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Abstrakti

Pro-Gradu tutkielmassani käsittelen kahta erilaista mallia, jotka kuvaavat yksinkertaista molekyyliä
pitkän atomiketjun vieressä. Mallit on valittu siten että molemmat ratkaistaan erilaista tekni-
ikkaa käyttäen. Näin minun oli mahdollista oppia aiheesta mahdollisimman paljon. Ensimmäistä
malleista ns. kuvavaraus-mallia tutkitaan häiriöteoriaa hyödyntäen, käyttäen Feynmanin diagram-
meja. Jälkimmäinen, ns. kahden tilan Fano-malli pystytään ratkaisemaan analyyttisesti käyttäen
Greenin funktioiden liikeyhtälöitä.

Vaikkei käyttämääni kuvavaraus mallia pystykään ratkaisemaan analyyttisesti, saamme kuitenkin
joitakin ominaisuuksia selvitettyä eksaktisti käyttäen apuna yhden tilan Fano-mallista saatuja
tuloksia. Nämä ovat helppoja laskea, heti kun kahden tilan Fano-malli on ratkaistu. Ominaisu-
udet, jotka selvitin eksaktisti ovat ns. kuvavaraus atomiketjun molekyyliä lähimmällä atomilla.
Voimme vertailla erilaisten approksimaatioiden kykyä selvittää tämän kuvavarauksen suuruus.
Käy ilmi, että ensimmäisessä häiriöteoria kertaluvussa, ns Hartree-Fock approksimaatiossa emme
löydä minkäänlaista molekyylin ja ketjun vuorovaikutuksista nousevaa efektiä. Aivan kuin ketju ja
molekyyli eivät "näkisi" toisiaan. Tästä syystä minkäänlaista kuvavaraus efektie ei ole nähtävissä
Hartree-Fock approksimaation tasolla. Toisessa kertaluvussa kuvavaraus nousee esiin ja sen arvo
on melko lähellä eksaktia riippuen kuitenkin ketjun hyppyparametrin $t$ arvosta.

Käy ilmi, että kuvavaraus-mallissa syntyy ns. spektri piikkejä, jotka ovat merkkejä atomiketjun
energiavyön ulkopuolelle syntyneistä tiloista. Nämä tilat syntyvät molekyylin ja ketjun vuorovaiku-
tuksen johdosta. Molekyylin omatessa netto varausta se luo potentiaalin joka, jos vuorovaikutus
on tarpeeksi suuri, työntää yhden tilan ulos ketjun energia vyöltä. Pystymme selvittämään käyt-
täen Hellmann-Feymann teoreemaa, että edellä mainitun spektri piikin siirtymästä vuorovaikutus
parametrin suhteen on mahdollista johtaa yhtälö kuvavarukselle ketjun ensimmäisellä paikalla.
Edellä mainitusta eksaktista kuvavarauksesta pystyimme myös selvittämään eksaktit piikin siir-
tymät, joten pystyimme nyt vertaamaan sekä piikin siirtymää vuorovaikutusparametrin funktiona
että kuvavarauksen määrää atomiketjulla.

Myös piikin siirtymät ovat melko hyvin ennustettavissa kuvavaraus mallin toisessa kertaluvussa.
Meidän on kuitenkin muistettava, että en ole tehnyt häiriökehitelmää iteroiden loppuun asti, joten
tulokset todennäköisesti muuttuisivat jos jatkaisimme iterointia kunnes Greenin funktio konvergo-
isi. Ongelmat liittyen tällaiseen "ensimmäisen kertaluvun iterointiin" tulevat joissakin tuloksissa
esille jolloin kommentoin niitä.

Lopuksi huomaamme, että vaikkei kahden tilan Fano malli sisällä lainkaan vuorovaikutusta molekyylin
ja ketjun välillä löydämme silti edellä mainittuja spektri piikkejä. Nämä piikit osoittavat, että tila
voi työntyä energia vyöltä ulos myös muista syistä, kuin ulkoisen potentiaalin työntämänä.
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Abstract

In this Master's thesis we study two di�erent models describing a molecule next to in�nite chain
of atoms. The models are chosen such that one can learn two separate ways of approaching the
quantum many-particle problem. First of the models, the image-charge model, is studied with the
famous Feynman diagram methods. The latter, the two-level Fano model, is solved exactly with
the aid of equations of motion for the Green's functions.

From the image-charge model we also deduce exact properties with the aid of calculations from
the Fano model. We are able to compare the approximate image-charge to the exact one at the
terminal site of the chain. In �rst order of perturbation theory we do not �nd any e�ect of the
molecule-chain interactions. However already in the second order �single shot� approximation we
�nd the image-charge e�ect quite accurately, depending on the chain hopping parameter t.

We �nd that in the image-charge model one obtains spectral peaks as a signal of the fact that a
split-o� state has formed in the chain due to the molecule-chain interactions. This split-o� state
however requires su�ciently strong interaction, between the molecule and chain to be formed. The
image-charge at the terminal site turns out to be solvable from the spectral peak shift w.r.t. to
the interaction strength between the molecule and the chain. We also solve the exact density at
the terminal site of the chain and solve the peak shifts exactly.

The ability of the image-charge model to predict the peak shift can be compared to exact results.
It turns out that the peak shifts are also quite well predicted by the model. However, one still has
to keep in mind the problems related to the �single shot� approximation, namely the fact that the
model seems to work at some preferred hopping parameter te, which is also deduced.

Finally we notice that even though in our two-level Fano model there are no interactions, we still
obtain spectral peaks giving sign of split-o� states in the chain.
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Chapter 1

Introduction

1.1 many-particle quantum theory

In order to tackle the problems of microscopic many-particle systems we need a proper theory
to describe many-particle behavior in such systems. We will thus review a quantum version of
the statistical mechanics. We will follow the lines of courses �Quantum mechanics 2� by Kimmo
Tuominen, �many-particle quantum mechanics� by prof. Robert van Leeuwen. Both courses were
given in the university of Jyväskylä, the formar at autumn 2008 and the latter at spring 2010. The
books that are used are cited when necessary.

1.1.1 Basics

We start by introducing notation, the Dirac notation [3]. The quantum state of a given system is
described by

|ψ(t)〉n, (1.1)

which is a time dependent state vector in n-particle Hilbert space [10]. The subscript n is often
dropped for convenience. In Hilbert space we introduce an inner product by

〈Φ|Ψ〉n = 〈Ψ|Φ〉∗n , (1.2)

which is, in general, a complex number. To measure some physical property of the system we need
to project the state |ψ(t)〉n to a proper basis. This is done through inner product

〈λ1 . . . λn|ψ(t)〉n = ψ(λ1 . . . λn, t) = z ∈ C, (1.3)

where |ψ(t)〉n is projected to basis 〈λ1 . . . λn|, where |λ1 . . . λn〉 are the eigenvectors of the operator
Λ̂. The probability p in measurement of operator Λ to obtain the eigenvalue λ1 . . . λn is the square
of the norm of z [10]

| 〈λ1 . . . λn|ψ(t)〉n |2 = 〈λ1 . . . λn|ψ(t)〉∗n 〈λ1 . . . λn|ψ(t)〉n
= 〈ψ(t)|λ1 . . . λn〉n 〈λ1 . . . λn|ψ(t)〉n
= p(λ1 . . . λn, t) ∈ R. (1.4)

We now restrict ourselves to the one-particle Hilbert space for a moment. We introduce the
operator ∫

dx |x〉〈x|. (1.5)
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Here x represents some continuous variable in Hilbert space, by which we can de�ne basis, with
the property 〈x|y〉 = δ(x− y). We may deduce the operation of (1.5) through

〈y|ψk〉 = 〈y|
∫

dx |x〉
=ψk(x)︷ ︸︸ ︷
〈x|ψk〉 =

∫
dx

δ(x−y)︷ ︸︸ ︷
〈y|x〉 ψk(x) = ψk(y). (1.6)

Thus we may deduce that operator in Eq. (1.5) is just unity, and any state can be expanded as

|ψk〉 =
∫

dx ψk(x)|x〉. (1.7)

A similar operator can be formed for the sub-index of state |ψk〉 as well (now with 〈k|p〉 = δkp).
However, since k ∈ Z we have a sum instead of an integral

〈k|ψ(x)〉 = 〈k|

=1︷ ︸︸ ︷(∑
p

|p〉〈p|
)
|ψ(x)〉 =

∑
p

δkp︷ ︸︸ ︷
〈k|p〉

ψp(x)︷ ︸︸ ︷
〈p|ψ(x)〉 = ψk(x). (1.8)

With (1.5) we may also see that the inner product in (1.2) can be expressed as

〈Φ|Ψ〉 =
∫

dx 〈Φ|x〉 〈x|Ψ〉 =
∫

dx Φ(x)∗Ψ(x). (1.9)

To proceed we introduce the following argument. Particles in quantum mechanics are com-
pletely identical and thus we have no way of separating them from each other [4]. This im-
plies some properties to the wave function. Let us say that our many-particle system is in state
Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xn), where xi = (ri, σi) is the space-spin coordinate of the i:th particle.
Now, since the particles are indistinguishable, we may change the order of two particles in Ψ and
in the measurement we should see a di�erence. Thus, we gain only a phase, i.e.,

Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xn) = eiθΨ(x1, . . . ,xj , . . . ,xi, . . . ,xn). (1.10)

This property must be valid for all pairs i, j. We denote the interchange of particles i and j by
Pij . Performing two successive permutations we yield the original state, and thus P 2

ij = e2iθ = 1,
i.e., θ = ±π/2. The particles corresponding to θ = +(−)π/2 are called bosons (fermions).

All the following derivations are done for fermions. This due to the fact that an electron is a
fermion, and we are mainly interested in the behavior of electrons in the system. We will now
introduce the machinery of the second quantization to tackle the problem of changing particle
number states.

1.1.2 Second quantization

The second quantization deals with a changing particle number. We thus need a proper space to
describe states with a di�erent number of particles. The space required is called Fock space [4]
and it is a collection of all di�erent particle number Hilbert spaces

F = {H0,H1,H2, . . . ,Hn, . . . }. (1.11)

Any element of Fock space can be written as

|ψ〉 =
∞∑
n=0

cn|ψ〉n, (1.12)

where |ψ〉n is an element of Hn. In Fock space we de�ne the inner product as

〈Φ|Ψ〉 =
∞∑
n=0

d∗ncn 〈Φ|Ψ〉n , (1.13)
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where 〈Φ|Ψ〉n is just the normal inner product in n-particle Hilbert space. One can see that for
n-particle state |Ψ〉 = cn|Ψ〉n and for m-particle state |Φ〉m = dm|Φ〉m we have

〈Φ|Ψ〉 =

{
d∗mcn 〈Φ|Ψ〉n , for n = m

0, for n 6= m.
(1.14)

We de�ne a basis to every Hilbert space by n-particle ket vectors of space-spin coordinates xj =
(rj , σj) as |x1, . . . ,xn〉 ∈ Hn. These basis states satisfy

〈x|y〉 = δ(x− y)
〈x1x2|y1y2〉 = δ(x1 − y1)δ(x2 − y2)− δ(x1 − y2)δ(x2 − y1)

...

〈x1 . . .xn|y1 . . .yn〉 =
∑
σ

(−1)σ
n∏
i=1

δ(xi − yσ(i)), (1.15)

where σ(i) means the permutation of index i and σ is the number of permutation. These relations
(1.15) follow directly from the antisymmetry of wave function Ψ(x1 . . .xn) and from the fact that
the particles 1, . . . , n are identical.

The empty/vacuum state is important and we de�ne it as

|0〉 ∈ H0, with the property 〈0|0〉 = 1. (1.16)

The unit operator in Fock space is the sum of unit operators in di�erent particle number Hilbert
spaces. One must, however, be careful with unit operator in more than one particle Hilbert spaces
because of the antisymmetry property of the wave function. To see this, consider

〈y1 . . .yn|ψ〉 = c

∫
dx1 . . . dxn 〈y1 . . .yn|x1 . . .xn〉 〈x1 . . .xn|ψ〉

= c

∫
dx1 . . . dxn

∑
σ

(−1)σ
n∏
i=1

δ(yσ(i) − xi) 〈x1 . . .xn|ψ〉

= c
∑
σ

(−1)σ
〈
yσ(1) . . .yσ(n)|ψ

〉
= c

∑
σ

(−1)2σ 〈y1 . . .yn|ψ〉

= cn! 〈y1 . . .yn|ψ〉 , c =
1
n!

(1.17)

Here we only used the antisymmetry of wave function and the de�nition of inner product in n
particle Hilbert space. The unit operator in n-particle Hilbert space can be read from Eq. (1.17)

1N =
1
N !

∫
dx1 . . . dxN |x1 . . .xN 〉〈x1 . . .xN |. (1.18)

The unit operator in Fock space thus becomes

1 = |0〉〈0|+
∫

dx |x〉〈x|+ 1
2!

∫
dx1dx2 |x1x2〉〈x1x2|+ . . . (1.19)

We are now ready to generate n-particle basis states from vacuum. This is done through special
operators that we will present next.

Creation and annihilation operators

We de�ne the operator ψ̂†(x) such that it adds particle to space-spin point x, i.e. it maps an
object from N particle Hilbert space to N + 1 particle Hilbert space,

ψ̂†(x)|y1 . . .yn〉 = |xy1 . . .yn〉. (1.20)
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moreover, we have

ψ̂†(x1) . . . ψ̂†(xi) . . . ψ̂†(xj) . . . ψ̂†(xn)|0〉 = |x1 . . .xi . . .xj . . .xn〉
= −|x1 . . .xj . . .xi . . .xn〉 = −ψ̂†(x1) . . . ψ̂†(xj) . . . ψ̂†(xi) . . . ψ̂†(xn)|0〉,

(1.21)

and this must hold for all pairs i, j. Thus, we conclude that{
ψ̂†(x), ψ̂†(y)

}
= 0, (1.22)

where we de�ned the anticommutator {Â, B̂} = ÂB̂+B̂Â. The anticommutation relations of these
operators will determine the fermionic behavior of the system. For bosons we would �nd, instead
of anticommutation relations, the usual commutation relations.

Next we deduce the operation of (ψ̂†(x))† = ψ̂(x). Consider a wave function Ψ(x1, . . . ,xn). For it
we have

Ψ(x1, . . . ,xn) = 〈x1 . . . ,xn|Ψ〉 = 〈Ψ|x1 . . . ,xn〉∗ = 〈Ψ|ψ̂†(x1) . . . ψ̂†(xn)|0〉∗
= 〈0|ψ̂(xn) . . . ψ̂(x1)|Ψ〉. (1.23)

Thus the operation of ψ̂(x) may be read from last line of (1.23)

〈0|ψ̂(xn) . . . ψ̂(x1) = 〈x1 . . .xn|. (1.24)

These bra-vectors must of course be also antisymmetric leading to{
ψ̂(x), ψ̂(y)

}
= 0. (1.25)

Due to a bit lengthy calculations the operation of ψ̂(x) to any ket-vector is derived in Appendix
A.1.1. The operation reads

ψ̂(y)|x1 . . .xn〉 =
∑
i

(−1)i−1δ(y − xi)|x1 . . .xi−1xi+1 . . .xn〉. (1.26)

The e�ect of ψ̂(y) is to destroy a particle from the state under operation and thus the name
annihilation operator.

With Eq. (1.26) we may deduce the operation of anticommutation between ψ̂†(y) and ψ̂(x). This
is done in Appendix A.1.2. Collecting all the anti-commutators we have{

ψ̂(x), ψ̂(y)
}

=
{
ψ̂†(x), ψ̂†(y)

}
= 0,

{
ψ̂†(x), ψ̂(y)

}
= δ(x− y). (1.27)

General basis states

In the previous chapter we have obtained machinery to create and destroy particles in Fock space.
However, we have only considered the space-spin basis in our calculations. We would like to have
more general bases in order to deal with a wider amount of problems. We introduce these bases
next. Consider any basis in one-particle Hilbert space, denote the basis kets as |n〉 ∈ H, and
require that the basis is orthonormal. Hence,

〈m|n〉 = δmn (1.28)∑
n

|n〉〈n| = 1. (1.29)

We want to relate these new basis states to the space-spin basis in order to use the relations derived
for the �eld operators ψ̂† and ψ̂. Use Eq. (1.29) to show that

δ(x− y) = 〈x|y〉 =
∑
n

〈x|n〉 〈n|y〉 ≡
∑
n

ϕn(x)ϕ∗n(y). (1.30)
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We de�ne new creation and annihilation operators in this new basis through

â†n =
∫

dx ϕn(x)ψ̂†(x) (1.31)

ân =
∫

dx ϕ∗n(x)ψ̂(x). (1.32)

By using Eq. (1.30) and the de�nitions (1.31) and (1.32) it is easy to show that

ψ̂†(x) =
∑
n

ϕ∗n(x)â†n =
∑

n=(n′,σn′ )

ϕ∗n(r)â†n, (1.33)

ψ̂(x) =
∑
n

ϕn(x)ân =
∑

n=(n′,σn′ )

ϕn(r)ân. (1.34)

Moreover, we immediately see from the de�nitions (1.31) and (1.32) and from the anticommutation
relations (1.27) that the new creation and annihilation operators satisfy

{ân, âm} =
{
â†n, â

†
m

}
= 0,

{
â†n, âm

}
= δnm. (1.35)

We may now de�ne many-particle ket states with these new operators â†n. These become clearly
antisymmetric due to the anticommutation of the creation operators. We thus have

â†n1
. . . â†nN |0〉 = |n1 . . . nN 〉 = −Pij |n1 . . . nN 〉, (1.36)

where Pij denotes the usual permutation of ni and nj . For bra-states we similarly have

〈0|ânN . . . ân1 = 〈n1 . . . nN | = −Pij〈n1 . . . nN |. (1.37)

However, since the particles are indistinguishable, the states 〈n1 . . . nN | and −Pij〈n1 . . . nN | are
equivalent. We would thus like to obtain basis of inequivalent con�gurations of numbers ni. An
obvious one is the con�guration n1 < n2 · · · < nN . With this ordering one can show using (1.31)
and (1.32) that ∑

n1<n2···<nN

|n1 . . . nN 〉〈n1 . . . nN | = 1, (1.38)

and further from

|m1 . . .mN 〉 =
∑

n1<n2···<nN

|n1 . . . nN 〉 〈n1 . . . nN |m1 . . .mN 〉 , (1.39)

that 〈n1 . . . nN |m1 . . .mN 〉 = δn1m1 . . . δnNmN . Thus the states |n1 . . . nN 〉 form a basis to N
particle Hilbert space.

We further want to introduce one important property of this basis. As we already mentioned any
N -particle state can be expanded as

|Ψ〉 =
∑

n1<n2···<nN

|n1 . . . nN 〉 〈n1 . . . nN |Ψ〉 ≡
∑

n1<n2···<nN

cn1...nN |n1 . . . nN 〉. (1.40)

One could thus wonder what would be the expansion for Ψ(x1, . . . ,xN ) in the coordinate repre-
sentation. This requires the calculation of the matrix element 〈x1 . . .xN |n1 . . . nN 〉, see Appendix
A.1.3 for details. The result is

〈x1 . . .xN |n1 . . . nN 〉 =

∣∣∣∣∣∣∣∣∣
ϕn1(x1) . . . ϕn1(xN )

...
...

ϕnN (x1) . . . ϕnN (xN )

∣∣∣∣∣∣∣∣∣ ≡ Φn1...nN (x1 . . .xN ). (1.41)

This is the famous Slater determinant [4], which is completely antisymmetric in all indices n1 . . . nN
and coordinates x1 . . .xN . Using Eqs. (1.41) and (1.40) we may deduce that any N -particle wave
function can be expanded in Slater determinants as

Ψ(x1, . . . ,xN ) = 〈x1 . . .xNΨ〉 =
∑

n1<n2···<nN

cn1...nNΦn1...nN (x1 . . .xN ), (1.42)

where cn1...nN = 〈n1 . . . nN |Ψ〉.
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1.1.3 Hamiltonians in second quantization

The evolution of a non-relativistic quantum mechanical state is governed by Schrödinger equation.
We would now like to express this equation in second quantization. The many-particle Schrödinger
equation with no electromagnetic �elds present reads

ĤΨ(x1 . . .xn, t)

=

− n∑
i=1

~2

2mi
∇2
i +

n∑
i=1

U(ri) +
1
2

∑
i 6=j

V (ri, rj)

Ψ(x1 . . .xn, t)

= i~
∂

∂t
Ψ(x1 . . .xn, t), (1.43)

so we have three operators in total to express in terms of �eld operators ψ̂ and ψ̂†. The result,
derived in A.1.4, reads

Ĥ =
∫

dx ψ̂†(x)
(

~2

2mi
∇2 + U(ri)

)
ψ̂(x)

+
1
2

∫
dxdx′ V (r, r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x), (1.44)

and in terms of general operators â†i and âi

Ĥ =
∑
i,j

hij â
†
i âj +

1
2

∑
i,j,k,l

Vijklâ
†
i â
†
j âkâl, (1.45)

where we de�ned

hij =
∫

dx ϕ∗i (x)
(

~2

2mi
∇2 + U(ri)

)
ϕj(x) (1.46)

Vijkl =
∫

dxdx′ V (r, r′)ϕ∗i (x)ϕ∗j (x
′)ϕk(x′)ϕl(x). (1.47)

The operation of (1.44) and (1.45) is de�ned as

(ĤΨ)(x1 . . .xn, t) = 〈x1 . . .xn|Ĥ|Ψ(t)〉 = 〈Ψ(t)|Ĥ|x1 . . .xn〉∗. (1.48)

We will mostly work with the Hamiltonian in general operators, i.e., (1.45). In this form we
have reduced the problem of solving a group of di�erential Eqs. (1.43) into a diagonalization of a
matrix. One sees that this is actually the case through the following consideration. De�ne a basis
for our Hilbert space in terms of operators â†n1

. . . â†nN . The basis states are orthonormal as we
have already seen from (1.39) and with all possible combinations, with n1 < · · · < nN , they span
the whole N -particle Hilbert space uniquely. Denote the basis states as |i〉. Now we have, for any
state in this Hilbert space, the expansion

|Ψ〉 =
m∑
i=1

ci|i〉, (1.49)

where m is the number of basis states, i.e., the number of con�gurations in which one can put N
particles to the number of sites in use. We now may take the energy eigenstate |Ψk〉 and deduce

Ĥ|Ψk〉 =
m∑
i=1

cki Ĥ|i〉 = Ek

m∑
i=1

cki |i〉 |〈j|

m∑
i=1

cki

Hji︷ ︸︸ ︷
〈j|Ĥ|i〉 = Ek

m∑
i=1

cki

=δij︷︸︸︷
〈j|i〉

m∑
i=1

Hjic
k
i = Eckj . (1.50)
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Finding the energy eigenstates in terms of the basis |i〉 thus corresponds to the diagonalization of
the matrix Hji. However in general this becomes tricky immediately as the number m increases,
and it grows very quickly in terms of possible sites and the particle number.

