
DEPARTMENT OF PHYSICS
UNIVERSITY OF JYVÄSKYLÄ
RESEARCH REPORT No. 1/2011

DIFFUSION IN EVOLVING ENVIRONMENT: MONTE CARLO

STUDIES OF DISCRETE MODELS

BY

JANNE JUNTUNEN

Academic Dissertation
for the Degree of

Doctor of Philosophy

To be presented, by permission of the

Faculty of Mathematics and Natural Sciences

of the University of Jyväskylä,

for public examination in Auditorium FYS-1 of the

University of Jyväskylä on February 5, 2011

at 12 o'clock noon

Jyväskylä, Finland
January 2011



Preface

Finally this academic jorney that have sometimes felt like a walk in a wet swamp is,
at least temporarily over. The feet have met a solid ground.

The work reviewed in this Thesis has been carried out at the Department of Physics
in the University of Jyväskylä during the years 2005-2010. The journey has take more
time than anticipated but in the end the time has been spent learning the magic of
doing and understanding physics. I am greatly in dept to Docent Juha Merikoski who
introduced the world of computational physics and stochastic modelling to me. The
collaboration with Dr. Otto Pulkkinen has revealed the usefulness of the concept of
random walks as one of the main tools in stochastic modelling.

During these years I have had the pleasure to spent my time in and out of depart-
ment with phycisists in many �elds of physics. Especially discussions with docent
Jari Hyväluoma and Dr. Keijo Mattila have revealed many aspects of natural sciences
and physics, which has kept my eyes open and guaranteed a very comprehensive pic-
ture of physics and how it has been done and is done nowadays. The athmosphere
of my "`co�ee lounge"', the Hard Humppa Cafe, greated by Dr. Viivi Koivu, Mr.
Tuomas Turpeinen, Mr. Mikko Voutilainen and Mr. Lasse Miettinen has provided a
place to relax and forget physics. I am greatly in dept also to Mr. Juha Sorri and
Mr. Topi Kähärä and those nonmentioned persons that have sometimes participated
some tournament of Atomi Fragor (Atomin Pamaus), "Fulgur cum vides, zero est".
For creating an open and truly inspirated environment I must thank the Deparment
of Physics entirely.

Finally, I wish to thank my family that couraged me to study as far as I can and most
of all my wife Terhi for always motivating me to �nish my thesis as fast I can.

Jyväskylä, January 2011

Janne Juntunen

i



Abstract

Di�usion in a dynamic environment is studied by Monte Carlo simulations. The Thesis
consists of an introductory part and four publications, in which di�usion in evolving
environments is studied. A general theoretical framework is presented in a separate
chapter of the introductory part.

The spatiotemporal behavior and stationary properties of environments, the area be-
tween two interfaces driven towards each other and zero-range processes, is studied
in detail in order to understand the time and length scales relevant to the dynamics
of such environments. Special emphasis is in the �nite size and crossover e�ects. The
main observation concerning the two interface scenario is the non-monotonic behavior
of the roughness of the interfaces, which is a genuine �nite size e�ect. By analyzing
the behavior of the largest cluster in the zero-range process we �nd that we can de-
termine the e�ective critical density ρc(L) that is a prominent factor in stationary
and dynamical quantities. Below the density ρc(L) the collective di�usion coe�cient
is found to be larger than the di�usion coe�cient for the center of mass movement
and above it smaller, re�ecting the crossover at ρc(L).

Tracer di�usion between two interfaces driven towards each other is found to depend
strongly on the bubble dynamics. In the weak drive limit the probability of the particle
inside the bubble is found to control di�usion, while in the strong drive limit the
probability that a particle makes a jump during the bubble life time explains the
behavior of the di�usion coe�cient. These two scaling limits are not compatible.
One of the key �ndings is the e�ect on the di�usion coe�cient due to the microscopic
coupling of the particle and interfaces. In the case of a driven exclusion process between
two interfaces the particle current depends on several properties of the interfaces. As
for the zero-range process and for single-particle di�usion between the interfaces, the
dynamics of the environment strongly controls the transport.
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1 Introduction

Di�usion is an ubiquitous phenomenon in nature. This in part explains why di�u-
sion is one of the most frequently studied phenomena in physics. Everyday examples
of di�usion are numerous and one of the best known examples is heat transfer by
conduction in metals. Informally, di�usion is a process smoothing out concentration
di�erences in a system. More fundamentally, di�usion is a consequence of the basic
laws of the thermodynamics, in particular it arises as a consequence of the second law
of thermodynamics: The entropy of a closed system will increase with time.1

Understanding di�usion in various situations has been and will probably be in a
signi�cant role in the development of many technological innovations. One example
of the advances of understanding di�usion is the progress done in manufacturing
transistors. Understanding of the point-defect mediated di�usion in a material has
enabled transistors so small that they can be considered to be in many applications
essentially two or even one dimensional without any critical de�ciencies. In addition,
the fact that transistors are manufactured of materials which have some kind of a
structure gives a possibility to consider the system as a discrete �nite size lattice on
which the di�using particles moves.

Historically, in condensed-matter physics the fact that some thermal properties must
be calculated for model systems of �nite size, has often been considered to be a
problem. It is true that a model system of �nite size can behave di�erently from a
similar system of a macroscopic or hydrodynamical size. But the Nature strikes back.
It is well documented that, for example, gold behaves di�erently in di�erent scales.
It is common knowledge that gold is a chemically stable element. However, when
considering clusters of only a few dozen gold atoms it suddenly is not stable, in fact
it is catalytic. Finite-size e�ects can be divided in two distinct categories, namely
physical and non-physical ones. The �rst category involves phenomena due to a small
or even nanoscale size and the second one includes other reasons such as artifacts of the
models or methods. By Monte Carlo (MC) simulations only systems of �nite size are
attainable because of the very nature of the method. Theoretical analysis methods
have been developed to overcome this di�culty, in particular �nite-size scaling [1]
being the tool to transfer MC results obtained for small sizes into results valid in the
hydrodynamical limit. Often the change of a system which displays a �nite size e�ect
into a system large enough so that it appears to be hydrodynamical is not a rapid

1Entropy is a measure of disorder. It describes how much energy that was originally stored in the

system can be extracted from it to perform useful work at later instant of time.
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2 Introduction

one. Indeed one can argue that the system is in the so called crossover region in which
it displays behavior characteristic of both phases.

An often used and a powerful frame for studying di�usion is provided by the theory of
random walks. The variations of the random walk model are numerous. One common
feature of those models is that they satisfy the Markov property i.e. the behavior in
the past does not a�ect the behavior in the future. Only few attempts of understanding
random walks out of the Markovian framework have been considered. This of course
is forgivable since there is no general theoretical framework beyond the Markovian
one [2]. One of the most relevant and useful random walk models for the purposes of
this Thesis is the continuous time random walker (CTRW) �rst considered in detail
by Montroll in the 70's [3]. One of the advantages of CTRW is that the randomness
of the environment is easily taken into account.

Even though the problem of random walks in a random environment (RWRE) has
a long history, and after the early results in the 1970s [4, 5, 6], a vast amount of
information have accumulated, they are usually studies were randomness has been
considered to manifest itself as non-homogeneous transition rates [7, 8]. In cases were
the transition rates are themselves a result of a random walks are described by the
Sinai model [9]. However, these studies have quite often been limited to systems,
where the close environment of the di�usive particle is stationary and the geometry is
not restricted. Recently there has been interest towards models of di�usion where the
geometry is restricted [10] and the force that causes the motion of the particle depends
on time and place [11]. This can be interpreted as particle di�usion in a random
dynamic environment. It has been noticed that �uctuations of the environment can
cause an otherwise nondi�usive motion to change into di�usive [12].

The outline of this Thesis is as follows. In Chapter 2 we characterize di�usion and
how it can be modeled. In Chapter 3 we introduce the models studied and discuss the
Monte Carlo methods used. In Chapter 4 we review our main results for di�usion in
evolving and restricted environments. The �nal chapter comprises a brief summary.



2 Di�usion and random walks

2.1 Di�usion

Di�usion as a concept is ambiguous. This question is actually one focus of our interest.
If we consider a physical system at a microscopic level we can either consider an
individual particle or a collection of them. Naturally the behavior of a single particle
is not necessarily similar to the behavior of a collection of them. Therefore we must
consider these scenarios separately. If we consider a single particle moving among
others we are studying tracer di�usion. When our focus is on how the system behaves
as a group of particles, collective di�usion is under consideration.

2.1.1 Tracer di�usion

A classical example of di�usion is the motion of a particle suspended in a liquid. The
very �rst time this kind of motion was observed in 1828 by botanist Robert Brown
when he studied pollen of di�erent plants and observed that when placed in water the
pollen particles were in constant irregular motion. Nowadays this Brownian motion is
understood to be motion of colloidal particles in a liquid and to result from random
molecular collisions with liquid molecules.

The �rst explanation for such motion was given by Einstein in 1905 [13, 14]. The
idea of using a random walk picture as a tool for analyzing Brownian motion is quite
remarkable when considering the fact that the concept of random walk explicitly had
appeared in the literature in the same year [15].

