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Abstract

In this work the basic formalism of non-equilibrium Green’s functions is presented and then

applied to study a Ward identity in linear response theory, namely the frequency sum-rule. It can

be proven that the frequency sum-rule is satisfied when the quantities involved are calculated using

perturbation theory within a conserving approximation for the self-energy. To illustrate this equality

along with other properties of the response function, a numerical application that solves the Kadanoff-

Baym equations for systems of Hubbard chains was used. The results showed that the frequency

sum-rule was satisfied to the same extent by all the conserving approximations used as by the exact

diagonalization numerical results. The density response function was analyzed diagrammatically

for a series of conserving approximations for the self-energy and this demonstrated that even for a

first order in perturbation theory approximation for Σ, the response function has a corresponding

complex, third order in the perturbation diagrammatic structure.
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Introduction

Nanoscience studies and manipulates chemical and biological structures of sizes between that of a few
atoms to hundreds of nanometers. Its purpose is to control the functionality of matter and its assembly at
the nanometer length scale and engineer devices out of molecular or biological entities that can exchange
information with the macroscopic world.

This vision can be approached from two directions. One is the ”top-down” paradigm which aims at
reducing the size of machines designed in the macroscopic world until they fit into the microscropic one.
The other approach is called ”bottom-up” and tries to assemble devices inside the microscopic world
starting from atoms and building its way up to more complex structures.

For the latter, it is important to study systems of atoms and molecules. To solve such systems,
in principle it is only necessary to find the solution of the Schödinger equation. However, for systems
consisting of more than two interacting particles this is impossible analytically. It can only be achived
numerically and at exponentially increasing computational time costs with particle number.

A different type of solution to this problem is provided by Perturbation Theory. It splits the Hamil-
tonian describing the system into a solvable Hamiltonian which consists of a simplified version of the
system whose determination is guaranteed by routinely used techniques in quantum mechanics and the
rest of the Hamiltonian that makes solving the system a complicated problem, which is treated like
a perturbation. The solution is then written as a power series in this perturbation. Every order in
the perturbation is characterized by more and more complex terms which add to the previous solution.
These terms are beautifully connected to physical processes that may take place in the system by the
transparent formalism of Feynman diagrams.

The advantage of this method is that it consumes less computational time and can be applied to
larger systems compared to exact methods. The perturbation expansion, even if limited to simple
approximations still yields relevant results to scientific inquiries.

In the first chapter of this thesis, the basic principles of Many-body Perturbation Theory (MBPT) are
explained. The second chapter shows how phenomena in the linear response theory of quantum systems
can be understood also using MBPT. And finally, the third chapter presents examples of numerical
calculations performed using algorithms based on MBPT methods and compares them with numerical
calculations based on algorithms that solve the Schödinger equation exactly.
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1 Basics of Many-body Perturbation Theory

Introduction

In this section, the theoretical principles of Many-body Perturbation Theory applied to condensed matter
physics are described. The first subsection contains the equilibrium Green’s functions method for systems
at zero temperature, whereas in the second subsection, the system still in equilibrium, is in contact
with the environment at a finite temperature. Finally, in the last subsection, external fields and time-
dependent perturbations are applied to the system, rendering necessary the use of nonequilibrium Green’s
functions.

1.1 Equilibrium Green’s functions. Zero-temperature formalism

1.1.1 Fock space and field operators

In order to develop the tools to investigate many-particle phenomena, one needs to define a space
of quantum states that consist of linear combinations of states with different number of particles, a
collection of Hilbert spaces also known as Fock space.

Let {|φj,N 〉} be a complete set of states in a N-particle Hilbert space. Then the Fock space is defined
as the set of linear combinations of the form:[1]

|ψ〉 = α0 |0〉+
∞∑

N=1

∞∑

j=1

αN
j |φj,N 〉 (1.1)

An inner product can be defined as:

〈ψ|χ〉 = α∗
0β0 +

∞∑

N=1

∞∑

i,j=1

αN∗
j βN

i 〈φj,N |ϕi,N 〉 (1.2)

where:

|χ〉 = β0 |0〉+
∞∑

N=1

∞∑

j=1

βN
j |ϕj,N 〉 (1.3)

It follows from this definition that the inner product between states that contain different numbers of
particles is zero. If the choice of basis in every Hilbert space is the N-particle ket vector in space-spin
coordinates ~xi = {~ri, σi} then operators ψ̂†(~x) that add particles at space-spin point ~x and their adjoints
which destroy particles, can be defined:

ψ̂†(~x1)ψ̂
†(~x2) . . . ψ̂

†(~xN ) |0〉 = |~x1, . . . , ~xN 〉 (1.4)

Throughout this thesis, systems to which the Fermi-Dirac statistics applies will be studied. Therefore:

|. . . ~xi, . . . , ~xj , . . .〉 = − |. . . ~xj , . . . , ~xi, . . .〉 (1.5)

for any ~xi and ~xj .
In general, fermionic creation and annihilation field operators map wavefunctions from a n-particle

Hilbert space to, respectively a n+1 and a n-1 particle Hilbert space:[1]

(ψ̂†(~x)Ψn)(~x1, . . . , ~xn+1) ≡
(−1)n√
n+ 1

n+1∑

j=1

(−1)j+1δ(~x− ~xj)Ψn(~x1, . . . , x̂j , . . . , ~xn+1) (1.6)

(x̂j denotes that this argument is missing)

(ψ̂(~x)Ψn)(~x1, . . . , ~xn−1) ≡
√
nΨn(~x1, . . . , ~xn−1, ~x) (1.7)

Fermionic field operators satisfy anticommutation relations:

{

ψ̂†(~x), ψ̂(~x′)
}

= δ(~x − ~x′) (1.8)
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{

ψ̂(~x), ψ̂(~x′)
}

= 0 (1.9)

{

ψ̂†(~x), ψ̂†(~x′)
}

= 0 (1.10)

where anticommutation brackets are defined as:
{

Â, B̂
}

= ÂB̂ + B̂Â (1.11)

The proof of these anticommutation relations is given in Appendix A.1.
Any one-body multiplicative or differential operator Ô that is a sum of operators acting on each particle
can be written in terms of field operators:

Ô =
∑

i

ô(~xi) =

∫

d~xψ̂†(~x)ô(~x)ψ̂(~x) (1.12)

Similarly, by deriving first the equality:

ψ̂†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x) =

n∑

j 6=k

δ(~x− ~xk)δ(~y − ~xj) (1.13)

the two-particle interaction can be rewritten:

W =
1

2

n∑

j 6=k

w(~xj , ~xk) =
1

2

∫

d~xd~yw(~x, ~y)

n∑

j 6=k

δ(~x− ~xk)δ(~y − ~xj)

=
1

2

∫

d~xd~yw(~x, ~y)ψ̂†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x)

For the derivation of the expressions of these operators in terms of field operators, see Appendix A.2. In
conclusion, a general Hamiltonian of the form:

Ĥ(t) =

n∑

i=1

ĥ(~xi, t) +
1

2

n∑

i6=j

w(~xi, ~xj) (1.14)

can be re-expressed in terms of field operators as:

Ĥ(t) =

∫

d~xψ̂†(~x)ĥ(~x, t)ψ̂(~x) +
1

2

∫

d~xd~yw(~x, ~y)ψ̂†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x) (1.15)

1.1.2 Three useful pictures from Quantum Mechanics

To analyze the time evolution of a quantum system, three descriptions within the quantum mechanics
formalism proved useful in this study: the Schrödinger picture, the Interaction picture and the Heisenberg
picture.

The Schrödinger picture

The usual framework of the Schrödinger equation corresponds to the Schrödinger picture where the state
vectors depend on time and operators corresponding to observables do not.

i~∂t |ΨS(t)〉 = Ĥ |ΨS(t)〉 (1.16)

Also because the focus of this subsection is equilibrium many-body theory, the Hamiltonian of the system
is considered to be time-independent. The formal solution to this first-order differential equation is:

|ΨS(t)〉 = e−iĤ(t−t0)/~ |ΨS(t0)〉 (1.17)

Therefore, the time evolution is generated by the Hamiltonian Ĥ
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The Interaction picture

The Interaction picture is half-way between the Schrödinger and the Heisenberg pictures. The key idea
is to make the dichotomy Ĥ = Ĥ0 + V̂ , where Ĥ0 represents the part of the Hamiltonian that results in
a solvable problem, such as time-independent one-body operators, and V̂ represents the remaining part
of the Hamiltonian, that makes solving the system a complicated problem. In the equilibrium case, V̂ is
also time-independent. It can contain for example, two-body interaction operators.

Define:
|ΨI(t)〉 = eiĤ0t/~ |ΨS(t)〉 (1.18)

which evolves as:

i~∂t |ΨI(t)〉 = −Ĥ0e
iĤ0t/~ |ΨS(t)〉 + eiĤ0t/~(Ĥ0 + V̂ ) |ΨS(t)〉

= eiĤ0t/~V̂ |ΨS(t)〉
= eiĤ0t/~V̂ e−iĤ0t/~ |ΨI(t)〉

Therefore, in the Interaction picture, the following set of equations are valid:

i~∂t |ΨI(t)〉 = V̂I(t) |ΨI(t)〉 (1.19)

V̂I ≡ eiĤ0t/~V̂ e−iĤ0t/~ (1.20)

To keep the expectation values of operators picture-independent, one needs to define the operators in
the Interaction picture in the following way:

ÔI(t) = eiĤ0t/~ÔSe
−iĤ0t/~ (1.21)

Differentiating this definition with respect to time results in a useful equation of motion for the operators:

i~∂tÔI(t) =
[

ÔI(t), Ĥ0

]

(1.22)

The time evolution operator in the Interaction picture

Define a unitary operator Û(t, t0) that makes the system evolve from time t0 to time t:

|ΨI(t)〉 = Û(t, t0) |ΨI(t0)〉 (1.23)

This operator has many interesting properties such as:[4]

Û(t, t) = 1 (1.24)

Û †(t, t0)Û(t, t0) = Û(t, t0)Û
†(t, t0) = 1 (1.25)

Û(t1, t2)Û(t2, t3) = Û(t1, t3) (1.26)

Û(t0, t) = Û †(t, t0) (1.27)

An integral equation for Û can be constructed which will be solved by iterration. From equations 1.19
and 1.23 it can be seen that Û satisfies a differential equation:

i~∂t(Û(t, t0) |ΨI(t0)〉) = V̂I(t)Û (t, t0) |ΨI(t0)〉 (1.28)

Integrating this equation from t0 to t yields:

Û(t, t0) = 1− i

~

∫ t

t0

dt′V̂I(t
′)Û(t′, t0) (1.29)

If Û were a function, this equation could be classified as a Volterra integral equation of the second kind:

φ(x) = f(x) + λ

∫ x

0

K(x, u)φ(u)du (1.30)
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and could be solved by means of the reciprocal kernel method[2]. Using the same algorithm as in [2],
however always maintaining the proper ordering of the operators, yields a solution for Û of the following
form:[3]

Û(t, t0) =
∞∑

n=0

(−i
~

)n
1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT [V̂I(t1) . . . V̂I(tn)] (1.31)

(for details on the reciprocal kernel method and the detailed procedure for obtaining this solution, see
Appendix A.3)

T stands for the time-ordered product of operators which orders the operators with the latest time
to the left:[1]

T [Â1(t̄1) . . . Ân(t̄n)] =
∑

P

(−1)FP θ(t̄P (1), t̄P (2)) . . . θ(t̄P (n−1), t̄P (n))

× ÂP (1)(t̄P (1)) . . . ÂP (n)(t̄P (n)) (1.32)

where P runs over all permutations of the numbers 1 . . . n and FP is the number of times a fermionic
operator gets interchanged with another fermionic operator in the permutation P.

The Heisenberg picture

In the Heisenberg picture the state vectors do not depend on time, all the time dependence is in the
operators. The state vector in the Heisenberg picture is defined as:

|ΨH(t)〉 ≡ eiĤt/~ |ΨS(t)〉 (1.33)

(Ĥ here is time-independent because the equilibrium situation is in view)
From the definition it follows that:

i~∂t |ΨH(t)〉 = −eiĤt/~Ĥ |ΨS(t)〉 + eiĤt/~Ĥ |ΨS(t)〉 = 0 (1.34)

This implies that |ΨH(t)〉 is time-independent.
To keep the expectation values of operators picture independent, a general operator in the Heisenberg

picture needs to be defined in the following way:

ÔH ≡ eiĤt/~ÔSe
−iĤt/~ (1.35)

Taking the time derivative of this definition yields:

i~∂tÔH(t) =
[

ÔH(t), Ĥ
]

(1.36)

All the three pictures coincide at t=0:

|ΨH〉 = |ΨS(0)〉 = |ΨI(0)〉 (1.37)

ÔS = ÔH(0) = ÔI(0) (1.38)

In the Heisenberg picture, the state vectors satisfy the time-independent Schrödinger equation:

Ĥ |ΨH〉 = E |ΨH〉 (1.39)

and they represent the exact eigenstates of the system described by the full Hamiltonian Ĥ . The fact
that:

|ΨH〉 = |ΨI(0)〉 = Û(0, t0) |ΨI(t0)〉 (1.40)

helps construct these states from the interaction state vectors. The system descibed by Ĥ0 will be called
noninteracting and its eigenstates are known.

Consider the time-dependent Hamiltonian:[4]

Ĥ(t) = Ĥ0 + e−ǫ|t|V̂ (1.41)
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At very large times, both in the past and in the future, this Hamiltonian reduces to that of the noninter-
acting system (the system described by Ĥ0, which is solvable) and at t=0, it becomes the full Hamiltonian
Ĥ that was used before in the definitions of the pictures and which describes the interacting system.
If ǫ tends to zero at the end of the calculation, the perturbation is turned on and off infinitely slowly
(adiabatically).
According to equation 1.40,

|ΨH〉 = |ΨI(0)〉 = Ûǫ(0,−∞) |φ0〉 (1.42)

where φ0 is a stationary eigenstate of the unperturbed Hamiltonian.
But one question remains: do meaningful results come out when the limit ǫ → 0 is taken? The

answer to this question is provided by the Gell-Mann and Low theorem which prescribes the eigenstate
that develops adiabatically from |φ0〉.

Theorem (Gell-Mann and Low). If the following quantity exists to all orders in perturbation theory

lim
ǫ→0

Ûǫ(0,−∞) |φ0〉
〈φ0| Ûǫ(0,−∞) |φ0〉

≡ |Ψ0〉
〈φ0|Ψ0〉

(1.43)

then it is an eigenstate of Ĥ:

Ĥ
|Ψ0〉

〈φ0|Ψ0〉
= E

|Ψ0〉
〈φ0|Ψ0〉

(1.44)

A simple proof[5] given by Luca Guido Molinary in his paper ”Another proof of Gell-Mann and Low’s
theorem” is summarized in Appendix A.4.

Now one has all the necessary tools to introduce the concept of Green’s functions and to proceed in
the understanding of perturbation theory.

1.1.3 Green’s functions. Diagrammatic analysis of perturbation theory

The definition of the single-particle Green’s function is:[4]

iGαβ(~xt, ~x
′t′) =

〈Ψ0|T [ψ̂Hα(~xt)ψ̂
†
Hβ(~x

′t′)]|Ψ0〉
〈Ψ0|Ψ0〉

(1.45)

where |Ψ0〉 is the ground state of the interacting system, α, β are spin indices and ~xt represent the
coordinates of a point in spacetime.

Why study such a quantity? Firstly, because the expectation value of any single-particle operator in
the ground state of the system can be written in terms of the one-particle Green’s function.

Proof. Let Â be the single-particle operator written in terms of field operators:

Â =

∫

d~x
∑

αβ

ψ̂
†
β(~x)âβα(~x)ψ̂α(~x) (1.46)

The ground state expectation value of Â is given by:

〈ÂH(t)〉 = 〈Ψ0|ÂH(t)|Ψ0〉
〈Ψ0|Ψ0〉

(1.47)

=
∑

αβ

lim
~x′t′→~xt+

∫

d~x
〈Ψ0|ψ̂†

Hβ(~x
′t′)âβα(~xt)ψ̂Hα(~xt)|Ψ0〉
〈Ψ0|Ψ0〉

(1.48)

= −i
∫

d~x
∑

αβ

lim
~x′t′→~xt+

âβα(~x)Gαβ(~xt, ~x
′t′) (1.49)
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Secondly, the one-particle Green’s function contains information on the ground-state energy of the
system:[4]

E = 〈Ĥ〉 = −1

2
i

∫

d~x lim
~x′t′→~xt

(

i~∂t −
~
2∇2

2m

)
∑

αβ

Gαβ(~xt, ~x
′t′) (1.50)

Also there are many other interesting properties of the Green’s function that make it worthwhile to
calculate such as the fact that it can provide the excitation spectrum of the system (see Ref [1], subsection
”Lehman representation”).

Physically, the one-particle Green’s function can be interpreted as the probability amplitude for the
propagation of a particle or excitation between two spacetime points.[4]

Wick’s theorem. Feynman diagrams

In order to determine the Green’s function, it is necessary to write the Heisenberg field operators and
the interacting ground state in its definition in terms of quantities easier to work with such as the
ground state of the noninteracting system and operators in the interaction picture. It can be proven (see
Appendix A.5) that:[4]

〈Ψ0|ÔH(t)|Ψ0〉
〈Ψ0|Ψ0〉

=
1

〈φ0|Ûǫ(∞,−∞)|φ0〉

× 〈φ0|
∞∑

ν=0

(

− i

~

)ν
1

ν!

∫ +∞

−∞

dt1 . . .

∫ +∞

−∞

dtνe
−ǫ(|t1|+...+|tν |)

× T [V̂I(t1) . . . V̂I(tν)]|φ0〉 (1.51)

Therefore, the Green’s function can be written as:

iGαβ(x, y) =

∞∑

ν=0

(

− i

~

)ν
1

ν!

∫ +∞

−∞

dt1 . . .

∫ +∞

−∞

dtν

×
〈φ0|T [V̂I(t1) . . . V̂I(tν)ψ̂Iα(x)ψ̂

†
Iβ(y)]|φ0〉

〈φ0|Ûǫ(∞,−∞)|φ0〉
(1.52)

(x, y are spacetime points)
The V̂I operators can also be written in terms of field operators in the interaction picture, therefore

the problem of calculating the Green’s function was reduced to that of evaluating expressions of the
form: 〈φ0|T [ψ̂†

I . . . ψ̂I ]|φ0〉. The essential idea is to move all destruction operators to the right where
they annihilate the noninteracting ground state.

