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2 Johdanto

Aurinkokennoteknologialla tulee olemaan huomattava vaikutus yhteiskuntiin tu-
levina vuosina, jos vain onnistumme kehittdmaéén riittavan kustannustehokkaita
ratkaisuja. Jotta kustannustehokkaita ratkaisuja 16ydettéisiin, tulee tehd& paljon
perustutkimusta aurinkokennomateriaalien ja niissé tapahtuvien kvantti-ilmididen
saralla. Koska useimmat kvanttimekaaniset jérjestelmét ovat hyvin vaikeita tar-
kastella kdyttden vain kynéa ja paperia, tarvitaan laskennallisen kvanttimekanii-
kan apua. Laskennallinen kvanttimekaniikka tarjoaa tyokaluja kuten tiheysfunk-
tionaaliteoria, joiden avulla voidaan saada késitys syistd ja seurauksista moni-
mutkaisissakin jarjestelmaéssa.

Kasittelemme eréistd mahdollista tulevaisuuden aurinkokennoteknologiaa, vili-
vybaurinkokennoa, ja laskuja liittyen téallaisen teknologian toteutukseen. Vialivyo-
aurinkokennon teoreettinen tehokkuusmaksimi on huomattavasti korkeampi kuin
tavallisilla piikennoilla (63.2% vs. 40.7%), jotka edelleen muodostavat suurimman
osan maailman aurinkokennotuotannosta. Vuonna 1997 esitellyn idean keksijoita
ovat espanjalaiset fyysikot Antonio Marti ja Antonio Luque. Nyky&d&n maailmas-
sa on useita ryhmié, jotka kehittdvat véalivyoaurinkokennoja. Eréds néistd ryh-
misté sijoittuu Saksaan Berliinin Helmholtz-keskukseen, ja tdmé gradu on tehty
yhteistyossa heidén kanssaan.

Vilivyoaurinkokennon rakentaminen osoittautui melko vaikeaksi ja vasta vii-
me vuonna onnistuttiin rakentamaan ensimmaéinen toimiva laite: happiseostet-
tu ZnTe-pohjainen vilivydaurinkokenno, joka tuottaa 100% suuremman oikosul-
kuvirran ja 50% suuremman kokonaistehokkuuden verrattuna tavalliseen ZnTe-
aurinkokennoon. Vilivybaurinkokenno nayttdd tdmin onnistumisen myotd en-
tistd lupaavammalta tutkimuskohteelta.

Gradu késittelee ldhinné valivydaurinkokennon kvanttipistepohjaista toteutus-
ta. Kvanttipisteet ovat pienitilavuuksisia potentiaalikuoppia, jotka aiheuttavat
kvanttipisteessé olevan elektronin energian kvanttittumisen. Riittdvén virheetto-
mélld, tiuhalla ja jarjestyneelld kvanttipistehilalla voidaan luoda valivyo tavalli-
seen puolijohdeaurinkokennoon. Kvanttipistemateriaalin ja aurinkokennomateri-
aalien sdhkoisten ominaisuuksien taytyy myos sopia yhteen tietylld tavalla. Téasséa
tyossé keskityimme kalkkipyriittikvanttipisteisiin sinkkiseleeni- ja kalkkipyriitti-
aurinkokennoissa.

Olemme saaneet selville kalkkipyriittiaurinkokennojen maksimitehokkuusarvoja
ja kalkkipyriittikvanttipisteiden optimikoot. Liséksi saimme tietoa kalkkipyriitti-
kvanttipisteiden optisista absorptiospektreisté ja kalkkipyriittikvanttipisteen geo-
metrian vaikutuksesta sen energiatiloihin. Allekirjoittanut on saanut reilusti lisda
kokemusta ja tietoa kvanttinanorakenteiden simuloinnista.



3 Introduction

Solar-cell technology will have an impact on whole societies and billions of people
in the coming years, if only we are able to develop more efficient and affordable
solutions. This requires precise knowledge about solar-cell materials and quan-
tum phenomena in them. Since most quantum systems are very hard to analyze
with pen and paper or with experimental techniques, computational quantum
physics can provide significant insight. It offers tools such as density-functional
theory (DFT) which enables us to compute quantum phenomena efficiently even
in complex systems.

This master’s thesis concentrates on DF'T calculations connected to one potential
future solar-cell technology: intermediate-band solar cells (IBSCs). These devices
were first envisioned by Spanish physicists Antonio Marti and Antonio Luque
in 1997 and have been studied in many research groups since. IBSCs have the
potential to significantly exceed the efficiency of conventional silicon single-gap

solar cells (63.2% vs. 40.7%) [1].

The realization of a working IBSC has been hard and most attempts have failed.
But recently there has been significant success, a ZnTe:O-based IBSC which
demonstrates a 100% increase in short circuit current and overall 50% increase
in power conversion efficiency over conventional undoped ZnTe diodes has been
achieved. The potential of the IBSC-technology has been confirmed after years
of research [2].

The emphasis of the thesis is on the quantum-dot approach to implement the
intermediate bands. Quantum dots are potential wells that lead to quantization
effects. With sufficiently defect-free, tight, and thick stacks of quantum-dot arrays
of the right geometry, it is possible to introduce an intermediate band into the host
material such as chalcopyrite to boost the efficiency of the diode. The electronic
properties of the matrix material and quantum-dot material also have to match
in a certain way. Here we have concentrated on chalcopyrite materials.

We have obtained maximum efficiency values of chalcopyrite IBSCs and optimal
sizes of chalcopyrite quantum dots. In addition, we now have more knowledge
about the optical absorption spectra of chalcopyrite quantum dots and the effect
of geometry on the energy levels of chalcopyrite quantum dots. The author of the
thesis has accumulated lots of useful experience and knowledge about simulation
of quantum nanostructures.



4  Solar energy generation

Solar energy generation, from the physics point of view, is simply conversion of
photons originated from the Sun into voltage and current carriers, i.e., electrons
and electron holes. This can be done indirectly using thermal power generators
or directly using photovoltaics.

The photovoltaic power industry is experiencing dramatic technology advances
and market growth. Over the past 20 years, manufacturing output has grown by
a factor of 200 to 5 GW. This is still small in comparison to the world total elec-
tric generation capacity of 4000 GW, but represents a large step forward in this
promising renewable energy technology. If the present rate of growth continues,
photovoltaic solar power will be the dominating power generation method by the
end of the century [3].

4.1 Three generations of photovoltaics

There are three generations of solar cells. First-generation solar cells comprise
of technologies where the photon absorber is a thin (a few hundred microme-
tres) p-doped single crystal silicon wafer. Employing silicon for this purpose is
understandable in view of its abundance, stability, non-toxicity, and decades of
industry experience. However, single-crystal silicon wafers are very expensive to
produce due to the demands of high purity and high accuracy of sawing a single
wafer from silicon. The limitations of silicon are also well known. A fundamental
constraint on the open-circuit voltage and the efficiency of a silicon solar cell is
imposed by the Auger recombination processes [4]. The proposed practical bound
on cell efficiency under one-sun illumination (no concentration of sunlight) has
been estimated as 25%.

