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ABSTRACT

Mali, Olli

Analysis of errors caused by incomplete knowledge of material data in mathe-
matical models of elastic media

Jyvéaskyld: University of Jyvaskyld, 2011, 111 p.

(Jyvaskyld Studies in Computing

ISSN 1456-5390; 132)

ISBN 978-951-39-4393-6 (nid.), 978-951-39-4394-3 (PDF)

Finnish summary

Diss.

We study the effects that incompletely known data introduce to problems in con-
tinuum mechanics. In particular, we are interested in the case when the parame-
ters of the media in the constitutive laws are not completely known. Our analysis
is based on deviation estimates, which are functionals that allow us to study the
distance between an arbitrary function from the energy space and the exact so-
lution of the problem. For the Kirchhoff-Love arch model, deviation estimates
are derived for the first time. Since the data are not unique, we have a set of so-
lutions instead of a single function. For a certain class of problems, we present
estimates for the radius of the solution set, where estimates depend on the prob-
lem data and the accuracy by which the data are known. For a linear isotropic
elasticity problem, we show that for a certain type of boundary conditions the
elastic energy becomes very sensitive to small variations in Poisson’s ratio at the
incompressibility limit. This phenomenon may be significant enough to render
quantitative analysis meaningless even relatively far from the limit.

Keywords: indeterminate data, functional deviation estimates, a posteriori error
estimates, partial differential equations, linear elasticity
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1 INTRODUCTION

If a mathematical model is used to predict the outcome of some scenario, then
it is important to understand that the incomplete knowledge of the data affects
the accuracy of any results the model produces. We should distinguish between
natural laws, which we assume to hold exactly in the model, such as Newton’s
laws, conservation of momentum, etc. and laws that are constructed by experi-
mental means or are based on simplifying assumptions. Examples of the latter,
and the type mainly studied in the Thesis, are various constitutive relations in
media. Moreover, the initial uncertainty may cumulate in an unexpected way.
This is of practical importance in engineering applications that aim to construct
designs based on results obtained from mathematical models.

The aim of the Thesis is to investigate, with the paradigm of certain models
generated by partial differential equations (PDE), how this uncertainty may affect
quantitative analysis. This knowledge is important for the following two reasons:

¢ Typically, a mathematical model can not be solved exactly, but approximate
solutions are constructed. The difference between the approximate solution
and the exact solution is called approximation error. Reduction of this error
typically requires additional computational effort and resources. Due to the
presence of the inaccuracy arising from incompletely known natural laws,
there is an accuracy limit beyond which additional computations make no
sense.

* In engineering practice, results obtained from mathematical models often
serve as a basis for decision making. Unawareness of uncertainty in simu-
lation results creates a dangerous false sense of reliability.

The main approach usually used to control uncertainty in a model is the so called
probabilistic approach, which leads to stochastic PDEs. There indeterminate data
entering a PDE are considered random variables with a known probability den-
sity. The aim is then to find or approximate the mean value, variance and other
probabilistic quantities related to the solution. An overview of the theory and re-
lated numerical methods (dating back to [3]) can be found in [46]. The most pop-
ular numerical method is the Monte Carlo method [10]. The idea of the method
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is to generate samples of input data within an uncertainty range and to compute
respective solutions. Then the probabilistic features are studied via a statistical
analysis.

Probability distributions are not the only way to model uncertainty. In the
evidence theory (also known as Dempster-Shafer theory) [7, 47], the requirements
for the probability measure are relaxed and obtained probability assignments are
applied instead.

In the theory of fuzzy sets [56] (and evolved possibility theory [57]), the
uncertainty is introduced via a membership function. In the classical theory, there
are only two options, an element is a member of a set or it is not. The membership
function defines the degree of truth of the statement that the element belongs to
a set. The idea is to analyze how the fuzziness of the data is inherited in to the
solution. An introduction and examples can be found in [5].

The application of these theories to physical models is discussed in [19],
where uncertainty is studied in the framework of the worst—case scenario method.

A branch of mathematics called reliability engineering is related to system
analysis and risk analysis. An overview is given in [59], where uncertainty is
classified as either aleatory or epistemic. The first refers to the uncertainty due to
inherent variability of the system and the latter to a lack of knowledge.

Another concept related to incompletely known data is the sensitivity anal-
ysis. It indicates how severe is the influence of the perturbation of a particular in-
put parameter on the solution or other quantity of interest. Typically, the deriva-
tive of the solution with respect to the input parameters is investigated. The
analysis can be done for the original PDE or the approximated finite dimensional
model. For an exposition of the corresponding theory see [16, 23, 45]. The sen-
sitivity analysis can also be done numerically by Monte Carlo type simulations,
where the scattering of the results may indicate the level of correlation between
input and output data (see, e.g., [20]). The sensitivity of the solution with respect
to the geometry of the problem is studied in [17, 18], where the information of
sensitivity is used to solve the optimization problem.

In the Thesis, a certain kinds of elliptic boundary value problems are ana-
lyzed. The physical and mathematical background required for the indetermi-
nacy analysis is presented in Chapter 2. The physical models are presented in
Section 2.1 and their mathematical generalization in Section 2.2. In Section 2.2,
the existence and uniqueness of the solutions for problems of this type are dis-
cussed.

Our analysis is based on functional estimates, which estimate the distance
between the exact solution of a PDE and an arbitrary admissible function from
the energy space for a wide class of problems, as discussed in two books [32,
36]. These estimates (unlike other a posteriori estimates for PDEs) are derived
purely on a functional level and do not contain any mesh-dependent constants.
They are known as a posteriori error estimates of the functional type or deviation
estimates. This methodology is applicable not only to control the approximation
error, but also to estimate the modelling error [41, 42] and the error caused by
an incomplete knowledge of data [32, 38]. The deviation estimates applied in the
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Thesis are presented and derived in Section 2.3. In Chapter 3, the derivation is
presented in the paradigm of the Kirchhoff-Love arch problem.

Our main emphasis is to demonstrate how the deviation estimates can be
used to analyze the effects of uncertain data. The indeterminacy analysis is based
on the following key properties of the deviation estimates:

(a) They depend explicitly on the problem data,

(b) They are guaranteed estimates in the sense that upper bound is always
greater or equal, and lower bound is lower or equal, than the true devia-
tion,

(c) They are computable and independent of any approximation method. In-
stead, they are derived on a functional level and can be interpreted as an
alternative formulation of the problem.

These properties lead to the analysis done in Chapter 4, where the effects of un-
certain data are discussed. In this Chapter the problem statement is as follows:
Let the problem data belong to a set, instead of being exactly known; then the
problem possesses a set of solutions instead of a single solution. The relations
between the set of data and the set of solutions are of practical interest. In Sec-
tion 4.1 we demonstrate some effects of indeterminate data and define various
relations with the help of simple algebraic examples. The relation between the
indeterminate data and the solution set was studied for diffusion type problems
with uncertain coefficients in [26, 27, 28].

From the engineering point of view, it is very important to know how lim-
ited accuracy of material parameters affects the values of stress and displacement
or other critical design parameters. The special case of isotropic linear elasticity is
discussed in Section 4.4. We derive asymptotic estimates, which demonstrate that
the solution energy can be very sensitive to small changes in Poisson’s ratio close
to the incompressibility limit, depending on whether the boundary conditions
belong to a certain class or not. Moreover, by a problem that admits an analyt-
ical solution we demonstrate that the inaccuracy generated by an incompletely
known Poisson’s ratio may render a quantitative analysis meaningless relatively
far from the incompressibility limit.

The results presented in the Thesis can be listed as follows:

(@) The two-sided estimates for the radius of the solution set for the elliptic
problem with uncertain coefficients are presented. The main result is The-
orem 4.1, which is directly applicable to the majority of physical models
presented in Section 2.1. Moreover, we demonstrate that the derived up-
per bound for the radius of solution set is exact. This fact is demonstrated
with the paradigm of a model problem, where the upper bound is indeed
achieved.

(b) The deviation estimates for the Kirchhoff-Love arch problem are derived.
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(c) The conditions for the blow—up of the indeterminacy caused by an incom-
pletely known Poisson’s ratio for the isotropic linear elasticity problem are
presented. We identify the asymptotic behavior of the logarithmic deriva-
tive of the energy with respect to small variations of Poisson’s ratio. The
connection between the asymptotic behavior and the space of admissible
solutions (boundary conditions) is explicitly given.

The implications that these results have to the simulations and computational
practice is discussed in Chapter 5.

Author’s contribution

The topics exposed in the Thesis have been suggested by the two supervisors
and are based on their earlier work related to deviation estimates. The deviation
estimates for Kirchhoff-Love arches presented in Chapter 3 (published in [24])
were derived independently by the author with only advisory help.

The results on estimates of the solution set for linear models and results
on blow up for the isotropic linear elasticity model exposed in Chapter 4 were
mainly obtained by intensive joint work of the author and Prof. S. Repin, during
which we discussed results and ideas with Prof. P. Neittaanméki. The results
of Chapter 4 have been partly published in [25, 26, 27, 28, 29]. However, the
published results concerning the radius of the solution set were obtained by the
paradigm of the diffusion problem, whereas in the Thesis they are derived for a
generalized variational problem and the properties of the estimates are discussed
in more detail.

The author was also a member of a group of scientists (together with I. An-
jam, A. Muzalevski, and the supervisors), who proposed and implemented cer-
tain types of a posteriori error estimates for a Maxwell type problem in [2].



2 MATHEMATICAL AND PHYSICAL BACKGROUND

The space of d—dimensional real valued vectors is denoted by R? and M #*¢ de-
notes the space of d x d matrices (second order tensors). Their scalar (inner) prod-
ucts in R and M %*4 are defined as

d d
X-z=) x;z; and U:T:ZZUijTij

i=1j=1

M-

Il
—_

respectively. They generate the norms
x| =+vx-x and |o|=+0:0.

We recall that Banach space is a (vector) space where all Cauchy-sequences con-
verge to an element of the space. Hilbert space U is a Banach space where norm
is defined by an inner product. Let f,¢ € U, the inner product is a mapping
U x U — R. Itis denoted by parenthesis (f, g). Important Hilbert space is the
space of real(vector/tensor) —valued square integrable functions (in the Lebesque
sense) L, (), defined by the inner product

(f.8) ::/f‘gdx
Q

Igl =,/ [ g ax.
Q

We assume that Q) in R is a bounded connected domain with a Lipschitz contin-

uous boundary I'. The partial derivative of the function f is denoted by g—{l and

defined in the weak sense through the integral relation

and the respective norm

of 1
!M.wdx !f Sodx Ywe (),
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where C}(Q) is the space of once differentiable functions in Q) that vanish on the
boundary I'. The generalized (Sobolev, weak) derivative of order |a| : }_«; is

a4y
DIXU = W y
xi'...0x,
where & = a1, a5, .., 1, is the multi index.
Important differential operators applied in the Thesis are listed below:
The gradient of a scalar valued function w is a vector

d
Vw = [aw} € R%

Similarly we denote the Jacobian of a vector valued function [g,-]'f:l

d
|98 dxd
Vg = [%’Ll e M.

For a vector- and tensor-valued function the divergence is defined by

and

aT;
Dive i lz axﬂ eRY,
j=1

respectively. In two- and three-dimensional spaces, the operator curl represents
the rotation of the vector field. In d = 3, we have

{383 dg2 081 983 9082 agl]ele_

and for a scalar function w it is

curlw = [aw aw] € R

8x2 8x1

In the theory of linear elasticity, the tensor of a small strain is defined as the sym-
metric part of the tensor Vw, i.e,,

e(w) =1 (Vw - (Vw)T) :
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Henceforth, we use the following well known identities:

div(wg) = g- Vw + wdivg (2.1)
and similarly for a vector valued function and a tensor,
Div(tg) = ! : Vg + ¢ - Divt. (2.2)
We recall the Ostrogradski integration formula
/divg dx = /g -nds. (2.3)
Q r
From (2.1) and (2.3),
/div(wg) dx = /(g -Vw + wdivg) dx = /wg -nds, (2.4)
Q Q r

where I is a closed surface of Q) and # is the outer normal of T
Sobolev spaces

We use a standard definition for the Sobolev spaces H"(Q}), which contains L,-
functions having generalized derivatives up to the order m (m > 1) in Ly, i.e.,

H"(Q) :={v e L,(Q) | D" € Ly(QY), Vm:|a| < m}.
The norm is defined by

[ fllm20 = (/ Y |D"‘f|2dx> .

O lal<m

These spaces have subspaces denoted by subscript 0, in which the functions van-
ish on the part of the boundary where the Dirichlet condition is defined.

Similarly, spaces associated to differential operators are defined by the rela-
tions

H(Q,div) := {v € Ly(O,R?) |dive € L(Q)},
H(Q,Div) := {v € Ly(Q,M¥*) | Divo € Ly(Q,RY)},
H(Q, curl) := {v € Ly(Q,RY) | curlo € L,(Q)}

with the respective inner products

(f,8)aiv = /(f g +divfdivg) dx,
o}

(T,0)piv = /(‘L’ : 0 + Divt - Dive) dx,
0

(F,8)ewt = [ (f g+ curlf - curlg) dx,
0
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and norms || - [|giv, || - [[piv, and [| - [|cun-

Functions in Sobolev spaces have counterparts on I' that form spaces of
traces. For example, the operator v : H'(Q) — Ly(T) is called the trace oper-
ator if it satisfies the following conditions:

yw = wlp, Yw e Cl(Q),

[ywlor < cryllw

1,20/

where cr,, is a positive constant independent of w. The trace operator is a natu-

ral generalization of the trace defined for a continuous operator (in the pointwise

sense). The image of 7y in L»(T) is denoted by H'/?(T). Thus, v € L(H'(Q), H?(T)).
Using the operator -, we can define subspaces of Sobolev space V generated

by functions vanishing on I or on some part I'y C I' of positive d — 1 measure,

Vo:={weV|yw=0, ae. onT}.

Henceforth, we understand the boundary values in the sense of traces. The
phrase “u = ¢ on I'” means that the trace yu of a function u defined in () co-
incides with the given function ¢ defined on I'. If u and v are defined in () the
phrase “u = v on I'” means that y(z — v) = 0 on I'. For the sake of simplicity, we
later on omit +.

Inequalities

Next, we recall some known inequalities (see, e.g., [22, 48]), which we use in the
subsequent analysis. The Holder inequality has the integral form

[ fedx < ( / |f|de)p ( / ngx)q @5)
Q Q Q

and the discrete one:

d b/ d g
a-b| < () lailPdx | | Y [bi7dx ]| (2.6)
i=1 =1

where % + % =1land p,q > 0. In the case p = q = 2, the inequality is the Cauchy-
Schwartz inequality for the space L>(()). The triangular inequality for functions
is the Minkowski inequality

1f + gl < 11+ ligll-

Similar inequalities hold for the vector and tensor spaces.
It is easy to show that for any function f : X x ¥ — R

sup inf f(x,y) < inf su X, ). 2.7
sup inf f(x,y) < inf sup f(x,y) 27)
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is valid.
For the functions in H}(Q2), the Friedrichs inequality

ool < cplVawll,  Vw e Hy(Q) (2.8)

is valid. It belongs to an important class of inequalities. The importance of these
inequalities will become clear in Section 2.2, where the existence of solutions for
variational problems is discussed. A systematic analysis of constants associated
with embedding inequalities is presented in [30].

Within the theory of linear elasticity, the analog of the Poincare-Friedrich
type inequality is Korn’s inequality (see, e.g., [8]) that establishes the equivalence
of the norms

[

taai= (VP +wP)dx
Q

and

Hwﬂiz,n: (le(w)|*+|w|?)dx.
Q

From Korn’s inequality follows the existence of a positive constant cx such that
|Vwl|| < cklle(w)]] Yw € Vp, (2.9)

where ck is independent of w.
A practical algebraic inequality is Young’s inequality,

la+b> < (14 B)la)* + (1 + ;) b]?, VB >0, (2.10)

which is valid for a, b being scalars, vectors, or tensors.
2.1 Physical models

The problems presented here are motivated by the energy principles observed in
nature. They all have quadratic energy functionals, which possess unique min-
imizers. In Section 2.2, we discuss these models in the framework of a unified
approach.

2.1.1 The stationary heat equation

We consider a stationary heat equation with homogeneous Dirichlet boundary
conditions,

—divAVu = f, inQ,
0, onT.

u
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The problem has a variational form generated by the energy functional

J(w) = %/AVquwdx—/fwdx, .11
QO @)

where A € Loo(Q,M9*%) is symmetric and positive definite. The generalized
solution u € H}(Q) satisfies the integral relation

/AVu Vwdx = /fwdx, vw € Hi(Q). 2.12)
Q Q

The problem can be decomposed to two physical relations,

—divp = f, (2.13)
p = AV (2.14)

Equation (2.13) states the balance between the heat flux p and the function f that
represents the heat sources and sinks in the medium. Equation (2.14) is the consti-
tutive relation between the heat flux and the temperature. The matrix coefficients
are the heat conduction coefficients and they depend on the material.

This problem is known as the Poisson problem and it has several physical
applications [49] besides the heat equation. We note that in all of them A describes
the behavior of the medium occupying the domain Q). Examples:

¢ Diffusion, where u is the concentration of the substance that diffuses in do-
main (), A represents the diffusion constants of the medium that define how
the substance spreads to different directions at each point in the medium.

¢ Electrostatics, where u is the electrostatic potential, A is the dielectric con-
stant and f is the charge density.

® Deflection of a membrane, where A describes the elastic properties of the
medium. The general linear elasticity model is discussed below.

2.1.2 Linear elasticity

Let the domain Q) C R have the boundary T consisting of two disjoint parts T'p
and I'y. We assume that meas I'p > 0. The classical formulation of the linear elas-
ticity problem is to find a tensor-valued function ¢ (stress) and a vector-valued
function u (displacement) that satisfy the system of equations (see, e.g., [52])

c = Cein(), (2.15)
Divoe+f = 0 inQ), (2.16)
u = g onlp, (2.17)

ocv = F only. (2.18)

Here g € H'/?(Tp) defines the Dirichlet boundary condition, f is the body force,
and F is the traction on the boundary I'y. C = {cl-]-km} is the tensor of elasticity
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constants. The relation (2.15) is the constitutive relation (Hooke’s law) defined by
the medium and (2.16) is the equation of equilibrium between stresses and body
forces.

A generalized solution of (2.15)-(2.18) is a function u € Vp + g, where

Vo:={we H(Q,RY) | w=0 onTp} (2.19)
that minimizes the energy functional
J(w) == 3€(w) = (L,w),

where
(E,w>:/f-wdx+/1-"~wds,
Q Ty

and

£(u) :/U(u) :s(u)dx:/Cs(u):e(u)dx::||| e(u) ||2

Q Q

is the elastic energy of the deformation. The generalized solution satisfies the
integral relation

/Ce(u) ce(w)dx = (L,w) Yw € V. (2.20)
o)

In the special case of an isotropic medium, the tensor C can be expressed
with the help of only two material parameters. Usually, they are the Lame con-
stants that lead to the form

Ce(u) = Adivull + 2pue(u). (2.21)

Another pair of constants is Young’s modulus E and Poisson’s ratio v. They are
related to the Lame constants as follows:

Ev E

AN Trnaswy Py

(2.22)

2.1.3 Magnetostatics

One of the simplest forms of the equations used in electromagnetic problems is
the following,

curl(pteurlu) +xu = f, inQ,
uxn = 0, onl.
Here u is the vector valued function representing the electric field and y and «

are physical parameters defined by the medium. The solution u € Hy((}, curl)
minimizes the energy functional

Jw) =3 | (¢ leurlw]? +xlw]?) dx— [ f-wd
w 2/(y curw—f—xw)x({ wdx

Q
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over the set
Vo :={w € H(Q,curl) |w x n = 0}.

The minimizer u satisfies the relation

/ (y‘lcurlu -curlw + xu - w) dx = /f ~wdx, Vw e V.
Q o}

2.1.4 Stationary reaction diffusion problem

The reaction-diffusion problem with mixed Dirichlét-Robin boundary conditions
is defined by the system

—div(AVu)+pu = f inQ, (2.23)
u = 0 onIp, (2.24)

n-AVu = F onlTy, (2.25)
au+n-AVu = G onlg. (2.26)

Here, O C R has boundary I'p UT'y UT'g. Functions A € LOO(Q,IM”’Xd) (sym-
metric and positive definite), p € Loo(Q), R4 ), and & € Loo(I'g, R4 ) are related to
the properties of the medium.

The reaction diffusion models are typically applied in chemistry, where they
model how one or more substances distribute in the medium. The reaction term
describes the local chemical reaction and the diffusion term causes substances
to spread in the medium. In many models, the reaction term is non-linear with
respect to the u. In the Thesis we study only linear models.

