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ABSTRACT

Pennanen, Anssi

A graph-based multigrid with applications

Jyvaskyla: University of Jyvaskyld, 2010, 52 p.(+included articles)
(Jyvaskyld Studies in Computing

ISSN 1456-5390; 128)

ISBN 978-951-39-4155-0 (nid.), 978-951-39-4158-1 (PDF)

Finnish summary

Diss.

This thesis studies a graph-based multigrid method designed for solving a large,
linear and sparse system of equations arising from different discretizations of
partial differential equations. The method studied here is an improvement of
the method originally introduced by F. Kickinger. The improvements include
processing the Dirichlet boundary condition after creating coarse levels, adding
flexibility by giving a possibility to use other graphs than the one obtained from
the system matrix and fast calculation of coarse level system matrices.

Our method is used as a preconditioner for time-harmonic acoustic and
elastic wave equations modelled respectively by the Helmholtz and Navier equa-
tions. The equations are discretized by higher-order finite element method and
spectral element method. Two approaches are considered. In the first approach
damped Helmholtz and Navier operators are used as preconditioners. In the
second approach, exact control technique is used to represent time-harmonic
problems as time-dependent ones. The original problem is formulated as a least-
squares optimization problem that is solved by a preconditioned conjugate gra-
dient method. In both approaches our multigrid method is used to solve a linear
system associated with the preconditioning step.

Furthermore, we have used our method as a solver in computational fluid
dynamics. Stokes and Navier-Stokes equations are considered. The equations are
discretized by a stabilized finite element method and different ILU-type smoothers
are used in multigrid cycles. The results of the numerical experiments show that
our method is efficient both as a preconditioner and as a stand-alone solver.

Keywords: Algebraic multigrid, preconditioning, exact controllability, Helmholtz
equation, Navier equation, Stokes equations, Navier-Stokes equations
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1 INTRODUCTION

At the core of countless numerical simulations is a solution of a large, linear and
sparse system of equations
Ax =Db,

that may have even billions of unknowns. Equations of this kind arise from dif-
ferent discretizations of partial differential equations, for example those of finite
differences, finite element or finite volume method. The most robust ways to
solve these equations are direct methods but they are usually computationally
too expensive, especially in complex 3D simulations. Even though the computa-
tional power of modern computers is exhaustive, the need for efficient iterative
solution methods is still reasonable, as simulations carried out with these com-
puters are more and more complex and large.

Iterative solvers try to find a solution of (1) step by step starting from an
initial guess x” and then updating this approximation sequentially x'*1 = x’ +
M1 (b— Axi),i = 0,1,... until a reasonable approximation is achieved.

First multilevel-type iterative methods to solve equation (1) were introduced
in the 1960’s by Fedorenko [33, 34], and in the 1970’s their real efficiency was dis-
covered by Brandt [10]. At the same time, Hackbusch independently published
his multigrid method in [41]. In these geometric multigrid methods, a hierarchy of
coarser grids and interpolation (and restriction) operators between the grids is
fixed, and a smoother is chosen according to the problem at hand. A good intro-
duction to geometric multigrid and its application to a wide variety of problems
can be found from Multigrid Methods [42] by Hackbusch, as well as in a more
recent book Multigrid [78] by Trottenberg et al.

The efficiency of the geometric multigrid method is based on two main com-
ponents: error smoothing and coarse grid (or level) correction. The classical it-
eration methods, Jacobi or Gauf-Seidel iterations, for instance, usually have a
strong smoothing effect on the error of the approximate solution. Therefore these
iteration methods are called smoothers in multigrid terminology. These iteration
methods smoothen the error of approximate solution but fail to deduce the error
itself. However, it is possible to project a smooth error on a coarser grid where it
will be rough again, and we are able to use Jacobi or Gaufi-Seidel efficiently. In
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this way we obtain a coarse grid correction which can be interpolated back to the
finer grid. By repeating this procedure recursively on a coarser and coarser grid
or level, we get a multigrid cycle.

The geometric multigrid method has its limitations. The computational grid
may be so complex that defining coarser (or finer) grids is impossible. This is a
problem especially with irregular grids. Even though the discretization is uni-
form, geometric multigrid may fail if there are large jumps in coefficients or the
coefficients are distributed in some particular patterns (see, for example, [2] and
[25]). Some problems do not have any geometical background and, thus, no grid
at all.