In a situation where there are no mutual interactions between Brownian particles a
simple theory for Brownian motion is the Langevin equation:

m
d

dt
~v(t) = −νm~v(t) + ~F (t), (2.1)

where m and ~v(t) are mass and the velocity of the particles at time t, respectively,
~F (t) is the driving random force for the Brownian particle that arises from the thermal
motion of �uid molecules and ν is the friction coe�cient. This approach is on a solid
ground as long as the Markovian limit has been reached. Basically this requires that

3



4 Di�usion and random walks

the time scales of the particle and �uid molecules are decoupled, otherwise friction is
a function of time and results in memory e�ects of the di�using particle.

The description of Brownian motion is a good example of tracer di�usion, i.e. di�usion
of individual particles among others. One of the most important results of Einstein's
paper [13] and one of the most straightforward way to determine the tracer di�usion
coe�cient DT is the mean square displacement

〈∆X2(t)〉 = 2dDT t
α, α = 1 (2.2)

where d is the dimension in which the di�usion process occurs and t is the length
of the time interval. For α < 1 system is said to be subdi�usive and for α > 1
superdi�usive [16].

2.1.2 Collective di�usion

As discussed already in Chapter 1, di�usion is a process which tends to equalize the
concentration within the system. However, from the concept of Brownian motion or
tracer di�usion it may be di�cult to see the connection with this. The equilibration
of matter density is best understood if one considers the motion of a larger collection
of particles. For this kind of evolution the commonly used term is collective di�usion
the corresponding coe�cient being DC .

A natural description of transport coe�cients is the Green-Kubo (linear) response
function formalism [17, 18]. In the Green-Kubo formalism every transport coe�cient
is expressed via time correlations of some current. For collective di�usion

DC = K

∫ ∞

0

dt〈~j(t) ·~j(0)〉, (2.3)

where ~j(t) is the particle current. In general, the explicit forms of the �ux and the
so-called thermodynamic factor in front of the correlator depend on the transport
coe�cient under consideration [17]. The collective di�usion coe�cient (a tensor in the
anisotropic case) can then be written as a product of two factors, namely K and the
center of mass di�usion coe�cient DCM , as

DC = KDCM , (2.4)

where DCM is obtained from equations analogous to (2.2-3). The factor K arises
from the particle number �uctuations in equilibrium described by the grand-canonical
ensemble, K = 〈(N − 〈N〉)2〉/〈N〉, assuming Gaussian �uctuations around the most
probable particle density. The factorK is inversely proportional to the compressibility.
Equation (2.4) thus reveals one major di�erence between tracer di�usion (of single
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particle or the center of mass) and collective di�usion. The second important di�erence
results from cross correlations:

DC

DCM

=
N

〈(∆N)2〉

(
1 +

∫∞
0
dt

∑
i6=j〈~vi(0) · ~vj(t)〉∫∞

0
dt

∑
i
〈~vi(0) · ~vi(t)〉

)
,

where vi are the velocities of individual particles.

2.1.3 Hydrodynamic equations

Above di�usion processes were considered in a microscopic scale, arising from par-
ticle motion. However in a hydrodynamical scale a description based on di�erential
equations is a more proper approach.

In the hydrodynamical treatment of di�usion the starting point is the postulate that
the particle density ρ(~r, t) is a conserved variable. The second necessary requirement
is an explicit form for the driving force [17]. Usually this is ful�lled by assuming
that the mass transport across a certain unit area is proportional to the gradient of
the particle density normal to unit area. These two postulates are described by the
continuity equation,

∂ρ

∂t
+∇ ·~j = 0, (2.5)

and the phenomenological Fick's �rst law for the particle current density ~j(~r, t),

~j(r, t) = −DC(ρ)∇ρ(~r, t). (2.6)

By combining these two equations, one obtains

∂ρ

∂t
= ∇ ·DC(ρ)∇ρ(~r, t), (2.7)

which is a non-linear partial di�erential equation, which often is not analytically
solvable. Usually however additional approximation can be done and by assuming
independence of the di�usion coe�cient on density resulting in

∂ρ

∂t
= −DC∇2ρ(~r, t), (2.8)

which is the di�usion equation that can be often solved exactly. Similar hydrodynamic
equations describe also tracer di�usion, with ρ then interpreted as a probability density
[19].
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In Eq. (2.3) we expressed a way to calculate the collective di�usion coe�cient DC .
However the computational determination of DC from Eq. (2.3) is di�cult. Since the
thermodynamical factor in Eq. (2.4) is proportional to density �uctuations, a natural
starting point for a more practical approach is provided by the density autocorrelation
function [17, 18]

S(~r, ~r′, t) = 〈δρ(~r, t)δρ(~r′, 0)〉, (2.9)

where δρ(~r, t) = ρ(~r, t) − 〈ρ〉. Inserting this autocorrelation function in the di�usion
equation (2.8) we obtain a di�usion equation for the autocorrelation function, i.e.
∂tS(~r, t) = −DC∇2S(~r, t). From the solution of the di�usion equation the density
�uctuations are found to decay as

S(~k, t) = S(~k, 0) exp(−~k ·DC · ~kt). (2.10)

2.2 Random walk models of di�usion

A natural framework for modeling di�usion is provided by the theory of random
walks [15]. Especially Brownian motion can be described with it. From the perspective
of this Thesis the most relevant model of random walks is the continuous time random
walk (CTRW) on a lattice introduced by Montroll in the 70's [3]. The general CTRW
model is based on a the idea that the jump length distribution and the waiting time
distribution are drawn from a common distribution ψ(t,∆x) from which the jump
length and waiting distribution are

λ(∆x) =

∫ ∞

0

dt ψ(t,∆x) φ(t) =

∫ ∞

0

dxψ(t,∆x).

If the waiting time and the jump length are independent random variables, the com-
mon distribution can be written in the decoupled form ψ(t,∆x) = λ(∆x)φ(t). If both
are coupled ψ(t,∆x) = λ(∆x|t)φ(t) or ψ(t,∆x) = φ(t|∆x)λ(∆x), a jump of certain
length will cost a certain time and vice a versa. In what follows we consider the origin
of correlations in the di�usive motion.

2.2.1 General solution for CTRW on a lattice

We use the recursion relation approach to solve the general CTRW on a lattice. The
notations obey those of Ref. [20]. For simplicity let us assume that the particle has
performed its latest transition at time t = 0. Then ψn,m(t) is the probability density
that the particle jumps at time t from site m to site n after waiting time t on m. It
must be positive semide�nite and it must be normalized,

∑
n

∫∞
0
dt′ψn,m(t′) = 1.
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Since the tracer di�usion coe�cient is usually obtained from the mean-square dis-
placement via Eq. (2.2) the understanding of tracer di�usion is reduced to the un-
derstanding of the probability distribution function of the location of the particle at
time t > 0 with the condition that at time t = 0 it was in a given lattice site l i.e the
conditional probability P (n, t|l, 0).

Let Qν(n, t
′) be the probability density that the particle has performed its νth tran-

sition at time t and reached site n. Recursively this can be written as

Qν(n, t
′) =

∑
m

∫ t′

0

dt∗ψn,m(t′ − t∗)Qν−1(m, t
∗). (2.11)

This relation however is valid only for ν ≥ 2 since the �rst transition has to be treated
di�erently. By summing over ν i.e, the numbers of transitions in which the particle has
moved to n we obtain the probability density that site n is occupied by a transition
at time t′

Q(n, t′) =
∑

ν

Qν(n, t
′). (2.12)

This equation can obviously be written for all lattice sites, not only for n. The recursion
for Q(n, t′) is similar to Eq. (2.11) for Qν(n, t

′), see the Appendix for details. The
probability P (n, t|l, 0) is thus related to P (n, t′). If the particle arrived in site n at t′,
then the probability that it still is at the same site depends of the probability that no
further jumps occurs between t′ and t. In case where no transitions occurred at all,
the particle was already at site n at time t = 0. Finally, the required probability in
Fourier-Laplace space is

P̃ (k, s) =
1− h̃(0, s) + h̃(k, s)− ψ̃(k, s) + h̃(0, s)ψ̃(k, s)− h̃(k, s)ψ̃(0, s)

s(1− ψ̃(k, s))
, (2.13)

which get simpli�ed for a separable CTRW to

P̃ (k, s) =
1− h̃(0, s) + λ̃(k)[h̃(s)− φ̃(s)]

s(1− λ̃(k)φ̃(s))
, (2.14)

comprised of products of spatial and temporal factors and ψ̃(0, s) = ψ̃(s) = φ̃(s). If
we consider a stationary ensemble, the waiting time distribution for the �rst jump is
the conditional probability to wait time t even though it has already waited time τ .
The Fourier-Laplace transform of this probability is

h̃(k, s) =
ψ̃(k, 0)− ψ̃(k, s)

t̄s
, (2.15)

where t̄ is the expected waiting time of the particle.
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Finally we obtain the conditional probability in a stationary ensemble

P̃ (k, s) =
1

s
+

1

t̄s2

[1− ψ̃(0, s)][ψ̃(k, 0)− 1]

1− ψ̃(k, s)
. (2.16)

This illuminating result is for the coupled case. For the decoupled case in the de-
nominator ψ̃(k, s) = λ̃(k)φ̃(s). If the system is prepared on t = 0 so that it evolves
according to ψn,m(t) it follows that hn,m(t) = ψn,m(t). In fact if the waiting-time dis-
tribution (WTD) has no memory, then hn,m(t) = ψn,m(t) is always true without the
assumption of preparation of the system on t = 0.