The energy functional for the problem is

J(w) :% (/AVw-dex—i—/rxwzds) —/fwdx—/Fwds—/Gwds
Q Tr Q I'n I'r

and the space of admissible solutions is
Vo:={w e H}(Q)|w=00onTp}. (2.27)

The generalized solution is the function u € V} satisfying the integral identity,

/AVwdex—i—/ocuwds:/fwdx—/Fwds—/Gwds, Yw € W.
O Ty Q Iy Tk

2.2 General form of the variational problem

In this Section, we define a general form of the variational problem, which repre-
sents all physical models described in Section (2.1). The existence result proved
for the abstract model is well known (see, e.g., [9]). The main motivation for the
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TABLE 1 Definitions of the generalized model that correspond to different physical
models.

| Vo A

heat equation H(Q) A
linear elasticity Vo 219) C €& none

M

A

magnetostatics | Ho(Q, curl)
reaction diffusion | Vy (2.27)

generalization presented here is to introduce a uniform notation that allows us to
analyze an entire class of physical models by investigating a single model.

Let V and U be two Hilbert spaces. We denote their inner products by (-, -)y
and (-, )y respectively. These inner products generate norms || - || and || - ||y. We
define linear operators A : U — U and B : V — V. The operators A and B are
symmetric, i.e., (Ay,z)uy = (v, Az)y for all y, z € U and similarly for B.

In particular, we define a bounded linear operator A : V. — U, where V. C V
is a Hilbert space generated by the inner product (w, v)y := (w,v)y + (Aw, Av)y.
A set Vy C V is a convex, closed and non-empty subspace of V. We have V C
vcvcyy.

Using these definitions, the energy functionals generating variational prob-
lems presented in Section 2.1 can be written in a single abstract form. We define
an energy functional | : V — R as follows:

J(w) == J(AAw, Aw)y + 1(Bw,w)y — (f, w)y, (2.28)

where f € V. In some of the energy functionals there is no term related to B and
we have
J(w) = 3 (AAw, Aw)y — (f, w)y. (2.29)

In Table 1, we present how the generalized problem (2.28) can be defined
to obtain the physical models discussed in Section 2.1. The set V} is defined as
follows:

Vo := {w € V| w satisfies homogeneous Dirichlet boundary conditions. }.

Note that in all physical models V' is some Sobolev space associated to differential
operator A. Spaces V and U are corresponding Lo—spaces of functions from the
domain and the range of the differential operator respectively.

For convenience, we introduce the forma : V) x V) — R,

a(u,w) := (AAu, Aw)y + (Bu, w)y.

which is symmetric and bilinear. We assume that the bilinear form a is continuous
in Vp, i.e., there exists C > 0 such that

a(u,v) < Cllullv||w|ly, Yu,veVy
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and elliptic in Vj, i.e., there exists & > 0 such that
a(w,w) > alwl}, Yw e V. (2.30)

The definition of a allows us to write energy functionals of the form (2.28)
(and (2.29), where B is zero) as follows:

J(w) := 3a(w,w) — (f,w)y. (2.31)

The (generalized) solution u of the energy minimization (variational) prob-
lem

J(u) = min J(w), (2.32)

weVy
has to satisfy the relation (weak form of the variational problem)
a(u,w) = (f,w)y, YweW. (2.33)
Note that for specific forms (2.28) and (2.29), the relation (2.33) reads as
(AAu, Aw)y + (Bu,w)y = (f,w)y, Yw eV (2.34)

and
(AAu, Aw)y = (f,w)y, Yw eV, (2.35)

respectively.
It is easy to show that solutions of (2.32) and (2.33) coincide and there is
utmost one solution. Indeed, for all u,v € Vyand t € R, we have

J(u+tw) = a(u+tw,u+tw) — (f,u+tw)y
= J(u) + ta(u,w) = (f, )y} + 3a(w, w).
Now, if u satisfies (2.33), then by (2.30)
J(u+to) = J(u) + 32a(w,w) > J(u), Yw e Vo, w #0,

which shows that u is the minimizing functional. On the other hand, if u is the
minimizer of |, then the Gateaux derivative of | at u must vanish, i.e.,

Dj(u) =a(u,w) — (f,w)y =0, Yw e V.
From ellipticity it follows that | is coercive, i.e.,
J(v) =0, as |oglly — co.

Since | is convex, the existence and uniqueness can be easily proved (see, e.g.,

[9D).

Lemma 2.1. Let | be coercive on Vyy; then the set
Vy:={oeVl]() <v}

is bounded in V.
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Proof. Assume the opposite, i.e., that V., is unbounded and is not contained in
any ball
B(0,d) = {v e V[[o]y < d}.

Then, for any integer k, one can find v, € V, such that ||vx||v > k. Then, by the
coercivity we conclude that

J(vg) — 00 as k— oo.

This is a contradiction, because the elements of V., are such that the functional |
does not exceed . OJ

Theorem 2.1. Let | : Vj — IR be convex, continuous and coercive. Let Vi be a non-
empty, convex and closed subset of Hilbert space V. Then the problem

inf J(w)

weVy
has a minimizer u. If | is strictly convex, the minimizer is unique.

Proof. Let {v;} be a minimizing sequence, i.e., | (v) — i‘r/lf] . Then the set
0

Ki:={veWl|](v) <J(v1)}

is bounded (see Lemma 2.1). It is also closed. In a Hilbert space all closed
bounded sets are weakly compact. Therefore, we can extract a weakly converging
subsequence

{vks} — u € Ky.

Since | is convex and continuous, it is weakly lower semi continuous. We find
that

inf = lim J(0k,) > ] (1),

Hence u is the minimizer.
Assume that | is strictly convex, i.e.,

J(AMo1 4+ Agvp) < AJ(v1) +A2J(v2), A1 +A2 =1, Ay, A > 0.

Assume that 17 and u» are two different minimizers. Then we arrive to a contra-
diction because

J(Av1 + Aav2) < A1 (v1) 4+ A2)(02) = i‘f/})fﬁ

O

The ellipticity of the bilinear form is crucial for the existence and uniqueness
of the solution. The ellipticity of operators A and B, i.e.,

(Ay,y)u > aillylt, Yy el, (2.36)

and
(Bw,w)y > &|w|?, YweV, (2.37)
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is often easy to establish. The inequality
wlly < CellAw|lu, Yw eV (2.38)

is the critical part. For the physical models presented in the Thesis, these embed-
ding inequalities were briefly discussed on page 18. Note that by (2.36), (2.37),
and (2.38) the bilinear forms related to energy functionals (2.28) and (2.29) are
elliptic. Indeed, from (2.38) it follows that

)l = llwl + | Awlf < (CE+ D] Aw]f, Yw e W,

and we have
C1
CZ+1

(AAw, Aw)y > c1||Aw||? > lw|?, YweV,

and
(AAw, Aw)y + (Bw,w)y > c1|| Aw||f + & || w3 > min{cy, &1} | wllf, Vw € V.
We define the adjoint operator A* : U — V{j, by the property
(Ny,w) = (y,Aw)y, Yyel, we,

where (-,-) denotes the pairing of V) and its conjugate V; and (A*y, w) is the
value of the functional A*y € V atw € Vj.

If we know a priori that A*AAu € V, then the weak form of the problem
(2.35) can be rewritten as follows: find u € Vj, such that

(A*.AAM,U))V = (f,w)y, YVw eV,

which yields
AN AAu = f. (2.39)

The boundary conditions for the problem are defined in the definition of the set
Vo. This is the classical form (Euler equations) of the problem. It can be shown
that if the classical form (2.39) has a solution, it coincides with the solution of
the weak form (2.35). However, the weak form may have a solution that does
not exist in the classical sense. Our analysis is based on the weak form of the
problem.

Typically in physical models, A defines some physical properties of the
medium occupying the domain (). An important quantity related to the solu-
tions is the flux

p = AAu.

Depending on the problem, it has different physical meanings. For example, in
the linear elasticity problems it is the stress. We define a space of admissible
fluxes,

Q:={yelU|ANyeV}cCU.
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For admissible fluxes, we can write
(A'y,w)y = (v, Aw)y, VyeQ we V. (2.40)
Applying the definition of flux, (2.39) can be decomposed as

ANp = f (2.41)
p = AAu (2.42)

The relation (2.41) is referred as the equilibrium relation and (2.42) as the constitutive
relation. They are the key relations defining the problem. The equilibrium relation
is related to Newton's third law that states that for every action there is an equal
and opposite reaction. A similar decomposition for the problem (2.34) is

Np+Bu = f (2.43)
p = AAu (2.44)

The bilinear form defines an energy norm to the space V,

Il [I:= y/a(w, w).

Note that the definition of the norm depends on the particular problem. Since A
is symmetric and positive definite, we can define additional norms:

lyl% == (Ay, )u

and
Y151 = (A y, y)u-
It is easy to show that

(v, a)u < [l yllall 9l 41, Yy, q € U. (2.45)

Indeed, since A is positive definite and symmetric, we have

0< (AA Y +79), Ay +v9)u = (A, v)u —27(v, Du + Y (Ag,q)u,

where we can set 7y := W%u)” (we assume thaty # 0and (v, q)y # 0, otherwise

(2.45) is trivially valid) and arrive at (2.45).
2.3 Estimates of deviations from exact solutions

The main tools for the analysis of the Thesis are the deviation estimates. First
versions of these estimates were derived in [35] and consequent discussion and
other related results can be found in [36, 37, 40, 44]. Full exposition of the related
theory and collection of results can be found in the two books [32] and [39].
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These estimates are derived by purely functional methods without any spe-
cial information on approximations or numerical methods used. In this section,
we derive deviation estimates for the problem of the form (2.35) and (2.34). On
a practical and theoretical level, they provide a basis for various numerical error
estimation and error indication schemes. Moreover, they can be applied to study
the modelling error (see, e.g., [41, 42, 43]) and the error related to incompletely
known data. The derivation methods presented here are applicable only to linear
problems constructed by quadratic energy functionals. However, similar esti-
mates can be derived for much more general problems by different methods (see,
e.g., [39]). Henceforth we assume that the constants in (2.36) and (2.38) are either
known or can be estimated.

We begin by deriving the deviation estimates for the following simple model
problem:

—Au = f, inQ,
u = 0, onT.

The corresponding energy functional is

J(w) == %/|Vw|2dx—/fwdx.
Q (@)

The generalized solution u € H} () satisfies the integral relation

/Vu Vwdx = /fwdx, Yw € Hi(Q). (2.46)
@) Q

The energy norm for the problem is

llw |P= [ Vel ax
Q

Proposition 2.1. Let v € H}(Q) and u be the solution of the problem (2.46). Then we
can estimate the deviation from both sides,

Me(v,w) <[l u—v[?< Ma(v,y,8), Ywe Hy(Q), y € H(Q,div), >0,
where

Mg (v, w) :== —/Vw-V(w+Zv)dx+2/fwdx
Q o

and

Ma(0,y,6) = (1+ B)[|Vo -y + 1;ﬁc%|divy+f|2,

where cr is from the inequality (2.8). The inequalities are valid as equalities if w := u —v
and y := Vu.
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Proof. First, we construct the lower bound. By the definition of the energy norm
and (2.46) we can write

|||u—v|||2:/V(u—v)~V(u—v)dx
O

—lul? =2 [ Vu- Vodx+ | o || +2 ( lull? + [ fu dx)
Q Q
~2(J(0) - J(w)).

Since u is the minimizer of |, we can estimate from below J(u) < J(v + w), where
w € H}(Q) is arbitrary. We arrive at

e = >20() - J(o+w))
=l P =2 [ fodx—llo+w P +2 [ f(o+w)dx
Q Q

=~ llwl? -2 [ Vo Vwdx+2 [ fwdx
Q Q
—— [ Vo V(w+20)dx+2 [ fwd
0 Q

Clearly, the lower bound is sharp if w := u — .
Next, we construct the upper bound. From (2.46) follows:

/V(u—v)-dex:—/Vv-dex+/fwdx+/(divyw+y-Vw)dx.
0 Q Q 0

Due to (2.4), the last term is zero for any y € H(Q),div) and for all w € H}(Q).
We can write

/V(u—v)'dex:/(y—Vv)-dex+/(divy+f)wdx.
o} O o}

We can estimate from above by (2.5),

/V(u—v) Vwdx < [ly = Vol || w || +[[divy + f]| [[w]].
Q

By (2.8),

/V(M—U) Vwdx < ([ly = Vo +cel[divy + £]) [l w I,
Q

substituting w := u — v leads to,
Il = i< lly = Vol + celldivy + £

Squaring both sides and using (2.10) leads to the stated upper bound. If y =
Vu the second part of the majorant vanishes and the first one provides the exact
error. 0
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A lower deviation estimate for the generalized problem (2.33)

We construct a lower bound for the deviation from the exact solution. Theorem
2.2 presented below is valid for any problem of the form (2.33).

Theorem 2.2. Let u be the solution of (2.33) and v € Vj. Then for the functional
Mo (v,w) == —a(w,w+2v) +2(f,w)y (2.47)
it follows that
I u—2o|*> Ms(v,w), Ywe V

and

I u = |P= sup Mc(v,w).
weVy

Proof. Let u be the solution of (2.33) and v € V. By the definition of the energy
norm,

Il u—o|?=a(u—ov,u—0)
=a(u,u) —2a(u,v)+a(v,v) +2((f,u)y —a(u,u))
=2 (4a(0,0) = (f,0)v = 3au,u) + (f,u)v)
=2(J(v) = J(u)),

since u satisfies the Galerkin orthogonality condition. By definition J(u) < J(w),
for all w € Vj. We substitute u := w + v and estimate from below

Ilu—ol>2(3a(,0) = (f,0)y — ba(w+o,0+0) + (f,w+0)y)
= —a(w,w+20) +2(f, w)y.
The inequality becomes an equality if w := u — v. O

Henceforth we refer to the functional Mg as the minorant.
An upper deviation estimate for the problem of type (2.35)

The upper deviation estimate related to the problem (2.35) is defined as follows:

2
Me(o,9,B) = (14 B)(n0 = A7y, Ao =y + (145 ) CHIF = A,
(2.48)
where Cr and c; are from (2.38) and (2.36) respectively. This functional (2.48) we
will call the majorant and it is the natural counterpart of the minorant defined in
(2.47). The structure of the majorant shows that it is related to the violations of
the physical laws (2.41) and (2.42). The energy norm for problem (2.35) is

Il w = (AAw, Aw)y.
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Theorem 2.3. Let u be the solution of (2.35) and v € Vy. Then,
Il u—oP< Ma(o,y,B), 'y e Qandp>0,

and
llu—2 = inf Mo (0,3, 8).

B>0

Proof. By subtracting (AAv, Aw) from (2.35) and applying (2.40) yields

(AA(u —0), Aw)y = (f,w)y — (AAv, Aw)y — (A'y,w)y + (y, Aw)u
= (y — AAv, Aw)y + (=A"y + f,w)y,

where y € Q is arbitrary. We estimate the first term from above by (2.45) and the
second term by the Cauchy-Schwartz inequality, (2.36) and (2.38),

(AA (1~ 0), Aw)y < (A~ (y — AAD),y — AAD) L (AAw, Aw)? +
+ = Ay + fllvlwlly

1
< (A Yy — AAo),y — AN || w || +

CF *
+701||—A y+flvilw].

Vel

Since w is arbitrary, we can substitute w := 1 — v and obtain || u — v ||? on the left-
hand side and || # — v || as a common multiplier on the right-hand side. Dividing
by the energy norm leads to

_ 1 Cr
_ < _ 1 _aN\2 ~F AKX )
lu—=vll< (Av— A"y, AAv }/)u+\/a|\f Aylly

As before, we square both sides and apply (2.10) and obtain (2.48). Note that if
we set i := AAu the inequality becomes an equality. O

An upper deviation estimate for the generalized problem of type (2.34)

Although the problem (2.34) has a form similar to problem (2.35), the presence of
the operator B provides more alternatives for the derivation of the majorant. (we
note that the minorant, nevertheless, has the same form as defined in Theorem
2.2). As an introductory example, we derive three different majorants for a simple
reaction diffusion type model problem and discuss their properties. Then we
repeat a similar derivation for the more complicated reaction diffusion model
(2.23-2.26) and the generalized problem (2.34).
Consider the problem:

—Au+pu = f, inQ
u = 0, onT,
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where p € Loo(Q, Ry). The generalized solution u € H}(Q) satisfies the integral
identity
/(w  Vw + puw) dx = /fw dx, Yw e HY(Q). (2.49)
Q Q

Note that the problem can be decomposed to constitutive and equilibrium rela-
tions,

—divp + pu = f, (2.50)
p=Vu, (2.51)

where p is the exact flux. For notational purposes we denote the violation of the
relation (2.50) by the residual function,

r(v,y) == f +divy — pv. (2.52)
The problem has the energy norm

2= [ (190p +pw?) dx.
Q

First, we present two different upper deviation estimates, which each have
their benefits and drawbacks.

Proposition 2.2. Let v € H}(Q) and u be the solution of (2.49). Then
lu—olP< @yl +lly—Vol?, vyeH(Qdiv).  (253)

Proof. We subtract [ (Vv - Vw + pvw) dx from (2.49) and apply (2.4) to obtain
Q

/(V(u—v)-Vw+p(u—v)w)dx: /(fw—Vv-Vw—pvw+divyw+y~Vw)dx
o} Q
= /(f+divy—pv)wdx+/(y— Vo) - Vwdx
Q o}
= /ipr(v,y)\/ﬁwdx—i—/(y— Vo) - Vwdx.
0 0
We estimate by (2.5),

/(V(u —0)- Vw+p(u—ov)w)dx < || Zr(o,9)| [vowl + ly — Vol [ Vw]
Q

1 1
< (1@ P+ ly = vol?)* (Ivewl?+ [ Vel?)*.

On the left-hand side, we constructed the energy norm of w as a common multi-
plier. Substituting w := u — v leads at

1
Ilu=oll< (I5r@n)IP +lly = Vol) .
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Proposition 2.3. Let v € H}(Q) and u be the solution of (2.49). Then

1+ .
Il =< 5[%C%|r(v,y)ll2 +(1+p)ly - Vol?, vy e H(Q,div), p € Ry
(2.54)

Proof. As in the proof of Proposition 2.2 we arrive at

/(V(u —v)-Vw+p(u—ov)w)dx < /r(v,y)wdx+ /(y — Vo) - Vwdx.
0 0 0

We estimate by (2.5) and (2.8) and arrive at

/(V(M —0)-Vw +p(u —v)w) dx < [[r(o,y) || [|w]| + [ly = Vol [ V]|
Q
< (cellr(@ )l + lly = Vwl)) [[Vew].

Clearly, ||Vw|| <|| w ||. Again, substituting w := u — v leads to the estimate
IFu =0 lI< cellr(o, y)l| + ly — Vol .
Squaring both sides and (2.10) leads to (2.54). O

Both majorants in Propositions 2.2 and 2.3 are clearly related to the violation
of physical laws (2.50) and (2.51), but their applicability differs significantly.

The estimate in Proposition 2.2 is sharp, i.e., if we substitute y := Vu, the
inequality becomes an equality. However, in practice exact flux is rarely at our
disposal, so we operate with some approximations of it. If p is very small, then
even small violations of the condition (2.52) cause the estimate to became overly
pessimistic. The estimate in Proposition 2.3 does not suffer from this drawback,
but it does not provide the exact deviation with any auxiliary flux y.

The solution is to split the residual term. This approach was used in [40] for
the reaction-diffusion problem and in [44] for the generalized Stokes problem.
In these publications it was shown that splitting of the residual term (performed
with the help of a function y) allows obtaining error majorants that are insensitive
with respect to small values of the lower term coefficient and at the same time
sharp (i.e., have no irremovable gaps between the left- and right-hand sides).

Proposition 2.4. Let v € H}(Q) and u be the solution of (2.49). Then
o l2< L 21+/3217 2. _ ol
Il =2l <l Z5nr@y)l” + 5 (X =w)r(v,y)[I7+ (1+ B)lly — VoI5,
(2.55)
Yy € H(Q,div), B > 0, where y : Q) — [0, 1] is arbitrary and cf is from (2.38).

Proof. As in the proof of Proposition 2.2 we arrive at

/(V(u —v)-Vw+p(u—v)w)dx < /r(v,y)wdx+ /(y — Vo) - Vwdx.
Q 0 o}
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We introduce the splitting function y : QO — [0, 1], which is at our disposal. Then
we decompose

/(V(u —v)-Vw+p(u—v)w)dx < / ur(v, y)wdx+

Q . O

+/(1 —w)r(v,y)wdx + /(y— Vo) - Vwdx.
o} 0

We estimate the first term as in Proposition 2.2, by (2.5) and the second one as in
Proposition 2.3 by (2.5) and (2.8),

(Tt =0)- Vo p(u — o)) dx < || Jgpr(o, )| lpwel +
Q
+ el (1= wr(o ) IVl + lly - Vol | Ve
1
2

< (I5ur@ I+ Crl = mr@y)l+ Iy = vol)?)" (lewl?+ [Vol?)®.

Substituting w := u — v leads to,

Nf—=

Ihu=vll< (Id5ur@y) 2+ (el (1 = wr(e,y) + ly = Vol)?) .
Squaring both sides and using again (2.10) leads to (2.55). O

Note that in (2.55), if we set y := Vu and p = 1, we obtain the exact er-
ror. It is easy to see that lowest value of (2.55) is obtained with y that pointwise
minimizes the quantity

;#2 + 1;[3@(1 — )%

In [2], we derived upper deviation estimates of the type presented in Propo-
sitions 2.2, 2.3, and 2.4 for the magnetostatical problem defined in Section 2.1.3.
We also included numerical tests to study the performance of all three different
types of majorants. These tests were programmed by Anjam and Muzalevski us-
ing Nedelec type elements. Numerical tests by Nedelec elements for non-splitted
majorant were first done in [15].