We may �nd approximations to the terms hij and Vijkl in Eqs. (1.46) and (1.47), and this results
in Hamiltonians that can be diagonalized even for an in�nite number of sites and particles, see for
example Appendix A.3.

1.1.4 Evolution of states

As we have already mentioned the evolution of quantum state is governed by the Schrödinger Eq.
[3]. We may thus wonder if we know some state at moment t0 what it will be at time t. For a
time-independent Hamiltonian this can be deduced easily from

Ĥ|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉. (1.51)

We immediately notice that for energy eigenstates we have

Ĥ|ψk(t)〉 = i~
∂

∂t
|ψk(t)〉 |〈ψk(t0)|

⇒ Ek 〈ψk(t0)|ψk(t)〉 − i~ ∂
∂t
〈ψk(t0)|ψk(t)〉 = 0

⇒ 〈ψk(t0)|ψk(t)〉 = e−i
Ek
~ (t−t0)

⇒ 〈ψk(t0)|ψk(t)〉 = 〈ψk(t0)|e−iEk~ (t−t0)|ψk(t0)〉
⇒ 〈ψk(t0)|ψk(t)〉 = 〈ψk(t0)|Ûk(t, t0)|ψk(t0)〉

(1.52)

Thus, we see that Ûk(t, t0)|ψk(t0)〉 = e−i
Ek
~ (t−t0)|ψk(t0)〉 = |ψk(t)〉, where Ûk(t, t0) is the time-

evolution operator de�ned by |ψk(t)〉 = Ûk(t, t0)|ψk(t0)〉. We may expand any |Ψ(t)〉 in energy
eigenstates |ψk(t)〉 and obtain

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 =
∑
k

ckÛk(t, t0)|ψk(t0)〉 =
∑
k

cke
i
Ek
~ (t−t0)|ψk(t0)〉

= ei
Ĥ
~ (t−t0)

∑
k

ck|ψk(t0)〉 = ei
Ĥ
~ (t−t0)|Ψ(t0)〉. (1.53)

We see that the time-evolution operator for any state, with a time-independent Hamiltonian, can
be expressed as

Û(t, t0) = e−i
Ĥ
~ (t−t0). (1.54)

For a time-dependent Hamiltonian we must use the following argument. Any time-dependent
Hamiltonian is constant in a �short enough� interval ∆, and thus we may use the operator (1.54)
at each of these intervals separately. We obtain for a time-dependent Hamiltonian with the property

Ĥ(t) =


Ĥ(t0), t ∈ [t0, t1[
Ĥ(t1), t ∈ [t1, t2[
...

Ĥ(tn−1), t ∈ [tn−1, tn = t],

(1.55)

where tk = t0 + k∆, that the evolution operator becomes

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 = Û(t, tn−1) . . . Û(t1, t0)|Ψ(t0)〉
= e−

i
~ Ĥ(tn−1)(tn−tn−1) . . . e−

i
~ Ĥ(t0)(t1−t0)|Ψ(t0)〉

= T (e−
i
~

Pn
i=1 Ĥ(ti−1)(∆))|Ψ(t0)〉, ∆→ 0

→ |Ψ(t)〉 = T (e−
i
~

R t
t0
Ĥ(t′)dt′)|Ψ(t0)〉, (1.56)
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where we have de�ned the time-ordered product T by equation T (Ô(tσ(n)) . . . Ô(tσ(1))) = Ô(tn) . . . Ô(t1),
for tn > · · · > t1. On the third equality we used the fact that operators commute under time-
ordered product, see A.1.5.

We also de�ne the operator propagating backwards in time, i.e., for t < t0. This is evaluated in
the same manner as (1.56) but instead of time ordering we must use anti time-ordering de�ned by
TA(Ô(tσ(n)) . . . Ô(tσ(1))) = Ô(tn) . . . Ô(t1), for tn < · · · < t1. Collecting we have

Û(t, t′) =

{
T (e−

i
~

R t
t′ Ĥ(t)dt) t > t′

TA(e
i
~

R t
t′ Ĥ(t)dt) t < t′.

(1.57)

The time orderings T and TA will play an important role in future considerations, especially in the
formulation of perturbation theory.

Time-evolution operator for bra-states

To see how the bra-vectors evolve in time we do the following calculation

1 = 〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t)|Û(t, t0)|Ψ(t0)〉
= 〈Ψ(t0)|Û†(t, t0)|Ψ(t)〉∗ = 〈Ψ(t0)|Û†(t, t0)Û(t, t0)|Ψ(t0)〉∗
⇒ Û†(t, t0)Û(t, t0) = 1, (1.58)

but de�nitely we must have Û(t0, t)Û(t, t0) = 1 and thus we see Û†(t, t0) = Û(t0, t), and further

〈Ψ(t)| = 〈Ψ(t0)|Û(t0, t). (1.59)

1.1.5 Di�erent pictures

Before proceeding we further introduce two di�erent viewpoints on quantum mechanics. These are
namely the Schrödinger and Heisenberg pictures [3]. Up to this point our states have evolved in
time and the operators have just operated at each time point. We have operated in the Schrödinger
picture. We can, however, consider also di�erent viewpoint, the Heisenberg picture, where opera-
tors evolve and states remain unchanged. This is most easily done by considering the expectation
value of some operator Ô(t) in the Schrödinger picture〈

Ô(t)
〉

= 〈Ψ(t)|Ô(t)|Ψ(t)〉 = 〈Ψ(t0)|Û(t0, t)Ô(t)Û(t, t0)|Ψ(t0)〉
≡ 〈Ψ(t0)|ÔH(t)|Ψ(t0)〉, (1.60)

where we have de�ned the operator Ô(t) in the Schrödinger picture as the operator

ÔH(t) = Û(t0, t)Ô(t)Û(t, t0) (1.61)

in the Heisenberg picture.

There is also the interaction picture where both the states and operators evolve in time, but as we
do not need it in this thesis it is not presented.

1.1.6 Equations of motion for operators

We may calculate the equations of motion for operators in the Heisenberg picture [1]. These turn

out to be handy as we will need the equations of motion for ψ̂H and ψ̂†H in the future. We start
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by noticing that for the time-evolution operator Û we have simple di�erential equations which can
be seen considering the obvious fact

Û(t3, t1) = Û(t3, t2)Û(t2, t1). (1.62)

Now for t3 = t2 + ∆ we may immediately write

Û(t3, t1) = e−
i
~ Ĥ(z2)∆Û(t2, t1) ≈ (1− i

~
Ĥ(z2)∆ +O(∆2))Û(t2, t1)

⇒ Û(t2 + ∆, t1)− Û(t2, t1)
∆

= − i
~
Ĥ(t2)Û(t2, t1)

⇒ i~∂tÛ(t, t0) = Ĥ(t)Û(t, t0) (1.63)

Moreover, for the latter time coordinate we similarly �nd

i~∂t0Û(t, t0) = −Û(t, t0)Ĥ(t0). (1.64)

Now consider Heisenberg operators. As in Eq. (1.61), taking the time derivative, and using Eqs.
(1.63) and (1.64) we obtain

i~∂tÔH(t) = i~∂tÛ(t0, t)Ô(t)Û(t, t0) + i~Û(t0, t)∂tÔ(t)Û(t, t0) + i~Û(t0, t)Ô(t)∂tÛ(t, t0)

= −Û(t0, t)Ĥ(t)

=1︷ ︸︸ ︷
Û(t, t0)Û(t0, t) Ô(t)Û(t, t0) + i~Û(t0, t)∂tÔ(t)Û(t, t0)

+ Û(t0, t)Ô(t)Û(t, t0)Û(t0, t)Ĥ(t)Û(t, t0)

=
[
ÔH(t), ĤH(t)

]
+ i~(∂tÔ)H(t). (1.65)

Then the equation of motion for a Heisenberg operator becomes

∂tÔH(t) = − i
~

[
ÔH(t), ĤH(t)

]
+ (∂tÔ)H(t). (1.66)

Equations of motion for �eld operators

From Eq. (1.66) we may deduce the equations of motion for the ψ̂H and ψ̂†H , which will be useful
later. To proceed we notice that one can write[

ÔH(t), ĤH(t)
]

= Û(t0, t)
[
Ô(t), Ĥ(t)

]
Û(t, t0) (1.67)

and thus it is su�cient to calculate the commutator in the Schrödinger picture. For a Hamiltonian
of the form (1.44) we may deduce, using the anticommutation relations (1.27), that the equations
of motion for �eld operators become

i~∂tψ̂H(xt) =
(
− ~2

2m
∇2 + U(r)

)
ψ̂H(xt) +

∫
dx′ V (r, r′)ψ̂†H(x′t)ψ̂H(x′t)ψ̂H(xt)

(1.68)

−i~∂tψ̂†H(xt) =
(
− ~2

2m
∇2 + U(r)

)
ψ̂†H(xt) +

∫
dx′ V (r, r′)ψ̂†H(xt)ψ̂†H(x′t)ψ̂H(x′t).

(1.69)

1.2 Quantum statistical mechanics

The presentation in this section follows the lines of courses �Many-particle quantum mechanics�
and �Statistical physics� given by profs. Robert van Leeuwen and Jussi Timonen, respectively. We
have put the Boltzmann constant kb = 1.
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As we are dealing with many-particle systems, and by many we mean 1023, and we are having the
system in contact with the environment, it is necessary to introduce quantum statistics. Our system
is considered to be weakly coupled to its environment. This gives rise to interesting phenomena.
However, we have to start the journey from the middle and just state that the expectation value
of an operator for a system in thermal equilibrium with environment becomes [1]〈

Â
〉

=
∑
n

pn〈n|Â|n〉, (1.70)

where pn is the time average of the actual, �uctuating probability wn(t),

pn =
1
∆

∫ T0+∆

T0

wn(t) dt. (1.71)

However, we have another way of �nding pn, that is, we prepare a large number M of identical
systems and measure each separately. We �nd out that Mn of the systems are in state |n〉. Thus,
the probability pn can be expressed as

pn =
Mn

M
. (1.72)

This is called the ensemble average. We assume that the time average and ensemble average are
equal; this is called the ergodic theorem [13].

We now consider a system that is perturbed at time t0 by some possibly time-dependent potential
V̂ (t). We observe the evolution of the probabilities pn. We start by expanding an evolved state in
terms of the states at t0

Û(t, t0)|n, t0〉 = |n, t〉 =
∑
m

|m, t0〉 〈m, t0|n, t〉 . (1.73)

The probability of �nding the state |m, t0〉 is given by

pm,n(t) = | 〈m, t0|n, t〉 |2. (1.74)

Thus, to �nd the probability of the state |m, t0〉 we must multiply pm,n(t) with the probability
that the system was initially at |n, t0〉, that is, pn. Moreover, we sum over all possible initial states,
since obviously the system can evolve to |m, t0〉 from any initial state. We then obtain

pm(t) =
∑
n

| 〈m, t0|n, t〉 |2pn

=
∑
n

〈m, t0|n, t〉 pn 〈n, t|m, t0〉

= 〈m, t0|p̂(t)|m, t0〉. (1.75)

Thus we see that the time dependent density matrix is given by

p̂(t) =
∑
n

pn|n, t〉〈n, t|. (1.76)

The time dependent expectation value of an operator Â is now given by〈
Â
〉

(t) =
∑
n

pn〈n, t|Â|n, t〉

=
∑
n

pn〈n, t0|Û(t0, t)ÂÛ(t, t0)|n, t0〉 (1.77)

=
∑
n,k

〈ψk|n, t0〉 pn〈n, t0|ÂH(t)|ψk〉

=
∑
k

〈ψk|p̂(t0)ÂH(t)|ψk〉

= Tr
[
p̂(t0)ÂH(t)

]
. (1.78)
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Here we de�ned
∑
k〈ψk|Ô|ψk〉 = Tr[Ô], where |ψk〉 is any complete set of basis functions.

We are left to determine the explicit form of p̂. We introduce again a large number (M) of systems
now weakly coupled. We insist that the energy and the particle number are conserved in our
hypersystem containing all M subsystems. In the measurement we �nd Mr systems in state |r〉.
Thus the total energy and particle number become, respectively

E =
n∑
r=1

MrEr, (1.79)

N =
n∑
r=1

MrNr. (1.80)

We calculate the degeneracy Ω of an energy level E, that is, in how many independent ways one
can have the same energy E of the whole system. This becomes clearly

ΩE =
M !

M1! . . .Mn!
. (1.81)

As the numbers M1, . . . ,Mn are very large it is convenient to use the Stirling formula [2] to
approximate the degeneracy. With the approximation

lnN ! ' N lnN −N, (1.82)

we may write ln ΩE using Eq. (1.81) as

ln ΩE = lnM !− ln
n∏
r=1

Mr! = lnM !−
n∑
r=1

lnMr!

= M lnM −M −
n∑
r=1

Mr lnMr −Mr

= −
n∑
r=1

Mr(lnMr − lnM)

= −M
n∑
r=1

pr ln pr ≡MS, (1.83)

where pr = Mr/M , and we have used the well known formulas for the logarithm and the obvious
fact that

∑n
r=1Mr = M . We further de�ned

S = −
n∑
r=1

pr ln pr, (1.84)

which is a quantity called entropy and it represents the amount of disorder in the ensemble. The
most likely state for the hypersystem with constrains (1.79), (1.80) and

∑n
r=1Mr = M is the one

that maximizes the degeneracy and thus the entropy. With the method of Lagrange multipliers [2]
we may write

−M
n∑
r=1

pr ln pr + α

n∑
r=1

MrEr + β

n∑
r=1

MrNr + γ

n∑
r=1

Mr = maximal. (1.85)

Dividing (1.85) by the number of systems we �nd

−
n∑
r=1

pr ln pr + α

n∑
r=1

prEr + β

n∑
r=1

prNr + γ

n∑
r=1

pr = maximal, (1.86)

where we implicitly required
n∑
r=1

pr = 1. (1.87)
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We search the extremum of (1.86) by the usual method of di�erentiating w.r.t. pr and requiring
the derivative to be zero. This yields

pr =
1

eγ+1
e−βEr−αNr . (1.88)

From Eqs. (1.87) and (1.88) we �nd immediately

1 =
1

eγ+1

n∑
r=1

e−βEr−αNr

⇒ eγ+1 =
n∑
r=1

e−βEr−αNr ≡ Z (1.89)

and thus

pr =
1
Z e
−βEr−αNr , (1.90)

where parameters α(E,N) and β(E,N) are functions of the energy and particle number. Next we
will determine the form of these parameters. Consider Eq. (1.84). With Eq. (1.90) we have

S = −
n∑
r=1

pr ln pr = −
n∑
r=1

pr ln
1
Z e
−βEr−αNr

= −
n∑
r=1

pr (−βEr − αNr − lnZ)

= βE + αN + lnZ. (1.91)

Now di�erentiating
∂S

∂E
= β + E

∂S

∂E
β +N

∂α

∂E
+
∂ lnZ
∂E

, (1.92)

where

∂ lnZ
∂E

=
∂β

∂E

∂ lnZ
∂β

+
∂α

∂E

∂ lnZ
∂α

=
∂β

∂E

(
∂

∂β
ln

[
n∑
r=1

e−βEr−αNr

])
+
∂α

∂E

(
∂

∂α
ln

[
n∑
r=1

e−βEr−αNr

])

=
∂β

∂E

(
n∑
r=1

−Er
Z e−βEr−αNr

)
+
∂α

∂E

(
n∑
r=1

−Nr
Z e−βEr−αNr

)
(1.90)

= − ∂β
∂E

n∑
r=1

Erpr − ∂α

∂E

n∑
r=1

Nrpr = − ∂β
∂E

E − ∂α

∂E
N, (1.93)

we obtain
∂S

∂E
= β. (1.94)

Similarly we �nd
∂S

∂N
= α. (1.95)

We next de�ne

β =
∂S

∂E
≡ 1
T
,

∂S

∂N
≡ −µ

T
. (1.96)

Although we just de�ned Eqs. (1.96) they can be motivated by considering two systems that can
exchange energy and particles, see A.2. With (1.96) we may write (1.90) as

pr =
1
Z e
−β(Er−µNr), (1.97)
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and for the density matrix we have

ρ̂ =
n∑
r=1

pr|r〉〈r| =
n∑
r=1

1
Z e
−β(Er−µNr)|r〉〈r| = 1

Z e
−β(Ĥ−µN̂)

=1︷ ︸︸ ︷
n∑
r=1

|r〉〈r| . (1.98)

Moreover,

Z =
n∑
r=1

e−βEr−αNr =
∑
k

〈ψk|e−βĤ−αN̂ |ψk〉 = Tr
[
e−βĤ−αN̂

]
, (1.99)

which can be seen by inserting |ψk〉 =
∑n
r=1 c

k
r |r〉 and using the unitary of matrix [c]. Now using

Eqs. (1.98) and (1.99) we may �nally deduce

ρ̂ =
e−β(Ĥ−µN̂)

Tr
[
e−βĤ−αN̂

] , (1.100)

and, moreover, inserting Eq. (1.100) into Eq. (1.77) we get

〈
Â
〉

(t) =
Tr
{
e−β(Ĥ−µN̂)ÂH(t)

}
Tr
{
e−β(Ĥ−µN̂)

} . (1.101)

1.3 Contours

In this section we will introduce the concept of imaginary time in order to extend the time contour
to temperatures as well. The formalism was �rst introduced by Matsubara and the contour used is
called the Keldysh contour. We again follow the line of lectures �Many-particle quantum mechanics�
given by prof. Robert van Leeuwen.

Examining the structure of Eq. (1.101) we see that it contains the time propagation to time t, then
operating at this point by operator Â then time propagation back to time t0 and some exponent
of the Hamiltonian. We now make a somewhat wild trick and write the exponent as

e−β(Ĥ−µN̂) ≡ e−βĤeq = e−
i
~ Ĥeq(t0−iβ~−t0), (1.102)

comparing (1.102) to (1.54) we may write

e−β(Ĥ−µN̂) = Û(t0 − iβ~, t0), (1.103)

with the evolution Hamiltonian being Ĥeq. We now de�ne the Hamiltonian to be of the form

Ĥ(t) =

{
Ĥ − µN̂ ≡ Ĥeq, t ∈ [t0, t0 − iβ~]
Ĥ(t), Im t = 0,

(1.104)

or equivalently
Ĥ(t) = Ĥ(t)− θβ(t)µN̂, (1.105)

where

θβ(t) =

{
1, t ∈ [t0, t0 − iβ~]
0, Im t = 0

. (1.106)

Now with Eq. (1.104) we can write Eq. (1.101) in a form

〈
Â
〉

(t) =
Tr
{
Û(t0 − iβ~, t0)Û(t0, t)Â(t)Û(t, t0)

}
Tr
{
Û(t0 − iβ~, t0)

} . (1.107)
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t0

t0 − iβ

t−

t+

Figure 1.1: Keldysh contour

The contour on which we calculate the expectation value is illustrated in Fig. 1.1.

We now emphasize the fact that our time parameter has become complex and change the notation
from t to z. As we look at the forms of the time-evolution operators in Eq. (1.57) we see that
we are having both anti-time-ordering and time-ordering inside Eq. (1.101). We get rid of this by
introducing time-ordering on our complex contour γ. For fermionic operators the time-ordering on
contour γ becomes

Tγ(Â(z1) . . . Â(zn)) =
∑
σ

(−1)σθ(zσ(1), . . . , zσ(n))Â(zσ(1)) . . . Â(zσ(n)), (1.108)

where
θ(z1, . . . , zn) = θ(z1, z2)θ(z2, z3) . . . θ(zn−1, zn) (1.109)

and the fact that we have (−1)σ comes from the fact that we want managable equations of motion
for fermionic the operators. This will be satis�ed if we let the operators anti-commute under this
time-ordering.

With Eq. (1.108) we may write the time-evolution operators on contour. The time-evolution on
contour is governed by the operator

Û(z2, z1) = Tγ
(
e−

i
~

R
γ
dzĤ(z)

)
, z1 < z2. (1.110)

The product of operators under the trace in (1.107) can now be written as

Û(zf , zi)Û(zi, z′)Â(z′)Û(z′, zi) = Tγ
(
e−

i
~

R
γ
dz Ĥ(z)Â(z′)

)
, (1.111)

where Ĥ(z) is given by Eq. (1.104) and the form of the contour γ is presented in Fig. 1.1. We
emphasize that the operator Â must operate at the instant z′ = t by writing the time argument
explicitly. The expectation value of any operator on this contour is given now by

〈
Â
〉

(t) =
Tr
{
Tγ
(
e−

i
~

R
γ
dz Ĥ(z)Â(z′)

)}
Tr
{
e−

i
~

R
γ
dz Ĥ(z)

} , (1.112)

where on the denominator we used the fact

Û(t0 − iβ~, t0)

=1︷ ︸︸ ︷
Û(t0, t)Û(t, t0) = e−

i
~

R
γ
dz Ĥ(z). (1.113)

1.3.1 Equations of motion for �eld operators on contour

On contour we have equations of motion for the Heisenberg operators. On contour the Heisenberg
operators are de�ned as

ÔH(z) = Û(zi, z)Ô(z)Û(z, zi). (1.114)
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The equation of motion can be derived similarly as in Chapter 1.1.6, by considering �rst the
di�erential operators for the complex time-evolution operator on contour and then di�erentiating
a general Heisenberg operator on the contour. The equation of motion becomes

∂zÔH(z) = − i
~

[
ÔH(z), ĤH(z)

]
+ (∂zÔ)H(z). (1.115)

And for the Heisenberg �eld operators on contour de�ned as in (1.114) we �nd

i~∂zψ̂H(xz) =
(
− ~2

2m
∇2 + U(r)− µθβ(z)

)
ψ̂H(xt) +

∫
dx′ V (r, r′)ψ̂†H(x′z)ψ̂H(x′z)ψ̂H(xz)

(1.116)

−i~∂zψ̂†H(xz) =
(
− ~2

2m
∇2 + U(r)− µθβ(z)

)
ψ̂†H(xz) +

∫
dx′ V (r, r′)ψ̂†H(xz)ψ̂†H(x′z)ψ̂H(x′z),

(1.117)

where the contour step function θβ is due to the fact that the Hamiltonian changes on the vertical

track of contour to Ĥ − µN̂ as de�ned in (1.105).