In most systems of interest, ψ̂I(x) can be uniquely separated into a destruction part ψ̂
(+)
I (x) that

annihilates the noninteracting ground state and a creation part ψ̂
(−)
I (x), and similarly for ψ̂†

I(x):([3][4])

ψ̂I(x) = ψ̂
(+)
I (x) + ψ̂

(−)
I (x) (1.53)

ψ̂
(+)
I (x)|φ0〉 = 0 (1.54)

ψ̂
†
I(x) = ψ̂

†(+)
I (x) + ψ̂

†(−)
I (x) (1.55)

ψ̂
†(−)
I (x)|φ0〉 = 0 (1.56)

The order of the field operators with all the destruction operators to the right and all the creation
ones to the left is called normal order. The normal ordering symbol N() places whatever operators it
contains in normal order, also including a factor of (-1) for every interchange of fermionic operators. A
normal ordered product of field operators is especially convenient because its expectation value in the
unperturbed ground state |φ0〉 vanishes identically.

Thus the aim would be to reduce the T-product of field operators to a N-product. The quantity that
remains after transforming a T-product of two operators into a normal ordering is called a contraction:

ÂB̂ ≡ T (ÂB̂)−N(ÂB̂) (1.57)
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For the case of two field operators, the only contractions that are non-zero are:

〈φ0| ψ̂(+)
I (x)ψ̂

†(+)
I (y)|φ0〉 =

{

iG0(x, y) if tx > ty

0 if tx < ty
(1.58)

〈φ0| ψ̂(−)
I (x)ψ̂

†(−)
I (y)|φ0〉 =

{

iG0(x, y) if ty > tx

0 if tx > ty
(1.59)

where iG0
αβ(x, y) = 〈φ0|T [ψ̂Iα(x)ψ̂

†
Iβ(x)]|φ0〉 is a quantity which refers to the noninteracting system and

is therefore calculable.
The generalization of what remains after the reduction of a T-product of arbitrary many fields to a

normal ordering is known as Wick’s theorem:

Theorem (Wick’s theorem).

T [ψ̂I(x1)ψ̂
†
I(x2) . . . ψ̂I(xn)] = N [ψ̂I(x1)ψ̂

†
I(x2) . . . ψ̂I(xn) + all possible contractions] (1.60)

For a proof using induction for Wick’s theorem, see Appendix A.6. Wick’s theorem makes possible the
evaluation of the exact Green’s function as an expansion involving only fully contracted field operators in
the interaction picture. If G0 is assigned a straight line with an arrow running from the second argument
to the first, and the interaction potential a wavy line, the terms in the expansion, after applying Wick’s
theorem, can be represented graphically as Feynman diagrams.

For example, if one takes H0 to describe a system of noninteracting particles and the perturbation
adiabatically turned on to be the Coulomb interaction between particles:

V̂I(t) =

∫

d~x1

∫

d~x2V (~x1, ~x2)αα′ββ′δ(t1 − t2)ψ̂
†
Iα(x1)ψ̂

†
Iβ(x2)ψ̂Iα′(x2)ψ̂Iβ′(x1) (1.61)

then, to first order in the interaction the numerator in the expression for the Green’s function (equation
1.52) can be written as a sum of Feynman diagrams in the following way:

iG
(1)
αβ =

+

+2×+2×

It can be proven (see proof in Appendix A.7) that the disconnected diagrams (the ones containing
separated pieces) factor out from the numerator of equation 1.52 and exactly cancel the denominator,
leaving the following expression for G:

iGαβ(x, y) =
∞∑

ν=0

(

− i

~

)ν
1

ν!

∫ +∞

−∞

dt1 . . .

∫ +∞

−∞

dtν ×

〈φ0|T [V̂I(t1) . . . V̂I(tν)ψ̂Iα(x)ψ̂
†
Iβ(y)]|φ0〉connected (1.62)

In conclusion, for this case, the Feynman rules that enable one to write the nth order contribution to the
single particle Green’s function can be enumerated:[4]
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1. Draw all topologically distinct connected diagrams with n interaction lines and 2n+1 directed
particle Green’s functions lines.

2. Label each vertex with a four-dimensional spacetime point xi

3. Assign to each wavy line an interaction:

U(x, y)λλ′µµ′ = V (~x, ~y)λλ′µµ′δ(tx − ty) (1.63)

4. Assign to each solid line a Green’s function G0
αβ(x, y).

5. Integrate all internal variables over space and time.

6. There is a spin-matrix product along each continuous fermion line, including the potential at each
vertex.

7. Affix a sign factor (−1)F to each term, where F is the number of closed fermion loops in the
diagram and a factor

(
−i
~

)n
to each nth order term.

Dyson’s equation

In practise however, the bare Green’s functions G0 are never used to expand the diagrams in. Instead,
self consistent equations involving the dressed Green’s functions are used. This has the advantage of
dealing with physical, renormalized Green’s functions and also a smaller number of diagrams is needed.
An example of such an equation is Dyson’s equation which is the subject of this subsection.

The conclusion of the previous subsection was that the exact Green’s function consists of the unper-
turbed Green’s function plus all connected diagrams with a free Green’s function at each end.

Define a self-energy insertion as any part of a diagram that is connected to the rest of the diagram
by two particle lines:

dressed GF bare GF

self − energy= +

Also define a proper self-energy insertion as a self-energy insertion that cannot be separated into two
pieces by cutting a single particle line. The proper self energy Σ⋆ is the sum of all proper self-energy
insertions.

= + + + . . . = +
Σ⋆

In terms of these newly defined quantities, an integral equation for the exact Green’s function can be
written:

Gαβ(x, y) = G0
αβ(x, y) +

∫

dx1

∫

dx′1G
0
αλ(x, x1)Σ

⋆(x1, x1′)λµGµβ(x
′
1, y) (1.64)

This is called Dyson’s equation and it can be solved iterratively. The power of this equation lies in
the fact that any approximation for Σ⋆ generates an infinte-order approximate series for the Green’s
function, thus making possible the summation of an infinite class of perturbation terms.
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1.2 Equilibrium finite temperature formalism

So far, the system which was intended to be studied using perturbation theory was considered isolated. In
reality, however, a system is always coupled to an environment with which it exchanges energy and mass
until a state of equilibrium is reached. In this part, the Green’s functions formalism is upgraded so that
it enables the calculation of expectation values of observables concerning a system in thermodynamical
equilibrium with an external reservoir with respect to both particle and energy exchange.

1.2.1 Prelude in statistical physics

Consider first a case in classical mechanics, a macroscopic system containing a large number of particles
and assume that it is closed, i.e. it does not interact with other systems. A part of the system which is
very small compared to the whole system, but still macroscopic, is called a subsystem. It is not closed,
it interacts in complex ways with the other parts of the system, rendering the usual calculation methods
of mechanics inapplicable. The methods of statistical physics will be used instead.

An observation which this new approach is based on is that after a sufficiently long time, the subsystem
will have been many times in every possible state.[6] Let ∆t be the part of the total time T during which
the subsystem was in a given volume of phase space ∆p∆q. Then, the quantity:

w = lim
T→∞

∆t

T
(1.65)

represents the probability that if the subsystem is observed at an arbitrary instant in time, it will be
found in the given volume of phase space ∆p∆q. This probability can be written as:

dw = ρ(p1 . . . ps, q1 . . . qs)dpdq (1.66)

where ρ is a function of the coordinates and momenta corresponding to the s degrees of freedom of the
system. This function is called the probability density or the statistical distribution function and its
determination is the fundamental problem of statistical physics. If this problem is solved, it becomes
possible to calculate the probabilities to obtain the values upon measurement of any physical quantity
related to the subsystem, f(p,q), by multiplying each of its possible values by the probability density and
integrating over all states:

f̄ =

∫

f(p, q)ρ(p, q)dpdq (1.67)

The averaging with respect to the distribution function (statistical averaging) is equivalent to a time
averaging as can be seen from equation 1.65

Now going back to quantum mechanics, the situation is similar to that of the macroscopic body in the
sense that many-body quantum systems have an extremely high density of levels in the energy eigenvalue
spectrum. As it is impossible in classical mechanics to take into account the initial conditions for every
particle in a body, it is impossible to find a wavefunction to describe a complex interacting many-particle
quantum system.

Extrapolating equation 1.67 yields for the expectation value of a quantum mechanical operator acting
on a quantum system in equilibrium with its environment:

〈Â〉 =
∑

n

pn〈n|Â|n〉 (1.68)

where |n〉 are the eigenstates obtained by solving the system when all interactions with the surrounding
environment of the system are not taken into account and pn is the probability of finding the interacting
system in the state |n〉 at a given time.

Birkhoff’s ergodic theorem shows that the probabilities pn can be understood in a different way in
which the time averaging is equivalent to an ensemble averaging. Instead of investigating the state of
the system at many various times and talking the average, one can prepare a large number of identical
systems which have reached equilibrium and at a given instant of time t0, one counts Mn of the M
systems to be in the state n. Then pn is given by:

pn =
Mn

M
(1.69)
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In conclusion, a grand canonical ensemble is an imaginary collection of model systems put together to
mirror the calculated probability distribution of a given system (the amount of members of the ensemble
which are in the microscopic state i is proportional to the probability over time of finding the real-world
system in that microscopic state i).

If |Ψk〉 is a complete orthonormal set of states in the system Hilbert space, then:

〈Â〉 =
∑

n

pn〈n|Â|n〉 (1.70)

=
∑

n,k

pn〈n|Â|Ψk〉〈Ψk|n〉 (1.71)

=
∑

n

pn〈Ψk|n〉〈n|Â|Ψk〉 (1.72)

=
∑

k

〈Ψk|ρ̂Â|Ψk〉 (1.73)

= Tr{ρ̂Â} (1.74)

where the density operator ρ̂ was defined as:

ρ̂ =
∑

n

pn|n〉〈n| (1.75)

and the trace Tr{Â} of an operator is defined as:

Tr{Â} =
∑

k

〈Ψk|Â|Ψk〉 (1.76)

The next step is to determine the density matrix operator ρ̂ for equilibrium systems. This derivation
follows the derivation given in reference [7].

Assuming that the total hypersystem made out of the M identical systems has total energy E and
fixed particle number N, then:

E =
∑

n

MnEn (1.77)

N =
∑

n

MnNn (1.78)

The degeneracy of the energy level E, denoted by Ω can be calculated to be:

Ω =
M !

M1! . . .Mn!
(1.79)

further yielding:

lnΩ = lnM !−
∑

n

lnMn! (1.80)

=M lnM −M −
∑

n

(Mn lnMn −Mn) (1.81)

= −M
∑

n

pn ln pn (1.82)

=MS (1.83)

where the quantity S = −∑n pn ln pn will be called the entropy.
The most probable configuration of the ensemble is the one which maximizes the degeneracy of the

level E and therefore, the entropy. The constraints are:

∑

n

pn = 1 (1.84)
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ES =
E

M
=

∑

nMnEn

M
=
∑

n

pnEn (1.85)

NS =
N

M
=

∑

nMnNn

M
=
∑

n

pnNn (1.86)

where ES and NS are the expectation values of the energy and number of particles of each system in the
ensemble.

The Lagrange multipliers method can be applied:

Λ(pn, α, β, γ) = −
∑

n

pn ln pn − α

(
∑

n

pnNn −NS

)

− β

(
∑

n

pnEn − ES

)

− γ

(
∑

n

pn − 1

)

dΛ = 0 implies dΛ
dpn

= 0 which gives:

−(ln pn + 1)− αNn − βEn − γ = 0 (1.87)

ln pn = −1− αNn − βEn − γ (1.88)

pn = e−(γ+1) · e−αNn−βEn (1.89)

Replacing equation 1.89 in equation 1.84 yields:

1

eγ+1

∑

n

e−αNn−βEn = 1 (1.90)

Denote: ∑

n

e−αNn−βEn = Z (1.91)

which means:

e−(γ+1) =
1

Z
(1.92)

and

pn =
1

Z
e−αNn−βEn (1.93)

Rewriting the entropy:

S = −
∑

n

pn ln pn =
∑

n

pn (1 + αNn + βEn + γ)

=
∑

n

pn + α
∑

n

pnNn + β
∑

n

pnEn + γ
∑

n

pn

= 1 + αNS + βES + γ

Using equation 1.92 in the form 1 + γ = lnZ yields for the entropy:

S = αNS + βES + lnZ (1.94)

Taking the partial derivatives with respect to ES and NS of the entropy:

∂S

∂ES
= β + ES

∂β

∂ES
+NS

∂α

∂ES
+
∂(lnZ)

∂ES
(1.95)

∂S

∂NS
=

∂β

∂NS
ES + α+

∂α

∂NS
NS +

∂(lnZ)

∂NS
(1.96)

Now,
∂(lnZ)

∂ES
=
∂(lnZ)

∂β

∂β

∂ES
+
∂(lnZ)

∂α

∂α

∂ES
(1.97)
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It is straightforward to obtain:
∂(lnZ)

∂β
= −ES (1.98)

∂(lnZ)

∂α
= −NS (1.99)

which, when replaced in equation 1.97 and then in 1.96 will give the simple result:

∂S

∂ES
= β (1.100)

Analogously,
∂S

∂NS
= α (1.101)

Defining the temperature T and the chemical potential µ of the system with the relations:

1

T
=

∂S

∂ES
(1.102)

− µ

T
=

∂S

∂NS
(1.103)

yields:

β =
1

T
(1.104)

α = −βµ (1.105)

and

pn =
1

Z
e−β(En−µNn) (1.106)

Then

ρ̂ =
∑

n

pn|n〉〈n| =
1

Z
e−β(En−µNn)|n〉〈n| (1.107)

The action of ρ̂ on a state |n〉 is:
ρ̂|n〉 = 1

Z
e−β(En−µNn)|n〉 (1.108)

which motivates writing ρ̂ as:

ρ̂ =
1

Z
e−β(Ĥ−µN̂) (1.109)

And Z can be written also in terms of operators as:

Z =
∑

n

e−β(En−µNn) = 〈n|
∑

n

e−β(Ĥ−µN̂)|n〉

= Tr
{

e−β(Ĥ−µN̂)
}

Z is called the grand partition function. In terms of this expression for Z, the density operator is:

ρ̂ =
e−β(Ĥ−µN̂)

Tr
{

e−β(Ĥ−µN̂)
} (1.110)
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1.2.2 Temperature Green’s functions

In this paragraph, the considerations derived from studying a system in equilibrium with the environment
will be applied to deduce how perturbation theory methods for the ground state formalism should be
extended to the finite temperature case.

Defining the grand canonical Hamiltonian as:

K̂ = Ĥ − µN̂ (1.111)

with the same dichotomy as previously:
K̂ = K̂0 + K̂ ′ (1.112)

where K̂0 represents the solvable part, a modified Heisenberg picture can be introduced:

ÔK(~xτ) ≡ eiK̂τ/~ÔS(~x)e
−iK̂τ/~ (1.113)

Field operators can be constructed for this picture:

ψ̂Kα(~xτ) = eiK̂τ/~ψ̂α(~x)e
−iK̂τ/~ (1.114)

ψ̂
†
Kα(~xτ) = eiK̂τ/~ψ̂†

α(~x)e
−iK̂τ/~ (1.115)

The single particle temperature Green’s function is defined as:[4]

Gαβ(~xτ, ~x
′τ ′) = −Tr

{

ρ̂Tτ [ψ̂Kα(~xτ)ψ̂
†
Kβ(~x

′τ ′)]
}

(1.116)

The same relations to observables apply as in the case of zero-temperature formalism.

Perturbation theory and Wick’s theorem for finite temperatures

For any operator ÔS in the Schrödinger picture, an operator in the interaction picture can formally be
defined as:[4]

ÔI(τ) ≡ eiK̂0τ/~ÔS(~x)e
−iK̂0τ/~ (1.117)

The Heisenberg operators and the interaction picture operators are related by the equation:

ÔK(τ) = eiK̂τ/~e−iK̂0τ/~ÔI(τ)e
iK̂0τ/~e−iK̂τ/~ (1.118)

= Û(0, τ)ÔI(τ)Û (τ, 0) (1.119)

where the operator Û is defined by:

Û(τ1, τ2) ≡ eiK̂0τ1/~e−iK̂(τ1−τ2)/~e−iK̂0τ2/~ (1.120)

A differential equation for Û can be obtained:

−i ∂
∂τ

Û(τ, τ ′) = ∂

∂τ

(

eiK̂0τ/~e−iK̂(τ−τ ′)/~e−iK̂0τ
′/~
)

(1.121)

= eiK̂0τ/~(K̂0 − K̂)e−iK̂(τ−τ ′)/~e−iK̂0τ
′/~ (1.122)

= eiK̂0τ/~(K̂0 − K̂)e−iK̂0τ/~Û(τ, τ ′) (1.123)

= −K̂ ′
I Û(τ, τ ′) (1.124)

The equation
∂

∂τ
Û(τ, τ ′) =

(

− i

~

)

K̂ ′
I Û(τ, τ ′) (1.125)

is of the same kind as the one that was solved for the time evolution operator in the ground state
formalism, therefore using the same algorithm described in Appendix A.3 yields the solution:

Û(τ, τ ′) =
∞∑

n=0

(

− i

~

)n
1

n!

∫ τ

τ ′

dτ1 . . .

∫ τ

τ ′

dτn × Tτ

[

K̂ ′
I(τ1) . . . K̂

′
I(τn)

]

(1.126)
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From equation 1.120, if τ2 = 0, τ1 = τ then

e−iK̂τ/~ = e−iK̂0τ/~Û(τ, 0) (1.127)

If τ = −iβ~, a perturbation expansion for ρ can also be obtained.

ρ̂ =
e−βK̂

Tr
{

e−βK̂
} (1.128)

and

ρ̂0 =
e−βK̂0

Tr
{

e−βK̂0

} (1.129)

Therefore, τ will be considered a time variable running on the imaginary axis.
The exact temperature Green’s function can be rewritten as:

Gαβ(~xτ, ~x
′τ ′) = −

Tr
{

e−βK̂0Û(−iβ~, 0)Û(0, τ)ψ̂Iα(~xτ)Û(τ, τ ′)ψ̂†
Iβ(~x

′τ ′)Û(τ ′, 0)
}

Tr
{

e−βK̂0Û(−iβ~, 0)
} (1.130)

for |τ | > |τ ′|.
Using equation 1.126 for the time-evolution operators yields:

Gαβ(~xτ, ~x
′τ ′) = −Tr{e−βK̂0

∞∑

n=0

(

− i

~

)n
1

n!