An upper deviation estimate for the reaction diffusion model (2.23-2.26)

Similar estimates can be derived for the more complicated reaction diffusion
problem (2.23-2.26). The problem can be decomposed to relations

—divp+pu = f inQ), (2.56)
AVu = p in(), (2.57)
au+n-p = G onlpg, (2.58)
n-p = F only, (2.59)

u = 0 onIp. (2.60)
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We recall the weak form of the problem: Find u € Vj satisfying
/(AVu -Vw + puw) dx—i—/auwds = /fwdx—/Fwds—/Gwds, Yw € Vp.
Q T'r Q Iy T'r
Note that the bilinear form is defined as
a(u,w) = / (AVu - Vw + puw) dx + /zxuw ds.
Q T'r

Let v € V) be an admissible approximation of the exact solution u (gener-
ated by A, o, and «). From the weak form of the problem it follows that for any
w e V

alu —ov,w) :/fwdx—k/Fwds—F/Gwds—
Q I'n I'r

—/AVZ)-dex—/pvwdx—/zwids+
Q Q I'r

+ / (div(y)w +y - Vw) dx — / (y-v)wds, (2.61)
Q T'yUTR
where v denotes an unit outward normal to I" and
y € H (Q,div) := {y € H(Q,div) | y-v € L*(Ty UTR)}.

We note that the last line is zero for all y € H(Q), div) (in view of (2.4)). We
regroup the terms and rewrite the relation as follows:

a(u—v,w) =L+ DL+1I3+ 14 (2.62)
where

L = [ rn(,y)wdx:= /(f — pv +div(y))w dx,

Q

14 =

Note that each term is related to a specific relation in (2.56-2.59). Now we can
estimate each term separately by the Friedrichs and trace inequalities (which are
valid due to our assumptions concerning 2). We have
lelly, < GO)IIVell Yo e W,
lwlr, < CQTVIIVwlly Yo e W,

<
lwll3r, < G(QIR)IVwIlG Vo e Vo
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When estimating the integrands of I; and I, we introduce additional functions
11 and pp, which have values in [0, 1].

h= [ Bney)ypodsr [(1-mn(oywds
Q Q

1
2

< ‘ %Vl(vry)HQ lvowlla +o1[|(1 = p)r(v,y)lla (/AVZU~dex)
Q
and
L = 5242(0 y)fwdx—f—/ (1 —p2)r2(v, y)wdx
I'r
< |#ney|, H¢@Mm+
2
+|O—Vﬂm@ﬂﬂmw%</AVw'wa> ,
o)
and
2
L<||F=y-v]|ryo2 (/AVw-dex) , (2.63)
Q
where

/C1 /C2(Q rN and o3 /(73(Q T3)

In our case we have two lower terms so that we need two functions y; and pp to
split the respective residual terms.
The term I, is estimated (by (2.45) for U := L(IR%, Q0)) as follows:

b
I, < D(Vo,y)} (/ AVw . dex) , (2.64)
where
D(Vo,y) = /(y — AV0) - (Vo — A" ly) dx. (2.65)
Q

We collect all the terms and obtain

a(u—v,w) < (D(Vo,y)? +a1l|(1 = ) (o, )lln+
+‘T3||(1—Vz)rz(vry)HrR+(72||F—y-1/||rN) (/AVW-deX) +

e, 146

20y) IVawllr,.
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Set w = u — v and use the Cauchy-Schwartz inequality. Then, we arrive at the
estimate

1
Il u—v 1< (D(Vo,1)* + 1|1 = p)n(o,y)llo+
2
+a3/1(1 = p2)ra (0,9l + oallF =y vl ) +

(2.66)

+ 5@+ .

2 1y(0,y)

It is worth remarking that the estimate (2.66) provides a guaranteed upper bound
of the error for any conforming approximation of the problem (2.23-2.26). The
estimate has a form typical for all functional a posteriori estimates: it is the sum
of residuals of the basic relations with multipliers that depend on the constants in
the respective functional (embedding) inequalities for the domain and boundary
parts.

However, for our subsequent goals, it is desirable to have the majorant in a
form that involves quadratic terms only. Such a form can easily be derived from
(2.66) if we square both parts and apply the Cauchy-Schwartz inequality again
to the first term (with multipliers ; > 0,i = 1,2, 3,4). Then we obtain

Il = IP< x(31D(Vo,y) +2ll(1 = ) (o, y) B+
+73l1(1 = p2)ra (0, y) |+ vallF =y v I )+

+ (2.67)

S+ g

%Vz(v/y)
where

I O

B R R R 78
We note that (2.67) coincides with (2.66) if

M"m=" = D(Vv,y)‘%,
T2 =72 = a
(1= p)r(o, )|’
Y3 =793 = o2
[[(1 = p2)r2(v, ¥)lIry”
Y4 = Y4 L-
HF_y'VHFN

Certainly, the estimate (2.67) looks more complicated compared to (2.66). How-
ever, it has an important advantage: the weight functions y; and yu» enter it as
quadratic integrands, so that we can easily find their optimal form adapted to a
particular v and the respective error distribution.

In the simplest case, we take y; = o = 0, which yields the estimate

Il u = IP< x x (11D(Vo,y) + 7alln (o) B+

+allra(0 )+l F=y-vIR, ). @68)
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Another estimate arises if we set p1; = yp = 1. In this case, the terms with factors
o1 and o3 in (2.66) are equal to zero, so that subsequent relations do not contain
the terms with multipliers formed by 7, and 3. Hence, we arrive at the estimate

fu—oips (L4 3 x (ND(Vo,y) + 4l lF =y v}, )+
TA\M 4 N

(2.69)

2 2
1 1
+ H \/ﬁrl(v,y)HQ * H \/&rz(v,y) g
The estimate (2.69) involves “free” parameters 1 and 74 and a “free” vector-
valued function y (which can be thought of as an image of the true flux). There
exists a combination of these free parameters that makes the left-hand side of the

estimate equal to the right-hand one. Indeed, set y = AVu. Then

r(v,y) = p(u—vo) inQ,
r(v,y) = a(u—v) onlkg,
F-y-v = 0 onIy

and we find that for 4 tending to infinity and for any 7; > 0 the right-hand
side of (2.69) coincides with the energy norm of the error. However, the estimate
(2.69) has a drawback: it is sensitive to p and « and may essentially overestimate
the error if p or a are small. On the other hand, the right-hand side of (2.68) is
stable with respect to small values of p and «. Regrettably, it does not possess the
“exactness” (in the sense discussed above) because it may have a “gap” between
the left- and right-hand sides for any y.

An upper bound of the error that combines the positive features of (2.68)
and (2.69) can be derived (as in [40, 44]) if a certain optimization procedure is
used to select optimal functions y; and p,. If y is given, then optimal pq and
2 can be found analytically. It is not difficult to see that y; must minimize the
quantity

2
/ (K’yz(l — )+ %) r1(0,y)%dx.
Q
The quantity attains its minimum with

_opt o KY2 .

x) = xX)i = ——""——— inQ.

‘ul( ) Hq ( ) K72 p(x),l

Similarly, we find that the integrals associated with I'g attain a minimum if

pa(x) = py s+ a(x) 1 onI73.

Substituting these values to (2.67) results in the estimate

Ky20+1 1’1(?), y)

2

2

+
Q

+yllF—y-vIf,). @70

Il =2 2<% (71D(Vo,y) + 72

V2341

Ky3a+1 7’2(22, y)

+ 73

I'r
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We denote the right hand side of (2.70) by Mg (v, y, v, p1, p2). This error majorant
provides a guaranteed upper bound of the error, i.e.,

Il =2 |I*< Ma(v,y,7, 141, p2). (2.71)

It is exact (in the sense discussed above). Indeed, fory = AVuand y1 = pp =1
we obtain

infOM@(v,AVu, v,1,1) =l u—20|?. (2.72)
vi>

Also, it directly follows from the structure of (2.70) that the right-hand side is
insensitive to small values of p and a.

An upper deviation estimate for the generalized model (2.34)

We can derive a similar upper bound for the general problem (2.34) using the
same methods. Again, we introduce a weight function y : VV — V, which is mul-
tiplication by a scalar number that attains values from 0 to 1. We denote the class
of these multiplication functions by Y. The majorant is

M (0,9, B, 1) := (14 B)(A™'y — Ao,y — AAo)y+

C2
4 (1 + ;) el + (B0 o, (1= )y, @73)

where Cr and ¢ are from (2.38) and (2.36) respectively, and r is the residual,
r:=f—Avy— Bo.
The energy norm for the problem (2.34) is
Il w [I?= (AAw, Aw)y + (Bw,w)y

and we recall

IyllZ = (Ay,y)u.
Theorem 2.4. Let v € Vy, and u be the solution of the problem (2.34). Then

lu—olP< Ma(o,y,B1), VyeQ p>0,ueY,

and
Il w—o H|2: inf Mg (v,y,B,0).
veqQ,

B>0
Proof. Subtract a(v, w) from the variational form and apply (2.40). Then
a(u—v,w) = (f — Bo,w)y — (AAv, Aw)y — (A'y, w)y + (y, Aw)y.

We reorganize
a(u —v,w) = (y — AAv, Aw)y + (r,w)y.
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We introduce the multiplier function  which allows us to decompose
a(u—v,w) = (y — AAv, Aw)y + (ur,w)y + (1 — p)r,w)y.

Now, we may estimate as in the proof of Theorem 2.3 and apply (2.45), Cauchy—

Schwartz inequality, (2.36), and (2.38) to obtain

_ 1 Cr
_ < 1, _ 2 a3
a(u—v,w) < (A7 'y — Av,y — AN || Aw|| 4 + H],trHy\/aHAwHAJr

+ (BTN 1= p)r, (1= p)r)y(Bw,w)y

(a1, _ 3, Cr
= (Al = Aoy — Ao + Ll ) [Aw]La+

+ (B = p)r, (1= 1)r) 3 (B, )}

-1 i Cr ? -1
=~ - 7 - u y— % - ’ - y .
<<(<A = Ao,y = AN+ Ll )+ (5711 =, (1= ) )mwn

The rightmost term is the energy norm of w. Again we repeat the procedure of
substituting w := u — v, squaring both sides and applying (2.10) to obtain

1 C
—o|* < -1, _ 2 “F
lu—vl* < ((A y—Av,y— AAv)}, + NGl

+(B7M A —w)r, A= w)r)y
< (14+B)(A Yy — Av,y — AAv)y +

2
+ (1 5) Sl + (51 = pn, (1w,

2
||W||v> +

O

Remarks similar to those discussed earlier for two types of reaction diffu-
sion models are valid for the generalized problem (2.34). The function y is at our
disposal, if we select 1 = 0 or u = 1, we obtain following estimates of a special
type:

|l w =2 [I>< (A™'y = Ao,y — AAo)y + (B 17, 1)y (2.75)

and

1\ Cf
lu=olf< (1+p)A Ty~ Aoy —Anolu+ (1+5) Flrl. @70

1
The bound (2.75) has no “gap”, ie., for y := p = AAu it provides the exact
deviation, whereas (2.76) does not have this property. The benefits of the bound
(2.76) are evident if operator B~! is such that it multiplies r significantly. Then, if

y is not perfectly p, (2.75) may be very inaccurate, which is not the case with the
bound (2.76).
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If we select the optimal i, the estimate obtained combines desired properties
of (2.75) and (2.76). It is clear that the optimal y is the minimizer of the quantity

1\ C? B
I:= (1 + ﬁ) Tf(yr, ur)3 + (B~ —w)r, (1 — p)r)y.
Note that in the specific models of this type discussed earlier the computation of
Jopt can be done analytically.

2.4 Applications of deviation estimates

We summarize that deviation estimates (minorant and majorant) presented in
Theorems 2.2, 2.3, and 2.4 are valid for any function v € Vj, where Vj is defined
by the particular problem. The deviation estimates have a common form in which
they depend explicitly on v, problem data, and some auxiliary functions (denoted
here by w and y respectively). These estimates are natural tools for studying the
“surroundings” of the solution in the energy space and provide a uniform basis
for the evaluation of various types of errors.

* Consider the case where v is a solution of some simplified model and the
minorant and majorant for the original model are at our disposal. Then they
can be used to investigate the modelling error caused by the simplification
of the model (see, e.g., [41, 42]).

* The explicit dependence of the deviation estimates on the data makes it
possible to study the effects of incompletely known data, which is the main
topic of the Thesis and is discussed in Chapter 4.

e In the case where v is some approximation of the exact solution u, these
estimates are referred to as a posteriori error estimates. Regardless of the
approximation method (no requirements for extra regularity or Galerkin
orthogonality) by which v is obtained, these estimates can be used to inves-
tigate the approximation error.

In principle, it is possible to combine the error evaluations of different sources.
Consider a case where we use some approximation method to compute an ap-
proximate solution of some simplified model for which the data are incompletely
known. Using these deviation estimates it is possible to investigate quantitatively
the errors generated by various sources. If we obtain this knowledge, then we can
identify the main source of the error between the approximation we have and the
exact solution of the original model. Moreover, we can balance the errors to avoid
extensive computations, which are meaningless since the improved approxima-
tion accuracy is overshadowed by modelling and indeterminacy errors. If on top
of this we have hierarchical models with gradually improved accuracy, we can
balance the level of simplifications of the model applied, computational effort,
and accuracy of the data.
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A posteriori error estimates

The difference between the exact solution u of (2.35) and any approximation v €
Vi can be estimated as follows:

Ms(v,w) <[l u—v|’< Ma(o,y), Ywe Vo, y€Q,

where w and y are at our disposal. Often, they are members of some finite di-
mensional subspaces, w € V)N C Vyandy € QY C Q. The exact selection of
basis functions generating V' and QN depends on the problem type, computa-
tional resources, and the desired accuracy of estimates. For example, they can be
piecewise polynomials with highly local support as in a traditional finite element
approach.

In the computational practice the lower bound of the approximation error
is of lesser interest than the upper bound. A simple way to compute an ade-
quate value for the minorant is the following: Assume that we have computed
an approximation on some finite basis; then we enrich the basis somehow and
compute another approximation. Computing the difference of energies of these
two approximations provides a lower bound for (one half of) the difference of the
coarser approximation and the exact solution (in the energy norm).

For the upper bound, there are numerous variants of how to select the aux-
iliary function y. Recall that we would obtain the exact deviation if y is the exact
stress y = p. In practice, p is not at our disposal. There are two principal ways to
select the auxiliary function y:

(a) We postprocess the approximate solution (this procedure is denoted by
G : Q — Q) to obtain an approximation of the stress,

y = G(AAv) = p.

(b) We minimize the majorant with respect to the auxiliary function y within
some subspace QN € Q, i.e., we solve the problem

min Mg (v,y, B).
yeQN,

B>0
The minimization procedure with respect to y and B can be done iteratively.

If it is necessary to obtain a reasonable upper bound with less computational
effort, then method (a) is preferable. For a more accurate bound method (b) is
recommended. Note that it not only provides an improved upper bound for the
error, it also produces a good approximation of the true flux.

We present method (b) in more detail for the problem of type (2.35). The
majorant is convex (quadratic) with respect to y. To compute the minimizer, it
suffices to set the Gateaux derivative to zero. We recall the form of the majorant,

2
Malo,y) = (1+5) SEIf - A+
+(1+B)(A Ay — Av), (y — AAD))y. (2.77)
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Two terms of the error majorant are related to the decomposed form of the clas-
sical equations. The first part is the error in the equilibrium condition (2.41) be-
tween an arbitrary function representing flux and the right hand side. We denote
this part by

ME™ = |If = Ayl (2.78)

It guarantees the reliability of the estimate. The second part is the violation of the
duality relation (2.42) between the approximation and arbitrary flux,

./\/l%mSt — (.A*l(y — AAv), (y — AAD))y (2.79)

If we substitute y := p to the majorant, the second part provides the exact error
and the first part is zero.
The necessary condition for the minimizer y can be computed as follows:

Moyt = (1+ 5 ) 7= Ay = en"ulfy+

+ (14 B) (A Ny + tu — AAD), (y + tu — AAD))y.

Therefore
2
ALY _ (14 5) oA~ Ny = t8%p), ~ Nt
1

+ (14 B)2(A™ (y + tu — AAo), 1)

and the condition
dM ©® (U, ]/ + t:”)

dt

t=0
reads

2
(1 + ;) le(A*y,A*y)V +(1+B) Ay, pu =

1N CE s
(1+5) SN WY+ (14 B(AND . @50

Let y belong to a finite dimensional subspace of Q,

y e span{(pl,(pz,...,(pN} = QN CQ,

ie.,
N .
y=Y i
i=1

Then condition (2.80) leads to a system of linear equations,

N 1 C2 * 40 Ak 4] —1 40 4] _
1;%' <<1+ﬁ> Tf(A ¢, Ny +(1+B)(A 1¢/4’])u> =

1\ C2 y - :
<1+ﬁ> — (NP + (1+B)(AAv, @)y, j={1,... N},
1
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After introducing matrices
Sijfj-:l = (A*gbi,A*CPj)v, Kijfj:l _ (A—l¢i, Gl’j)u/
and vectors
zijty = (LA )y, gty = (Ado, ¢y

the system can be written in the matrix form

p p

where 7 is a vector consisting of the unknown coefficients. The evaluation of the
majorant for y € Qu can be easily done using the predefined matrices and the
coefficient vector v,

<<1+1> (fs+(1+ﬁ)1<> - (1+1> fl%z+<1+[s)g, (2.81)

1 Cl% T T 2
Moy, ) = (1+5 ) o (157 =202+ 11115 ) +
1
+(1+8) (vTKy = 29Tg + [ A0],)

If the majorant is minimized with respect to a positive scalar f, the minimum
value is attained at

C2
S| f - Ay| ds
= ! . 2.82
P=\ a1y — AAv), (y - AAo))y 282)

These observations motivate the Algorithm 1.

It is not obligatory to solve the equations (2.81) for y exactly. An efficient
method for approximating vy is the so called multi-grid method proposed in [54].
In general, iterative numerical methods for solving (2.81) are attractive alterna-
tives, since at every iteration step one can compute the value of the majorant and
cease all computations after the desired error estimation accuracy is obtained. It is
rarely of interest to compute the value of the approximation error as accurately as
possible; a reasonable upper bound for it is usually satisfactory. The construction
and implementation of the error majorant has been studied for various problems
in [2,11, 12,13, 14, 16].

For the computation of the majorant we need to estimate the constant Cr in
inequality (2.38). In practice, to compute the majorant, we need only to roughly
estimate the magnitude of the constant. For example, it can be estimated by solv-
ing approximately a generalized eigenvalue problem using the Galerkin approx-
imation: Find eigenpairs (A;,v;), where v; € VN C Vj, such that

(AAv;, Aw)y = Ai(v;,w)y, Yw € VON. (2.83)

L where Ay, is the lowest eigenvalue.

)\mm

The value of the constant is Cp =
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Algorithm 1 Minimization of the majorant.

Require: Matrices S and K, and vectors z and ¢ are assembled and constants
||£]3 and ||Av||% are computed. Set initial B;.
fork = 1to Ijmax do
Solve:

Br/) c1 Br

Compute parts of the majorant:

((1+1> Chg (1+,8k)1<> s = (1+1> fl‘%z—&— (1+ Bo)g.

equi T T 2
M =yl 1Sy — 2yez I
T T 2
ME™ =y K1 — 2y 18 + [ A0]15
Compute parameter :
C2 , equi %
aMe
Brs1 = r const
MG

end for

If one wants to avoid solving the eigenvalue problem, one can use the fol-
lowing alternative method. We introduce a functional

Gr(w) = x(AAw, Aw)y — w3

It has the property

. o —Q, if k < Cp
wlg‘f/g Gr(w) = { is positive,  if k > Cr } '

This functional can be used to obtain a rough estimate of Cr. The idea is to grad-
ually increase x until the minimum computed by some standard optimization
technique (see, e.g., [4]) of G«(w) over subspace w € V" is positive.

Neither of the methodologies presented here to compute Cr is guaranteed.
This observation is not related to any particular minimization method. In princi-
ple, no matter what x we select, we can not guarantee that outside of our subspace
VN there is not a function for which G attains a negative value. In practice, we
can often have a reasonably good presentation of the space and obtain a decent
approximation for the constant Cr. Moreover, it will be shown later with the
paradigm of the Kirchhoff-Love arch problem that the minimized value of the
majorant is not sensitive to even a large overestimation of Cr.

Besides the upper bound for the error, the majorant is the basis for vari-
ous error indicators. It is relevant to distinguish between error indicators and
estimators. The main goal of an error indicator is to form an adequate approxi-
mation of the error distribution with the lowest possible computational cost. This
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knowledge is essential for adaptive methods that iteratively enrich the set of basis
functions used to compute the approximate solution. The theoretical basis dates
back to [33]. In the last decades, error indicators have been intensively studied in
numerical analysis and the amount of different methods and implementations is
vast and beyond the scope of the Thesis (see, e.g., [1, 34, 50, 55, 58]).