Second-generation solar cells aim at reducing the costs of producing thin-film
solar cells by growing thin layers of silicon and other semiconductors on glass
substrates. Materials such as cadmium telluride (CdTe), copper-indium-gallium
selenide (CIGS), copper-indium sulphide (CIS) and amorphous silicon (a-Si) are
used. This is much cheaper than using single-crystal silicon but has the downside
of leading to less efficient solar cells due to structural defects [5].

Third-generation solar cells consist of all the technologies with an aim to exceed
the theoretical efficiency of single-gap solar cells. Examples of such technologies
are

° intermediate-band solar cells
° tandem or multi-junction solar cells
° solar cells manufactured of exotic non-semiconductor photovoltaic materials

(organic materials, polymer cell-structures, etc.)



° solar cells incorporating silicon or other semiconductor nanostructures

° hot carrier cells

The categorization of the multitude of the present technologies available is not
clear. Many of the latest newer solar-cell technologies combine different approaches
in novel ways.

Efficiencies of some of these different technologies can be seen in Fig. 1. The
efficiency record of the first-generation silicon solar cells now stands at 27.6%.
The best efficiency achieved with second-generation thin-film chalcopyrite solar
cells is 20.0%. The overall best are at the moment the third-generation multi-
junction solar cells with an efficiency of 41.6%.
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FIGURE 1: Development of the best solar cell efficiencies (From Ref. [6]).

The cost per Watt of the different technologies varies considerably. Figure 2 shows
the approximate cost for different solar cell generations. First-generation cells are
somewhat efficient but expensive. Second-generation cells are cheaper but less
efficient. Third-generation devices made from more advanced technologies and
materials are at an earlier stage of development but could provide high efficien-
cies at low costs, especially in conjunction with concentrator mirror technology.
Figure 2 shows also (i) the Shockley-Queisser limit, which is the theoretical ef-
ficiency of a perfect single-junction photovoltaic solar cell, and (ii) the ultimate
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thermodynamic limit without solar light concentration, and (iii) the ultimate
thermodynamic limit with maximum solar light concentration.
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FIGURE 2: Efficiency versus price per Watt for the three generations (I, II, and III) of
solar cells from Ref. [5]. The dashed diagonal lines denote points of constant cost per

unit power, measured in dollars per peak watts.



5 Technology and physics of solar cells

The basic component of most photovoltaic devices is the p-n junction which is the
boundary interface between a positively and a negatively doped semiconductor
block, i.e., the boundary interface of a diode. Many such semiconductor diodes
exhibit the photovoltaic effect.

When photons hit the electrons of the p-n junction and charge them to the
conduction band, two charge carriers are generated: an electron in the conduction
band and a hole in the valence band. These two charge carriers must be separated
in order to prevent recombination and to generate a current.

In photodiodes like those that are used in very common polycrystalline silicon
solar cells, the charge-carrier separation is realized by the internal electric field
of the diode. The depletion region field is formed in the p-n junction between
positively and negatively doped semiconductors. Electrons and holes combine
near the interface of two materials to create a depletion region of charge carriers.
In this region an electric field is then created by the ionized dopants. The electric
field has the effect of sweeping the photogenerated negatively charged electrons
and positively charged holes to different sides of the junction, thus preventing
recombination [7]. The whole process is visualized in Fig. 3.

depletion layer
[
b) |y
-

electric field

Idiffusion potential
Ec
F

c)
KE

FIGURE 3: (a) p-n junction of a positively and a negatively doped semiconductor
block [8]. Charge carriers diffuse to recombine in the other piece of semiconductor. (b)
The charge carriers recombine and a neutral depletion layer is formed. (¢) The Fermi
levels equalize, which has the effect of creating a potential slope. (d) In conventional
Si-diode solar cells, the potential slope breaks the electron-hole pairs created by the
absorption of photons.



5.1 Monocrystalline silicon solar cells

Ordinary single-crystal silicon solar cells are made of a wafer of monocrystalline
silicon, where the surface is diffused with p-type dopants, which turns the wafer
into a thin p-n junction. The wafer then acts as a large area photodiode. The
absorbance of silicon is hampered by the fact that it is an indirect band gap
semiconductor, which means that every time an electron is excited from the
valence band to the conduction band a phonon (quantum of lattice vibration)
must be produced. Involvement of the phonon makes the process more unlikely
to occur. Due to the low absorbance and the brittleness of silicon, the silicon
layer has to be relatively thick, about 300 wm [7]. The thickness in turn means
that some of the charge carriers have to travel long distances to be extracted
by the front face. Consequently, a good material with high chemical purity and
structural perfection is required to avoid the recombination of charge carriers.
Such a monocrystalline silicon solar panel is depicted in Fig 4.

FIGURE 4: Solar cell made from a mono-silicon wafer [9].

5.2 Tandem solar cells

A tandem solar cell, also called a cascade or multi-junction cell, is a stack of
normal monojunction solar cells with different band gaps and absorption spectra.
It can achieve a higher total conversion efficiency by capturing a larger portion
of the solar spectrum than a single solar-cell layer [7].

The individual cells are stacked on top of each other so that the layer with the
highest band gap is on top and the one with the lowest is at the bottom. The



photons absorbed first are the ones with the highest energy corresponding to the
largest band gap of the topmost cell. The layer with a larger band gap than the
energy of the incident photon is transparent to these lower-energy photons which
continue on their way through the tandem solar cell until they get absorbed in
the lower layers or leave the cell. This principle of operation is shown in Fig. 5.

The most efficient solar cells available are tandem solar cells. Unfortunately, they
are also very expensive and are mostly used in mission-critical high-capital ap-
plications like satellites.

Decreasing Band-gap

&
<

FIGURE 5: Principle of operation of a tandem solar cell: Multiple single-junction solar
cells are stacked on top of each other with the highest band gap (blue) on top and the
lowest (red) at the bottom.

5.3 Dye-sensitized solar cells

Dye-sensitized solar cells (DSSCs) are photoelectrochemical devices whose oper-
ating principle mimics the photosynthesis reaction of the green plants [10]. The
advantages of this technology are numerous: simple manufacturing, relatively low
cost, non-toxic and recyclable materials, and as a consequence of all this, suit-
ability for wide variety of end-user products. DSSCs also work better with low
light intensities than other solar-cell technologies. This enables their use in indoor
applications. Their disadvantage is as yet their low efficiency of about 11% (see
figure 1) and chemical stability problems. This is countered to some extent by
the fact that their low production costs lead to a good price/performance ratio.
The number of kilowatt-hours produced for each invested dollar per installation
square meter in one year ( kWh/ m? - annum - dollar) is high.

The 2010 Millennium Technology Prize was awarded to Michael Gratzel for the
invention of dye-sensitized solar cells [11].
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FIGURE 6: Structure and operating principle of the dye-sensitized solar cell (from Ref.
[10]): Photon absorption induces a metal-to-ligand type electronic transition between
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular or-
bital (LUMO) of the dye. Since the LUMO is located in the vicinity of the dye ligands
(pyridyl m-orbitals) the electron injection to the TiO; is spatially favorable.