Replacing h̃(k, s) by ψ̃(k, s) in Eq. (2.13) one obtains

P̃ (k, s) =
1− ψ̃(0, s)

s

1

1− ψ̃(k, s)
(2.17)

for a coupled distribution. For the decoupled case we have in the denominator ψ̃(k, s) =
λ̃(k)φ̃(s). The decoupled result is called the Montroll-Weiss equation and it is an exact
solution of the problem in the Fourier-Laplace space.

2.2.2 Properties of RW di�usion

In a case where the characteristic function of the associated density function is known,
the moments can be obtained from 〈xn〉 = limk→0(−i)ndnfX(x)/dkn and the mean-
square displacement of the particle is thus

〈x2〉(s) = −∇2
kP̃ (k, s)|k=0, (2.18)

where for simplicity and for the purposes of this work we consider one-dimensional
motion. Now using Eq. (2.18) with Eq. (2.16) we obtain the tracer di�usion coe�cient
in the general case through

〈x2〉(s) = − 1

t̄s2
(1− φ̃(s))

( λ̃′′(0)

1− φ̃(s)
+ 2

λ̃′(0)ψ̃′(0, s)

(1− φ̃(s))2

)
. (2.19)

Since λ̃′(0) = −i〈∆x〉 and λ̃′′(0) = −〈(∆x)2〉 and the terms ψ̃n(0, s) are of the form

〈(∆x)n(s)〉 = ψ̃n(0, s) = (−i)n

∫
φ(t)〈(∆x)n(t)〉e−stdt, (2.20)

for 〈x2〉(s) we obtain its �nal form in the Fourier-Laplace domain,

〈x2〉(s) =
1

t̄s2

(
〈(∆x)2〉+ 2i

〈(∆x)〉〈(∆x(s))〉
(1− φ̃(s))

)
. (2.21)



2.2 Random walk models of di�usion 9

For the decoupled case in the numerator 〈x〉〈x(s)〉 = 〈x〉2φ(s) and hence the result
can be presented as

〈x2〉(s) = 〈n(s)〉〈(∆x)2〉+ 〈n(s)(n(s)− 1)〉〈(∆x)〉2, (2.22)

where 〈n(s)〉 is the Laplace transform of the expected number of steps taken during
the time t (see Appendix).

If h̃(k, s) = ψ̃(k, s) as it is for example in cases with exponential waiting times, we
obtain for the decoupled case the same result as in Eq. (2.22) and for the coupled case

〈x2(s)〉 = − 〈(∆x)
2(s)〉

s(1− φ̃(s))
− 2

(∆x(s))2

s(1− φ̃(s))2
. (2.23)

As we can see from Eqs. (2.21) and (2.23) the coupled versions of CTRW can not be
developed further without an assumption of the forms of the waiting time distribution.
However in the long time limit (small s) we can approximate Eq. (2.20) by

〈(∆x)n(s)〉 = (−i)n(〈(∆x)n〉 − s〈(∆x)nt〉+
s2

2
〈(∆x)nt2〉+ ....).

By substituting the approximation above to Eq. (2.21) we obtain

〈x2〉(s) =
〈(∆x)2〉
t̄s2

+ 2
〈∆x〉2

s3〈t〉2
− 2

〈∆x〉〈∆xt〉
s2〈t〉2

and for h(t) = ψ(t) in the small s limit

〈x2〉(s) =
〈(∆x)2〉
t̄s2

− 〈(∆x)2t〉
s〈t〉

+ 2
〈∆x〉2

s3〈t〉2
− 4

〈∆x〉〈∆xt〉
s2〈t〉2

+
〈∆xt〉2

s〈t〉2
.

In the non-driven situation, 〈∆x〉 = 0, the motion of the particle is then purely
di�usive 〈x2(t)〉 = 〈(∆x)2〉t/t̄, if the averages t̄ and 〈(∆x)2〉 exist. Here we assume
their existence.

In Ref. [21] Klafter et al. considered the coupled version of the case h(x, t) = ψ(x, t).
By using the speci�c form

ψ(k, s) ∼ 1− C1s
γ − C2k

β

of the Fourier-Laplace transformed transition rate function ψ(x, t). They found that
〈x2〉(t) diverges, if 0 < β < 2 despite of the γ and if 0 < γ < 1 , C2 = 〈x2〉/2 and
β = 2 〈x2〉(t) ∼ tγ. In the literature the cases where 〈x2〉 is in�nite are better known
as Levy �ights [21] and the case of spatiotemporal coupling of waiting times and jump
length is known as Levy walks.



10 Di�usion and random walks

If the average waiting times t̄ are �nite or diverge mildly the models are ergodic.
The importance of the ergodicity is that the ergodic hypothesis states that ensemble
averages and time averages are equal in the limit of in�nite measurement time. There
are two requirements for the system to be ergodic. First, the phase space must be
connected and the the occupation time must be equal to the fraction of the phase
space volume occupied. Naturally CTRWs satisfy the �rst requirement. Problem arise
when considering the second requirement. This requirement is typically broken in
cases where each lattice site has a di�erent WTD [22]. This weak ergodicity breaking
was studied recently quite comprehensively for CTRW. Usually ergodic systems obey
the Boltzmann distribution. In Ref. [23] a nonergodic statistical law for the nonergodic
phase was found.

Above we have assumed that the waiting times and jump lengths are independent
and identically distributed random variables. In Ref. [24] a general mathematical
framework for nonindependent CTRWs was developed. However only certain type of
nonindependency can be dealt with accurately and the results obtained lead to a
di�usive behavior. In Ref. [25], however, it was found that if we allow correlations
for λ or φ, i.e. memory, these correlations lead necessarily to anomalous di�usion.
Spesi�cally, if waiting times are correlated by Gaussian statistics 〈x2〉(t) ∼ t2/3 while
long-ranged correlations of waiting times by power law with 0 < α ≤ 2 such that
〈x2〉(t) ∼ tα/(α+1), correlations in jumps length produce superdi�usion. In both cases
correlations cause a weak ergodicity breaking. We get back to ergodicity breaking in
Section 3.5.4 where we consider sampling of quantities in numerical simulations.
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3.1 Zero-Range Process

The zero range process (ZRP) was �rst mentioned in the literature in the 70's as
an example of an interacting Markov process [26]. Nowadays it is a central reference
model when considering nonequilibrium systems in condensed-matter physics. Here a
rather informal de�nition of it for the purposes of this work is given.

Even though majority of the analytical results concerning ZRP are obtained via
grand-canonical analysis, in this Thesis we only consider canonical case. Informally,
the canonical ZRP is a stochastic process on a lattice or graph containing L sites
i = 1, 2, . . . , L, with N identical particles. The dynamics of the ZRP is de�ned by a
transition rate function ui(ki). The dynamics occurs so that at each time step from
a randomly chosen site i a particle jumps to site j with probability ui(ki), where due
to the zero-range property there is no dependence on j. The symbol ki identi�es the
number of particles in lattice point i.

The vector formed by the set {ki} de�nes unambiguously a con�guration m. The
probability that the system is in con�guration m in the stationary state is

P (m) =
1

Z(L,N)

L∏
i=1

fi(ki), (3.1)

where the function fi is

fi(k) =

{ ∏k
h=1

1
ui(h)

, if k ≥ 1

1 , if k = 0.
(3.2)

The previous statement can be easily veri�ed by showing that the probability distribu-
tion satis�es the detailed balance condition. The factor Z(L,N) in Eq. (3.1) assures
that the probability P ({m}) = 1 and it is therefore analogical with the partition
function which appears in statistical mechanics. Here the partition function is

Z(L,N) =
∑
ki

δ(
L∑

i=1

ki −N)
L∏

i=1

fi(ki). (3.3)

11
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In this Thesis we study only one kind of transition rate functions. We focus on func-
tions of the form

u(k) = u0(1 + b/k) (3.4)

which are sometimes called as Evans-type transition rates. With these transition rates,
there is a continuous phase transition at the critical density

ρc =
1

b− 2
(3.5)

whenever b > 2. Even though the system is expected to be in a condensed phase
whenever b > 2 and ρ > ρc, the behavior of the system in cases 2 < b < 3 is expected
to be di�erent from cases b > 3.

In the condensed phase the particles form a homogeneous critical background and a
macroscopic condensate, consisting of Z1 particles with

Z1 = L(ρ− ρc) ⇒ Z̃1 =
Z1

N
= 1− ρ

ρc

. (3.6)

The results above are obtained via grand-canonical analysis and are not valid for
small system sizes. Quite recently Evans et al. [27, 28] studied the condensation phe-
nomena canonically. The main results of those papers are the �nite-size scaling of the
size distribution of the largest cluster P (Z1, N, L) and the probability p(ki) i.e. the
probability that a randomly chosen site i has occupation ki. Especially the analysis
concerning f(k) = Ak−γ(γ > 2) is of interest to us since the Evans-type rates u(k)
lead to this form.