3 ESTIMATES OF DEVIATION FOR
KIRCHHOFF-LOVE ARCH

We consider a plane arch that has a constant cross section which is small com-
pared to its length. Following [6], the arch and all related functions are presented
in the parametrized form. The ¢ : [0,1] — R? is a smooth parametrized non-self-
intersecting curve of the curvilinear abscissa s that defines the shape of the arch.
Displacement vector 1 = (111, u3) and load vector f = (f1, f2) are given on a local
basis (a1,a;) that varies along the arch, where a; is the tangential and a5 is the
normal direction. The angle between the horizontal axis and a; is denoted as 0.
On both ends of the beam, there are known external loads, normal force N, shear
force F, and bending moment M. The mentioned definitions with positive direc-
tions of the external loads are depicted in Figure 1. A more advanced formulation
of the arch problem based on the control theory can be found in [31, 51], where
regularity requirements for ¢ are substantially relaxed.
The function ¢ : [0,1] — R,

1 9y (s)¢i(s) — 91 (s)ys(s) (3.1)

c(s) == R(s) ( 12_’_11[]%)%

is the curvature of the arch. The energy functional of the arch is

1
J(u) = %/ {EA(u'l — cup)? + EI(cuy + u’z)'z} ds
0

1
1 1 1
—/f«u ds —/ Ny + ) Fuy — / Mu, (32)
0

where E is the material constant (Young’s modulus), A is the area of the cross
section and [ is the second moment of inertia of the cross section. All these values
are strictly positive. We apply the notation

b
/fdx - ZP — F(b) - F(a).



48

FIGURE 1 Kirchhoff-Love arch.

The minimizer of the energy functional is a solution u € Vj satisfying the
integral relation

a(u,w) =lw), YVwe, (3.3)
where )
_ EA(u} — cup) W) — cw;
a(u,w) = / [ El(cup +ub) | | (cwy + wh)’ ds 4
0
and
; 1 1 1 .
l(w) ::/f~w ds—i—éNwl—ész—i—ész. (3.5)
0

If u is sufficiently regular, then (3.3) implies the classical equations

{ (e o) el + ) — o)
—cEA(u} —cup) + (El(cus + uy)")" = fo ’

The boundary conditions are defined at the end points s; = 0 and s, = 1. They
are listed as pairs in Table 2. Kinematic boundary conditions restrict displacement
components or rotation and natural boundary conditions define tangential stress,
shear force or bending moment. At both ends of the beam, either a natural or a
corresponding kinematic boundary condition has to be defined in order to have
a properly defined problem. Below, we are mainly concerned with cases where
kinematic boundary conditions are homogeneous. Together with the regularity
requirements, kinematic boundary conditions define the space of admissible dis-
placements

Vo := {v € V | v satisfies homogeneous kinematic boundary conditions}, (3.7)

where we denote V := H'(0,1) x H?(0,1). The mentioned assumptions guaran-
tee that in (3.5) either N,V, or M is known or the condition w € V} implies the
vanishing of the corresponding term.
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TABLE 2 Boundary conditions of the Kirchhoff-Love arch.

kinematic natural
11 (tangential disp.) | N (tangential stress)
up  (normaldisp.) | F (shear force)
u (rotation) M  (bending moment)

For a straight beam (with ¢ = 0), equations (3.6) are transformed to well
known beam equations (see, e.g., [53]),

—EAu{ =fi and (Elu))" = f,. (3.8)

We note that (3.6) can be decomposed into

EA(uy —cup) = p
{ El(cuy +ub) = p2 (39)
and
_p/l - CP/Z = fl 3.10
{—CP1+P’2' = f (310

These relations are the physical laws governing the beam problem. Equations
(3.9) define the constitutive relation that states the linear dependence between
displacement 1 and tangential stress p; and the bending moment p,. Henceforth,
the vector p will be referred to as the stress vector. Equation (3.10) establishes the
equilibrium between the external load f and the stresses p of the beam. Addi-
tionally, at the endpoints of the beam, stresses must satisfy the natural boundary
conditions, namely

p1+cp2o=N, p»=M, and plz =F. (3.11)
Stresses satisfying these relations form the space of admissible stresses,
Qo := {y € H'(0,1) x H?(0,1) | y satisfies (3.11)}. (3.12)

The problem is called statically determined (or overdetermined) if for p =
0, the equations (3.9) imply u = 0. It is not difficult to see that the kernel of
equations (3.9) consists of rigid body motions (see [6]) that can be presented in
the form
[ cos(8) sin(0) apy + by
R sin(6) cos(6) ap1+by |’ (3.13)

where a4, b; and by are constants. Thus, the beam is statically determined (or
overdetermined) if the kinematic boundary conditions forbid any rigid body mo-
tion.

It is natural to classify boundary conditions into three main groups:
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Ilustration of the beam support Free body diagram
of supportive reactions
statically [ ] [ ]
indeterminate %% % % | Tyl Tyz
Tl
statically [ 1 L ]
determinate A A Tyl Tyz
T! T2
statically [ | X, x
overdeterminate g ; ; E Tyl Tyz

FIGURE 2 Examples of different boundary condition types.

e Statically indetermined cases, where there are not enough kinematic bound-
ary conditions to restrict rigid body movement. The problem has no unique
solution. These cases are considered non-physical and are neglected in our
analysis.

e Statically determined cases, where there are three (dimension of the space of
rigid body movements) kinematic boundary conditions that are sufficient to
restrict rigid body movement. Additionally, no initial stresses are possible.
In these cases the constitutive equations (3.9) and equilibrium equations
(3.10) can be solved separately in a consequtive manner.

e Statically overdetermined cases, where there are more than three kinematic
boundary conditions. In these cases equations (3.9) and (3.10) must be
solved together as a single fourth order system. This kind of boundary con-
ditions allows initial stresses for the unloaded beam. In other words, the
null space of equation (3.10) has non-zero elements.

We demonstrate these types of boundary conditions by comparing the beams in
Figure 2. Consider the beams in Figure 2 as rigid objects. For every beam, sup-
portive reactions forbid any rotation on the plane and vertical movement, i.e.,
they do not move under moment or vertical force. In the statically indeterminate
case, the supports allow rigid body movement, namely axial displacement. In
the statically determinate and overdeterminate case this no longer happens, since
the supports forbid axial movement. The physical difference between statically
determined and overdetermined cases can be presented through an example of
thermal elongation. Consider a beam that is initially at rest. Then the tempera-
ture increases and the beam elongates. In the statically determined case, the beam
is allowed to elongate freely and no stresses appear. In the statically overdeter-
mined case the beam experiences compression (and axial stress appears) due to
the supports.
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We can represent the Kirchhoff-Love arch model within the framework of
the generalized variational problem introduced in Section 2.2. The constitutive
relation (3.9) and the equilibrium relation (3.10) can be written as

AAu=p (3.14)

and

respectively, where

e B et _rea
Au.—[(cul—i-u’z)’]r AP'_[—CM-FP'{ , and A:= -
(3.16)

With these definitions, the Kirchhoff-Love arch model has the form (2.35). For
the existence of the solution we must show the ellipticity of a : Vj x Vj — IR (see
Section 2.2). For it, we need an analog of the inequality (2.30), which is proved in
the book of Ciarlet [6] (Theorem 8.1.2., pg. 433),

Theorem 3.1. If the function c is continuously differentiable over the interval I, the
bilinear form

a(u,v) = / {(u] — cup) (v} — cva) + (uy + cuy)'(va + cuq)'} ds
I

is HY(I) x (H2(I) N H{(I))-elliptic, and thus, it is a fortiori H}(I) x H3(I)-elliptic.

In other words, Theorem 3.1 states that for a statically determinate or overde-
terminate beam, there exists a positive constant C such that

1 1
/ {w% + w3 + wi + w + w’z’z} ds < C/ {(w’l — cwy)? + (cwy + w’z)’z} ds,
0 0

(3.17)
forall w € V.

3.1 Estimates of deviations for the Kirchhoff-Love arch model

The estimates of deviations for the Kirchhoff-Love arch model were first pre-
sented in [24]. They have a similar structure as the general estimates presented
in Section 2.3. The majorant can be derived with the help of integral identities
(as has been done in Theorem 2.3 in the context of a general variation problem of
type (2.34)).

Theorem 3.2. Let u be a solution of (3.3) and v € V. Then

Il u—o|P< Ma(v,y,8), v € Qo B>0,
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where

1
Mooy B) = (145 ) © [ {0+ 0+ )+ (= (e + )7 ds

0
1 / 2 1 /\2
+(1+4+p) / H(yl — EA(v] —cvp))* + E(yz — El(cv1 +v5)7 ¢ ds, (3.18)
0
where C is from (3.17), & :== min{EA, EI}, and
1
2 1 / 2 /N2
|| w ||*:= 5/ {EA(wl —cwy)” + El(cwy + wp) } ds.
0

Proof. We begin with the integral identity that defines the generalized solution of
the arch problem. We note that

1 B 1 o
Lt ][I R
/ cw1+w2 Y2 / —Ccy1+Y; wy
1 1 , 1 ,
+éw1y1+é(cw1+w2)y2—éw2y2 (3.19)

forany w € H'(0,1) x H?(0,1) and y € H'(0,1) x H?(0,1).
By (3.3) and (3.19) we obtain
1 1 1
a(u—ov,w) :/f-wds+/Nw1—/FwZ+/Mw§—
0 0 0
1

1 B . .
/[EA(Ul cvzz].[ w) cw/zl] ds—&—/{ wy Cwlzl]_{l/l] ds—
J El(cv; + v)) (cwy + wh) ) (cwy + wh) Y2

1
_ / [ —Yi— s } . [ } ds — /wlyl J(cwr +wh)ys + | wah (3:20)
G vy w2 0 0

We rewrite (3.20) in the form
alu—v,w) =L+ L+ 1, (3.21)

where

f2—(ey1 +y3) wy

1
/ —EA(v] —cvp) | [ wj— cw/Z | as,
s Ly El(cvr +v5) (cwy +wy)

LAt Gen ] [or] gy
Jlies (2]



and

1 1 1
é(N yl_CVZ)wl‘f'é(_F"‘y/z)wZ"‘/(M y2)

After imposing boundary conditions, w € Vp and y € Qp, I3 vanishes
By the Cauchy-Schwartz inequality, we have

1 I/ 3
L < (/(fl + W+ cvh)* + (f2— (cyr +15))? dS) (/W%HU% dS) :
0 0

(3.22)
We can estimate the L,-norm of w from above by the Sobolev norm of H!(0, 1)
H?(0,1) and apply (3.17), then

X

1 3
L < (/(f1+ (Vi +cya))> + (f2 — (cy1 +v5))? d8>
0

1
1 2
\\/ff (/ EA(w) — cwy)? + EI(cw; + wh)"™ ds) , (3.23)
0
where « = min{EA, EI'}. Now, we apply the Cauchy-Schwartz inequality again

L :/1 [ V(i — EAGE - o) 1 |
o L VEI

77 (v2 — El(cor +03)")

VEA(w) — cw,) d
VEI(cwy + wh)’

1
1 2
1 1
(/ A (y1 — EA(vy — C’Uz)) ﬁ(}/z — EI(co1 + 0’2)'2 ds) |l wll. (3.24)
0

These estimates have || w || as a common multiplier. Apply them to (3.21)

and set w = u — v. Then on the left hand side we obtain || u — v ||> and we may
divide by || # — v || on both sides. Then we arrive at

1 %
u-vlls Y2 ( J G+ 0h+ ) + (2= (e +44)? ds) +
0

1
1 2
1 1
(/ AW vy —cv2))’ + 77 (W2 = El(cor + )" ds) . (3.25)
0

For computation purposes it is preferable to have quadratic expressions. Thus

53
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we introduce arbitrary 8 € IR, and use Young’s inequality (2.10) to obtain

1
hu=olP< (1+5) 5 / {(h+ 0h+e)P + (f2 = (v + 940} ds+

1

+(1+pB) / {ElA(m — EA(v] — cvp))* + %(}/2 — EI(cvq + v’z)'z} ds. (3.26)
0

The right hand side will be called the error majorant (or majorant) and will be
denoted by Mg (v, y, B). O

Remark 3.1. Two terms of the error majorant are related to the decomposed form of the
classical equations. The first part is the error in the equilibrium condition (3.10) between
an arbitrary function representing stresses and the external load. The second part is the
violation of the duality relation (3.9) between the approximation and arbitrary stresses.
If we substitute exact stresses y := p to the majorant, the second part provides the exact
error and the first part is zero.

Remark 3.2. Under the definitions (3.16) the majorant has the typical structure
1
1\ C *12
Me(v,y,B) = 1+B ;/|f—/\ y|~ds+
0

1
(14 B) / Ay — AAv) - (y — AAv)ds. (3.27)
0

Theorem 3.3. Let u be a solution of (3.3) and v € Vyy. Then
“l Uu—o |||22 M@(U/ ZU), Yw € VO/
where
1
. EA(w} — cwy 4 2(v) — cv2)) W)y — cwy
Me(o,w) = 0/ [ EI((wh + cwy) +2(0h +co1)') | | (wh + cw})

1

42 / (frwr + fows) ds. (3.28)
0

} ds+

Proof. We note that by applying definitions (3.16) the energy functional of the
arch problem can be written as in (2.28). By Theorem 2.2, we obtain the minorant
of the following form:

M (v,w) := —(AAw, A(w +20))y + 2(f, w)y.

Applying the definitions (3.16), we can write the minorant explicitly for the Kirchhoff-
Love arch problem. O
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TABLE 3 Approximations of the constant C in (3.17) by solving the generalized eigen-
value problem (2.83) using the Galerkin method, where the subspace V(" is
defined in (3.29).

N| 2 - 6 8 10
C | 0.050661 0.050661 0.050661 0.050661 0.050661

3.2 Numerical example: uniformly curved beam

The Kirchhoff-Love arch problem is of the general type (2.35). We recall the dis-
cussion in Section 2.4 and apply different methods presented there to estimate
the approximation error.

We consider a half circular beam

TORS et PR

sin(7tt)

where the curvature is ¢ = 1. Let both ends of the beam be clamped, i.e., the
displacement satisfies the boundary conditions

1 (0) = 12(0) = 1(0) = 13 (1) = ua(1) = (1) = .

We normalize EA = EI = 1.

First, we compute an approximation of the constant C in (3.17). The basis
that satisfies the boundary conditions can be easily constructed using Fourier
type basis functions. Let

we VY = Span{ { Sin(émt) ] , { o Coz(zkm) } s { 1— cog(Zkﬂt) } }:]_1'

Then, dim(V}Y) = 3N. We approximate C by solving the general eigenvalue
problem (2.83) using the Galerkin method. In Table 3, we increased the number of
basis functions and observe how the approximated value for C develops. Results
indicate that the eigenmode corresponding to the lowest eigenvalue is within our
basis. We estimate from above and set C = 1. We will show later (in Table 5) that
even a very crude overestimation of the constant C has no significant effect on the
computed value of the majorant.

A posteriori error estimates

We introduce a polynomial solution

u) = | a1 | (330)
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FIGURE 3  Exact solution u# and “approximation” v.

which satisfies the kinematic boundary conditions. From (3.9) and (3.10), we can
easily compute stress

() = EA(—t*+28 — 242t — 1)
P = EI (122 — 10t + 1)

and load
EA (43 — 6t% + 2t — 2) + EI(—24t + 10)
f(t) = 4 0B 2
EA (#* =215+t — 2t + 1) + 24E]
To study the application of a posteriori error estimates to control the ap-
proximation error, we define an “approximate solution” v of the form

v:=u-+e€g,

where ¢ is a known “error” that satisfies the kinematic boundary conditions. We

selected
e t(t — 1) cos(307tt)
| 2(t—1)?cos(307tt) |-

We set e := 0.021% to obtain the following relative error (in the Ly-norm):

l1¢ll
lu—ofl _ NIl _

=€ = 2%.
[Jue] | [Ju]|

The exact solution and the “approximation” are depicted in Figure 3.
To measure the efficiency of the a posteriori error estimates, we introduce

efficiency indexes,
& = Me

off 1= 7|” o (3.31)
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FIGURE 4 The approximate y obtained through Algorithm 1, where the dimension of y
varies, compared to the exact stress p.

and
Mg

[Gi= 2
Il =2

= (3.32)

Since deviation estimates are guaranteed,

I@

®
off =1 < Lo

For our test case we have || u — v ||>= 50.740.
Let y in the majorant be defined on a Fourier basis, i.e.,

yE€QN:= Span{ { Si“((’j"t) } { Cos(ém) } { sin((l)crct) } { cosgmf) HN

k=1

Note that dim(Qyn) = 4N. We minimize the majorant with respect to y € Qn
following Algorithm 1. Regardless of the dimension N the iteration converged
within five to six steps. In Figure 4, we have depicted y and the exact stress p.
Clearly, y approaches p as the dimension of the space Qy increases. For N = 12
the difference between the curves is no longer visible. In Table 4, we can observe
how the majorant improves as N increases. The efficiency index tends to one as
the majorant approaches the exact deviation. Moreover, the equilibrium part of
the majorant tends to zero as the constitutive part approaches the exact deviation
error.
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TABLE 4 Efficiency index of the majorant with different values of N.

N | 4 6 8 9 10 11 12

I, | 11853 11509 1.0204 1.0048 1.0011 1.0002  1.0001
Mg | 60.143 58398 51.774 50985 50.7949 50.752  50.742
MG 10.01320  0.00229 0.00485 0.00029 0.00002 7.2:10~7 3.3-10°8
Mot | 58374 57.658  50.776  50.742  50.740  50.740  50.740

TABLE 5 Efficiency index of the majorant with different values of N and the constant
C.

N 4 6 8 9 10 11 12
C= I% 111853 1.1509 1.0204 1.0048 1.0011 1.0002 1.0001
Cc=10 Ig?f 1.2587 1.1601 1.0601 1.0151 1.0034 1.0008 1.0002
C =100 Igif 1.4992 1.1747 1.1413 1.0453 1.0108 1.0024 1.0005
C = 1000 Ie% 2.3947 1.2026 1.1592 1.1187 1.0329 1.0075 1.0016

TABLE 6 Efficiency index of the minorant with different values of N.

N | 2 3 4 5 6
IS 0.99971 0.99989 0.99995 0.99997 0.99998

Mg (v,wN) | 50725 50.7341 50.737 50.7382 50.7388

Remark 3.3. Since the term related to the equilibrium relation tends to zero, even a
substantial overestimation of the constant C does not seriously affect the efficiency of
these estimates. In Table 5, we show the efficiency indexes obtained by different values for
the constant C.

Next, we study the minorant. We solve problem (3.3) using the Galerkin
method with the Fourier type subspace VI in (3.29). Then, we compute the en-
ergy of the obtained approximation w" and estimate the error from below by
comparing it to the energy of v as follows:

=2 1P 2 (J(0) - J(@N)) = Mo(o,wN). (3:33)

The resulting lower bounds are presented in Table 6. The reason why it is so
efficient is that applied basis (3.29) can represent the exact solution (3.30) very
well with a small number of basis functions. Note that the inequality in (3.33)
becomes an equality if w := u.

Alternatively, a lower bound can be computed directly by maximizing the
minorant in Theorem 2.2. Recall that it provides the exact error if w := u — v.
For our model problem and for applied basis (3.29), the exact error is much more
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complicated to approximate, since it contains high frequency oscillations. This
obstacle can be overcome if one uses locally supported basis functions.



4 INDETERMINACY OF THE DATA

In this Chapter we consider elliptic boundary value problems defined in Section
2.1, where the data are incompletely known. Motivated by engineering practice,
we assume that the data are given in the form of mean value and variations. For
example, the heat conduction coefficient can be given in the form

a=a,=*o.

The accuracy ’ % ‘ depends on the measurement methods, the homogeneity of the
material, etc. Similar uncertainty in the coefficients arises in many other prob-
lems, for example linear elasticity and magnetostatics.

Henceforth, the set of admissible data is denoted by D. The known “mean”
data are denoted by D,. The subscript o denotes the data (and solution) associ-
ated to the mean data. The mean value together with allowed perturbations will
define a set of admissible data. The set of admissible data (i.e., the mean value
denoted by D, and the data within given variations) will be denoted by D. We
assume D to be such that the problems with any data from D are well defined,
i.e., they possess unique solution. Moreover, we define a solution mapping

S§:D—S8(D)CV,

which defines the solution resulting from particular data. Note that the space of
admissible solutions is fixed. In other words, with all admissible data the solution
isin Vj. Thus, we will for example not allow variations on the subset of boundary
where Dirichlet boundary conditions are set.

The solution set S(D) is of particular interest. It is the set of admissible
solutions, i.e., solutions that may result under the existing information under the
possible data. Our analysis investigates two related topics:

¢ Relations between sets D and S(D). To measure the set S(D), we choose
U, = S(D,) as an anchor and use it to define the radius of the solution set as
follows:
rim sup e —ulle @)
ueS(D)
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and its normalized counterpart,

Il e = o

7:= su , (4.2)

sestpy s Tls
where || - [|o denotes the energy norm generated by the data D,. Of course
the radius can be defined by a dual variable, energy, or by any functional of

u.