∫ 0

−iβ~

dτ1 . . .

∫ 0

−iβ~

dτn

× Tτ

[

K̂ ′
I(τ1) . . . K̂

′
I(τn)ψ̂Iα(~xτ)ψ̂

†
Iβ(~x

′τ ′)
]

}

× 1

Tr
{

e−βK̂0

∑∞
n=0

(
− i

~

)n 1
n!

∫ 0

−iβ~ dτ1 . . .
∫ 0

−iβ~ dτnTτ

[

K̂ ′
I(τ1) . . . K̂

′
I(τn)

]} (1.131)

The denominator serves to eliminate all disconnected diagrams as in the zero-temperature formalism.
The next step in the zero-temperature case was to turn the time ordered products into normal

ordered ones because their ground state expectation value vanished. However, the ensemble average of
the normal product is not zero. Nevertheless, as first proved by T. Matsubara, there exists a generalized
Wick’s theorem that allows a diagrammatic expansion of the temperature Green’s function[4]. Firstly,
the noninteracting temperature Green’s function is:

G0
αβ(~xτ, ~x

′τ ′) = −Tr
{

ρ̂0Tτ [ψ̂Iα(~xτ)ψ̂
†
Iβ(~x

′τ ′)]
}

(1.132)

where

ρ̂ =
e−βK̂0

Tr{e−βK̂0}
(1.133)

Define a contraction as:

ÂB̂ = Tr{ρ̂0Tτ [ÂB̂]} (1.134)

For example,

ψ̂Iα(~xτ)ψ̂
†
Iβ(~x

′τ ′) = −G0
αβ(~xτ, ~x

′τ ′) (1.135)

Theorem (The generalized Wick’s theorem).

Tr{ρ̂0Tτ [ÂB̂Ĉ . . . Ẑ]} = the sum over all possible fully contracted terms

where Â, B̂, . . . , Ẑ are field operators in the interaction picture.

The proof of the generalized Wick theorem can be found in Appendix A.8.
Since the algebraic structure of the finite temperature Wick’s theorem is identical to that of the fully

contracted terms in the zero-temperature form, the Green’s function G has the same set of Feynman
diagrams that G had at zero temperature.
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Feynman rules

If Ĥ ′ is taken to be the two particle interaction:

K̂ ′ = Ĥ ′ =
1

2

∫

d~x1d~x2V (~x1, ~x2)ψ̂
†
α(~x1)ψ̂

†
β(~x2)ψ̂β(~x2)ψ̂α(~x1) (1.136)

the corresponding interaction-picture operator being:

K̂I(τ1) =
1

2

∫

d~x1d~x2

∫ 0

−iβ~

ψ̂
†
Iα(~x1τ1)ψ̂

†
Iβ(~x2τ2)V0(~x1τ1, ~x2τ2)ψ̂Iβ(~x2τ2)ψ̂Iα(~x1τ1) (1.137)

where:
V0(~x1τ1, ~x2τ2) = V (~x1 − ~x2)δ(τ1 − τ2) (1.138)

the following Feynman rules can be written down:

1. Draw all topologically distinct connected diagrams with n interaction lines and 2n+1 directed
particle Green’s functions lines.

2. Assign to each wavy line an interaction: V0(1, 2)

3. Associate a factor G0
αβ(1, 2) with each directed particle line running from spacetime point 2 to

spacetime point 1.

4. Integrate all internal variables:
∫
d~xi

∫ 0

−iβ~
dτi.

5. There is a spin-matrix product along each continuous fermion line, including the potential at each
vertex.

6. Affix a sign factor (−1)F to each term, where F is the number of closed fermion loops in the
diagram and a factor

(
−i
~

)n
to each nth order term.

7. Interpret any temperature Green’s function at equal values of τ as:
G0(~xτ, ~x′τ) = limτ ′→τ+ G0(~xτ, ~x′τ ′)

Also, the temperature Green’s function obbeys Dyson’s equation:

G(1, 2) = G0(1, 2) +

∫

d3d4G(1, 3)Σ⋆(3, 4)G(4, 2) (1.139)

This concludes the discussion about equilibrium Green’s functions where the Hamiltonian of the system
was time independent. A new challenge awaits, that of subjecting the system to a time-independent
perturbation such as an external field or a laser pulse and investigating it using many-body perturbation
theory. This will be the subject of the remaining part of this thesis.

1.3 Non-equilibrium finite temperature formalism

In this section, the goal of study is extended to describing many-electron systems that are initially in
thermal equilibrium and are afterwards subjected to time-dependent external fields.

The Hamiltonian has now a more general, time-dependent expression:

Ĥ(t) =

∫

d~xψ̂†(~x)ĥ(~x, t)ψ̂(~x) +
1

2

∫

d~xd~yw(~x, ~y)ψ̂†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x) (1.140)

with:

ĥ(~x, t) =
1

2

(

−i∇+ ~A(~x, t)
)2

+ v(~x, t)− µ (1.141)

The external potential v(~x, t) and the vector potential ~A(~x, t) are switched on at t = t0. For t < t0 the
Hamiltonian is time-independent as was the case in the previous subsection.

The time evolution operator Û(t, t′) is defined by:

|Ψ(t)〉 = Û(t, t′)|Ψ(t′)〉 (1.142)
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where |Ψ(t)〉 is a solution of the time-dependent Schrödinger equation:

(i∂t − Ĥ(t))Ψ(~x1, . . . , ~xn, t) = 0 (1.143)

(in this part, atomic units will be used) The expectation value of an operator Ô at time t will have a
similar expression as in the finite temperature case:

〈ÔH(t)〉 = Tr{ρ̂ÔH(t)} (1.144)

The difference resides in the fact that ρ̂ and the time evolution operator Û in the expression of ÔH(t) =
Û(t0, t)ÔÛ(t, t0) are built out of different Hamiltonians, therefore requiring two different perturbation
expansions. In order to avoid this, an alternative mathematical approach can be adopted.([1][8]) If Ĥ(t)
is defined to be equal to Ĥ0 (the time-independent part of the Hamiltonian) on the contour running
straight from t0 to t0 − iβ in the complex time plane, then:

〈Ô(t)〉 =
Tr
{

Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)
}

Tr
{

Û(t0 − iβ, t0)
} (1.145)

Reading the time arguments of the evolution operators in order, suggests that the system formally evolves
along the real time axis from t0 to t after which the operator Ô acts. Then it evolves back along the real
time axis to t0 and, in the end, along the imaginary time axis to t0− iβ. This path is called the Keldysh
contour:

Real time axis

Imaginary time axis

β

Turning the usual time integrals in the expression for the time evolution operator:

Û(t, t′) = T [exp(−i
∫ t

t′
dτ, Ĥ(τ))] (1.146)

into contour integrals, both the actions of ρ̂ and Ĥ can be included in the expansion of Û , yielding in a
similar fashion as in the equilibrium formalism:

〈ÔH(t)〉 =
Tr
{

Tc[exp(−i
∫

c
dt̄, Ĥ(t̄))Ô(t)]

}

Tr
{

Tc[exp(−i
∫

c dt̄, Ĥ(t̄))]
} (1.147)

where the contour ordered product of operators is defined as:

Tc[Â1(t̄1) . . . Ân(t̄n)] =
∑

P

(−1)FP θ(t̄P (1), t̄P (2)) . . . θ(t̄P (n−1), t̄P (n))

× ÂP (1)(t̄P (1)) . . . ÂP (n)(t̄P (n)) (1.148)
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θ(t1, t2) is generalized for arguments on the contour:

θ(t1, t2) =

{

1 if t1 is later on the contour than t2,

0 otherwise.

This expression can also be used to generate a diagrammatic analysis of the Green’s function after
applying a generalized Wick’s theorem (see reference [9]). Here, for completeness, a functional derivatives
approach will be described which although formally slightly different, reaches the same equations of
motion for the Green’s function as the previous method adjusted for the non-equilibrium case would,
namely, the Kadanoff-Baym equations. The presentation of this approach follows refference [1] Define
now, the one-particle non-equilibrium Green’s function as:

G(1, 2) = −i
T r
{

Û(t0 − iβ, t0)Tc[ψ̂H(1)ψ̂†
H(2)]

}

Tr
{

Û(t0 − iβ, t0)
} (1.149)

= −i〈Tc[ψ̂H(1)ψ̂†
H(2)]〉 (1.150)

Also:
G(1, 2) = θ(t1, t2)G

>(1, 2) + θ(t2, t1)G
<(1, 2) (1.151)

with:
G>(1, 2) = −i〈ψ̂H(1)ψ̂†

H(2)〉 (1.152)

G<(1, 2) = i〈ψ̂†
H(2)ψ̂H(1)〉 (1.153)

(i=(~xiti))
The starting point in obtaining an equation of motion for the Green’s function is the equations of

motion for the field operators:

i∂t1ψ̂H(~x1t1) =
[

ψ̂(~x1), Ĥ(t1)
]

H
(1.154)

=

[

ψ̂(~x1),

∫

d~xψ̂†(~x)ĥ(~x, t1)ψ̂(~x)

]

H

+
1

2

[

ψ̂(~x1),

∫

d~xd~yδ(tx, ty)w(~x, ~y)ψ̂
†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x)

]

H

= ĥ(1)ψ̂H(1) +

∫

c

d2w(1, 2)ψ̂†
H(2)ψ̂H(2)ψ̂H(1) (1.155)

(the time integration is considered on the contour) Analogously,

i∂t1ψ̂
†
H(1) = −ĥ(1)ψ̂†

H(1)−
∫

c

d2w(1, 2)ψ̂†
H(1)ψ̂†

H(2)ψ̂H(2) (1.156)

Now for the one-particle Green’s function:

i∂t1G(1, 2) = i∂t1(θ(t1, t2)G
>(1, 2) + θ(t2, t1)G

<(1, 2))

= iδ(t1, t2)G
>(1, 2) + iθ(t1, t2)i∂t1G

>(1, 2)

− iδ(t1, t2)G
<(1, 2) + iθ(t2, t1)i∂t1G

<(1, 2)

= iδ(t1, t2)(G
>(1, 2)−G<(1, 2)) + θ(t1, t2)〈∂t1 ψ̂H(1)ψ̂†

H(2)〉
− θ(t2, t1)〈ψ̂†

H(2)∂t1 ψ̂H(1)〉

Concerning the first term

δ(t1, t2)(〈ψ̂H(1)ψ̂†
H(2) + ψ̂

†
H(2)ψ̂H(1)〉) = δ(1, 2) (1.157)

And in the remaining part, equation 1.155 will be used to obtain:

i∂t1G(1, 2) = −i
∫

c

d3w(1, 3)(θ(t1, t2)〈ψ̂†
H(3)ψ̂H(3)ψ̂H(1)ψ̂†

H(2)〉

− θ(t2, t1)〈ψ̂†
H(2)ψ̂†

H(3)ψ̂H(3)ψ̂H(1)〉) + δ(1, 2) + ĥ(1)G(1, 2)
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and further, by writing 1+ = x1, t1 + δ where δ → 0:

(i∂t1 − ĥ(1))G(1, 2) = δ(1, 2)− i

∫

c

d3w(1+, 3)〈Tc[ψ̂H(1)ψ̂†
H(2)n̂H(3)]〉 (1.158)

The average of the contour-ordered product of the four field operators in the r.h.s. of equation 1.158 is
similar to a quantity that can be defined as a two-particle Green’s function:

G2(1, 2, 1
′, 2′) = −〈Tc[ψ̂H(1)ψ̂H(2)ψ̂†

H(1′)ψ̂†
H(2′)]〉 (1.159)

Thus:

(i∂t1 − ĥ(1))G(1, 2) = δ(1, 2)− i

∫

c

d3w(1+, 3)G2(1, 3, 3
+, 2) (1.160)

(−i∂t2 − ĥ(2))G(1, 2) = δ(1, 2)− i

∫

c

d3w(2+, 3)G2(1, 3, 3
+, 2) (1.161)

The purpose is to obtain self-consistent equations of motion for the Green’s function, therefore the self-
energy Σ will be defined so that the −iG2w term is replaced with a ΣG term which is a functional of
G: ∫

d2Σ(1, 2)G(2, 1′) = −i
∫

c

d2w(1, 2)G2(1, 2, 2
+, 1′) (1.162)

Then, the equations of motion can be written in the following way:

(i∂t1 − ĥ(1))G(1, 2) = δ(1, 2) +

∫

c

d3Σ(1, 3)G(3, 2) (1.163)

(−i∂t2 − ĥ(2))G(1, 2) = δ(1, 2) +

∫

c

d3G(1, 3)Σ(3, 2) (1.164)

Now, the requirement is to obtain the expression of Σ as a functional of G. To this end, consider a
perturbation δV̂ (t) in the Hamiltonian:

δV̂ (t) =

∫

d~xδv(~xt)n̂(~x) (1.165)

The change in the one-particle Green’s function caused by this perturbation can be calculated by deriving
the change in the time evolution operator from its equations of motion: (for a detailed derivation of the
following formula, see Appendix A.9)

δG(1, 2)

δv(3)
= −〈Tc[ψ̂H(1)ψ̂†

H(2)n̂H(3)]〉+ 〈n̂H(3)〉〈Tc[ψ̂H(1)ψ̂†
H(2)]〉 (1.166)

The first term in the r.h.s. is the two-particle Green’s function and is useful to replace in equations
1.160, 1.161 to yield:

(i∂t1 − ĥ(1))G(1, 1′) = δ(1, 1′) + i

∫

c

d2w(1+, 2)
δG(1, 1′)

δv(2)

+G(1, 1′)

∫

c

d2w(1, 2)〈n̂H(2)〉 (1.167)

(−i∂t1′ − ĥ(1′))G(1, 1′) = δ(1, 1′) + i

∫

c

d2w(1′+, 2)
δG(1, 1′)

δv(2)

+G(1, 1′)

∫

c

d2w(1′, 2)〈n̂H(2)〉 (1.168)

A reasonable step to make next would be to connect the quantity δG(1,1′)
δv(2) to Σ. To achieve this, one can

differentiate equations 1.163, 1.164 with respect to the perturbation v:

(i∂t1 − ĥ(1))
δG(1, 1′)

δv(2)
= δ(1, 2)G(1, 1′) +

∫

c

d3
δΣ(1, 3)

δv(2)
G(3, 1′)

+

∫

c

d3Σ(1, 3)
δG(3, 1′)

δv(2)
(1.169)
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(−i∂t1′ − ĥ(1′))
δG(1, 1′)

δv(2)
= δ(1′, 2)G(1, 1′) +

∫

c

d3
δΣ(3, 1′)

δv(2)
G(1, 3)

+

∫

d3Σ(3, 1′)
δG(1, 3)

δv(2)
(1.170)

The solution to these equations, after employing proper boundary conditions is:[1]

δG(1, 1′)

δv(2)
= G(1, 2)G(2, 1′) +

∫

c

d3d4G(1, 3)
δΣ(3, 4)

δv(2)
G(4, 1′) (1.171)

(the derivation of boundary conditions and more details on this equation can be seen in Appendix A.10)
For simplicity in writing down the equations, define the vertex function Γ as:

Γ(12; 3) = δ(1, 2)δ(2, 3) +
δΣ(1, 2)

δv(3)
(1.172)

Now,
δG(1, 1′)

δv(2)
=

∫

c

d3d4G(1, 3)G(4, 1′)Γ(34; 2) (1.173)

Replacing this into equations 1.167, 1.168 gives rise to the desired result, a self consistent equation for
Σ which can be used iteratively to generate expressions for Σ as a functional of the one-particle Green’s
function:

(i∂t1 − ĥ(1))G(1, 1′) = δ(1, 1′) + i

∫

c

d2d3d4G(1, 3)w(1+, 2)Γ(34; 2)G(4, 1′)

+G(1, 1′)

∫

c

d2w(1, 2)〈n̂H(2)〉

= δ(1, 1′) +

∫

c

d4Σ(1, 4)G(4, 1′)

Then:

Σ(1, 2) = i

∫

c

d3d4G(1, 3)w(1+, 4)Γ(32; 4)− iδ(1, 2)

∫

c

d3w(1, 3)G(3, 3+)

= iG(1, 2)w(1+, 2)− iδ(1, 2)

∫

c

d3w(1, 3)G(3, 3+)

+ i

∫

c

d3d4G(1, 3)w(1+, 4)
δΣ(3, 2)

δv(4)

In:

Σ(1, 2) = iG(1, 2)w(1+, 2)− iδ(1, 2)

∫

c

d3w(1, 3)G(3, 3+)

+ i

∫

c

d3d4G(1, 3)w(1+, 4)
δΣ(3, 2)

δv(4)
(1.174)

assigning to w a wiggly line and to G a solid line, the diagrammatic expression for the self-energy used
in the previous subchapters is reborn.

Now, that a perturbation expansion for Σ can be written down, the one-particle Green’s function can
be computed by performing the contour integrals in equations 1.163, 1.164.

Mathematical tools and methods related to Keldysh formalism can be applied to these expressions
yielding the Kadanoff-Baym equations:

(i∂t1 − ĥ(1))G≶(1, 2) = (ΣR ·G≶ +Σ≶ ·GA +Σ⌉ ⋆ G⌈)(1, 2) (1.175)

(−i∂t2 − ĥ(2))G≶(1, 2) = (Σ≶ ·GR + ΣA ·G≶ +Σ⌈ ⋆ G⌉)(1, 2) (1.176)

(i∂t1 − ĥ(1))G⌉(1, 2) = (ΣR ·G⌉ +Σ⌉ ⋆ GM )(1, 2) (1.177)
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(−i∂t2 − ĥ(2))G⌈(1, 2) = (ΣA ·G⌈ +Σ⌈ ⋆ GM )(1, 2) (1.178)

(i∂τ1 − ĥ(1))GM (1, 2) = iδ(τ1 − τ2) + (ΣM ⋆ GM )(1, 2) (1.179)

(−i∂τ2 − ĥ(2))GM (1, 2) = iδ(τ1 − τ2) + (ΣM ⋆ GM )(1, 2) (1.180)

(For the detailed derivation of these expressions, the definitions of the quantities involved in them and
a presentation of the Keldysh book-keeping methods used, see Appendix A.11)

Solving the Kadanoff-Baym equations is therefore a very important goal in many-body perturbation
theory. The algorithm used in practice to solve these equations and the approximations for Σ will be
further discussed in the following chapters along with examples of numerical calculations.