For 2 < γ < 3 the occupation probability of a single site is

p(k) ≈ f(k)
Vγ(k/L

1/(γ−1))

Vγ(0)
(3.7)

and the size distribution of the largest cluster is

P (x,N, L) =
1

L1/(γ−1)
Vγ

(x− L(ρ− ρC)

L1/(γ−1)

)
. (3.8)

The scaling function Vγ is highly symmetric around z = 0. For γ > 3

p(k) ≈ f(k) exp(−k2/2 · Z2
1L) (3.9)

and

P (x,N, L) =
1√

2π∆2L
exp

(
− (x− (ρ− ρc)L)2

2∆2L

)
. (3.10)

This Gaussian form is valid over a scale o(L2/3).
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Even though the distributions for the size of the largest cluster (see Eqs.(3.8) and
(3.10)) are for the generalized mass transport model (GMT) [29], the results apply
to ZRP since it belongs to the universality class of GMT. One species ZRP can be
generalized to the many species case [30]. Here we consider brie�y two species ZRP.

In a two species ZRP there are N particles of species A and M particles of species
B. The particles of species A make nearest-neighbor hops with a rate u(n,m) and
particles of species B with a rate v(n,m). In Ref. [30] it has been shown that if the
hopping rates satisfy the condition

u(nl,ml)

u(nl,ml − 1)
=

v(nl,ml)

v(nl − 1.ml)
,

the system has a factorized steady state. Basically, this restriction says that both
species are independent or their dynamics depend on each other in the given way. For
our purposes, however, the factorization condition is not important.

3.2 Exclusion process

The asymmetric exclusion process (ASEP) is a continuous time Markov process of
interacting particles on a lattice. Its dynamics is described by two simple rules: A
particle at lattice point i waits an exponential time with parameter α (independently
of all other particles) and then it chooses its movement with probability p(i, j). If the
lattice site j is empty at that time the particle moves to it, while if it is occupied the
particle remains at i and restarts its clock.

In the one dimensional case the allowed jumps are one step to the right, p(i, i+1) = p,
or one step to the left p(i, i−1) = 1−p = q. The symmetric condition is p = q so there
is no net drift of particles. The special cases p = 1 (particles hop only to the right) or
q = 1 (particles hop only to the left) are called the T(totally)ASEP. Generalization of
1D ASEP to higher dimensions is trivial. One dimensional exclusion process can be
mapped onto the ZRP, however this mapping is not one-to-one [31].

In the continuum limit the asymmetric exclusion process (ASEP) is known to obey
the Burgers equation [32]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3.11)

where u is velocity and ν is the viscosity. The general case can be linearized by the
Cole-Hopf substitution u = −2ν 1

φ
(∂φ

∂x
) and one the obtains the di�usion equation

∂tu = ν∂2
xu.
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3.3 Solid-On-Solid models

First of all solid-on-solid (SOS) models describe the growth or evolution of an inter-
face de�ned on a lattice. Another common feature of all SOS models is that they
describe only single valued interfaces and they usually restrict the di�erence between
the neighboring sites. Here we consider only one particular SOS model namely the
Body-Centered Solid-On-Solid model (BCSOS). It can be mapped onto ASEP [33]
and via ASEP further onto ZRP [31].

In the BCSOS model of a single one-dimensional interface [34], the location or the
height of the interface is described by a function h(x, t) such that, for every lattice
site x = 1, .., L and t ≥ 0,

h(x+ 1, t)− h(x, t) = ±1. (3.12)

Due to these restrictions on local con�gurations, only two kinds of processes, adsorp-
tion and desorption, are available and the growth of the interface follows simple rules.
In discrete time, if at some time step a randomly chosen lattice point x is a local
minimum, then h(x, t) increases (adsorption) by two with probability p, and if the
chosen point is a local maximum, then it decreases (desorption) by two with proba-
bility q. In our continuous-time simulations (see Section 3.5.3), the parameters p and
q correspond to respective transition rates per unit time.

The BCSOS2 model consists of two one dimensional BCSOS interfaces h1 and h2

interacting with each other, see �gure 1 of Article I. The coupling between them is
produced by demanding that the interfaces can not intersect:

h1(x, t) ≥ h2(x, t) for all x, t. (3.13)

In all cases considered here, we impose periodic boundary conditions hk(x, t) ≡ hk(x+
L, t) for k = 1, 2.

In this model, there are four parameters, which describe the dynamics of the interfaces
in all possible situations, (p1, q1, p2, q2), de�ning the transition rates for the interfaces
h1 and h2, respectively. In a symmetric case the behavior of the BCSOS2 is controlled
by the driving parameter f

f = p2/q2. (3.14)

We consider also the di�erence and sum processes de�ned via

h±(x, t) = h1(x, t)± h2(x, t) (3.15)
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The interfaces h± are of the restricted solid-on-solid (RSOS) type [34], obeying

h±(x+ 1, t)− h±(x, t) = −2, 0,+2. (3.16)

The non-crossing condition of Eq. (3.13) is equivalent to

h−(x, t) ≥ 0. (3.17)

To characterize the statistical properties of interfaces h1 and h2, and the sum and
di�erence processes h+ and h−, we use their roughness or width [34] de�ned as

Wk(t) =
√〈

|hk(x, t)− h̄k(t)〉|2〉 (3.18)

Here k = 1, 2,+,− and h̄k(t) is the spatially averaged height of the interface con�g-
uration at time t, and the angle brackets denote ensemble average, i.e. average over
independent simulations.

Since the BCSOS model is de�ned in a discrete �nite size lattice of length L, a natural
question is what happens to roughness W if one changes the system size. Let assume
that the interfaces is as smooth as it can be i.e h(x, t = 0) = 1 if x = 2n where
n ∈ N and otherwise zero. For all system sizes the width W (t) ∼ tβ until some
characteristic time tsat ∼ Lz and it saturates to the value W s ∼ Lα. With the help
of these two notions we can guess the form of the scaling function for the roughness,
W (L, t)/Wstat ∼ f( t

tx
), and thus obtain the well known Family-Vicsek scaling relation

W (L, t) ∼ Lαf( t
tx

), where tx is the time where W (t > tx) becomes constant [35] .

The BCSOS2 model could have also been described by the language of the ASEP
model by considering a modi�cation of the classical one. In this modi�ed ASEP model
there are two lanes, one for each interface, and the particles can not change a lane.
Each particle has an additional property which makes it possible to map it onto the
BCSOS2 model. The easiest possible way of doing this is to associate for each particle a
number hi which in BCSOS picture is a height of that lattice site. By this construction
BCSOS2 dynamics is achieved by demanding that a particle on the upper lane can
move by the normal ASEP dynamics to the right but unnormal to the left, and vice
versa on the lower line.

As the models above have a one-to-one mapping at the microscopic level, they also
have a mapping in the coarse-grained level as well. The connection is most clear when
considering ASEP and BCSOS models [33] such that a particle in ASEP corresponds
to an upward step in BCSOS and a hole in a ASEP a downward step. In the hydro-
dynamic limit the behaviour of the BCSOS interfaces is given by the KPZ equation
and that of the ASEP by the Burgers equation. By writing u(x, t) = −∇h(x, t) we
obtain the Burgers equation from the KPZ equation [34].
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3.4 Transport con�ned by BCSOS interfaces

We consider a single point-sized particle moving between interfaces h1(x, t) and h2(x, t)
on a lattice (x, y). The lattice point coordinates in the horizontal direction are the
same x = 1, ..., L as for the interface model above, again with periodic boundary
conditions. In the "vertical" direction, the lattice is in�nite and the coordinates are
integers y = ...,−2, 1, 0, 1, 2, ... and thus coincide with the possible values of h1 and
h2 .

We shall denote the location of the particle by (xp, yp). The particle does not a�ect the
dynamics of the interfaces but, if needed, a moving interface can push the particle the
distance of one or two lattice units in the vertical direction such that the location of
the particle also after the change of the interface con�guration satis�es the condition

h2(xp, t) ≤ yp ≤ h1(xp, t).

These are moves of the particle forced by the interface motion. For such moves, we use
two "clock updating" schemes for the particle: In scheme (A) the particle is considered
in such cases to move together with an interface with its di�usive clock left intact and
in (B) its 'clock' is updated after the interface move.

For di�usive moves of the particle, the following two rules are imposed in all cases:
First, for a jump (xp, yp) → (x′p, yp) to be possible, the product of the interface height
di�erences on the departure site and the arrival site is non-zero: h−(xp, t)h−(x′p, t) > 0
i.e. the channel for the jump between the interfaces must be open at both ends of
the jump. Second, an attempted jump arriving outside the region bounded by the
interfaces is blocked. In the actual dynamics, the direction of an attempted jump is
chosen without any prior knowledge of the ability of the particle to perform the jump.

For di�usion on the square lattice there are a few natural choices for the possible
particle jumps (xp, yp) → (x′p, yp)

1. Dynamics m = 1: The most obvious case are the nearest-neighbor jumps such
that the particle jumps in the horizontal direction (xp, yp) → (xp ± 1, yp) (in
the vertical direction (xp, yp) → (xp, yp ± 1)) with the attempt rate α (with the
attempt rate β). To obtain a pure di�usion we set α = β.