1.3.2 Perturbation theory on contour

We could now wonder if we make a small perturbation to Hamiltonian (1.104)

Ĥ ′(z) = Ĥ(z) + δV̂ (z), (1.118)

how our expectation value in Eq. (1.112) changes. This is quite quickly seen just by expanding in
δV̂ . We write 〈

Â
〉

(t) =
Tr
{
Tγ
(
e−

i
~

R
γ
dz Ĥ(z)+δV̂ (z)Â(z′)

)}
Tr
{
e−

i
~

R
γ
dz Ĥ(z)+δV̂ (z)

} , (1.119)

so now the numerator can be expanded as follows

−iTr
{
Tγ
(
e−

i
~

R
γ
dzĤ(z)e−

i
~

R
γ
dzδV̂ (z)Â(z′)

)}
= −i

∞∑
k=0

1
k!

(−i
~

)k ∫
γ

dz1 . . .

∫
γ

dzk Tr
{
Tγ
(
e−

i
~

R
γ
dzĤ(z)δV̂ (z1) . . . δV̂ (zk)Â(z′)

)}
= −i

∞∑
k=0

1
k!

(−i
~

)k ∫
γ

dz1 . . .

∫
γ

dzk Tr
{
Û(zf , zi)Tγ

(
δV̂H(z1) . . . δV̂H(zk)Â(z′)

)}
,

(1.120)

where we used

Tγ
(
e−

i
~

R
γ
dzĤ(z)Ô1(z1) . . . Ôk(zk)

)
= Tγ

(
Û(zf , zi)Û(zi, z1)Ô1(z1)Û(z1, zi)Û(zi, z2)Ô2(z2)Û(z2, zi) . . . Û(zi, zk)Ôk(zk)Û(zk, zi)

)
= Tγ

(
Û(zf , zi)ÔH,1(z1)ÔH,2(z2) . . . ÔH,k(zk)

)
= Û(zf , zi)Tγ

(
ÔH,1(z1) . . . ÔH,k(zk)

)
. (1.121)

Similar expansion can be carried out for the denominator yielding

Tr
{
e−

i
~

R
γ
dzĤ′(z)

}
=

∞∑
k=0

1
k!

(−i
~

)k ∫
γ

dz1 . . .

∫
γ

dzk Tr
{
Û(zf , zi)Tγ

(
δV̂H(z1) . . . δV̂H(zk)

)}
. (1.122)
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Now both the numerator and denominator can be divided by Û(zf , zi) and by de�ning〈
ÂH(z)

〉
0

= Tr
{
ρ̂0ÂH(z)

}
(1.123)

ρ̂0 =
eβĤ0,eq

TreβĤ0,eq
, Ĥ0,eq = Ĥ(z)− µN̂ (1.124)

we obtain

〈
Â
〉

(z′) = −i
∑∞
k=0

1
k!

(−i
~
)k ∫

γ
dz1 . . .

∫
γ
dzk

〈
Tγ
(
δV̂H(z1) . . . δV̂H(zk)Â(z′)

)〉
0∑∞

k=0
1
k!

(−i
~
)k ∫

γ
dz1 . . .

∫
γ
dzk

〈
Tγ
(
δV̂H(z1) . . . δV̂H(zk)

)〉
0

. (1.125)

We next assume that the perturbation is of the form of the two-particle interaction, see Eq. (1.44)
lower line. In the Heisenberg picture the operators δV̂ become

V̂H(zj) =
1
2

∫
dxj

∫
dx′j V (rj , r′j)ψ̂

†
H(xjzj)ψ̂

†
H(x′jz

′
j)ψ̂H(x′jz

′
j)ψ̂H(xjzj). (1.126)

Since we are about to set these two particle interactions in Eq. (1.126) inside time ordering it is
essential to keep track of the proper ordering of the operators. We do this as follows. First, we
write (1.126) as

V̂H(zj) = lim
z′′j→z

+
j

1
2

∫
dz′j

∫
dxj

∫
dx′j δ(z

+
j , z

′
j)V (rj , r′j)

× Tγ
(
ψ̂†H(xjz′′j )ψ̂†H(x′jz

′+
j )ψ̂H(x′jzj)ψ̂H(xjzj)

)
, (1.127)

where the limit limz′′j→z
+
j
is to be taken after the integration over z′j . We invent a short hand

notation for the terms in Eqs. (1.125) and (1.127). Namely, we write

(xjzj) = j, (1.128)

δ(z+
j , z

′
j)V (rj , r′j) = v(j+, j′), (1.129)∫

dzjdxj =
∫

dj, (1.130)

z′′j → z+
j . (1.131)

Now we may write the 〈〉0 term in numerator of (1.125) as〈
Tγ
(
δV̂H(z1) . . . δV̂H(zk)Â(z′)

)〉
0

=
(

1
2

)k ∫
dx1 . . .xk

∫
d1′ . . . dk′ v(1+, 1′) . . . v(k+, k′)

×
〈
Tγ
(
ψ̂†H(1′′)ψ̂†H(1′+)ψ̂H(1′)ψ̂H(1) . . . ψ̂†H(k′′)ψ̂†H(k′+)ψ̂H(k′)ψ̂H(k)Â(z′)

)〉
0
. (1.132)

Here we did not write the limits limz′′j→z
+
j
explicitly visible, but they are taken normally after

the integration. Now we just reorder the terms inside the time ordering, and permute all creation
operators to the right and annihilation operators to the left. Performing the same procedure in
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the denominator as well leads to an expression for the perturbed expectation value,〈
Â
〉

(z′)

=

[ ∞∑
k=0

1
k!

(−i
2~

)k ∫
γ

d1d1′ . . . dkdk′v(1+, 1′) . . . v(k+, k′)

×
〈
Tγ
(
ψ̂H(1′)ψ̂H(1) . . . ψ̂H(k′)ψ̂H(k)ψ̂†H(k′+)ψ̂†H(k′′) . . . ψ̂†H(1′+)ψ̂†H(1′′)Â(z′)

)〉
0

]

×
[ ∞∑
k=0

1
k!

(−i
2~

)k ∫
γ

d1d1′ . . . dkdk′ v(1+, 1′) . . . v(k+, k′)

×
〈
Tγ
(
ψ̂H(1′)ψ̂H(1) . . . ψ̂H(k′)ψ̂H(k)ψ̂†H(k′+)ψ̂†H(k′′) . . . ψ̂†H(1′+)ψ̂†H(1′′)

)〉
0

]−1

.

(1.133)

This expression will be motivation for us to introduce Green's functions. We will also use it in
development of the perturbation theory for Green's functions.
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Chapter 2

Green's Functions

We introduce the concept of Green's function and derive properties for it. Again most of the
derivations are based on the lectures �Many-particle quantum mechanics� given by prof. Robert
van Leeuwen. Also Refs. [1] and [4] were used.

2.1 De�nition

From Eq. (1.133) one immediately deduces the general structure of the expectation value of Â.
The easiest operators that one can plug into (1.133) are of the form

Â = ψ̂†H(xz)ψ̂H(x′z′), (2.1)

Â = ψ̂H(x′z′)ψ̂†H(xz). (2.2)

(2.3)

For operators containing di�erent number of creation and annihilation operators we obtain zero
expectation value due to the fact that one would calculate an inner product between states in di�er-
ent particle number Hilbert spaces, yielding zero as in (1.14). We could thus consider expectation
values of the form

G>(xz; x′z′) = i
〈
ψ̂†H(xz)ψ̂H(x′z′)

〉
, (2.4)

G<(xz; x′z′) = i
〈
ψ̂H(x′z′)ψ̂†H(xz)

〉
. (2.5)

(2.6)

Here we actually already de�ned the greater and lesser Green's functions, respectively. However it
turns out to be convenient to combine Eqs. (2.4) and (2.5) into

G(xz,x′z′) = −i
〈
Tγ
(
ψ̂H(xt)ψ̂†H(x′t)

)〉
(2.7)

= θ(z′ − z)G<(xz; x′z′)− θ(z − z′)G>(xz; x′z′),

since for this object, which we will from now on call the single-particle Green's function on the
contour γ, we can derive a equation of motion (see Chapter 2.2) unlike for the two components
separately.

We can, of course, plug also an arbitrary number of �eld operators as long as there are equally
many annihilation and creation operators. This leads us to the de�nition of the many-particle
Green's function on the contour γ.
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2.1.1 n-particle Green's function

For 2n �eld operators we write the n-particle Green's function as

Gn(1 . . . n; 1′ . . . n′)

= (−i)n
〈
ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂†(1)

〉
(1.112)

= (−i)n
Tr
{
Tγ
(
e−

i
~

R
γ
dzĤ(z)ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂†(1′)

)}
Tr
{
e−

i
~

R
γ
dzĤ(z)

}
(1.121)

= (−i)nTr
{
ρ̂Tγ

(
ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

)}
, (2.8)

where we used the short-hand notation given in Eq. (1.128). Moreover, we wrote

ρ̂ =
Û(zf , zi)

Tr
{
e−βĤeq

} =
e−βĤeq

Tr
{
e−βĤeq

} . (2.9)

For a non-interacting system, the n-particle Green's function becomes

G0,n(1 . . . n; 1′ . . . n′) = (−i)nTr
{
ρ̂0Tγ

(
ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

)}
= (−i)n

〈
Tγ
(
ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

)〉
0
, (2.10)

where ρ̂0 is the same as in (1.124). Next we will consider the equations of motion for Green's
functions.

2.2 Equations of motion for Green's functions

The equations of motion for single-particle Green's function on contour are easy to deduce once
we know the equations of motion for �eld operators on this contour (1.116), (1.117), and the
derivative of the step function. We start by taking the time derivative from the single-particle
Green's function de�ned in (2.7)

∂zG(xz,x′z′) = −i∂z
〈
T (ψ̂H(xz)ψ̂†H(x′z′))

〉
= −i∂z

[
θ(z − z′)

〈
ψ̂H(xz)ψ̂†H(x′z′)

〉
− θ(z′ − z)

〈
ψ̂†H(x′z′)ψ̂H(xz)

〉]
= −i

[
δ(z − z′)

〈
ψ̂H(xz)ψ̂†H(x′z′)

〉
+ θ(z − z′)

〈
∂zψ̂H(xz)ψ̂†H(x′z′)

〉
+δ(z′ − z)

〈
ψ̂†H(x′z′)ψ̂H(xz)

〉
− θ(z′ − z)

〈
ψ̂†H(x′z′)∂zψ̂H(xz)

〉 ]
. (2.11)

(2.12)

Here we used the well known relation

∂zθ(z − z′) = δ(z − z′). (2.13)
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We use the equation of motion in Eq. (1.116) for a �eld operator to proceed as

i∂zG(xz,x′z′)

= δ(z − z′)
〈
ψ̂H(xz)ψ̂†H(x′z′)

〉
− θ(z − z′) i

~

〈(
ĥ(rz)ψ̂H(xz)

+
∫

dx′′ V (r, r′′)ψ̂†H(x′′z)ψ̂H(x′′z)ψ̂H(xz)
)
ψ̂†H(x′z′)

〉
+δ(z′ − z)

〈
ψ̂†H(x′z′)ψ̂H(xz)

〉
+ θ(z′ − z) i

~

〈
ψ̂†H(x′z′)

(
ĥ(rz)ψ̂H(xz)

+
∫

dx′′ V (r, r′′)ψ̂†H(x′′z)ψ̂H(x′′z)ψ̂H(xz)
)〉

= δ(z − z′)δ(x− x′)− i

~
ĥ(rz)

〈
Tγ
(
ψ̂H(xz)ψ̂†H(x′z′)

)〉
+
i

~

∫
dx′′dz′′ δ(z′′ − z+)V (r, r′′)

[
θ(z′ − z)

〈
ψ̂†H(x′z′)ψ̂†H(x′′z′′)ψ̂H(x′′z′′)ψ̂H(xz)

〉
−θ(z − z′)

〈
ψ̂†H(x′′z′′)ψ̂H(x′′z′′)ψ̂H(xz)ψ̂†H(x′z′)

〉]
= δ(z − z′)δ(x− x′) +

1
~
ĥ(rz)G(xz; x′z′)

− i
~

∫
dx′′dz′′ v(r+, r′′)G(xz,x′′z′′; x′z′,x′′z′′+), (2.14)

where we used the de�nition of the two-particle Green's function given in Eq. (2.8) and the
anticommutation relation of equal time �eld operators. moreover, we wrote δ(z′′ − z+)V (r, r′′) =
v(r+, r′′). With a similar calculation we obtain a result for the time derivative w.r.t the latter
time-coordinate as well. The equations then become[

i~∂z − ĥ(rz)
]
G(xz,x′z′)

= ~δ(z − z′)δ(x− x′)− i
∫

dx′′dz′′ v(r+, r′′)G(xz,x′′z′′; x′z′,x′′z′′+), (2.15)[
−i~∂z′ − ĥ(r′z′)

]
G(xz,x′z′)

= ~δ(z − z′)δ(x− x′)− i
∫

dx′′dz′′ v(r, r′′+)G(xz,x′′z′′; x′z′,x′′z′′+). (2.16)

We notice that the single-particle and two particle Green's functions are connected. This will turn
out to be very useful. The remaining task is to determine the equations of motion for the n-particle
Green's function.

2.2.1 Equations of motion for n-particle Green's function on tempera-

ture contour

The equations of motion for the n-particle Green's function on the temperature contour γ, the
so-called Martin-Schwinger hierarchy Eqs. [6], read[

i~∂zk − (ĥ(k)− µθβ(zk))
]
Gn(1 . . . n; 1′ . . . n)

=
n′∑
j=1′

(−1)k+j~δ(k, j′)Gn−1(1 . . .
u
k . . . n; 1′ . . .

u
j′ . . . n′)

−i
∫

d(n+ 1)v(k+, n+ 1)Gn+1(1 . . . n+ 1; 1′ . . . n′ n+ 1+),

(2.17)
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[
−i~∂z′k − (ĥ(k′)− µθβ(z′k))

]
Gn(1 . . . n; 1′ . . . n)

=
n′∑
j=1′

(−1)k+j~δ(j, k′)Gn−1(1 . . .
u
j . . . n; 1′ . . .

u
k′ . . . n′)

−i
∫

d(n+ 1)v(k′, n+ 1+)Gn+1(1 . . . n+ 1; 1′ . . . n′ n+ 1),

(2.18)

where we use the short notations de�ned in Eqs. (1.128) to (1.130), the contour step function Eq.
(1.109), and

δ(k, j) = δ(xk − xj)δ(zk, zj)

(1 . . .
u
j . . . n) = (1 . . . j − 1 j + 1 . . . n). (2.19)

Here as before we see that the n-particle Green's function is connected to the n + 1 and n − 1
particle Green's functions. These will be useful when developing perturbation theory for Green's
function. By these equations we will prove the so-called Wick's theorem.

2.3 Perturbative expansion

Let us write the Hamiltonian in the form

Ĥ ′λ(z) = Ĥ(z) + V̂ . (2.20)

We write the one-particle Green's function as

G(xz,x′z′) = −i
〈
Tγ
(
ψ̂(xz)ψ̂†(x′z′)

)〉
(2.21)

We use the already introduced expansion (1.133) for Eq. (2.21). Now we may compare the
expressions under integration to the many-particle non-interacting Green's function in Eq. (2.10)

− i
〈
Tγ
(
ψ̂H(xz)ψ̂H(1′)ψ̂H(1) . . . ψ̂H(k′)ψ̂H(k)ψ̂†H(k′+)ψ̂†H(k′′) . . . ψ̂†H(1′+)ψ̂†H(1′′)ψ̂†H(x′z′)

)〉
0

Gn,0(1 . . . n; 1′ . . . n′) = (−i)n
〈
ψ̂H(1) . . . ψ̂H(n)ψ̂H(n′) . . . ψ̂H(1′)

〉
0
,

from which we see that

−i
〈
Tγ
(
ψ̂H(xz)ψ̂H(1′)ψ̂H(1) . . . ψ̂H(k′)ψ̂H(k)ψ̂†H(k′+)ψ̂†H(k′′) . . . ψ̂†H(1′+)ψ̂†H(1′′)ψ̂†H(x′z′)

)〉
0

= (−i)(−i)2k+1︸ ︷︷ ︸
=(−1)k

G2k+1,0(xz, 1, 1′, . . . , k, k′; x′z′, 1′′, 1′+, . . . , k′′, k′+). (2.22)

We deduce that the numerator of (1.133) for Â(z) = −iT (ψ̂(xz)ψ̂†(x′z′)) becomes

=
∞∑
k=0

1
k!

(
i

2~

)k ∫
γ

d1 . . .
∫
γ

dk

∫
γ

d1′ . . .
∫
γ

dk′ v(1+, 1′) . . . v(k+, k′)

× G2k+1,0(xz, 1, 1′, . . . , k, k′; x′z′, 1′′, 1′+, . . . , k′′, k′+).
(2.23)

We may perform a similar derivation on the denominator and obtain a solution for the single-
particle Green's function in terms of non-interacting many-particle Green's functions

G(xt,x′t′)

=

∑∞
k=0

1
k!

(
i

2~
)k ∫

γ
d1d1′ . . . dkdk′ v11′ . . . vkk′G2k+1,0(xz, 1, 1′, . . . , k, k′; x′z′, 1′′, 1′+, . . . , k′′, k′+)∑∞

k=0
1
k!

(
i

2~
)k ∫

γ
d1d1′ . . . dkdk′ v11′ . . . vkk′G2k,0(1, 1′, . . . , k, k′; 1′′, 1′+, . . . , k′′, k′+)

,

(2.24)
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where we further introduced the short notation v(j+, j′) = vjj′ . We will proceed to derive an
expression for the non-interacting many-particle Green's function in terms of non interacting single-
particle Green's functions. The result is called Wick's theorem and it is essential the perturbation
theory.

2.3.1 Wick's theorem

From the Martin-Schwinger hierarchy equations on contour, Eqs. (2.17) and (2.18), we may deduce
that for a non-interacting system the equations of motion for n-particle Green's function become[

i~∂zk − (ĥ(k)− µθβ(zk))
]
Gn,0(1 . . . n; 1′ . . . n)

=
n′∑
j=1′

(−1)k+j~δ(k, j′)Gn−1,0(1 . . .
u
k . . . n; 1′ . . .

u
j′ . . . n′),

(2.25)[
−i~∂z′k − (ĥ(k′)− µθβ(z′k))

]
Gn,0(1 . . . n; 1′ . . . n)

=
n′∑
j=1′

(−1)k+j~δ(j, k′)Gn−1,0(1 . . .
u
j . . . n; 1′ . . .

u
k′ . . . n′).

(2.26)

For the single-particle non-interacting Green's function the similar expressions are[
i~∂z1 − (ĥ(1)− µθβ(z1))

]
G0(1, 1′) = ~δ(1, 1′) (2.27)[

−i~∂z2 − (ĥ(2)− µθβ(z2))
]
G0(1, 1′) = ~δ(1, 1′). (2.28)

Now we notice the connection with the expansion of a determinant in Eqs. (2.25) and (2.26). If
we consider Gn−1,0(1 . . . k − 1 k + 1 . . . n; 1′ . . . j′ − 1 j′ + 1 . . . n′) in (2.25) as a sub-determinant
we may check if the solution is of the form

Gn,0(1 . . . n; 1′ . . . n′) =

∣∣∣∣∣∣∣∣∣
G0(1, 1′) . . . G0(1, n′)

...
...

G0(n, 1′) . . . G0(n, n′)

∣∣∣∣∣∣∣∣∣ (2.29)

This is indeed the case and it can be quickly checked, by expanding the determinant into n sub
determinants and operating by (i~∂zk − (ĥ(k)− µθβ(zk))) from the left, leading to

Gn,0(1 . . . n; 1′ . . . n′)

=
n∑
j=1

(−1)k+jG0(k, j′)Gn−1,0(1 . . .
u
k . . . n; 1′ . . .

u
j′ . . . n′)

⇒
[
i~∂zk − (ĥ(k)− µθβ(zk))

]
Gn,0(1 . . . n; 1′ . . . n′)

= ~
n∑
j=1

(−1)k+jδ(k, j′)Gn−1,0(1 . . .
u
k . . . n; 1′ . . .

u
j′ . . . n′), (2.30)

which agrees exactly with Eq. (2.25). Operating by
[
−i~∂z′k − (ĥ(k′)− µθβ(z′k))

]
on (2.29) we

obtain (2.26) as we should. Thus we conclude that the non-interacting many-particle Green's
function can be written in terms of non-interacting single-particle Green's functions as

Gn,0(1 . . . n; 1′ . . . n′) =
∑
σ

(−1)σG0(1, σ(1′)) . . . G0(n, σ(n′)) (2.31)

27



2.3.2 Diagrammatics

With the aid of Wick's theorem [Eqs. (2.29) and (2.31)] the perturbative expansion for the single-
particle Green's function (2.24) can �nally be written as

G(xt,x′t′)

=

∑∞
k=0

1
k!

(
i

2~
)k ∫

γ
d1d1′ . . . dkdk′ v11′ . . . vkk′

∣∣∣∣∣∣∣∣∣∣∣∣

G0(xz,x′z′) G0(xz, 1′′) . . . G0(xz, k′+)

G0(1,x′z′) G0(1, 1′′) . . . G0(1, k′+)
...

...

G0(k′,x′z′) G0(k′, 1′′) . . . G0(k′, k′+)

∣∣∣∣∣∣∣∣∣∣∣∣
∑∞
k=0

1
k!

(
i

2~
)k ∫

γ
d1d1′ . . . dkdk′ v11′ . . . vkk′

∣∣∣∣∣∣∣∣∣∣∣∣

G0(1, 1′′) G0(1, 1′+) . . . G0(1, k′+)

G0(1′, 1′′) G0(1′, 1′+) . . . G0(1′, k′+)
...

...

G0(k′, 1′′) G0(k′, 1′+) . . . G0(k′, k′+)

∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.32)

We have now completely de�ned the expansion for the interacting single-particle Green's function.
However, the formula (2.32) is somewhat horrendous to deal with. Hence we further introduce the
celebrated Feynman diagrams [10] by which the task of calculating G(xt,x′t′) is greatly reduced.