2 Linear Response Theory

Introduction

In this chapter, many-body perturbation theory methods will be used to investigate the linear response of
a discrete system of N sites which can be occupied by electrons according to Pauli’s exclusion principle, to
an external perturbation. Although the self-energy functional will be approximated to a restricted series
of Feynman diagrams, the density response function will still obey the frequency sum-rule, a fundamental
relation in linear response theory based on the gauge properties of the system.

2.1 General theory of linear response to an external perturbation for Hub-

bard chains

Consider a Hubbard chain, a system of N sites which can be occupied by electrons according to Pauli’s
exclusion principle. This model is frequently used in condensed matter physics to study conductivity
related properties and low temperature phenomena. To describe this particular type of systems, a more
appropriate representation of the Hamiltonian is required.

Let φi(~x) be a complete set of orthonormal orbitals in a one-particle Hilbert space:

δij =

∫

d~xφ∗i (~x)φj(~x) (2.1)

δ(~x− ~y) =

∞∑

i=1

φ∗i (~x)φi(~y) (2.2)

Define annihilation and creation operators with respect to this basis:

âi ≡
∫

d~xφ∗i (~x)ψ̂(~x) (2.3)

â
†
i ≡

∫

d~xφi(~x)ψ̂
†(~x) (2.4)

Anticommutation relations follow:
δij = {â†i , âj} (2.5)

0 = {â†i , â
†
j} = {âi, âj} (2.6)

In terms of these operators, the Hamiltonian in equation 1.140 can be written in the following form:

Ĥ(t) =
∑

ij

hij(t)â
†
i âj +

∑

ijkl

vijkl â
†
i â

†
jâkâl (2.7)

where:

hij(t) =

∫

d~xφ∗i (~x)ĥ(~x, t)φj(~x) (2.8)

vijkl =
1

2

∫

d~xd~yφ∗i (~x)φ
∗
j (~y)w(~x, ~y)φk(~y)φl(~x) (2.9)
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In the system of sites case, the orthonormal basis state vectors φi can be chosen to be spatial functions.
|φi(~x)|2 represents the probability of finding the particle at site i. These orbitals are highly localized,
therefore it would be a good approximation to assume:

vijkl ∼= δilδjkvij (2.10)

with:

vij =

∫

d~xd~y|φi(~x)|2w(~x, ~y)|φj(~y)|2 (2.11)

Then, the Hamiltonian to be used is:

Ĥ(t) =
∑

ij

hij(t)â
†
i âj +

∑

ij

vij â
†
i â

†
j âj âi (2.12)

The purpose of this section is to study the reaction of such a system to an external time-dependent
perturbation.

A completely determined system with a time-independent Hamiltonian Ĥ0 (hij does not depend on

time) is perturbed at t = t0 by turning on an additional time-dependent Hamiltonian Ĥex(t).

Ĥ(t) = Ĥ0 + Ĥex(t) (2.13)

In the interaction picture:
i∂t|ΨI〉 = Ĥex

I (t)|ΨI〉 (2.14)

where:
|ΨI〉 = eiĤ0t|Ψ〉 (2.15)

Ĥex
I (t) = eiĤ0tĤex(t)e−iĤ0t (2.16)

Integrating equation 2.14 yields to first order the formal solution:[13]

|ΨI〉(t) = |ΨI〉(t0)− i

∫ t

t0

dt′Ĥex
I (t′)|ΨI〉(t′)

= |ΨI〉(t0)− i

∫ t

t0

dt′Ĥex
I (t′)|ΨI〉(t0) + . . .

Then, the change in the expectation value of an operator Â due to the perturbation Ĥex(t), to first
order, is:

δ〈Â(t)〉 = 〈Ψ(t)|Â|Ψ(t)〉 − 〈Ψ(t0)|Â|Ψ(t0)〉 (2.17)

= −i
∫ t

t0

dt′〈Ψ(t0)|
[

ÂĤ0
(t), Ĥex

I (t′)
]

|Ψ(t0)〉 (2.18)

with:
ÂĤ0

(t) = eiĤ0tÂe−iĤ0t (2.19)

If one choses the operator in question to be the probability density at site i and the perturbation to be
of the form:

Ĥex(t) = n̂jvj(t) (2.20)

then equation 2.18 turns into:

δni(t) =

∫ ∞

0

χR
ij(t− t′)vj(t

′)dt′ (2.21)

where:
χR
ij(t− t′) = −iθ(t− t′)〈

[

n̂Ĥ0
(i, t), n̂Ĥ0

(j, t′)
]

〉 (2.22)

The function χR
ij is called the retarded response function and relates first order changes in the density

to first order changes in the potential.
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If
vj(t) = δ(t) (2.23)

then
δni(t) = χR

ij(t) (2.24)

and in the limit t→ 0+:

∂tni(0
+) = lim

t→0+
∂tχ

R
ij(t) (2.25)

= −i lim
t→0+

〈
[

∂tn̂Ĥ0
(i, t), n̂Ĥ0

(j, 0)
]

〉 (2.26)

= −〈
[[

n̂Ĥ0
(i, 0), Ĥ0

]

, n̂Ĥ0
(j, 0)

]

〉 (2.27)

In conclusion,
∂tχ

R
ij(0

+) = −〈[[n̂i, Ĥ0], n̂j ]〉 (2.28)

Calculating the commutators explicitly for:

Ĥ0 =
∑

ij

hij(t)â
†
i âj +

∑

ij

vij â
†
i â

†
j âj âi (2.29)

and
n̂i = â

†
i âi (2.30)

yields:

−∂tχR
ij(0

+) = hijγji + hjiγij − δij
∑

k

(hikγki + γikhki) (2.31)

where:
γij = 〈â†j âi〉 (2.32)

Equation 2.31 is essentially the so-called frequency sum-rule. It will be shown that this relation also holds
for the same quantities calculated within specific approximations with the Green’s functions formalism.

But first, it is interesting to study more properties of the response function calculated with exact
methods.

From the definition of χ, by inserting the complete set of eigenstates representing the excitation
spectrum of the non-interacting system, the following analysis of how this function behaves in frequency
space can be performed:[13]

iχR
ij(t− t′) = θ(t− t′)(〈Ψ0|n̂Ĥ0

(i, t)n̂Ĥ0
(j, t′)− n̂Ĥ0

(j, t′)n̂Ĥ0
(i, t)|Ψ0〉) (2.33)

=
∑

s

(ei(E0−EN,s)(t−t′)〈Ψ0|n̂i|Ψ0〉〈Ψ0|n̂j |Ψ0〉

− (ei(E0−EN,s)(t−t′)〈Ψ0|n̂j|Ψ0〉〈Ψ0|n̂i|Ψ0〉)) (2.34)

(It was used that: Ĥ0|N, s〉 = EN,s|N, s〉) Therefore:

χR
ij(t− t′) = −iθ(t− t′)

∑

s

e−iΩN,s(t−t′)fN,s(i)f
∗
N,s(j) + c.c (2.35)

where:
fN,s(i) = 〈Ψ0|n̂i|N, s〉 (2.36)

ΩN,s = EN,s − E0 (2.37)

Using the following representation of the step function:

θ(τ) = lim
η→0+

− 1

2πi

∫ +∞

−∞

eiωτ

ω + iη
(2.38)
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the Fourier transform of equation 2.35 can be calculated to be:

χ̃R
ij(ω) = lim

η→0+

∑

s

(
fN,s(i)f

∗
N,s(j)

ω − ΩN,s + iη
−
fN,s(i)f

∗
N,s(j)

ω +ΩN,s + iη

)

(2.39)

This shows that χ̃R
ij(ω) has poles at ω = ±ΩN,s − iη

For a time reversal invariant system, the states |N, s〉 and |Ψ0〉 can be chosen to be real. Then,

fN,s(i) = f∗
N,s(i) (2.40)

and:

χ̃R
ij(ω) = lim

η→0+

∑

s

fN,s(i)fN,s(j)

(
1

ω − ΩN,s + iη
− 1

ω +ΩN,s + iη

)

(2.41)

Further, using a well-known formula in complex analysis:

lim
η→0

1

ω + iη
= P (

1

ω
)− iπδ(ω) (2.42)

leads to:

ℜχ̃R
ij(ω) =

∑

s

fN,s(i)fN,s(j)P

(
1

ω − ΩN,s
− 1

ω +ΩN,s

)

(2.43)

and:
ℑχ̃R

ij(ω) = −π
∑

s

fN,s(i)fN,s(j) (δ(ω − ΩN,s)− δ(ω +ΩN,s)) (2.44)

Thus, by calculating the density response function, information on the optical spectrum of the system
can be obtained.

Also, it will be interesting to investigate the peak structure of the response function calculated within
approximations to see how close to its poles lie the exact excitation energies.

2.2 The frequency sum-rule in Green’s functions formalism

The frequency sum-rule in Green’s function’s formalism can be deduced as a consequence of a Ward
identity describing the gauge properties of the system. The following derivation summarizes the analysis
made on this topic in reference [10]

Perform a gauge transformation:

~A(~rz) → ~A(~rz) +∇Λ(~rz) (2.45)

v(~rz) → v(~rz)− 1

c
∂zΛ(~rz) (2.46)

to the electromagnetic field in the one-body part of the Hamiltonian:

h(~rz) =
1

2m

(

−i∇− q

c
~A(~rz)

)2

+ qv(~rz) (2.47)

(z is the time-contour variable). The new one-body matrix elements will be[10]:

hΛij(z) =

∫

d~xφ∗i (~x)

(
1

2m

(

−i∇− q

c
( ~A(~rz) +∇Λ)

)2

+ qv − q

c
∂zΛ

)

φj(~x) (2.48)

=

∫

d~xφ∗i (~x)e
i q
c
Λ(~rz)

(
1

2m

(

−i∇− q

c
~A(~rz)

)2

+ qv(~rz)− q

c
∂zΛ

)

× e−i q
c
Λ(~rz)φj(~x) (2.49)

Since the orbitals are localized around lattice positions ~Rj , it is a good approximation to write[10]:

e−i q
c
Λ(~rz)φj(~x) = e−i q

c
Λ(~Rjz)φj(~x) = e−i q

c
Λj(z)φj(~x) (2.50)
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Then:
hΛij(z) = ei

q
c
Λi(z)hij(z)e

−i q
c
Λj(z) − δij

q

c
∂zΛi(z) (2.51)

The two-body part of the Hamiltonian remains the same. Therefore, the gauge transformed Hamiltonian
can be written as:

ĤΛ(z) =
∑

ij

(

ei
q
c
(Λi−Λj)hij − δij

q

c
∂zΛi

)

â
†
i âj

+
1

2

∑

ij

vij â
†
i â

†
j âj âi (2.52)

If Gij(z, z
′) satisfies the Kadanoff-Baym equations for the Hamiltonian Ĥ(z) within an approximation

for the self-energy which can be expressed diagrammatically:

(i∂z − ĥ(z))G(z, z′) = δ(z, z′) +

∫

c

dz′′Σ[G](z, z′′)G(z′′, z′) (2.53)

then,
GΛ

ij(z, z
′) = ei

q
c
Λi(z)Gij(z, z

′)e−i q
c
Λj(z

′) (2.54)

satisfies the Kadanoff-Baym equations for the Hamiltonian ĤΛ(z) within the same approximation for Σ,
i.e.:

(i∂z − ĥΛ(z))GΛ(z, z′) = δ(z, z′) +

∫

c

dz′′ΣΛ[GΛ](z, z′′)GΛ(z′′, z′) (2.55)

The proof of this statement can be found in Reference [10] and can be summarized in the following way:

i∂zG
Λ
ij(z, z

′) = −q
c
(∂zΛi(z))e

i q
c
Λi(z)Gij(z, z

′)e−i q
c
Λj(z

′)

+ iei
q
c
Λi(z)∂zGij(z, z

′)e−i q
c
Λj(z

′)

= −q
c
(∂zΛi(z))G

Λ
ij(z, z

′) + δijδ(z, z
′)

+
∑

k

ei
q
c
Λi(z)hik(z)e

−i q
c
Λk(z)ei

q
c
Λk(z)Gkj(z, z

′)e−i q
c
Λj(z)

+ ei
q
c
Λi(z)

(∫

Σ[G]G

)

ij

(z, z′)e−i q
c
Λj(z)

=
∑

k

hΛikG
Λ
kj(z, z

′) + ei
q
c
Λi(z)

(∫

Σ[G]G

)

ij

(z, z′)e−i q
c
Λj(z)

In a Feynman diagram

= vαβGµαGασGζβGβη

µ

σ

α

β

ζ

η

replace all the Gij with ei
q
c
Λi(z)Gije

−i q
c
Λj(z).

Then the value of the diagram will become ei
q
c
(Λµ−Λσ+Λζ−Λη)vαβGµαGασGζβGβη. The phase factors

corresponding to internal vertices cancel out. Also, in the self-energy diagrams ζ = η (there are only two
lines connecting a self-energy insertion to the rest of the diagram) therefore:

ei
q
c
Λi(z)

(∫

Σ[G]G

)

ij

(z, z′)e−i q
c
Λj(z) =

(∫

ΣΛ[GΛ]GΛ

)

ij

(z, z′) (2.56)
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This concludes the proof.
From equation 2.54, to first order in Λ, the change in the Green’s function is:

δGΛ
ij(z, z

′) = i
q

c
(Λi(z)− Λj(z

′))Gij(z, z
′) (2.57)

On the other hand, the Hamiltonian can also be expanded in terms of Λ:

ĤΛ(z) = ĤΛ
0 (z) +

∑

ij

fij(z)â
†
i âj +O(Λ2) (2.58)

where:
fij(z) =

q

c
(i(Λi − Λj)hij − δij∂zΛi) (2.59)

The last term in equation 2.59:
∑

ij fij â
†
i âj can be regarded as an external perturbation to the initial

Hamiltonian. The Green’s function can also be expanded with respect to this general external pertur-
bation (fij can take any form):

Gij(z, z
′) = Gij(z, z

′)|fij=0 +
∑

kl

∫

c

δGij(z, z
′)

δfkl(z′′)

∣
∣
∣
∣
∣
fkl=0

fkl(z
′′)dz′′ + . . . (2.60)

Therefore the first order change in the Green’s function is:

δGij(z, z
′) =

∑

kl

∫

c

δGij(z, z
′)

δfkl(z′′)

∣
∣
∣
∣
fkl=0

fkl(z
′′)dz′′ (2.61)

Defining:

Γij,kl(z, z
′; z′′) =

δGij(z, z
′)

δfkl(z′′)

∣
∣
∣
∣
fkl=0

(2.62)

relation 2.61 becomes:

δGij(z, z
′) =

∑

kl

∫

c

dz′′Γij,kl(z, z
′; z′′)

q

c
(i(Λk − Λl)hkl

− δkl∂z′′Λk) (2.63)

The next step is to integrate by parts assuming the boundary condition Λk(t0) = Λk(t0 − iβ) to yield:

δGij(z, z
′) = i

q

c

∑

kl

∫

c

dz′′Γij,kl(z, z
′; z′′)(Λk(z

′′)− Λl(z
′′))hkl(z

′′)

+ δkl

∫

c

dz′′(∂z′′Γij,kl(z, z
′; z′′))Λk(z

′′)

Identifying this change in the Green’s function with the change described by equation 2.57 implies:

i
q

c

∑

k

∫

c

dz′′ (δikδ(z, z
′′)− δjkδ(z

′, z′′))Gij(z, z
′)Λk(z

′′) =

i
∑

k

∫

c

dz′′
∑

l

(Γij,kl(zz
′; z′′)hkl(z

′′)− Γij,lk(zz
′; z′′)hlk(z

′′)

−iδkl∂z′′Γij,kl(zz
′; z′′)) Λk(z

′′)

Since this is true for any Λk(z
′′), then:

(δikδ(z, z
′′)− δjkδ(z

′, z′′))Gij(z, z
′) =

∑

l

(Γij,kl(zz
′; z′′)

hkl(z
′′)− Γij,lk(zz

′; z′′)hlk(z
′′))− i∂z′′Γij,kk(zz

′; z′′) (2.64)

(2.65)
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This last equation is a Ward identity[10]. If one takes the limit z′ → z and if one defines the density
matrix and the response function as:

γij(z) = −iGij(z, z
+) (2.66)

and:

χij,lk(z, z
′) = −i δGij(z, z

+)

δfkl(z′)

∣
∣
∣
∣
fkl=0

(2.67)

then, the Ward identity for the response function will be:[10]

(δikδ(z, z
′′)− δjkδ(z, z

′′)) γij(z) =
∑

l

(χij,lk(z, z
′′)hkl(z

′′)

− χij,kl(z, z
′′)hlk(z

′′))− i∂z′′χij,kk(z, z
′′) (2.68)

The response function belongs to the Keldysh space, i.e.