2. Dynamics m = 2: The particle jumps diagonally, i.e. (xp, yp) → (xp ± 1, yp ± 1)
independently, with the attempt rate γ.

3. Dynamics m = 3: This is a combination of the jumps in dynamics 1 and 2.

4. Dynamics m = 4: In this model only the x coordinate of the particle matters
and the particle is allowed to perform the jump (xp, yp) → (x′p, yp) whenever the
channel is open.
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For further details see articles III and IV.

The exclusion process follows similar dynamics as the independent random walkers
above. The only additional requirement is that two ore more particles cannot be at
the same location at the same time. For a pure particle movement this means that
an attempted movement is forbidden if the destination site is already occupied. Note
that this requirement also induces a particle-interface interaction and thus modi�es
the dynamics of the interfaces, if interaction in this direction is allowed.

3.5 Simulation methods

In this section a brief overview of the history of the Monte Carlo (MC) method is
provided and the theoretical background of MC is discussed.

3.5.1 The Monte Carlo method

The concept of Monte Carlo (MC) methods covers many statistical or stochastic ap-
proaches. Consistently if random numbers are used one is doing Monte Carlo. Of
course this is a rude generalization, since it would include also SRD [36] and other
methods that use a random numbers. In light of the previous statements it is not
surprising that one of the fathers of modern physics, Enrico Fermi, developed a statis-
tical algorithm in Rome in early thirties [37], however he did not published it. During
the Manhattan Project, Stanislaw Ulam suggested a similar approach to solve certain
problems. However the MC method as a name for the statistical approach was �rst
used by Metropolis in 1947 and after that the name endured. More speci�cally, the
method they developed was Markov chain Monte Carlo (MCMC). Therefore it is justi-
�ed to argue that this was the distinct starting point for the triumphic journey of the
MC methods. Indeed any practical MC method requires substantial computational
power and it is natural that the starting point of MC is temporally close to the �rst
computer ENIAC [38].

Even though it is almost impossible to know when statistical methods were used for
the very �rst time, it is clear that the �rst real published MC algorithm was developed
in 1953 when Metropolis et al. introduced their method to calculate the equation of
the state [39]. The algorithm presented by Metropolis however was only for the case of
the Boltzmann distribution. Later on, in 1970, Hastings [40] generalized the algorithm
presented by Metropolis et. al in Ref. [39] and laid it onto a mathematically more solid
foundation. That time MC methods were used to solve problems in static situations
i.e. to generate statistically independent samples according to a desired stationary
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probability distribution. Furthermore, the original MCMC algorithms required the
detailed balance (DB) condition. If one is interested only in stationary quantities
only, the DB condition is not mandatory and irreversible algorithms can be used [41].

Since the beginning a variety of di�erent modi�cations of Monte Carlo methods have
accumulated [42, 43, 44], but the attention has been on the computational improve-
ments of the original algorithms [45, 46]. In some cases this computational e�ectiveness
has led to limitations for the usefulness of the algorithm [47]. Another common feature
is that algorithms are not versatile expect for a given speci�c purpose [48].

In the numerical studies presented in this Thesis we use the N-fold algorithm originally
presented by Bortz et al. in 1975 [45]. In some cases the algorithm coincides with the
one presented by Gillespie [46] a few years later.

3.5.2 Kinetic Monte Carlo methods and their dynamic inter-

pretation

Under the dynamical interpretation the Monte Carlo methods solve the master equa-
tion

∂P (σ, t)

∂t
=

∑
σ

W (σ
′ → σ)P (σ

′
, t)−

∑
σ

′

W (σ → σ
′
)P (σ, t), (3.19)

where σ and σ
′
denote di�erent states of the system, P (σ, t) is the probability that

the system is in state σ at time t and W (σ
′ → σ) is probability per unit time that

the system being in state σ
′
changes its state from σ

′
to σ. For many model systems,

the values of W can be parametrized from experiments or microscopic theories. The
solution of the Eq. (3.19) is achieved computationally by choosing randomly among
various possible transitions to a model system and accepting particular transitions
with appropriate probabilities. After each attempted transition time is typically in-
cremented in integral units of MC steps related to some unit time τ .

Static properties of two systems are identical if their Hamiltonians are the same.
However dynamical properties are sensitive to the manner in which the time series of
events characterizing the evolution of the system is constructed. If the modeling of
the real problem is done in a correct way, the MC time corresponds to the real time.
Generally if a studied dynamics can be modeled as a Poisson process, the relation
between the MC time and real time is on a �rm basis.

In some cases the change from the discrete time model to the same model in continuous
time model is straightforward [49]. However, in some cases the discrete-time model
and its continuous time counterpart produce very di�erent results [50]. In physics this
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di�erence has often been neglected, even though the problem has been encountered
often.

3.5.3 The N-fold algorithm

In the N -fold algorithm, which is extensively used in this work, the possible transitions
are divided into N classes according to their probabilities. After �nding those classes,
one �nds all lattice points x, which belong to a certain class j. The next step is to
calculate the set of time-depended variables

Qi =

i≤N∑
k=1

njk
Pjk

, (3.20)

where njk
is number of those lattice points which belong to class jk and Pjk

is the
probability associated with jk. The class j of the event, which will occur, is next
determined by �nding j such that Qj−1 ≤ R < Qj, where R is a random number
with uniform distribution in the interval [0, QN). After �nding the class, one has to
randomly choose a location (on h1 or h2) from this class. By this method the time for
something to happen in the lattice is

∆t = − 1

QN

· ln(R1), (3.21)

where R1 is a random number with uniform distribution in the interval [0, 1).

3.5.4 Sampling of quantities

Mean square displacement

The common way to evaluate the tracer di�usion coe�cient DT is to calculate the
mean-square displacement (MSD) 〈∆x2〉 and then use Eq. (2.2). There are two ways
of doing this, either ensemble average (EMSD) or time average (TAMSD). The ergodic
hypothesis ensures that for an ergodic system these two averaging procedure produce
the same result.

As already stated in Section 2.2.2, for a certain WTD the system is not anymore
ergodic and hence those averages are not the same. In fact the temporal averaging
can show a di�usive behavior for individual particle even though the behavior of
EMSD is sub di�usive, such is shown to occur for example in case where WTD is
ψ(τ) ∼ τα, α < 1 [51]. Furthemore ensemble averaging those individual TAMSD
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lead to di�usive behavior with normal di�usion coe�cient multiplied by T−α, where
T is the length of trajectory of individual particle. If there are many reasons why the
system shows anomalous di�usion the EMSD can not reveal presence of the individual
mechanisms leading to anomalous di�usion while the TAMSD can reveal it [52]. The
di�erences of these two averaging procedures become important when information on
the transport properties must be gathered from trajectories of only a few particle.
This kind of environments and situations are often encountered in biological systems.

Collective di�usion coe�cient

In Chapter 2.1.3 we noticed that the collective di�usion coe�cient can be determined
from the decay of density �uctuations. Even though the equation Eq. (2.10) is spa-
tially Fourier transformed, similar results hold also for sine/cosine transform. Using
sine/cosine transform we can write

ck =
N∑

i=1

cos(kri) sk =
N∑

i=1

sin(kri), (3.22)

where ri is the location of the ith particle, and determine the di�usion coe�cient
from their decay. We note that an alternative method and a more subtle method
to evaluate di�usion coe�cients is trough the memory expansion introduced in [53].
The advantage of that is the fast convergence and hence the reduced length and
computational cost of the simulation.
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In order to understand di�usion in an evolving environment one must understand
thoroughly the behavior of the environment. This is a common theme of the research
reviewed in this Thesis.

4.1 Dynamics of the environment

4.1.1 Properties of ZRP

Usually the way to start to study some unfamiliar system is to monitor its temporal
behavior. Since the observation of system as a whole is often impossible one tries
to �nd an order parameter, a single quantity that would characterize the essential
features of the dynamics. The principal order parameter of the ZRP is the size of the
largest cluster Z1 and therefore its spatio-temporal behavior is the natural starting
point when taking the �rst look at the actual dynamical behavior. In �gure 4.1 a
typical behavior of the Z1 is shown. Clearly there are two distinct regions where the
behavior of Z1 is di�erent, a region with little or no activity at all, or a region with
rapid motion of the largest cluster. This kind of burstiness has been documented and
studied in a wide range of systems from email patterns [54] to earthquakes [55, 56].
Understanding of this kind of burst processes is based on qualitative arguments. Two
mechanisms that lead to the bursty signal have been recognized. One correspond to
the fat-tailed interevent distribution P (τ) observed in email patterns [54] and the
other one involves a memory e�ects like mechanism of earthquakes [55, 56].