The pictorial representation for Eq. (2.32) may be written immediately as one de�nes

G0(i, j) = �
j

i

vij = �i j

(2.33)

Note that here we let time �ow from bottom to top. Now any term in the numerator/denominator
of (2.32) may be written pictorially if we demand that there is an integration over every vertex.
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For example, in the numerator there are the �rst-order terms

G(xt,x′t′) ≈ G0(xz,x′z′) +
i

2~

∫
γ

d1d1′ v11′

∣∣∣∣∣∣∣∣∣
G0(xz,x′z′) G0(xz, 1′′) G0(xz, 1′+)

G0(1,x′z′) G0(1, 1′′) G0(1, 1′+)

G0(1′,x′z′) G0(1′, 1′′) G0(1′, 1′+)

∣∣∣∣∣∣∣∣∣
= G0(xz,x′z′) +

i

2~
G0(xz,x′z′)

∫
γ

d1d1′ v11′

∣∣∣∣∣∣ G0(1, 1′′) G0(1, 1′+)

G0(1′, 1′′) G0(1′, 1′+)

∣∣∣∣∣∣
− i

2~

∫
γ

d1d1′ v11′G0(xz, 1′′)

∣∣∣∣∣∣ G0(1,x′z′) G0(1, 1′+)

G0(1′,x′z′) G0(1′, 1′+)

∣∣∣∣∣∣
+
i

2~

∫
γ

d1d1′ v11′G0(xz, 1′+)

∣∣∣∣∣∣ G0(1,x′z′) G0(1, 1′′)

G0(1′,x′z′) G0(1′, 1′′)

∣∣∣∣∣∣

= �
x′z′

xz

+
i

2~

(�
x′z′

xz �1′1

)
− i

2~

(�
x′z′

xz �1 1′
)

− i

2~

( �
x′z′

xz

1 1′
)

+
i

2~

( 	 1′

x′z′

xz

1

)

+
i

2~

( 
 1′

x′z′

xz

1

)
− i

2~

( � 1′

x′z′

xz

1

)
(2.34)

(2.35)

As before time is taken to run from bottom to top. Thus all the interaction vertices are horizontal
and for the Green's functions containing the same beginning and endpoint we have to see from the
equal time limit in which direction the loop is to be closed.

Similar expansion may be done for the denominator of (2.32). It turns out that the denominator
contains only closed and connected diagrams. By closed and connected we mean that every part
of the diagram is connected to the rest by an interaction or Green's function line, and that there
are no �loose� lines hanging around as above in the last four diagrams.

One can prove that all the disconnected diagrams in the numerator are exactly canceled by the
denominator in Eq. (2.32), see [9]. Moreover, considering the topology of the diagrams it becomes
clear that all topologically equivalent diagrams attain the same numerical value, since one can
always rename the interaction variables to attain similar �gures from diagrams with the same
topology [9]. It is thus su�cient to consider only all connected and topologically inequivalent
diagrams. The factor due to topologically equivalent diagrams turns out to be 2kk!, where k is the
number of interaction lines, i.e., the order of the diagram. With these results Eq. (2.32) may be
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written as

G(xt,x′t′)

=
∞∑
k=0

(
i

~

)k ∫
γ

d1d1′ . . . dkdk′ v11′ . . . vkk′

∣∣∣∣∣∣∣∣∣∣∣∣

G0(xz,x′z′) G0(xz, 1′′) . . . G0(xz, k′+)

G0(1,x′z′) G0(1, 1′′) . . . G0(1, k′+)
...

...

G0(k′,x′z′) G0(k′, 1′′) . . . G0(k′, k′+)

∣∣∣∣∣∣∣∣∣∣∣∣
conn.

top. inequiv.

.

(2.36)

Self-energy

One can reduce the amount of diagrams to be calculated even further by introducing the concept
of self-energy. As we start to expand Eq. (2.36) one quickly notices that there is class of �sub-
diagrams� in every order that seem to appear in the same form in higher order diagrams as well.
We call these diagrams irreducible diagrams, since they are de�ned by the property that one cannot
cut such a diagram into two pieces by cutting a single Green's function line. In the second order
these irreducible diagrams become� = + � + � + �, (2.37)

where we already gave the symbol �shaded blob� to the collection to these diagrams. It turns out
that one can get great a reduction in the number of diagrams if one considers these self-energy
diagrams. The Green's function may be written, with the aid of all self-energy diagrams, as

G(xz,x′z′) =�
x′z′

xz

+�
x′z′

xz

+�
x′z′

xz

+ . . . (2.38)

or equivalently

�
x′z′

xz

=�
x′z′

xz

+�
x′z′

xz

, (2.39)

where we see that a repeated insertion of the left-hand side to the right-hand side in Eq. (2.39)
generates Eq. (2.38). The equation in Eq. (2.39) is called the Dyson equation [4] and it can be
written explicitly as

G(xz,x′z′) = G0(xz,x′z′) +
∫
γ

d1d1′G0(xz, 1) Σ(1, 1′)G(1′,x′z′), (2.40)

where Σ(1, 1′) contains all irreducible diagrams. Note that this equation should be solved self-
consistently, i.e., we �rst put some approximation for the Green's function into the equation and
after solving for the Green's function we put these solutions back into the Dyson equation. This is
done as long as the Green's function converges. Since we are working most of the time in general
bases we need the form of Dyson Eq. (2.40) in general bases. This is derived in Appendix A.6.

Physically the self-energy describes the energy arising from the interactions between the system
and the particle under consideration [7]. For example, when one brings a particle in to the system it
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starts to interact with the other particles in the system. These interactions then modify the system
and the modi�ed system interacts back to the particle. The self-energy modi�es the �single-particle�
energy in such a way that it then contains also the e�ect of the particle-system interactions. The
self-energy thus contains all the information about the interactions in the system; this is already
seen in the diagrammatic structure, since all the interaction lines are included in the self-energy
diagrams.

It should now be plausible that one can do perturbation theory of the Green's function by drawing
diagrams and calculating the resulting integrals. We only need to have proper rules by which we
construct the mathematical description of each diagram. The rules can be deduced for example
from Eq. (2.36) by drawing the diagrams and observing the corresponding term in the expansion.

Similarly for the self-energy one can deduce diagrammatic rules and then by using Dyson equation
we again attain the Green's function. The diagrammatic rules are called Feynman rules and they
are a handy tool when expanding Green's functions. Before introducing the Feynman rules we will
make some remarks about the systems that we are going to study in order to reduce the complexity
even more.

2.3.3 Zero-temperature formalism

We have now a powerful machinery to solve the Green's function on the Keldysh contour γ. In the
discussions to come we however have T = 0, i.e., we are working at the zero temperature limit. We
would now like to see how the Green's functions and self-energies transform as we take the limit
T → 0.

The expectation value of any operator is written in (1.112). Assume that the energy levels are
non-degenerate. Then we may write (1.112) as

〈
Â
〉

(t) =
Tr
{
Tγ
(
e−βĤeq ÂH(t)

)}
Tr
{
e−βĤeq

} =
∑
k e
−β(Ek−µNk)〈ψk|ÂH(t)|ψk〉∑

k e
−β(Ek−µNk)

. (2.41)

Let us then de�ne µ such that E0 < µ < E1 < E2 < . . . , moreover, Nk ∈ {0, 1} and for
zero temperature we de�nitely have the ground state occupied. Then as β → ∞ we see in the
denominator of Eq. (2.41) that

∑
k

e−β(Ek−µNk) = e−β(E0−µ) +
∑
k=1

e−β(

>0︷ ︸︸ ︷
Ek − µNk) β→∞→ eβ|E0−µ|. (2.42)

Now we see that to obtain a non-zero expectation value, the only term that survives from the sum
in the nominator of Eq. (2.41) is

〈
Â
〉

(t)→ eβ|E0−µ|

eβ|E0−µ|
〈ψ0|ÂH(t)|ψ0〉+

∑
k=1

→0︷ ︸︸ ︷
e−β(Ek−µNk)〈ψk|ÂH(t)|ψk〉

eβ|E0−µ|︸ ︷︷ ︸
→∞

= 〈ψ0|ÂH(t)|ψ0〉. (2.43)

Thus, for example, the Green's function in zero temperature attains the form

G0,n(1 . . . n; 1′ . . . n′) = (−i)n〈ψ0|ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂†(1)|ψ0〉. (2.44)

To obtain the zero-temperature limit the changes to be made in our formalism introduced are just
to replace all Green's functions with these zero-temperature Green's functions. We will work with
in the zero-temperature limit from now on.
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2.3.4 Frequency space

Another simpli�cation that we can make, again knowing what is ahead, is to Fourier transform
our equations. This can easily be carried out for time independent Hamiltonians. We notice that
for the time-independent Hamiltonian all the equations are only functions of t − t′. We denote
this di�erence by τ and perform the Fourier transform [2]. One can �nd the Fourier transforms of
the single-particle non-interacting Green's function and the Green's function in tight-bindin chain
respectively in Appendices A.4.1 and A.4.2.

One can do the derivations for frequency space as well [4], and actually this does not even turn out
to be too di�cult. However, to save space I will just give the Feynman rules in frequency space to
be used as a tool to calculate di�erent properties of our systems through the self-energy diagrams.

Feynman rules in frequency space

The Feynman rules in general bases and in zero-temperature frequency space for self-energy Σ are
listed in the following [4]

1. Draw all topologically inequivalent irreducible connected diagrams.

2. Assign indices, frequency, and direction to all Green's function lines. Conserve the frequency
at each vertex and integrate and sum over all internal vertexes.

3. Multiply all diagrams with prefactor (−1)l( i~ )n, where l is the number of closed fermion loops
and n is the order of diagram, i.e., the number of interaction lines.

4. When a Green's function line (Gij(ω)) closes itself or is closed by the same interaction line
insert a factor eiωη (η → 0).

5. Every non-interacting Green's function is represented by Gij(ω) = δij
ω−(ξi−Uext)+isgn(ξi)η

.

6. For every vertex�i l

j k

, assign Viklj .

2.4 Properties of Green's functions

So far we have not given any better reason for calculating the Green's function than the one that
it is almost the easiest operator for which to solve the expectation value, see Sec. 2.1. However,
it turns out that one can deduce many properties of the system through the Green's function, for
example the total energy and many more. [4, 1].

In the following we will introduce only a couple of properties that are easily seen from the Green's
function of the system.

2.4.1 Density

The particle density is probably the most obvious thing that one can immediately deduce from
the Green's function. The expectation value of density at x may be written as iG(xz+,xz). We
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may also expand the Green's function in general bases as for example in (A.5.1). Now we may for
example deduce that∫

dx G(xz+,xz) =
∑
k,k′,σ

∫
dr φk(r)φ∗k′(r)Gkk′(z+, z′) =

∑
k,k′

δkk′Gkk′(z+, z′) = N, (2.45)

where N is the number of particles in the system.

2.4.2 Spectral function

Starting from the de�nition of Green's function (2.7) one can proceed as in Appendix A.4.1 and
A.4.2 to obtain the Fourier transformed Green's function

G(x,x′, ω) =
∑
j

gj(x)g∗j (x′)

ω − (EN+1
j − E0) + iη

+
fj(x)f∗j (x′)

ω − (EN−1
j − E0)− iη , (2.46)

where gj(x) = 〈ψ0|ψ̂(x)|ψN+1
j 〉 and fj(x) = 〈ψN−1

j |ψ̂(x)|ψ0〉. Now there exists µ such that

E0 − EN−1
s < µ < EN+1

s − E0. (2.47)

De�ne

εs =

{
EN+1
s − E0, εs > µ

E0 − EN−1
s , εs < µ

ϕs(x) =

{
gs(x), εs > µ

fs(x), εs < µ.

(2.48)

Now one can write

G(x,x′, ω) =
∑
s

εs>µ

ϕs(x)ϕ∗s(x
′)

ω − εs + iη
+
∑
s

εs<µ

ϕs(x)ϕ∗s(x
′)

ω − εs − iη

=
∑
s

ϕs(x)ϕ∗s(x
′)

ω − εs + iηsgn(εs − µ)

=
∫

dν

∑
s δ(ν − εs)ϕs(x)ϕ∗s(x

′)
ω − ν + iηsgn(ν − µ)

=
∫

dν
A(x,x′, ν)

ω − ν + iηsgn(ν − µ)
, (2.49)

where we de�ned the spectral function

A(x,x′, ν) =
∑
s

δ(ν − εs)ϕs(x)ϕ∗s(x
′). (2.50)

One immediately notices that the spectral function is peaked at the addition and removal energies
of the system. It could thus describe, for example, the photoelectric spectrum of the system.

Multiplying by the complex conjugate of the denominator in (2.49) we obtain∫
dν

A(x,x′, ν)
ω − ν + iηsgn(ν − µ)

= P
∫

dν
A(x,x′, ν)
ω − ν − iπsgn(ν − µ)δ(ω − ν)A(x,x′, ν). (2.51)

Thus we get

ImG(x,x′, ω) = −πsgn(ν − µ)δ(ω − ν)A(x,x′, ν)

= −πsgn(ν − µ)δ(ω − ν)
∑
s

δ(ν − εs)ϕs(x)ϕ∗s(x
′)

= −πsgn(ω − µ)
∑
s

δ(ω − εs)ϕs(x)ϕ∗s(x
′) (2.52)
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Comparing (2.52) with (2.50) one may deduce

A(x,x′, ω) =
1
π
sgn(µ− ω)ImG(x,x′, ω). (2.53)

The considerations above may be simpli�ed even more by introducing the retarded Green's function

GR(x,x′, ω) =
∑
s

ϕs(x)ϕ∗s(x
′)

ω − εs + iη
, (2.54)

where ϕs(x) and εs are as in (2.48). By similar considerations as above we �nd

A(x,x′, ω) = − 1
π
ImGR(x,x′, ω). (2.55)

The spectral function can, as usual, be expressed in general bases. This is easily obtained by
expanding the �eld operators in Eq. (2.50). Using the expansions Eqs. (1.33) and (1.34) we may
write

A(x,x′, ν) =
∑
k,l

φk(x)φl(x′)

[ ∑
s,εs<µ

δ(ν − εs)fskf∗sl +
∑
s,εs>µ

δ(ν − εs)gskg∗sl
]
, (2.56)

from which we see

Akl(ν) =
∑
s,εs<µ

δ(ν − εs)fskf∗sl +
∑
s,εs>µ

δ(ν − εs)gskg∗sl, (2.57)

where

fsk = 〈ψN−1
s |âk|ψ0〉 (2.58)

gsk = 〈ψ0|âk|ψN+1
s 〉. (2.59)

Expanding the retarted Green's function Eq. (2.54) similarly we immediately �nd in accordance
with Eq. (2.55) that

Aij(ω) = − 1
π
ImGRij(ω). (2.60)

From Eq. (2.57) we may �nd a way to calculate the density at a given site. Consider Eq. (2.57), now
at zero temperature so that all states up to the chemical potential are occupied. Now, integrating
over ν from −∞ to µ we immediately �nd∫ µ

−∞
dν Aii(ν) =

∑
s

fsif
∗
si =

∑
s

〈ψ0|â†i |ψN−1
s 〉〈ψN−1

s |âi|ψ0〉 = 〈ψ0|n̂i|ψ0〉 = ni. (2.61)

Hence, at zero temperature one may �nd the density at a given site from the spectral function at
that given site.
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Chapter 3

Applications

The presented Green's function methods are applied to two systems. Both systems consisted of a
two-level system (=�molecule�) coupled to the �rst site of in�nite tight-binding chain introduced in
Appendix A.3. The Hamiltonians have di�erent interactions and hoppings between the two-level
system and the chain. For now on we will put ~ = 1.

In both cases we are mainly interested in the spectral functions (chapter 2.4.2) at the molecule
and we are deducing properties out of these spectral functions. We also calculate the self energies
(chapter 2.3.2) for these two levels. In the end we try to deduce the features of the Hamiltonian
that are responsible for the particular behavior.

The �rst of the models is treated with perturbation theory (Chapter 2.3) and we study the e�ects
of di�erent Feynman diagrams on the energy levels and image-charge e�ect as well as the self-
energies and the spectral functions. The system is quite similar to the one introduced in [11] with
the di�erence that we do not have hoppings between the molecule and the lead.

The latter of the models is the famous Fano model, now with two levels coupled to the �rst site of
the chain. As in the usual Fano model we do not have any two-body interactions and hence we are
able to solve the model exactly. In the following we will present and treat both systems separately.

3.1 Interacting model

Our aim in this chapter is to introduce a model used to describe some simple (=two-level) molecule
next to an in�nite tight-binding chain. We use the perturbation theory method to �nd out the
approximate self-energy for the system. With this self-energy we calculate the approximate Green's
function and further the approximate spectral peaks for the molecular energy levels. In the end
we also compare results of the di�erent approximations for the spectral peak shift to an exact shift
calculated by the Hellman-Feynman theorem [10].

Schematically the system can be presented as in Fig. 3.1.

As mentioned above the Hamiltonian for this model is similar to the one introduced in [11]. We
write the Hamiltonian as

Ĥ = ĤTB + ĤMOL + ÛMOL + V̂ , (3.1)
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Figure 3.1: Left: Molecule and chain system schematically. Right: Bare chain system

where

ĤTB = t
∑
〈i,j〉

â†i âj

ĤMOL = n̂HξH + n̂LξL

ÛMOL = U0(n̂H↑n̂H↓ + n̂L↑n̂L↓) + UHLn̂H n̂L

V̂ = Uext(n̂1 − 1)(N̂ − 2). (3.2)

Here the operators â†i (âi) create (annihilate) electrons to the i:th site of the chain; note that i

is a double index i = (i, σ) corresponding to site and spin. The density operators n̂H/L in ĤMOL

(and elsewhere) are de�ned as n̂H/L = n̂H/L↑ + n̂H/L↓ = â†H/L↑âH/L↑ + â†H/L↓âH/L↓, where âH

refers to the HOMO (highest occupied molecular orbital) site of the two-level system and â†L refers

to LUMO (lowest unoccupied molecular orbital). For ÛMOL we have two terms corresponding to
the repulsion between electrons at the same site (U0) and between the levels (UHL). Finally the
interaction between the TB chain and the molecule is introduced in V̂ with the strength UEXT .
The n̂1 − 1 and N̂ − 2 represent the excess charge on the terminal site of the chain and on the
molecule, respectively, N̂ being n̂H + n̂L.

In the limit N → ∞ the Hamiltonian in Eq. (3.1) cannot be solved exactly which leads to a
treatment in Feynman diagrams. To use the Feynman diagram methods we need the components
of the Green's function in the chain and the molecule. They are derived in A.4; note that we
are working in the frequency space in order to have an easy access to the energies of the system.
Moreover, to have a clear picture of the situation we have to rearrange the terms in Hamiltonian
in Eq. (3.1) to obtain

Ĥ = t
∑
〈i,j〉

â†i âj + (n̂H − Uext)ξH + (n̂L − Uext)ξL

−2Uextn̂1 + ÛMOL + UextN̂ n̂1. (3.3)

We have subtracted the term 2Uext since it is just a constant factor and thus does not a�ect the
properties of the Hamiltonian. Note also that we will treat the �rst line of (3.3) as the unperturbed
Hamiltonian and the second line as the perturbation.

The components of the Green's function in the molecule and in the chain are calculated in A.4 and
they become, respectively

Gij(ω) =
δij

ω − (ξi − Uext) + isgn(ξi)η
, i, j ∈ {H,L}

GTB
ij (ω) = δσiσj

2
N + 1

N∑
k=1

sin
(

πk
N+1 i

)
sin
(

πk
N+1j

)
ω − 2t cos

(
πk
N+1

)
+ isgn(t cos

(
πk
N+1

)
η
,

(3.4)

36



where in the former expression we have included the interaction energies −n̂H/LUext into the
Green's function to simplify the calculations. Note also that, as before, the indices contain also
the spin index, i.e., i = (i, σ).

From the general structure of the Hamiltonians in the second quantization (1.45) we can deduce
that the factors Vijkl are in our model of the form Vijkl = Vijδilδjk, and the whole structure of the
two-body interactions is con�ned in the matrix

Vij =


V0 VHL VH1

VLH VLL VL1

V1H V1L V11

 =


U0 UHL Uext

UHL U0 Uext

Uext Uext 0

 . (3.5)

Note that all the elements that are not presented explicitly are zero. Finally we have everything
needed to do perturbation theory for the self-energy of this system. We start with the Hartree-Fock
approximation.

3.1.1 Hartree-Fock

In the Hartree-Fock method we draw the two �rst Feynman diagrams, namely the tadpole and
exchange diagrams. We also have to include the one-body term −2Uextδj0. We use the Feynman
rules in frequency space introduced in Sec. 2.3.4 to obtain the equations for the self-energy. The
self-energy in the Hartree-Fock level becomes

Σij(ω) = �ν

j i

k l
+ �

ω − ν

ν

i k l j
− 2Uextδ1iδ1j

= −i
∑
k,l

Viklj

∫
dν

2π
G0
lk(ν)eiνη + i

∑
k,l

Viljk

∫
dν

2π
G0
kl(ν)eiνη − 2Uextδ1iδ1j

= −iδij
∑
k,l

Vikδkl

∫
dν

2π
G0
lk(ν)eiνη + i

∑
k,l

Vilδljδik

∫
dν

2π
δσkσlG

0
kl(ν)eiνη − 2Uextδ1iδ1j

= −iδij
∑

k=(k,σk)

Vik

∫
dν

2π
G0
kk(ν)eiνη + iδσiσjVij

∫
dν

2π
G0
ij(ν)eiνη − 2Uextδ1iδ1j , (3.6)

where on the second line the δσkσl arise from the Green's function.

The di�erent components of the self-energy can now be calculated from Eq. (3.6) just by inserting
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the desired indices. For example, ΣHH becomes

ΣHH(ω) = −i2
∑
k

VHi

∫
dν

2π
G0
ii(ν)eiνη + iVHH

∫
dν

2π
G0
HH(ν)eiνη

= −i2
∫

dν

2π
(
VHHG

0
HH(ν) + VHLG

0
LL(ν) + VH1G

0
11(ν)

)
eiνη

+iVHH
∫

dν

2π
G0
HH(ν)eiνη

= −i2
∫

dν

2π
U0e

iνη

ν − (ξH − Uext)− iη +
UHLe

iνη

ν − (ξL − Uext) + iη

−i2
∫

dν

2π
Uexte

iνη 2
N + 1

N∑
k=1

sin
(

πk
N+11

)
sin
(

πk
N+11

)
ν − 2t cos

(
πk
N+1

)
+ isgn

(
t cos

(
πk
N+1

))
η

+i
∫

dν

2π
U0e

iνη

ν − (ξH − Uext)− iη . (3.7)

We perform the integrals by using Cauchy's residue theorem, see Appendix A.8. The factor eiνη

forces the integration loop to be closed in the upper half plane [2] which we have to take into
account. The �rst two and the last integrals are easy to compute and they give altogether U0.