χij,lk(z, z
′) = θ(z, z′)χ>

ij,lk(z, z
′) + θ(z′, z)χ<

ij,lk(z, z
′) (2.69)

Differentiating 2.69 with respect to z’ yields:

∂z′χij,lk(z, z
′) = −δ(z, z′)

(

χ>
ij,lk(z, z

′)− χ<
ij,lk(z, z

′)
)

+ θ(z, z′)∂z′χ>
ij,lk(z, z

′) + θ(z′, z)∂z′χ<
ij,lk(z, z

′) (2.70)

The insertion of 2.69 and 2.70 into the Ward identity, results in the following equalities:

i∂z′χ>
ij,kk(z, z

′) =
∑

l

χ>
ij,lk(z, z

′)hkl(z
′)− χ>

ij,kl(z, z
′)hlk(z

′) (2.71)

i∂z′χ<
ij,kk(z, z

′) =
∑

l

χ<
ij,lk(z, z

′)hkl(z
′)− χ<

ij,kl(z, z
′)hlk(z

′) (2.72)

and
i(χ>

ij,kk(z, z
′)− χ<

ij,kk(z, z
′)) = (δik − δjk)γij(z) (2.73)

Then,

i∂z′(χ>
ij,kk − χ<

ij,kk)(z, z
′)
∣
∣
∣
z=z′

=
∑

l

(χ> − χ<)ii,lk(z, z)hkl(z)

− (χ> − χ<)ii,kl(z, z)hlk(z) (2.74)

When the Kadanoff-Baym equations are solved self-consistently, one cannot sum all the diagrams for
the self energy. An approximation must be made. Since the expectation values of operators depend on
the approximation for Σ, it is desired to make only such approximations that preserve the conservation
laws of Nature. Gordon Baym proved that if one starts with an approximation for Σ as a functional of
G and of the two particle interaction, such that Σ is of the form δΦ

δG where Φ is a ”closed” functional of
G, then the non-equilibrium function G obbeys the differential number conservation law and the total
momentum (angular momentum) and energy conservation laws.[11]

Using a conserving approximation for Σ results in a symmetry property for χ. Using a short notation,
the derivation can proceed as follows:

χ = −i δG
δv

(2.75)

Since
GG−1 = 1 (2.76)

then
δG

δv
G−1 +G

δG−1

δv
= 0 (2.77)
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and
δG

δv
= −GδG

−1

δv
G (2.78)

From the equation of motion for the Green’s function:

(i∂t − h0 − v)G− ΣG = 1 (2.79)

it can be implied that:
G−1 = i∂t − h0 − v − Σ (2.80)

Then:
δG−1

δv
= −1− δΣ

δv
(2.81)

Replacing this in equation 2.77 results in:

χ = −i(GG+G
δΣ

δv
G) (2.82)

Using the chain rule:
δΣ

δv
=
δΣ

δG

δG

δv
(2.83)

one can obtain:

χ = −i
(

GG+ iG
δΣ

δG
χG

)

(2.84)

and further: (

G−1G−1 − δΣ

δG

)

χ = 1 (2.85)

or:

G−1G−1 − δΣ

δG
= χ−1 (2.86)

More explicitly,

G−1(1, 2)G−1(2, 1+)− δΣ(1, 1+)

δG(2, 2+)
= χ−1(1, 2) (2.87)

The l.h.s. of equation 2.87 is symmetric under the interchange of indices 1 and 2 for conserving approx-
imations:

δΣ(1, 1+)

δG(2, 2+)
=

δ2Φ

δG(1, 1+)δG(2, 2+)
=
δΣ(2, 2+)

δG(1, 1+)
(2.88)

Therefore χ−1 and also χ have this symmetry property. For the Hubbard system:

χij,lk(z, z
′) = χlk,ij(z

′, z) (2.89)

which implies:
χ>
ij,lk(z, z

′) = χ<
lk,ij(z

′, z) (2.90)

Using this symmetry property in equation 2.74, it can be obtained that:

i∂z′(χ>
ii,kk − χ<

ii,kk)(z, z
′)
∣
∣
∣
z=z′

= −
∑

l

(χ> − χ<)lk,ii(z, z)hkl(z)

+(χ> − χ<)kl,ii(z, z)hlk(z) = i
∑

l

((δli − δki)γlk(z)hkl(z)

−(δki − δli)γkl(z)hlk(z)) = i(γik(z)hki(z) + γki(z)hik(z))

−
∑

l

δki(γlk(z)hkl(z)− γkl(z)hlk(z)) (2.91)

As in the exact treatment, the aim is to study the response of a system which was initially in equilibrium
(hij time-independent) to an external perturbation. In that case, for a homogeneous system, the Green’s
functions and the response functions also, depend on the difference of the time arguments. Also, in
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order to compare to the exact calculation discussed in the previous subsection, zero-temperature will be
assumed.

Thus:
∂t′(χ

>
ik − χ<

ik)(t− t′)
∣
∣
t=t′

= −∂τ (χ>
ik − χ<

ik)(τ)
∣
∣
τ=0

(2.92)

(where the short notation χik ≡ χii,kk was used)
The retarded response function in the τ variable is:

χR
ij(τ) = θ(τ)(χ>

ij(τ)− χ<
ij(τ)) (2.93)

Derivating with respect to τ equation 2.93:

∂τχ
R
ij(τ) = δτ (χ

>
ij(τ) − χ<

ij(τ)) + θ(τ)∂τ (χ
>
ij(τ) − χ<

ij(τ)) (2.94)

and taking the limit τ → 0+ yields:

∂τ (χ
>
ij(τ)− χ<

ij(τ))
∣
∣
τ→0+

= ∂τχ
R
ij(0

+) (2.95)

Equation 2.95 is to be replaced in the calculation in 2.91 to reach the frequency sum-rule:

−∂τχR
ij(0

+) = γik(0
+)hki + γki(0

+)hik − δik
∑

l

(γlk(0
+)hkl + γkl(0

+)hlk) (2.96)

This is the same frequency sum-rule that was written for the exact case in the previous subsection
(equation 2.31) with the sole difference that the quantities χ and γ are now calculated by solving self-
consistently the Kadanoff-Baym equations within a conserving approximation for Σ. [10] The Fourier
transform of χR

ij(τ) is:

χR
ij(ω) =

∫ ∞

−∞

dτθ(τ)χ̄ij (τ)e
iωτ (2.97)

with:
χ̄ij(τ) = χ>

ij(τ) − χ<
ij(τ) (2.98)

The representation for θ in equation 2.38 is to be used here too:

χR
ij(ω) = lim

η→0+
i

∫ ∞

−∞

dν

2π

∫ ∞

−∞

dτ
ei(ω−ν)τ

ν + iη
χ̄ij(τ)

= lim
η→0+

i

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dτ
eiω

′τ

ω − ω′ + iη
χ̄ij(τ)

= lim
η→0+

i

∫ ∞

−∞

dω′

2π

χ̄ij(ω
′)

ω − ω′ + iη
(2.99)

From this calculation it can be concluded that χR
ij(ω) has a pole structure. One cannot derive a Lehman

representation for χ calculated within approximation schemes, however one may argue that since for a
conserving approximation χ tends towards a close replica of the exact object, then the pole structure of
χ also tends towards the case when the peaks correspond to the eigenenergies of the unperturbed system.
In the next chapter, numerical illustrations will be presented to appreciate how well the response function
calculated within some conserving approximations resembles the exact response function.

2.3 Diagrammatic analysis of the density response function

In this subchapter, a few of the simplest conserving approximations for Σ used in numerical calcula-
tions will be described diagrammatically along with the density response function corresponding to the
approximation in question. This analysis follows reference [12].

The expectation value of the probability density at spacetime point 1 is:

n(1) = −iG(1, 1+) (2.100)
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and the density response function was defined to be:

χ(1, 2) = −i δG(1, 1
+)

δv(2)
=
δn(1)

δv(2)
(2.101)

where v is a perturbing potential.
The effective potential is defined as:

φ(1) = v(1) +

∫

d2w(1, 2)n(2) (2.102)

(w(1,2) is the two-body interaction).
Using the chain rule:

χ(1, 2) = −i
∫

d3
δG(1, 1+)

δφ(3)

δφ(3)

δv(2)
(2.103)

= −i
∫

d3
δG(1, 1+)

δφ(3)

(

δ(3, 2) +

∫

d4w(3, 4)
δn(4)

δv(2)

)

(2.104)

= −i δG(1, 1
+)

δφ(2)
− i

∫

d3d4
δG(1, 1+)

δφ(3)
w(3, 4)χ(4, 2) (2.105)

and denoting the irreducible polarizability by:

P (1, 2) =
δn(1)

δφ(2)
= −i δG(1, 1

+)

δφ(2)
(2.106)

results in the following relation for χ:[12]

χ(1, 2) = P (1, 2) +

∫

d3d4P (1, 3)w(3, 4)χ(4, 2) (2.107)

Diagrammatically, this relation can be represented as:

= +χ P χP

A more explicit expression for P is necessary.
The inverse Green’s function satisfies the relation:

∫

d2G(1, 2)G−1(2, 3) = δ(1, 3) (2.108)

Derivating with respect to the effective potential yields:

0 =

∫

d2

(
δG(1, 2)

δφ(4)
G−1(2, 3) +G(1, 2)

δG−1(2, 3)

δφ(4)

)

(2.109)

and further: ∫

d2d3
δG(1, 2)

δφ(4)
G−1(2, 3)G(3, 5) = −

∫

d2d3G(1, 2)
δG−1(2, 3)

δφ(4)
G(3, 5) (2.110)

which means:
δG(1, 5)

δφ(4)
= −

∫

d2d3G(1, 2)
δG−1(2, 3)

δφ(4)
G(3, 5) (2.111)

and:

P (1, 2) = −i δG(1, 1
+)

δφ(2)
= −i

∫

d3d4G(1, 3)
δG−1(3, 4)

δφ(2)
G(4, 1+) (2.112)
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From the equation of motion for the Green’s function:

(i∂t1 − h0(1)− v(1))G(1, 2)−
∫

d3Σ(1, 3)G(3, 2) = δ(1, 2) (2.113)

rewritten as: ∫

d3 (δ(3, 1)(i∂t1 − h0(1)− v(1)) − Σ(1, 3))G(3, 2) = δ(1, 2) (2.114)

by comparison with 2.108 it can be seen that:

G−1(1, 2) = δ(1, 2)(i∂t1 − h0(1)− v(1))− Σ(1, 2) (2.115)

If the tadpole diagram is separated from the self-energy:

Σ(1, 2) = δ(1, 2)

∫

d3w(1, 3)n(3) + ΣXC(1, 2) (2.116)

then
G−1(1, 2) = δ(1, 2)(i∂t1 − h0(1)− φ(1)) − ΣXC(1, 2) (2.117)

Defining the vertex function Γ as:[12]

Γ(12; 3) = −δG
−1(1, 2)

δφ(3)
(2.118)

and using equation 2.117 yields:

Γ(12; 3) = δ(1, 3)δ(1, 2) +
δΣXC(1, 2)

δφ(3)
(2.119)

= δ(1, 3)δ(1, 2) +

∫

d4d5
δΣXC(1, 2)

δG(4, 5)

δG(4, 5)

δφ(3)
(2.120)

Taking into account equation 2.111 results in:

Γ(12; 3) = δ(1, 3)δ(1, 2) +

∫

d4d5d6d7
δΣXC(1, 2)

δG(4, 5)
G(4, 6)Γ(67; 3)G(7, 5) (2.121)

Equation 2.112 written in terms of the vertex function:

P (1, 2) =

∫

d3d4G(1, 3)Γ(34; 2)G(4, 1+) (2.122)

and equation 2.121 can be expressed diagrammatically as:

P = Γ

and

=
δ(1, 2)δ(1, 3)

+ 3

6

7

Γ

5

4

2

1

δΣXC (1,2)
δG(4,5)

1

3

2

Γ
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The first conserving approximation to be discussed is the Hartree-Fock approximation:

ΣHF
XC(1, 2) =

1 2

ΦHF = +

ΣHF = δΦHF

δG = +

When using this approximation one assumes that each particle moves in a single particle potential
that comes from its average interaction with all the other particles. Even though only the first order in
the interaction w digrams contributing to Σ are retained, this approximation will result in a third order
approximation for the density response function:

δΣHF
XC

δG
=

Γ = + Γ

= + + + + . . .

= +χ

= + + . . .P

+ + . . .+

If the second order skeleton diagrams are added, the second Born approximation is obtained:
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Σ2B
XC =

++

Σ2B
XC

δG = + +

++ +

+

These diagrams will result in a complex, fifth order in w structure for χ.
The final approximation that will be used in the numerical examples in this thesis is called the GW

approximation. To understand this approximation, some further diagrammatic analysis is necessary:
A diagram is called a polarization insertion if it can be cut from a diagram by cutting two interaction

lines[7]:

Define the dynamically screened interaction W as:

W = = +

+

P̄

P̄ P̄
+ . . .

where P̄ is the sum of all possible irreducible polarization insertions (the diagrams in P̄ cannot be cut
in two by cutting a single interaction line).

=

P̄

+ + + . . .

ΣXC can now be expressed in terms of the dynamically screened interaction by considering all diagrams
which have no polarization insertions and replace w with W.

ΣXC [G,W ] = + + + . . .
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Approximating by keeping only the first term in this expansion and the first order in w term in the
expansion of P̄ results in the so-called GW approximation. It is also a conserving approximation:[1]

ΦGW = − 1
2 − 1

4 − 1
6 + . . .

ΣGW = + + + . . .

δΣXC(1, 2)

δG(4, 5)
= iδ(1, 4)δ(2, 5)W (1, 2) + iG(1, 2)

δW (1, 2)

δG(4, 5)
(2.123)

W (1, 2) = w(1, 2) +

∫

d3d4w(1, 3)P̄ (3, 4)W (4, 3) (2.124)

Introducing the inverse of the screened interaction:
∫

d2W (1, 2)W−1(2, 3) = δ(1, 3) =

∫

d2w(1, 2)W−1(2, 3) +

∫

d5w(1, 5)P̄ (5, 3) (2.125)

allows one to write:[12]
w−1 =W−1 + P̄ (2.126)

On the other hand:
δW (1, 2)

δG(4, 5)
= −

∫

d6d7W (1, 6)
δW−1(6, 7)

δG(4, 5)
W (7, 2) (2.127)

Thus:
δW (1, 2)

δG(4, 5)
=

∫

d6d7W (1, 6)
δP̄ (6, 7)

δG(4, 5)
W (7, 2) (2.128)

Since
P̄ (1, 2) = G(1, 2)G(2, 1) (2.129)

then
δW (1, 2)

δG(4, 5)
= −iW (1, 4)G(5, 4)W (5, 2)− iW (1, 5)G(5, 4)W (4, 2) (2.130)

and

δΣXC(1, 2)

δG(4, 5)
= iδ(1, 4)δ(2, 5)W (1, 2) +G(1, 2)W (1, 4)G(5, 4)W (5, 2)

+G(1, 2)W (1, 5)G(5, 4)W (4, 2) (2.131)

Diagrammatically, equation 2.131 is:

ΣGW
XC

δG = + +
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then:

= + +

+

This approximation also results in a complex diagrammatic structure for χ.
These three conserving approximations will be used in numerical calculations to illustrate the validity

of the frequency sum-rule and analyze the peak structure of χ in the following chapter.

3 Numerical illustrations

Introduction

In this chapter numerical treatments of the many-body problem will be presented shortly. A computer
code based on the algorithm of time propagation of the Kadanoff-Baym equations and another code
which uses the exact diagonalization method will both be used to determine numerically the quantities
involved in the frequency sum-rule for small Hubbard chains to verify that the relation is satisfied and
also to determine the optical spectrum of the unperturbed system.

3.1 The Green’s functions code

The numerical illustrations presented in this work were obtained by using the algorithm and computer
code developed by Robert van Leeuwen et. al. which solves the Kadanoff-Baym equations numerically
using the time-propagation method.

The calculations are carried out using a set of basis functions:[14]

G(~xt, ~x′t′) =
∑

ij

φi(~x)Gij(t, t
′)φ∗j (~x

′) (3.1)

With this, all the quantities in the equations become time-dependent matrices and all products are to be
interpreted as matrix products. The basis functions are represented themselves as linear combinations
of Slater determinants. In the end the observables calculated from the Green’s functions will not depend
on whether the basis functions are obtained using Density functional theory or other methods but on
the Slater basis[14].

The first stage of the calculation consists of solving to self-consitency the Dyson equation to obtain
the Matsubara Green’s function GM :

GM (τ) = G0(τ) +

∫ β

0

dτ ′
∫ β

0

dτ ′′G0(τ − iτ ′)Σ⋆(τ ′ − τ ′′)GM (τ ′′) (3.2)

where G0 is the refference Green’s function which is known (the physical observables calculated from
the Green’s function will be independent of the choice of G0 as long as it satisfies the correct boundary
conditions[14]). Also, because the Green’s function is a quantity peaked around the points τ = 0 and
τ = ±β, it is calculated on a uniform-power mesh which is dense around the endpoints.
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After the ground state Green’s function is calculated, it can be propagated according to the Kadanoff-
Baym equations, i.e. the values of the Green’s function on the real part of the contour are calculated
also. For example, to make the time step G>(T, t′) → G>(T + ∆, t′), time-evolution operators of the
from

U(∆) = e−ih̄∆ (3.3)

and
V (∆) = (h̄)−1(1− e−ih̄∆) (3.4)

are defined where h̄ is the one-body part of the Hamiltonian calculated at the time T + ∆
2 . It can be

proven (see reference [15]) that for a small ∆:

G>(T +∆, t′) = U(∆)G>(T, t′)− V (∆)I>1 (T, t′) (3.5)

where I1 is a collision integral defined as:

I>1 (t, t′) =

∫ t

0

dt̄ΣR(t, t̄)G>(t̄, t′) +

∫ t′

0

Σ>(t, t̄)GA(t̄, t′) +
1

i

∫ β

0

dτ̄Σ⌉(t,−iτ̄)G⌈(−iτ̄ , t′) (3.6)

Similar relations allow the calculation of the other Keldysh components of the Green’s function. Then
the newly calculated Green’s function in T +∆ serves as the initial point of the following time step and
so on.