In [57] Goh et al. introduced two measures for a bursty signal, a burstiness parameter
B = (στ −mτ )/(στ +mτ ), where στ is the standard deviation of the P (τ) and mτ its
mean, memoryM = n−1

τ

∑nτ−1
i=1 (τi−m1)(τi+1−m2)/(σ1σ2), where nτ is the number of

interevent times measured from the signal and m1(m2) and σ1(σ2) are sample means
and standard deviations of τi's (τi+1's) (i = 1, 2, ..., nτ − 1). The parameter B is a
distribution-based measure for the burstiness of the signal and its values are in range
[−1, 1], where 1 is for the most bursty and −1 for a regular signal. The memory
coe�cient M is a correlation-based measure and its range is (−1, 1). It is positive if
a short interevent time tends to follow a short one and negative if a short interevent
time follows a long one.

21
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For the movement of the largest cluster in ZRP the values of both B andM are almost
one for all cases studied. This means that a majority of the observed transitions occurs
within a single phase.

In a �gure 4.2 the fraction Z̃1 = Z1/N (Eq. 3.6) is presented as a function of density.
In all cases the shape of Z̃1(ρ) is like a deformed letter S. The shape of the simulated
curve is easy to explain heuristically. First, due the discreteness all curves begin at
point Z1(ρ = 1/L) = 1. As density increases Z̃1(ρ) decreases since the probability that
a few particles are at the same location is small and Z1 = 1. This also explain why
all curves qualitatively behave similarly for all values of b. Z̃1 starts to increase at a
point where the probability that Z1 > 1 becomes signi�cant. Z̃1 increases with a non-
constant rate to the point after which the rate decreases. We have used this turning
point, ∂2Z1/∂ρ

2(ρ∗) = 0 as an estimate for e�ective "critical" density ρc(L). At high
densities the theoretical and simulated values correspond to each other very well as
they should due to the equivalence of ensembles for the ZRP in the thermodynamic
limit.

For b > 3 the di�erence between the e�ective critical density and its hydrodynamical
counterpart decreases like a square root of the system size i.e. ρc(L) − ρc ∼ L−1/2

(see Fig. 3 of article III). For b ≈ 3 we do not anymore see this as clear as we did for
larger b but the qualitative behavior is similar. For b ≤ 3 the determination of ρc(L)
becomes di�cult and hence we can not say anything conclusive about its behavior.
The �nite size analysis of ρc(L) is based on Eqs. (3.7) and (3.9).

In �gure 4.3 we consider the size of the largest cluster at the moment its relocation,
ZJ . The behavior of the ratio ZJ/Z1 can be understood as follows. At small density
the largest cluster is born because suddenly one location gains a few extra particles
and shortly loses them. Since the system is very dilute, the di�erence between largest
cluster and the average size on a bulk is at the same order than those extra particles. As
the density increases the average size in the bulk increases while the size of condensate
does not grow as rapidly and hence the decrease of the ratio. Deep in the condensed
phase only two lattice sites are participating in this reallocation of the mass and hence
the fraction 〈ZJ〉/〈Z1〉 ≈ 1/2. Near the dip, which is nearby and scales in a similar
way as ρc(L, b), the system is in a crossover region were both of these mechanisms are
present.

In understanding di�usion processes occurring in the system the characteristic timescales
of the condensate are in a crucial role. From Fig. 4.4 we see that in the �uid phase,
i.e. when the density is below ρc(L), the lifetime distribution of the condensate is
exponential. As the density approaches ρc(L) an extra hump emerges in the lifetime
distributions. This is a clear signal that a macroscopic condensate stays at one speci�c
location over a long period of time before reallocation. The fact that 〈ZJ〉/〈Z1〉 ≈ 1/2,
veri�es the results for the expected lifetimes for a condensate in a condensed phase
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Figure 4.1: The location of the largest cluster as a function of time for b = 5, ρ = 3/4
and L = 100. Each symbol marks the position of the largest cluster just after a jump
and also indicates the size of the cluster at that moment. In the lower panel we show
a magni�cation, from just below the middle of the upper right panel. The time axis
has been scaled by a factor 105.
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Figure 4.4: The distribution of lifetimes of the largest cluster for b = 5 and L = 100
at various densities. For the case shown ρc(L) ≈ 0.8.

presented by Godreche et al. in Ref. [58]. From Fig. 4.3 we can see that this assump-
tion is valid only deep in the condensed phase when the system is in a pure condensed
phase with no coexisting �uid phase.

4.1.2 Properties of the BCSOS2 model

According to Sec. 3.3 the roughness exponent for the interfaces in the BCSOS model
is α = 1/2. As one can see from �gure 4.5, for a small system size also the roughness
of the di�erence process obeys this power law up to some critical system size where
its value saturates.

In Fig. 4.6 we show the behavior of the stationary width W s
1 scaled by L−1/2 for in-

terfaces driven symmetrically against each other. The roughness dip is a �nite size
e�ect. Phenomenologically the reason for the dip is reduction of the available con-
�guration space, when interfaces meet each other. Naturally the number of blocked
con�gurations increases as the system size increases and therefore as L→∞ there is
discontinuity in the roughness for f → 0. This reduction of the parameter space is also
present in other quantities describing the distribution of the interfaces. It turns out
that the skewness of the distribution start to deviate from the zero at the point were
the dip occurs and also the expected kink density shows this dip near by the value
fw, see �gure 4.7. This kind of non-monotonicity has been experimentally observed
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prior to our simulation in Ref. [59] concerning domain walls in magnets. In �gure 4.7
we also show the stationary state bubble size distribution, which controls di�usion
between the interfaces as studied next.
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Figure 4.7: In the �gure on the left we show the bubble size distributions. In the �gure
on the right we show the average bubble size l̄ and kink density k̄ as a function of f
is presented . We show the bubble size normalized in two ways: using the real l where
bubble sizes 0 ≤ l� L and l̄∗ where 0 ≤ l ≤ L are taken into account

4.2 Results for di�usion

4.2.1 Di�usion in ZRP

In Fig. 4.8 the collective di�usion coe�cient DC determined by Eq. (3.22) as well
as the center of mass di�usion coe�cient DCM from the center-of-mass movement is
presented. It is found that DC > DCM for ρ < ρc(L), DC ≈ DCM at ρ = ρc(L) and
DC < DCM for ρ > ρc(L). The reason why DCM is bigger than DC for large ρ is
related to the dynamics of the condensate, namely DCM can increase even though the
condensate stays as the biggest cluster due the transport of individual particles across
the system. The fact that DC ≈ DCM around ρ = ρc(L), indicates again that ρc(L)
is a relevant e�ective density since apparently it is the point where the rate of mass
transport slows down rapidly.

Let us continue by considering collective di�usion and center of mass di�usion in the
framework provided by the theory of CTRW presented in Chapter 2.2. Clearly, there
are several fundamental di�erences between these two processes. One major di�erence
is the lack of direct association of collective di�usion with the movement of any well
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Figure 4.8: The di�usion coe�cients DC and DCM and the compressibility K(ρ) for
b = 5 and L = 100.

de�ned collection of mass in the entire density range. In the condensed phase we can
associate, quite reasonable, collective di�usion with the movement of largest cluster.
Therefore the waiting time distribution for collective di�usion can be approximated
by the waiting time distribution for the largest cluster presented in Fig. 4.4. Although
we can not determine the actual direction to which the largest cluster moved during
its relocation process, it is justi�able to argue that there are (temporarily) preferred
directions in the system.

For collective di�usion the jump length distribution below ρc(L) is highly peaked at
one and elsewhere it is a constant. This peak starts to decrease as the density increases
and in the condensed phase the jump lengths are uniformly distributed. Hence the
variance of the jump length distribution is always bigger than one and increases as for
increasing density until it saturates to the value corresponding to the variance of an
uniform distribution. The expected jump length is presented in �gure 7 of article III.
For the center of mass movement every jump is due to an exchange of one particle and
hence its variance is always exactly one. For the center of mass motion the waiting
time distribution is an average of Eq. (3.21) over the process.

Since we consider a canonical system with �xed density the average waiting time for
the center-of-mass motion is always much smaller than that for collective di�usion. In
fact it is of the order of one while for colletive motion it can be e�ectively in�nite even
in a canonical system. Combining the notions above of the expected waiting times and
the variace of the jump lengths, the CTRW picture of Section 2.2.2 qualitatively agrees
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with the result presented in Fig. 4.8. The compressability K, which is proportional to
particle number �uctuations, is expected to diverge at the point of phase separation.
In Fig. 4.8 no such divergence observed aroun ρc(L), but the value of K starts to
increase rapidly there. With the available computational resources the study of a
possible �nite-size or �nite-time e�ect was not feasible. In the case of anomalous
�uctuations the interpretation of K is expected to change.

Tracer di�usion in a two species ZRP

As an extension of the work published in article II, we have considered also tracer
di�usion in a two species ZRP where the environment, i.e. particles of species A,
obeys Evans type dynamics with b = 12 and the jump rate of the tracer particle (B)
is determined from the environment entirely also by Evans form of dynamics with dif-
ferent parametrization. Below we show some results that shed light on the mechanism
through which condensation in�uences di�usion. To this end, we considered situations
where both of the free parameters, b and u0 can vary. Since the dynamics of the en-
vironment also here is independent of that of the di�using particle, the environment
behaves as discussed in Section 4.1.1. The simulations we performed for both clock
updating schemes de�ned in Chapter 3.4. In ZRP there are no transition forced by
the environment since there are no spatial restrictions on particle motion. In ZRP,
the clock updating scheme determines what happens to the jump rate of the tracer
particle when the environment changes at the location of the particle.