With the third integral we must be careful with the summation limits due to the sign factor in the

denominator. To get a non-zero contribution we must have sgn
(
t cos

(
πk
N+1

))
= −1 due to the

fact that the loop must be closed in the UHP. This leads to limits for summation index k. These
limits become

sgn

(
t cos

(
πk

N + 1

))
= −1, t < 0

⇒ cos
(

πk

N + 1

)
> 0⇔ −π

2
<

kπ

N + 1
<
π

2

⇒ k ∈ {1, . . . , 1
2

(N + 1)}. (3.8)

Note that we are using half �lling in the molecule as well as in the chain, i.e., all the states
with energy below zero are occupied. Now all the terms in the sum give under integration just

i sin2
(

πk
N+1

)
and we are left with

ΣHH(ω) = U0 +
4Uext
N + 1

1
2 (N+1)∑
k=1

sin2

(
πk

N + 1

)
. (3.9)

In the limit N →∞ the summation can be turned into an integral with x = πk/(N + 1) resulting

ΣHH(ω) = U0 +
4Uext
N + 1

N + 1
π

∫ 1
2π

0

dx sin2 (x)

= U0 +
4
U ext

π
π

4
= U0 + Uext. (3.10)

All the components of the self-energy matrix are calculated similarly. For the Σ11 component we
have the additional one-body term −2Uext which exactly cancels with the rest of the terms. In the
Hartree-Fock level the part of the self-energy matrix that we are interested in becomes

ΣHF (ω) =


ΣHH ΣHL ΣH1

ΣLH ΣLL ΣL1

Σ1H Σ1L Σ11

 =


U0 + Uext 0 0

0 2UHL + Uext 0

0 0 0

 . (3.11)
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From the Dyson equation Eq. (A.6.5) it is now easy to calculate the Green's function. We do this,
as above, only for the GHH(ω) component,

G = (G−1
0 − Σ)−1. (3.12)

Now, since G0 (3.4) is block-diagonal for H and L components, and ΣHF (3.11) is diagonal, the
matrix inversions are easy to make for Gij with i, j ∈ {H,L}, yielding

GHFij (ω) =
δij

G−1
0,ij(ω)− ΣHFij (ω)

=
δij

ω − ξi + Uext − Uext − Ui + isgn(ξi)η

=
δij

ω − ωi + isgn(ξi)η
, i, j ∈ {H,L}, (3.13)

where
ωi = ξi + 2UHLδiL + U0δiH . (3.14)

For the terminal site one must be more careful due to the fact that the tight-binding part of the
Green's function matrix is not diagonal. However, since the self-energy matrix is zero for the chain,
we are having the inversion of the inversion of the Green's function in the chain, i.e., no e�ect on
the Green's function in the chain. Thus, we have

GHFij (ω) = (GTB
−1

0,ij (ω)− ΣHFij (ω))−1 i, j ∈ {1, . . . ,∞}
= (GTB

−1

0,ij (ω))−1 = GTB0,ij(ω). (3.15)

Collecting the results the Green's function in the Hartree-Fock level becomes

GHF (ω) =

 GHFMOL(ω) 0

0 GHFTB (ω)



=



1
ω−(ξH+U0)−iη 0 0 0

0 1
ω−(ξL+2UHL)+iη 0 0

0 0 2
N+1

∑N
k=1

sin( πk
N+1 ) sin( πk

N+1 )
ω−2t cos( πk

N+1 )+isgn(t cos( πk
N+1 )η . . .

0 0
...

. . .


.

(3.16)

Note the block structure that is preserved due to a similar block structure in the self-energy.

One can immediately make some observations on this Green's function. The absence of Uext in
GHF suggests that on the Hartree-Fock level the molecule and chain do not �see� each other. To
have some e�ect of interactions between these two systems we need to go beyond the Hartree-Fock
level. Thus, we will next go to the second order and see what it will give.

3.1.2 Bubble

Now that we have obtained the Hartree-Fock Green's function and noticed that it does not give
any new information compared to the �nite-chain case [12] we would like to go beyond this ap-
proximation. The natural step is to take the next two diagrams, now in the second order, into
account. These are the bubble and the exchange diagrams.

We will use the Hartree-Fock Green's function in the diagrams. The obvious reason for this is that
the HF Green's functions should be already a bit closer to the exact Green's function and thus
one should get more accurate results. The approximation is named as HFB. We draw, again, the
diagrams for the self-energy using Feynman rules.
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The interesting thing here is that the exchange diagram gives zero contribution. This is due to the
fact that there are now Green's function lines between the chain and the molecule. Moreover, all
the exchange diagrams inside the molecule give zero.

The bubble diagram, however, is non-zero and it becomes

ΣBij(ω) =

�i k l j

ω′

p q r s

ω − ν

ω′ + ν

= δσiσj2
∑
p,s

VipVsj

∫
dν

2π
dω′

2π
GHFij (ω − ν)GHFps (ω′ + ν)GHFsp (ω′). (3.17)

The intermediate steps are similar as in Eq. (3.6); one just keeps in mind that Vijkl = Vijδilδjk
and that the indices contain also the spin index. We have for the the self-energy in the molecule

ΣBHH/LL(ω) = 2U2
ext

∫
dν

2π
dω′

2π
GHFHH/LL(ω − ν)GHF11 (ω′ + ν)GHF11 (ω′). (3.18)

All the other terms of the sum give zero under integration due to the property introduced in A.8.
The ΣB11(ω) is clearly zero due to V11 = 0. Note also that the self-energy has the same block
structure as the Green's functions. Next we insert the Hartree-Fock Green's function and �nd

ΣBHH/LL(ω) = 2U2
ext

∫
dν

2π
dω′

2π
1

ω − ν − ξH/L ∓ iη
(

2
N + 1

)2

×
N∑

i,j=1

sin
(

πi
N+1

)
ω′ + ν − εi + isgn(εi)η

sin
(

πj
N+1

)
ω′ − εj + isgn(εj)η

= 2U2
ext

∫
dν

2π
1

ω − ν − ξH/L ∓ iη
(

2
N + 1

)2

×
N∑

i,j=1

sin
(

πi

N + 1

)
sin
(

πj

N + 1

)
×

∫
dω′

2π
1

ω′ + ν − εi + isgn(εi)η
1

ω′ − εj + isgn(εj)η
. (3.19)

The integral on last line is exactly of the form introduced in A.8.8. Thus, to yield a non-zero
contribution we must have sgn(εi) 6= sgn(εj). From this we obtain two options (for t < 0):

t cos
(

πi

N + 1

)
< 0 < t cos

(
πj

N + 1

)
⇒ i <

1
2

(N + 1) < j (3.20)

t cos
(

πj

N + 1

)
< 0 < t cos

(
πi

N + 1

)
⇒ j <

1
2

(N + 1) < i. (3.21)

These two options turn out to correspond to the HOMO and LUMO components of the self-energy.
This is due to the fact that in the last integration we have to, once again, take into account the
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property A.8.8. Now for the option in Eq. (3.20) we get from Eq. (3.19)

ΣBHH(ω) = 2U2
ext

∫
dν

2π
1

ω − ν − ξH − iη
(

2
N + 1

)2

×
1
2 (N+1)∑
i=1

N∑
j= 1

2 (N+1)

i
sin2

(
πi
N+1

)
sin2

(
πj
N+1

)
εi − εj − ν + iη

, (3.22)

where only the ΣHH component will yield a non-zero contribution due to the placement of the
poles under integration. With the option in Eq. (3.21) we obtain the self-energy component for
the LUMO level. This becomes

ΣBLL(ω) = 2U2
ext

∫
dν

2π
1

ω − ν − ξL + iη

(
2

N + 1

)2

×
1
2 (N+1)∑
j=1

N∑
i= 1

2 (N+1)

i
sin2

(
πi
N+1

)
sin2

(
πj
N+1

)
εj − εi + ν + iη

. (3.23)

We continue by calculating the HOMO self-energy component explicitly. The LUMO component
follows the same tracks and only the results are introduced. We start from Eq. (3.22) by �rst
performing the remaining integral over ν,

ΣBHH(ω) = 2U2
ext

(
2

N + 1

)2
1
2 (N+1)∑
i=1

N∑
j= 1

2 (N+1)

sin2

(
πi

N + 1

)
sin2

(
πj

N + 1

)

×
∫

dν

2π
1

ω − ν − ξH − iη
−i

−εi + εj + ν − iη

= 2U2
ext

(
2

N + 1

)2
1
2 (N+1)∑
i=1

N∑
j= 1

2 (N+1)

sin2
(

πi
N+1

)
sin2

(
πj
N+1

)
ω − εi + εj − ξH − iη . (3.24)

We proceed by taking the limit N →∞ in order to transform the sums over i and j into integrals.
In this way we hope to be able to calculate the self-energy further. We introduce the following
variables

πi

N + 1
= x, di =

N + 1
π

dx (3.25)

πj

N + 1
= y, dj =

N + 1
π

dy. (3.26)

With these x and y and letting N go to in�nity Eq. (3.24) may be written as

ΣBHH(ω) = 2U2
ext

(
2
π

)2 ∫ π

π
2

dy

∫ π
2

0

dx
sin2(x) sin2(y)

ω − 2t(cos(x)− cos(y))− ξH − iη .

(3.27)

As one can notice this is a quite demanding integral to calculate by hand. We have also seen the
connection between the imaginary and real parts of the self-energy through the Kramer-Kronig
relations. We will now take the advantage of this knowledge and calculate the imaginary component
using the result derived in A.9. The imaginary component becomes

ImΣBHH(ω) = 2U2
ext

(
2
π

)2

π

∫ π

π
2

dy

∫ π
2

0

dx sin2(x) sin2(y)

× δ(ω − 2t(cos(x)− cos(y))− ξH). (3.28)
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We perform a change of variables through

2t cos(x) = u, −2t sin(x)dx = du,

√
1−

( u
2t

)2

= sin(x)

2t cos(y) = v, −2t sin(y)dy = dv,

√
1−

( v
2t

)2

= sin(y),

(3.29)

to obtain

ImΣBHH(ω) = 2U2
ext

(
2
π

)2

π

∫ −2t

0

dv

−2t

∫ 0

2t

du

−2t

√
1−

( u
2t

)2
√

1−
( v

2t

)2

× δ(ω − u+ v − ξH). (3.30)

Next when performing the integral over u one must be careful to use the delta function only if it
has zero within the integration limits of u, i.e., within [2t, 0]. This can be done by introducing step
functions which have the property θ(x) = 0 ∀ x < 0 and θ(x) = 1 ∀ x > 0. With the aid of these
step functions the integration limits in (3.30) can be extended to in�nity resulting in

ImΣBHH(ω) = 2U2
ext

1
πt2

∫ −2t

0

dv

∫ ∞
−∞

du

√
1−

( u
2t

)2
√

1−
( v

2t

)2

× δ(ω − u+ v − ξH)θ(−u)θ(u− 2t)

= 2U2
ext

1
πt2

∫ −2t

0

dv

√
1−

(
ω + v − ξH

2t

)2
√

1−
( v

2t

)2

× θ(ξH − ω − v)θ(ω + v − ξH − 2t). (3.31)

Similar steps by which we arrived from Eqs. (3.22) to (3.31) may be carried out for the LUMO
component starting from Eq. (3.23). The result is very similar to Eq. (3.31), i.e.,

ImΣBLL(ω) = −2U2
ext

1
πt2

∫ ∞
−∞

dv

√
1−

(
v + ξL − ω

2t

)2
√

1−
( v

2t

)2

× θ(ω − ξL − v)θ(v + ξL − ω − 2t). (3.32)

This is as far as we get by analytical calculations for the imaginary part of the self-energy. The
integral in Eq. (3.31) is tedious to calculate by hand, but easy to perform numerically. I have
written a FORTRAN code that calculates the imaginary part of the self-energy exactly. However,
before introducing the code we still have some things to consider.

Now that we have an expression for the ImΣBHH/LL(ω) we may calculate the real part through a

principal value integral as derived in A.9. For ΣBHH(LL)(ω) the pole is in UHP (LHP) so we use Eq.

(A.9.1) (A.9.4) to yield the real part. The equation for HOMO and LUMO, respectively, becomes

ReΣBHH(ω) =
1
π
P

∫
dν

ImΣBHH(ω)
ω − ν , (3.33)

ReΣBLL(ω) = − 1
π
P

∫
dν

ImΣBLL(ω)
ω − ν . (3.34)

We do not have an analytical form for ΣBHH/LL(ω) and thus the principal value integrals are
impossible to calculate analytically. The real parts must also be calculated with a computer
program. I used a method called the Hilbert transform [14] to obtain the real parts out of the
imaginary parts. The self energies are presented in the results chapter.

Now that we have the self-energy it is neat to solve the Green's function. This is done through the
Dyson equation as before in the Hartree-Fock case. The self-energy has the same block structure
as the Green's function leading to a treatment of the molecule and chain separately. Since there
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is no change to the chain part even at this level, and even if there were, it would be di�cult to
calculate (inversion of an in�nite-dimensional matrix) we will focus on the e�ects on the molecular
levels.

The Green's function in the molecular orbitals becomes

GHH/LL(ω) = (G−1
0 (ω)− Σ(ω))−1

ij

=
δij

ω − ξ′i − ReΣij(ω)− i[ImΣij(ω)∓ η]

= δij
ω − ξ′i − ReΣij(ω)

[ω − ξ′i − ReΣij(ω)]2 + [ImΣij(ω)∓ η]2

+ iδij
ImΣij(ω)± η

[ω − ξ′i − ReΣij(ω)]2 + [ImΣij(ω)∓ η]2
,

(3.35)

where ξ′i = ξi+Uext. One can now plug di�erent self-energy approximations in the above equation
Eq. (3.35) to obtain the corresponding Green's functions in these approximations. The fact that
we wrote the imaginary and real parts of G separately is due to spectral functions that can be read
from the imaginary part of Green's functions as presented in Sec. 2.4.2. The spectral function for
this model (µ = 0) thus reads

AHH/LL(ω) = − 1
π
sgn(ω)δij

{
ImΣij(ω)

[ω−ξ′i−ReΣij(ω)]2+(ImΣij(ω))2
, ImΣii 6= 0

±δ(ω − ξ′i − ReΣij(ω)), ImΣii = 0.
(3.36)

Here we have demanded that the HOMO level is inside the Fermi sphere and the LUMO level
outside of the Fermi sphere. We have to be careful with the di�erent parameters to really obtain
such a situation. Let us now see how we can �nd the form of ξH and ξL. We de�ne the fully
occupied HOMO level as our ground state in the molecule. Then all the rest of the molecular
states should be higher in energy. The conditions read

U0 + 2ξH < ξL (3.37)

U0 + 2ξH < ξH (3.38)

U0 + 2ξH < UHL + ξL + ξH (3.39)

U0 + 2ξH < 2ξH + U0 + ξL + 2UHL (3.40)

U0 + 2ξH < 2ξH + 2U0 + 2ξL + 4UHL. (3.41)

Now with U0 and UHL positive we may deduce from Eqs. (3.38), (3.39) and (3.40), that

ξH < −U0 (3.42)
−∆︷ ︸︸ ︷

ξH − ξL < UHL − U0 (3.43)

ξH > −2UHL −∆, (3.44)

leading to
− 2UHL −∆ < ξH < −U0. (3.45)

Now,

− 2UHL −∆
(3.43)
< −2UHL + UHL − U0 < U0, (3.46)

and, moreover, from Eq. (3.46) we get

ξH < −UHL − 1
2

∆ +
1
2
U0 < −U0, (3.47)

−UHL − 1
2

∆− 1
2
U0 > U0 − 2UHL −∆ > −2UHL −∆ > ξH . (3.48)

We see that a natural de�nition with conditions (3.37) to (3.41) for the ξH becomes

− UHL − 1
2

∆ +
1
2
U0 = ξH . (3.49)
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3.1.3 Connection between the density and the peak shift

As we have now derived some results for the model at hand it is time to see what we can deduce
out of them. The most interesting thing is the image-charge e�ect, i.e., the fact that when we have
N 6= 2 the molecule can polarize the chain, i.e., the charge at terminal site of the chain should
depend on Uext. This turns out to be the case at least in the higher order approximation.

Let us use the Hellman-Feynman theorem to deduce from Hamiltonian in Eq. (3.1) that

〈Ψ0| ∂Ĥ
∂Uext

|Ψ0〉 = (n0 − 1)(N − 2) =
∂E0

∂Uext
. (3.50)

The connection to the spectral function becomes evident by considering the HOMO and LUMO
levels separately. Let us have N = 3, i.e., there is now also one electron at the LUMO level. Then
we may write

n0 − 1 =
∂EN+1

0

∂Uext
=
∂(EN+1

0 − EN0 )
∂Uext

≡ ∂AL,peak
∂Uext

, (3.51)

where we used the fact that EN0 is independent of Uext. We see that the density at the terminal
site of the chain is related to the derivative of the peak shift w.r.t. Uext. The peak shift can be
deduced from the spectral function and hence we have a direct measure of the density.

For the HOMO level similar equation to Eq. (3.51) reads

1− n0 =
∂AH,peak
∂Uext

. (3.52)

From Eqs. (3.51) and (3.52) one may also deduce the peak position if the density and the peak
position for Uext = 0 are known:∫ Uext

0

dAL,peak = AL,peak(Uext)− 2UHL − ξL =
∫ Uext

0

n0 − 1 dU, (3.53)∫ Uext

0

dAH,peak = AH,peak(Uext)− U0 − ξH =
∫ Uext

0

1− n0 dU. (3.54)

The density at the terminal site may be calculated for HOMO and LUMO levels exactly. Hence
we are able to compare the exact peak shifts to those produced by our approximation.

3.1.4 Chain with impurity

We now choose a di�erent point of view into this model. As we do not have any hoppings between
the molecule and the chain, we may safely regard the molecule-chain interactions as a potential of
the form Uext(n̂0 − 1)(N̂ − 2) at the �rst site of the chain, see Fig. 3.1. As N̂ is the number of
electrons in the molecule it is an integer and thus we may write Hamiltonian for the bare chain
part as

Ĥ = Uext(n̂0 − 1)Nex + t
∑
〈i,j〉

â†i âj , (3.55)

where we de�ned N̂−2 = Nex as the excess charge of the molecule. This model may now be solved
by introducing new operators

(â†1, â1, â
†
2, â2, . . . , â

†
n, ân) → (b̂†, b̂, ĉ†1, ĉ1, . . . , ĉ

†
n−1, ĉn−1)

⇒ Ĥ = Uext(b̂†b̂− 1)Nex + t
∑
〈i,j〉

ĉ†i ĉj + t(b̂†ĉ1 + ĉ†1b̂). (3.56)
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The chain part may be diagonalized, A.3.9, yielding

Ĥ = UextNexb̂
†b̂+

∑
k

εk ĉ
†
k ĉk +

∑
k

Ak(b̂†ĉk + ĉ†k b̂), (3.57)

where we dropped the constant UextNex, and, moreover,

εk = 2t cos
(

πk

n+ 1

)
Ak = t

√
2

n+ 1
sin
(

πk

n+ 1

)
. (3.58)

One may now notice the block structure of the Hamiltonian and the Green's function. We solve
the Green's function at the �rst site (i.e., the one with impurity) from the equations of motion
in Eq. (A.5). We do not do the calculations explicitly since they are almost identical to those of
Eqs. (3.72) to (3.86) with the minor change that here we have only one Fano level. And the Dyson
equation becomes trivial with only one element in the block matrix. The result for the retarded
Green's function at the �rst site is given by

GR(ω) =
1

ω − UextNex − ΣREM + iη
, (3.59)

where

ΣREM (ω) = −sgn(t)
1
2


ω +
√
ω2 − 4t2, ω < −|2t|

ω + isgn(t)
√

4t2 − ω2, ω ∈ [2t,−2t]
ω −√ω2 − 4t2, ω > |2t|.

(3.60)

The reason why we want the exact Green's function at the �rst site of the chain is due to the
fact that we want to study the image-charge at this site w.r.t. Uext. We may now, using the
Hellman-Feynman theorem, calculate the approximate image-charge at the terminal site through
the spectral function Eqs. (3.51), (3.52) and compare this result with the exact density (2.61)
which now becomes

n0 =
∫ 0

−∞
dω A00(ω) = − 1

π

∫ 0

−∞
dω ImGR(ω), (3.61)

where ImGR(ω) can be solved from (3.59) becoming

ImGR(ω) =

{
ImΣR(ω)

(ω−UextNex−ReΣR(ω))2+ImΣR(ω)2
, ω ∈ [2t,−2t]

−π
|ω−UextNex−ReΣR(ω)||ω=a

, ω /∈ [2t,−2t],
(3.62)

where a is chosen such that
a− UextNex − ReΣR(a) = 0. (3.63)

Note that here Nex = 1 (−1) corresponds to LUMO (HOMO) case, i.e., one electron added
(removed) to (from) the molecule.

One may notice a property of the density just by considering the Hamiltonian in Eq. (3.55). We
may write

Ĥ = t

Uext
t

(n̂0 − 1)Nex +
∑
〈i,j〉

â†i âj

 . (3.64)

We may deduce that the state functions can be only functions of Uext/t and hence all operators
which do not contain Uext or t obtain eigenvalues which are functions of Uext/t. Particularly the
density

ni(Uext/t) = 〈ψ0(Uext/t)|n̂i|ψ0(Uext/t)〉 (3.65)
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is a function of Uext/t only. This can be also calculated explicitly. We notice that the density for
the LUMO/HOMO state with t < 0 becomes

n0 = − 1
π

∫ 0

−∞
dω

−√4t2 − ω2

(ω2 ± Uext)2 + 4t2 − ω2
= − 1

t2π

∫ 0

−∞
dω

−2|t|
√
− ( ω2t)2

± ω
t2Uext +

(
Uext
t

)2
+ 4− 3

(
ω
2t

)2
ω
2t=x
=

1
t2π

∫ ∞
0

dx
4|t|2√1− x2

±2xUextt +
(
Uext
t

)2
+ 4− 3x2

. (3.66)

We immediately notice that the density at the terminal site is a function only of Uext/t. This will
be demostrated in the results chapter.

3.2 Fano Model

As mentioned earlier we also considered a di�erent model for the molecule-chain system. This was
the two-sited Fano model. The Fano model is widely studied [5] and it can give nice insights into
the properties of particles on surfaces. For the usual Fano model one couples only one state to
a continuum of states. Here we couple two states to continuum and see if we could deduce some
features of this molecule-chain system through this model.

. . .
1 Nt

L

H

t

t

hyb

hyb

Figure 3.2: Fano model for two sites schematically

The Hamiltonian for the two-site Fano model is de�ned as

Ĥ = Ĥmol + Ĥch + V̂ =
2∑
k=1

ξk b̂
†
k b̂k +

∑
〈ij〉

tij â
†
i âj +

2∑
k=1

thyb

[
b̂†kâ1 + â†1b̂k

]
. (3.67)

Now, we make a transformation to operators that diagonalize the chain part:

b̂† → b̂†

b̂ → b̂

â†j →
∑
k

cj∗k ĉ
†
k

âj →
∑
k

cjk ĉk.

We obtain

Ĥ = Ĥmol + Ĥch + V̂ =
2∑
k=1

ξk b̂
†
k b̂k +

∑
k

εk ĉ
†
k ĉk +

∑
j

2∑
k=1

Aj

[
b̂†k ĉj + ĉ†j b̂k

]
, (3.68)

where
Aj = thybc

1
j . (3.69)

We can solve the Green's function for the molecule directly from the equations of motion for Green's
functions. The equations of motion for the single-particle Green's function become (see Appendix
A.5)

[i~∂z − h(z)]G(z, z′) = ~δ(z − z′) (3.70)

G(z, z′)
[
h(z)− i~←−∂ z

]
= ~δ(z − z′). (3.71)
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To solve the Green's function matrix we start by making a of couple observations of the structure
of the di�erent matrices in Eqs. (3.70) and (3.71). First note that the Hamiltonian matrix in
energy basis becomes

H =



ξ1 0 A1 A2 . . .