¢ The sensitivity of the solutions and related quantities with respect to vari-
ations in data. The goal of the study is the derivation of various quantities
of interest with respect to the data values. It is of special interest to see how
this derivative depends on the value of D,, and what other factors charac-
terize its magnitude.

Additionally, we define the error quantities related to some particular v € Vj.
The distance of v from the mean solution is denoted by

eo = uo — v o -

Since the exact solution is not uniquely defined, it is natural to define the worst
case error

Cworst := SUp ||| u—o “|o (4.3)
ueS(D)
and the best case error
e = inf u—12|o . 4.4
best weS(D) ||| ”| ( )

In the case of incompletely known data, the standard definition of the approxima-
tion error is not applicable. If the distance from v to set S(D) is much larger than
diam(S(D)), (then es & eworst = €pest) then the distance from v to any member
of the solution set represents well the approximation error. If this is not the case,
i.e., eworst > €pest then any further efforts to improve the approximative solution
v are useless. The definitions are illustrated in Figures 5 and 6.

4.1 Effects of indeterminate data in algebraic problems

Below, we consider several elementary problems which allow us to demonstrate
effects arising from an incomplete knowledge of the data. These effects are of
different types. In real life mathematical models, they may arise in more compli-
cated forms.

411 Examplel

Consider a two-dimensional minimization problem,

;161%% {%xTAx — bTx} , (4.5)
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FIGURE 5 Illustration of the radius of the solution set.
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FIGURE 6 Illustration of different distances associated to v € V.

where A € R?*2 is positive definitive and symmetric, and b € R?, which is
equivalent to the system

Ax =Db.

Let us now assume that the matrix A is not fully determined, but we know that it
belongs to the set

Dy:={AcM>?| A=A, +JE, EEM*?, |E|<1,6>0}

of “possible” matrices. Here, J is the magnitude of the perturbation, which can be

considered as a measure of the indeterminacy. We denote the condition number
of A, by

cond(A,) =

7

a1 al

where ¢ and ¢ are the minimal and maximal eigenvalues, respectively, so that

c|x? < Aox-x <e|x>, VxeR2.
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We assume that
d<g (4.6)

which guarantees that all the matrices in D4 are positive definite. The absolute
value of the perturbation magnitude 6 alone can not tell how significant the range
of indeterminacy is. For this reason, we introduce the parameter

1)

0="2,
c

4.7)
which characterizes a “normalized” perturbation and serves as a more adequate
measure of indeterminacy’.

It is easy to show that the larger the condition number of a matrix is, the
more sensitive (with respect to small perturbations) the problem (4.5) is. For ex-
ample, consider matrices

M |10 @_1]21
Ao_[Ol] and A —3[12.

The matrix Agl) hasc =¢ =1 and AE,Z) has ¢ = % and ¢ = 1. Let 6 = 0.05. For
this algebraic problem, it is easy to explicitly compute the solution set

S(Dp):={x=A"1|Ac Dy} (4.8)

and define the radius

._ |x0 — x|

ri= sup ————
xeS(Dy) |xo|

We chose b := [1,1]7, so that the non—perturbed solution is xo = [1,1]" for both
A and AP, Figure 7 depicts the solutions for systems

(AEJ) n 513) x=b and <A£2> T 515) x=b

for 10 000 randomly computed E. It is easy to see that the set S(Dj4) is much
larger for the matrix A”: #() = 0.053 and @ = 0.152. The condition number 3
of A(?) is actually rather small. We note that in real applications (e.g., for matrices
generated by strongly non-isotropic diffusion), these effects may become much
more significant.

4.1.2 Example 2

Let the matrix A contain a parameter a, which is known to be inside some inter-
val, e.g.,

2—a 1
Aa—{ 1 2—0(]’ o€ [ao— 0,00+ 0] C (1,2],

We note that a normalization by the matrix norm is not proper, since we want to obtain
a quantity that indicates how serious the perturbation ¢ can be. Clearly, it is most criti-
cal when A, is “smallest”, i.e., when it multiplies vectors close to the eigenvector of the
smallest eigenvalue c.
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0.7 1

0.65 1

0.6 + el
0.6 0.65 0.7 0.75 0.8

FIGURE 7 Solution sets (4.8) for matrices Agl) (darker) and A£,2> (lighter), 10 000 random
perturbations E were applied to illustrate the solution set.

where § is the accuracy within which the mean value «, is known. By x, we
denote the solution of the system,

Axxy = f.

Since det(A,) = (2 — a)? — 1, the matrix is non-degenerate for any a # 1 (and
« # 3), butif &« = 1 (or « = 3), then the matrix has a nontrivial kernel. The
behavior of the solution set as a, — 1 is of our interest. The inverse matrix to A,
is

1 2—a -1
_17
A _(2—06)2—1|: -1 Z—a]'
Hence,
Y= A = e (= T+ T)f = 5 fo T
“ (2—wa)?2-1 3—uw (0 —=1)(a—3) 77
where
1 -1
=[]
is a matrix with non-zero kernel N'(T). Since
Tf = fi—f :|’
/ {—fh‘fz

Tf is a zero vector if and only if f; = f», which is equivalent to f € N (T). This
condition is crucial for the stability of the solution with respect to small changes
of a.
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TABLE 7 Limits of the derivative and logarithmic derivatives of x,.

. OXa . dxa

L e mpafe
FENT)| oo %0
feNm | lf :
4 2

Let us study the behavior of the solution with respect to small changes of
the unknown parameters. For this purpose we define the increment

fxy = @ 4.9)

and the normalized increment ﬁAg‘xa . It is clear that if |xl—a‘Ag‘x,x is very large
with small values of J, then the solutions generated by the different a are sig-
nificantly different. If 6 — 0, these quantities tend to the derivative % and the
logarithmic derivative ﬁ%, respectively. We note that the logarithmic deriva-

tive is a fundamental quantity in the sensitivity analysis.
We have
0xy 1 4 —2u
— Tf.
o = G-ap T@-1—32"/

If Tf = 0O, then the second term vanishes and %f is relatively insensitive with
respect to variations of « close to one. However, if Tf # 0, then the second term
is very sensitive if « is close to one. These observations are summarized in Table
7.

For practical computations this qualitative observation is important, but not
sufficient. For a reliable quantitative analysis, two other questions are of utmost
importance:

(a) For a given indeterminacy in the data, how large is the inaccuracy in the
solution (or other quantity of interest)?

(b) In order to obtain results with a certain a priori accuracy, how accurately
should the data be known?

These questions are easy to discuss with the paradigm of the above model prob-
lem. In this case, we can easily compute the radius of the solution set,

| X0, — Xal

ri= sup A
o

a€[no—3,00+06)

In the numerical tests, we select two different right-hand sides, namely

fO =L, -1 ¢ N(T) and f@ = L[1,1)7 € N(T),

1
V2
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TABLE 8 The radius of the solution set if § = 0.01 for different a, and f.

Ko 1) r

050 0.01 0.0204
U ¢ N(T) | 0.80 0.01 0.0526
0.95 0.01 0.2500
050 0.01 0.0040
f@ e N(T) | 0.80 0.01 0.0046
095 0.01 0.0049

TABLE 9 The accuracy ¢ required to obtain r = 0.05 for different a,.

®o ) r
050 0.0235 0.05
fD ¢ N(T) | 080 0.0094 0.05
095 0.0024 0.05
050 0.1189 0.05
f@ e N(T) | 080 0.1046 0.05
095 0.0499 0.025

Table 8 presents the radius for various values of &, and given right-hand sides.
From the results it is obvious that the difference between the two cases is very
large. If f = f(1), then for & = 0.95 & 0.01 we have r = 25%, which means that
any quantitative analysis is rather meaningless. If f = f(?), then r < 0.5% in all
experiments.

Table 9 shows how accurately ¢ should be known in order to obtain the
solution set with a radius less than 5%. Again, for f = f(1) we see that 5 %
accuracy demands very accurate knowledge of a. For f = f(?), the situation is
drastically different. In the case f = f(?) and a, = 0.95, the restriction a, + 6 < 1
is met before the radius grows up to 5 %.

This example underlines the importance of an a priori qualitative analysis to
study the stability of the problem and, moreover, the necessity to produce quan-
titative information on the effects that the incomplete data have on the solutions.

4.1.3 Example3

In this example, we study a minimization problem with constraints. Consider the
problem
min Q%(x),
xeKCR? Q')

where

Q*(x):=y-x, y= Bx +x, B—{ ! _1}.

1—w -1 1
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Hence,

1
1—
1

= 1_a(x1—x2)2+x%+x§,

Q*(x) =

1
Bx x4+ |x|* = ——|Ex|® + |x|?
u 1—ua

where L1 1
E=l1 )
The set of admissible solutions is
K:={x € R?|xy = ax; + b, a,b € R}.
The kernel of the matrix E is the line
N(E) = {x € R? | x; = x3}.

We consider the simplest case where only the parameter a is not fully determined,
but the coefficients a and b are exactly known.

The minimizer of Q* in K can be easily computed. Substituting x, = ax; +b
to Q we obtain the form

1
Q?XGK(Xl) 1—x (x1 —ax; — b)? + x3 + (ax; +b)?
1
= 1_a ((1 —a)’x} —2(1 —a)bx; + bz) + x3 + a%x] + 2abx; + b
1 1
= <1_“(1a)2+1+g2> X2+ (HZb(a1)+2ab) X1+

1
+——b*+ 17,
1—a

which is to be minimized with respect to x;. It is easy to check that the minimizer
must satisfy the condition

1 2 2 1 _

The minimum of Q“ is attained at

. b [1a(az)]_

* T (@—2)@+2a+a—2 a+a—2

The minimum value of Q% is

thi b2(‘x_3)
0" a—-2)2+2a+a—-2

B b (a—23) —a
y'= (0 —2) a2+2a+¢x—2{ 1 ]

Also,
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FIGURE 8 Illustration of the sets K and A/ (E).
We can compute the derivatives
dx® b(a—1) (a+1) [—l]
de  (2a—222+4a (2+1)-2)7> L 2]’
dQg _ b2 (a+ 1)2
de  (20-2a24a (a2+1)-2)%
dy’ b(a+1)° [ —a }
dv  (2a-2a2+a (a24+1) —2) 1

The behavior of the solution on the limit « — 1 depends on whether sets K
and N (E) intersect (see Figure 8). We distinguish between two cases:

e Case a = 1: the sets N/ (E) and K do not have a common point.

Then,
o b -1 dx? 0
X == - = .
21 1 |7 da 0
Note that x is unaffected by changes of . However, for Q* and y we have
lim |Q8| = o0, lim |y°| = 0
a—1 a—1

and for derivatives

. 1dQg . y
1 0] = lim | = | =
uc1—>n} da o oc1—>rr} d o
and for logarithmic derivatives
d
lim Qo , mio d’) _
a—1|Qf] 1[y°] | da
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Thus, they become very sensitive to variations of « if a is close to one.

e Case a # 1: the sets NV(E) and K have a common point.

Then
b 1 2h? 2b —a
. 0 __ . @ _ : 0o_ __ =7
tm =[] wmes= 2 wme = 2 [ ]
and
0 27 o 2 2
hmdi = bla+1)” 4 ,  lim dQ = _Pla+]) ,
a—1 da (a—1)% | -1 a—1 da (1—a)*

_dy®  ba+1)2]1
N e T T —ap |a

This study indicates that for this elementary model problem different constraints
have a crucial effect on the reliability of a quantitative analysis. More precisely,
if « is close to one, then a quantitative analysis of the problem in the case a = 1
makes no sense. We emphasize this fact by considering a case where the param-
eter « is not fully known, but instead belongs to an interval

NS [lxo -0, +5]/

where a, is a known mean value and J is the magnitude of the indeterminacy.
This indeterminacy of the parameter introduces a set of solutions,

Syi={xeR?|x= argmil?Q"‘(z), a € [ao— 0,00+ 0]}
z€
Similarly,
Syi={y e R*|y =L Bxy+ x4, x4 = argmiI?Q"‘(z), ® € o —d,00 + 6]}
ze

and
So:={QEeR|Q=minQ"(z), a € [xo — &,a + ]}

We compute the radii of the solution sets,

' |xo — x|
Ty = sup PN
xeSK °©
ry 1= sup |yT _|y|,
yeSk Yo
Qo — Q]
Qesg °©

where subscript o denotes the solution corresponding to the problem where & = «..
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TABLE 10 Normalized radii of the solution set for « = 0.50 4= 0.01.

‘ Tx Ty rQ
K@ 0  0.0163 0.0163
K2 | 0.0094 0.0104 0.0104

TABLE 11 Normalized radii of the solution set for « = 0.95 4 0.01.

‘ 'x Ty [f¢)
KM 0 0.2439 0.2439
K@) | 0.0385 0.0366 0.0366

In the numerical tests we consider two different constraints,
KV = {x e R?|xp = x; + 1}

and
K® = {x € R?|xp = Lx; +1},

where in particular K(2) has a common point with A'(E) and K(!) has not. The
computed radii for the two intervals are collected in Tables 10 and 11.  The
solution sets related to K1) and K® are rather similar if « = 0.50 + 0.01, but
significantly different in the case & = 0.954 0.01. In the case K = K(?), if a is close
to one, a has to be known extremely accurately. In Table 11 the data are known at
1% accuracy, but y and Q by 24 %!

The asymptotic results derived earlier only indicate the severity of the in-
determinacy. For a creditable quantitative analysis one demands quantitative in-
formation concerning the magnitude of the indeterminacy in the data and the
relation between this indeterminacy and the solution set.

4.2 Estimates of worst and best case scenario errors

The elementary problems presented above give a rather obscure view of the com-
plicated effects that may arise in problems with incompletely known data.

On the first glance, the computation of the radius of the solution set or best
and worst case errors for problems generated by PDEs seems an unfeasible task,
since elements of the set S(D) are generally unknown. The remedies are devia-
tion estimates and their following properties:

(a) They are guaranteed (in the sense discussed in Theorems 2.2 and 2.3),

(b) they provide the exact error with some auxiliary functions and
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(c) they depend explicitly on the problem data.

Due to the properties mentioned before, the corresponding majorant and mino-
rant can be applied to compute upper and lower bounds of errors generated by
the indeterminacy.

The benefits of using deviation estimates are introduced in the following
Proposition, where worst and best case errors are controlled. Here, we write
the majorant (minorant) as Mg (v,y, B; D) to highlight the fact that the majorant
(minorant) depends explicitly on the problem data D. We recall that the set of
admissible data, i.e., data within the allowed perturbations, are denoted by D
and the set of solutions by S(D).

Proposition 4.1. Let v € Vjy and u be the exact solution of problem (2.35). Then the
worst case error (4.3) and the best case error (4.4) can be controlled as follows,

Ksup sup Mg (v, w; D) < e%vorst < Kinf sup Mg (v,y,8; D)
w DeD ¥B DeD

and

Ksup inf Mo (0,1 D) < ey < Kinf inf M (2,y,f;D),

where constants K and K satisfy
Kllwlp<llw2<Kllwl}, Ywe W, DeD, (4.10)
and where || - ||p denotes the energy norm generated by the problem data D.

Proof. We estimate the worst case error from above using the majorant (see The-
orem 2.3), and inequalities (2.7) and (4.10),

Chorst = sup || u—v ||2< Ksup inf M (v,y, B; D) < Kinf sup M (0,y, ;D).
ueS(D) DeD YP Y8 peD

Alternatively, we can apply the minorant (see Theorem 2.2) and (4.10),

ot = sup || u—o[2> K sup sup M (v,w; D) = Ksup sup Ms (v, w; D).
ueS(D) DeD w w DeD

The estimation of the best case error is similar,

Cpest = ueig(fp) Ilu—o|2< KDirg) i{lgM@(v, y,B,D) = Kir}ﬁf Direlg)M@(vr y,B;D)

and

2 . 2 . .
— inf —o||2> K inf w; D) > K f Mo (0, w;D).
Chest =, I0f Il v\llo_fDuelegpMe(vw )_fsgvpggDM@(vw )

0J
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The key part of this proposition is the following: Since the error functionals
depend explicitly on the problem data, the extremum over the set of admissible
data can in many cases be estimated or computed analytically. Thus, instead of
solving the original problem numerous times, we end up with a problem of find-
ing an extremum of a single functional. Moreover, it is not necessary to compute
this extremal auxiliary function exactly, since any approximation of it will pro-
vide an error bound. Naturally, the more computational effort we invest in this
task, the sharper bound we obtain.

This approach was studied first in [25]. The practical impact of Proposition
4.1 is that the ratio of epeqt and eworst can be estimated from both sides. This
ratio indicates how close the approximative solution is to the solution set. If this
ratio is close to one, then the magnitude of the solution set is small compared to
the approximation error and it makes sense to invest more in the computation.
However, if the ratio is very small, then the approximate solution is very close to
(or inside of) the solution set and further adaptation of meshes or other means to
improve the approximation makes no sense.

4.3 Estimates of the radius of the solution set

A more fundamental quantity to study is the radius of the solution set, which
has been studied for diffusion type problems in [26, 28, 29]. The radius is not
related to any particular approximation, but contains information about the effect
of incomplete knowledge on the problem itself. In this Section, we derive and
discuss various estimates for the radius for the generalized model (2.34) and the
reaction diffusion problem (2.23-2.26).

We recall the problem (2.35): find 1 € Vj such that

(AAu,Aw)u = (f, w)V/ Yw € V.

We assume that the operator A is not completely known, but it belongs to a set of
admissible operators D 4.

Dy:={Aec LUU)A=A+Y, |¥]c<1 6>0}, (4.11)
where A, is known a “mean” operator and § > 0 is the indeterminacy magnitude.

We denote by ||¥ || the operator norm of ¥, i.e.,

Y
¥z = sup LTI,
A
y#0

We note that all members of the set D 4 generate an energy norm of their own
Il w |%:= (AAw, Aw)y. (4.12)
In this Section, an energy norm without any subscript is defined as follows:

Il w = (Aw, Aw)y.
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We assume that the non-perturbed operator is elliptic and bounded,
clyllt < (Ao, y)u <elylt, vyeu. (4.13)

The perturbations are restricted by

to guarantee the ellipticity of perturbed problems. This normalization was mo-
tivated by the Example 1 on page 61. We recall also the condition number of

Ao,
cond(A,) =

a1 al

Of special interest is the energy norm generated by the known “mean” op-
erator || - || 4.. The constants of the norm equality between || w || 4, and arbitrary
|| w || 4, where A € D4, play an important role in the subsequent analysis.

Proposition 4.2. Let the set D 4 be defined as in (4.11), where A, satisfies (4.13). Then
the energy norms related to A, and any A € D 4 are equal,

Kllwlh<llwlZ,<Kllwl YweV, A€ Dy,

where
1

1 1-—26
K:= —.
max -

- {cond(.Ao)—I—G' 1-0
Proof. We note that

} and K:=

(c=)yllf < (Ay,y)u < (c+ )|yl Yyel, A€ Dy.

By the definition (4.11),

Il %=1 w I —6(¥ Aw, Aw)uy.

From this follows by standard inequalities and assumption over ¥,

e |

6
2 <l w 452 Awl fawl <o B+l wlPs (14 25) ol

Similarly for lower bound,

)
o I, 21w 5 ~oT ¥ Awl vl 21w I -6 w2 (1 25) ol

An alternative lower bound is

c
o > e llw > —— llw % -

c+

Clearly, the maximum of lower bounds is also a lower bound. The definition of 6
leads to the statement. O
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The normalized radius can be estimated from both sides using only the data
of the mean operator and the perturbation magnitude.

Theorem 4.1. The radius of the solution set for the problem (2.35), where A € D 4, can
be estimated as follows:

where K and K are constants from Proposition 4.2.

Proof. First, we construct the lower bound. We can apply Proposition 4.2 and
Theorem 2.2 to estimate from below

2 >K sup || u—uo||3=K sup sup M2 (uo,w) = Ksup sup M2A(uo,w).

ueS(D) AeD qweVy weVy AeD 4 ( \
4.14

The minorant can be written as

Mcg (1o, w) = —((Ac + 6¥)Aw, Aw)yy — 2((Ao + 6Y) Auo, Aw)y + 2(f, w)y
=~ [l w I, —6(¥A(w +2u0), Aw)y — 2((AsAtto, Aw)y — (f,w)y), (415)
where the last term vanishes due to the Galerkin orthogonality. We estimate
sup sup MA(uo, w) from below and set w := auo,
weVy AeDy
Me (o, a110) = —a® || o ||%, —0(a + 2)a(¥Auo, Auo)y.

Taking supremum (« > 0) leads to

%, Ho(a+2)a | uo |2

sup Mo (ito,atio) = —? || o |
[¥]lc<1

= (20 [ uo I +a(8 | uo I = Il uo lI%,))- (4-16)

The expression attains a maximum value with

Y] I G
Il ue 1%, =0 11 ue 112
Substituting this yields
2
s
Il o I &) v
sup M (uo, fuo) = > e (1%, -
I¥e<1 T e Iy, —o e 2T g (g) ’

Substituting this expression to (4.14), dividing by || u. ||

root leads to the lower bound.