5.4 Hot carrier solar cells

The efficiencies of standard silicon solar cells are limited to the 31% Shockley-
Queisser efficiency, in part by the loss of all energy that exceeds the band gap
energy. The surplus energy is transformed into heat. The developers of hot carrier
solar cells try to inhibit the cooling of the photon and capture all of the energy
the electron absorbs from the photon [12]. This would raise the theoretical effi-
ciency limit to 66%, which is the ultimate thermodynamic limit at one-sun solar
concentration.

The cooling can be inhibited by augmenting the scattering among photoexcited
electrons and the reabsorption of additional photons in the conduction band.
Making scattering and reabsorption faster than cooling would lead to a quasi-
equilibrium characterized by an electron temperature much higher than the lat-
tice temperature. The hot-carrier semiconductor would then be connected to an
electron conductor in a narrow energy window to transfer the electrons further
with minor energy loss.

A potential way to realize a hot carrier solar cell is to use semiconductor nanocrys-
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tals, i.e., quantum dots (QDs). When the charge carriers get trapped in these
nanostructures, the quasi-continuous energy bands of the bulk semiconductor
become discretized. Consequently, the energy spacing between the discretized en-
ergy levels can be much larger than the energy of the highest frequency phonons
of the lattice, which creates a ”phonon bottleneck”. In the bottleneck the carrier
relaxation is only possible by multiphonon emission, which is slower than single-
phonon emission. This keeps the temperature of the photons high compared to
the lattice temperature.

The research area of hot carrier solar cells is still very young and there are no
functional devices yet. What has been demonstrated is that, the transfer of hot
carriers from colloidal lead selenide (PbSe) nanocrystals to a titanium dioxide
(TiOq) electron acceptor is possible [13].

5.5 Intermediate-band solar cells

The idea of an intermediate-band solar cell (IBSC) is to introduce a half-filled
intermediate electronic band into the solar-cell material. The intermediate band
enhances the photogenerated current via the two-step absorption of sub-band-gap
photons, see Fig. 7 for an illustration. The theoretical limiting efficiency of these
cells is equivalent to that of a triple junction solar cell (63.2% at maximum solar
concentration). However IBSC requires only a single material instead [1].

Antonio Luque and Antonio Marti presented the idea of an IBSC in 1997 [1].
An experimental demonstration of the idea proved harder than expected, and
it was not until 2006 when Marti et al. managed to show the production of
photocurrent due to intermediate-to-conduction-band transitions [14]. The first
actual IBSC was created in 2009 when Wang et al. realized a ZnTe:O IBSC
with 100% increase in the short circuit current, 15% decrease in the open circuit
voltage and overall 50% increase in the power conversion efficiency [2].

The band diagram of an IBSC as proposed by Luque and Marti[1] is shown in Fig.
9. The diagram contains the usual conduction band (CB) and valence band (VB)
but, in addition, there is the intermediate band (IB). Such an intermediate band
can be obtained by several means (lone pair bands, low-dimensional superlattices,
impurities, etc.). The intermediate band can be introduced into the material, for
example, by using a tight array of QDs. If the tunnelling probability of an electron
from one dot to another is sufficiently large, effective electron bands are formed
from the single-particle states of the QDs. This is depicted the Fig. 8. By changing
the size of QDs, interdot distances, potential barrier height, and regimentation,
one can control the electronic band structure of this so-called artificial crystal.
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FIGURE 7: (a) Band structure of the intermediate-band (IB) solar cell (IBSC) con-

cept. CB, IB and, VB represent the conduction, intermediate, and valence bands, re-
spectively. Erpc, Epr and Epy are the quasi-Fermi levels of the electrons of the three
different bands. (b) Basic structure of the IBSC: conventional p and n emitters with
an IB-material layer in between. (¢) Schematic structure of an IBSC where the IB is

introduced into the material by quantum dots (from Ref. [15].
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FIGURE 8: Illustration of intermediate band formation by means of a stacked array of
quantum dots (from Ref. [16]). VB and CB denote the valence and conduction bands,

respectively.
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5.5.1 Efficiency of an ideal intermediate-band solar cell

An ideal IBSC is defined as fulfilling the following conditions

1. Nonradiative transitions between any two of the three bands are forbidden.
2. Carrier mobilities are infinite, which leads to constant quasi-Fermi levels
€rc, €rr, and epy (see Fig. 9).

No carriers can be extracted from the intermediate band.

4. The cell is thick enough to assure full absorption of the photons with enough
energy to induce any one of the electronic transitions Acy, Acr, or Apy.

5. A perfect mirror must be located at the back of the cell so that the radiation
generated in the cell by the processes Acy, Acr, and Ay can only escape
by the front area of illumination.

6.  For every range of energies (¢ < €, €7 < € < €g, and €5 < €) only one
absorption length is important, so that a single Bose-Einstein function de-
scribes the population of photons escaping the cell in every mode.

7. Cell illumination is isotropic.

w

Because of these conditions the flux N of photons leaving the semiconductor is
known, as the distributions are those of the thermodynamic equilibrium. Conse-
quently, we find a relation

. 2 €M e2de
N(€m,en, T, 1) = h302/ ele—m)/kT _ 1 (1)

Here the temperature 7' is the solar-cell temperature, which we take to be the
ambient temperature 7, = 300 K. The chemical potential ;z depends on the
energy range as follows:

Hov = €Fc — €FV € > €q
U= Mcr=€rc —€r1 , €c <e€<Eq
Uy = €py —€py , €1 <€ < €¢

Equation (1) for N can be used also for photons originating from the Sun. This
is done by setting 7" = T = 6000 K and p = 0. By doing so we assume the ide-
ality condition 7 above. This assumption also implies that we use a concentrator
with a geometrical concentration of at least 46000, which is the ratio of the Sun
distance to its radius. This is the maximum concentration set by thermodynamic
considerations [17].

By calculating the steady operation state balance of electrons at each band, the
current [ provided by the device to an external load can be calculated. The current
leaves the semiconductor by the valence band (positive contact) and returns by

13
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FicUureE 9: Simplified band diagram of an intermediate-band solar cell. CB, VB,
and IB are the conduction band, valence band, and intermediate band, respectively.
wov, per, and pry are the chemical potentials between the quasi-fermi levels epe, €py,
and epy. ov, per, and pry. The electronic transition processes from a band to another
are marked with Acyv, Ay, and Acyg.
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the conduction band (negative contact). Thus, the current at the conduction band
is

I/q = N<€G7 007T87 0) _N(EGJ OO7Ta7 MCV)+N(€C7 €G7T87 0) _N(GC7 €G7Ta7 N’CI) .

(2)
As no current is extracted from the intermediate band (ideality condition 3), the
latter two terms can be written as

N(er,eq,Ts,0) — Ner, e, Ty, pirv) = Nleo, €a,T5,0) — N(ec, e, Ta, ior) - (3)
Since the chemical potentials equal the output voltage (see Fig. 9), i.e.,

qV = per + prv = peov (4)

we can solve the efficiency for any pair {¢;, e} within the following procedure:

1. Choose arbitrary values for €; and eg.
2. For every voltage V' = ucy
I.  Solve from Eq. (3) the corresponding py and pcy.
II. Calculate the current I from Eq. (2).
ITI. Power output is now given by Joule’s law P = IV. If this is the
maximum power thus far for this pair {e;, e}, retain it.
3. Divide the maximum power output with the power delivered by the Sun on
the cell area taking into account the use of a solar concentrator.