0 ξ2 A1 A2

A1 A1 ε1 0

A2 A2 0 ε2 . . .
...

. . .


=

 Hmol Hmc

Hcm Hch

 . (3.72)

Also the single-particle Green's function matrix has the same block structure in energy basis,

G =

 Gmol Gmc

Gcm Gch

 . (3.73)

Using now the equation of motion in Eq. (3.70) we �nd

i~∂z

 Gmol Gmc

Gcm Gch

−
 Hmol Hmc

Hcm Hch

 Gmol Gmc

Gcm Gch

 = ~δ(z − z′)
 1 0

0 1

 . (3.74)

As we are interested mainly in the molecule part of the Green's function it is su�cient to consider
only the equations

i~∂zGcm −HcmGmol −HchGcm = 0 (3.75)

i~∂zGmol −HmolGmol −HmcGcm = δ(z − z′). (3.76)

The �rst Eq. (3.75) may be solved by

Gcm(z, z′) =
∫

dz1 gch(z, z1)HcmGmol(z1, z
′), (3.77)

where gch(z, z1) is the single-particle Green's function in the chain and thus a solution for

[i~∂z −Hch] gch(z, z1) = δ(z − z′). (3.78)

Plugging the solution (3.77) into (3.76) we obtain

[i~∂z −Hmol]Gmol(z, z′) = δ(z − z′) +
∫

dz1 ΣEM (z, z1)Gmol(z1, z
′), (3.79)

where we de�ned the embedding self-energy

ΣEM (z, z1) = Hmcgch(z, z1)Hcm. (3.80)

The fact that we call the quantity to be integrated with the Green's function self-energy follows
immediately if one operates with i~∂t − Ĥ from left to Eq. (2.40). Then one obtains a equivalent
equation to Eq. (3.79).

To proceed we now take the zero-temperature limit and use the fact that our Hamiltonian is time
independent. We see that every quantity is a function of z− z′ and thus we may Fourier transform
to frequency space. The Fourier transform of the non-interacting Green's function is calculated in
A.4.1. As our tight-binding chain is diagonalized in Eq. (3.68) we may use the form of Eq. (A.4.9)
for the Green's function in the chain and thus the embedding self-energy is easily calculated from
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Eq. (3.80)

ΣEM (ω)

=

A1 A2 . . . AN

A1 A2 . . . AN




1
ω−ε1+iηsgn(εi)

1
ω−ε2+iηsgn(ε2) ∅

∅ . . .

1
ω−εN+iηsgn(εN )




A1 A1

A2 A2

...
...

AN AN


=

N∑
k=1

A2
k

ω − εk + iηsgn(εk)

1 1

1 1

 ≡ Σ(ω)

1 1

1 1

 , (3.81)

where we may write Σ(ω) explicitly as

Σ(ω) = t2hyb

N∑
k=1

2
N+1 sin2

(
πk
N+1

)
ω − 2t cos

(
πk
N+1

)
+ iηsgn

(
t cos

(
πk
N+1

)) . (3.82)

Here we used Eqs. (3.69), (A.3.8) and (A.3.9). We continue by calculating Σ(ω) as N →∞. Then
as before we may use the Dyson equation Eq. (2.40) to obtain the Green's function in molecule.

In the limit N →∞, Eq. (3.82) becomes

Σ(ω) = t2hyb

∫ ∞
1

dk

2
N+1 sin2

(
πk
N+1

)
ω − 2t cos

(
πk
N+1

)
+ iηsgn

(
t cos

(
πk
N+1

)) , x =
πk

N + 1

= t2hyb
2
π

∫ π

0

dx
sin2 (x)

ω − 2t cos(x) + iηsgn(t cos(x))

= t2hyb
2
π

{
P
∫ π

0

dx
sin2 (x)

ω − 2t cos(x)
− i
∫ π

0

dx sgn(t cos(x))
η sin2(x)

(ω − 2t cos(x))2 + η2

}
,

(3.83)

where P stands for the Cauchy principal value [2]. We thus obtain

ReΣ(ω) = t2hyb
2
π
P
∫ π

0

dx
sin2 (x)

ω − 2t cos(x)
, (3.84)

ImΣ(ω) = −t2hyb
2
π

∫ π

0

dx sgn(t cos(x))
η sin2(x)

(ω − 2t cos(x))2 + η2
. (3.85)

It is convenient to consider the retarded self-energy (= ΣR(ω)), since in the end we are interested
in the spectral function and it can be calculated easily from retarded Green's function. The
imaginary part of the retarded self-energy is calculated in Appendix A.7.1. The real part of the
retarded self-energy is calculated from the imaginary part (A.7.2) by Kramer-Kronig relations in
Appendix A.7.1. From (A.7.2), (A.7.9) and (A.7.10) we may deduce the form of ΣR(ω). The
retarded self-energy reads

ΣR(ω) = −sgn(t)
1
2

(
thyb
t

)2


ω +
√
ω2 − 4t2, ω < −|2t|

ω + isgn(t)
√

4t2 − ω2, ω ∈ [2t,−2t]
ω −√ω2 − 4t2, ω > |2t|.

(3.86)

We are now ready to deduce the form of the retarded Green's function in the molecule through
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the Dyson equation Eq. (A.6.5). The retarded Green's function becomes

GRmol = ((GR0,mol)
−1 − ΣREM )−1 =


GR0,mol,H 0

0 GR0,mol,L

−1

− ΣR

1 1

1 1



−1

=

(GR0,mol,H)−1 − ΣR −ΣR

−ΣR (GR0,mol,L)−1 − ΣR

−1

=
1

det(GRmol)

(GR0,mol,L)−1 − ΣR ΣR

ΣR (GR0,mol,H)−1 − ΣR

 . (3.87)

As we have seen in chapter 2.4.2 the spectral function of the molecule can be deduced from the
imaginary part of the retarded Green's function. We will now solve the imaginary part from (3.87).

We start by multiplying by the complex conjugate of the determinant to obtain a real denominator

GRmol =
1

|det(GRmol)|2

det(GRmol)
∗
[
(GR0,mol,L)−1 − ΣR

]
det(GRmol)

∗ΣR

det(GRmol)
∗ΣR det(GRmol)

∗
[
(GR0,mol,H)−1 − ΣR

]
 .

(3.88)

Now, for example, the HOMO component of the retarded self-energy reads

GRmol,HH =
1
|Λ|2

[
ReΛ

(
ReΓL − ReΣR

)
+ ImΛ

(
ImΓL − ImΣR

)
− iImΛ

(
ReΓL − ReΣR

)
+ iReΛ

(
ImΓL − ImΣR

) ]
, (3.89)

where we de�ned

ΓL/H = (GR0,mol,L/H)−1

Λ = det(GRmol,L). (3.90)

We see that the imaginary component becomes

ImGRmol,HH =
ReΛ

(
ImΓL − ImΣR

)− ImΛ
(
ReΓL − ReΣR

)
|Λ|2 . (3.91)

It turns out that ImGRmol,HH divides into two pieces, one being a delta peak and the other the
continuum, for details see A.7.2. We recall the relation between the imaginary part of the retarded
self-energy and spectral function (2.60) to deduce from (A.7.22) that the spectral function at the
HOMO/LUMO level becomes

AHH/LL(ω) =


(ωL/H−ReΣR)2

+(ReΣR)2

√
ω2
L+ω2

H+4(ReΣR)2
1

| ddω (ωHωL−ReΣR(ωL+ωH))|
ω=a

δ(ω − a), ω /∈ [2t,−2t]

− 1
π

ImΣRω2
L/H

(ωHωL−ReΣR(ωL+ωH))2+(ImΣR)2(ωL+ωH)2
, ω ∈ [2t,−2t] ,

(3.92)
where the LUMO component is calculated identically to the HOMO component.

3.3 Numerics

The quantities introduced in previous sections require some programming if one wants to plot
the results. Moreover, as mentioned already, the real part of the self-energy in HFB Eq. (3.33)
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requires the use of Hilbert transform [14] since we were not able to �nd any analytical form for the
imaginary part Eqs. (3.31) and (3.32).

After having the self-energy in HFB we may calculate the spectral function Eq. (3.36) and from
it we can easily obtain, for example, the peak shift w.r.t. Uext in Eqs. (3.51) and (3.52). Thus we
may also deduce the approximate density at the terminal site of the chain. Moreover, the exact
density can be obtained from Eq. (3.61). Here we again calculate the integral numerically exactly.

The results presented below have been obtained by the attached code �SigmaIntegral.f�. After the
data �les are produced we use Gnuplot to plot the data. Also when calculating the peak shifts
out of the spectral function Eq. (3.36) we �t a fourth-order polynomial to the data and take the
derivative out of this polynomial to avoid numerical inaccuracies.

For the Fano model we have a separate code �FanoSpectral.f� which, as the name suggests, calcu-
lates the spectral function for the two-level Fano model Eq. (3.92).
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Chapter 4

Results

In this chapter I will present the results obtained considering the models presented in Chapter 3.
The main focus is given on the HOMO/LUMO level peak shifts w.r.t. Uext and the connection
of this shift to the image-charge at the terminal site of the chain. We start by introducing the
self-energies and then go on to study the spectral functions for each system separately. In the end
we will do some comparison about the peak behauviour and draw conclusions about the systems
separately.

4.1 Interacting model

For the case of an interacting model we can calculate the self-energy in molecular orbitals from
(3.31) and (3.32) numerically exactly. With the self energies obtained the rest of the properties
are easy to deduce through Eqs. (3.35) and (3.36). We start by introducing the form of the self
energies.

4.1.1 Self-energy

The two di�erent approximations for the self-energy namely, the Hartree-Fock and HFB are pre-
sented in Eqs. (3.11), (3.31) and (3.32). The form of the Hartree-Fock self-energy is simply a
constant as a function o ω. The part of self-energy coming from the bubble diagram (ΣB) is shown
in Fig. 4.1. The parameters are chosen as Eq. (3.49) suggests.

As indicated by Eqs. (3.31) and (3.32) the e�ect of Uext to the second-order self-energy is just a
multiplication. The curve remains unchanged; only the height changes w.r.t. Uext. Hence we see
that the larger Uext the more important the second-order diagrams become.

4.1.2 Spectral functions

We now turn our attention to the peak shifts w.r.t. Uext. The peak shifts are easy to deduce from
the spectral function which can be read from Eq. (3.36).

A numerical solution is given for the case ImΣHH = ImΣBHH + ΣHFHH = 0. Note that we are now
dealing with the full self-energy, i.e., we also include the Hartree-Fock contribution. From Eq.
(3.36) we see that to obtain a peak two conditions must be satis�ed:
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Figure 4.1: Left: The real and imaginary parts of the second-order self-energy contribution at
HOMO and LUMO with Uext = 0.7. Right: The real and imaginary parts of second order self-
energy contribution at molecular orbitals. For HOMO Uext = 1 and for LUMO Uext = 0.5. The
parameter values are U0 = UHL = 1, ξH = −2, ξL = −1 and t = −1.

1. ImΣii(ω) = 0,

2. ω − ξi + Uext − ReΣHFii (ω) = ReΣBii (ω).

The numerical result is shown in Fig. 4.2.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-5 -4 -3 -2 -1  0  1  2

ω

Re ΣB
HH

Im ΣB
HH

ω -ξH - U0

ALL

-0.1

-0.05

 0

 0.05

 0.1

 0  1  2  3  4  5  6

ω

Re ΣB
HH

Im ΣB
HH

ω - ξL -2UHL

ALL

Figure 4.2: Left: Solution to determine the position of the split-o� state peak for the HOMO level
Uext = 1. Right: Same as the previous but with Uext = 0.3 and LUMO level. The corresponding
spectral functions are also plotted. Note that the spectral function integrates to two. U0 = UHL =
1, ξH = −2, ξL = −1 and t = −1.

Now that we know how to deduce the peak shift it is convenient to see how the HOMO/LUMO
level peaks shift w.r.t. Uext. We also present the exact peaks shift which are calculated using
the Hellman-Feynman theorem [Eq. (3.53)]. The peak shifts are presented in Fig. 4.3. One can
actually see that with large Uext the peaks would intersect. The method by which these plots are
generated becomes clear as we introduce the way of deducing the density at the terminal site of
the chain.

Image-charge

We may deduce the densities at the terminal site of the chain through Eqs. (3.51) and (3.52) and
the exact density through Eq. (3.66). We plot �rst the spectral function at the terminal site for
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Figure 4.3: Left: The peak position in HFB and in the exact solution for HOMO and LUMO levels
w.r.t. Uext. Right: The peak intensity in HFB for HOMO and LUMO levels w.r.t. Uext. Here
U0 = UHL = 1, ξH = −2, ξL = −1 and t = −1.

one particle removed from the HOMO level. The exact spectral function are plotted in Fig. 4.4
and the corresponding density and the HOMO level peak shift are also presented.
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Figure 4.4: Left: Spectral function at the terminal site of the chain with di�erent Uext. Note
the forming of peak when |Uext| > |t|. Right: The corresponding exact density integrated out of
the spectral functions and the HOMO peak shift calculated from density using Hellman-Feynman
theorem. Here t = −1, U0 = UHL = 1, ξH = −2 and ξL = −1.

The peak positions at the level of Hartree-Fock are independent of Uext thus at Hartree-Fock level
we do not see any image-charge e�ect in the chain. However if we take our HFB approximation we
may calculate the densities at the terminal site w.r.t. Uext through Eq. (3.53). The densities with
di�erent values of t are plotted in Fig. 4.5. The exact densities are obtained through Eq. (3.66)
as already introduced in Fig. (4.4).

We also plot the density for LUMO level w.r.t. Uext/|t|. This shows the property already deduced
in Eq. (3.66), i.e., the exact density at the terminal site is a function only of Uext/|t|. Howeve,r
in HFB the density is a function of Uext and t separately. Thus we get a large deviation from the
exact density depending on the values of Uext and t, see Fig. 4.6.
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hoppings t. Here U0 = UHL = 1, ξH = −2 and ξL = −1.
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Figure 4.6: Left: Density at terminal site of the chain w.r.t Uext/t in HFB and exact. Right:
two-level Fano model Spectral function with di�erent thyb, ξH = ξL = −1, t = −1

4.2 Fano model

So far we have seen that one can deduce the image-charge at the terminal site through the spectral
peak shifts in the interacting model. However, there are also other possibilities to obtain peaks
in the spectral function. In Fig. 4.6 we plot also the spectral function (eq. 3.92) at the HOMO
level for the two-level Fano model. Even though there are no interactions in the Fano model, and
thus all image-charge e�ects are impossible, we see that with large thyb we obtain spectral peaks,
which also seem to shift w.r.t. di�erent parameters in the model. This is not too suprising since
we have already seen the forming of a split-o� state in the case of a one-level Fano model, i.e., at
the terminal site of the chain, see Fig. 4.4.

4.3 Discussions

1. In our image-charge model we may a �nd correspondance between the density at the terminal
site of the chain and the HOMO/LUMO level spectral peak shift. This correspondence can
be used to deduce the exact peak shift from the exact density and the approximate density
from approximate peak shifts. With these results we may compare our approximation with
the exact results.

2. For the image-charge model we do not �nd any image-charge e�ect at the Hartree-Fock level.

54



This can be seen immediately from Eq. (3.16), which does not contain Uext at all. The
fact that the Hartree-Fock approximation is independent of Uext is due to the nature of this
approximation: in our calculation the Hartree diagram just probes the density at the terminal
site of the chain; the density is naturally constant since we always plug the non-interacting
Green's function into the diagrams. Since the density at the terminal site is constant and the
Fock diagram only gives on-site corrections, and hence we do not see any Uext dependence
at the Hartree-Fock level.

However, for Uext = 0 the Hartree-Fock approximation predicts the addition and removal
energies for the molecule correctly. This is not too surprising due to the fact that the
Hartree-Fock practically takes the Slater determinant and �nds optimal orbitals to minimize
the ground-state energy. However, in our case with Uext = 0 the Hamiltonian is diagonal in
the molecule, and hence the exact ground state in the molecule is just a Slater determinant.
For a diagonal Hamiltonian the energy levels become just the spectral peaks, and hence the
peak positions are predicted correctly by the Hartree-Fock method for Uext = 0.

3. In the second order only the �bubble� diagram gives a non-zero contribution. This is a
consequence of the structure of our Hamiltonian, which only permits the bubble and �ladder�
diagrams to exist. Unlike in the Hartree-Fock case, we now obtain the density response at
the terminal cite of the chain to the additional charge in the molecule.

The fact that the terminal site of the chain now �sees� the additional charge can be understood
by considering the �bubble� diagram. The particle-hole �bubble� can be shown to be the �rst-
order approximation of the density response function [4]. In our approximation the additional
particle/hole in the molecule interacts with the terminal site of the chain creating a particle-
hole �bubble�, i.e., a density change to the terminal site of the chain (=image-charge). After
this density change the terminal site acts back to the molecule and hence the image-charge
e�ect is, to some extent, encoded into our HFB approximation. It turns out that the value
of the �bubble� diagram (at HOMO and LUMO levels) is proportional to (Uext/t)2.

The self-energies calculated from the �bubble� diagram can be seen in Fig. 4.1. The Uext
dependence of the self-energy starts to play a role in the spectral functions as we see in Fig.
4.2. From the spectral function we deduce now the density at the terminal site, and hence
we obtain Uext dependence in the density at the HFB level, see Fig. 4.5.

4. From the spectral function at the HOMO/LUMO level, Fig. 4.2, we may notice the peak
outside of the continuum. This split-o� state forms below/above the energy band immediately
as the two conditions given in chapter 4.1.2 are satis�ed. The forming of a split-o� state is
due to the fact that the additional charge creates an e�ective potential to the terminal site
of the chain. If this potential is large enough it can push one state out of the band. This
state is then seen as a peak in the spectral function.

5. The densities at the terminal site of the chain are calculated from the spectral peak shifts
w.r.t. Uext, see Eqs. 3.52 and 3.51. One can observe that the formation of the bound state
does not give any discontinuity into the density.

An interesting property of the densities is the fact that the larger the hopping parameter
the less the additional charge is able to polarize the terminal site. This may be seen as a
consequence of the fact that the value of the density-response function is proportional to 1/t2,
i.e., the smaller t the more the terminal site responds to additional charge in the molecule.
Physically one can think the e�ect through the fact that for small t one has a narrow band
and hence a large density of states which in turn implies large density response function [11].

6. There is value of t ≡ te ≈ 1.3 for which the HFB approximation gives an almost exact
density, see Fig. 4.6. The fact that there is some te for which the approximation works nicely
for only one value of t can be viewed as a consequence of the fact that we have made only
�single-shot� approximation instead of fully self-consistent series of iterations. If we did a
self-consistent calculation we would de�netly get less deviation in the results for the HFB
approximation, Fig. 4.6, with di�erent t. Doing the fully self-consistent scheme one would
get the same results with all di�erent approximations for initial Green's functions. This
consideration shows that one must be really careful when doing single-shot approximations.
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7. Even though there are no interactions and thus no �external potential� at the terminal site
of the chain in the two-level Fano model, we may see that for large hybridization also here
we get split-o� states outside the band, see Fig. 4.6.
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Appendix A

A.1 Intermediate steps

A.1.1 Operation of the annihilation operator

We consider the operation of ψ̂(y) in the matrix element 〈Ψ|ψ̂(y)|x1 . . .xn〉 = 〈x1 . . .xn|ψ̂†(y)|Ψ〉∗.
Here |Ψ〉 is some general n− 1 particle state and thus has expansion

|Ψ〉 =
1

(n− 1)!

∫
dy2 . . . dyn |y2 . . .yn〉 〈y2 . . .yn|Ψ〉

=
1

(n− 1)!

∫
dy2 . . . dyn Ψ(y2 . . .yn)|y2 . . .yn〉 (A.1.1)

Inserting this (A.1.1) into the matrix element we obtain

〈Ψ|ψ̂(y1)|x1 . . .xn〉
=

1
(n− 1)!

∫
dy2 . . . dyn Ψ∗(y2 . . .yn) 〈y1y2 . . .yn|x1 . . .xn〉

=
1

(n− 1)!

∫
dy2 . . . dyn Ψ∗(y2 . . .yn)

∑
σ

(−1)σ
n∏
i=1

δ(yi − xσ(i))

=
1

(n− 1)!

∑
σ

(−1)σδ(y1 − xσ(1))Ψ∗(xσ(2) . . .xσ(n))

=
n∑
k=1

δ(y1 − xk)
1

(n− 1)!

∑
σ,σ(1)=k

(−1)σΨ∗(xσ(2) . . .xσ(n)), (A.1.2)

where on the last line we just wrote the sum over all the permutations as a sum of n classes of
(n− 1)! permutations that map 1 to k. The permutation of 1 to k gives rise to sign (−1)k−1. Any
permutation can be obtained by permuting the remaining n− 1 indices. Now we consider the last
term on the last line of (A.1.2)

1
(n− 1)!

∑
σ,σ(1)=k

(−1)σΨ∗(xσ(2) . . .xσ(n))

=
1

(n− 1)!

∑
σ′

(−1)k−1(−1)σ
′
Ψ∗(xσ′(1) . . .xσ′(k−1)xσ′(k+1) . . .xσ′(n))

=
(−1)k−1

(n− 1)!

