, T ]→ X such that

||u||Lp(0,T ;X) :=

(∫ T

0

||u(t)||p dt
) 1

p

<∞

for 1 ≤ p <∞ and

||u||L∞(0,T ;X) := ess sup0≤t≤T ||u(t)|| <∞,

where || · || denotes the norm of X.
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2.3 Sobolev spaces W 1,p and W 1,p
0

Next we define the Sobolev spaces W 1,p(Ω) and W 1,p
0 (Ω).

Definition 2.3.1. Sobolev space W 1,p(Ω) is the completion of C∞(Ω) ∩ Lp(Ω) under
the norm

||u||W 1,p(Ω) := ||u||Lp(Ω) + ||Du||Lp(Ω), u ∈ C∞(Ω) ∩ Lp(Ω).

Similarly we say that space W 1,p
0 (Ω) is the completion of C∞0 (Ω) under the norm

||u||W 1,p
0 (Ω) := ||Du||Lp(Ω), u ∈ C∞0 (Ω).

We need the following definition to state the next theorem.

Definition 2.3.2. For 1 ≤ p < n, define

p∗ :=
np

n− p
.

Then p∗ is called the Sobolev exponent of p. Note that 1/p∗ = 1/p− 1/n.

It is well known that W 1,p is a Banach space [2, p. 249, thm 2]. Moreover functions
u ∈ W 1,p satisfy the following Sobolev inequality [3, p. 138].

Theorem 2.3.3 (Gagliardo-Nierenberg-Sobolev inequality). Assume 1 ≤ p < n. Then
there exists a constant C, depending only on p and n such that

||u||Lp∗(Rn) ≤ C||Du||Lp(Rn), (2.2)

for all u ∈ W 1,p(Rn).

We also need the following theorem

Theorem 2.3.4. [2, p. 265] Assume Ω is a bounded, open subset of Rn. Suppose
u ∈ W 1,p

0 (Ω) for some 1 ≤ p < n. Then we have the estimate

||u||Lq(Ω) ≤ C||Du||Lp(Ω)

for each q ∈ [1, p∗], the constant C depending only on p, q, n and Ω. In particular, for
all 1 ≤ p ≤ ∞,

||u||Lp(Ω) ≤ C||Du||Lp(Ω) .
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2.4 Sobolev spaces V p and V p
0

Next we define Sobolev spaces V p and V p
0 for 1 ≤ p ≤ ∞.

Definition 2.4.1. The parabolic Sobolev space V p(ΩT ) is defined as

V p(ΩT ) := L∞(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p(Ω))

and similarly we define the space V p
0 (ΩT ) to be

V p
0 (ΩT ) := L∞(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p

0 (Ω))

both equipped with the norm

||u||V p(ΩT ) := ||u||L∞(0,T ;Lp(Ω)) + ||u||Lp(0,T ;W 1,p(Ω))

for u ∈ V p(ΩT ).

Both V p(ΩT ) and V p
0 (ΩT ) are Banach spaces and are embedded in Lq(Ω) for some

q > p.

2.5 Inequalities
We need these inequalities later on.

Theorem 2.5.1 (Cauchy’s inequality).

ab ≤ a2

2
+
b2

2
(a, b > 0).

Proof. 0 ≤ (a− b)2 = a2 − 2ab− b2.

Theorem 2.5.2 (Cauchy’s inequality with ε).

ab ≤ εa2 +
b2

4ε
(a, b > 0, ε > 0).

Proof. Write

ab = ((2ε)1/2a)

(
b

(2ε)1/2

)
and apply Cauchy’s inequality.
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Theorem 2.5.3 (Young’s inequality). Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
aq

q
(a, b > 0).

Proof. The mapping x→ ex is convex, and consequently

ab = elog a+log b = e
1
p

log ap+ 1
q

log bq ≤ 1

p
elog ap +

1

q
elog bq =

ap

p
+
aq

q
.

Theorem 2.5.4 (Young’s inequality with ε).

ab ≤ εap + C(ε)bq (a, b > 0).

Proof. Write ab = ((ε)1/pa)
(

b
(εp)1/p

)
and apply Young’s inequality.

Theorem 2.5.5 (Cauchy-Schwartz inequality). [2, p. 624] Let A be a symmetric n×n-
matrix. Suppose that condition (1.2) holds. Then for all ξ, η ∈ Rn,

|(Aξ, η)| ≤ (Aξ, ξ)1/2(Aη, η)1/2 .
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Chapter 3

The heat equation

In the following we consider the heat equation

ut −∆u = 0 , (3.1)

where t > 0 and x ∈ Ω. Heat equation corresponds to equation (1.1) when A = Id.
Here we have used the following notation:

∆u(x, t) = div(Du(x, t)) =
n∑
i=1

∂2

∂x2
i

(u(x, t)) .

3.1 Solving the heat equation
In this section we find a special solution to equation (3.1) and then define the funda-
mental solution to the heat equation. To find the solution, we first notice that if u(x, t)
is a solution to this equation, then also the function w(x, t) := u(λx, λ2t) is a solution
for every λ ∈ R as one can easily verify that

wt(x, t)−∆w(x, t) = λ2
(
ut(λx, λ

2t)− (∆u)(λx, λ2t)
)
.

If we choose

u(x, t) =: v

(
|x|2

t

)
,

then
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u(λx, λ2t) = v

(
|λx|2

λ2t

)
= v

(
|x|2

t

)
= u(x, t) .

From now on we consider only the case n = 1, since the spherical symmetry of the
solution v suggests that the solution provided by n = 1 applies also to the general case.
So we seek for the solution u(x, t) of the following equation:

ut = uxx , (3.2)

where x ∈ R. Now we would like to change equation (3.2) to an ordinary differential
equation (ODE) of v. This is done by substituting u = v

(
x2

t

)
to the partial derivatives

of u:

ut =

(
v

(
x2

t

))
t

= −x
2

t2
v′ ,

ux =

(
v

(
x2

t

))
x

=
2x

t
v′ ,

uxx =

(
2x

t
v′
)
x

=
2

t
v′ +

4x2

t2
v′′ .

Then equation (3.2) implies that

−x
2

t2
v′ =

2

t
v′ +

4x2

t2
v′′.

Defining x2

t
=: y then gives

4yv′′(y) + (2 + y)v′(y) = 0 ,

and writing v′(y) =: w(y) implies

w′(y)

w(y)
= −2 + y

4y
.

For this equation there is a (unique) solution [5, p. 10, 1.2 Lause]

w(y) = v′(y) = e−
1
2

ln y− 1
4
y+C = C̃y−

1
2 e−

1
4
y (3.3)
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where C, C̃ are constants. This gives

v(y) = C̃

∫ y

0

z−
1
2 e−

1
4
z dz .

Now it seems that we have the solution we want, but as we shall soon see, we actually
still need to take a partial derivative with respect to x of this function:

vx = yx C̃ y
− 1

2 e−
1
4
y

= C̃
2x

t

t
1
2

x
e−

x2

4t

= 2 C̃ t−
1
2 e−

x2

4t .

We can now check that vx =: Ψ(x, t) is a solution to (3.2). First we calculate

Ψt = −2
C̃

2
t−

3
2 e−

x2

4t + 2 C̃ t−
1
2

(
−x

2

4

) (
− 1

t2

)
e−

x2

4t

=

(
1

2
t−

5
2x2 − t−

3
2

)
C̃ e−

x2

4t .

After that we see that

Ψx = −2C̃
2x

4t
t−

1
2 e−

x2

4t = −C̃ x

t
3
2

e−
x2

4t

and thus

Ψxx = −C̃ 1

t
3
2

e−
x2

4t − C̃ x

t
3
2

(
−2x

4t

)
e−

x2

4t

=

(
1

2
t−

5
2x2 − t−

3
2

)
C̃ e−

x2

4t

= Ψt.

From these considerations and the fact that v for arbitrary n was spherically sym-
metric with respect to x, we have the following definition.
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Definition 3.1.1. We define the fundamental solution Φ(x, t) of the heat equation as
follows:

Φ(x, t) =

{
1

(4πt)n/2
e−
|x|2
4t for x ∈ Rn, t > 0

0 for x ∈ Rn, t < 0 .
(3.4)

This equals to our Ψ that we defined earlier if we take n = 1 and choose C̃ suitably.
The constant C̃ has been chosen such that ||Φ||L(Rn) = 1 and we show this next by

a direct calculation:

∫
Rn

Φ(x, t) dx =
1

(4πt)n/2

∫
Rn

e−
|x|2
4t dx

=
nα(n)

(4πt)n/2

∫ ∞
0

sn−1e−
s2

4t ds

=
nα(n)

(4πt)n/2

∫ ∞
0

(√
4ts
)n−1

e−s
2√

4tds

=
nα(n)

πn/2

∫ ∞
0

sn−1e−s
2

ds

=
1

πn/2

∫
Rn
e−|x|

2

dx

=
1

πn/2

n∏
i=1

∫ ∞
−∞

e−x
2
i dxi

=
1

πn/2

n∏
i=1

π1/2

= 1 .

So we found a solution for the heat equation and chose a specific normalized one to be
the fundamental solution.

3.2 Mean value formula for the heat equation
Next we prove the Mean Value Property (MVP) for solutions of this equation. This
theorem resembles the MVP of the Laplace’s equation, but the proof in our case is a bit
more tricky as we shall see in the next section. We follow [2, p. 53-54] in this proof.
In the case of the Laplace’s equation, the mean value of a solution is taken over the usual
euclidean balls that are much more natural and simple compared to our choice of the
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heat ball in the next definition. However there is a nice connection between these two:
in both cases the boundaries of these balls happen to be level sets of the corresponding
fundamental solutions.

Definition 3.2.1. We define for x ∈ Rn, t ∈ R and r > 0 the heat ball

Bh(x, t; r) =

{
(y, s) ∈ Rn+1

∣∣∣∣ s ≤ t,Φ(x− y, t− s) ≥ 1

rn

}
. (3.5)

We also define space C2,1(ΩT ) := {u : ΩT → R |u,Du,D2u, ut ∈ C(ΩT )}, where Du and
D2u are understood to be taken with respect to variable x only.

Theorem 3.2.2 (The Mean value formula). Let u ∈ C2
1 (ΩT ) solve the heat equation.

Then
u(x, t) =

1

4rn

∫∫
Bh(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dy ds (3.6)

for each Bh(x, t; r).

Proof. We can shift the point (x, t) to (0, 0) since transformation (x, t)→ (x+ a, t+ b)
preserves the solutions of (3.1) for every constant a ∈ Rn, b ∈ R. This is why we’ll use
the set Bh(r) := B(0, 0; r) instead of B(x, t; r). We may also assume that the solution
u is smooth.