In Sec. 8 we demonstrate the use of this algorithm to obtain the maximum effi-
ciency of a chalcopyrite IBSC.
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6 Quantum dots

Low-dimensional nanometer-sized systems have come into the spotlight of sci-
ence as the semiconductor processing and manufacturing techniques have refined
during the last 30 years. The refined techniques allow creating fermionic nanos-
tructures with just a few confined electrons. These artificial atoms or quantum
dots (QDs), as they are also called, present researchers new exciting physics and
technological applications in, e.g., quantum information processing [18].

Restricting an electron along a dimension leads to the quantization of energy
levels along that direction. This can be clearly seen from the density of states
(DOS) curve of a quasi-two-dimensional structure depicted in Fig.10 where a
staircase-like form of the DOS results from the quantization in one direction and
the energy continuum of the other two dimensions. Quasi-dimensionality means
in this context that the box length tends to zero in one or two dimensions. This
is different from strict low-dimensionality because the existense of the confined
dimension still presents a certain degree of freedom which leads to discrete energy
levels in the confined dimensions.

The electronic structure of QDs is in general a complicated topic. There are
many factors affecting the electronic structure such as the materials, electronic
and magnetic fields, geometry of the dot and its surroudings, defects, doping, etc.
We restrain ourselves to include in the calculations only the major contributing
factors, i.e., the confining potential, the geometry of the dot arrangement, the
effective mass of the charge carrier, and the dielectric constant of the material.

6.1 Applications in intermediate-band solar cells

One may implement the intermediate band in the solar-cell matrix material by
constructing QDs into the matrix material [15]. In this approach, a superlattice
consisting of QDs made of a reduced band gap material is embedded in a semicon-
ducting matrix with a larger band gap. The offsets of the conduction (electrons)
or the valence (holes) band, together with the quantum confinement provided by
the QDs, give rise to a region with finite density of states within the matrix band

gap.

A rough approximation for the minimum diameter ensuring at least one bound
state in a spherical QD, is given by

__m (5)
V2m*AE,

where m* is the effective mass of the carrier to be confined and AFj, is the energy

barrier between the dot and the matrix, i.e., the valence band offset (electrons)
or the conduction band offset (holes).

Dmin =
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FIGURE 10: (a) Energy bands and (b) densities of states in various dimensions and
quasi-dimensions for an electron in a box (from Ref. [19]).
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The maximum size of the QD is derived from the requirement that the thermal
population of the excited states should be small. If we require less than 5%
occupation at room temperature (300 K) we must have the level separation

kT < %(E1 — Ey) (6)

where Fjy and F; are the energies of the first and second energy level of the QD,
respectively. For a 3D spherical QD we have E; — Ey = 2FEy/3 = 2hw/3, where
w is the harmonic oscillator strength which can be deduced from the size of the

QD.

6.2 Chalcopyrite quantum dots

Chalcopyrite Cu(In/Ga)(S/Se)s offers a very promising material for solar-cell
applications. Chalcopyrite-based solar cells already lead the efficiency ranking of
thin-film technologies (see Fig. 1). The efficiency is due to the high absorbance
of chalcopyrite which is a direct gap semiconductor. As discussed in Sec. 5.1, a
direct gap allows better absorbance and efficiency.

Chalcopyrite crystal belongs to the tetragonal scalenohedral point group 42m in
Hermann-Mauguin notation [20]. This configuration, as seen in Fig. 11, is very
similar to those of diamond and wurtzite crystal structures but has three different
elements as opposed to two in wurtzite and one in diamond crystal structure.

@
Cu
n o A Ga @
Si - Se - L A Se -
a a
[001] | [001] ‘\ | [001]
[010] [010] | 5 010]
100] “a @ 100 @ a @ ffoo] a v

(a) (b) ()

FIGURE 11: Unit cells of three similar crystals: (a) Diamond structure, (b) zinkblende-
structure, and (C) chalcopyrite-structure (from Ref. []); Also shown are the lattice
constants a and c.

A chalcopyrite layer can be grown in various ways. The structural, optical and
electrical properties of chalcopyrite are adjustable by modifying the growth condi-
tions and composition. The material also allows band gap engineering by changing
the contents of the different element groups III and VI. The band gap can be as
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TABLE 1: Estimated maximum size Dy, of chalcopyrite nanostructures containing
Cu, within the effective-mass approximation [22].

low as 0.95 eV (CulnSe;) or as high as 3.0 eV (CuGaS, with Al doping) [21]. The
band gaps of the chalcopyrite system are also easily modifiable by altering the
composition. Together with the high efficiency of ordinary thin-film chalcopyrite
solar cells, this suggests that chalcopyrite has potential in QD-IBSC applica-
tions [22]. The idea is to form a superlattice consisting of QDs with a reduced
band gap embedded in a chalcopyrite matrix with a larger band gap.

An estimation for the maximum size of chalcopyrite QDs can be derived from
the requirement of Eq. (6). The maximum sizes for chalcopyrite compounds

Cu(In/Ga)(S/Se)s are shown in the table 1.

Figure 12 shows the calculated minimum dimension of the QDs as a function of
the energy barrier AFE}, [see Eq. (5)]. Vertical lines in the figure indicate optimal
values for the position of the IB in the respective chalcopyrite hosts. Due to
different effective masses of electrons and holes, the minimum size of QDs leading
to confinement depends on the carrier type considered.

6.2.1 Tetrahedral chalcopyrite nanostructures

Dr. Sascha Sadewasser’s group in Helmholtz Zentrum, Berlin, has used molecular
beam epitaxy (MBE) to grow chalcopyrite solar cell samples. They have imaged
the samples using scanning tunnelling microscope which allows for the surface
topography to be observed. This has revealed the tetrahedral chalcopyrite nanos-
tructures formed on the surface of the silicon substrate. The distinctive shape is a
result of the self-organizing tendency of chalcopyrite: on the surface of silicon the
energetically preferred structure for chalcopyrite is the tetrahedron. An example
of the structure is shown in Fig. 13. Further analysis of the tetrahedra has shown
that they are very close in shape to an ideal tetrahedron [23].
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FIGURE 12: Minimum required characteristic length of nanostructures leading to car-
rier confinement calculated for holes and electrons as a function of the energy bar-
rier. Gray lines represent dimensions for hole-like bound states and black lines for
electron-like bound states. Effective carrier masses of the respective chalcopyrite com-
pounds are given in Table 1. Vertical lines indicate optimal values of energy barriers
for intermediate-bands in the respective chalcopyrite hosts.