3.2 The exact diagonalization code

The Hamiltonian of a system of noninteracting fermions on a lattice of N sites can be represented in
second quantization by:

Ĥ0 =

N∑

i,j=1

tij ĉ
†
i ĉj (3.7)

where ĉ†i creates a fermion in a single-particle orbital φj localized at site j and:

tij = 〈φi|
(

−~
2∇2

2m
+ v̂

)

|φj〉 (3.8)

For many practical purposes it suffices to assume that tij is non-zero only when i, j are nearest neighbors
in which case it is usually denoted by −t so that the Hamiltonian written in manifestly hermitian format
becomes[16]:

Ĥ0 = −t
∑

〈i,j〉

ĉ
†
i ĉj + ĉ

†
j ĉi (3.9)

The most general form of the interaction between the electrons in second quantization representation
which can be added to Ĥ0 is of the form:

V̂ =
1

2

∑

µνβα

Vµνβαĉ
†
µĉ

†
ν ĉαĉβ (3.10)

where α = {σ, i} is a collective name for the site index i and spin index σ and

Vµνβα =

∫

dxdx′φ∗µ(x)φ
∗
ν (x)V (|x− x′|)φβ(x)φα(x′) (3.11)

The most important term among all possible µνβα matrix elements is when all the indices correspond
to the same site j. In that case, the Pauli principle forces µ = α =↑ and β = ν =↓. Denoting the
corresponding matrix element with −2U one gets for the screened interaction[16]:

V = −U
∑

j

ĉ
†
j↑ĉ

†
j↓ĉj↑ĉj↓ = U

∑

j

nj↑nj↓ (3.12)

If this term is added to Ĥ0, the Hubbard model is obtained:
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Ĥ = −t
∑

〈i,j〉

(ĉ†i ĉj + ĉ
†
j ĉi) + U

∑

j

nj↑nj↓ (3.13)

To perform the exact diagonalization, a complete orthogonal basis ϕi is chosen. It can be introduced in
the time independent Schrödinger equation to yield:

Ĥ|Ψ〉 = E|Ψ〉 (3.14)
∑

j

〈ϕi|Ĥ |ϕj
︸ ︷︷ ︸

≡Hij

〉〈ϕj |Ψ〉 = E〈ϕi|Ψ〉
︸ ︷︷ ︸
≡ci

(3.15)

∑

j

Hijcj = Eci (3.16)

Therefore if one can construct the Hamiltonian matrix Hij , the problem is reduced to the diagonalization
of a matrix. Then, assuming that at time t0 = 0 the system is in the ground state |Ψ0〉 which has been
determined, if a time independent perturbation V̂ is switched on, the time evolution of the system can
be expressed in the following way:

|Ψ(t)〉 = e−i(Ĥ+V̂ )t|Ψ0〉 (3.17)

=
∑

j

|Φj〉〈Φj |e−i(Ĥ+V̂ )t|Ψ0〉 (3.18)

=
∑

j

|Φj〉e−iEjt〈Φj |Ψ0〉 (3.19)

where Φj are the eigenstates of the Hamiltonian Ĥ + V̂ with corresponding eigenenergies Ej which can
be determined using the same diagonalization procedure as before.

A delta-kick perturbation of the form:

V̂ = lim
∆→0

λ

∆
Â (3.20)

where Â is a time independent operator, leads after a time ∆ to:

|Ψ(∆)〉 = e−i(Ĥ+V̂ )∆|Ψ0〉 (3.21)

= e−iĤ∆+λÂ|Ψ0〉 (3.22)

which, in the limit ∆ → 0:

lim
∆→0+

Ψ(∆) = e−iλÂ|Ψ0〉 = |Ψ̃0〉 (3.23)

Therefore, the time-evolution of the system which was perturbed at t=0 with a delta kick potential can
be determined by solving the Schrödinger equation for the unperturbed Hamiltonian:

i∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉 (3.24)

with the initial condition:
|Ψ(0)〉 = |Ψ̃0〉 (3.25)

i.e.
|Ψ(t)〉 =

∑

j

e−iǫjt〈Ψj |Ψ̃0〉|Ψj〉 (3.26)

where
Ĥ |Ψj〉 = ǫj |Ψj〉 (3.27)
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3.3 Verifying numerically the frequency sum-rule

The frequency sum-rule was derived to be:

−∂tχR
ij(0

+) = hijγji + hjiγij − δij
∑

k

(hikγki + hkiγik) (3.28)

where
γij = 〈â†j âi〉 (3.29)

hij are the matrix elements of the unperturbed one-particle Hamiltonian and χR
ij is the retarded density

response function.
The Hubbard model Hamiltonian was used. For a six-site system:

hij =











0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0











(3.30)

The frequency sum-rule was verified numerically for systems of Hubbard chains consisting of 2, 4 and 6
sites. The Hubbard interaction parameter U (see equation 3.13) was taken to be 1 a.u. The system was
perturbed with a delta function potential:

vij(t) = λ

N∑

ij

δ1iδijδ(t) (3.31)

of intensity λ = 0.05a.u., which is a weak enough perturbation to enable the study of the linear response
of the system. The perturbation was applied at site 1.

In this case

χR(t) =
δn(t)

λ
(3.32)

The change in density at site 1 as a consequence of the delta-kick was recorded to yield the first component
of the χR(t) matrix, i.e. χR

11(t).
First the density as a function of time and the gamma matrices in the sum-rule were calculated with

the Green’s functions code using the Hartree-Fock (HF), second Born (2B) and GW approximations for
the self-energy.

γij = −iGij(0, 0
+) (3.33)

To calculate the derivative in the l.h.s. of equation 3.28 a very small time step of 10−6a.u. was used to
propagate the KB equations and obtain the change in density after which the tangent was calculated
with the usual formula:

∂tχ
R(0+) =

1

λ

n(0 + ∆t)− n(0)

∆t
(3.34)

Then these quantities were re-calculated with the exact diagonalization code for the same input param-
eters as for the Green’s functions code, i.e. U = 1a.u., ∆t = 10−6a.u., λ = 0.05a.u. and with the same
hij matrix. The results are shown in the following table:
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2 sites x = −∂tχR
11(0

+)(a.u) y=r.h.s (a.u.) relative error ∆ = x−y
x

HF 0.99958 1.00000 0.04%
2B 0.97301 0.97342 0.04%
GW 0.97306 0.97347 0.04%

EXACT 0.96973 0.97014 0.04%

4 sites x = −∂tχR
11(0

+)(a.u) y=r.h.s (a.u.) relative error ∆ = x−y
x

HF 0.89405 0.89442 0.04%
2B 0.87588 0.87624 0.04%
GW 0.87670 0.87706 0.04%

EXACT 0.87279 0.87315 0.04%

6 sites x = −∂tχR
11(0

+)(a.u) y=r.h.s (a.u.) relative error ∆ = x−y
x

HF 0.87075 0.87111 0.04%
2B 0.85482 0.85517 0.04%
GW 0.85557 0.85593 0.04%

EXACT 0.85180 0.85215 0.04%

The frequency sum-rule is satisfied to the same extent by all the approximations as by the exact diag-
onalization calculation. 2B and GW approximations yield sumrule values closer to the exact ones than
the HF approximation. The relative error is the same for all approximations based calculations as for the
exact one and its value is not a consequence of the number of diagram classes taken into account in the
expression for the self-energy nor of the numerical errors induced by the codes. It resulted from the way
the limit of the derivative in the l.h.s of the sum-rule was calculated. It can be reduced by considering a
smaller time step and also by using a more powerful formula for the numerical calculation of a derivative
than equation 3.34. However, the purpose was not to achieve the highest numerical accuracy since of
course it can be proven analytically that the sum-rule is valid (as was shown in the previous chapter).
These numerics serve only as an illustration. It is noteworthy though that the Green’s function code was
as adequate as the exact diagonalization code in demonstrating the validity of the frequency sum-rule
under the same accuracy demands and the same input parameters.

3.4 Optical spectra numerical calculations

An interesting property to illustrate numerically that the response function possesses is that its Fourier
transform has peaks corresponding to the optical spectrum of the unperturbed system (equations 2.43,
2.44). This property cannot be proven for χ calculated using approximations for the self-energy. However,
in this case also χ was shown to have a peak structure (equation 2.99) and it is worthwhile to compare
it to the optical spectrum calculated with the exact diagonalization procedure.

The KB equations were propagated for a longer period of time (100 a.u. with a time step of 0.1 a.u.)
and the change in density at site 1 was recorded after applying a delta-kick perturbation of 0.05 a.u. at
site 1 for Hubbard chains (U=1) of 2, 4 and 6 sites. And for the same parameters the probability density
at site 1 was also calculated with the exact diagonalization code. The results are plotted in figures 1, 2
and 3.

In the previous case, when checking the frequency sum-rule all the approximations performed equally
well. Now, the number of diagram classes taken into account by a conserving approximation comes into
play. It can be noticed that both the HF and 2B approximations deviate from the exact diagonalization
result and moreover, HF deviates more severely than 2B, since it takes into account less diagrams than
2B does.

Also, at the beginning of the propagation the approximations are closer to the exact value than at
later times. As time passes the deviation becomes more and more obvious. According to equation 2.34:

iχR
ij(t− t′) =

∑

s

ei(E0−EN,s)(t−t′)(〈Ψ0|n̂i|Ψ0〉〈Ψ0|n̂j |Ψ0〉 − 〈Ψ0|n̂j |Ψ0〉〈Ψ0|n̂i|Ψ0〉) (3.35)

Then, if the eigenenergies E0, EN,s calculated within an approximation differ even slightly from the exact
values, i.e. by δE, the phase factor eiδEt will cause the approximate response function to grow out of
phase with respect to the exact response function (after δt = π

δE , the two functions will be in antiphase).
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Figure 1: Density at site 1 as a function of time in a 2 site Hubbard chain (U=1) when a delta-kick
perturbation of 0.05 a.u. is applied at site 1
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Figure 2: Density at site 1 as a function of time in a 4 site Hubbard chain (U=1) when a delta-kick
perturbation of 0.05 a.u. is applied at site 1
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Figure 3: Density at site 1 as a function of time in a 6 site Hubbard chain (U=1) when a delta-kick
perturbation of 0.05 a.u is applied at site 1

After the propagation, the Fourier transform of the function χ was plotted against the values of the
energy differences corresponding to allowed transitions in the unperturbed system spectrum calculated
with the exact diagonalization code. The Fourier transform of χ calculated with the exact diagonalization
code is plotted also to see how much of the difference in the values of the peaks from the exact spectrum
comes from too short propagation in time for the Fourier transform. The finite-time Fourier transform
is:

fT (ω) =

∫ T

0

dteiωtf(t) (3.36)

where T should be as large as possible (T → ∞)
As it can be seen from figures 4 and 5, the peaks calculated using the 2B approximation are closer

to the exact value than those calculated with HF which shows the superiority of MBPT schemes over
the mean-field method. For some peaks, however, the results are inconclusive, the cause for this being a
too-short time propagation before taking the Fourier transform. The relative errors in the estimation of
the peak positions are given in the following table.

2 sites HF 2B
peak 4% 1%
4 sites HF 2B

first peak 6% 1%
second peak 3% 1%
third peak 1% inconclusive
6 sites HF 2B

first peak 8% 2.6%
second peak 3.4% 1.4%
third peak 1.4% inconclusive
fourth peak 1.2% inconclusive

Still, it is obvious from these numerical results that the peak structure of the response function in
Fourier space calculated with the Green’s function method within the conserving approximations does
tend towards the energy peaks of the optical spectrum of the system.
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Figure 4: Fourier transform of the density response function for a two-site Hubbard system (U=1)
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Figure 5: Fourier transform of the density response function for a four-site Hubbard system (U=1)
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Figure 6: Fourier transform of the density response function for a six-site Hubbard system (U=1)

4 Conclusions

1. MBPT allows a systematic inclusion of electronic interactions

2. Approximations can be chosen in a conserving way, ensuring the satisfaction of macroscopic con-
servation laws and of the frequency sumrule.

3. Propagation of the Kadanoff-Baym equations within relatively simple self-energy approximations
leads to very sophisticated response functions involving a Bethe-Salpeter equation with a kernel
δΣ
δG . This way of using MBPT goes much beyond existing approaches based on equilibrium theory.

4. The many-body approaches show a clear improvement over the mean-field Hartree-Fock approach.

5. Efficient schemes need to be developed to perform long-time propagations with the Kadanoff-Baym
equations to extract detailed optical spectra.
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A Appendix

A.1 Anticommutation relations between fermionic field operators

{

ψ̂†(~x), ψ̂(~x′)
}

= δ(~x − ~x′) (A.1)

Proof.

ψ̂†(~x)ψ̂(~x′)Ψn = ψ̂†
√
nΨn(~x1, . . . , ~xn, ~x

′)

=
√
n
(−1)n−1

√
n

n∑

j=1

(−1)j+1δ(~x− ~xj)Ψn(~x1, . . . , x̂j , . . . , ~xn, ~x
′)

= (−1)n−1
n∑

j=1

(−1)j+1δ(~x− ~xj)(−1)n−jΨn(~x1, . . . , ~xj−1, ~x
′, ~xj+1, . . . , ~xn)

=

n∑

j=1

δ(~x − ~xj)Ψn(~x1, . . . , ~xj−1, ~x
′, ~xj+1, . . . , ~xn)

ψ̂(~x′)ψ̂†(~x)Ψn = ψ̂(~x′)
(−1)n√
n+ 1

n+1∑

j=1

(−1)j+1δ(~x − ~xj)Ψn(~x1, . . . , x̂j , . . . , ~xn+1)

=
(−1)n√
n+ 1

n+1∑

j=1

(−1)j+1δ(~x − ~xj)
√
n+ 1Ψn(~x1, . . . , x̂j , . . . , ~xn, ~x

′)

= (−1)n
n∑

j=1

(−1)j+1δ(~x− ~xj)Ψn(~x1, . . . , x̂j , . . . , ~xn, ~x
′)

+ (−1)n(−1)n+2δ(~x − ~x′)Ψn(~x1, . . . , ~xn)

= (−1)n
n∑

j=1

(−1)j+1(−1)n−jδ(~x− ~xj)Ψn(~x1, . . . , ~xj−1, ~x
′, ~xj+1, . . . , ~xn)

+ δ(~x− ~x′)Ψn(~x1, . . . , ~xn)

= −
n∑

j=1

δ(~x− ~xj)Ψn(~x1, . . . , ~xj−1, ~x
′, ~xj+1, . . . , ~xn)

+ δ(~x− ~x′)Ψn(~x1, . . . , ~xn)

Adding the two results gives:
(

ψ̂(~x′)ψ̂†(~x) + ψ̂†(~x)ψ̂(~x′)
)

Ψn = δ(~x− ~x′)Ψn

{

ψ̂(~x), ψ̂(~x′)
}

= 0

Proof.

ψ̂(~x)ψ̂(~x′)Ψn = ψ̂(~x)
√
nΨn(~x1, . . . , ~xn−1, ~x

′)

=
√
n
√
n− 1Ψn(~x1, . . . , ~xn−2, ~x

′, ~x)

ψ̂(~x′)ψ̂(~x)Ψn = ψ̂(~x′)
√
nΨn(~x1, . . . , ~xn−1, ~x)

=
√
n
√
n− 1Ψn(~x1, . . . , ~xn−2, ~x, ~x

′)

= −
√
n
√
n− 1Ψn(~x1, . . . , ~xn−2, ~x

′, ~x)
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where in the last line the antisymmetry of the wave-function was used.
Therefore, (

ψ̂(~x)ψ̂(~x′) + ψ̂(~x′)ψ̂(~x)
)

Ψn = 0

Taking the adjoint of this last equation yields:

{

ψ̂†(~x), ψ̂†(~x′)
}

= 0

A.2 One-body and two-body operators in terms of field operators

Ô =
∑

i

ô(~xi) =

∫

d~xψ̂†(~x)ô(~x)ψ̂(~x) (A.2)

Proof.

∫

d~xψ̂†(~x)ô(~x)ψ̂(~x)Ψn =

∫

d~xô(~x′) ψ̂†(~x)ψ̂(~x′)
∣
∣
∣
~x′=~x

Ψn

=

∫

d~xô(~x′)
n∑

j=1

δ(~x− ~xj) Ψn(~x1, . . . , ~xj−1, ~x
′, ~xj+1, . . . , ~xn)|~x′=~x

=

n∑

j=1

ô(~xj)Ψn = ÔΨn

For two-body operators:

ψ̂†(~x)ψ̂†(~y)ψ̂(~y)ψ̂(~x)Ψn =
√
n
√
n− 1ψ̂†(~x)ψ̂†(~y)

Ψn(~x1, . . . , ~xn−2, ~y, ~x)

=
√
n
√
n− 1ψ̂†(~x)

(−1)n−2

√
n− 1

n−1∑

j=1

(−1)j+1δ(~y − ~xj)

Ψn(~x1, . . . , x̂j , ~xn−1, ~y, ~x)

=
√
n(−1)nψ̂†(~x)

n−1∑

j=1

(−1)n−1−j(−1)j+1δ(~y − ~xj)

Ψn(~x1, . . . , ~xj−1, ~y, ~xj+1, . . . , ~xn−1, ~x)

=
√
nψ̂†(~x)

n−1∑

j=1

δ(~y − ~xj)

Ψn(~x1, . . . , ~xj−1, ~y, ~xj+1, . . . , ~xn−1, ~x)

=
√
n

n−1∑

j=1

δ(~y − ~xj)
(−1)n−1

√
n

n∑

k=1

(−1)k+1δ(~x− ~xk)

Ψn(~x1, . . . , x̂k, . . . , ~xn, ~x)

= (−1)n−1
n−1∑

j=1

n∑

k=1

δ(~y − ~xj)δ(~x− ~xk)(−1)k+1(−1)n−k

Ψn(~x1, . . . , x̂n)

=

n∑

j 6=k

δ(~y − ~xj)δ(~x− ~xk)Ψn
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A.3 Solving the integral equation for the time-evolution operator using the

reciprocal kernel method

Û(t, t0) = 1− i

~

∫ t

t0

dt′V̂I(t
′)Û(t′, t0) (A.3)

This is a Volterra integral equation of the second kind:

φ(x) = f(x) + λ

∫ x

0

K(x, u)φ(u)du (A.4)

The reciprocal kernel method[2]

Seek the solution by means of a power series in λ:

φ(x) =

∞∑

n=0

λnφn(x) (A.5)

Substitute this series into the integral equation:

φ0(x) + λφ1(x) + λ2φ2(x) + λ3φ3(x) + . . . = (A.6)

f(x) + λ

∫ x

0

K(x, u)φ0(u)du+ λ2
∫ x

0

K(x, u)φ1(u)du+ λ3
∫ x

0

K(x, u)φ2(u)du+ . . . (A.7)

Compare the coefficients of equal powers of λ:

φ0(x) = f(x) (A.8)

φ1(x) =

∫ x

0

K(x, u)φ0(u)du =

∫ x

0

K(x, u)f(u)du (A.9)

φ2(x) =

∫ x

0

K(x, u)φ1(u)du =

∫ x

0

K(x, u)(

∫ u

0

K(u, v)f(v)dv)du (A.10)

=

∫ x

0

(

∫ x

v

K(x, u)K(u, v)du)

︸ ︷︷ ︸

≡K2(x,v)

f(v) (A.11)

=

∫ x

0

K2(x, v)f(v)dv (A.12)

Generally,

φn(x) =

∫ x

0

Kn(x, u)f(u)du (A.13)

Kn(x, u) are called iterrated kernels and are determined by the recursion formulas:

K1(x, u) = K(x, u) (A.14)

Kn+1(x, u) =

∫ x

u

K(x, y)Kn(y, u)dy (A.15)

From:

φ(x) =

∞∑

n=0

λnφn(x)

we have:

φ(x) = f(x) +

∞∑

n=1

λn
∫ x

0

Kn(x, u)f(u)du (A.16)

= f(x) + λ

∫ x

0

∞∑

n=0

λnKn+1(x, u)

︸ ︷︷ ︸

≡R(x,u;λ)

f(u)du (A.17)
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R(x, u;λ) =

∞∑

n=0

λnKn+1(x, u) (A.18)

is called the Liouville-Neumann series representing the reciprocal kernel, or resolvent kernel of the integral
equation.