First we calculate the integration boundaries of Bh(r) in the usual euclidean spherical
coordinates. Let r > 0 and (y, s) ∈ Bh(r). By definition of B(x, t; r) we have

Bh(r) =

{
(y, s) ∈ Rn+1

∣∣∣∣ s ≤ 0, Φ(−y,−s) ≤ 1

rn

}
.

Since s ≤ 0, we have

|y|2

4s
≤ 0 . (3.7)

Thus

e
|y|2
4s ≤ 1 ,

which implies that
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1

(−4πx)n/2
e
|y|2
4s ≤ 1

(−4πx)n/2
.

Next we notice that the left side of this inequality equals to Φ(−y,−s) and since (y, s) ∈
Bh(r) we have

1

rn
≤ Φ(−y,−s) ≤ 1

(−4πx)n/2
.

Thus

(−4πx)n/2 ≤ r2(n/2)

and therefore

−4πs ≤ r2

which finally implies that

− r
2

4π
≤ s ≤ 0 .

To get the boundaries for |y| we start from the definition of Bh which gives

Φ(−y,−s) =
1

(4πs)(n/2)
e−
|y|2
−4s ≥ 1

r2(n/2)
.

Thus

|y|2

4s
≥ log

(
−4πs

r2

)n
2

(3.8)

and this implies

|y| ≤

√
2ns log

(
−4πs

r2

)
.

Now the main point in the proof is to show that function
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φ(r) =
1

rn

∫∫
Bh(r)

u(y, s)
|y|2

s2
dyds

is a constant function of r. This is done by showing that its derivative vanishes every-
where. Now, by the changing of variables from (y, s) to (ry, r2s), we get that

φ(r) =
1

rn

∫∫
Bh(r)

u(y, s)
|y|2

s2
dy ds

=
1

rn

∫∫
Bh(1)

u(ry, r2s)
r2|y|2

r4s2
rnr2 dy ds

=

∫∫
Bh(1)

u(ry, r2s)
|y|2

s2
dy ds

where the change of integration boundary from Bh(r) to Bh(1) can be done since

|ry| =

√
2nr2s log

(
−4πr2s

r2

)
= r

√
2ns log

(
−2πs

1

)
implies that

|y| ≤
√

2sn log(−4πs)

and from

− r
2

4π
≤ r2s

it follows that

− 1

4π
≤ s .

Next we want to define a new function ψ(r) that vanishes at the boundary of Bh(r)
and has a nice form for our calculations further on. From (3.8) we know that

|y|2

4s
≥ log

(
−4πs

r2

)n
2

=
n

2
log(−4πs)− n log r
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or equivalently

0 ≤ |y|
2

4s
− n

2
log(−4πs) + n log r ,

where the equality holds on the boundary of Bh(r). This leads us to define

ψ(r) :=
|y|2

4s
− n

2
log(−4πs) + n log r . (3.9)

Then we need to calculate the partial derivatives of ψ because we need those when we
show that φ′(r) = 0. Simple calculations give

ψyi =
2yi
4s

=
yi
2s

for i = 1, . . . , n

and

ψs = −n
2
· −4π

−4πs
− |y|

2

4s2
= − n

2s
− |y|

2

4s2
.

Earlier we have showed that

φ(r) =

∫∫
Bh(1)

u(ry, r2s)
|y|2

s2
dy ds

and this gives

φ′(r) =

∫∫
Bh(1)

Du ·D(ry, r2s)
|y|2

s2
dy ds

=

∫∫
Bh(1)

(
n∑
i=i

uyiyi + us · 2rs

)
· |y|

2

s2
dy ds

=

∫∫
Bh(1)

n∑
i=i

yiuyi
|y|2

s2
dy ds+

∫∫
Bh(1)

2rus
|y|2

s
dy ds

=

∫∫
Bh(r)

n∑
i=i

yi
r
uyi
|(y
r
)|2

( s
r2

)2

1

rn
1

r2
dy ds+

∫∫
Bh(r)

2
r

r
us
|(y
r
)|2

( s
r2

)2

1

rn
1

r2
dy ds

=
1

rn+1

∫∫
Bh(r)

(y,Dy)
|y|2

s2
dy ds+

1

rn+1

∫∫
Bh(r)

2us
|y|2

s
dy ds

=: A+B
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where in the fourth equality we made another change of variables. Now we continue to
calculate the term B:

B =
1

rn+1

∫∫
Bh(r)

2us
|y|2

s
dy ds

=
1

rn+1

∫∫
Bh(r)

2us

n∑
i=1

y2
i

s
dy ds

=
1

rn+1

∫∫
Bh(r)

n∑
i=1

4usyi
yi
4s
dy ds

=
1

rn+1

∫∫
Bh(r)

n∑
i=1

4usyiψyi dy ds.

Then integrating by parts first with respect to y and then s and substituting ψs gives

B = − 1

rn+1

∫∫
Bh(r)

n∑
i=1

4yiusyiψ dy ds−
1

rn+1

∫∫
Bh(r)

4nusψ dy ds

=
1

rn+1

∫∫
Bh(r)

4
n∑
i=1

uyiyiψs dy ds−
1

rn+1

∫∫
Bh(r)

4nusψ dy ds

=
1

rn+1

∫∫
Bh(r)

4
n∑
i=1

uyiyi

(
− n

2s

)
− 4nusψ dy ds+

1

rn+1

∫∫
Bh(r)

4
n∑
i=1

yiuyi

(
−|y|

2

4s2

)
dy ds

= − 1

rn+1

∫∫
Bh(r)

2
n∑
i=1

(
yiuyi

n

s

)
+ 4nusψ dy ds − A .

Then moving A in the last term to the left hand side of the equation gives
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φ′(r) = A+B

= − 1

rn+1

∫∫
Bh(r)

2
n∑
i=1

(
yiuyi

n

s

)
+ 4nusψ dy ds

= − 1

rn+1

∫∫
Bh(r)

2
n∑
i=1

(
yiuyi

n

s

)
+ 4n∆uψ dy ds

=
1

rn+1

∫∫
Bh(r)

− 2
n∑
i=1

(
yiuyi

n

s

)
+ 4n

n∑
i=1

uyiψyi dy ds

=
n∑
i=1

1

rn+1

∫∫
Bh(r)

− 2
(
yiuyi

n

s

)
+ 4nuyi

yi
2s
dy ds

= 0 ,

where we used the fact that u is a solution to the heat equation, partial derivatives of
ψ and integration by parts. So we have shown that φ′(r) = 0 and this implies that
φ(r) = C for some constant C ∈ R.

Next we will determine this constant. To this end we will calculate

φ(0) = lim
r→0

φ(r)

= lim
r→0

∫∫
Bh(1)

u(ry, r2s)
|y|2

s2
dy ds

=

∫∫
Bh(1)

lim
r→0

u(ry, r2s)
|y|2

s2
dy ds

= u(0, 0)

∫∫
Bh(1)

lim
r→0

|y|2

s2
dy ds

= u(0, 0) lim
r→0

∫∫
Bh(1)

|y|2

s2
dy ds .

Now if we can show that the integral on the last line equals to 4, then we finish the
proof of this theorem. We use two suitable changes of variables and the definition and
the properties of the gamma function Γ(x) in this calculation:
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∫∫
Bh(1)

|y|2

s2
dyds =

∫ 0

− 1
4π

1

s2

∫ √2sn log(−4πs)

0

t2 · tn−1nα(n) dt ds

= 4πnα(n)

∫ ∞
0

eŝ
∫ √ 2ŝn

4π
e−ŝ

0

tn+1 dt dŝ

= 4πnα(n)

∫ ∞
0

eŝ

n+ 2

(
2ŝn

4π
e−ŝ
)n+2

2

dŝ

=
2n

n
2

+2α(n)

(n+ 2)(2π)
n
2

∫ ∞
0

ŝ
n
2

+1e−
ŝn
2 dŝ

=
8α(n)

(n+ 2)π
n
2

∫ ∞
0

s̄
n
2

+1e−s̄ ds̄

=
8α(n)

(n+ 2)π
n
2

Γ
(n

2
+ 2
)

=
8α(n)

(n+ 2)π
n
2

(n
2

+ 1
)

Γ
(n

2
+ 1
)

=
4α(n)

π
n
2

Γ
(n

2
+ 1
)

= 4

and the theorem is proved, since α(n) = π
n
2

Γ(n2 +1)
by [2, p. 615].
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Chapter 4

Equations with smooth coefficients

In this section we assume that the coefficients of the equation (1.1) are C∞(Ω) functions
and that they don’t depend on time. In [2, Ch. 7.1.3] it is proved that under these
assumptions the solutions of (1.1) are actually also in C∞(Ω). It is also possible to
prove this result even if the coefficients do depend on the time, but we don’t consider
this here.

In the following we will prove the weak maximum principle, a version of Harnack’s
inequality and the strong maximum principle under these assumptions.

4.1 Weak maximum principle
Next we prove the weak maximum principle for the solutions of the equation

ut =
n∑

i,j=1

aijuxi xj =: Lu (4.1)

where the coefficients aij are now continuous but not necessarily smooth. We also assume
that they are symmetric. We also assume that these coefficients satisfy the ellipticity
condition (1.2) for λ,Λ > 0. For this chapter and section 5.1 we define ΩT := Ω× (0, T ],
where (0, T ] =: T . Then the parabolic boundary ΓT of ΩT is defined by ΓT := ΩT −ΩT .

Theorem 4.1.1 (Weak maximum principle). Assume that u ∈ C2,1(ΩT ) ∩ C(ΩT ).

i) If ut ≤ Lu in ΩT , then
max

ΩT

u = max
ΓT

u . (4.2)
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ii) If ut ≥ Lu in ΩT , then
min
ΩT

u = min
ΓT

u . (4.3)

Proof. We will prove, that under the assumption that u attains it’s maximum in ΩT ,
we can show that u can’t be a supersolution.

We assume that u satisfies the strict inequality

ut < Lu in ΩT (4.4)

and that we can find a point (x0, t0) ∈ ΩT such that

u(x0, t0) = max
ΩT

u .

Then if we have 0 < t0 < T , we get that ut = 0 at (x0, t0). We also have Lu ≤ 0 as we
will next show.

Now since (x0, t0) belongs to interior of ΩT it follows that

Du(x0, t0) = 0 and
D2u(x0, t0) ≤ 0 .

Moreover from linear algebra we know that since aij is symmetric and positive definite,
we find an orthogonal matrix O such that

OAOT =

d1 · · · 0
... . . . ...
0 · · · dn


and dk > 0 for every k = 1, . . . , n. Now define y such that

y = x0 + O(x− x0) .