∑
σ′

(−1)2σ′Ψ∗(x1 . . .xk−1xk+1 . . .xn)

=
(−1)k−1

��
��(n− 1)!�

���(n− 1)!Ψ∗(x1 . . .xk−1xk+1 . . .xn), (A.1.3)
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where we used the antisymmetry of the wave function. Now plugging (A.1.3) into (A.1.2) we may
deduce

〈Ψ|ψ̂(y1)|x1 . . .xn〉 =
n∑
k=1

(−1)k−1δ(y1 − xk) 〈Ψ|x1 . . .xk−1xk+1 . . .xn〉 . (A.1.4)

The relation (A.1.4) is valid for any state n− 1 particle state 〈Ψ| and thus

ψ̂(y1)|x1 . . .xn〉 =
n∑
k=1

(−1)k−1δ(y1 − xk)|x1 . . .xk−1xk+1 . . .xn〉+ |ϕ〉, (A.1.5)

where |Ψ〉〈ϕ| = 0. Thus |ϕ〉 does not have any component in n− 1 particle Hilbert space. Taking
inner product of both sides (A.1.5) with 〈ϕ| we may conclude

〈ϕ|ϕ〉 = 〈ϕ|ψ̂(y1)|x1 . . .xn〉 = 〈x1 . . .xn|ψ̂†(y1)|ϕ〉∗ = 0, (A.1.6)

since ψ̂†(y1)|ϕ〉 cannot have any component in the n particle Hilbert space. Thus |ϕ〉 = 0 and we
obtain

ψ̂(y1)|x1 . . .xn〉 =
n∑
k=1

(−1)k−1δ(y1 − xk)|x1 . . .xk−1xk+1 . . .xn〉. (A.1.7)

We quickly check that (A.1.7) is consistent with our normalization of basis states. We may calculate

〈y1 . . .yn|x1 . . .xn〉 = 〈0|ψ̂(yn) . . . ψ̂(y1)|x1 . . .xn〉

= 〈0|
n∑

k1=1

(−1)k1−1δ(y1 − xk1)ψ̂(y1) . . . ψ̂(yn−1)|x1 . . .xk1−1xk1+1 . . .xn〉

= 〈0|
n∑

k1=1

(−1)k1−1δ(y1 − xk1)
n−1∑
k2

(−1)k2−1δ(y2 − xk2)

× ψ̂(yn) . . . ψ̂(y3)|x′1 . . .x′k2−1x
′
k2+1 . . . . . .x

′
n−1〉,

(A.1.8)

where {x′1 . . .x′n−1} is now the group where xk1 has been removed from {x1 . . .xn}. By continuing
in this manner we arrive at

〈y1 . . .yn|x1 . . .xn〉

= 〈0|
n∑

k1=1

(−1)k1−1δ(y1 − xk1)
n−1∑
k2

(−1)k2−1δ(y2 − x(2)
k2

) . . .

×
2∑

kn−1=1

(−1)kn−1−1δ(yn−1 − x(n−1)
kn−1

)δ(yn − x(n)
kn

)|0〉,

=
n∑

k1=1

· · ·
2∑

kn−1=1

(−1)k1+···+kn−1−n+1
n∏
i=1

δ(yi − x(i)
ki

). (A.1.9)

We see that every xi appear in the product exactly once and the prefactor appears to be the sign
of the permutation over xi's. We thus conclude

〈y1 . . .yn|x1 . . .xn〉 =
∑
σ

(−1)σ
n∏
i=1

δ(yi − xσ(i)). (A.1.10)
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A.1.2 Anti-commutator

To deduce the operation of
{
ψ̂†(x), ψ̂(y)

}
to arbitrary ket state |x1 . . . xn〉 we use the operation

of the annihilation operator to the general ket state (1.26). We write{
ψ̂†(x), ψ̂(y)

}
|x1 . . .xn〉 =

(
ψ̂†(x)ψ̂(y) + ψ̂(y)ψ̂†(x)

)
|x1 . . .xn〉

= ψ̂†(x)
n∑
k=1

(−1)k−1δ(y − xk)|x1 . . .xk−1xk+1 . . .xn〉

+
n+1∑
k=1

(−1)k−1δ(x− x′k)|x′1 . . .x′k−1x
′
k+1 . . .x

′
n+1〉,

(A.1.11)

where on the last line we rede�ned x,x1, . . . ,xn → x′1, . . . ,x
′
n+1. We continue by considering the

last line of (A.1.11)

n+1∑
k=1

(−1)k−1δ(x− x′k)|x′1 . . .x′k−1x
′
k+1 . . .x

′
n+1〉,

= δ(x− x′k)|x′2 . . .x′n+1〉+
n+1∑
k=2

(−1)k−1δ(x− x′k)|x′1 . . .x′k−1x
′
k+1 . . .x

′
n〉,

= δ(x− x′k)|x′2 . . .x′n+1〉+
n∑

k′=1

(−1)k
′
δ(x− x′k′+1)|x′1 . . .x′k′x′k′+2 . . .x

′
n〉,

= δ(x− x′k)|x′2 . . .x′n+1〉 −
n∑

k′=1

(−1)k
′−1δ(x− xk′)|xx1 . . .xk′−1xk′+1 . . .xn〉.

(A.1.12)

Plugging this (A.1.12) into (A.1.11) we may deduce{
ψ̂†(x), ψ̂(y)

}
= δ(x− y). (A.1.13)

A.1.3 Slater Determinant

We want to calculate the inner-product 〈x1 . . .xN n̂1 . . . n̂N 〉. To get started use the de�nitions of
operators â†ni (1.31)

〈x1 . . .xN |n̂1 . . . n̂N 〉 = 〈x1 . . .xN |â†n1
. . . â†nN |0〉

=
∫

dy1 . . . dyN

(1.15)
=

P
σ(−1)σ

Qn
i=1 δ(yi−xσ(i))︷ ︸︸ ︷

〈x1 . . .xN |ψ̂†(y1) . . . ψ̂†(yN )|0〉ϕn1(y1) . . . ϕnN (yN )

=
∫

dy1 . . . dyN
∑
σ

(−1)σ
n∏
i=1

δ(yi − xσ(i))ϕn1(y1) . . . ϕnN (yN )

=
∑
σ

(−1)σϕn1(xσ(1)) . . . ϕnN (xσ(N)), (A.1.14)

(A.1.15)

but this last line is nothing but the de�nition of the determinant of a matrix of ϕi(xj) and thus

〈x1 . . .xN |n̂1 . . . n̂N 〉 =

∣∣∣∣∣∣∣∣∣
ϕn1(x1) . . . ϕn1(xN )

...
...

ϕnN (x1) . . . ϕnN (xN )

∣∣∣∣∣∣∣∣∣ (A.1.16)
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A.1.4 Operators in second quantization

In this part we will deduce the form of di�erent operators in terms of ψ̂ and ψ̂†. We will prove
a couple of relations and state the rest due to the fact that all the calculations are quite similar.
Consider �rst

ψ̂†(x)ψ̂(y)|x1 . . .xn〉 (1.26)
=

∑
i

(−1)i−1ψ̂†(x)δ(y − xi)|x1 . . .xi−1xi+1 . . .xn〉

(1.27)
=

∑
i

(−1)i−1(−1)i−1δ(y − xi)|x1 . . .xi−1xxi+1 . . .xn〉

=
∑
i

δ(y − xi)|x1 . . .xi−1xxi+1 . . .xn〉, (A.1.17)

thus we �nd for x = y

ψ̂†(x)ψ̂(x)|x1 . . .xn〉 =
∑
k

δ(xk − x)|x1 . . .xn〉

⇒ ψ̂†(x)ψ̂(x) = n̂(x). (A.1.18)

Now for example the external potential Û is easy to deduce. De�ne

Û =
∫

dx u(r)n̂(x), (A.1.19)

then

(ÛΨ)(x1, . . . ,xn) = 〈x1 . . .xn|Û |Ψ〉
=

∫
dx u(r)〈Ψ|n̂(x)|x1 . . .xn〉∗

=
∫

dx
∑
k

(xk − x) u(r)Ψ(x1, . . . ,xn)

= u(rk)Ψ(x1, . . . ,xn), (A.1.20)

which is the de�nition of the external potential in coordinate representation. Let us then de�ne
the kinetic energy operator as

T̂ = − ~2

2m

∫
dx ψ̂†(x)∇2ψ̂(x). (A.1.21)

Then we may calculate

(T̂Ψ)(x1 . . .xn) = − ~2

2m

∫
dx 〈Ψ|ψ̂†(x)∇2ψ̂(x)|x1 . . .xn〉∗

= − ~2

2m

∫
dx ∇2

y〈Ψ|ψ̂†(x)ψ̂(y)|x1 . . .xn〉∗|y=x
(A.1.17)

= − ~2

2m

∫
dx ∇2

y

∑
i

δ(y − xi)|y=xΨ(x1 . . .xi−1xxi+1 . . .xn)

= − ~2

2m

∫
dx

∑
i

Ψ(x1 . . .xi−1xxi+1 . . .xn)∇2
xδ(x− xi), (A.1.22)

partial integrate twice to obtain

(T̂Ψ)(x1 . . .xn) = − ~2

2m

∫
dx

∑
i

δ(x− xi)∇2
xΨ(x1 . . .xi−1xxi+1 . . .xn)

= − ~2

2m

∑
i

∇2
xiΨ(x1 . . .xn), (A.1.23)
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i.e., our de�nition (A.1.21) for the kinetic energy operator is correct. The two body interaction
can be found from [10] and it reads

V̂ =
1
2

∫
dxdx′V (r, r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x). (A.1.24)

A.1.5 Commutation under time ordered product

For the time ordered product de�ned as

T (Ô(tσ(n)) . . . Ô(tσ(1))) = Ô(tn) . . . Ô(t1), (A.1.25)

with tn > · · · > t1 we clearly see that one can order the operators in any order desired, since after
time ordering they will turn out to be in same proper order. Now consider exponentials

eÂ(t2)eB̂(t1) =
∞∑

n,m=0

1
n!
Â(t2)n

1
m!
B̂(t1)m

= 1 + Â(t2) + B̂(t1) +
1
2

(Â2(t2) + B̂2(t1) + 2Â(t2)B̂(t1)) + . . . (A.1.26)

eÂ(t2)+B̂(t1) =
∞∑
n=0

1
n!

(Â(t2) + B̂(t1))n

= 1 + Â(t2) + B̂(t1) +
1
2

(Â2(t2) + B̂2(t1) + Â(t2)B̂(t1) + B̂(t1)Â(t2)) + . . .

(A.1.27)

Taking time ordered product of (A.1.26) and (A.1.27) we see that T (eÂ(t2)eB̂(t1)) = T (eÂ(t2)+B̂(t1)).

A.2 Two coupled systems

If two systems are in equilibrium with total energy E and particle number N we need maximize
entropy S = S1 + S2 with the constraints arising from the energy and particle number. Find the
extremum of S

∂S

∂E1
=

∂S1

∂E1
+
∂S2

∂E1
=
∂S1

∂E1
+

∂E−E1
∂E1

=−1︷︸︸︷
∂E2

∂E1

∂S2

∂E2
=
∂S1

∂E1
− ∂S2

∂E2
= 0

∂S

∂N1
=

∂S1

∂N1
+
∂S2

∂N1
=
∂S1

∂N1
+

∂N−N1
∂N1

=−1︷ ︸︸ ︷
∂N2

∂N1

∂S2

∂N2
=
∂S1

∂N1
− ∂S2

∂N2
= 0.

We demand that for two systems in equilibrium the temperature and chemical potential are equal.
Thus we de�ne

1
T1

=
∂S1

∂E1
=

∂S2

∂E2
=

1
T2

(A.2.1)

−µ1

T1
=
∂S1

∂N1
=

∂S2

∂N2
= −µ2

T2
(A.2.2)

A.3 tight-binding chain

The tight binding model is widely used in condensed matter physics and it forms the basis for
many approximations of many-particle systems, for example the Hubbard model [8]. The one
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dimensional tight binding Hamiltonian can, in second quantization, be written as

Ĥ =
∑
i,j

tij â
†
i âj . (A.3.1)

The tight binding approximation assumes that the electrons are non-interacting and that the
matrix elements tij with j 6= i± 1 are zero and for the ti,i±1 = t. Schematically the model can be
viewed as chain of sites which the electron can occupy and hop from a site to the one next to it.

As the electrons do not interact they see each other only through the Pauli exclusion principle,
which states that two fermions with all same quantum numbers can not occupy the same site. For
tight binding Hamiltonian this leads to the fact that there cannot be more than two electrons at
one site and these two must have opposite spins.

There are many ways to diagonalize the above Hamiltonian. We will go it through in detail since
I have been using these eigenenergies and states a lot. We start by writing the Eq. (A.3.1) in the
form

Ĥ =
∑
i,j

tij â
†
i âj =

∑
i,j

〈i|ĥ|j〉â†i âj , (A.3.2)

where ĥ = t
∑N−1
i=1 |i+ 1〉〈i|+ |i〉〈i+ 1|, where N is the number of sites. Let the eigenstate of ĥ be

|φk〉 with eigenvalue εk. Since the states |i〉 form complete set we can expand the eigenstate |φk〉
with these basis states yielding |φk〉 =

∑
i c
k
i |i〉. Now we use the Schrödinger equation to obtain

εk|φk〉 = εk
∑
i

cki |i〉 = ĥ
∑
i

cki |i〉

= t

N−1∑
j=1

N∑
i=1

|j + 1〉〈j|cki |i〉+ |j〉〈j + 1|cki |i〉

= t

N−1∑
j=1

ckj |j + 1〉+ t

N−1∑
j=1

ckj+1|j〉

= t

N∑
j=2

ckj−1|j〉+ t

N−1∑
j=1

ckj+1|j〉

= t

[
ckN−1|N〉+ ck2 |1〉+

N−1∑
i=2

(ci−1 + cki+1)|i〉
]
. (A.3.3)

Now comparing the �rst and the last lines of (A.3.3) one can deduce properties of the factors cki .
The relations read

εkc
k
j = t(cj+1 + cj−1) ∀ j ∈ {2, . . . , N − 1}

εkc
k
1 = tck2

εkc
k
N = tckN−1. (A.3.4)

Next we make ansatz: let the factors be of the form ckj = αk sin(βkj). Now the �rst condition of
(A.3.4) gives

εkαk sin(βkj) = t[αk sin(βk(j + 1)) + αk sin(βk(j − 1))]
= tαk[sin(βk(j + 1)) + sin(βk(j − 1))]

=
tαk
2

[eβk(j+1) − e−βk(j+1) + eβk(j−1) − e−βk(j−1)]

=
tαk
2
(
eβk + e−βk

) (
eβkj − e−βkj

)
= 2tαk sin(βkj) cos(βk)

⇒ εk = 2t cos(βkj). (A.3.5)
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Next we use the third equality of (A.3.4) and the result obtained above (A.3.5) to �nd

εk sin(βkN) = t sin(βk(N − 1))
2t cos(βk) sin(βkN) = t sin(βk(N − 1))

t[sin(βk(N + 1)) +((((
(((sin(βk(N − 1))] = ((((

((((t sin(βk(N − 1))
⇒ sin(βk(N + 1)) = 0

⇒ βk =
kπ

N + 1
∀ k ∈ {1, . . . , N}. (A.3.6)

Here from the second to the third line we used a result that can be read from the intermediate
steps of Eq. (A.3.5). The last task to do is to determine the coe�cients αk. This is done by

requiring that the eigenstates are normalized to unity, i.e.,
∑N
j=1 |ckj |2 = 1. In the limit N → ∞

we may show

1 =
N∑
j=1

|ckj |2N →∞−−−−−→
∫ N

1

dj α2
k sin2(

πk

N + 1
j), let πkj/(N + 1) = x

=
∫ πk

0

dx
N + 1
πk

α2
k sin2(x) = α2

k

N + 1
��πk

��πk

2

⇒ αk =

√
2

N + 1
(A.3.7)

where we chose the plus sign for the factor αk. Note also that the factor is independent of the
index k. We are now ready to present the eigenenergies and -states of the one dimensional tight
binding Hamiltonian system

εk = 2t cos
(

kπ

N + 1

)
(A.3.8)

cki =

√
2

N + 1
sin
(

kπ

N + 1
i

)
, ∀ k, i ∈ {1, . . . , N}. (A.3.9)

Now the TB Hamiltonian can be expressed as

ĤTB =
∑
k

εk ĉ
†
k ĉk, where (A.3.10)

ĉ†k =
∑
i

cki â
†
i (A.3.11)

ĉk =
∑
i

ci∗k âi. (A.3.12)

A.4 Green's function in di�erent exactly solvable systems

A.4.1 Non-interacting Green's function

In zero temperature the Green's function becomes (2.44)

G0(xt, x′t′) = −i〈Ψ0|T (ψ̂H(x, t)ψ̂†H(x′, t′))|Ψ0〉, (A.4.1)

where T (A(t)B(t′)) = θ(t− t′)A(t)B(t′)− θ(t′ − t)B(t′)A(t), i.e., T is the time-ordering operator

ordering last time to left. As usual x = (r, σ) is the space-spin coordinate. Operators ψ̂H(x, t) and
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ψ̂†H(x′, t′) can be expanded with the energy eigenstates1

ψ̂H(x, t) =
∑
k

φk(r)âk,H(t)

ψ̂†H(x′, t′) =
∑
k

φ∗k(r′)â†k,H(t′), k = (k, σ) (A.4.2)

Now plug these (A.4.2) into (A.4.1). With time ordering written open this yields

G0(xt, x′t′) = −i
∑
k,k′

θ(t− t′)φk(r)φ∗k′(r
′)〈Ψ0|âk,H(t)â†k′,H(t′)|Ψ0〉

+ θ(t′ − t)φk(r)φ∗k′(r
′)〈Ψ0|â†k′,H(t′)âk,H(t)|Ψ0〉. (A.4.3)

Next we transform the operators â†k′,H(t′) and âk,H(t) from the Heisenberg to the Schrödinger
picture. Since our Hamiltonian is constant in time the transformation is just

ÔH(t) = eiĤtÔSe
−iĤt. (A.4.4)

Inserting the identity
∑
n |ΨN±1

n 〉〈ΨN±1
n |, where 〈ΨN±1

i | are energy eigenstates with one particle
added/removed in comparison to ground state, between the creation and annihilation operators,
transforming to the Schrödinger picture and operating with the exponentials one obtains

G0(xt, x′t′) = −i
∑
k,k′,n

θ(t− t′)φk(r)φ∗k′(r
′)ei(E0−EN+1

n )(t−t′)

× 〈Ψ0|âk|ΨN+1
n 〉〈ΨN+1

n |â†k′ |Ψ0〉
+ θ(t′ − t)φk(r)φ∗k′(r

′)ei(E0−EN−1
n )(t′−t)

× 〈Ψ0|â†k′ |ΨN−1
n 〉〈ΨN−1

n |âk|Ψ0〉. (A.4.5)

To proceed we make the observation that the ground state |Ψ0〉 is the Fermi sphere and thus to
obtain a non-zero overlap with the states where one electron has been added/removed we must have

|ΨN+1
k 〉 = â†k|Ψ0〉 where k such that it is out of the Fermi sphere. Now Ĥ|ΨN+1

k 〉 = Ĥâ†k|Ψ0〉 =
(εk + E0)|ΨN+1

k 〉, moreover, Ĥ|ΨN−1
p 〉 = Ĥâp|Ψ0〉 = (εp + E0)|ΨN−1

p 〉 where k /∈ {FS} and
p ∈ {FS}. With the requirement of non-vanishing overlaps we may restrict the summation indices
to be outside/inside of the Fermi sphere. moreover, both of the matrix elements must be non-zero
which leads to k = k′. Furthermore we de�ne τ = t− t′, now Eq. (A.4.5) may be written

G0(xt, x′t′) = −i
∑

k>N/2

θ(τ)φk(r)φ∗k′(r
′)e−iεkτ

+
∑

k≤N/2

θ(−τ)φk(r)φ∗k′(r
′)e−iεkτ . (A.4.6)

The fact that k ≷ N/2 is not a problem since as we remember k is a space-spin index and thus the
half integer numbers correspond to di�erent spin orientations.

In this particular thesis we work most of the time in frequency space. We may obtain the Green's
function in frequency space by a Fourier transform [2]. We have to use the known identity [2]

θ(τ) = lim
η→0+

− 1
2πi

∫
dω

e−iωτ

w + iη
. (A.4.7)

1Note that since our Hamiltonian is of the form Ĥ =
P

i εiâ
†
i âi, where â

† and â are operators in site basis, the

Hamiltonian has common energy and site eigenstates.
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Perform the Fourier transform as

G0(x, x′, ω) = −i
∑

k>N/2

φk(r)φ∗k(r′) lim
η→0+

(
− 1

2πi

)∫
dω′dτ

e−iω
′τ

ω′ + iη
eiωτe−iεkτ

+i
∑

k≤N/2

φk(r)φ∗k(r′) lim
η→0+

(
− 1

2πi

)∫
dω′dτ

eiω
′τ

ω′ + iη
eiωτe−iεkτ

=
∑

k>N/2

φk(r)φ∗k(r′) lim
η→0+

∫
dω′

δ(ω − ω′ − εk)
ω′ + iη

−
∑

k≤N/2

φk(r)φ∗k(r′) lim
η→0+

∫
dω′

δ(ω + ω′ − εk)
ω′ + iη

= +
∑

k>N/2

φk(r)φ∗k(r′) lim
η→0+

1
ω − εk + iη

−
∑

k≤N/2

φk(r)φ∗k(r′) lim
η→0+

−1
ω − εk − iη

=
∑
k

φk(r)φ∗k(r′)
1

ω − εk + iη+sgn(εk)

=
∑
k,k′

φk(r)φ∗k′(r
′)G0

kk′(ω), (A.4.8)

where we introduce sgn(εk) = +1 (−1) for k out (in) of the Fermi sphere and η+ has the obvious
meaning as limη→0+ . One may now �nally write the components of the Green's function matrix
for free electrons

G0
kk′(ω) =

δkk′

ω − εk + iη+sgn(εk)
. (A.4.9)

A.4.2 Green's function in a tight-binding chain

As above in A.4.1 we start with the de�nition of the Green's function at zero temperature

G0(xt, x′t′) = −i〈Ψ0|T (ψ̂H(x, t)ψ̂†H(x′, t′))|Ψ0〉. (A.4.10)

The operator T has the same meaning as in chapter A.4.1. Now we would again like to expand
ψ̂H(x, t) and ψ̂†H(x′, t′) in energy eigenstates. This is a bit more tricky since the Hamiltonian for
the tight binding model does not have common energy and occupation eigenstates. In order to
proceed we need the relation between the operators in site basis and the operators in energy basis.
For this Hamiltonian, these can be collected from A.3 by remembering that the transformation
matrix cki must be unitary and inverting Eqs. (A.3.11) and (A.3.12). The expansion becomes

ψ̂H(x, t) =
∑
k

φk(r)âk,H(t) =
∑
k,j

φk(r)ckj ĉj,H(t) (A.4.11)

ψ̂†H(x′, t′) =
∑
k

φ∗k(r′)â†k,H(t′) =
∑
k,j

φk(r′)ckj ĉ
†
j,H(t′), (A.4.12)

where in the former we used ci∗k = cki . Now these (A.4.11) and (A.4.12) can be plugged into
(A.4.10). After writing the time ordering open and transforming from the Heisenberg to the
Schrödinger picture the equation for the Green's function reads

GTB
0 (xt, x′t′) = −i

∑
k,k′,j,j′

θ(t− t′)ckj ck
′

j′φk(r)φ∗k′(r
′)〈Ψ0|ĉj,H(t)ĉ†j′,H(t′)|Ψ0〉

+ θ(t′ − t)ck′j′ ckjφk(r)φ∗k′(r
′)〈Ψ0|ĉ†j′,H(t′)ĉj,H(t)|Ψ0〉. (A.4.13)
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Transforming to the Schrödinger picture and inserting unit operators equivalently as in (A.4.4)
and (A.4.5) we obtain

GTB
0 (xt, x′t′) = −i

∑
k,k′,j,j′,n

θ(t− t′)ckj ck
′

j′φk(r)φ∗k′(r
′)ei(E0−EN+1

n )(t−t′)

× 〈Ψ0|ĉj |ΨN+1
n 〉〈ΨN+1

n |ĉ†j′ |Ψ0〉
+ θ(t′ − t)ck′j′ ckjφk(r)φ∗k′(r

′)ei(E0−EN−1
n )(t′−t)

× 〈Ψ0|ĉ†j′ |ΨN−1
n 〉〈ΨN−1

n |ĉj |Ψ0〉. (A.4.14)

Now we use similar arguing as in A.4.1 to show that one must have j = j′ = n and that the
sums must run outside (inside) of the Fermi sphere for 〈Ψ0|ĉj |ΨN+1

n 〉 (〈Ψ0|ĉ†j′ |ΨN−1
n 〉). After these

considerations one has

GTB
0 (xt, x′t′) = −i

∑
k,k′,n>N/2

θ(t− t′)cknck
′

n φk(r)φ∗k′(r
′)ei(E0−EN+1

n )(t−t′)

+ i
∑

k,k′,n≤N/2

θ(t′ − t)ck′n cknφk(r)φ∗k′(r
′)ei(E0−EN−1

n )(t′−t).