The solution of the integral equation becomes:

φ(x) = f(x) + λ

∫ x

0

R(x, u;λ)f(u)du (A.19)

In this case:

Û(t, t0) = 1− i

~

∫ t

t0

dt′V̂I(t
′)Û(t′, t0) (A.20)

f(x) = 1 (A.21)

K1(t1) = V̂I(t1) (A.22)

K2(t1) =

∫ t

t1

V̂I(t2)V̂I(t1)dt2 (A.23)

K3(t1) =

∫ t

t1

V̂I(t3)

∫ t3

t1

V̂I(t2)V̂I(t1)dt2dt3 (A.24)

In general:

Kn+1(t1) =

∫ t

t1

V̂I(tn+1)

∫ tn+1

t1

V̂I(tn)

∫ tn

t1

V̂I(tn−1) . . .

∫ t3

t1

V̂I(t2)V̂I(t1)dt2dt2dt3 . . . dtn+1 (A.25)

Using the identity:

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnÔ(t1) . . . Ô(tn) =
1

n!

∫ t

t0

dt1 . . . dtnT [Ô(t1) . . . Ô(tn)] (A.26)

R(t1) = V̂I(t1) +

(

− i

~

)∫ t

t1

V̂I(t2)V̂I(t1)dt2

+

(

− i

~

)2

· 1
2

∫ t

t1

dt2dt3T [V̂I(t3)V̂I(t2)V̂I(t1)] + . . .

+

(

− i

~

)n
1

n!

∫ t

t1

dt2 . . . dtnT [V̂I(tn) . . . V̂I(t1)]

Then:

Û(t, t0) = 1− i

~

∫ t

t0

R(t1)dt1 = 1 +

(

− i

~

)∫ t

t0

V̂I(t1)dt1

+

(

− i

~

)2

· 1
2

∫ t

t0

dt1dt2T [V̂I(t1)V̂I(t2)] + . . .

+

(

− i

~

)n
1

n!

∫ t

t0

dt1 . . . dtnT [V̂I(tn) . . . V̂I(t1)] + . . .

= T [exp

(

− i

~

∫ t

t0

dt′V̂I(t
′)

)

] (A.27)
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A.4 Proof of the Gell-Mann and Low theorem

This proof represents a summary of the proof from the paper by Luca Guido Molinari (reference [5]).
In the appendix of their paper, ”Bound States in Quantum Field Theory”, Murray Gell-Mann and

Francis Low proved a fundamental theorem that connects the ground states |Ψ0〉 and |Ψ〉 of Hamiltonians
Ĥ0 and Ĥ = Ĥ0 + gV̂ . The theorem introduces the concept of adiabatic switching on of the interaction,
the Hamiltonian used being of the form:

Hǫ(t) = H0 + e−ǫ|t|gV (A.28)

The statement of the theorem is the following:

Theorem (Gell-Mann and Low). Let |Ψ0〉 be an eigenstate of H0 with eigenvalue E0 and consider the

vectors:

|Ψ(±)
ǫ 〉 = ÛǫI(0,±∞)|Ψ0〉

〈Ψ0|ÛǫI(0,±∞)|Ψ0〉

If the limit vectors |Ψ(±)〉 for ǫ→ 0+ exists, then they are eigenstates of Ĥ with the same eigenvalue E.

To prove it, the following lemma was used:

Lemma. If Ûǫ(t, s) is the time propagator for Ĥǫ(t), then for all positive ǫ, the following relations hold:

i~ǫg
∂

∂g
Ûǫ(t, s) =

{

Ĥǫ(t)Ûǫ(t, s)− Ûǫ(t, s)Ĥǫ(s) if 0 ≥ t ≥ s

−Ĥǫ(t)Ûǫ(t, s) + Ûǫ(t, s)Ĥǫ(s) if t ≥ s ≥ 0

Proof. From the Schrödinger equation:

i~∂tÛǫ(t, s) = Ĥǫ(t)Ûǫ(t, s) (A.29)

with:
Ûǫ(s, s) = 1 (A.30)

an integral equation can be obtained:

Ûǫ(t, s) = 1 +
1

i~

∫ t

s

dt′
(

Ĥ0 + eǫ(θ−|t′|)V̂
)

Ûǫ(t
′, s) (A.31)

where:
g = eǫθ (A.32)

Consider the g-independent operators Ĥ(±)(t) = Ĥ0 + e±ǫtV̂ with corresponding propagators Û (±)(t, s).
For 0 ≥ t ≥ s a time translation in equation A.31 yields:

Ûǫ(t, s) = 1 +
1

i~

∫ t+θ

s+θ

dt′Ĥ(+)(t′)Ûǫ(t
′ − θ, s) (A.33)

On the other hand,

Û (+)(t+ θ, s+ θ) = 1 +
1

i~

∫ t+θ

s+θ

dt′Ĥ(+)(t′)Û (+)(t′, s+ θ) (A.34)

The unicity of the solution of the Schrödinger equation implies:

Ûǫ(t, s) = Û (+)(t+ θ, s+ θ) (A.35)

Since θ enters in the operator Û (+)(t+ θ, s+ θ) only in its temporal variables, then:

∂θÛǫ(t, s) = ∂tÛǫ(t, s) + ∂sÛǫ(t, s) (A.36)
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Further,

i~∂tÛǫ(t, s) = Ĥǫ(t)Ûǫ(t, s)

−i~∂tÛ †
ǫ (t, s) = Û †

ǫ (t, s)Ĥǫ(t)

Û †
ǫ (t, s) = Û−1

ǫ (t, s) = Ûǫ(s, t)

−i~∂sÛǫ(t, s) = Ûǫ(t, s)Ĥǫ(s)

which makes:

∂θÛǫ(t, s) =
1

i~

(

Ĥǫ(t)Ûǫ(t, s)− Ûǫ(t, s)Ĥǫ(s)
)

(A.37)

Then,

i~ǫg
∂

∂g
Ûǫ(t, s) = i~ǫeǫθ

∂θ

∂g
∂θÛǫ(t, s) =

i~∂θÛǫ(t, s) = Ĥǫ(t)Ûǫ(t, s)− Ûǫ(t, s)Ĥǫ(s)

If t ≥ s ≥ 0 the same procedure gives Ûǫ(t, s) = Û (−)(t− θ, s− θ) and therefore:

∂θÛǫ(t, s) = −∂tÛǫ(t, s)− ∂sÛǫ(t, s) (A.38)

which concludes the proof of the lemma.

In the interaction picture:

i~ǫg
∂

∂g
ÛǫI(t, s) =

{

ĤǫI(t)ÛǫI(t, s)− ÛǫI(t, s)ĤǫI(s) if 0 ≥ t ≥ s

−ĤǫI(t)ÛǫI(t, s) + ÛǫI(t, s)ĤǫI(s) if t ≥ s ≥ 0
(A.39)

where:
ĤǫI(t) = eiĤ0t/~Ĥǫ(t)e

−iĤ0t/~ (A.40)

By applying these equations to an eigenstate |Ψ0〉 of Ĥ0 and taking t = 0, s = ±∞ one obtains:
(

Ĥ − E0 ± i~ǫg
∂

∂g

)

ÛǫI(0,±∞)|Ψ0〉 = 0 (A.41)

The existence of an adiabatic limit requires ÛǫI(0,±∞)|Ψ0〉 to have a phase proportional to 1
ǫ . This

singular phase will precisely be removed by the denominator in the definition of the vectors |Ψ(±)
ǫ 〉 before

the limit is taken.
Multiplying equation A.41 with 〈Ψ0| on the l.h.s. yields:

(〈Ψ0|ĤÛǫI(0,±∞)|Ψ0〉 − 〈Ψ0|ÛǫI(0,±∞)|Ψ0〉E0

±i~ǫg ∂
∂g

〈Ψ0|ÛǫI(0,±∞)|Ψ0〉) ·
1

〈Ψ0|ÛǫI(0,±∞)|Ψ0〉
= 0

and further:

〈Ψ0|Ĥ |Ψ(±)
ǫ 〉 − E0 = ∓i~ǫg ∂

∂g
ln 〈Ψ0|ÛǫI(0,±∞)|Ψ0〉 (A.42)

Denoting E
(±)
ǫ = 〈Ψ0|Ĥ |Ψ(±)

ǫ 〉 gives:

E0 = E(±)
ǫ ± i~ǫg

∂

∂g
ln 〈Ψ0|ÛǫI(0,±∞)|Ψ0〉 (A.43)

Introduce this result into equation A.41:

[(Ĥ − E(±)
ǫ ± i~ǫg

1

〈Ψ0|ÛǫI(0,±∞)|Ψ0〉
∂

∂g
〈Ψ0|ÛǫI(0,±∞)|Ψ0〉)

·ÛǫI(0,±∞)|Ψ0〉 ± i~ǫg
∂

∂g
ÛǫI(0,±∞)|Ψ0〉] ·

1

〈Ψ0|ÛǫI(0,±∞)|Ψ0〉
= 0
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to obtain: (

Ĥ − E(±)
ǫ ± i~ǫg

∂

∂g

)

|Ψ(±)
ǫ 〉 = 0 (A.44)

Then for ǫ→ 0+ the limit vectors |Ψ(±)〉 are eigenvectors of Ĥ = Ĥ0 + gV̂ with eigenvalues E.

A.5 Proof of a very important relation in Quantum Field Theory

〈Ψ0|ÔH(t)|Ψ0〉
〈Ψ0|Ψ0〉

=
1

〈φ0|Ûǫ(∞,−∞)|φ0〉

× 〈φ0|
∞∑

ν=0

(

− i

~

)ν
1

ν!

∫ +∞

−∞

dt1 . . .

∫ +∞

−∞

dtνe
−ǫ(|t1|+...+|tν |)

× T [V̂I(t1) . . . V̂I(tν)ÔI(t)]|φ0〉 (A.45)

Proof. According to Gell-Mann and Low’s theorem, the ground state of the interaction system is:

|Ψ0〉
〈φ0|Ψ0〉

=
Ûǫ(0,±∞)|φ0〉

〈φ0|Ûǫ(0,±∞)|φ0〉
(A.46)

〈Ψ0|Ψ0〉
〈φ0|Ψ0〉2

=
〈φ0|Ûǫ(0,±∞)†Ûǫ(0,±∞)|φ0〉

|〈φ0|Ψ0〉|2
(A.47)

=
〈φ0|Ûǫ(∞,−∞)|φ0〉

|〈φ0|Ψ0〉|2
(A.48)

Similarly,

〈Ψ0|ÔH(t)|Ψ0〉
〈φ0|Ψ0〉2

= 〈φ0|Ûǫ(∞, 0)Ûǫ(0, t)ÔI(t)Ûǫ(t, 0)Ûǫ(0,−∞)|φ0〉 ·
1

〈φ0|Ψ0〉2
(A.49)

=
〈φ0|Ûǫ(∞, t)ÔI(t)Ûǫ(t,−∞)|φ0〉

〈φ0|Ψ0〉2
(A.50)

Then,
〈Ψ0|ÔH(t)|Ψ0〉

〈Ψ0|Ψ0〉
=

〈φ0|Ûǫ(∞, t)ÔI(t)Ûǫ(t,−∞)|φ0〉
〈φ0|Ûǫ(∞,−∞)|φ0〉

(A.51)

Using the expression for the time-evolution operator:

Û(t, t0) =

∞∑

n=0

(

− i

~

)n
1

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtne
−ǫ(|t1|+...|tn|)T [V̂I(t1) . . . V̂I(tn)]

the numerator can be rewritten:

〈φ0|Ûǫ(∞, t)ÔI(t)Ûǫ(t,−∞)|φ0〉

= 〈φ0|
∞∑

n=0

(

− i

~

)n
1

n!

∫ ∞

t

dt1 . . .

∫ ∞

t

dtnT [V̂I(t1) . . . V̂I(tn)]

× e−ǫ(|t1|+...|tn|)ÔI(t)

∞∑

m=0

(

− i

~

)m
1

m!

∫ t

−∞

dt1 . . .

∫ t

∞

dtm

× e−ǫ(|t1|+...|tm|)T [V̂I(t
1) . . . V̂I(t

m)]

= 〈φ0|
∞∑

ν=0

(

− i

~

)ν
1

ν!

∫ ∞

−∞

dt1 . . .

∫ ∞

−∞

dtνe
−ǫ(|t1|+...|tν |)

× T [V̂I(t
1) . . . V̂I(t

ν)ÔI(t)]|φ0〉
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A.6 Mathematical induction proof of Wick’s theorem

Theorem (Wick’s theorem). T [φ(x1) . . . φ(xm)] = N [φ(x1) . . . φ(xm)+ all possible contractions]

Proof. This proof is by induction on m, the number of fields. It was already shown that for m = 2:

T [φ(x)φ(y)] = N [φ(x)φ(y) + φ(x)φ(y)]

With

φ(x)φ(y) =

{

{φ(+)(x), φ(−)(y)} for x0 > y0

φ(+)(y), φ(−)(x)} for x0 > y0

Now assuming the theorem is true for m-1 fields, it is necessary to prove it for m fields.
Without loss of generality, it can be assumed that x01 ≥ x02 ≥ . . . x0m. Then, applying Wick’s theorem

to φ2 . . . φm:

T [φ1 . . . φm] = φ1N [φ2 . . . φm

+ all possible contractions not involving φ1]

= (φ
(+)
1 + φ

(−)
1 )N [φ2 . . . φm

+ all possible contractions not involving φ1]

The purpose is to move φ
(+)
1 and φ

(−)
1 inside the N [. . .]. φ

(−)
1 can just be put inside since it is already in

normal order. The φ
(+)
1 must be anticommuted to the right past all the other φ’s.

φ
(+)
1 N [φ2 . . . φm] = N [φ2 . . . φm]φ

(+)
1 + {φ(+)

1 , N [φ2 . . . φm]}
= N [φ

(+)
1 φ2 . . . φm] +N [{φ(+)

1 , φ
(−)
2 }φ3 . . . φm + φ2{φ(+)

1 , φ
(−)
3 }φ4 . . . φm + . . .]

= N [φ
(+)
1 φ2 . . . φm + φ1φ2 φ3 . . . φm + φ1φ2φ3 . . . φm + . . .]

Then,

T [φ1 . . . φm] = N [φ
(−)
1 φ2 . . . φm + φ

(+)
1 φ2 . . . φm + all possible contractions]

= N [φ1 . . . φm + all possible contractions]

A.7 Disconnected diagrams cancel out

(This section follows the proof given in reference [3], Chapter 4: ”Interacting fields and Feynman dia-
grams”, page 98)

A typical diagram for the numerator in equation 1.51 contains a piece connected to x and y and
several disconnected pieces. Label the various possible disconnected pieces by Vi. The elements Vi are
connected internally, but disconnected from external points.

Suppose that a diagram has ni pieces of the form Vi for each i in addition to its one piece that is
connected to x and y.

If we also let Vi denote the value of the piece Vi, then the value of such a diagram is:

(value of connected piece) ·
∏

i

1

ni!
(Vi)

ni

The 1
ni!

is the symmetry factor coming from interchanging the ni copies of Vi.
The sum of all diagrams representing the numerator of the formula for the Green’s function is then:

∑

all

possible

connected

pieces

∑

all

{ni}

(value of connected piece)×
(
∏

i

1

ni!
(Vi)

ni

)
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Where ”all {ni}” means all ordered sets {n1, n2 . . .} of non-negative integers.
The sum of the connected pieces factors out of this expression giving:

Numerator =
(∑

connected
)

×
∑

all

{ni}

(
∏

i

1

ni!
(Vi)

ni

)

(A.52)

=
(∑

connected
)

×
(
∑

n1

1

n1!
V n1

1

)(
∑

n2

1

n2!
V n2

2

)

. . . (A.53)

=
(∑

connected
)

×
∏

i

(
∑

ni

1

ni!
V ni

i

)

(A.54)

=
(∑

connected
)

×
∏

i

exp(Vi) (A.55)

=
(∑

connected
)

× exp

(
∑

i

Vi

)

(A.56)

Therefore, the sum of all diagrams is equal to the sum of all connected diagrams times the exponential
of the sum of all disconnected diagrams.

The denominator of formula 1.51, by an identical argument is the exponential of the sum of all
disconnected diagrams which cancels the exponential of the disconnected diagrams in the numerator.

A.8 Proof of the generalized Wick’s theorem

This proof follows the guidelines of reference [4].

Theorem (The generalized Wick’s theorem). Tr{ρ̂0Tτ [ÂB̂Ĉ . . .]} = the sum over all possible fully

contracted terms.

where Â, B̂,. . . are field operators in the interaction picture.