This implies that
x− x0 = OT (y − x0) .
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Therefore

uxi xj =
n∑
k=1

(uykyxi)xj

=
n∑
k=1

okiuyk xj

=
n∑

k,l=1

oki
(
uyk ylyxj

)
=

n∑
k,l=1

uyk ylo
kiolj

for all i, j = 1, . . . , n and thus

Lu =
n∑

i,j=1

aijuxi xj

=
n∑

i,j,k,l=1

okiaijoljuyk yl

=
n∑
k=1

uyk yk ≤ 0 at (x0, t0)

since okiaijolj = dkδ
k
l , dk > 0 and D2u ≤ 0. This implies that

ut ≥ Lu at (x0, t0)

which is a contradiction to (4.4). Thus u can not have it’s maximum in the interior of
ΩT .

Next we consider the case t0 = T . Since u has it’s maximum over ΩT at (x0, t0) we
have

ut ≥ 0 at (x0, t0).

Since we still have Lu ≤ 0 we get

ut − Lu ≥ 0 at (x0, t0)
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again and this is a contradiction to (4.4).
Then assume that

ut − Lu ≥ 0 in ΩT (4.5)

and define
uε := u(x, t)− εt

where ε > 0 was fixed before. Then

uεt − Luε = ut − Lu− ε < 0

in ΩT . Thus
max

ΩT

uε = max
ΓT

uε

and letting ε→ 0 implies that
max

ΩT

u = max
ΓT

u .

This proves i), and ii) is proved by setting ũ := −u and then applying i).

4.2 Harnack’s inequality
Next we will prove our first version of the Harnack’s inequality under the assumption
that the coefficients aij of L are smooth. In this proof the constant C of equation (4.6)
will depend on the coefficients.

Theorem 4.2.1 (Harnack’s inequality, first version). Assume that u ∈ C2,1(ΩT ) solves
(4.1), with smooth coefficients, in ΩT and that

u ≥ 0

in ΩT . Suppose then that D ⊂⊂ Ω is connected. Then for each 0 < t1 < t2 < T there
exists a constant C = C(D, t1, t2, a

ij) such that

sup
x∈D

u(x, t1) ≤ C inf
x∈D

u(x, t2) . (4.6)
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Proof. First write
v := log u

in ΩT . Then we can just calculate

vt = (log u)t

=
1

u
· ut

=
1

u
·

(
n∑

i,j=1

aijuxi xj

)

=
n∑

i,j=1

aij(vxi xj + vxivxj)

=
n∑

i,j=1

aijvxi xj +
n∑

i,j=1

aijvxivxj

=: w + w̃ ,

where w and w̃ denote the two sums respectively and the fourth equality follows from

uxi xj = (ev)xi xj
= (vxie

v)xj

= vxi xje
v + vxivxje

v

= u ·
(
vxi xj + vxivxj

)
.

Then for k, l = 1, . . . , n, we have

vxk xl t = wxk xl + w̃xk xl . (4.7)
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For the last term on the right hand side of the equation we get

w̃xk xl =

(
n∑

i,j=1

aijvxivxj

)
xk xl

=
n∑

i,j=1

(
aijxkvxivxj + aijvxi xkvxj + aijvxivxj xk

)
xl

=
n∑

i,j=1

(
aijxk xlvxivxj + aijxkvxi xlvxj + aijxkvxivxj xl

+ aijxlvxi xkvxj + aijvxi xk xlvxj + aijvxi xkvxj xl

+ aijxlvxivxj xk + aijvxi xlvxjxk + aijvxivxj xk xl
)

=
n∑

i,j=1

(
2aijvxi xk xlvxj + 2aijvxi xkvxj xl

)
+R

where

|R| ≤
n∑

i,j=1

(
2
∣∣aijxk∣∣ |vxi xl | ∣∣vxj ∣∣+ 2

∣∣aijxl∣∣ |vxi xk | ∣∣vxj ∣∣+
∣∣aijxk xl∣∣ |vxi | ∣∣vxj ∣∣)

≤ n2
(
4 |DA|

∣∣D2v
∣∣ |Dv|+ ∣∣D2A

∣∣ |Dv|2) (4.8)

≤ ε
∣∣D2v

∣∣2 + C(ε) |Dv|2 .

The last inequality follows from Theorem 2.5.2 that is the Cauchy’s inequality with ε.
From these calculations we get

vxk xl t = wxk xl +
n∑

i,j=1

(
2aijvxi xk xlvxj + 2aijvxi xkvxj xl

)
+R .
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This implies that

wt =
n∑

i,j=1

(
aijvxi xj

)
t

=
n∑

i,j=1

aijt vxi xj +
n∑

i,j=1

aijvxi xj t

=
n∑

i,j=1

aijwxi xj + 2
n∑

i,j,k,l=1

aklaijvxl xi xjvxk + 2
n∑

i,j,k,l=1

aijaklvxk xivxl xj + R̃

=
n∑

i,j=1

aijwxi xj + 2
n∑

k,l=1

aklvxk

(
n∑

i,j=1

(aijvxi xj)xl − aijxlvxi xj

)

+ 2
n∑

i,j,k,l=1

aijaklvxk xivxl xj + R̃

=
n∑

i,j=1

aijwxi xj + 2
n∑

k,l=1

aklwxlvxk + 2
n∑

i,j,k,l=1

aijaklvxk xivxl xj +
˜̃
R ,

where we have absorbed the terms containing derivatives of aij to R̃ and ˜̃R since they
satisfy (4.8).

Next we choose ε to be small enough and then using the ellipticity condition (1.2)
gives

wt −
n∑

i,j=1

aijwxi xj +
n∑
i=1

biwxi ≥ θ2|D2v|2 − C|Dv|2 − C (4.9)

in ΩT where bi :=
∑n

j=1−aijvxj .
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Our next task is to find a similar estimate for w̃. To this end we first find out that

w̃t −
n∑

k,l=1

aklw̃xk xl =
n∑

k,l=1

akl(vxkvxl)t +
n∑

k,l=1

akl (wxk xl − vxk xl) +R

= 2
n∑

i,j=1

aijvxi tvxj +
n∑

k,l=1

(
−2

n∑
i,j=1

aijvxi xk xlvxj

− 2
n∑

i,j=1

aijvxi xkvxj xl

)
+R− ˜̃R

= 2
n∑

i,j=1

aijvxj

(
vxi t −

n∑
k,l=1

aklvxi xk xl

)
− 2

n∑
i,j,k,l=1

aijaklvxi xkvxj xl +R

= 2
n∑
i=1

(−bi)wxi − 2
n∑

i,j,k,l=1

aijaklvxi xkvxj xl +R

and this implies with condition (1.2) that

w̃t −
n∑

i,j=1

aijw̃xi xj +
n∑
i=1

biw̃xi ≥ −C|D2v|2 − C|Dv|2 − C (4.10)

in ΩT .

Then we define function
ŵ := w + κw̃

where the constant κ > 0 is to be selected later on. Now combining (4.9) and (4.10)
gives

ŵt −
n∑

i,j=1

aijŵxi xj +
n∑
i=1

biŵxi ≥
θ2

2
|D2v|2 − C|Dv|2 − C (4.11)

provided 0 < κ ≤ 1
2
is fixed to be small enough. Then we take an open ball B ⊂⊂ Ω

and 0 < t1 < t2 ≤ T and choose a cut-off function φ ∈ C∞(ΩT ) such that
0 ≤ φ ≤ 1,
φ = 0 on ΓT ,
φ = 1 on B × [t1, t2].

Then let µ be a positive constant that we determine later on and suppose that

φ4ŵ + µt
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has a negative minimum at some point (x0, t0) ∈ ΩT . Then we have

0 = (φ4ŵ + µt)xk = 4φ3φxk + φ4ŵxk

for all k = 1, . . . , n. This implies that

4φxkw̃ + φŵxk = 0

for all k = 1, . . . , n at (x0, t0). Moreover the calculations in the proof of the weak
maximum principle show that

n∑
i,j=1

aij(φ4ŵ + µt)xi xj ≥ 0

and thus we get

0 ≥ (φ4ŵ + µt)t −
n∑

i,j=1

aij(φ4ŵ + µt)xi xj (4.12)

On the other hand
(φ4ŵ + µt)t = µ+ (φ4)tŵ + φ4ŵt

where
|(φ4)tŵ| = 4|φ3φtŵ| ≤Mφ2|ŵ|

for some M > 0. Then(
φ4ŵ + µt

)
xi xj

=
(
(φ4)xiŵ + φ4ŵxi

)
xj

= (φ4)xi xj ŵ + (φ4)xiŵxj + (φ4)xj + ŵxi + φ4ŵxi xj

and thus we get for the second term of (4.12):

−
n∑

i,j=1

aij(φŵ + µt)xi xj = −
n∑

i,j=1

(
aijφ4ŵxi xj − 2aij(φ4)xiŵxj − aij(φ4)xi xj ŵ

)
where ∣∣∣∣∣−

n∑
i,j=1

aij(φ4)xi xj ŵ

∣∣∣∣∣ ≤ M̃φ2|ŵ|
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for some M̃ > 0. Then if we write

R = (φ4)tŵ −
n∑

i,j=1

aij(φ4)xi xj ŵ ,

we get
|R| ≤ Cφ2|ŵ|

for some C > 0. But in this case

0 ≥ µ+ φ4

(
ŵt −

n∑
i,j=1

aijŵxi xj

)
− 2

n∑
i,j=1

aij(φ4)xiŵxj +R . (4.13)

Now we get from (4.11) and (4.12)

0 ≥ µ+ φ4

(
θ2

2
|Dv|2 − C|Dv|2 − C −

n∑
i=1

biŵxi

)
+R , (4.14)

where R is again a term satisfying

|R| ≤ Cφ2|ŵ|

for some C > 0. Then from (4.12) and the definition of bi it follows that

0 ≥ µ+ φ4

(
θ2

2
|D2v|2 − C|Dv|2 − C

)
+ R̃ ,

where
|R̃| ≤ Cφ2|ŵ|+ Cφ3|Dv||ŵ| . (4.15)

Now at (x0, t0) we have
ŵ = w + κw̃ < 0 .

Since it also follows from the definition of w and w̃ that

|Dv|2 ≤ C|D2v| ,
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we get
|ŵ| ≤ C|D2v|

at (x0, t0). Then (4.15) gives

|R̃| ≤ Cφ2|D2v|+ Cφ3|D2v|3/2

≤ εφ4|D2v|2 + C(ε) ,

where the second inequality follows by Theorem 2.5.4.
So we see that there can’t be a negative minimum of φ4ŵ + µt at (x0, t0) if µ is large
enough. This implies that

φ4ŵ + µt ≥ 0

at ΩT and in particular
ŵ + µt ≥ 0

in B × [t1, t2]. Then since vt = w + w̃ we have

w + κw̃ + µt ≥ 0 ,

from which follows
0 ≤ vt + (κ− 1)w̃ + µt ≤ vt −

1

2
w̃ + µt .