In Fig. 4.9 we show the tracer di�usion coe�cient DT for the species B. Due to
the form of the Evans interaction, the choice of b for the tracer particle does not
have a strong e�ect, when only the environment provided by the particles of type A
contribute to its rate. However, the ratio of the prefactors u0 for particles of type A
and B controls the e�ect of particle number �uctuations on lattice site on the realized
jump rates. A very fast B particle spends most of the time in the bulk, not in the site
containing the largest cluster. In that limit the clock updating scheme has no e�ect on
DT and, overall, it only has no major e�ect on its dependence on ρ for �xed b. In the
case considered in Fig. 4.9 the value ρ ≈ 1/3 is the one for which the size of the largest
cluster begins to increase rapidly, i.e. somewhat below the crossover ρc(L). Around
that point larger clusters capable of changing the e�ective jump rate of the tracer
particle begin to emerge. The saturation of DT to a level determined by the value
of u0 observed well above ρc(L) is related to the time scale used in determining the
MSD as compared to the time scale of the condensate, even if the MSD corresponds
to the system size. The tracer particle actually probes the �uctuation time scale of
the condensate rather than its relocation time scale.
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Figure 4.9: In the �gure on the left we show simulation results for tracer di�usion
coe�cient DT as a function of the density of the environment. For the environment
and the tracer particle b = 12 and u0 for the tracer particle was varied. The system
size is L = 100. In the �gure on the right we show simulation results for the tracer
di�usion coe�cient DT as a function of u0 (in units where u0 for the background is
one).

4.2.2 Transport con�ned by interfaces

Di�usion between evolving interface

The most important factor controlling di�usion between the interfaces is the dynamics
of the bubbles. In the case of slow di�usion the question is: Is the bubble open at the
location of the particle at the speci�c moment of time? In other words, if the particle
belongs to a bubble greater than two it can perform a jump and hence the di�usion
coe�cient is

Dt(f, µ) = g(f)Dm
free(µ) (4.1)

where g(f) is the probability that the particle can perform a jump inside the bubble.
As can be seen from �gure 4.10 this mean-�eld prediction works very well for µ < 1.
Scaling f by

σ(µ) =
√

1 + µ (4.2)

we obtain the data collapse presented in the inset of �gure 4.10. This scaling however
works well only below the roughness dip. In the strong drive limit, i.e. for f → ∞,
the question is: Does the particle make the jump fast enough. Therefore we rescale
the observed di�usion coe�cient as

Dt(f, µ) = Dm
obs(µ)/(1− exp(−µτ2)), (4.3)
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where τ2 ≈ 1/2 is the lifetime of a bubble of size ` = 2. These two scaling scenarios,
i.e. Eqs. (4.2) and (4.3), are incompatible because the rate limiting mechanisms are
di�erent. For fast particle jumps, an adiabatic approximation, within which di�usion
is dominated by the bubble dynamics, is also shown in the �gure. In the adiabatic
approximation the di�usion coe�cient is

Dadia(µ, f) =
1

2

1

Tmob

B(f)2, (4.4)

where Tmob is the time scale of bubble motion abd B(f)2 is the mean-square displace-
ment (per jump) of the bubble obtained as B2 = 〈|bnew− bold|〉. Here bnew and bold are
the locations of a bubble before and after the change in the bubble size.
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Figure 4.10: In the �gure on the left we show simulation results (plotting symbols) for
D4(µ, f) and the mean-�eld prediction for the small µ limit (solid line). In the inset
we show the data collapse discussed in text. In the �gure on the right we show a data
collapse for the large f behavior of Dobs by using the scaling form of Eq. (4.3). The
plotting symbols show the simulation results and the solid lines give the mean-�eld
approximation for small µ of Eq. (4.1) with f scaled by the factor σ(µ) given in Eq.
(4.2). The dashed line is the adiabatic approximation of Eq. (4.4) and the dotted line
is the �nite-size-corrected in�nite-rate approximation described in text. In the inset
we show the comparison of the behavior of the jump-length factor B2 and the mean
squared bubble size `2 .

In �gure 4.11 we consider modi�cations to this behavior by allowing two-dimensional
jumps and, on the other hand, by changing the clock updating scheme. A similar
mean-�eld approximation as the one presented for the dynamics m = 4 above is
harder do to for the dynamics m = 1 − 3 (see Section 3.4), since two dimensional
di�usion depends not only on the horizontal size of the bubbles, but it depends also
on the actual shape of the bubble, but nevertheless the main features of di�usion
remain the same apart from the case of weak drive. The e�ect of the clock updating
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scheme is much more dramatic in the region, where the waiting times for interface
motion and particle jumps coincide, resulting in a phase-transition like signal in DT

even if its origin is purely kinetic.
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Figure 4.11: In the �gure on the left we show di�usion coe�cient D1 for the particle
clock updating scheme A. For comparison we show also by the full line the mean-�eld
approximation, c.f. Fig. 5. In the inset we show the ratio D2(µ/2)/D1(µ). In right
�gure the di�usion coe�cient D1 for the particle clock updating scheme B is shown.
The full curves show the corresponding data for scheme A.

Two dimensional exclusion process in a rough channel

In �gure 4.12 we show snapshots of the scaled occupation probability. The spatial
inhomogeneity decreases for increasing β, which is the rate of di�usion in the vertical
direction. With �at walls, spatial homogeneity is achieved in the simulation for all
values of β > 0, while for increasing roughness the value of β required for approximate
homogeneity is larger. Homogeneity gets broken because the particles tends to drift
towards the wall at locations with long slopes. Spatial homogeneity becomes important
when considering the current through the system. For spatially homogeneous density
the mean-�eld prediction I(ρ) = αρ(1− ρ)d for the averaged current works well, and
increasing deviations are observed for increasing the wall roughness. The amount of
this deviation decreases for increasing β.

In Fig. 4.13 we show the expected value of the particle current I crossing a lattice site
as a function of the wall roughnessW de�ned by Eq. 3.18. The value of the current for
a given wall roughness depends strongly also on other properties of the walls. Con�g-
urations corresponding to the extrema of the current we created by running variations
of usual BCSOS dynamics for a while starting from certain initial con�gurations, a
disordered one, a �at one and a faceted one. For example, the smallest currents were
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Figure 4.12: Probability to �nd particle at location (i, j) with several parameter β
values. Here the red color indicates highest densities and blue color lowest densities.
The average density is ρ = 0.2 and the drift α = 1. The system size is L = 100 and
the widh of the channel four lattice units. The parameter β controlling di�usion in
the vertical direction increases from top to bottom from 0.25 to 20.
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Figure 4.13: Averaged current over cross-section measure at x = L as a function of
roughness of the wall. System size is L = 100, α = 1, β = 0.5 and ρ = 0.25.

obtained by generating the interface con�gurations by 'depositing 'particles' anywhere
on the interface such that they slide down to the closest interface height minumum.
The maximum current for a given roughness was obtained by producing interfaces
such that the BCSOS dynamics corresponds to one-dimensional ASEP, where in the
ASEP interpretation particle a randomly chosen hops to a location as far as possible
from the closest particles with conserving the order of particles in the system. This
way it was possible to achieve interface con�gurations with very di�erent topography
and e�ectively scan the available phase space for wall con�gurations.



5 Discussion

In this Thesis particle transport in evolving and restricted environments was inves-
tigated by Monte Carlo simulations. In all models considered in this Thesis strong
�nite-size or crossover e�ects are present. In addition to �nite-size e�ects, we consid-
ered the dependence of di�usion on the "microscopic" details of the interaction of the
di�using particle and its environment. The main question arising is the in�uence of
an environmental change on the particle waiting time distribution. If the changes in
the environment do not cause any changes in the WTD of the particle, the particle
acquires a memory in sense that it remembers how long it has been waiting. Physically
it would be possible e.g. if the particle gains some extra energy from the surroundings.
If the WTD is strongly in�uenced by the interaction with the dynamic environment,
anomalous di�usion may be observed, which is a subject of further studies.

In all cases considered the dynamics of the environment has a dominant role from the
point of view of di�usion and, hence, in many cases the behavior of the di�usion coef-
�cient of a single particle is obtained entirely from the dynamics of the environment.
Di�usion between interfaces driven towards each other was found to depend entirely
on the dynamics of the bubbles and the results are assumed to be generalizable to
many other systems with dynamic restricting geometry. Even though the motion of
particles was always di�usive, it is not entirely impossible that with certain free par-
ticle rates the bubble dynamics could lead anomalous di�usion due to the fact that
the lifetime distribution of the bubbles displays a power law behavior.

The particle current for two-dimensional ASEP in a rough channel was found to
depend strongly on the con�gurations of the channel walls. Conventionally used char-
acteristic quantities were found to be inadequate in describing the current in the
channel. As a conclusion the channel pro�le has a much greater impact on the parti-
cle �ow and its dispersion than it has for laminar Navier-Stokes �ows considered in
the literature.