Given some refinement in regimentation and size distribution, the type of tetra-
hedra shown in Fig. 13 could be used as tetrahedral chalcopyrite quantum dots
in a chalcopyrite thin-film QD-IBSC. The samples produced thus far serve as
a proof-of-concept. In the future lithographic techniques will be used to obtain
better control of size, form and placement of the nanostructures.
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12.6 nm

(b)
FIGURE 13: (a) Scanning tunneling microscope image of a sample of CuGaSes tetrahe-

dral nanostructures on Si substrate. (b) Three dimensional depiction of the same data.
Figures from [23].
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7  Theoretical methods

Since the problem of solving the Schrodinger equation is present in any quantum
mechanical calculation in some form, many computational techniques have been
developed. Some of the most common techniques are perturbation theory, the
Hartree-Fock method, exact diagonalization, quantum Monte Carlo methods, and
density-functional theory (DFT) [24]. In the calculations of this thesis DFT is
employed with the effective mass approximation for the structures studied.

7.1 Effective mass approximation

There are two main ways to calculate the electronic structure of a QD. One is to
take the whole semiconductor structure and the substrate into the calculation.
This is the so-called atomistic approach. Unfortunately, this is computationally
very demanding or unfeasible in any computational scheme since hundreds of
atoms in a complex layer structure would have to be taken into account.

The other route is to calculate the behavior of just a few conduction-band elec-
trons of the QD device and treat the ions and surroundings with a model potential
Vexs (1), that depends on the geometry, defects and the construction technique of
the QD. The electrons are assumed to be near the band minimum where the band
can approximated as parabolic. Their electron mass can thus be replaced by the
effective mass which is defined as

d2e] ™!
* 2‘ i
—— {dk] (7)

for an isotropic material.

The lower lying electrons are thus treated as screening. This demands that we also
take into account the dielectric constant e of the dot material. Given a sufficiently
deep QD potential well, we can assume that the wavefunctions do not penetrate
deep into the matrix material, and we can ignore the dielectric constant of the
matrix and just use the same dielectric constant throughout.

The model Hamiltonian in the effective mass approximation becomes (in SI units)
9 N

H:i[— hz*v%wext(n)} T (8)

2m drege o v, —r;|’

where the first term is the kinetic energy of the electrons, the second is the
model potential of the QD and the third is the Coulomb interaction between the
electrons. Typical values for the effective mass and the dielectric constant for a
GaAs QD are m* = 0.067 m, and € ~ 13 [18].
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The effective mass approximation is a rather drastic approximation and it has a
few drawbacks. For example, the space dependence of the effective mass and the
dielectric constant in heterostructures can lead to non-parabolicity of the energy
bands near k = 0 [25]. However, the effective mass approximation has been widely
used to calculate the electronic structure of QQDs with success [18].

7.2 Density-functional theory

Density-functional theory (DFT) is a reformulation of many-body quantum me-
chanics in terms of the electron density. DFT is widely used to investigate the
ground-state properties of atoms, molecules, and solid state devices, such as QDs.
Generally, the ground-state problem is solved through the many-body Schrédinger
equation )

HU(ry,ro,...,xx) = E¥U(ry,re,...,rN) , 9)

where H is the many-body Hamiltonian of the system described by ¥, and E is
the ground-state energy. DFT reduces the N-particle 3N-dimensional problem ex-
pressed in the true many-body wavefunction W(ry,ry,...,ry) into a 3-dimensional
problem expressed with the electron density n(r) alone.

The pioneering work on DFT was done by Hohenberg and Kohn (HK) when they
published in 1964 two theorems which gave DFT a firm theoretical footing [26].

Hohenberg-Kohn theorem 1. For any system of interacting particles there
erists a one-to-one mapping between the ground state density ngs(r) and the
external potential Ve (r).

The first HK theorem has the consequence that the ground state energy Egs and
all other expectation values of the system are unique functionals of the ground
state electron density ngg(r).

Hohenberg-Kohn theorem 2. The functional E[n] for the ground state energy
is minimized by the ground state electron density ngs. In other words, E[n| >
Elngs] for every trial electron density n and Egs = E[ngs].

The second HK theorem is a direct consequence of the first theorem and the
Rayleigh-Ritz variational principle.

In practice, DET is most commonly applied within the Kohn-Sham (KS) scheme [27],
where we have an auxiliary non-interacting system with its own set of non-
interacting wavefunctions ;(r,o). In addition to the normalization requirement
>, [ dr|¢i(r,o)* = 1, the KS orbitals must satisfy the condition that the
squared norms sum exactly to the total electron density

n() = Y1) . (10)
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In the KS system the KS potential is defined as
vks[n)(r) = vext[n](r) 4+ vn[n](r) + vye[n](r) | (11)

where vqy is the external potential describing, e.g., the nuclei in a molecule or a
model confining potential for a QD, vy is the classical electron-electron repulsion,
i.e., the Hartree potential, and the last one is the villain of the story, the exchange-
correlation potential vy, which in most cases has to approximated.

The KS orbitals 1; are solved from an (effective) single-particle Schrédinger equa-
tion
h2
—%V? + vks(r) | i(r) = ei(r) . (12)
The KS equations (10), (11) and (12) have to be solved self-consistently. This
leads to an iterative scheme illustrated in Fig. 14. At every iteration, when one

obtains a new electron density (or a new KS potential), one has to mix it with
that of the previous iteration in order to obtain convergence.

After solving the KS equations, which yields the ground state density n(r), the
total energy of the system can be obtained from

E =Y "[e— (Wilvn + vxel )] + Bxe | (13)

where the exchange-correlation potential v, is defined as the functional derivative
of the exchange-correlation energy FE.,. with respect to the density

e(r) = 2 ln(r)] (14)
on(r)

The eigenenergies ¢; of the KS orbitals 1); were long assumed to have no direct

physical meaning apart from that of the highest occupied molecular orbit corre-

sponding to the ionization potential. From theoretical considerations stemming

from time-dependent DFT, one can see that they are zeroth-order approximations

to the optical excitation energies [28].

7.2.1 Exchange and correlation

Knowing the exact exchange-correlation potential v, and energy E,. would lead
to the exact ground-state density and total energy of the system. In practice,
however, the exchange-correlation terms need to be approximated. Fortunately,
there exists many sufficiently accurate and computationally inexpensive approx-
imations for these terms.
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FIGURE 14: Self-consistent iteration cycle used in density-functional theory. Here the
convergence test is placed in the wave function construction step but it could as well
be tested in the density construction step. Mixing (in red) is done either for the density
or for the potential.

One of the simplest and the most widely used approximations for v,. and FE,. is
the local-density approximation (LDA) in which the exchange-correlation energy
operator v, is approximated to only depend on the local density n(7). The energy
density €,.[n(7)] corresponding to different densities is taken from the results for
the homogenous electron gas for which there exists an analytic expression for the
exchange and parametrized results from quantum Monte Carlo simulations for
the correlation part. LDA can be expressed as

ELPA ] = / () () dr (15)

for the exchange-correlation energy and

VEPA(r) = S = () 4 () 2 ) (16)

for the exchange-correlation potential. Here HEG refers to the homogenous elec-
tron gas.