Thus
vt ≥

1

2
w̃ − µtα|Dv|2 − β ≥ θ

2
|Dv|2 − µt

which finally implies
vt ≥ α|Dv|2 − β (4.16)

in B × [t1, t2] for constants α > 0 and β > 0.
To finish this proof we fix x1, x2 ∈ B, t2 > t1 and then we have
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v(x2, t2)− v(x1, t1) =

∫ 1

0

d

ds
v (sx2 + (1− s)x1, st2 + (1− s)t1) ds

=

∫ 1

0

Dv · (x2 − x1) + vt(t2 − t1) ds

≥
∫ 1

0

−|Dv||x2 − x1|+ (t2 − t1)(α|Dv|2 − β) ds

≥ −γ(α, β, |x1 − x2|, |t1 − t2|)

and finally, since v(x, t) = log u(x, t), we get

log u(x2, t2) ≥ log u(x1, t1)− γ .

Thus
u(x2, t2) ≥ e−γu(x1, t1) .

This result holds for any ball in Ω and thus we can extend the result to hold in the
whole Ω by covering it with balls and applying the result above to them.

4.3 Strong maximum principle
The last thing we will prove for this smooth equation is the strong maximum principle.
To prove this we will use the weak maximum principle and the first version of the
Harnack’s equality.

Theorem 4.3.1 (The strong maximum principle). Assume that u ∈ C2,1(ΩT )∩C(ΩT ),
the coefficients aij of L are smooth and that Ω is connected. Then if

i)
ut − Lu ≤ 0

in ΩT and u attains it’s maximum over ΩT at a point (x0, t0) ∈ ΩT , u is a constant
function on Ω× {t = t0}.

ii)
ut − Lu ≥ 0

in ΩT and u attains it’s minimum over ΩT at a point (x0, t0) ∈ ΩT , u is a constant
function on Ω× {t = t0}.
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Proof. Assume ut−Lu ≤ 0 in ΩT and u attains its maximum at some point (x0, t0) ∈ ΩT .
Then we choose an open smooth set Ω′ ⊂⊂ Ω with x0 ∈ Ω′.
Then let v solve {

vt − Lv = 0 in Ω′T
v = u on Ω′T\ΩT .

Then by the weak maximum principle we get that

u ≤ v ≤M

for M := maxΩT
u. In this case we see that

v = M at (x0, t0).

Next we write ṽ := M − v and then we have{
ṽt − Lṽ = 0

ṽ ≥ 0

in Ω′T . Now choose any Ω′′ ⊂⊂ Ω′ with x0 ∈ Ω′′, Ω′′ connected and let 0 < t < t0. Then
Harnack’s inequality gives

max
Ω′′

ṽ(x, t) ≤ C inf
Ω′′

(x, t0) . (4.17)

But since ṽ ≥ 0 and we have

inf
Ω′′
ṽ(x, t0) ≤ ṽ(x0, t0) = 0 ,

equation (4.17) implies that ṽ = 0 on Ω′′ × {t} for each 0 < t < t0. This holds for every
Ω′′ in Ω and so

ṽ ≡ 0

on Ω′ × {t = t0}. Then going back to v gives

v ≡M

in Ω× {t = t0}. But now we have v = u on Ω\Ω′ and thus

u ≡M

31



on ∂Ω′ × {t = t0}. But finally we notice that since this holds for all sets Ω′ it follows
that

u ≡M

on Ω× {t = t0} and the theorem is proved.
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Chapter 5

Equations with bounded and
measurable coefficients

In this chapter we assume that the coefficients aij(x, t) of equation (1.1) are measurable
L∞-functions that satisfy the ellipticity condition (1.2).

5.1 Existence of weak solutions
Now we prove that there exists a weak solution to equation (1.1).

Theorem 5.1.1 (Existence of a weak solution). Suppose that aij(x, t) ∈ L∞(ΩT ) for
all i, j = 1, . . . , n satisfy ellipticity condition (1.2) for constants λ,Λ > 0. Then for any
function g ∈ L2(Ω), there exists a weak solution u ∈ V 2(ΩT ) of equation (1.1) such that
u(x, 0) = g(x).

Proof. We will prove this theorem by using Galerkin’s method. That is, we first find
solutions um(x, t) of certain finite dimensional approximations to equation (1.3) and
then show that um → u ∈ V 2(ΩT ) such that the convergence is uniform with respect to
the t variable and that u(x, t) is indeed a weak solution to (1.1). We follow [8, Ch. III]
and [2, ch. 7.1.2] in this proof.

First we take an orthogonal set of functions ψk(x) ∈ W 1,2
0 (Ω) for all k = 0, 1, . . . such

that they are an orthonormal in L2(Ω). Then the solutions that we are looking for are

um(x, t) =
m∑
k=1

cmk (t)ψk(x) (5.1)

where (·, ·)L2(Ω) denotes the inner product in L2(Ω) and (·, ·) is the inner product of Rn.
Now the functions cmk (t) are determined from the conditions
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d

dt
(um, ψk)L2(Ω) +

∫
Ω

(ADum, Dψk) dx = 0 , (5.2)

and

cmk (0) = (g, ψk) ,

for all k = 1, . . . ,m. Now substituting um from (5.1) to (5.2) gives

cmk
′ +

m∑
l=1

Aklcml = 0 (5.3)

where
Akl :=

∫
Ω

(ADψk, Dψl) dx

are integrable functions of t for all k = 1, . . . ,m. The well known theory for the ordinary
differential equations provides us with a unique and absolutely continuous solution to
(5.3) [2, p. 354]. This means that the solutions cmk (t) are differentiable for a.e. t ∈ T
and that cmk

′ is integrable on T for all k = 1, . . . ,m.

Our next task is then to show that actually

||um||V 2(Ωt) ≤ C (5.4)

for all m ∈ N and where the constant C doesn’t depend on m. To achieve this we first
multiply equation in (5.2) by the corresponding Cm

k :

cmk
d

dt
(um, ψk) +

∫
Ω

(ADψk, D(ψlc
m
k )) dx = 0 (for a.e. t ∈ T ) .

Now from the product rule we get an equivalent equality:

d

dt
(Um, ψkc

m
k )L2(Ω) − c

m
k
′ ·
∫

Ω

umψk dx+

∫
Ω

(ADψk, D(ψlc
m
k )) dx = 0 . (5.5)
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But in this case we can calculate the second term as follows:

−cmk
′ ·
∫

Ω

umψk dx =
m∑
l=1

Aklcml

∫
Ω

umψk dx

=
m∑
l=1

∫
Ω

(ADψk, Dψlcml (t)) dx

∫
Ω

umψk dx

=
m∑
s=1

∫
Ω

(ADψkcms , Dum) dx

∫
Ω

ψsψk dx

=
m∑
s=1

∫
Ω

(ADψkcms , Dum) dx δks

=

∫
Ω

(ADψkcmk , Dum) dx

Then applying this to (5.5) and summing up those equations from k = 1, . . . ,m gives

d

dt
||um||2L2(Ω) + 2

∫
Ω

(ADum, Dum) dx = 0 .

Now the ellipticity condition (1.2) implies that

d

dt
||um||2L2(Ω) + 2λ||Dum||2L2(Ω) ≤ 0 (5.6)

and thus
d

dt
||um||2L2(Ω) ≤ 0.

Now integrating from 0 to t gives

||um(x, t)||2L2(Ω) − ||um(x, 0)||2L2(Ω) ≤ 0

that implies
||um(x, t)||2L2(Ω) ≤ ||g||2L2(Ω) = M <∞

with the constant M not depending on m. Thus we have

sup
t∈[0,T ]

||um(x, t)||2L2(Ω) ≤ C1 <∞ (5.7)
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where C1 doesn’t depend on m. We have now proved the first part of (5.4) and next we
proceed to the second one. On the other hand (5.6) and Theorem 2.3.4 imply that

d

dt
||um||2L2(Ω) + λ

(
C||um||2L2(Ω) + ||Dum||2L2(Ω)

)
≤ 0 (5.8)

for constant C. Thus for C̃ =: min(1, C) we have

d

dt
||um||2L2(Ω) + λC̃||um||2W 1,2(Ω) ≤ 0

Then integrating this over [0, T ] gives

||um||Lp(Ω) +

∫ T

0

||um||2W 1,2(Ω) dt ≤ ||g||L2(Ω)

and thus ∫ T

0

||um||2W 1,2(Ω) dt ≤ ||g||L2(Ω) <∞. (5.9)

Now combining this inequality with (5.7) proves finally (5.4). This implies that functions

lm,k(t) :=

∫
Ω

umψk dx

are uniformly bounded. Our next aim is to show that lm,k are actually equicontinuous on
[0, T ] for fixed k and arbitrary m ≥ k. For this purpose we fix ε > 0. Then integrating
(5.2) from 0 to t gives

lm,k(t)− lm,k(0) = −
∫ t

0

∫
Ω

(ADum, ψk) dxdt
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for all 0 < t < T . From this equality we can estimate that

|lm,k(t+ δ)− lm,k(t)| =
∣∣∣∣∫ t+δ

t

∫
Ω

(Dum,ADψk) dxdt
∣∣∣∣

≤
∫ t+δ

t

∫
Ω

|(Dum,ADψk)| dxdt

≤
∫ t+δ

t

∫
Ω

(Dum,ADum)
1
2 (Dψk,ADψk)

1
2 dxdt

≤
∫ t+δ

t

∫
Ω

Λ|Dum||Dψk| dxdt

≤
∫ t+δ

t

Λ||Dum||L2Ω||Dψk||L2(Ω) dt

≤ Λ||Dum||L2(t,t+δ;L2(Ω))||Dψk||L2(t,t+δ;L2(Ω))

≤ Λ

(∫ t+δ

t

||um||2W 1,2(Ω) dt

) 1
2

||Dψk||L2(t,t+δ;L2(Ω)) ,

where we used Theorem 2.5.5. Then we notice that from (5.9) it follows that∫ t+δ

0

||um||2W 1,2(Ω) dt

is bounded uniformly for every m and thus we find δ > 0 that is independent of m and
so small that we have (∫ t+δ

t

||um||2W 1,2(Ω) dt

) 1
2

< ε .

but now since also ||Dψk||L2(t,t+δ;L2(Ω)) is bounded we get that

|lm,k(t+ δ)− lm,k(t)| ≤ εC

for some constant C that doesn’t depend on m or k and this implies that lm,k is equicon-
tinuous on [0, T ].

Now we are ready to go towards taking the limit m → ∞. To this end we choose
a subsequence lmi,k that converges uniformly to a continuous function lk(t) for each
k = 1, 2, . . .. These functions lk define a function

u(x, t) =
∞∑
k=1

lk(t)ψk(x) .
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Next we show that
||u||V 2(ΩT ) <∞ .