(A.4.15)

We perform the Fourier transform completely analogously to Eq. (A.4.8) to yield

GTB
0 (ω, x, x′) =

∑
k,k′

φk(r)φ∗k′(r
′)

N∑
n=1

cknc
k′

n

ω − εn + iη+sgn(εn)
,

=
∑
k,k′

φk(r)φ∗k′(r
′)GTB

0,kk′(ω) (A.4.16)

where εn is the energy of a single-particle at level n and factors ckn and ck
′

n come from (A.3.9).
Thus the Green's function matrix for the TB chain becomes

GTB
0,kk′(ω) =

2
N + 1

N∑
n=1

sin
(

kπ
N+1n

)
sin
(
k′π
N+1n

)
ω − 2t cos

(
nπ
N+1

)
+ iη+sgn

(
2t cos

(
nπ
N+1

)) . (A.4.17)

A.5 Equations of motion in general bases

As it is in most cases useful to work in general bases we will derive the equations of motion for the
single-particle Green's function in general bases here. We start by expanding the single-particle
Green's function (2.7) in terms of general bases through (1.33) and (1.34). We obtain

G(xz,x′z′) = −i
〈
Tγ
(
ψ̂H(xz)ψ̂†H(x′z′)

)〉
= −i

∑
k,k′

φk(r)φ∗k′(r
′)
〈
Tγ
(
âk,H(z)â†k′,H(z′)

)〉
=

∑
k,k′

φk(r)φ∗k′(r
′)Gkk′(z, z′), (A.5.1)

G(x1z1,x2z2; x′1z
′
1,x
′
2z
′
2) =

∑
k,k′

l,l′

φk(r1)φl(r2)φ∗k′(r
′
1)φ∗l′(r

′
2)Gkl,k′l′(z1z2; z′1z

′
2), (A.5.2)

for single and two-particle Green's functions respectively, where we de�ned the Green's function
matrices as

Gkk′(z, z′) = −i
〈
Tγ
(
âk,H(z)â†k′,H(z′)

)〉
(A.5.3)

Gkl,k′l′(z1z2; z′1z
′
2) = −i

〈
Tγ
(
âk,H(z1)âl,H(z2)â†k′,H(z′1)â†l′,H(z′2)

)〉
. (A.5.4)
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Now we may plug these (A.5.1) and (A.5.2) into the equations of motion for the Green's function
Eqs. (2.15) and (2.16) and solve the equation of motion for the single-particle Green's function
matrix. For (2.15) we have[

i~∂z − ĥ(rz)
]∑
k,k′

φk(r)φ∗k′(r
′)Gkk′(z, z′)

= ~δ(z − z′)δ(x− x′)− i
∫

dx′′dz′′ v(r+, r′′)
∑
k,k′

l,l′

φk(r)φl(r′′)φ∗k′(r
′)φ∗l′(r

′′)Gkl,k′l′(zz′′; z′z′′+).

(A.5.5)

Integrating both sides with
∫
dr φ∗j (r) and using (1.30) we may write

i~∂z
∑
k′

φ∗k′(r
′)Gjk′(z, z′)−

∑
k,k′

φ∗k′(r
′)hjk(z)Gkk′(z, z′)

= ~δ(z − z′)φ∗j (r′)δσjσx′ − i
∑
k′

l,l′

vll′φ
∗
k′(r

′)Gjl,k′l′(zz′′; z′z′′+),

(A.5.6)

where

hjk(z) =
∫

dr φ∗j (r)ĥ(rz)φk(r) (A.5.7)

vll′ =
∫

dx′′dz′′ φl(r′′)v(r+, r′′)φ∗l′(r
′′). (A.5.8)

Integrating again but now with
∫
dr′ φi(r′) we get from (A.5.6) to

i~∂zGji(z, z′)−
∑
k

hjk(z)Gki(z, z′) = ~δ(z − z′)δij − i
∑
l,l′

vll′Gjl,il′(zz′′; z′z′′+). (A.5.9)

For non-interacting systems (A.5.9) can be written as a matrix equation

[i~∂z − h(z)]G(z, z′) = ~δ(z − z′). (A.5.10)

Similarly one can derive

G(z, z′)
[
h(z)− i~←−∂ z

]
= ~δ(z − z′), (A.5.11)

where
←−
∂ z means that the derivative operates to left. Eqs. (A.5.10) and (A.5.11) must be solved

with the boundary conditions

G(t0, z′) = −G(t0 − iβ, z′) (A.5.12)

G(z, t0) = −G(z, t0 − iβ), (A.5.13)

which follow directly from the fermionic time ordering in de�nition of the Green's function.

A.6 Dyson equation in general bases

To express the Dyson equation Eq. (2.40) in terms of general operators â and â† we only need to
expand the Green's function in terms of these operators and use the orthonormality of the basis
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functions. Use the expansion (A.5.1) for the single-particle Green's function to write (2.40) as∑
k,k′

φk(r)φ∗k′(r
′)Gkk′(z, z′)

=
∑
k,k′

φk(r)φ∗k′(r
′)G0,kk′(z, z′)

+
∫
γ

d1d1′
∑
k,k′

p,p′

φk(r)φ∗k′(r1)G0,kk′(z, z1) Σ(1, 1′)φp(r1′)φ∗p′(r
′)Gpp′(z1′ , z

′)

=
∑
k,k′

φk(r)φ∗k′(r
′)G0,kk′(z, z′) +

∑
k,k′

p,p′

φk(r)φ∗p′(r
′)G0,kk′(z, z1) Σk′pGpp′(z1′ , z

′), (A.6.1)

where we de�ned the self-energy matrix as

Σk′p =
∫
γ

d1d1′ φ∗k′(r1) Σ(1, 1′)φp(r1′). (A.6.2)

Integrating over
∫
drdr′ φ∗j (r)φi(r′) and using (1.30) we obtain

Gji(z, z′) = G0,ji(z, z′) +
∑
k′p

G0,jk′(z, z1) Σk′pGpi(z1′ , z
′) (A.6.3)

G = G0 +G0ΣG. (A.6.4)

From (A.6.4) we may solve for G

G = G0 +G0ΣG |G−1
0

G−1
0 G = 1 + ΣG

(G−1
0 − Σ)G = 1 +

⇒ G = (G−1
0 − Σ)−1. (A.6.5)

A.7 Fano model intermediate steps

A.7.1 Embedding self-energy integrals

Imaginary part

For the retarded self-energy equation Eq. (3.82) turns into

ΣR(ω) = t2hyb

N∑
k=1

2
N+1 sin2

(
πk
N+1

)
ω − 2t cos

(
πk
N+1

)
+ iη

. (A.7.1)
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Taking the limit N →∞ we obtain for the imaginary part

ImΣR(ω) = −t2hyb
2
π

∫ π

0

dx sin2(x)
η

(ω − 2t cos(x))2 + η2

= −2t2hyb

∫ π

0

dx sin2(x)δ(ω − 2t cos(x))

= −2t2hyb

∫ π

0

dx
sin2(x)
|2t sin(x)|δ(x− a)

(A.7.3)
= − t

2
hyb

|t|
∫ π

0

dx sin(x)δ(x− a)

= − t
2
hyb

|t|
∫ π

0

dx
√

1− cos2(x)δ(x− a), where a = arccos
( ω

2t

)
= − t

2
hyb

|t|

{√
1− ( ω2t)2 = 1

2|t|
√

4t2 − ω, ω ∈ [2t,−2t]

0, ω /∈ [2t,−2t].
(A.7.2)

Through this imaginary part we may obtain the real part of retarded self-energy through Kramer-
Kronig relations, see Appendix A.9.

In the derivation we used 1
π limη→0+

η
f(x)2+η2 = δ(f(x)). In addition we derived∫

dx δ(f(x))g(x) =
∫

dx
1
π

lim
η→0+

η

f(x)2 + η2
g(x)

=
1

f ′(x0)2

∫
dx

1
π

lim
η→0+

η

(x− x0)2 −
(

η
f ′(x0)

)2 g(x)

η
|f′(x0)|≡ε

=
1

f ′(x0)2

∫
dx

1
π

lim
|f ′(x0)|ε→0+

|f ′(x0)|ε
(x− x0)2 − ε2 g(x)

=
1

f ′(x0)2

∫
dx

1
π

lim
ε→0+

|f ′(x0)|ε
(x− x0)2 + ε2

g(x)

=
1

|f ′(x0)|
∫

dxδ(x− x0)g(x),

from which we deduce

δ(f(x)) =
δ(x− x0)
|f ′(x0)| , where f(x0) = 0. (A.7.3)

Real part

Using (A.9.1) we may deduce the form of the real part of the retarded self-energy

ReΣR(ω) =
t2hyb
π|t| P

∫ −2t

2t

dz′

√
1− ( z′2t)2
ω − z′ . (A.7.4)

Changing variable z′

2t = cos(x) we obtain

ReΣR(ω) = −sgn(t)t2hyb
2
π
P
∫ π

0

dx
sin2(x)

ω − 2t cos(x)
(A.7.5)

As one can notice from (A.7.5) we must calculate an integral of the form

P
∫ π

0

dx
sin2 (x)

ω − 2t cos(x)
(A.7.6)

69



However this turns out to be quite tricky especially when the pole occurs inside the integration
limits. We use the de�nition of the principal value integral to write (A.7.6) for ω ∈ [2t,−2t] as

P
∫ π

0

dx
sin2 (x)

ω − 2t cos(x)
= lim
η→0

[∫ p−η

0

dx
sin2 (x)

ω − 2t cos(x)
+
∫ π

p+η

dx
sin2 (x)

ω − 2t cos(x)

]
, (A.7.7)

where p = arccos( ω2t ). Now Eq. (A.7.7) may be plugged into mathematica and after taking the
limit η → 0 we obtain

P
∫ π

0

dx
sin2 (x)

ω − 2t cos(x)
=
πω

4t2
, (A.7.8)

and hence

ReΣR(ω) = −sgn(t)
ω

2

(
thyb
t

)2

(A.7.9)

For ω /∈ [2t,−2t] we obtain, again by mathematica,

ΣR(ω) = −sgn(t)
1
2

(
thyb
t

)2
{
ω −√ω2 − 4t2, ω > |2t|
ω +
√
ω2 − 4t2, ω < −|2t|. (A.7.10)

A.7.2 Retarded Green's function considerations

Let us calculate a more explicit formula for (3.91).

ImGRmol,HH =
ReΛ

(
ImΓL − ImΣR

)− ImΛ
(
ReΓL − ReΣR

)
|Λ|2 (A.7.11)

Use the de�nitions given in (3.90) to obtain for the denominator

|Λ|2 =
∣∣∣(ΓH − ΣR)(ΓL − ΣR)− (ΣR)2∣∣∣2 =

∣∣ΓHΓL − ΣR(ΓL + ΓH)
∣∣2

=
∣∣∣ReΓHReΓL − ImΓHImΓL − ReΣR(ReΓL + ReΓH) + ImΣR(ImΓL + ImΓH)

+ i
(
ImGHReΓL + ImGLReΓH − ReΣR(ImΓL + ImΓH)− ImΣR(ReΓL + ReΓH)

) ∣∣∣2.
(A.7.12)

Now one may use

(GR0,mol,L/H)−1 = ΓL/H = ω − ξL/H + iη ≡ ωL/H + iη (A.7.13)

in (A.7.12) to obtain

|Λ|2 =
∣∣∣ωHωL − η2 − ReΣR(ωL + ωH) + 2ηImΣR + i

[
η
(
ωL + ωH − 2ReΣR

)− ImΣR(ωL + ωH)
] ∣∣∣2

=
(
ωHωL − η2 − ReΣR(ωL + ωH) + 2ηImΣR

)2
+
(
η
(
ωL + ωH − 2ReΣR

)− ImΣR(ωL + ωH)
)2

=
(
ωHωL − η2 − ReΣR(ωL + ωH)

)2
+ 4ηImΣR

(
ωHωL − η2 − ReΣR(ωL + ωH)

)
+ 4η2ImΣR

+ η2
(
ωL + ωH − 2ReΣR

)2 − 2η
(
ωL + ωH − 2ReΣR

)
ImΣR(ωL + ωH) +

(
ImΣR

)2
(ωL + ωH)2

(A.7.14)

Next consider two separate cases

1. ω /∈ [2t,−2t]⇒ ImΣR = 0

2. ω ∈ [2t,−2t]⇒ ImΣR 6= 0
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Consider �rst case 1. In denominator we may not put η → 0 since the denominator has poles in
the interval under consideration. The denominator becomes

|Λ|2 =
(
ωHωL − ReΣR(ωL + ωH)

)2 − 2η2
(
ωHωL − ReΣR(ωL + ωH)

)
+ η2

(
ωL + ωH − 2ReΣR

)2
=

(
ωHωL − ReΣR(ωL + ωH)

)2
+ η2

(
ω2
L + ω2

H + 4
(
ReΣR

)2)
, ω /∈ [2t,−2t] . (A.7.15)

Consider then case 2. Here we can safely put η → 0 immediately and obtain

|Λ|2 =
(
ωHωL − ReΣR(ωL + ωH)

)2
+
(
ImΣR

)2
(ωL + ωH)2, ω ∈ [2t,−2t] (A.7.16)

We are left to consider the numerator of (A.7.11). We �rst deduce for the denominator from
(A.7.12) with the aid of de�nition (A.7.13) that the real and imaginary parts become, respectively

ReΛ = ωHωL − η2 − ReΣR(ωL + ωH) + 2ηImΣR

ImΛ = η
(
ωL + ωH − 2ReΣR

)− ImΣR(ωL + ωH).

Now it is again convenient to study both cases separately. We start with case 1. For the numerator
we obtain

ReΛ
(
ImΓL − ImΣR

)− ImΛ
(
ReΓL − ReΣR

)
= η

[
ωHωL − η2 − ReΣR(ωL + ωH)− (ωL + ωH − 2ReΣR

) (
ωL − ReΣR

)]
= η

[
ωHωL − η2 − ReΣR(ωL + ωH) + ReΣR (ωL + ωH)− ω2

L − ωLωH + 2ReΣR
(
ωL − ReΣR

)]
= η

[
−ω2

L + 2ReΣRωL − 2
(
ReΣR

)2]
= −η

[(
ωL − ReΣR

)2
+
(
ReΣR

)2]
, ω /∈ [2t,−2t] . (A.7.17)

again we used (A.7.13). For case 2 we may put η → 0 in the beginning because there are no poles
in the denominator, we obtain for numerator similarly as in (A.7.17)

ReΛ
(
ImΓL − ImΣR

)− ImΛ
(
ReΓL − ReΣR

)
= −ImΣR

(
ωHωL − ReΣR(ωL + ωH)

)
+ ImΣR(ωL + ωH)

(
ωL − ReΣR

)
= ImΣR

[−ωHωL + ReΣR(ωL + ωH) + (ωL + ωH)
(
ωL − ReΣR

)]
= ImΣRω2

L, ω ∈ [2t,−2t] . (A.7.18)

As we look the form of ImGRmol,HH(ω) with ω /∈ [2t,−2t]

ImGRmol,HH(ω) = −
η
[(
ωL − ReΣR

)2 +
(
ReΣR

)2]
(ωHωL − ReΣR(ωL + ωH))2 + η2

(
ω2
L + ω2

H + 4 (ReΣR)2
) , ω /∈ [2t,−2t]

(A.7.19)

we may de�ne ε = η
√
ω2
L + ω2

H + 4 (ReΣR)2
. This can be done since ω2

L + ω2
H + 4

(
ReΣR

)2 6=
0, ∀ω /∈ [2t,−2t]. With our new de�nition one can write (A.7.19) as

ImGRmol,HH(ω) = −
(
ωL − ReΣR

)2 +
(
ReΣR

)2√
ω2
L + ω2

H + 4 (ReΣR)2

=πδ(ωHωL−ReΣR(ωL+ωH))︷ ︸︸ ︷
ε

(ωHωL − ReΣR(ωL + ωH))2 + ε2

= −π
(
ωL − ReΣR

)2 +
(
ReΣR

)2√
ω2
L + ω2

H + 4 (ReΣR)2
δ(ωHωL − ReΣR(ωL + ωH))

(A.7.3)
= −π

(
ωL − ReΣR

)2 +
(
ReΣR

)2√
ω2
L + ω2

H + 4 (ReΣR)2

1∣∣ d
dω (ωHωL − ReΣR(ωL + ωH))

∣∣
ω=a

δ(ω − a),

(A.7.20)
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where ω /∈ [2t,−2t]. moreover, a is de�ned by[
ωHωL − ReΣR(ωL + ωH)

]
ω=a

= 0. (A.7.21)

We may now write (A.7.11) in the two cases separately as

ImGRmol,HH(ω) =

−π
(ωL−ReΣR)2

+(ReΣR)2

√
ω2
L+ω2

H+4(ReΣR)2
1

| ddω (ωHωL−ReΣR(ωL+ωH))|
ω=a

δ(ω − a), ω /∈ [2t,−2t] ,
ImΣRω2

L

(ωHωL−ReΣR(ωL+ωH))2+(ImΣR)2(ωL+ωH)2
, ω ∈ [2t,−2t] .

(A.7.22)

A.8 Calculus of Residues

For example the perturbative expansion for the self-energy contains lot of integrals of the form∫ ∞
−∞

dν
1

ν − a, or

∫ ∞
−∞

dν
1

ν − a
1

ν − b , (A.8.1)

where a, b are real and ν = ν ± iη. The way to deal with integrals of the form (A.8.1) is Cauchy's
residue theorem [2] ∮

C
f(z)dz = 2πi

∑
k

Resz=zkf(z), (A.8.2)

where for a simple pole the residue is

Resz=zkf(z) = lim
z→zk

[(z − zk)f(z)] (A.8.3)

Here f(z) must be analytic everywhere in a simply connected region R except for isolated singu-
larities zk. C is a piecewise smooth simple contour inside R, con�ning zk:s and oriented counter-
clockwise.

Now we may calculate the integrals in (A.8.1) through (A.8.2) by transforming them into complex
contour integrals in the complex plane through∮

f(z)dz =
∫ ∞
−∞

f(z)dz +
∫
CR
f(z)dz. (A.8.4)

Now the �rst of the integrals is just an improper integral on real axis, i.e., just an integral of the
form in (A.8.1). The latter integral is the semicircle in the UHP connecting the +∞ to −∞. Now
we may show that the latter term vanishes provided that f(z)→ 0 faster that 1/|z| as |z| → ∞.∫

CR
f(z)dz

z=ρeiθ

= lim
ρ→∞

∫ π

0

f(ρeiθ)iρeiθdθ

= lim
ρ→∞

∫ π

0

eiθ

ρs−1
dθ → 0, s > 1. (A.8.5)

Now from (A.8.5), (A.8.4) and (A.8.2) we may deduce for the integrals of the form (A.8.1) that
the integral becomes ∫ ∞

−∞
f(ν)dν = 2πi

∑
k

Resz=zkf(z). (A.8.6)

Note that this result holds for poles in the UHP. One may go through similar steps also for a pole
in the LHP to obtain ∫ ∞

−∞
f(ν)dν = −2πi

∑
k

Resz=zkf(z). (A.8.7)
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The minus sign is due to the fact that in residue theorem we always go counter clockwise along
the curve and thus the real axis is integrated from ∞ to −∞ giving rise to the extra minus.

We may immediately deduce some properties of the integrals (A.8.1). For f(ν) with two simple
poles we may argue that to obtain a non-zero contribution the poles must not be in same plane.
Formally ∫

dν

2π
1

ν − a± iη
1

ν − b± iη = i
∑
j

Resν=νjf(ν)

= i

(
∓ 1
b− a ∓

1
a− b

)
= i

(
∓ 1
b− a ±

1
b− a

)
= 0, (A.8.8)

whereas for di�erent signs ∫
dν

2π
1

ν − a± iη
1

ν − b∓ iη = i
∑
j

Resν=νjf(ν)

= i

(
± 1
b− a± 2iη

)
= ± i

b− a, (A.8.9)

where a and b are both real.

A.9 The Kramer-Kronig relation

There exists a theorem relating the real and imaginary parts of any analyti function which vanishes
faster than 1/|z| as |z| → ∞ in the UHP of the complex variable z. The relation is called the
Kramer-Kronig relation and it reads for X(z) = ReX(z) + iImX(z)

ReX(a) =
1
π
P
∫

dz′
ImX(z′)
a− z′ (A.9.1)

ImX(a) = − 1
π
P
∫

dz′
ReX(z′)
a− z′ . (A.9.2)

The proof takes advantage of Cauchy's residue theorem A.8. For X(z) the assumptions stated
above hold. Now in the UHP the function X(z)/(z − a) is also analytic and since there are now
poles in the UHP we may write the contour integral.

0 =
∮

X(z)
z − adz

a→a+iη
= P

∫
X(z)
z − adz + i

∫
ηX(z)

(z − a)2 + η2
dz

= P

∫
X(z)
z − adz + iπX(a), δ(x) =

1
π

lim
η→0

η

x2 + η2
(A.9.3)

from which one may deduce (A.9.1) and (A.9.2). At the �rst equal sign we used (A.8.5) to get rid
of the semicircle parts. Note that the integration limits run from −∞ to ∞.

Similar calculations can be carried out for a pole on the LHP, i.e., a→ a− iη. The relations are

ReX(a) = − 1
π
P
∫

dz′
ImX(z′)
a− z′ (A.9.4)

ImX(a) = +
1
π
P
∫

dz′
ReX(z′)
a− z′ . (A.9.5)
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