In their papers [12, 13, 11] Brandt et al. attacked these problems by attempt-
ing to automate the coarsening process by combining the Galerkin-principle and
operator-independent interpolation in a geometric multigrid. This was the beginning
of the development of the algebraic multigrid method (AMG). Stiiben presented a
special AMG algorithm in his paper [73], which was a basis for a famous pub-
lication by Ruge and Stiiben [66], published in [55], which is often referred as a
classical AMG.

The strategy in AMG is to use only algebraic data included in the problem
at hand. In this context it means that strong and weak connections between un-
knowns are determined on the basis of coefficients in the system matrix.

After this is done, a multigrid hierarchy that includes coarse level system
matrices and transfer operators between these levels is formed automatically. In
this way a very robust method is obtained which could be applied to a wide
range of problems. Furthermore, the method could be used as a black box solver,
because it was enough to put system matrix and right hand side in to get the
solution out and, thus, it could be applied to problems with no geometrical back-
ground at all. In [22] the performance of standard AMG is tested in number of
numerical experiments.

Because of the wide range of applicability of classical AMG and of the fact
that an AMG implementation, AMG1R5, was made available in the public do-
main, there was not much new in AMG development in the following years.
However, the growing demand for black box solvers, especially for commer-
cial simulation software capable of solving bigger and more complex problems,
raised again interest in developing AMG in the early and mid 1990s.

In the classical AMG the set up phase, that is selecting coarse level unknowns
and building transfer operators and coarse level matrices, is computationally
quite demanding. A more efficient and more robust interpolation strategy was
introduced in RAMGO5, the successor of AMGI1R5, described in detail in [78]. A
variety of different strategies for selecting coarse level variables and smoothers
and definition of the interpolation in AMG are introduced, for example, in [85, 84,
32,14,16,15, 83,6, 3,4, 60, 82]. A number of these different strategies and exhaus-
tive numerical comparisons of different combinations of these with the classical
one can be found in [56]. A comprehensive reviews of AMG appeared in [74] and
[79].

Another approach to the coarsening process is to use only the graph of the
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system matrix. This approach is used, for example, in [9] by Braess, [47] by
Kickinger and [7] by Beck. The graph of the system matrix is used to generate
coarse systems, that is coarse system matrices and interpolation operators. The
main advantage of only using the graph is the fast computation of the coarse
level components that can be quite time-consuming in the method by Ruge and
Stiiben.

In his paper [47] Kickinger introduced two rather simple, yet efficient, al-
gorithms to find coarse grids. The initial graph for a coarsening algorithm is
extracted directly from the system matrix. Therefore, his method could be used
as a pure black-box solver. We have modified the method so that any graph re-
lated to the original problem can be fed into the method. Thus, we have given
up the notion of a black box solver, as we will also use other graphs than the
one obtained from the original system matrix. Particularly, we have used a graph
that contains information whether a node in the graph corresponds to a Dirichlet
boundary node. This information is also carried to the coarser levels. Motivation
for this is based on the following observation: The elimination of the equations
corresponding to Dirichlet boundary conditions after the coarsening process in-
creases the stability of the method.

Furthermore, when higher order elements are used in a finite element dis-
cretization, we construct an initial graph where a node is connected only to the
nearest neighbouring nodes. The reason for doing this is that using the original
graph of the system matrix would produce far too coarse systems which would
degrade the convergence of the multigrid solver. Under each application in the
later chapters it is explained more specifically how the initial graph for the coars-
ening process is chosen.

Our method is between a geometric and an algebraic multigrid. On the one
hand, it is geometric, because the selection of coarse grid variables is more geo-
metrical than algebraic and we change the smoother appropriately according to
the problem at hand. On the other hand, our method is also algebraic multigrid,
as only the finest discretization mesh and the related algebraic system are needed
in order to construct components for the whole multigrid cycle.

The structure of the thesis is the following: In this introductory chapter our
graph-based multigrid is discussed. In Section 1.1 technical details of our multi-
grid method are presented. This includes selecting coarse level variables and
building necessary transfer operators between the levels. Furthermore, an effi-
cient way to calculate coarse level system matrices by the Galerkin principle is
introduced. Finally, an algorithm for a whole AMG cycle is presented. In Section
1.2 different smoothers for AMG are discussed. Only the smoothers that are used
in this thesis are presented.