To achieve this we first show that umi → u weakly in L2(ΩT ) such that the convergence
is uniform with respect to t ∈ [0, T ].

Now let ψ(x) ∈ L2(Ω). Then∫
Ω

(umi − u)ψ dx =

∫
Ω

(umi − u)
∞∑
k=1

(∫
Ω

ψkψ dx

)
ψk dx

=

∫
Ω

(umi − u)
s∑

k=1

(∫
Ω

ψkψ dx

)
ψk dx

+

∫
Ω

(umi − u)
∞∑

k=s+1

(∫
Ω

ψkψ dx

)
ψk dx

=
s∑

k=1

(∫
Ω

ψkψ dx

)∫
Ω

(umi − u)ψk dx

+

∫
Ω

(umi − u)
∞∑

k=s+1

(∫
Ω

ψkψ dx

)
ψk dx .

For the last term we get the following estimate:∣∣∣∣∣
∫

Ω

(umi − u)
∞∑

k=s+1

(∫
Ω

ψkψ dx

)
ψk dx

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=s+1

∫
Ω

(umi − u)

(∫
Ω

ψkψ dx

)
ψk dx

∣∣∣∣∣
≤

∞∑
k=s+1

∫
Ω

∣∣∣∣(umi − u)

(∫
Ω

ψkψ dx

)
ψk

∣∣∣∣ dx
≤

∞∑
k=s+1

||umi − u||L2(Ω)

∣∣∣∣∣∣∣∣(∫
Ω

ψkψ dx

)
ψk

∣∣∣∣∣∣∣∣
L2(Ω)

=
∞∑

k=s+1

∣∣∣∣(∫
Ω

ψkψ dx

)∣∣∣∣ ||umi − u||L2 ||ψk||L2

≤ C
∞∑

k=s+1

∣∣∣∣(∫
Ω

ψkψ dx

)∣∣∣∣
→ 0 as s→∞ .
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and where C is independent of mi. Now we can find S ∈ N such that the above sum is
less than ε/2. But since we have earlier proven that for fixed s the sum

s∑
k=1

(∫
Ω

ψkψ dx

)∫
Ω

(umi − u)ψk dx

will be less than ε/2 for all t ∈ [0, T ]. This implies that |(umi − u, ψ)| can be made
arbitrarily small for all t ∈ [0, T ]. In this same way we can show that umi → u weakly
in L2(ΩT ) and uniformly with respect to t.

Now from (5.4) and the sequential compactness of V 2(ΩT ) we see that we can choose
such a subsequence umij of umi that also Dumij → Du in L2(ΩT ). Then by weak
convergence we see that

||u||V 2(ΩT ) ≤ C <∞ (5.10)

and thus u ∈ V 2(ΩT ).

Then we finally show that u satisfies (1.3). To this end we multiply the equation
(5.2) by a smooth function dk(t) that has compact support in T and sum over all k from
1 to m′ ≤ m and integrate the result from 0 to T . This gives

m′∑
k=1

(∫ T

0

d

dt
(um, ψk)L2(Ω) dk dt+

∫∫
ΩT

(ADum, Dψk)dkdxdt
)

= 0 .

Then integrating by parts in the first term and defining

φm
′
(x, t) =

m′∑
k=1

dk(t)ψk(x)

we get

−
∫ T

0

∫
Ω

umφm
′

t dx dk dt+
n∑

i,j=1

∫∫
ΩT

aijumxiφ
m′

xj
dxdt = 0 .

But now taking the weak limit with respect to um gives

−
∫ T

0

(u, φm
′

t )dk dt+

∫∫
ΩT

(
Du,ADφm′

)
dxdt = 0 .

Then finally we can find a sub sequence φm′i of φm′ such that φm′i → φ weakly in V 2
0 (ΩT ).

This completes the proof of the theorem since C∞0 (ΩT ) ⊂ V 2
0 (ΩT ).
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5.2 Proof of the Harnack’s inequality
We now assume that the coefficients of the equation are smooth and the weak solution
of the equation is actually a classical one. We will establish Harnack’s inequality with
a constant that is independent of these smooth coefficients and the solution itself. This
is why we can’t use the methods of the last section and why we need to use totally new
ideas. The proof is due to Moser [6], [7].

5.2.1 Main lemmas

The proof consists of three main lemmas. There are also four other lemmas that are
needed in the proofs of the three main ones and these are proved later on. The first
two of the main lemmas are needed to prove the third one that is then used in the
proof of the Harnack’s inequality. In the first lemma we show that the supremum of the
solution of (1.1) is controlled by its Lp-norm with p near to zero. This corresponds to
the geometrical mean of the solution.

We denote by R(ρ) the cylinder

R(ρ) :=
{

(x, t) ∈ Rn+1
∣∣|x| < ρ, |t| < ρ2

}
,

where ρ > 0. Similarly, let

R+(ρ) :=
{

(x, t) ∈ R(ρ)
∣∣|x| < ρ, 0 < t < ρ2

}
and

R−(ρ) :=
{

(x, t) ∈ R(ρ)
∣∣|x| < ρ, −ρ2 < t < 0

}
.

Lemma 5.2.1. Let 1
2
≤ ρ < r ≤ 1 and µ = λ−1 + Λ and assume that u is a positive

solution of (1.1). Then there exists a positive constant C1 = C1(n) such that

sup
R(ρ)

up ≤ C1

(r − ρ)n+2

∫∫
R(r)

up dx dt (5.11)

for all p such that 0 < p < µ−1. Similarly

sup
R−(ρ)

up ≤ C1

(r − ρ)n+2

∫∫
R−(r)

up dx dt (5.12)

for all p such that 0 < −p < µ−1.
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Proof. Let µ = λ−1 + Λ. We first prove (5.11) under the assumption that ρ = 1
2
and

r = 1. We can then easily extend the result to the more general case. At first let
φ ∈ C∞(R(1)) and have compact support in |x| < 1 for every t. Then we define
ψ ∈ C∞(R(1)) for every p 6= 0, 1 by setting

φ = u1−pψ2

and we also define function
v = up/2.

Now we fix 1
2
≤ ρ < r ≤ 1 and use the fact that u is a solution to (1.1) which implies

that ∫∫
φut + (Dφ,ADu) dx dt = 0 . (5.13)

We would like to write this with ψ and v defined above and for this purpose we calculate
next φut and (Dφ,ADu). Now since{

φ = up−1ψ2 =
(
v2/p

)p−1
ψ2 = v2(1−1/p)ψ2 and

ut =
(
v2/p

)
t

= (v2)t
1
p
v2(1/p−1)

we get

φut =
v2(1/p−1)

v2(1/p−1)
· 1

p

(
v2
)
t
ψ2 =

1

p

(
v2
)
t
ψ2. (5.14)

Moreover we have

Dφ = D(v2(1−1/p))

= 2(1− 1/p)v2(1−1/p)−1Dvφ2 + v2(1−1/p) · 2ψDψ

= 2v2(1−1/p)

[
(1− 1

p
)v−1ψ2Dv + ψDψ

]

and

Du = D(v(2/p)) =
2

p
v2/p−1Dv =

2

p
v2(1/p−1)+1Dv

which gives us
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(Dφ,ADu) =
2

p

v2(1/p−1)+1

v2(1/p−1)
· 2
((

1− 1

p

)
v−1ψ2Dv + ψDψ,ADv

)
=

4v

p

(
v−1

(
1− 1

p

)
ψ2Dv + ψDψ,ADv

)
=

4

p

(
1− 1

p

)
ψ2(Dv,ADv) +

4v

p
ψ(Dψ,ADv).

Then substituting these to (5.13) we get∫∫
4

4p
(v2)tψ

2 +
4

p

(
1− 1

p

)
ψ2(Dv,ADv) +

4v

p
ψ(Dψ,ADv) dx dt = 0

that implies

1

4

∫∫
ψ2(v2)t dx dt+

(
1− 1

p

)∫∫
ψ2(Dv,ADv) dx dt (5.15)

= −
∫∫

vψ(Dψ,ADv) dx dt.

Our next task is to estimate the last integrand − vψ(Dψ,ADv). To do this we first
fix ε > 0. Then by Theorem 2.5.5,

|vψ(Dψ,ADv)| ≤ v2

4ε
(Dψ,ADψ) + εψ2 (Dv,ADv) .

Substituting this to equation (5.15) gives the two inequalities

1

4

∫∫
ψ2(v2)t dx dt+

(
1− 1

p

)∫∫
ψ2(Dv,ADv) dx dt (5.16)

≤ 1

4ε

∫∫
v2(Dψ,Aψ) dx dt+ ε

∫∫
ψ2(Dv,ADv) dx dt

and

−1

4

∫∫
ψ2(v2)t dx dt−

(
1− 1

p

)∫∫
ψ2(Dv,ADv) dx dt (5.17)

≤ 1

4ε

∫∫
v2(Dψ,Aψ) dx dt+ ε

∫∫
ψ2(Dv,ADv) dx dt .
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For (5.16) we notice that from the product rule (ψ2v2)t = (ψ2)t v
2 +ψ2 (v2)t we get that

ψ2 (v2)t = (ψ2v2)− v2 (ψ2)t. This implies

1

4

∫∫ (
ψ2v2

)
t
+

[
−ε+

(
1− 1

p

)]
ψ2(Dv,ADv) dx dt

≤1

4

∫∫
v2

(
1

ε
(Dψ,ADψ) +

(
ψ2
)
t

)
dx dt .

Then putting in (ψ2)t = 2ψψt ≤ 2|ψψt| gives

1

4

∫∫ (
ψ2v2

)
t
+

[
−ε+

(
1− 1

p

)]
ψ2(Dv,ADv) dx dt (5.18)

≤1

4

∫∫
v2

(
1

ε
(Dψ,ADψ) + 2|ψψt|

)
dx dt .

Similar calculations for (5.17) imply that

1

4

∫∫
−
(
ψ2v2

)
t
+

[
−ε−

(
1− 1

p

)]
ψ2(Dv,ADv) dx dt (5.19)

≤1

4

∫∫
v2

(
1

ε
(Dψ,ADψ) + 2|ψψt|

)
dx dt .

Now we would like to use the conditions of (1.2) to (Dψ,ADψ) and (Dv,ADv) but
before this we have to assure that both

[
−ε+

(
1− 1

p

)]
of (5.18) and

[
−ε−

(
1− 1

p

)]
of (5.19) are nonnegative. Since this inequality holds for all ε > 0 we can now choose it
to be

ε =
1

2

∣∣∣∣1− 1

p

∣∣∣∣ . (5.20)

This is possible since we only consider the case where p 6= 0, 1. Now if p > 1 we have(
1− 1

p

)
= 2ε .
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Substituting this to (5.18) gives

1

4

∫∫ (
ψ2v2

)
t
dx dt+ ε

∫∫
R(r)

ψ2(Dv,ADv) dx dt

≤1

4

∫∫
v2

(
1

ε
(Dψ,ADψ) + 2|ψψt|

)
dx dt .