Furthemore, some stationary and dynamical properties of the environment can some-
times be probed by studying the behavior of transport more easily than from a direct
observation of the environment dynamics itself. One reason for that is the fact that
the di�usion coe�cient is a product of temporal and spatial factors c.f. Section 2.2,
hence providing a spatio-temporal overview of the system. However, in some cases the
chosen microscopic interaction between the environment and the di�using particles
may hinder the separation of these e�ects.

35
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When determining the collective di�usion coe�cient it should be calculated in the
limit of long times. When calculating collective di�usion in a condensed phase of ZRP
the determination of the actual limit after which we could be sure that we are in
a proper timescales was di�cult. This is due the time scale separation between the
characteristic timescale of particles and the lifetime of the largest cluster.

A natural and logigal way to continue research on this path is to include the�ow-
environment interactions in both directions. This interaction is naturally present in
an exclusion process. To proceed futher requires a study of the e�ect of the dynamical
environment in a realistic �ow at systems so small that the Navier-Stokes or other
continuum descriptions fail to describe the dynamics, physical applications being in
nano�uidics.



6 Appendix

6.1 More detailled derivation of CTRW

We use the recursion relation approach to solve the general CTRW on a lattice. The
notations obey the notations of Ref. [20].

For simplicity let us assume that the particle has performed its latest transition at
time t = 0. Then ψn,m(t) is the probability density that the particle jump at time t
from site m to site n after waiting time t on m, it must be positive semide�nite and
it must be normalized when integrated over in�nity i.e.∑

n

∫ ∞

0

dt′ψn,m(t′) = 1. (6.1)

Since, the tracer di�usion coe�cient is usually obtained by the mean-square displace-
ment via Eq. (2.2) then understanding of tracer di�usion is reduced to the under-
standing of the probability distribution function of the location of the particle at time
t > 0 with the condition that t = 0 it was in a given lattice site l i.e the conditional
probability P (n, t|l, 0).

Let Qν(n, t) be the probability density that the particle has performed its νth transi-
tion at time t and reached site n. Recursively this can be write as

Qν(n, t) =
∑
m

∫ t

0

dt′ψn,m(t− t′)Qν−1(m, t
′). (6.2)

This relation however is valid only for ν ≥ 2 since the �rst transition has to be treated
di�erently,

Q1(n, t) =
∑
m

hn,mP (m, t = 0), (6.3)

where hn,m is the WTD for the �rst transition fromm to n. By summing over ν i.e, the
numbers of transitions in which the particle has moved to n we obtain the probability
density that site n is occupied by a transition at time t

Q(n, t) =
∑

ν

Qν(n, t). (6.4)
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This equation can of course be written for all lattice sites, not only for n. Now we can
write an equation for Q(n, t) similar to Eq. (2.11) for Qν(n, t). Now the probability
density in Eq. (2.12) becomes

Q(n, t) =
∑
m

∫ t

0

dt′ψn,m(t− t′)Q(m, t′). (6.5)

By performing a spatial Fourier and temporal Laplace transfomation we obtain

Q̃(k, s) =
h̃(k, s)P (k, t = 0)

1− ψ̃(k, s)
. (6.6)

Now we have obtain the probability that the particle has just arrived in site n at time
t′. The probability P (n, t|l, 0) is thus related to P (n, t′). If the particle arrived to site
n at t′, then the probability that it still is in the same site depends of the probability
that no further jumps occur between t′ and t. If no transitions occured at all, the
particle was already in site n at time t = 0. Finally we obtain the required probability

P (n, t|l, t = 0) =

∫ t

0

dt′Ψ(t− t′)Q(n, t′) +H(t)P (n, t = 0), (6.7)

where Ψ(t− t′) is probability that no jump occure between times t′ and t and H(t) is
the probaility that no jumps occured at all i.e.,

Ψ(t) = 1−
∑

n

∫ t

0

dt′ψn,m(t′) and H(t) = 1−
∑

n

∫ t

0

dt′hn,m(t′). (6.8)

By Laplace and Fourier transforms we get the result:

P̃ (k, s) =
1− h̃(0, s) + h̃(k, s)− ψ̃(k, s) + h̃(0, s)ψ̃(k, s)− h̃(k, s)ψ̃(0, s)

s(1− ψ̃(k, s))
, (6.9)

which simpli�es for a separable CTRW to

P̃ (k, s) =
1− h̃(0, s) + λ(k)[h̃(s)− φ̃(s)]

s(1− ˜λ(k) ˜φ(s))
. (6.10)

If we consider a stationary ensemble the waiting time distribution for the �rst jump
is

hn,m(t) =

∫∞
0
dt′ψn,m(t+ t′)∑

n

∫∞
0
dt

∫∞
0
dt′ψn,m(t+ t′)

, (6.11)

for which the Fourier-Laplace transform is
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h̃(k, s) =
ψ̃(k, 0)− ψ̃(k, s)

t̄s
, (6.12)

where

t̄ =
∑

n

∫ ∞

0

dt′t′ψn,m(t′). (6.13)

Finally we obtain the conditional probability in a stationary ensemble

P̃ (k, s) =
1

s
+

1

t̄s2

[1− ψ̃(0, s)][ψ̃(k, 0)− 1]

1− ψ̃(k, s)
. (6.14)

The result above is for coupled case. For decoupled case

P̃ (k, s) =
1

s
+

1

t̄s2

[1− φ̃(s)][ ˜λ(k)− 1]

1− ˜λ(k)φ̃(s)
. (6.15)

6.2 Fourier and Laplace transformations

The Lablace transformation is de�ned as

˜P (k, s) =

∫ ∞

0

dt exp(−st)P (k, t) (6.16)

and discrete Fourier tranform as

Fk =
N∑

n=0

fn exp(−ink), n = 1, ..., N. (6.17)

For both trasformations the transformations of convolutions

(f ∗ g)(t) =

∫ −∞

−∞
f(t− τ)g(τ)dτ

becomes a product of individual transformations i.e L((f ∗ g)(t)) = L(f)L(g), where
L is either Lablace or Fourier transformation.

6.3 Probabilities

If h(t) = ψ(t) the probability that n event occurs in time t is

P (n|t) = F n∗(t)− F (n+1)∗(t),
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where F n∗ is n-fold convolution of F with itself. For F n∗ we get following proberties

F 1∗ = F, F (i+1)∗ = F i∗ ∗ F.
Furthemore if F has a density ψ then F i∗ has the density

∏i
l=1 ψ. [60]

So the expected number of event in time t is

〈n(t)〉 =
∞∑

n=0

nP (n, t) =
∞∑

n=0

n[F n∗(t)− F (n+1)∗(t)] =
∞∑

n=1

F n∗(t)

which Laplace transformation is

〈n(s)〉 =
∞∑

n=1

∫ ∞

0

F n∗(t)e−stdt =
∞∑

n=1

1

s
ψ(s)n =

ψ(s)

s(1− ψ(s))
.

Similarly we �nd that

〈n(s)(n(s)− 1)〉 =
2ψ(s)2

s(1− ψ(s))2

If h(t) 6= ψ(t) we get

P (n|t) = H(t) ∗ F (n−1)∗(t)−H(t) ∗ F n∗(t) = H(t) ∗ (F (n−1)∗(t)− F n∗(t)).

so the expected number of event in time t is

〈n(t)〉 =
∞∑

n=0

nP (n, t) =
∞∑

n=0

H(t) ∗ [nF (n−1)∗(t)− nF n∗(t)] = H(t) ∗
∞∑

n=0

F n∗(t),

which Laplace is

〈n(s)〉 =
( ∫ ∞

0

H(t)e−stdt
)( ∞∑

n=1

∫ ∞

0

F n∗(t)e−stdt
)

=
∞∑

n=0

1

s
ψ(s)n =

1− ψ(s)

st̄

1

s(1− ψ(s))
=

1

t̄s2

and

〈n(n− 1)(s)〉 =
2ψ(s)

(1− ψ(s))t̄s2

In order to get the �nal result we must �nd expression to hn,m(t). Feller derive expres-
sion for h(t) = (1 −

∫ t

0
ψ(τ)dτ)t̄−1 considering ongoing renewal process [60]. In [61]

Lax et. all however provide more clear derivation throw conditional propabilities:

φ(τ) =

∫ ∞

τ

ψ(t)dt = 1−
∫ τ

0

ψ(t)dt = 1−Ψ(τ). (6.18)
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Probability that transition occur at time t when it has already waited time τ is

ψ(t|τ) =
ψ(t+ τ)

φ(τ)
. (6.19)

and thus the waiting time for the �rst jump is

h(t) =

∫∞
0
ψ(t|τ)φ(τ)dτ∫∞
0
φ(τ)dτ

. (6.20)

Since t̄ =
∫∞

0
[1− F (t)]dt

h(t) =

∫∞
0
ψ(t+ τ)dτ

t̄
. (6.21)

Let change variableτ = x− t,dτ = dx

h(t) =

∫∞
t
ψ(x)dx

t̄
=

1−
∫ t

0
ψ(x)dx

t̄
=

1−Ψ(t)

t̄
. (6.22)

∫ ∞

0

h(t)dt =

∫∞
0

[1−Ψ(t)]dt

t̄
= 1

This means that h(t) is propability density eventhought the expected value t̄ do not
exist.
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