Proof. Let ϕ0
j(~x) be a single particle basis for the field operators:

ψ̂(~x) =
∑

j

ϕ0
j(~x)âj (A.57)

ψ̂†(~x) =
∑

j

ϕ0
j (~x)

∗â
†
j (A.58)

with:
k0ϕ

0
j (~x) =

(
ǫ0j − µ

)

︸ ︷︷ ︸
=ej

ϕ0
j (~x) (A.59)

In the Interaction picture:

ψ̂I(~xτ) = eK̂0τ/~
∑

j

ϕ0
j (~x)âje

−K̂0τ/~ (A.60)

=
∑

j

ϕ0
j (~x)âje

−ejτ/~ (A.61)

and
ψ̂
†
I(~xτ) =

∑

j

ϕ0
j (~x)

∗â
†
je

ejτ/~ (A.62)

To prove Wick’s theorem first assume without loss of generality that the operators are already in the
proper time order. The calculation will be easier if a general notation for an operator in the Interaction
picture is introduced:

ψ̂I or ψ̂
†
I =

∑

j

ηj(~xτ)α̂j
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where
α̂j = âj or â

†
j

and
ηj(~xτ) = ϕ0

j(~x)e
−ejτ/~ or ϕ0

j(~x)
∗eejτ/~

With this notation, the l.h.s. of the equality in Wick’s theorem becomes:

Tr
{

ρ̂0ÂB̂ . . . N̂
}

=
∑

a

∑

b

. . .
∑

n

ηaηb . . . ηnTr {ρ̂0α̂aα̂b . . . α̂n} (A.63)

Anticommuting α̂a successively to the right:

Tr {ρ̂0α̂aα̂b . . . α̂n} = Tr {ρ̂0{α̂a, α̂b}α̂c . . . α̂n}
−Tr {ρ̂0α̂b{α̂a, α̂c} . . . α̂n}+ Tr {ρ̂0α̂bα̂c . . . {α̂n, α̂a}}

− Tr {ρ̂0α̂bα̂c . . . α̂a}

The commutators are either 0 or 1 and may be taken outside the trace. Also:

eβK̂0α̂ae
−βK̂0 = α̂ae

±βea (A.64)

+ if α̂a is a creation operator, − if α̂a is an annihilation operator. Then,

α̂aρ̂0 = ρ̂0α̂ae
±βea (A.65)

So:
−Tr {α̂aρ̂0α̂b . . . α̂n} = −e±βeaTr {ρ̂0α̂aα̂b . . . α̂n} (A.66)

and:

Tr {ρ̂0α̂aα̂b . . . α̂n} =
{α̂a, α̂b}
1 + e±βea

Tr {ρ̂0α̂c . . . α̂n}

− {α̂a, α̂c}
1 + e±βea

Tr {ρ̂0α̂b . . . α̂n}+ . . .+
{α̂a, α̂n}
1 + e±βea

Tr {ρ̂0α̂b . . . α̂n−1} (A.67)

Define a contraction as:

α̂aα̂b =
{α̂a, α̂b}
1 + e±βea

(A.68)

This definition is equivalent to the definition in equation 1.134. Then,

Tr {ρ̂0α̂aα̂b . . . α̂n} = α̂aα̂b Tr {ρ̂0α̂c . . . α̂n}

− α̂aα̂c Tr {ρ̂0α̂b . . . α̂n}+ . . . α̂aα̂n Tr {ρ̂0α̂b . . . α̂n−1}

= Tr
{

ρ̂0 α̂aα̂b α̂c . . . α̂n

}

+ Tr
{

ρ̂ α̂aα̂bα̂c . . . α̂n

}

+ . . .+ Tr
{

ρ̂ α̂a . . . α̂n

}

Going back to the field operators:

Tr{ρ̂0ÂB̂Ĉ . . . N̂} = Tr{ρ̂0 ÂB̂ Ĉ . . . N̂}

+Tr{ρ̂0 ÂB̂Ĉ . . . N̂}+ · · ·+ Tr{ρ̂0 Â . . . N̂}

The contraction is a number and may be taken out of the trace leaving a structure of the same kind as
the one originally considered. By repeating the algorithm in the end the result will be:

Tr{ρ̂0ÂB̂Ĉ . . . N̂} = sum of all possible fully contracted terms
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A.9 Functional derivatives of expectation values of operators

Consider a perturbation δV̂ (t) in the Hamiltonian. Taking the variation of the equations for the time
evolution operator Û :

i∂tÛ(t, t′) = Ĥ(t)Û (t, t′)

i∂t′ Û(t, t
′) = −Û(t, t′)Ĥ(t′)

Û(t, t) = 1

will result in the following equations:

i∂tδÛ(t, t
′) = δV̂ (t)Û(t, t′) + Ĥ(t)δÛ(t, t′) (A.69)

i∂t′δÛ(t, t′) = −Û(t, t′)δV̂ (t′)− δÛ(t, t′)Ĥ(t′) (A.70)

δÛ(t, t) = 0 (A.71)

A solution looks like this:

δÛ(t, t′) = −i
∫ t

t′
dτÛ (t, τ)δV̂ (τ)Û (τ, t′) (A.72)

Checking this solution:

∂t

∫ t

t′
dτÛ(t, τ)δV̂ (τ)Û (τ, t′) =

∫ t

t′
dτ∂tÛ(t, τ)δV̂ (τ)Û (τ, t′) + δV̂ (t)Û(t, t′)

= δV̂ (t)Û(t, t′) + Ĥ(t)δÛ(t, t′)

If δV̂ (t) =
∫
d~xδv(~xt)n̂(~x) then:

δÛ(t0 − iβ, t0)

δv(~xt)
= −i δ

δv(~xt)

(
∫ t0−iβ

t0

dτÛ (t0 − iβ, τ)

∫

d~xδv(~xt)n̂(~x)Û(τ, t0)

)

= −iÛ(t0 − iβ, t)n̂(~x)Û(t, t0)

= −iÛ(t0 − iβ, t0)n̂H(~xt) (A.73)

Now, calculate the change in the expectation value of an operator:

δ〈Ô(t1)〉
δv(~x2t2)

=
δ

δv(~x2t2)

Tr
{

Û(t0 − iβ, t0)Û(t0, t1)ÔÛ(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

=

δ
δv(~x2t2)

Tr
{

Û(t0 − iβ, t0)Û(t0, t1)ÔÛ(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

−
Tr
{

Û(t0 − iβ, t0)Û(t0, t1)ÔÛ(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

·
δT r

{

Û(t0 − iβ, t0)
}

δv(~x2t2)
· 1

Tr
{

Û(t0 − iβ, t0)
}
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And further:

δ〈Ô(t1)〉
δv(~x2t2)

= θ(t1, t2)
Tr
{

Û(t0 − iβ, t1)Ô
δÛ(t1,t0)
δv(~x2t2)

}

Tr
{

Û(t0 − iβ, t0)
}

+ θ(t2, t1)
Tr
{

δÛ(t0−iβ,t1)
δv(~x2t2)

ÔÛ(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

− 〈Ô(t1)〉 ·
δT r

{

Û(t0 − iβ, t0)
}

δv(~x2t2)
· 1

Tr
{

Û(t0 − iβ, t0)
}

= −iθ(t1, t2)
Tr
{

Û(t0 − iβ, t1)ÔÛ(t1, t2)n̂(~x2)Û(t2, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

− iθ(t2, t1)
Tr
{

Û(t0 − iβ, t2)n̂(~x2)Û(t2, t1)ÔÛ(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

+ i〈Ô(t1)〉
Tr
{

Û(t0 − iβ, t2)n̂(~x2)Û(t2, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

= −iθ(t1, t2)〈Ô(t1)n̂(~x2t2)〉 − iθ(t2, t1)〈n̂(~x2t2)Ô(t1)〉 (A.74)

+ i〈Ô(t1)〉〈n̂(~x2t2)〉 (A.75)

Similarly, for the functional derivative of a time-ordered product:

δ〈Tc[Â(t1)B̂(t2)]〉
δv(~x3t3)

= −i〈Tc[Â(t1)B̂(t2)n̂(~x3t3)]〉+ i〈n̂(~x3t3)〉〈Tc[Â(t1)B̂(t2)]〉 (A.76)

Therefore,

δG(1, 2)

δv(3)
= −i δ

δv(3)
〈Tc[ψ̂H(1)ψ†

H(2)]〉 (A.77)

= −〈Tc[ψ̂H(1)ψ†
H(2)n̂H(3)]〉+ 〈n̂H(3)〉〈Tc[ψ̂H(1)ψ†

H(2)]〉 (A.78)

A.10 The Kubo-Martin-Schwinger boundary conditions

G(x1t0 − iβ, 2) = −i
T r
{

Û(t0 − iβ, t0)Û(t0, t0 − iβ)ψ̂(~x1)Û(t0 − iβ, t2)ψ̂
†(~x2)Û(t2, t0)

}

Tr
{

Û(t0 − iβ, t0)
}

= −i
T r
{

Û(t0 − iβ, t2)ψ̂
†(~x2)Û(t2, t0)ψ̂(~x1)

}

Tr
{

Û(t0 − iβ, t0)
}

= −i〈ψ̂†
H(~x2t2)ψ̂H(~x1t0)〉

= i〈ψ̂H(~x1t0)ψ̂
†
H(2)〉

= −G(~x1t0, 2) (A.79)
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Also,

G(1, ~x2t0 − iβ) = i
T r
{

Û(t0 − iβ, t0)Û(t0, t0 − iβ)ψ̂†(~x2)Û(t0 − iβ, t1)ψ̂(~x1)Û(t1, t0)
}

Tr
{

Û(t0 − iβ, t0)
}

= i
T r
{

Û(t0 − iβ, t0)Û(t0, t1)ψ̂(~x1)Û(t1, t0)ψ̂
†(~x2)

}

Tr
{

Û(t0 − iβ, t0)
}

= i〈Tc[ψ̂(1)ψ̂†(~x2t0)]〉
= −G(1, ~x2t0) (A.80)

Next, it is straightforward to check that a general solution to the equation:

(i∂t1 − ĥ(1))
δG(1, 1′)

δv(2)
−
∫

d3Σ(1, 3)
δG(3, 1)

δv(2)
= δ(1, 2)G(1, 1′) +

∫

d3
δΣ(1, 3)

δv(2)
G(3, 1′) (A.81)

is:
δG(1, 1′)

δv(2)
= G(1, 2)G(2, 1′) +

∫

d3d4G(1, 3)
δΣ(3, 4)

δv(2)
G(4, 1′) + C(1, 1′, 2) (A.82)

where C is a solution of the equation:

(i∂t1 − ĥ(1))C(1, 1′, 2)−
∫

d3Σ(1, 3)C(3, 1′, 2) = 0 (A.83)

Then C must also obbey the Martin-Schwinger boundary conditions:

C(~x1t0 − iβ, 1′) = −C(~x1t0, 1′) (A.84)

C = 0 satisfies both the homogeneous equation and the boundary conditions therefore it is uniquely
fixed.

A.11 Keldysh book-keeping

This appendix contains examples of calculations with contour-ordered functions following the guidelines
in references [1] and [8].

Consider two functions a and b of the form:

a(t, t′) = aδ(t)δ(t, t′) + θ(t, t′)a>(t, t′) + θ(t′, t)a<(t, t′) (A.85)

The aim is to calculate contour integrals of the product of the two functions:

c(t, t′) =

∫

c

dt̄a(t, t̄)b(t̄, t′) (A.86)

Replacing the expressions for a and b will result in the general expression for c:

c(t, t′) = aδ(t)b(t, t′) + a(t, t′)bδ(t′) (A.87)

+

∫

c

dt̄(θ(t, t̄)θ(t̄, t′)a>(t, t̄)b>(t̄, t′) + θ(t, t̄)θ(t′, t̄)a>(t, t̄)b<(t̄, t′) (A.88)

+ θ(t̄, t)θ(t̄, t′)a<(t, t̄)b>(t̄, t′) + θ(t̄, t)θ(t′, t̄)a<(t, t̄)b<(t̄, t′)) (A.89)

Now let’s see how c looks for different positions of t and t’ on the contour.
For example, for t > t′ and both on the real part of the contour:
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t′

t

β

Real time axis

Imaginary time axis

c>(t, t′) = aδ(t)b>(t, t′) + a>(t, t′)bδ(t′) (A.90)

+

∫ t

t′
dt̄a>(t, t̄)b>(t̄, t′) +

∫ t′

t0

dt̄a>(t, t̄)b<(t̄, t′) +

∫ t0−iβ

t

dt̄a<(t, t̄)b>(t̄, t′) (A.91)

Denoting:
a<(t, t0 − iτ) = a⌉(t, τ) (A.92)

a>(t0 − iτ, t) = a⌈(τ, t) (A.93)

c>(t, t′) = aδ(t)b>(t, t′) + a>(t, t′)bδ(t′) (A.94)

+

∫ t

t0

dt̄a>(t, t̄)b>(t̄, t′)−
∫ t′

t0

dt̄a>(t, t̄)(b>(t̄, t′)− b<(t̄, t′)) (A.95)

−
∫ t

t0

dt̄a<(t, t̄)b>(t̄, t′) +

∫ t0−iβ

t0

dt̄a<(t, t̄)b>(t̄, t′) (A.96)

Define the retarded and advanced functions in physical time:

aR(t, t′) = aδ(t)δ(t− t′) + θ(t, t′)(a>(t, t′)− a<(t, t′)) (A.97)

aA(t, t′) = aδ(t)δ(t− t′)− θ(t′, t)(a>(t, t′)− a<(t, t′)) (A.98)

Thus,

c>(t, t′) =

∫ ∞

t0

dt̄((aδ(t̄)δ(t̄− t) + θ(t, t̄)(a>(t, t̄)− a<(t, t̄)))b>(t̄, t′))

+

∫ ∞

t0

dt̄a>(t, t̄)(bδ(t̄)δ(t̄− t′)− θ(t′, t̄)(b>(t̄, t′)− b<(t̄, t′)))− i

∫ β

0

dτa⌉(t, τ)b⌈(τ, t′)

=

∫ ∞

t0

dt̄aR(t, t̄)b>(t̄, t′) +

∫ ∞

t0

dt̄a>(t, t̄)bA(t̄, t′)− i

∫ β

0

dτa⌉(t, τ)b⌈(τ, t′) (A.99)

Introducing notations:

a · b =
∫ ∞

t0

dt̄a(t̄)b(t̄) (A.100)
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a ⋆ b = −i
∫ β

0

dτa(τ)b(τ) (A.101)

allows one to write in a short form the expression for c>:

c> = aR · b> + a> · bA + a⌉ ⋆ b⌈ (A.102)

Analogously,
c< = aR · b< + a< · bA + a⌉ ⋆ b⌈ (A.103)

Now for a different position of t and t’:

Real time axis

Imaginary time axis

β

t′

t

c>(t0 − iτ, t′) = c⌈(τ, t′) = aδ(t0 − iτ)b>(t0 − iτ, t′)

+ a>(t0 − iτ, t′)bδ(t′) +

∫ t0−iτ

t′
dt̄a>(t0 − iτ, t̄)b>(t̄, t′)

+

∫ t′

t0

dt̄a>(t0 − iτ, t̄)b<(t̄, t′) +

∫ t0−iβ

t0−iτ

dt̄a<(t0 − iτ, t̄)b>(t̄, t′)

= a⌈(τ, t′)bδ(t′) + aδ(t0 − iτ)b⌈(τ, t′)−
∫ t′

t0

dt̄a⌈(τ, t̄)(b>(t̄, t′)− b<(t̄, t′))

+

∫ t0−iτ

t0

dt̄a>(t0 − iτ, t̄)b>(t̄, t′) +

∫ t0−iβ

t0−iτ

dt̄a<(t0 − iτ, t̄)b>(t̄, t′)

=

∫ ∞

t0

dt̄a⌈(τ, t̄)(bδ(t′)δ(t̄− t′)− θ(t′, t̄)(b>(t̄, t′)− b<(t̄, t′))) + aδ(t0 − iτ)b⌈(τ, t′)

+

∫ t0−iτ

t0

dt̄a>(t0 − iτ, t̄)b>(t̄, t′) +

∫ t0−iβ

t0−iτ

dt̄a<(t0 − iτ, t̄)b>(t̄, t′)

=

∫ ∞

t0

dt̄a⌈(τ, t̄)bA(t̄, t′) +

∫ β

0

dτ̄aδ(t0 − iτ̄)b⌈(τ̄ , t′)δ(τ̄ , τ)

+

∫ t0−iβ

t0

dt̄(θ(t0 − iτ, t̄)a>(t0 − iτ, t̄) + θ(t̄, t0 − iτ)a<(t0 − iτ, t̄)b>(t̄, t′)) (A.104)

Making the change of variables: t̄ = t0 − iτ̄ and defining the Matsubara function aM as the function a
restricted to the imaginary part of the contour:

aM (τ, τ̄ ) = iaδ(τ̄ )δ(τ − τ̄ ) + θ(τ, τ̄ )a>(τ, τ̄ ) + θ(τ̄ , τ)a<(τ, τ̄ ) (A.105)
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yields:

c⌈(τ, t′) =

∫ ∞

t0

dt̄a⌈(τ, t̄)bA(t̄, t′)− i

∫ β

0

dτ̄aM (τ, τ̄ )b⌈(τ̄ , t′)dτ̄ (A.106)

and in short notation:
c⌈ = a⌈ · bA + aM ⋆ b⌈ (A.107)

Analogously,
c⌉ = aR · b⌉ + a⌉ ⋆ bM (A.108)

Finally when both arguments of c are on the imaginary part of the contour:

Real time axis

Imaginary time axis

β
τ

τ ′

cM = aM ⋆ bM (A.109)

Next, these results will be applied to the equations:

(i∂t1 − ĥ(1))G(1, 2) = δ(1, 2) +

∫

c

d3Σ(1, 3)G(3, 2) (A.110)

(−i∂t2 − ĥ(2))G(1, 2) = δ(1, 2) +

∫

c

d3G(1, 3)Σ(3, 2) (A.111)

to yield the Kadanoff-Baym equations:

(i∂t1 − ĥ(1))G≶(1, 2) = (ΣR ·G≶ +Σ≶ ·GA +Σ⌉ ⋆ G⌈)(1, 2) (A.112)

(−i∂t2 − ĥ(2))G≶(1, 2) = (GR · Σ≶ +G≶ · ΣA +G⌉ ⋆ Σ⌈)(1, 2) (A.113)

(i∂t1 − ĥ(1))G⌉(1, 2) = (ΣR ·G⌉ +Σ⌉ ⋆ GM )(1, 2) (A.114)

(i∂t1 − ĥ(1))G⌈(1, 2) = (Σ⌈ ·GA +ΣM ⋆ G⌈)(1, 2) (A.115)

(−i∂t2 − ĥ(2))G⌉(1, 2) = (GA · Σ⌉ +G⌉ ⋆ ΣM )(1, 2) (A.116)

(−i∂t2 − ĥ(2))G⌈(1, 2) = (G⌈ · ΣA +GM ⋆ Σ⌈)(1, 2) (A.117)

(i∂t1 − ĥ(1))GM (1, 2) = iδ(τ1 − τ2) + (ΣM ⋆ GM )(1, 2) (A.118)

(−i∂t2 − ĥ(2))GM (1, 2) = iδ(τ1 − τ2) + (GM ⋆ ΣM )(1, 2) (A.119)
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