If on the other hand p < 1, we have

−
(

1− 1

p

)
= 2ε

and this with (5.18) implies that

−1

4

∫∫ (
ψ2v2

)
t
dx dt+ ε

∫∫
R(r)

ψ2(Dv,ADv) dx dt

≤1

4

∫∫
v2

(
1

ε
(Dψ,ADψ) + 2|ψψt|

)
dx dt .

Now conditions (1.2) imply

1

4

∫∫ (
ψ2v2

)
t
dxdt+ ελ

∫∫
ψ2|Dv|2 dx dt (5.21)

≤1

4

∫∫
v2

(
Λ

ε
|Dψ|2 + 2|ψψt|

)
dx dt

for p > 1 and

−1

4

∫∫ (
ψ2v2

)
t
dxdt+ ελ

∫∫
ψ2|Dv|2 dx dt (5.22)

≤1

4

∫∫
v2

(
Λ

ε
|Dψ|2 + 2|ψψt|

)
dx dt

for p < 1. Next we will consider these inequalities in suitable regions of integration.
First we take (5.22) and notice that since the second term in the above is nonnegative,
we get

−
∫∫ (

ψ2v2
)
t
dxdt ≤

∫∫
v2

(
Λ

ε
|Dψ|2 + 2|ψψt|

)
dx dt (5.23)

Then we choose ψ such that ψ = 1 in R+(ρ), ψ = 0 outside of R+(r), |Dψ| ≤
√
C1

1
r−ρ
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and |ψt| ≤ C1
1

r2−ρ2 for a suitable constant C1 that doesnt depend on any of the param-
eters. This gives(

Λ

ε
|Dψ|2 + 2|ψψt|

)
≤ C1

(
Λ

ε

1

(r − ρ)2
+

1

r2 − ρ2

)
≤ C2

(r − ρ)2

(
Λ

ε
+ 1

)
where C2 is another absolute constant.

If we now fix the integration to be taken over the set R+
σ := {(x, t) ∈ R+(r) : 0 <

σ < t < r2, |x| < ρ}, where σ is chosen such that∫
|x|<ρ

v(x, σ)2 dx ≥ 1

2
sup

0<t<r2

∫
|x|<ρ

v2 dx ,

then it follows from (5.23) that

1

2
sup

0<t<r2

∫
|x|<ρ

v2 dx ≤ C2

(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R+
σ

v2 dx dt.

But now well known properties of the supremum and integration finally imply that

sup
0<t<ρ2

∫
|x|<ρ

v2 dx ≤ 2C2

(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R+(r)

v2 dx dt

for p < 1. With the same argument we get

sup
0<−t<ρ2

∫
|x|<ρ

v2 dx ≤ 2C2

(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R−(r)

v2 dx dt

when p > 1.
Then we can deduce that for p > 0, p 6= 1 we have

sup
0<|t|<ρ2

∫
|x|<ρ

v2 dx ≤ 2C2

(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R(r)

v2 dx dt (5.24)

On the other hand we can consider (5.21), with the same choice of ψ, over the region
R(r) and then remove the first term to get∫∫

R(r)

ψ2|Dv|2 dxdt ≤ 1

4ελ

∫∫
R(r)

v2

(
Λ

ε
|Dψ|2 + 2|ψψt|

)
dx dt

for p > 0, p 6= 1. But then the rules of integration and the choice of ψ imply

ελ

∫∫
R(ρ)

|Dv|2 dx dt ≤ C2

4ελ(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R(r)

v2 dx dt (5.25)
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From lemma 5.2.6 we know that∫∫
R(ρ)

v2κ dx dt ≤ C3 sup
|t|<ρ2

(∫
|x|<ρ

v2 dx

)κ−1 ∫∫
R(ρ)

v2 + |Dv|2 dx dt .

Now substituting (5.24) and (5.25) in this inequality gives

∫∫
R(ρ)

v2κ dx dt ≤ C3

[
2C2

(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R(r)

v2 dx dt

]κ−1

·
[∫∫

R(ρ)

v2 dx dt+
C2

4ελ(r − ρ)2

(
Λ

ε
+ 1

)∫∫
R(r)

v2 dx dt

]
= C4

(∫∫
R(ρ)

v2 dx dt

)κ
where

C4 = C3

[
2C2

(r − ρ)2

(
Λ

ε
+ 1

)]κ−1

·
[

C2

4ελ(r − ρ)2

(
Λ

ε
+ 1

)
+ 1

]
.

This constant may seem a bit nasty, but we can estimate it to get a shorter one: since
µ = Λ + λ−1 > 1 we get

C4 = C3

[
C2

(r − ρ)2

(
Λ

ε
+ 1

)]κ
2κ

4ελ
+ C3

[
C2

(r − ρ)2

(
Λ

ε
+ 1

)]κ−1

2κ−1

= C3

(
C2

(r − ρ)2

)κ [(µ
ε

+ 1
) 2κµ

4ε
+

(r − ρ)2

C2

(µ
ε

+ 1
)κ−1

]
≤ C5

(
C2

(r − ρ)2

)κ (µ
ε

+ 1
)κ+1

=
C6

(r − ρ)2κ

(µ
ε

+ 1
)κ+1

=: C

where the constant C6 doesn’t depend on the solution or the factors aij. Then going
back to u gives (∫∫

R(ρ)

upκ dx dt

) 1
κ

≤ C
1
κ

∫∫
R(r)

up dx dt (5.26)
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for p > 0, p 6= 1. Our next task is to iterate this inequality to get (5.11) with r = 1 and
ρ = 1

2
. To do this we define 

ρj = 1
2

(1 + 2−j)

pj = pκj

εj = 1
2

∣∣1− p−1
j

∣∣
for j = 0, 1, 2, . . .. Then we notice that we should have pj 6= 1 for every j. This can be
done by choosing

p =
1

2
κi(κ+ 1)

for some i ∈ Z. But we recall that(
1

|R(r)|

∫∫
R(r)

up dx dt

) 1
p

,

where | · | denotes the Lebesgue measure on R, is a monotone function of p. Thus for
any p̃ we can choose i ∈ Z such that p ≤ p̃ < pκ. Then from lemma 5.2.7 we get that

|pj − 1| ≤ 1

2
(1− κ−1)

for every j ∈ N, i ∈ Z. And thus for 0 < p < µ−1 we can calculate

µ

εj
=

µ
1
2
|1− p−1

j |
=

2µ

p−1
j |pj − 1|

=
2µpj
|pj − 1|

≤ 2µpκj

1
2
(1− κ−1)

≤ 4κj

(1− κ−1)
=

4κj

(1− κ−1)
.
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Then we get for the iteration constants

Cj =
C6

(ρj − ρj+1)2κ

(
µ

εj
+ 1

)κ+1

≤ C6(
1
2

+ 1
2j+1 − 1

2
− 1

2j+2

)2κ

(
4κj

(1− κ−1)
+ 1

)κ+1

≤ C6(
1

2j+1 (1− 1
2
)
)2κ

(
4 · 2j

(1− κ−1)
+ 1

)κ+1

≤ C6

(
2j+2

)2κ
(

2j+2

(1− κ−1)

(
1 +

1

2j+2

))κ+1

≤ C6

(
24κ
)j+1 (

22(κ+1)
)j+1

(
1 +

1

2j+2

)κ+1

=: C6 · Cj+1
7 · C8 ≤ Cj+1

9

where C9 is yet again an absolute constant. Then from (5.26) if follows that:(∫∫
R(ρj+1)

upj+1 dx dt

) 1

κj+1

≤
(
C

1
κ
j

)j+1
(∫∫

R(ρj)

upj dx dt

) 1

κj

(5.27)

for all j = 0, 1, . . .. Then iterating this inequality implies finally what we need:

sup
R( 1

2
)

up = lim
j→∞

(∫∫
R(ρj)

upj dx dt

) 1

κj

≤
∞∏
j=0

(
C

1
κ
j

)j+1

·
∫∫

R(1)

up dx dt . (5.28)

This proves (5.11) for r = 1 and ρ = 1
2
since we have the estimate

∞∏
j=0

(
C

1
κ
j

)j+1

≤
∞∏
j=0

C
j+1

κj+1

9 = C
∑∞
j=1

j

κj

9 ≤ CC10
9 =: C11

with C11 being an absolute constant. Now we should prove that (5.11) holds generally.
For this purpose we define a transformation

(x, t)→ (αx, α2t) .

Then we get a new solution to (1.1) with another absolute constant denoted also by C11.
Then we get from (5.28) that

sup
R(α

2
)

up ≤ C11

αn+2

∫∫
R(α)

up dx dt .
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Then letting 1
2
≤ ρ < r ≤ 1 and setting α = r − ρ implies

sup
R( r−ρ

2
)

up ≤ C11

(r − ρ)n+2

∫∫
R(α)

up dx dt

and applying this inequality to all cylinders that are obtained from R(r − ρ) by trans-
lations. Now the centers of these cylinders cover R(ρ) which then gives finally (5.11).
We can prove (5.12) in this same way, but in that case one doesn’t take care of p going
too close to 1 since it’s negative.

Next we prove another lemma that controls the measures of certain level sets of log u.

Lemma 5.2.2. If u > 0 is a solution of (1.1) in Q× T where

Q := {x ∈ Rn ||x| < 2}

and T := [t1, t2]. Then there exists constants a, b such that∣∣{(x, t) ∈ R+(1) |log u < −s+ a
}∣∣+

∣∣{(x, t) ∈ R−(1) |log u > s+ a
}∣∣ ≤ bµ

s
(5.29)

for all s > 0 where a depends on the solution u and b depends only on n.

Proof. Let u be a supersolution of (1.1). Then for any φ ∈ C∞0 (Q), φ ≥ 0 we have∫∫
φut + (Dφ,ADu) dx dt ≥ 0 .