_, and taking a square
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c=landc=1 c=1landc=5 c=1andc =50
0.1 01 0.1
0.08 / “ 008 0.08
0.06 0.06 0.06
0.04 0.04 0.04
0.02 0.02 -0

04==" 0 -

0 003 007 01 0 003 007 01 0 003 007 0.1
0 0 0

FIGURE9 Lower (dashed line) and upper (solid line) bounds from Theorem 4.1 with
different spectral ranges for the non—perturbed “mean” matrix.

Similarly, we estimate from above and apply (2.7),

r» <K sup ||u—uo||5=K sup inf MZ(uo,y,B) < Kinf sup Mz (uo,y,p).
ueS(D) AeDy 43 13 AeD,
(4.17)
We estimate infimum from above and set y := .4, Au,. Then the majorant can be
written as

Mé(uo/ AoAuO/ ,B) - (1 + ,B) (Auo - AileAuo/ AAuo - AoAuo>u+
1

Cz . .
’ <1 i ﬁ) slf — A ANy, (4.18)

where the last term vanishes, since the exact flux satisfies the equilibrium condi-
tion (2.41) and we can take f arbitrarily close to zero. Thus

Mé(”o, AoAuo/ 0) - (A_l ((Ao + 5‘{;)/\“0 - AoAuo)/ (Ao + 5‘{;)/\”0 - AOAMO)U
2 62

< 2 =
= AT 10

Il us f12<

)
Oy (o} S D
g_(s(‘i’Au Y Auo)y P

2
Ao -
(4.19)

52
m Il 2o | ([

Substituting this estimate to (4.17), dividing by || u, ||%_and taking a square root
leads to the upper bound. O

The accuracy of the estimates in Theorem 4.1 depends on estimate (4.13).
In Figure 9, we have plotted upper and lower bounds for the radius from Theo-
rem 4.1. Obviously, the accuracy of the lower bound deteriorates quickly as the
spectral range of the operator A, increases. Of course this does not mean that
problems where the operator has large spectral range are less sensitive to the in-
determinacy. The applied technique simply does not provide an efficient lower
bound for the radius. Next, we discuss the reason for this.

Let ii be the most distant member of u in the solution set, i.e.,

Il o — |

A= sup |l o —u |4, -
ueS(D)
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FIGURE 10 Ilustration of the efficiency of selecting an auxiliary function w to construct
the lower bound for the radius. 7, refers to the lower estimate of Theorem
4.1.

Then
Il o — 7 ] 4,
(R e

When we derived the lower bound in the proof of Theorem 4.1, we estimated in
(4.14) as follows:

?:

P =l o — a2, K[| wo — = sup M (uo,w).

weVy

Compared to (4.14), due to the fact that we know # and the respective operator
A, we were not required to take supremum over the solution set. Recall from
Theorem 2.2 that the supremum is attained if w := u, — . In the derivation of
the lower bound, we estimated the supremum from below and selected w := «au.
This choice (and lower estimate) is efficient if wu1, ~ 11, — 7. Whether this happens
or not depends on the “shape” of the solution set. We illustrate this phenomenon
in Figure 10.

However, the upper bound is sharp. In the following section, we construct
an example that admits an analytical solution and compute the radius of the so-
lution set for a certain type of perturbation. Then we compare this true radius
and the upper bound from Theorem 4.1.

Example: The upper bound in Theorem 4.1 is attainable

Bounds in Theorem 4.1 are derived for the generalized problem (2.35). These
bounds are valid for any right-hand side f and differential operator A with op-
erator A, satisfying solvability conditions, and they can be computed a priori.
In this section, we present an elementary diffusion problem for which we can
compute the radius of the solution set. Then we show that with some problem
parameters the radius attains the upper bound derived in Theorem 4.1, i.e., there
is no gap between the true radius and the estimate.
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Consider the stationary heat equation problem in the unit square,

—div(AVu) = f, if(x,y) € Q:=[0,1] x[0,1],
u = 0, if(x,y)erl,

where f coincides with the eigenfunction, i.e.,

f(x,y) := sin(ky7tx) sin(kpty),  where ki, ko € N (4.20)
Let
L ai 0
AO T |: 0 ar :| ’

where coefficients a1 and a; are positive constants. In this case

_sin(kyx) sin(korry) — f(x,y)
uo(x,y) = m2(a1k? +ask3)  m2a-k’

where for the sake of convenience we use the notation

2
a:= [al} and k:= [k%}
ar k2
Consider the same problem with the perturbed matrix,

A:AO+(5‘P=[al+5el 0 },

0 ap + (562

i.e., perturbations are generated by a diagonal constant matrix. Then the restric-
tion [¥| < 1leads to the condition

cc&:={et+e <1}, (4.21)

(3]

The solution of our perturbed problem is given by the relation

f(xy)
n2(a+6€) -k

where

i(x,y) =

Now, we can observe how the perturbation of the matrix affects the solution:

o=l _ loeFl
Il uo || |a-k+6€- k|

(4.22)

It is easy to see that
|5 - k| )
3 — = —. 4.23
rgeag(\a_~k—|—5é-k| zk _ 5 (4.23)
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0.12 4
0.1
0.08 1 = Upper bound
Pmod, if k= [1,1]T

0.06 1 mod o [ ]

- == fnod, ifk=[51]T
0.04 - = = Pnod, if k= [15,1]7
0.02

0

0 0.02 0.04 0.06 0.08 0.1
0

FIGURE 11 Comparison of the true radius rmeq with different values k; and kj, and the
upper bound for the radius in Theorem 4.1.

The maximal value in (4.23) is attained if
.
[k
Without a loss of generality we assume a7 < 4. In this case the normalized

perturbation is

o— 2.
m
Thus, for this model problem, the radius of the solution set is given by the relation

o M=l _ 6
mod -— Mmax =

(4.24)
eef luo ||

y
=

_9

ban

|
Remark 4.1. If in (4.24) we let ky tend to infinity, then the ratio

ar

%a.k _ k? 4+ cond(A.)k3

k| N

tends to one and the right-hand side of (4.24) tends to the upper bound established in
Theorem 4.1. This means that the upper bound in Theorem 4.1 indeed provides a sharp
estimate of the radius and cannot be improved.

In Figure 11 we plot 1,4 with different values k; and k; in (4.20) and com-
pare them to the upper bound established in Theorem 4.1. Clearly, as the value
of k; increases, the radius approaches the upper bound derived in Theorem 4.1.

Incompletely known right-hand side

The estimates of Theorem 4.1 can be extended if we additionally assume that the
right-hand side of the equation is not fully determined either, but that f belongs
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to the set
Dy:={feV|f=fo+2},
where
ISllv <e.

Unfortunately these bounds are not explicit, but depend on the “mean” solution
Uo.

Theorem 4.2. The radius of the solution set for the problem (2.35), where A is defined
as in (4.11) and f € Dy can be estimated as follows:

cond (A0 || uo [|% +€lluolly — 0 [ o [la, +£e
\Jeond ™1 (A8 [| uo (12, +elluc] <1< VR <

\/l—condfl(Ao)G vl-—6 ,

where constants K and K are defined in Proposition 4.2, ¢ and ¢ are from the inequality
(4.13) and Cr and cq are from (2.36) and (2.38).

Proof. The proof is very similar to that of Theorem 4.1. First, we construct the
lower bound. The key step is again to apply Proposition 4.2 and Theorem 2.2 to
estimate from below,

2> K sup || u—uo 3= K sup sup MZA(uo,w) =K sup sup M2 (i, w)
ueS(D) AeD g weVy weVy A€D y
feDf feDf

(4.25)

M2 (110, w) = —((Ao +6F) Aw, Aw) g —2((Ao + 6F) Atto, Aw); +2(fo + & w)y
340 —0(YA(w+2us), Aw)y + (&, w)y —2((Ac Ao, Aw) g — (fo, w)y),

=—llw]

where the last term vanishes due to the Galerkin orthogonality. We estimate

sup sup Mg (uo, w) from below and set w := auo,
weVp (Al)eD

Mg (o, a1t0) = —a® || o [|%. —0(a + 2)a(F Ao Auto) s + 20(E, tio) -

Taking supremum over the uncertain perturbations (x > 0) leads to

%o FO(a+2)a [ uo [I? +2meuo v

sup  Me (o, atto) = —a” || uo |
[¥lc<1, l1glv<e

= (200 [ uo 17 +ellucllv) +a(@ [l us [I* = I us I%,))- (4-26)

The expression attains a maximum value with

e
s I, =51l e [P

Substituting this yields

5 || uo |2 o)l uo I3, +elluollv)?
sup M@(MO/MO):( Il o 11> +elluolly)® - (& W uo I, telluollv)

I¥llc<1, [2llv<e uo 1%, =6 M ue >~ 1-¢

7
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where we can write % — cond ! (A,)6. Substituting this to estimate (4.25) yields
the lower bound.
Next, we construct the upper bound. By Proposition 4.2 and Theorem 2.3,

2<K sup |lu—u||34=K sup 1nfM S(uo,y, B) = Kmf sup MA(us,y, B).

ues(D) feD}“ ;s>o ;s>o fEDf
(4.27)
The majorant is
—1 1 Clzf *
Ma(io,y, B) = (1+B) (Ao —y, Ao = AT yJu+ |1+ 5 ) ==5[f = A yliy
-1 1 C12: 2
= (1+B) (A (AAus — ), AAuo — y)u + HB — yl3. (4.28)

We substitute A = A, + 0¥, f = fo +¢ and y = A.Au, and apply standard
inequalities,

M (o, AcAu, B) = (1+ B) (A H(AAUs — AoAuis), AAuo — AoAtio) i+
C2
+ (14 5) S5l - Ao+ 215

;
2
< Ao+ %) Au - Actuclfy+ (14 ) S5l
1
= 25 (e peiennti + (1+ ) chicl?).

We take supremum and estimate from above,

1
sup M@(uo,AoAu,ﬁ) < p— ((1 +,3)(52||/\M0Hu+ < lB) )
I¥11c<1, [IE]lv<e c
1 C2
S1-9 <(1+ﬁ)92 Il uo 1%, + 1+ —F ) (4.29)
We can substitute
gV
C 0l uo .

and arrive at

1
sup M (o, AoAu, p) < 7—5 <9 Il o |
[Fle<1 lIgly<e

Cr \?
O+\/E€> .

We use this to estimate the right-hand side of (4.27) from above and arrive at the
statement. O
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4.3.1 The reaction diffusion problem

The reaction diffusion problem (2.23-2.26) has several functions depending on
the material properties, namely A, p, and a. The case where all of them are in-
completely known is discussed here. These results were presented in [28].

We assume

Dpi={AE Lo(QMP) | A= Ac+8Y, |[¥]| qmexa) <1} (430)
Dy = {p € Le(QR) | p = 0o + 620, [[9ll10 () < 1} (431)
Dy i= {0 € Lo(T3, R) | & = o + Satpu, ||l (ry) < 1} (432)

In other words, we assume that the sets of admissible data are formed by some
(limited) variations of some known “mean” data (which are denoted by subindex
0). The parameters J;, i = 1,2,3 represent the magnitude of these variations.
Thus, in the case considered, the set of indeterminate data is

D :=Du x Dy X Dy.
We assume that

GléP < AlZ-¢ <Tlgf VieR? on (),
¢ < Qo <0 on (),
< a,  <0C3 onIg,

where ¢; > 0. In view of the above-stated conditions, the “mean” problem is
evidently elliptic and has a unique solution u,. The condition

0<46; <g i=1,23
guarantees that the perturbed problem remains elliptic and possesses a unique
solution u. We define normalized perturbations and “condition numbers”,
0, := 2 and cond; := C—i, i=1,2,3.
We recall the energy norm of the problem,
| w |H%A,p,a):: / (AVw : Vw+pw2> dx + /uch ds.
Q Tx

Occasionally, we denote || w [[o:=|| @ [[(4,p,q,)- We establish the equivalence
between the norms generated by the perturbed and original data.

Proposition 4.3. Let A, p, and « be defined by (4.30), (4.31) and (4.32) respectively.
Then

Q ||| w |||%A,p,[x)§||| w |||%A0/Po/“o)g é |H w |||%A,p/p¢) ’ Vw € VO/
where
{ . 1 .1 29i}
C:=max<{ min ————, min
ie{123ycond; +60; " ic{1231 1 —6;
and

— 1
C:= max .
ic{123} 1 —6;
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Proof. We note that
=) lwl? <llwlis @+é)llwl? YweW, A€ Dy
(-a)lwl® <lwlfs @+do)llwl? YweW, p€Dp.
(- Iyl <llwlE< @+&)llyl2 YweVy acD

By the definitions (4.30), (4.31), and (4.32), we have

@ A, o ey =l @ 1 pa) — / (0¥ V- Vo + &, ) dx— b5 / Yo’ ds.
Q

From it follows

I 1A, o) <70 1400y +01lI V0N + 202 + 53||w\|rR

&1
<Nwllifspe +—— o HV HA+ II\fWII2 HfWHrR
< max (1+ O )||w|||2
~ie{123} ¢ — 0 (Apua) -
We derive a similar estimate for the lower bound,
Il 174, 5 ay =120 174 00 51||Vw||—5z||ZUH2—53||ZUHrR
(Ao,p £
>l w a0+ - HV HA+ II\fwll2 H\fWIIrR
> min (1— O ) Il w |2
T ie{123) ¢ — 0 (Apua) -
An another lower bound is as follows:
@ 74, g0 00) = 1 V0l 4+ colfw]? + 5],
€1 2 C
Tl 5 + 2Vl
> min 2 .
ie{1,23} Ci —I—(S Il H| (Ap.2)

Clearly, the maximum of the lower bounds is also a lower bound. Definitions of
0; lead to the statement. |

Theorem 4.3. Let u be the solution of the reaction diffusion problem (2.23-2.26) and let
A, p, and w be defined by (4.30), (4.31) and (4.32) respectively. Then

?>C sup M7, (1o, w), (4.33)

weVy
where w is an arbitrary function in Vy, C is from Proposition 4.3 and
ME (i, w) 1= — || w |If +4; / |V + 2V, | |Vao| dx+

+52/| w+2uo)w|dx+52/| W+ 2u.)w|ds. (4.34)
I'r
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Proof. We have

P = sup || o — u |32 Csup [ ue — 1 |y, - (4.33)
ues ues
On the other hand
Ap,
sup || uo —u |||%A,p/a) = sup {sup M@M(uo,w)}
ueS (D) (Apu)eD (weVy
= sup sup Mgp’a(uo,w)
weVy | (Apa)eD

and we conclude that

r? > Csup { sup Mg’p’“(uo,w)} . (4.36)
weVy | (Apa)eD

Now our goal is to estimate the right-hand side of (4.36) from below. For this
purpose, we exploit the structure of the minorant, which allows us to explicitly
evaluate effects caused by the indeterminacy of the coefficients.

The minorant (from Theorem 2.2) for the reaction diffusion problem can be
represented as follows:

ME(ue,0) = — [ (Ao +6,9)(Veo + 2Vuo) - Veoelx
Q

- /(po + S21pp) (w + 2u )w dx—
(@)

- /(zxo + 03 ) (w + 2uo)wds + 21 (w), (4.37)

I'r
where
I(w) :/fwdx—/Pwds—/Gwds
Q I'n Tx

Note that

/(AOVuO -Vwdx + poutow) dx + /zxouow ds = I(w).

0 T'x
Hence

Mg"o’“(uo,w) = —/AoVw~dex— /Powzdx—/lxowzdS—
Q Q I'r

ys /‘Y(Vw 4 2Vi,) - Vwdx — 52/¢p(w 4 2u0)w dx—
Q Q

5 / Yulw + 2u0)wds (4.38)
I'r
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and we obtain

Ap,
sup M (o, w) = — || w |13 +
(A,px)eD

+o1sup [ ¥(Vw +2Vu,) - Vwdx + 6 sup [ ¢p(w + 2uo)w dx+
[¥]<1g Iol<1g)

+03 sup [ Pu(w+2uo)wds. (4.39)
Yul<1p,

The integrand of the first integral in the right-hand side of (4.39) can be presented
as ¥ : T, where
T=Vw® (Vw+2Vu,)

and ® stands for the diad product. For the first supremum we have

Y:1dx, = dx . 4.40
7o) = [ 0

Analogously, we find that

sup [ Pp(w + 2uo)wdx = / |(w + 2uo)w| dx, (441)
|¢P‘S1Q Q

sup | Po(w+2us)wdx = / |(w + 2us)w| ds. (4.42)
\%\Ser I'r

By (4.40)—(4.42), we arrive at the relation

sup  MAPH(ug,w) = — || w |2 +61 / (Vo +2Viie) ® V| dxt
(A,pu)eD a
+ 6, / [(w + 2uo)w| dx + 83 / [(w+2uo)w|ds, (4.43)
0 T'g
which together with (4.36) leads to (4.33). O

Theorem 4.3 gives a general form of the lower bound of r. Also, it creates a
basis for a practical computation of this quantity. Indeed, let Vy, C Vj be a finite
dimensional space. Then

2 > C sup M (uo, w). (4.44)

we Vo

It is worth noting that the wider set V{y, we take, the better lower bound of the
radius we compute. If the exact solution u, is not at our disposal, then we can
apply an approximation u” = u,. The difference between u! and u, enters in
the estimate as an additional term that can be estimated by the upper deviation

estimate (2.70). This leads to the following Corollary:
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Corollary 4.1. Under the assumptions of Theorem 4.3,
1
r? > ME (ud,w) =2 || o —ud [|o (02l Veo]| + 62| /owl| + 63| Vaw]r,)*, Ve € Vo,

where

||| Uo — uél |H0§ \/M@(u’g,y/’)’/ ]’lll VZ)/ V]/ S Ql Y > 0/ ,ull,MZI
where p; : QO — [0,1] (i = {1,2}).

Proof. We estimate the lower bound M/, (#,, w) in Theorem 4.1 from below as
follows:

M (o, w) = — || w [|3 +64 / |Vw +2Vul +2V (1o — ul)| |V dx+
o}

0 [ o 20+ 2(ue — )] ool dx+ 62 [ (w0 + 20t + 20, — k) )] ds
(@) Tr

sz@(u’;,w)—zal/|V(uo—uz)| |Vw|dx—z(52/|uo—u’;| || dx—
Q (@)

—253/ o — ul| |Vl ds. (4.45)
I'r

We can estimate each negative term above using bounds for “mean” functions
and the Holder inequality,

1
J 1900 =] [Valdx < V(o = ul)||a [Vl
=1
(@)
: 1
[ e =l foldx < —llyplue — )]l
A =2
1
/|uo—u2| lwlds < —|Va(uo — u)|rg lwlry -
. e
R

Substituting these estimates to (4.45) and applying the Cauchy-Schwartz inequal-
ity yields the statement. O

A meaningful lower bound can be deduced even analytically as it has been
derived for the generalized model earlier in this Section.

Corollary 4.2. Under assumptions of Theorem 4.3,
»>Cr% and #*>C#2, (4.46)

where .
I oI5 02

> I uo |12, (4.47)
Il oo 12— [luoI2 ~ 1-©

2 _
rg =
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where
Il o 15:= 611V uo| & + S2l 140 |3 + 83| [uo[F,,
and
®:= min cond;¥;.
i€{1,2,3}

For the normalized radius, we have

@2

~2
7’6—1_6.

(4.48)

Proof. In Theorem 4.3 we estimate supremum over the set V) from below by set-

ting
w = Ao,

where A € R. Then, we observe that

> C<A2 Il uo 12 +A(A+2) ] 1o II§> :

(4.49)

(4.50)

The right-hand side of (4.50) is a quadratic function with respect to A. It attains

its maximal value if
Mo 12= (A +1) | uo I3,
ie., if

N P
e 1 = 1 e T3

Substituting this A, we arrive at (4.47). Note that

= /(AoVuo Vo + pou?) dx + /ucouo ds

0 Tx
> /(gVuo Vo + cuul) dx + /gguo ds
0 T'x

> 61| |Vuto| gy + 2 o] [ + 03 uo| I, =1l uo [I5,

so that A (and the respective lower bound) is positive. Moreover,

o 1 1
Il uo 2> 2 | AcViuo - Vg dx+ = | pou? dx+ = [ aou?ds
=
1 C2 C3
0 0 Tx

>0 uo 2. 451
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Also,

Il 2o 1 = I uto 113

= /(AO —6I)Vo-Vodx+ /(pO — 8)v* dx + /(oco — 83)v*ds
Q Q I'r

> (1—51> /AOVU-Vvdx—l— (1—52> /povzdx+ (1— 53) /zxovzds
1 C2 C3
Q Q I'r

5.
max (1-2) e 2= (1= 0) e . @52)
=123 (o

Y

By (4.51) and (4.52) we arrive at relation

22120 e I 45
°=1-0 o
which implies (4.47) and (4.48). |
Below, we derive an upper estimate for r, which serves as a natural coun-
terpart for the lower bound derived in Corollary 4.2.