LDA is exact for a uniform electron gas and quite accurate for solids, but has gives
less than satisfactory results for several atoms and molecules. Fortunately, more
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advanced and accurate exchange-correlation functionals have been derived [29].
These exchange-correlation functionals can be ordered in the order of complexity
and accuracy in the so-called ”Jacob’s ladder” [30]. The lowest three rungs of
this ladder, in the ascending order, are: (i) LDA; (ii) generalized gradient ap-
proximations (GGA), which are functionals of not only the density n but also the
gradient of density Vn; (iii) meta-GGAs that also make use of the kinetic energy
density and/or the Laplacian of the density V?n. Even higher in the ladder lie
the orbital functionals that depend explicitly on the KS orbitals. For example,
the exact exchange energy E*" can be derived leading to the exact exchange
(EXX) formalism. Now the corresponding exchange potential can be evaluated
indirectly through the so-called optimized effective potential (OEP) method.

Mixing exact and approximate exchange functionals gives rise to hybrid function-
als. It is also common in quantum chemistry to construct hybrids in an empirical
or semi-empirical manner.

7.3 Time-dependent density functional theory

Time-dependent DFT (TDDFT) is an extension of DFT to calculate not only
static ground state properties but also the many-particle properties of time-
evolving systems. By applying TDDFT one can calculate the effect of time-
dependent electronic and magnetic fields, excitation energies, photoabsorption
spectra, and much more [28].

The cornerstone for TDDFT was laid by Runge and Gross in 1984 when they
proved a theorem that is today known as the Runge-Gross theorem [31]. It states
that the external time-dependent potential has a one-to-one correspondence with
the time-dependent density. Analogously to DFT, equations linking the external
potential vey, the density n, and the action A[p] can be derived. In TDDFT the
action

Aptw)] = [ detw(olio - A©l() a7)
is a unique functional of the density n, like the total energy is in static DFT. The
extrema of the action A give the exact density, i.e.,

dA[n]

on(rt)
again analogously to DFT where extrema of the total energy E give the exact
density.

=0, (18)

The challenge of coming up with an accurate and numerically efficient exchange-
correlation functional for the ground state DFT is imposing. Now, with the time-
dependence it is even harder because the exchange-correlation potential v,.(r,t)
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is not a function of only the instantaneous density n(r,t) but of all the previous
densities as well.

The simplest solution is called adiabatic LDA (ALDA) which is just the normal
LDA with no time-dependence added in. The adiabaticity refers to an assumption
that that the density changes so slowly that the change has only a very small
effect on v,. and we can neglect the possible ”memory” effects.

7.4 Optical response from linear-response

The linear-response function is the first coefficient of the Taylor expansion of the
density in terms of the electric field F,

1
X (@) = 6p(w)/ Ej(w) = aij(w) - (19)
The relation of this quantity to the photo-absorption cross section o(w), of which

we actually are interested in, is

a(w) = gTr a(w)] x —= . (20)

7.4.1 Casida formalism

Mark Casida published the first practical formulation of linear-response theory in
the TDDFT formalism [32]. He showed that the dynamical dipole polarizability
a(w) has the sum-over-states expression

o 2(Br — Eo)(Wolilyr)*(Wr|j ko) ?
i (w) = Z (Er — Ey)? — w?

, (21)

where 1)y is the ground-state wavefunction, 1; is the excitation wavefunction,
E, and E; are the corresponding energies, and 7, j € {#,9, 2} are the dipole mo-
ment operators. This expression has the interesting feature that the spectroscopic
oscillator strengths,

2

Fr= §(E1 — Eo) ((ol[4r)® + (wolglvn)? + (Yol 2lvr)?) (22)

and the excitation energies,
wy = E[ — EO (23)

are the poles and residues of the mean polarizability,

alw) = Z Ji . (24)

2 _
Wi —w

27



For adiabatic exchange-correlation kernels the squares of the excitation energies
wy are all the eigenvalues of a specific matrix equation

QF; = w?F; (25)

where
Qija,le = 6ik5jl507612jg + 2\/ eijaeleKijU,le s (26)

where €, is the energy difference between ¢:th and j:th single-particle states with
spin . K in equation (26) is the coupling matrix

Kiu) = [ [ w0 (#wmmrcw)) bp(drde . (27)

v —r'|

7.4.2 Sternheimer formalism

Sternheimer perturbation theory is an earlier formalism for calculation of the
linear-response [33]. In the Sternheimer approach the KS wavefunctions 1); are
perturbed by a monochromatic field and then expanded in the powers of the
magnitude of the perturbing field. A first order variation 6 to the KS Hamilto-
nian H is considered. After some algebra, one obtains the Sternheimer eigenvalue
equation

{ﬁ et w m} St (1, £ W) = — P8 H (£ )tbm (1) . (28)

In equation (28) P, is the projector onto the unoccupied subspace and p a positive
infinitesimal, essential to obtain the imaginary part of the polarizability.

7.5 Optical response from direct time-evolution

The optical response can be obtained also from the time-evolution of the system
by perturbing it with an external potential V' (7,t) = kd(t) and then evolving in
time by applying the time-evolution operator

O(t) = exp {—% /0 t H(t’)dt’} (29)

on the KS states obtained from a ground-state calculation. The optical properties
can then be obtained from the Fourier transform of the resulting total dipole
moiment

P(t) = /n(r,t)r dr . (30)
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The main advantage of this approach is that the time-evolution method scales
and parallelizes much better than the eigenvalue problem of the Casida technique.
The Casida approach also requires the calculation of a large number of unoccu-
pied states. Numerical and theoretical aspects of the time-evolution method and
Sternheimer linear response are considered in detail in the doctoral thesis of
Xavier Andrade [33].

7.6 Numerical methods

There exists many different (TD)DFT codes aimed at different purposes and
with different numerical methods. Octopus, which was chosen for this thesis, is a
versatile DF'T code which allows one to do virtual experiments on a wide range
of static and time-dependent systems [34]. Most importantly, it is well suited
for QD calculations since it has user-definable external potentials in real-space
representation, the dimensionality (1D,2D,3D) can be freely chose, and different
kinds of periodic calculations are possible.

Octopus can be used to calculate the linear optical response of molecules and
clusters, the non-linear response to classical high-intensity electromagnetic fields,
ground-state and excited state electronic properties of low-dimensional systems
(QDs, quantum wires, etc.), photo-induced reactions of molecules, and optimal
control of quantum systems. In addition, Octopus provides a large number of
different exchange-correlation functionals through 1ibXC, some of which are de-
signed for low-dimensional systems, increasing its applicability to QDs. Unlike
many other DFT codes Octopus does not use a basis set, but relies on bare
regular numerical meshes.

Octopus is free software published under the GPL license and as such relatively
easily extended. It is mostly written in clear and well-structured Fortran 90 with
some auxiliary parts written in C or Perl. Standard GNU tools have been used,
and Octopus is rather easily compiled on any Unix-like platform.

7.6.1 Computational details
Octopus was used for all calculations presented in this thesis.

In the ground-state calculation the iteration was continued until the relative
density change was less than 107°. This guarantees an accuracy of < 1 meV if
other calculation parameters are well set (see below).