If we now define φ := 1
u(x,t)

ψ(x)2 for some fixed ψ ∈ C∞0 and v := − log u, we get∫∫ (
ψ2 1

e−v

)
· (−vte−v) +

(
D

(
ψ2 1

e−v

)
,AD

(
e−v
))

dx dt ≥ 0

and this implies that

−
∫∫

ψ2vt dx dt−
∫∫

(Dψ2,ADv) dx dt−
∫∫

ψ2(Dv,ADv) ≥ 0

Then fixing the integration with respect to t to be from t1 to t2 gives
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∫
Q

ψ2v dx dt

∣∣∣∣∣∣
t2

t1

+ 2

t2∫∫
t1Q

ψ(Dψ,ADv) dx dt+

t2∫∫
t1Q

ψ2(Dv,ADv) dx dt ≤ 0 . (5.30)

Now by Theorem 2.5.5 we know that

(Dψ,ADv) ≤ (Dψ,ADψ)1/2(Dv,ADv)1/2

and then this and the Hölder’s inequality of Theorem 2.1.3 implies that

2

t2∫∫
t1Q

ψ(Dψ,ADv) dx dt ≤ 2

t2∫∫
t1Q

(Dψ,ADψ)1/2ψ(Dv,ADv)1/2 dx dt

≤ 2

 t2∫∫
t1Q

(Dψ,ADψ) dx dt


1
2

·

 t2∫∫
t1Q

ψ2(Dv,ADv) dx dt


1
2

≤
t2∫∫
t1Q

(Dψ,ADψ) dx dt+

t2∫∫
t1Q

ψ2(Dv,ADv) dx dt .

Thus we have

2

t2∫∫
t1Q

ψ(Dψ,ADv) dx dt−
t2∫∫
t1Q

ψ2(Dv,ADv) dx dt ≤
t2∫∫
t1Q

(Dψ,ADψ) dx dt .

This implies with (5.30) that

∫
Q

ψ2v dx dt

∣∣∣∣∣∣
t2

t1

+ 2

t2∫∫
t1Q

ψ2(Dv,ADv) dx dt ≤
t2∫∫
t1Q

(Dψ,ADψ) dx dt .

Next we notice that from the ellipticity condition (1.2) it follows that

∫
Q

ψ2v dx dt

∣∣∣∣∣∣
t2

t1

+ 2λ

t2∫∫
t1Q

ψ2|Dv|2 dx dt ≤ Λ

t2∫∫
t1Q

|Dψ|2 dx dt .
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Then since λ ≥ µ−1 and Λ ≤ µ, we get∫
Q

ψ2v dx dt

∣∣∣∣∣∣
t2

t1

+
1

C1µ

t2∫∫
t1Q

ψ2|Dv|2 dx dt ≤ µ

t2∫∫
t1Q

|Dψ|2 dx dt .

where C1 = 1
2
. Then then we choose ψ ∈ C∞0 (Ω) such that

ψ = 1 in |x| ≤ 1,

ψ = 0 in |x| ≥ 2,

|Dψ| ≤ C2 ,

where C2 is a suitable absolute constant and all the level surfaces of ψ are convex. This
with Lemma 5.2.5 implies that

∫
Q

ψ2v dx dt

∣∣∣∣∣∣
t2

t1

+
1

C1µ

t2∫∫
t1Q

(v(x, t)− V (t))2ψ2 dx dt ≤ µC2
2

t2∫∫
t1Q

dx dt = C3µ|Q|(t2 − t1) ,

where

V (t) =

∫
Q

v(x, t)ψ2 dx∫
Q

ψ2 dx

and C3 := C2
2 . Then dividing both sides of the equation with Q(t2 − t1) implies that∫

Q

ψ2(x, t2)v(x, t2) dx−
∫
Q

ψ2(x, t1)v(x, t1) dx∫
Q

dx(t2 − t1)

+
1

|Q|µC1(t2 − t1)

t2∫∫
t1Q

(v(x, t)− V (t))2ψ2 dx dt

≤ C3µ .

If we now write the first term with V (t), we get

V (t2)− V (t1)

t2 − t1
+

1

|Q|µC1(t2 − t1)

t2∫∫
t1Q

(v(x, t)− V (t))2ψ2 dx dt ≤ C3µ . (5.31)
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Next define U := {(x, t) ∈ Q × T ||t| ≤ 1|x| < 1}. Now since (5.31) doesn’t change if
we add a constant to v. In this case there is a constant a such that transformation
v → v+a normalizes V such that V (0) = 0. Then denote U+ := {(x, t) ∈ U |0 ≤ t ≤ 1}
and defined {

w(x, t) := v(x, t)− C3µt ,
W (t) := V (t)− C3µt .

we know that W is certainly differentiable and then by taking the limit t2 → t1 we get

dW

dt
+

1

C3µ

∫
Q

(w −W )2dx ≤ 0 (5.32)

Now set Qs(t) := {x ∈ Q |w(x, t) > s} for 0 < t < 1. Then for s > 0 we have

0 < s−W ≤ w −W

since W (t) ≤ 0 in 0 < t < 1. Then if we restrict (5.32) to Qs(t), we get

dW

dt
+

1

C3µ

|Qs|
|Q|

(s−W )2 ≤ 0

and this implies that

C3µ(s−W )2d(s−W )

dt
≥ |Qs|
|Q|

.

Then integrating this from 0 to 1 with respect to t gives

C3µ

s
≥ 1

|Q|

1∫
0

|Qs|dt =
1

|Q|

∫∫
w>s

dx dt .

But writing the last integral as a measure then gives∣∣{(x, t) ∈ U+ |log u < −s+ a
}∣∣ ≤ C4(n)µ

s

since {
(x, t) ∈ U+ |log u < −s+ a

}
⊂
{

(x, t) ∈ U+ |log u < −s+ at
}
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for all 0 < t < 1. Similarly we get∣∣{(x, t) ∈ U− |log u > s+ a
}∣∣ ≤ C4(n)µ

s

and this implies the claim.

Now we have proved the first two lemmas and we are ready to proceed to the third
one. This lemma is the main result of [7].

Lemma 5.2.3. Let m,µ,C0,
1
2
≤ θ < 1 be positive constants and let w > 0 be a

continuous function defined in a neighbourhood of Q(1) for which

sup
Q(ρ)

wp <
C0

(r − ρ)m|Q(1)|

∫∫
Q(r)

wp dx dt (5.33)

for all p, r, ρ satisfying

1

2
≤ θ ≤ ρ < r ≤ 1,

0 < p < µ−1 .

In addition let
|{(x, t) ∈ Q(1) |logw > s}| < C0µ

s
|Q(1)| (5.34)

for all s > 0. Then there exists a constant function γ = γ(θ,m,C0) such that

sup
Q(θ)

w < γµ . (5.35)

Proof. We may assume that µ = 1 and Q(1) = 1. Then define

φ(ρ) := sup
Q(ρ)

logw

for θ ≤ ρ < 1, which is a nondecreasing function. We want first to get an estimate

φ(ρ) <
3

4
φ(r) +

γ1

(r − ρ)2m
(5.36)
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with θ ≤ ρ < r ≤ 1 and some constant γ1 = γ(θ,m,C0). For this purpose we estimate∫∫
Q(r)

wp dx dt

by defining sets

Q1(r) :=

{
(x, t) ∈ Q(r)

∣∣∣∣logw >
1

2
φ(r)

}
Q2(r) :=

{
(x, t) ∈ Q(r)

∣∣∣∣logw ≤ 1

2
φ(r)

}
.

Then we have

∫∫
Q(r)

wp dx dt ≤
∫∫

Q1(r)

wp dx dt+

∫∫
Q2(r)

wp dx dt

≤ sup
Q1(r)

wp
∫∫

Q1(r)

dx dt+

∫∫
Q2(r)

e
φp
2 dx dt

≤ sup
Q(r)

wp
2C0

φ(r)
+ e

φp
2

∫∫
Q(1)

dx dt

≤ eφ(r)p 2C0

φ(r)
+ e

φp
2

= 2e
φp
2 ,

where the equality of the last line holds if we choose p such that

2C0

φ(r)
= e−

φp
2 ,

that is
p = log

(
φ(r)

2C0

)
· 2

φ(r)
.

But since we require 0 < p < 1 we have

φ(r) > 2C0 =: C1 . (5.37)
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Then the first assumption of the lemma gives

sup
Q(ρ)

wp <
2C0

(r − ρ)m
e
pφ
2 .

This implies that

sup
Q(ρ)

w <

(
2C0

(r − ρ)m
e
pφ
2

) 1
p

and thus
φ(ρ) <

1

p
log

(
2C0

(r − ρ)m
e
pφ
2

)
=

1

p
log

(
2C0

(r − ρ)m

)
+
φ

2

Next we substitute our choice of p to this inequality:

φ(ρ) <
φ

2

log
(

2C0

(r−ρ)m

)
log
(
φ(r)
2C0

) +
φ

2
(5.38)

and we consider the case when

log
(

2C0

(r−ρ)m

)
log
(
φ(r)
2C0

) <
1

2
.

To get some sense of this we solve φ from this inequality:

2C0

(r − ρ)m
<

(
φ(r)

2C0

) 1
2

and thus
φ(r) >

8C3
0

(r − ρ)2m
. (5.39)

So in this case we get from (5.38) that

φ(ρ) <
3

4
φ(r).

On the other hand if (5.37) or (5.39) is violated, then we get

φ(r) ≤ γ1

(r − ρ)2m

55



for θ ≤ ρ < r < 1, since from (5.37) it follows that

φ(ρ) ≤ C1
(r − ρ)2m

(r − ρ)2m
≤ (1− θ)2m

(r − ρ)2m
.

So in any case equation (5.36) holds. Now we can iterate this inequality to prove this
lemma. To this end fix a sequence

0 ≤ r0 < r1 < · · · < rk ≤ 1.

Then we get from (5.36) that

φ(r0) <

(
3

4

)k
φ(rk) + γ1

k∑
i=1

(
3

4

)i
1

(ri+1 − ri)2m
.

Since k was arbitrary and
φ(rk) ≤ φ(1) <∞

we get for k →∞ that

φ(θ) ≤ φ(r0) ≤ γ1

∞∑
i=1

(
3

4

)i
1

(ri+1 − ri)2m
.

Next we choose sequence ri such that the right hand side converges. This is indeed the
case if we choose

ri := 1− 1− θ
1 + j

as we will show in what follows. At first we may just calculate

γ1

∞∑
j=0

(
3

4

)j
(rj+1 − rj)−2m = γ1

∞∑
j=0

(
3

4

)j (
1− 1− θ

1 + j + 1
−
(

1− 1− θ
1 + j

))−2m

= γ1

∞∑
j=0

(
3

4

)j (−(1 + j)(1− θ) + (2 + j)(1− θ)
(j + 2)(j + 1)

)−2m

= γ1

∞∑
j=0

(
3

4

)j (
(1− θ)

(j + 2)(j + 1)

)−2m

≤ γ1

∞∑
j=0

(
3

4

)j
(j + 2)4m

(1− θ)2m
.
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Now for k̃ ∈ N, k̃ > 4m we have

(
5

4

)x
=

(
5

4

)(x+2)−2

=

(
4

5

)2

·
(

5

4

)x+2

=

(
4

5

)2

e(x+2) log( 5
4)

=

(
4

5

)2 ∞∑
k=0

1

k!

(
(x+ 2) log

(
5

4

))k
≥
(

4

5

)2
1

(k̃ + 1)!