Proposition 4.4. Let u be the solution of the reaction diffusion problem (2.23-2.26) and
let A, p, and  be defined by (4.30), (4.31), and (4.32) respectively. Then

< Cr% and #*<C#2, (4.54)
where 5 ) 5
1) 1) 1)
2 1 2 2 2 3 2
- o E—— o o 4.
= Vel + 2l + Pl @5)
and 5
oy
?é: max ! (4.56)

ie{1,23) ¢i(c; — 6;)

Proof. By properties of the majorant and (2.7) , we have

N . Ap,
sup || uo — i H|%A,M) = sup { inf ML (uo,y,7, ,ulr,uZ)}
ueS(D) (Apa)eD \WHiT]
< inf sup Mg’p’“(uo,y, ’Y,mlﬂz) .
Y#irTi | (Ap0)eD

Applying Proposition 4.3 we obtain

P2 < C inf { sup M (uo,y, 7, 1, 112) § - (4.57)
y'#ir’)’j A,p,tx

Our task is to explicitly estimate the term in the brackets. For this purpose we
estimate from above the last two terms of the majorant and represent it in the
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form

MEP (o, y, 7, 11, 12) <
2

+
Q

+v4||F—y~V||%N>- (4.58)
R

2
\/727((1 — 1)+ % r1(v,y)

K (71D(Vv,y) + c — 0

2

+ H \/'rsx(l — )+ ——2— 1(0,y)

K(c3 —03) T

Now we find upper bounds with respect to A € Dy, p € Dy, & € D, separately.
First, we consider the term D generated by A and A~ !:

sup D(Viuo,y) = sup [ (Asc+ 51‘I’)_1|(Ao +0Y)Vu, — y|2 dx
A€Dy \‘I’\<1Q

< sup 4 ||AoVito — |2 + 261 /‘I’Vuo (AoVito — ) dx + (¥ Vit |2
€17 01 |y|<1 o

1
<— <|A0Vuo — I3+ 26, / Vito] | AoVt — y| dx + 5§|wo|§)) .
G =0 4
(4.59)
For the term related to the error in the equilibrium equation we have
sup [[1f (o, )|ty = sup [ (f = (0o + &29p2)u0 + divy)* dx
pGDP WJ2|<1Q
= sup [ (divy — div(A.Viu,) — Sppouis)* dx
W’Z‘<1Q
< ||div(y — AsVuo)| |3 + 26, / |div(y — AoVio)| |uo| dx + & o] 2. (4.60)

Q

Similarly, for the term related to the error in the Robin boundary condition we
have

H Ay — AsVuo) ||?

v T

+253/‘a(y—§/owo)
I'r

sup ||r5 (1o, y)|[7, <
aED,

luo| ds + 3| |uo|[F,. (4.61)

It is clear that for y = yo := A.Vu, the estimates (4.59)-(4.61) attain minimal
values. In addition, we set in (4.58) 11 = p2 = 1 and find that

Mg"o’a (4o, AcViuo,v,1,1) <

2 2

8 D) 5
<rl o ol [+ —2Juo| A + —2—[uoll}, | - (462
_K<Cl_51|w IIQ+£2_52||u ||Q+£3_53||u 3, | @62
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Now we tend 77, 73, and 4 (which are contained in x) to infinity. Then, (4.62)
and (4.57) imply (4.55). An upper bound for the normalized radius follows from
the relation

MEP (ue, AsVito,7,1,1) <

52 / 53 53
< AVUO -Vuo dx+72 olUo 2 +73 Kolo 2
21(21_51)0 £2(£2_52>||\/F ||Q Q’3(£3_53)|| ||FK
52
< max ——— || u ||,
ie{1,2,3} ¢;(c; — 6;)
which leads to (4.56). O

Remark 4.2. The estimates for the radius of the solution set derived in Corollary 4.2 and
Proposition 4.4 for the reaction diffusion problem are very similar to the ones in Theorem
4.1 for the generalized problem. The same similarity is valid for Propositions 4.2 and
4.3. In these estimates, if there are several sources of indeterminacy, the most uncertain
parameter dominates.

4.4 Linear elasticity with incompletely known Poisson’s ratio

Here we consider the isotropic linear elasticity problem defined in Section 2.1.2.
Our main goal is to estimate the energy sensitivity with respect to v and to show
that for some classes of linear elasticity problems the exact solutions are extremely
sensitive to small variations of v. In this Section, we derive asymptotic estimates
that demonstrate a phenomenon that can be called a “blow—up” of the indeter-
minacy error caused by uncertainty in the material parameters.

Henceforth we assume that the uncertainty of material parameters is gen-
erated by one factor, uncertainty of Poisson’s ratio v. In practice, values of E are
often known only within some interval, but this constant enters the equation as
a multiplier. In view of this fact, the corresponding effects are easy to evaluate
(they are proportional to the indeterminacy range). In this study we neglect these
effects. Moreover, we assume that solutions are normalized with respect to E,
which effectively means that E is replaced by one.

We denote by superscript v quantities and functions associated with Pois-
son’s ratio v (e.g., C¥ in Hooke’s law (2.15)). Similarly we denote the energy,
strain, displacement or stress related to the exact solution of (2.20) (e.g., u" de-
notes the exact solution of (2.20) and &" stands for e(u")). We estimate the dif-
ference of quantities related to the exact solutions obtained for Poisson’s ratios v
and v + 4. For this purpose, it is convenient to use incremental relations, e.g.,

AVE:=Z2 % (4.63)

for the total energy and the corresponding derivative % = %iir(l) AJE. The energy

& presents an important integral characteristic of the exact solution. If the solu-
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TABLE 12 Analogy of Example 3 and isotropic linear elasticity.

Example 3 | Linear elasticity | Physical description

o v Poisson ratio

X e(u) strains

Y o stresses

K Vo set of admissible solutions
Q & energy functional

=xTEx | [Adiv(u)?dx | first part of the energy functional
o)

N(E) N (div) kernel of the “blow-up” term
x [ ule(u)|*dx | second part of the energy functional
o}

tion is robust (insensitive) to small variations of the material parameters, then the
energy also changes insignificantly. However, if A{€ becomes large for relatively
small J, then this fact definitely indicates a high sensitivity of the exact solution
to material parameters.

Before advancing to the analysis, recall the Example 3 on page 66, where
the relation between the set of admissible solutions and the sensitivity of the en-
ergy functional (and the solution) was studied. The analogy between the simple
algebraic example and linear elasticity problem is presented in Table 12.

The function Q : R?> — R is an analog of the energy functional € in the linear
elasticity theory. The term 1xTEx behaves like the divergence term [ Adiv(u)? dx

O

in two ways: The coefficient tends to infinity as parameter a tends to 1 in a similar

way as A tends to infinity as v tends to % (the incompressibility limit). The kernel

is not trivial; in other words there are non-zero vectors (functions in linear elas-

ticity case), for which the value of this term is zero. The term x”x is zero only if

x = 0 and the coefficient is bounded. It behaves like the strain term [ p|e(u)|? dx
Q

in the space H}(Q), which is zero only if u = 0.

The two cases KNN(E) # @ and KNN(E) = @ are analogs of two
different types of boundary conditions: The first one admits the existence of
divergence—free solutions and the second one does not. In linear elasticity the
analytical solutions are not usually at our disposal. For this reason the analysis
exposed in this Section is much more complicated.

Estimates of the sensitivity of energy to Poisson’s ratio

Henceforth, we assume that
0<v<} and 6<(}-v). (4.64)

This condition guarantees that the problems with different Poisson’s coefficients
are uniformly elliptic. Also, we assume ¢ = 0 (this assumption is made only for
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the sake of simplicity).
First, we establish the relation that serves as a basis for our subsequent anal-
ysis. We have

||| gvto _ gv |||%:1/+§ — /Cv-i-&sv L /CV+§SV+5 . 81/4—5 dx
Q Q
— /(AgC)ev L6V dx — 6(ALE).
Q
Hence
AJE = /(AEC)SV ceVdx — % Il g0 —¢v |||2CL,+(,~ . (4.65)
QO

For isotropic media we have

/(Agcw Cedx = / ((Ap) Idivie’ 2+ 2(Alp) |s"|2) dx.
(@) @)
In view of (4.64) we have

4(1+212) 2(1 + 2v2 + 2v6)
= < AVA L
T Aty —2v)? = TS A1 - 2v)?
2+v+202 .
S (1+v)2(1-—w)2 P
and
Mo 1= —71 <2AYu < ——4 =m
S T P R I | S
Now we find that
, 1
/ (AYC)e" : ¢ dx > / ((K@mwuvz— sz) dx. (4.66)
Q QO

In order to estimate the second term in the right-hand side of (4.65), we use
the majorant for the linear elasticity problem,

(Me(o,7))? = ( J(ereut) — 1) (eu) - (€7) M) dx) +ex|[Dive+ 7],
Q

where ck is a constant related to Korn’s inequality and 7 is an auxiliary stress
function that is at our disposal. Here, we consider ©#" as an approximation v for
the problem defined by u"*?. For T := C'e(u?), the equilibrium term vanishes
and the estimate reads as follows:

e/t —u?) |2, < ME (u¥, T), (4.67)
where

MER(, ) i= [(CFe(ut) = 1) s (e(’) = (C4) 1) dx
Q
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Lemma 4.1.
e — e I 02 (el ldivie’ | + cSlle(u) 7).
where
)LV
cj = ~ ke and ¢} = 1(5+2v)m2,.
Proof. It is easy to see that
CVe(u¥) — CVe(u”) = (AVF0 — AV)divu'T + 2(u 0 — u¥)e(u?). (4.68)

Since
1 A
—1 _ = A
Ct= 2 (T 3A+2ytr(T)H>
we have
(Cv+5)flcv£(u1/) —
— 1 Vd' v v v AV+§ 14 v d v
= AVdivu'T + 2u'e(u )—W(SA +2u")divu'l
AV )\V+5(3AV +2]4V) ) yv
- (2;”1/-&-5 T 2uvtI(BAVHO 4 2‘uv+5)> divu"l + uvto e(u”).

We note that

1 /\V+5 vis
AV 4 2uY = —
WAN =170 e T 12—
A ATREA four) 5 8

2uv 0 2uvH(BAVE 4 v ) T (14v)(1—2v) v

and
v+ _ 0

v v4+6\—1,v v AV v U H v
e(u”) — (C"°)"C"(u") :57d1vu ]H_WS(M ). (4.69)

By (4.68) and (4.69) we obtain
MY (u, 1) =

/\1/

v+d v v+é v
—_ n57(Av+5 —/\V)HdiVLlVHZ—i- ()‘ A )(“Ll H )

‘uv+5

[|divu"||>+

)LV

v+o _ ,v)\2
A e —ylivae 2 2B e

+26 e

Since the second and third terms are negative, we find that

V46,V AV v+0 v s V)12 <;"lv+§_l’lv)2 vy 1|2
M, ) < o (4 4% v |2 4 200 ()|

< (M divee||2 + me le(u”)||?
- v ® Z‘uU“r(s 4

which together with (4.67) leads to the statement. 0J
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Theorem 4.4. Let ug € V be a function with the minimal divergence norm, i.e.,

||divieg|| = min ||divu||. (4.70)
ueV

Then for 0 < § < min{le{K@, 5}, the following estimate is valid:

1 .
NYE > e | divisg |2 — ¢ eug) |2 @71)
where
woo L m2,(5+2v) vke

37T (14 v)? 4 2\VnKe,

1 (1+21v2)(1—2v)
= —F |1 . 472
(14v)2 ( + 2n(24+v+212) (4.72)

Proof. Applying estimate (4.66) and Lemma 4.1 to (4.65) yields

5 = [(DYC)EY et — S & — e |,
(@)

. 1
> (x5 = o) eivae | = (g +30) lela) 12

Let § < 5. Then we obtain
1

1 1 m% (54 2v) vk
ALE > = divu? 2 S) S vy (|12
68 — ZK@H wvu || <(1 +1/)2 + 4 ZAVHK@ He(u )H

1 .
= e dive’ | = lle(u) 2. @4.73)

Since u, satisfies (4.70) and u” minimizes the energy functional £, we find that

/ <Av|div(ug)]2 +2yV|s(uV)\2) dx < £¥(u") < E¥(uy)
@)

- / (A¥)div(atg) |2 + 2" () [2) dx - (474)
Q

and, therefore,
[e(u") || < [leCug)|- (4.75)

Applying (4.70) and (4.75), we estimate the r.h.s. of (4.73) from below and arrive
at the statement. O

Corollary 4.3. Since the right-hand side does not depend on &, we can pass to the limit
as & — 0 and obtain
o8V _ 1

. 2 2
= > Sk divag | — (i) (4.76)
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Theorem 4.4 shows how sensitive is the internal energy associated with the exact
solution u" with respect to small variations of Poisson’s ratio v. If it is large, then v must
be known with a high accuracy; otherwise a quantitative analysis of the problem
is not motivated. For this reason the estimate (4.76) deserves special discussion.
First of all, we note that the right-hand side of (4.76) is easy to compute.

The asymptotic properties of the estimate depend crucially on the first term.
A distinctive feature of the set V (of admissible displacements) is whether the
boundary conditions are "compatible" (in the sense that there exists a divergence—
free function u, that satisfies these conditions) or not.

If divug = 0, then (4.74) shows that

£1(u") < £ (ug) = 1 llelug) P
which means that forall v € [0, 1) such quantities as £ and ||e(u") | are uniformly
bounded. Moreover,

)P W 2 1
/|d1v dx < /(ZME(ugH )dx—>0 asv— 3.

In this case, small variations of Poisson’s ratio do not lead to large changes in the
solution.

Let us consider another case. Assume that the boundary conditions are non-
compatible, i.e.,

|divug| > 0. (4.77)
Then, even the normalized energy increment blows up.

Corollary 4.4. Under the assumptions of Theorem 4.4,
AYEY 1 9&Y

o > C(v,ug) and oy > C(v,ug),
where
o) e (1) S — 51— 20l |
78l v|[divug||2 4 (1 —2v) |le(ug) ||
and

2(1+217)
G+2v)(1+v)(1—-2v)
Proof. By (4.71) and (4.74) we see that the normalized energy increment is subject
to the relation

¢y = (4.78)

ASEY i ||divug||? — cle(ug) |12 (4.79)
£ 7 Av]div(ug) |2+ 20 e(ug) |2 '
cildivieg |2 — c§(1 — 20) e(ug) (4.50)

=(1+v - .
) divag P T (1 —20)[e(ug) 2

Since the right-hand side of (4.79) does not depend on ¢, it also follows that the
logarithmic derivative of the energy is bounded by the same constant. O
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[

1l
|——
' Lo

FIGURE 12 A model axisymmetric problem.

C(v,ug) is the sensitivity constant that depends only on the geometry, v,
and the "minimal divergence function" u,. If ||divug| > 0, then C(v, ug) blows
up as v tends to 1/2. Thus, the value of the energy increment normalized by
the value of £ (and the logarithmic derivative) also becomes highly sensitive to
small changes in Poisson’s ratio.

Remark 4.3. It is worth noting that the estimate (4.79) and the constant C(v, ug) can
be used to estimate the effects caused by variations of v around some given value. Indeed,

5v+(5 —&v
T 2 0C(vuy). (4.81)
From (4.81) it follows that if v denotes the upper limit of acceptable uncertainty in
terms of the energy , then the value of Poisson’s ratio must be known with the accu-
racy yC (v, ug). Obviously, in the case of a blow up situation this condition may be
impossible to satisfy in practice.

4.4.1 Axisymmetric model

In this section, we study exact solutions of an axisymmetric problem and use
them to demonstrate effects caused by an incomplete knowledge of Poisson’s
ratio. The geometry of the problem is presented in Figure 12. Let (7, 6) be in polar
coordinates; then

O:={a<r<b 0<6<2m}.

In the polar coordinate system

_ duy Uy _rd (ug
B =g BT 8re_Zdr(r)’ (4.82)
and the constitutive relations read as follows:
0y = 2ue, + Aer +€9), (4.83)
09 = 2ueg + Ae, + €p), (4.84)

09 = 2UErg. (4.85)



96

We assume that the volume and surface loads are zero. In this case the equations
of equilibrium have the form

do, 0y —09

- - 0, (4.86)
dUrG 0
o0 +2-0 =0, (4.87)

and

&= /O’:de = / (Atrz(e) —|—2y|£\2> dx.
0 0

First, note that

du,  u, d ru,
07 — 0 = 2p(er — 29) = 2p (dr - ) =25 ()

Substituting this relation to (4.86) we obtain
u
oy + 2]47’ =7, (4.88)

where 7 is constant. In view of (4.83), we arrive at the differential equation

a _ g4
dr(mr) =r Tton
which implies
Uy = 7+ % (4.89)

From (4.87) we find that 0,9 = 3. and ug = 73 + 2*. Next,
— T2 _ T2

o =2(p+A)y1 — Zyr—z and op =2(p+A)y1+ Zyr—z.

The energy is
E=dm((A P —a*)yi L
=4 | (A+p)(b"—a” )y +p 2 p) )

Compatibility of the set V
As we have discussed earlier, the boundary conditions distinguish whether the
set of admissible functions V has (is “compatible”) or does not have (is “non-

compatible”) any divergence—free members. The divergence—free functions for
the model problem can be directly computed. They all have the form

where c is constant.
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For the Dirichlet-Neumann boundary conditions,
u(a) =g, and oy(b) =Fp,
the divergence—free minimizer

DN _ 8a4

Ug .

always belongs to the set V. The exact solution of the problem is

ADN
uPN = v?Nr—F 72r ,
where
pN _ ab* (284(A + i) — bFy) DN Fyb% + 2g,ap

L TrET iy e S A (75 WU B

For the Dirichlet-Dirichlet conditions,
uy(a) =g, and u,(b) = g,

the divergence minimizer u, coincides with the solution of the problem and is

uPD = PP — DDy | 1z
g 1 r 4
where
pp _ §bb — gatl pp _ b (gab — gpa)
"= 02— a2 and ;" = b2 _ 2 .

The function u, is divergence-free only if g,a = g,b. This condition defines
whether the Dirichlet-Dirichlet conditions are “compatible” or not.

Next, we observe the blow—up that occurs with “non-compatible” bound-
ary conditions. We study the behavior of the energy quotient at the incompress-
ibility limit. For our model problem we can compute the derivative of energy
with respect to Poisson’s ratio,

08" _ 2oy (M o (1N,
v 47[{(17 a><8v+8v nmtlz w) W

27r(b2—a2){ 1+4 , 1 2}

A+ |(A—2v2 ™ 22
Moreover, for the logarithmic derivative we have

10g" _ 1 (1+4v)ab>y? — (1 —2v)293

Evov  (1+v)(1-2v) a2+ (1 -2v))2




98

103 _

102 4

101 i

100 T T T
034 036 038 0.4 042 044 046 048 0.5

Poisson ratio, v

T T T T 1

FIGURE 13 Exact values of %% and the lower estimate of Corollary 4.4 for the model
problem with pure Dirichlet conditions and parameter values a = 0.2, b =
1.0, g, = 0.01, and g, = —0.03.

&

It is easy to see that ' 5 05

and ’ w5 ‘ tend to oo if 'y% > 0, i.e., the boundary

conditions are non—-compatible. If the boundary conditions are compatible, i.e.,
gaa = gpb and 1 = 0, then
1
Evoov| 1+v

Moreover, since u, is known for the applied boundary conditions, we can
compute the sensitivity constant in Corollary 4.4,
a*b? (2} — (1 —2v)c}) 11 — ¢4(1 — 2v) 7,

a2b2y2 + (1 - 2v) 72

‘185”

C(vug) = (1+v) ,
where c; and cj are defined by (4.72) and (4.78). For pure Dirichlet conditions,
the blow—up of the exact logarithmic derivative and the sensitivity constant can
be observed from Figure 13. For Dirichlet-Neumann conditions, a similar plot
provides an exact quotient that is almost zero while the lower bound crudely
underestimates it.

Numerically constructed solution set

Here we demonstrate how the sensitivity of the solution depends on the compat-
ibility of the boundary conditions. We do not restrict this study only to demon-
strate the blow—up phenomenon. In particular, it is interesting to observe how far
from the incompressibility limit the sensitivity of the solution renders any quan-
titative results too inaccurate for engineering purposes.
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S:D-V

( V, Energy space

FIGURE 14 Illustration of the experiment.

In reality, v is an unknown function from the interval (a,b) to some subset
of interval (0, %) Motivated by engineering practices we define this subset by
a “mean value” v, and limited error bounds. Thus v belongs to the following
family of functions:

veD:={v:(ab) — [vo—6,v.+ 6]}
For every v € D there exists a solution. We denote the solution mapping by
S:D—-V.

Our interest is to study the set of solutions S(D) associated with all members of
D. Obviously it is impossible to derive analytical solutions for arbitrary v € D. In
order to obtain a reasonable representation of S(D) we consider the set of piece-
wise constant functions D), C D. For v € Dy, we can compute exact solutions and
obtain S(Dj,) The sets are depicted in Figure 14. The procedure for computing
these solutions is described below.

Consider the case where the material parameters on the entire domain (a, b)
are piecewise constants. Let the interval (a, b) be divided into N non-intersecting
subintervals [ := (r,rx41), where 1y (k = 1,...,N + 1) are grid points. We
assume that Poisson’s ratio v is constant on each interval I;. Moreover, we allow
only M different constants from the interval [V, — J, Vs + ¢]. Consequently, Lame’s
parameters A and iy are piecewise constants too.

Without body forces, on each interval I; the displacement and stresses have
the form:

7

k
Uy = yir + P

0r = 2(Ak+ )Yk — 2uk=2.
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FIGURE 15 Division to subintervals with N = 6 and M = 9, and an example of the
distribution v € Dy,.