The grid spacing in all calculations was L/70 which was the maximum for com-
puters with 2GB of working memory. Here L is the QD radius. This corresponds
to about 1400000 grid points altogether. In the ground-state calculations, the
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calculation sphere radius was varied between 4L and 10L. In the linear-response
calculations 50 unoccupied states were calculated in addition to the states in the
first two electronic shells. The exchange-correlation functional was LDA in all
calculations that had many-particle interactions included.
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8 Results

We will concentrate on two different material combinations suggested for sample
fabrication at the Helmholtz Zentrum in Berlin:

o ZnSe-matrix/CuGaSeq-dots
° CuGaSey-matrix/CulnSes-dots

The band alignments of the material combinations ZnSe-matrix/CuGaSe,-dots
and CuGaSey-matrix/CulnSe,-dots are presented in Fig. 15. The QD well depth is
Vo = 0.77 eV for holes in the ZnSe-matrix/CuGaSe,-dots system and Vy = 1.18 eV
for electrons in the CuGaSes-matrix/CulnSes-dots system. The values correspond
to the valence and conduction band offsets, respectively.

Due to the lack of experimental information about the band alingment of the
CuGaS,/CulnSe, heterojunction, this heterojunction is approximated with the
transitivity rule via CuGaSe,. This approximation might not be that good since
the lattice constants of CuGaSy and CulnSe,; are 10.1216 a.u. and 10.9303 a.u.,
respectively [35]. The 8% deviation in the lattice constants is significant and
creates strain in the heterojunction, which might change the heterojunction band
alignment.

The ZnSe/CuGaSe; system would be positively doped and uses holes as charge
carriers. Holes have an effective mass of 1.2 mg in the dot material CuGaSe,
(cf. Table 1). The CuGaSe,/CulnSe, system would be negatively doped and the
charge carriers would be electrons that have an effective mass of 0.09 mg in the
CulnSe; dots.

In the calculations, the effective mass of the charge carrier is chosen to be the one
in the dot material. If the effective mass of the charge carrier is much different
in the matrix material, we can expect that as we increase the penetration of the
QD electron density to the matrix the accuracy of the calculations suffers. This
can occur if we bring several QDs in a multiple periodic QD configuration closer
to each other so that delocalized states form.

Fortunately, in our case, the effective masses of dot and matrix materials are
rather close to each other. ZnSe/CuGaSe, system has hole masses 1.26 mg/1.2 my
and the CuGaSey/CulnSe, system has electron masses 0.14 m/0.09 mg (see Table
1 and Ref. [36]). The quoted value for the mass of the hole in ZnSe is the heavy-
hole mass. The heavy hole band has a higher density of states than the light-hole
band and thus has dominant effect on the physics of the QD.
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FIGURE 15: Band offsets for a) ZnSe-matrix/CuGaSes-dots and b) CuGaSs-
matrix/CulnSeg-dots material combinations at 0 K. No direct information was available
at the time of writing about the second system, so it is here approximated via CuGaSes.
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8.1 Optimal efficiency

Using the procedure described in detail in Sec. 5.5.1 we can plot the efficiency
of an IBSC as a function of the band gap €, and the intermediate band position
¢; (see Fig. 16). From Fig. 16 one can read the optimal band alignment for the
suggested matrix materials. For an IBSC implemented in CuGaS; (¢, = 2.43 eV)
we should have ¢; = 1.12 eV and in ZnSe (¢, = 2.82 eV) we should have ¢; =
0.94 eV in order to obtain the maximum theoretical efficiency. These positions
correspond to efficiencies of 61.1% and 57.3%, respectively.

The overall best combination of band gaps is (4, €;) = (1.97 €V, 0.72 V). For this
band gap combination we obtain an impressing theoretical maximum efficiency:

63.17%.

8.2 Realistic model

In QD calculations a harmonic potential is the standard model for the confinement
of the electrons. In our case of tetrahedral chalcopyrite QDs it does not apply
too well. The harmonic potential does not have a finite depth and it does not
correspond to the shape of the dot (tetrahedron). This is why we consider a
tetrahedral gaussian model potential defined by the equation

Vo () = —Voexpl—(r-mi)2/2L7] | (31)

where L is taken as the radius of the QD and n; is the normal vector of the
face the vector r points to. The model potential is depicted in the Fig. 17. The
softness of the Gaussian potential enables us to model the slowly varying confining
potential, which results from the nonabrupt interface between the QD and matrix
regions [37].

The Gaussian potential possesses the finite depth and range and — in the vicinity
of the dot center — it can be approximated by a parabolic potential

Ve (r) = =Vo +7°L7 (32)

where 7% = Vy/2R? (cf. Fig 18). A comparison between the single-particle energy
levels of spherical Gaussian and harmonic potential wells is shown in Fig. 18.
The QD potential well depth Vj is approximated to be equal to the valence
(conduction) band offset between the dot and matrix materials when the charge
carriers are electrons (holes).
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FiGURE 16: Efficiency of an intermediate-band solar cell as a function of the band
gap €, of the matrix material and the intermediate band position ¢;. Band gaps of
CuGaS, and ZnSe matrix materials and the corresponding optimal intermediate band
positions are marked in the figure. Because of symmetry, points for which ¢; > 1/2-¢,

are omitted.
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FIGURE 17: Two equipotential surfaces of the gaussian tetrahedral model potential.
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FIGURE 18: a) One-clectron energy levels for the spherical Gaussian (solid lines)
and harmonic (dashed lines) three-dimensional potential wells with V' = 50Rp =
50(m Vp/2€2R) and R = ap = eapon:/m; (Ref. [37]). The energy levels are labelled by
the quantum numbers (n,J). The energy scale is in Rp and the position scale in ap.

35



8.3 Size optimization

As described in Sec. 8.1 a major factor in the efficiency of a QD-IBSC is the
placement of the half-filled intermediate band, i.e., the ground state of an electron
in the QD. For this reason, we first optimize the placement of this band, i.e, the
energy of the first electron state for our two material combinations.

8.3.1 ZnSe/CuGaSe,

The optimal intermediate band placement ¢; = 1.12 (see fig. 16) is unattainable
for the ZnSe/CuGaSe; combination due to the shallow valence band offset (see
fig. 15), but it is still possible to find the maximum size of the QD with regard
to the thermal occupation of Eq. (6). Figure 19 shows the energies of the lowest
two single-particle states as a function of QD size. The energies are measured
from the valence band. The maximum size is 1.69 nm with an IB placement of
Ey =632 eV from the valence band of ZnSe. From Fig. 16 we can read that this
very much unoptimal value still corresponds to a maximum theoretical efficiency

of 32.5 %.