(
(x+ 2) log

5

4

)k̃+1

>

(
4

5

)2
1

(k̃ + 1)!

(
log

5

4

)k̃+1

(x+ 2)4m+1 .

Here we can replace x with j and the inequality above holds for every j ∈ N. This
implies that

(
5

4

)j
>

(
4

5

)2
1

(k̃ + 1)!

(
log

5

4

)k̃+1

(j + 2)(j + 2)4m

≥ (j + 2)4m

(1− θ)2m

for every

j > −2 +
1(

4
5

)2 1

(k̃+1)!

(
log 5

4

)k̃+1
(1− θ)2m

=: M .

Thus we get

γ1

∞∑
j=0

(
3

4

)j
(rj+1 − rj)−2m < γ1

M∑
j=0

(
3

4

)j
(rj+1 − rj)−2m + γ1

∞∑
j=M+1

(
3

4

)j (
5

4

)j
= M̃ + γ1

∞∑
j=m+1

(
15

16

)j
<∞
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and this proves the lemma.

5.2.2 Proof of Theorem 1.0.2.

Next we will prove Theorem (1.0.2) in specially chosen domains D,D+ and D−. Idea
in the proof is to show that the assumptions (5.33) and (5.34) hold for w := e−au where
the constant a is the constant given by Lemma 5.2.2.

Proof. Let

D = {(x, t) ∈ Ω× T ||x| < 2, |t| < 1} ,

D+ =

{
(x, t) ∈ D

∣∣∣∣|x| < 1

2
,
3

4
< t < 1

}
and

D− =

{
(x, t) ∈ D

∣∣∣∣|x| < 1

2
,−3

4
< t < −1

4

}
.

Now assumption (5.33) clearly holds since for Q(1) := R−(1) we know that |Q(1)| =
|R−(1)| = c(n). To show that the second assumption holds we have to make the following
calculation: Lemma 5.2.2 gives constants c2, a such that

c2µ

s
≥
∣∣{(x, t) ∈ R−(1) | log u > s+ a

}∣∣
=
∣∣{(x, t) ∈ R−(1) | log u− log ea > s

}∣∣
=
∣∣{(x, t) ∈ R−(1)

∣∣ log e−au > s
}∣∣

=
∣∣{(x, t) ∈ R−(1) |w > s

}∣∣ .
This implies that the second assumption also holds for w since |Q(1)| = c(n). Then set

Q(ρ) =

{
(x, t) ∈ D

∣∣∣∣|x| < ρ√
2
,

∣∣∣∣t+
1

2

∣∣∣∣ < 1

2
ρ2

}
.

for 1
2
≤ ρ < 1. We notice that Q(ρ) can be obtained from R(1) by an admissible

transformation {
x→ 1√

2
x

t→ t+ 1−ρ2
2

that preserves the solutions of (1.1). Now taking θ = 1√
2
gives Q(θ) = D− and Lemma

5.2.3 implies
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sup
D−

e−a < cµ4 , (5.40)

where c4 = γ for m = n + 2. In the same way we can show that (5.33) and (5.34) hold
for w = eau setting

Q(ρ) =
{

(x, t) ∈ D
∣∣ |x| < ρ, 0 < 1− t < ρ2

}
.

Thus by Lemma 5.2.3 we get for θ = 1
2
, Q(θ) = D+,

sup
D+

ea < cµ5 . (5.41)

Multiplying inequalities (5.40) and (5.41) imply (1.4).

Our next purpose is to extend this result from these specially chosen domains to
more general domains. To this end we first need the following lemma:

Lemma 5.2.4. Let Ω be an open set in Rn and K a compact, connected subset of Ω.
Then there exists a constant C6 = C6(K,Ω) with the following property: for any ρ in

0 < 2ρ < dist(K, ∂Ω) =: δ

and for any ξ, η ∈ K, there exists a chain of balls Bj(2ρ), j = 1, 2, . . . , l, in Ω such
that the concentric balls Bj(ρ) connect ξ, η in the sense that ξ ∈ B0(ρ), η ∈ Bl(ρ),
Bj−1(ρ) ∩Bj(ρ) 6= ∅, j = 1, 2, . . . , l, and such that l doesn’t exceed C6/ρ.

Proof. A simple proof, based on a finite covering of K by balls and a polygonal path
through some of the centers of these balls can be found in [7, p. 735].

One can also find the proof of 1.0.2 in general domains in [7, p. 735]. It uses Lemma
5.2.4 above to prove that for a arbitrary points (ξ+, t+) ∈ D+ and (ξ−, t−) ∈ D− it holds
that

u(ξ−, t−) ≤ CNµu(ξ+, t+),

where N = N(D,D+, D−). This proves 1.0.2 since we assumed that u is smooth.

5.2.3 Lemmas

Here are the proofs for the lemmas used earlier in this chapter.

Lemma 5.2.5. Let p(x) ≥ 0 be a continuous function of compact support of breath B
and such that the domains level surfaces p(x) = constant are convex. Then for any
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function f such that f and |Df | are in L2 with respect to the measure given by p(x)dx
we have

min
k

∫
(f(x)− k)2 p(x) dx ≤ CB2

∫
|Df |2 p(x) dx , (5.42)

where
C =

max p(x)

2
∫
p(x) dx

∫
p>0

|Df |2 p(x) dx .

Then minimum is assumed for

k =

∫
f(x) p(x) dx∫
p(x) dx

.

Proof. First we notice that∫∫
(f(x)− f(y))2p(x)p(y) dx dy = 2

∫
p(x) dx

∫
(f − k)2 p(y) dy (5.43)

with k as in the statement of the lemma. Then let γ be the staright line segment

γ := {xt+ (1− t)y |t ∈ [0, 1]} .

Then we can calculate as follows:

(f(y)− f(x))2 =

(∫ 1

0

(Df, γ′(t)) dt

)2

≤
(∫ 1

0

√
p|Df | · |γ′(t)|1/2 1

√
p
|γ′(t)|1/2 dt

)2

≤
(∫ 1

0

p|Df |2|γ′(t)| dt
)(∫ 1

0

|Dγ′(t)|
p

dt

)
=

(∫
γ

p|Df |2 dγ
)(∫

γ

1

p
dγ

)
.

Now p(tx+ (1− t)y) ≥ p(x) for all t ∈ [0, 1] and this implies that∫
γ

1

p
dγ ≤ 1

p(x)

∫
γ

dγ ≤ C

p(x)
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for some C ∈ R. Then

(f(x)− f(y))2 p(x)p(y) ≤
∫
γ

|Df |2p dγCp(y)

and by integrating this for z = y − x over x we get∫
(f(x)− f(x+ z))2 p(x)p(x+ z) dx ≤

∫
|Df |2p dxC2 max p .

Finally integration over z gives∫∫
(f(x)− f(y))2 p(x)p(y) dx dy ≤

∫
|Df |2dxC2 max p

∫
p>0

dx.

This, when combined with (5.43), proves this lemma.

Then we prove another lemma that is a Sobolev type inequality that we need in the
proof of Lemma 5.2.1.

Lemma 5.2.6. For any function v ∈ V 1,2(ΩT ) we have∫∫
R(ρ)

v2κ dxdt ≤ C sup
|t|<ρ2

(∫
|x|<ρ

v2 dx

)κ−1 ∫∫
R(ρ)

v2 + |Dv|2 dxdt (5.44)

with C = C(n) and

κ =

{
1 + 2

n
for n > 2 ,

5
3

for n = 1, 2 .

Proof. Let n > 2. Then Hölder’s inequality implies that∫
v(x, t)2(1+2/n) dx =

∫
v(x, t)2v(x, t)4/ndx

≤
(∫

v(x, t)
2n
n−2

)n−2
2n
(∫

v(x, t)
4
n
·n
2 dx

) 2
n

≤
(∫

v(x, t)
2n
n−2

)n−2
2n
(

sup
t

∫
v(x, t)2 dx

) 2
n

.
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also the Sobolev inequality from Theorem 2.3.3 in the preliminaries section asserts that(∫
v(x, t)

2n
n−2

)n−2
2n

≤ C(n)

∫
v2 + |Dv|2 dx .

Combining these inequalities then gives∫
v(x, t)2(1+ 2

n) dx ≤ C(n)

(
sup
t

∫
v(x, t)2 dx

) 2
n
∫
v2 + |Dv|2 dx

and integrating over t gives (5.44) for n > 2 for κ = 1 + 2
n
. If we neglect one or two of

the x−variables for the case n = 3, we get (5.44) for n = 1, 2 with κ = 5/3.

Next lemma is also for the proof of Lemma 5.2.1.

Lemma 5.2.7. Let 0 < p′ < µ−1, i ∈ Z such that p ≤ p′ < κp for p = 1
2
κi(κ + 1) and

for κ as in lemma 5.2.6 and pj = pκj for every j ∈ N. Then we have

|pj − 1| ≥ 1

2
(1− κ−1) (5.45)

Proof. Let j ∈ N. Then

|pj − 1| = |pκj − 1|
= |(1/2)κi(κ+ 1)κj − 1|
= κ|(1/2)κi(1 + 1/κ)κj − 1/κ|

>
1

2
|κi+j + κi+j−1 − κ−1 − κ−1|

=
1

2
|(κi+j − κ−1) + (κi+j−1 − κ−1)|

=


1
2
|1− κ−1| = 1

2
(1− κ−1) if i+ j = 0

1
2
|κ−2 − κ−1| ≥ 1

2
|κ−1 − 1| = 1

2
(1− κ−1) if i+ j = −1

1
2
(κ− κ−1 + 1− κ−1) ≥ 1

2
(1− κ−1) if i+ j = −1

.

But if we have i+ j < −1 we get
1

2
|(κi+j − κ−1) + (κi+j−1 − κ−1)|

=
1

2

[
(κ−1 − κi+j) + (κ−1 − κi+j−1)

]
≥2

2
(κ−1 − κ−2) ≥ 1

2
(1− κ−1).
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Finally for i+ j > 1 we get

1

2
|(κi+j − κ−1) + (κi+j−1 − κ−1)|

=
1

2
(κi+j − κ−1 + κi+j−1 − κ−1)

≥1

2
(κi+j−1 − κ−1)

≥1

2
(1− κ−1)

and the lemma is proved.

Lemma 5.2.8. Let p(x) ≥ 0 be continuous and have compact support of breadth B such
that the domains p(x) ≥ constant are convex for all positive constants C. Then for any
function for which f,Df ∈ L2 with respect to p(x)dx we have

min
k

∫
(f(x)− k)2 p(x)dx ≤ CB2

∫
|Df |2 p(x) dx (5.46)

where
C =

max p(x)

2
∫
p(x)dx

Proof. Proof can be found from [6, p. 132].
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