The solution must satisfy continuity conditions at the junctions of each interval.
Thus, for every ry, (k =2,...,N +1)

k-1 7! k k
Y rk+ Py = Y+ E, (4.90)
k—1 k
2(Ajot + 1)yt - Zﬂk—l% = 2(Ak+ )7t - Zﬂk%- (4.91)
k k

The boundary conditions and continuity conditions (4.90) and (4.91) together
form a set of linear equations, from which coefficients 7’1‘ and 7’2‘ can be solved.

The experiments are performed as follows: We compute a solution associ-
ated with all combinations generated by a piecewise continuous v € Dj,. A partic-
ular member of Dy, is depicted in Figure 15. Each of these solutions (displacement
and stresses denoted by subscript pert), are then compared to the non-perturbed
solution. We examine the relative perturbations of various solution-dependent
quantities defined as follows:

g — U Upp — U
6%2 = max M, e%oo = max M
weneS(D)  [uroll, wperneS(0) (140l
7 = IIUrO_UpertIILZ oo IIO'rO_‘TPertIILoo
eLZ T X - n_ Loo .— —_—
wpen€S(0) [lovollL, wpenes(Dy) ool

Bounds of the set S(Dy,) are also of special interest,

umin r = mll’l u r
4 ( tpert €S (D) pert ( )
uitnax(r — max l/lpert(r)f

uperfGS(Dh)

and similarly for stress. Moreover, we compute the relative perturbations in the
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FIGURE 16 The set S(Dy,) and the respective mean solutions for the problem with pure
Dirichlet conditions, v, = 0.45, and § = 0.01.

energy,

J._ U(”pert) — J(uo)|
° uPErl;IC}%)((Dh) J(uo) '

These quantities are computed analytically on each interval. In all following ex-
periments, we selected the interval to be (a,b) := (0.4,1.0), Young’s modulus
was set to one, Dirichlet conditions were g; = 0.01 and g, = 0.02, and the Neu-
mann condition was F, = 0.2. The perturbation set parameters were N = 10 and
M = 2. In Figure 16 displacements and stresses of the set S(Dj,) are presented
together with the non-perturbed mean solution for a particular problem.

In Figures 17 and 18, the development of various errors in the case of both
boundary conditions is computed as a function of the relative perturbation mag-
nitude %. From these plots one can depict the accuracy required for Poisson’s
ratio with respect to the desired accuracy and relevant quantity.

From Figures 17 and 18 we note that in every test example the accuracy re-
quired for computing point-wise values (Lo-norm) is considerably higher than
the accuracy required to compute the integral quantities. Moreover, in the case of
the Neumann boundary conditions the quantities of interest are practically unaf-
fected by the increased value of v,, but in the case of the Dirichlet conditions they
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FIGURE 17 Relative perturbations of various quantities with respect to the relative per-
turbation in Poisson’s ratio, when v, = 0.3.
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FIGURE 18 Relative perturbations of various quantities with respect to the relative per-
turbation in Poisson’s ratio, when v, = 0.45.
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FIGURE 19 Relative perturbations of various quantities with respect to the mean Pois-
son’s ratio v, when ¢ = 0.01.

become very sensitive as v increases. It is important to realize that this increased
sensitivity of solutions to the variations of Poisson’s ratio is highly relevant in en-
gineering applications already before the neighbourhood of the incompressibility
limit. This fact is highlighted in Figure 19, where we present the behaviour of rel-
ative perturbations with different v, and fixed ¢ for both boundary conditions.



5 CONCLUSIONS

An incomplete knowledge of the data in a model implies a limited accuracy of the
results that the model generates. In order to perform a reliable quantitative analy-
sis it is necessary to understand the effects generated by the incompletely known
data. Moreover, these effects have to be controlled in a quantitative fashion with
respect to energy error norms or other quantities of interest. In the Thesis, our
main aim is to investigate the set formed by solutions associated with various
possible data.

Theorem 4.1 provides two-sided bounds of the radius of the solution set for
a certain class of elliptic problems. These bounds depend only on the known data
of the problem and the magnitude of perturbations. We demonstrate that the de-
rived upper bound is sharp. Theorem 4.1 shows that the perturbations around
some given “mean” operator affect the solution (in the energy norm) almost pro-
portionally. For linear elliptic problems this result is quite natural.

Another main result of the Thesis is Theorem 4.4. It shows that with a cer-
tain type of boundary conditions the sensitivity of the energy of the solution of
the isotropic linear elasticity problem to Poisson’s ratio blows up. This behavior is
demonstrated by a model problem that has an analytical solution. The asymptotic
properties of the energy at the incompressibility limit indicate that a quantitative
analysis in certain cases may face serious difficulties.

Our analysis suggests a method able to find concrete values of indetermi-
nacy errors, which are important for quantitative (numerical) analysis of bound-
ary value problems. The thesis is concerned with linear elliptic models. However,
the method developed can, in principle, be extended to indeterminacy analy-
sis of more complicated models if the functional deviation estimates are derived
for them. One can expect that for more complicated problems the effects of the
incomplete knowledge may be much more dramatic and imply serious conse-
quences to the simulation practice.



REFERENCES

[1] M. Ainsworth and ]J. T. Oden, A posteriori error estimation in finite element
analysis, Wiley and Sons, New york, 2000.

[2] L. Anjam, O. Mali, A. Muzalevsky, P. Neittaanméki, and S. Repin, A pos-
teriori error estimates for a Maxwell type problem, Russian J. Numer. Anal.
Math. Modelling 24, no. 5, 2009.

[3] L. Babuska, On randomized solutions of Laplace’s equation, Casopis Pést.
Mat. , Vol. 86, No. 3, pp. 269-276, 1961.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, 1997.

[5] A.Bernardini, What are random and fuzzy sets and how to use them for uncer-
tainty modelling in engineering systems?, Whys and Hows in Uncertainty
Modelling, Probability, Fuzziness and Anti-Optimization, edited I. El-
ishakoff, CISM Courses and Lectures, No. 388, Springer—Verlag, 1999.

[6] P. G. Ciarlet, Finite element method for elliptic problems, Studies in Mathe-
matics and it’s applications, Vol 4., North-Holland, Amsterdam, 1978.

[7] A.P. Dempster, Upper and lower probabilities induced by a multi—valued map-
ping, Ann. Math. Statist. 38, pp. 325-339, 1967.

[8] G. Duvaut and J.-L. Lions, Les inequations en mecanique et en physique,
Dunod, Paris, 1972.

[9] L Ekeland and R. Teman, Convex analysis and variational problems, North—
Holland, Amsterdam 1976.

[10] I. Elishakoff, Probabilistic methods in the Theory of Structures, J. Wiley, New
York, 1983.

[11] M. Frolov, Reliable control over approximation errors by functional type a pos-
teriori error estimates, PhD thesis, Jyvaskyld Studies in Computing 44,
University of Jyvaskyld, 2004.

[12] M. Frolov, P. Neittaanméki, and S. Repin, On computational properties of a
posteriori error estimates based upon the method of duality error majorants,
Numerical mathematics and advanced applications, Springer—Verlag,
Berlin, 2000.

[13] E. Gorshkova, A posteriori error estimates and adaptive methods for incom-
pressible viscous flow problems, PhD thesis, Jyvaskyld Studies in Comput-
ing 86, University of Jyvaskyld, 2007.



106

[14] E. Gorshkova, A. Mahalov, P. Neittaanméki, and S Repin, Functional a
posteriori estimates for viscous flow problems with rotation, J. Math. Sci. New
York, 142, pp. 927-935, 2007.

[15] A. Hannukainen, Functional a posteriori error estimates for the Maxwell’s
equations, ENUMATH 2007, September 10-14, book of abstracts, p. 114,
2007.

[16] E.]J.Haug, K. K. Choi, and V. Komkov, Design Sensitivity Analysis of Struc-
tural Systems, Academic Press, Orlando, 1986.

[17] J. Haslinger and P. Neittaanmaéki, Finite element approximation for optimal
shape, material and topology design, Second edition, John Wiley & Sons,
Ltd., Chichester, 1996.

[18] J. Haslinger and R. Mékinen, Introduction to shape optimization. Theory, ap-
proximation, and computation, Advances in Design and Control, 7. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

[19] 1. Hlavécek, J. Chleboun, and I. Babuska, Uncertain input data problems
and the worst scenario method, Elsevier, Amsterdam, 2004.

[20] J. P. C. Klejnen and J. C. Helton, Statistical analyses of scatterplots to iden-
tify important factors in large-scale simulations, 1: Review and comparison of
techniques, Reliab. Engng. Syst. Safety, 65, pp. 147-185, 1999.

[21] J. P. C. Klejnen and J. C. Helton, Statistical analyses of scatterplots to iden-
tify important factors in large-scale simulations, 2: robustness of techniques,
Reliab. Engng. Syst. Safety, 65, pp. 187-197, 1999.

[22] O. A. Ladyzenskaja and N. N. Uraltseva, Linear and Quasilinear Elliptic
equations, Academic Press, New York, 1968.

[23] V. G. Litvinov, Optimization in Elliptic Boundary Value Problems with Appli-
cations to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhaduser,
Berlin, 2000.

[24] O.Mali, A Posteriori Error Estimates for the Kirchhoff-Love Arch Model, Pro-
ceedings of the 10th Finnish Mechanics Days, ed. R. Mékinen, P. Neit-
taanmadki, T. Tuovinen, and K. Valpe, Reports of the Department of Math-
ematical Information Technology Series A. Collections, No. A 1/2009,
pp- 315-323, 2009.

[25] O.Mali and S. Repin, Error control for problems with uncertain data by func-
tional a posteriori estimates, In "Adaptive Modeling and Simulation 2007",
ed. K. Runesson and P. Diez, CIMNE, Barcelona, pp. 158-161, 2007.

[26] O.Maliand S. Repin, Estimates of the indeterminacy set for elliptic boundary—
value problems with uncertain data, |. Math. Sci. 150, pp. 1869-1874, 2008.



107

[27] O. Mali and S. Repin, Estimates of accuracy limit for elliptic boundary value
problems with uncertain data, Advances in Mathematical Sciences and Ap-
plications 19, pp. 525-537, 2009.

[28] O. Mali and S.Repin, Two-sided estimates of the solution set for the reaction-
diffusion problem with uncertain data, Applied and numerical partial dif-
ferential equations, 183-198, Comput. Methods Appl. Sci., 15, Springer,
New York, 2010.

[29] O. Mali and S.Repin, Blowup of the energy increment caused by uncertainty
of the Poisson’ ratio in elasticity problems, Russian ]. Numer. Anal. Math.
Modelling 26, no. 4, pp. 413-425, 2011.

[30] S. G. Mikhlin, Error Analysis in Numerical Processes, Wiley and Sons,
Chester — New York, 1991.

[31] P. Neittaanmaéki, J. Sprekels, and D. Tiba, Optimization of elliptic systems,
Theory and applications, Springer Monographs in Mathematics. Springer,
New York, 2006.

[32] P. Neittaanméki and S. Repin: Reliable Methods for Computer Simulation,
Error Control and A Posteriori Estimates, Elsevier, 2004.

[33] W. Prager and ]. L. Synge, Approximation in elasticity based on the concept
of function space, Quart. Appl. Math., Vol. 5, pp. 241-269, 1947.

[34] R. Rannacher, The dual-weighted-residual method for error control and mesh
adaptation schemes in finite element methods, The mathematics of finite ele-
ments and applications X, MAEFLAP 1999. Proceedings of the 10th con-
ference, Brunel Univ., Uxbridge, Middlesex, GB, June 22-25, 1999, edited
by J. Whiteman, Elsevier, Amsterdam, pp. 97-116, 2000.

[35] S. Repin, A posteriori error estimation for nonlinear variational problems with
power growth functionals based on duality theory, Zapiski Nauchn, Semin,
V. A. Steklov Mathematical Institute in St. Petersburg (POMI) 249, pp.
244-255,1997.

[36] S.Repin, A posteriori error estimation for variational problems with uniformly
convex functionals, Math. Comput. 69, pp. 481-500, 2000.

[37] S. Repin, Two-sided estimates of deviation from exact solutions of uniformly
elliptic equations, Proc. St. Petersburg Math. Society, IX(2001), pp. 143—
171, translation in Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc.,
Providence, RI, 2003.

[38] S. Repin, A posteriori error estimates taking into account indeterminacy of the
problem data, Russian ]J. Numer. Anal. Math. Modelling, 18, pp. 507-519,
2003.



108

[39] S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de
Gruyter, 2008.

[40] S. Repin and S. Sauter, Functional a posteriori estimates for the reaction dif-
fusion problem, C. R. Acad. Sci. Paris, Sér. I, Math 343, pp. 349-354, 2006.

[41] S. Repin and S. Sauter, Estimates of the modeling error for the Kirchhoff-Love
plate model, C. R. Math. Acad. Sci. Paris 348, no. 17-18, pp. 1039-1043,
2010.

[42] S. Repin, S Sauter, and A. Smolianski, A posteriori estimation of dimension
reduction errors for elliptic problems on thin domains, SIAM J. Numer. Anal.
42, no. 4, pp. 1435-1451, 2004.

[43] S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for the
Dirichlet problem with account of the error in the approximation of boundary
conditions, Computing 70, no. 3, pp. 205-233, 2003.

[44] S. Repin and R. Stenberg, A posteriori error estimates for the generalized
Stokes problem, Journal of Mathematical Sciences, Vol. 142, No. 1, 2007.

[45] T. Roubitek, Relaxation in Optimization Theory and Variational Calculus,
De Gruyter Series in Nonlinear Analysis and Applications, Walter de
Gruyter, Berlin, 1997.

[46] G. I Schuéller, A state-of-the-art report on computational stochastic mechan-
ics, Prob. Engrg. Mech, Vol 12, No. 4, pp. 197-321, 1997.

[47] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,
1976.

[48] S. L. Sobolev, Some Applications of Functionals Analysis in Mathematical
Physics, 1zdt, Leningrad. Gos. Univ., Leningrad, 1955 (in Russian, trans-
lated in Translation of Mathematical Monographs, Volume 90, AMS,
Providence, R1 1991).

[49] P. Solin, Partial Differential Equations and the Finite Element Method, John
Wiley & Sons, 2006.

[50] R. Stenberg, Error analysis of some finite element methods for the Stokes prob-
lem, Math. Comput. 54, pp. 495-508, 1990.

[51] D. Tiba and R. Vodak, A General Asymptotic Model for Lipschitzian Curved
Rods, Advances in Mathematical Sciences and Applications, Vol. 15, No.
1, pp. 137-198, 2005.

[52] S. Timoshenko and J. N. Goodier, Elasticity theory, McGraw-Hill, New
York, 1951.

[53] S. Timoshenko and D. H. Young, Theory of Structures, New York,
McGraw-Hill Book Company, Inc., 1945.



109

[54] J. Valdman, Minimization of Functional Majorant in A Posteriori Error Anal-
ysis Based on H(div) Multigrid—Preconditioned CG Method, Advances in Nu-
merical Analysis, Article ID 164519, Volume 2009.

[55] R. Verfurth, A review of a posteriori error estimation and adaptive mesh refine-
ment techniques, Wiley and Sons, Teubner—Verlag, New York, 1996.

[56] L. A. Zadeh, Fuzzy sets, Information and control, 8. pp. 338-353, 1965 .

[57] L. A. Zadeh, Fuzzy sets as basis for theory of possibility, Fuzzy sets and
systems, 1. pp. 3-28, 1978.

[58] O. C. Zienkiewits and J. Z. Zhu, A simple error estimator and adaptive pro-
cedure for practical engineering analysis, Internat. ]. Numer. Meth. Engrg,
24, pp. 337-357, 1987.

[59] E. Zio, Reliability engineering: Old problems and new challenges, Reliability
Engineering and System Safety 94, pp. 125-141, 2009.



YHTEENVETO (FINNISH SUMMARY)

Insinoorisovelluksissa ja luonnontieteissa laajemminkin matemaattisten mallien
avulla pyritddn ennustamaan ilmoitd ja tapahtumia. On tarkedd ymmartaa, etta
mikali ldhtotiedot tunnetaan vain rajallisella tarkkuudella, ei niistd voida johtaa
mielivaltaisen tarkkoja ennusteita. On jopa mahdollista, ettd mallinnettava ilmi6
on herkké jonkun parametrin suhteen, eli pienetkin muutokset ldhtéarvoissa voi-
vat aiheuttaa merkittavid poikkeamia tuloksissa.

Téssd vditoskirjassa tutkitaan puutteellisesti tunnettujen parametrien vai-
kutusta yhtdlon ratkaisuun. Usein matemaattiset mallit sisdltdvét parametreja,
joita ei tunneta tarkasti. Tilanne on tyypillinen esimerkiksi kontinuumimekanii-
kassa, jossa materiaalien konstitutiiviset relaatiot perustuvat oletuksiin ja kokeel-
lisiin tuloksiin. Tdssd tyossa tarkastellut mallit ovat erddn tyypin elliptisid osit-
taisdifferentiaaliyhtdloitd. Monet fysikaalisten ilmididen tasapainotilaa kuvaavat
matemaattiset mallit ovat tatd tyyppid, esimerkiksi lammonjohtavuus, diffuusio,
magnetostatiikka ja erityisesti lineaarielastiikka. Vaikka véitoskirjan otsikko, “Puut-
teellisesti tunnetun materiaalikdyttdymisen aiheuttaman virheen analyysi elasti-
sen aineen matemaattisissa malleissa”, alleviivaa tutkimuksen yhteytta juuri li-
neaarielastiikan malleihin, ovat tulokset suoraan hyddynnettdvissda myos muiden
mainittujen fysiikan ilmididen mallinnuksessa.

Suoritetun analyysin keskeisimpind tyokaluina kdytetddn funktionaalisia a
posteriori estimaatteja. Ne ovat funktionaaleja, joilla voidaan arvoida minka ta-
hansa kdypéan funktion etdisyyttd mallin tarkasta ratkaisusta. Lisdksi ne riippuvat
eksplisiittisesti ongelman parametreista. Téssd tyossd johdetaan kyseiset estimaa-
tit my0s kaarevia palkkeja kisitteleville Kirchhoff-Love palkkimallille.

Tehdyn tutkimuksen pédétavoite on tarjota asiantuntijoille tydkaluja ja me-
todeja, joilla voidaan saada vastaus kahteen mallintamiseen kannalta keskeiseen
kysymykseen:

(a) Kun ldhtéarvot tunnetaan tietylld tarkkuudella, kuinka suuri tarkkuus si-
mulaatiotuloksissa on mahdollista saavuttaa?

(b) Jotta tulokset tunnettaisiin halutulla tarkkuudella, kuinka suuri epétark-
kuus ldhtdarvoissa voidaan sallia?

Téssd tyossd arvioidaan ratkaisujoukon, eli mahdollisten ldhtdarvojen tuottamien
ratkaisujen joukon, kokoa (sddettd) ala- ja yldpuolelta. Johdetut arviot ratkaisu-
joukon koosta riippuvat ainoastaan tutkittavan ongelman ominaisuuksista ja pa-
rametreissa esiintyvan epavarmuuden suuruudesta. Yksinkertainen esimerkki-
tehtava osoittaa, ettd johdettu yldraja on tarkka. Toisin sanoen on olemassa tehta-
vid, joiden ratkaisujoukko kasvaa tasmailleen funktionaalisten estimaattien avulla
johdetun yldrajan osoittamalla tavalla, kun ldhtotietojen epatarkkuutta kasvate-
taan.

Toinen vditoskirjan keskeinen tulos on lineaarielastiikan ongelman ratkai-
sun kokonaisenergian tarkastelu, kun Poissonin luku oletetaan puutteellisesti tun-
netuksi. Tehtdvan reunaehtotyypit (kdypien ratkaisujen joukko) voidaan jakaa
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kahteen luokkaan, joiden kvalitatiivinen kadytos poikkeaa toisistaan huomatta-

vasti kun materiaali on ldhes kokoonpuristumatonta (Poissonin luku on ldhes

puoli). Tulos on luonteeltaan kvalitatiivinen eikd suoraan kerro ratkaisujoukon

koosta, vaan sen kasvunopeudesta Poissonin luvun suhteen. On syytd huoma-

ta, ettd jo huomattavasti ennen asymptoottista kokoonpuristumattomuusrajaa,

puutteellisesti tunnetun Poissonin luvun aiheuttama epdvarmuus ratkaisussa voi

tehdd kaiken kvantitatiivisen analyysin liian epétarkaksi insindorisovellusten kan-
nalta. Epdvarmuuden vaikutuksia havainnollistetaan analyyttisesti ratkeavan esi-
merkkitehtdvén avulla.

Viitoskirjassa késitellddn vain lineaarisia elliptisid tehtdvid. Teoriassa sa-
mankaltainen analyysi voidaan suorittaa my6s monimutkaisemmille tehtdville,
mikili vastaavat funktionaaliset a posteriori estimaatit tunnetaan. On odotetta-
vissa, ettd puutteellisesti tunnettujen ldhtotietojen vaikutukset ovat vield huomat-
tavampia monimutkaisemmille tehtéville ja niiden huomioonottamisella on tulee
olemaan merkittava vaikutus mallinnuskéaytantoihin.
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