8.3.2 CuGaSe,/CulnSe;

For this material combination we can achieve the optimal intermediate band
placement ¢; = 0.94. The single-particle energies of the lowest two states of the
QD are plotted as a function of the QD size in Fig. 20. The optimal IB position
corresponds to a 4.43 nm QD (see Fig. 20). The ground-state energy level of the
dot corresponds now to the optimal IB position 940 meV below the conduction
band edge. This placement gives the very impressive theoretical maximum effi-
ciency of 61.1 % (see Fig. 16). The first excited state of the dot remains thermally
separated from the ground state as the energy difference is much larger than the
constraint set by Eq. (6).
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FIGURE 19: (a) Difference between the first and second single-electron states of a
tetrahedral quantum dot in the ZnSe/CuGaSes material combination. For this material
system the band alignment is unattainable, but we can calculate the maximum size
(giving the highest intermediate band and the best efficiency) for which the constraint of
Eq. (6) holds. The maximum size is L = 1.69 nm which corresponds to Ey = —632 meV
when the QD depth is the valence band offset —770 meV. (b) Same as Fig. 15 but with
the first single particle state energy, when QD size is L = 1.69 nm, marked in violet on
the figure.
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FIGURE 20: Energies of the first and second electronic states of a CulnSes dot in
CuGaSse matrix as a function of the quantum dot radius. For the CuGaSs/CulnSe;
material combination the optimal intermediate band position is attainable with quan-
tum dot radius L = 4.43 nm. The well depth with this radius is 1.18 eV. The number

in red marks the maximum size of the QD w.r.t. the constraint of Eq. (6).
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8.4 Geometric effects of the chalcopyrite dot

In the STM images (cf. Fig 13) the shape of the tetrahedral nanostructures seems
rounded. Some of the apparent roundness is likely due to the roundness of the
STM tip since in the TEM images the shape of the nanostructures look very
close to an ideal tetrahedron [23]. In order to analyze the effect of such possible
roundness which might result, in the long term, from diffusion in the tips of the
tetrahedra, we calculated the single-particle eigenenergies of the QD with the
external potential set to a linear combination of the spherical Gaussian potential
and the tetrahedral Gaussian potential

Ve () = aVZ"(6) + (1 = ) Vi (x) (3)

xt ext

where a € [0,1]. The material parameters were those of the CuGaS,/CulnSes
material system with the dot size set to the optimal value L = 4.42 nm. This
yields the energy spectrum shown in Fig. 21. For comparison, also the energy
levels of the linear combinations of the harmonic spherical model potential and
the Gaussian spherical model potential are presented.

From Fig. 21 it is apparent that the difference between tetrahedral and spherical
Gaussian potential wells lies mainly in the band splitting of the higher states
stemming from the lifting of the high symmetry of the sphere. The general ten-
dency upwards in energy is due to the smaller volume of the spherical dot when
the radii are equal (the radius of the spherical dot is the insphere radius of the
tetrahedron). The lowest four s-like states remain degenerate, but the higher
states strongly split. Combined with the inevitable additional splitting due to,
e.g., inhomogenous size and shape distribution of the QDs, this will cause a high
density of states near the valence band edge.

The states near the valence band edge have an energy separation smaller than
3kgT and this will cause a rapid relaxation of the conduction band electrons
through the phonon interaction to the QD states and decrease of the open circuit
voltage and the efficiency of the solar cell. The relaxation will continue down to the
levels corresponding to the degeneracy of 10 of the harmonic spherical potential
well (see Fig. 21). Below this, the separation between the bands is large enough
(over 3kgT) to ensure little thermal occupation. Thus, in the CuGaS,/CulnSe,
IBSC with the dot radius 4.42 nm the first three bands will form intermediate
bands.

The original IBSC theory assumes only a single IB. Recently, there has been
extensions of the theory to multiple intermediate-band solar cells [38]. The pres-
ence of multiple IBs reduces the efficiency limit of the IBSC derived from detailed
balance calculations, the worst case being when all the IB levels have different
quasi-Fermi levels.
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8.5 Optical spectra of tetrahedral quantum dots of differing electron
numbers

Optical spectra can be used as a fingerprint for a given system. For this purpose
we calculated the optical absorbance of a single QD with different number of
electrons. This was done for both material systems, the ZnSe-matrix/CuGaSes-
dots and CuGaSy-matrix/CulnSes-dots. The size of the QD in the latter system
is the optimum Lo,y = 4,42 nm and in the former the maximum Ly, = 1.69 nm
with regard to the thermal occupation limit (see Sec. 6.1).

Figure 22 shows the spectra for N = 1...8 electrons in CuGaSs-matrix/CulnSe,-
dots. The absorbance when N = 1 or N = 2 is just the energy separation |E; — F,,|
where n > 1. As one adds more electrons more transitions become possible and
more peaks appear. The spectra for N > 3 are remarkably similar and, on the
other hand, remarkably different when compared to the spectra for N < 3. The
large difference in the spectra can be used to assess, by optical measurement,
whether the number of QD valence electrons is the desired, that is, about one

per QD [39].

Figure 23 shows the spectra for N = 1...8 electrons in the other system, i.e.,
ZnSe-matrix/CuGaSes-dots. One can immediately see that the spectrum is more
disordered than that obtained for the CuGaS,/CulnSes; combination. The dis-
order can be attributed to the relative shallowness of the confining potential
which creates a high density of states in the well, and this allows many different
transitions.
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FIGURE 22: Absorption spectra of a single quantum dot for N = 1...8 electrons in
the CuGaSs-matrix/CulnSes-dots material combination.
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FIGURE 23: Absorption spectra of a single quantum dot for N = 1...8 electrons in

the ZnSe-matrix/CuGaSes-dots material combination.
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8.6 Band structure of stacked quantum dots

When describing the operation of the IBSC, the IB was assumed to extend itself
all over the bulk infermediate band material. But the intermediate levels only
exist at the dots and not in the barrier region, unless QDs are placed closely
enough that the electron wave function of the dots overlap.

The QDs are often procuded in vertical stacks, where the QD is formed on top
of another because of the strain the lower one induces on barrier region. The
strain is due to the differing lattice constants of the matrix material and the dot
material. This technique has also been applied to IBSCs [40]. For this reason, the
density of states of stacked tetrahedral gaussian QDs are presented here. Figure
24 shows the density of states for different separations o of the QD centers in
the CuGaSs-matrix/CulnSes-dots system. The size of the QD is the optimal size
L = 4.42 nm. Separation d = 4.0 corresponds to the case when neigbouring QDs
are touching each other. A single electron was placed in each QD.

From Fig. 24 one can see that the states tend to lower energies as the dot sepa-
ration is made smaller. This is mostly due to the fact that the model potentials
of the neighbouring dots are added together, which creates artificially low poten-
tials in the model. The tendency is not due to delocalization effects as could be
thought at first sight, which has been checked from the electron density data.

Instead of adding the neighbouring model potentials, a minimum of two overlap-
ping potentials should be taken, as is the standard procedure when simulating
double QDs (see Ref. [41] and references therein). Unfortunately, due to the limi-
tations of the Octopus input file syntax and the complexity of the definition of a
Gaussian tetrahedral model potential, this was not possible. This limitation will
be removed in future works.
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FIGURE 24: Density of states curves for vertically stacked tetrahedral quantum dots
of size L = 4.42 nm in the CuGaSy-matrix/CulnSes-dots system with five different dot
separations. The dashed lines are guides for the eye.
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9 Summary

We have considered two different chalcopyrite material combinations suggested
for intermediate-band solar cell (IBSC) sample fabrication in Helmholtz Zentrum,
Berlin. We have obtained the maximum theoretical efficiency values of these two
chalcopyrite IBSCs. The optimal sizes of the chalcopyrite quantum dots (QDs)
in the corresponding QD-IBSC implementations have been calculated. Optical
absorption spectrum of a single chalcopyrite QD has been obtained for both
systems. The effect of the QD geometry, especially the effect of the roundness of
the QD, was examined. We hope that these results will help in the quest towards
more efficient and more affordable solar cells.
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