Chapter 2 focuses on the numerical solution of time-harmonic wave equa-
tions. In Section 2.1 the Helmholtz equation describing an acoustic pressure wave
propagating in a fluid is presented. Two different approaches for the numerical
solution of the Helmholtz equation are introduced. In Section 2.1.2 a (physical)
damping preconditioner for the numerical solution of the Helmholtz equation is
discussed. The same kind of preconditioner for the Navier equation is introduced
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in Section 2.2.1. In these cases a graph-based multigrid studied in this thesis is
used to obtain an approximation of the inverse of the preconditioner. Another
approach for the numerical solution of Helmholtz and Navier equations is stud-
ied in Sections 2.1.3 and 2.2.2. In this approach, a time-harmonic wave equation
is cast back to a time-dependent equation. By using control techniques, the wave
problem is formulated as a least-squares optimization problem that is solved by
the preconditioned conjugate gradient (PCG) method. At this stage, the multigrid
method is utilized in the preconditioning step of the PCG method.

In Chapter 3 we test our multigrid method as a stand-alone solver for the
computational fluid dynamic problems. In this chapter steady state Stokes and
Navier-Stokes equations describing the motion of incompressible fluids are stud-
ied. They are discretized by the stabilized finite element method. The behaviour
of our algorithm is investigated in numerical examples in the Section 3.4. Finally,
in Chapter 4 we draw some conclusions about the method studied in this work
and present some ideas for developing our method in the future.

1.1 The AMG algorithm

The algorithmic structure of the AMG initialization phase is presented in Algo-
rithm 1. The coarsening process operates in a geometric fashion by sequentially
choosing a coarse node and eliminating the neighbouring nodes of the graph.
There is one important exception. If an interior node is selected as a coarse grid
node, its neighbouring node is not eliminated from the graph if this neighbour
is tagged as a Dirichlet boundary node. This way we can increase the stability
of our method by assuring that a sufficient number of nodes corresponding to
the Dirichlet boundary are selected to the coarse levels. However, this is rele-
vant only when we are using unstructured meshes with an arbitrary numbering
of nodes. With structured meshes our coarsening strategy produces hierarchical
coarse ‘grids’.

The primary criterion used here for selecting the next coarse grid node is to
take the node with the minimum degree (taking into account the eliminations).
The secondary criterion is to follow the original numbering. In Figure 1 there
is an example of our coarsening strategy on an unstructured element mesh with
first-order Lagrangian triangular elements. The Dirichlet boundary condition is
imposed on every boundary. After choosing coarse nodes, a restriction operator
and a coarse graph are formed. The restriction matrix can be defined easily by
setting the elements corresponding to the neighbours of selected coarse node i
in the i:th row to one. After this, every column sum in the restriction matrix is
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FIGURE 1 Graph nodes selected to coarse level. Nodes with double circle are selected
to coarse level.

scaled to one. The elements of the restriction matrix are defined as follows:

for a fine grid point j which is a coarse grid point i,

= =

for a fine grid point j which is a neighbor of coarse grid
ij = - . . . :
point i and has k neighboring coarse grid points,

0 otherwise.

A coarse graph can be formed using the restriction matrix. Each coarse graph
node corresponds to a row in the restriction matrix and two graph nodes are
connected if, and only if, the corresponding rows of the restriction matrix have a
nonzero element in the same column.

ALGORITHM 1 (AMG initialization)

Input: System matrix Ay, initial graph Gy and
maximum coarse system size 7.
k=0
while size of Ay is greater than 7,
Select the set of coarse nodes from the graph Gy
Form the restriction matrix Ry
Create the graph G4
Calculate the next system matrix Ay 1 = ReAR]
k=k+1
foreachi =0,...,k
Eliminate the rows and columns of A; marked in the graph G;
10. foreachi=0,...,k—1

O XN U W=

11.  Eliminate the columns of R; marked in the graph G;
12.  Eliminate the rows of R; marked in the graph G,
13. Factorize the coarsest matrix Ay
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Here the prolongation operator has been chosen as the transpose of the re-
striction and therefore it is not stored. The Galerkin formula Ay, = RkAkR]z
is used in order to obtain the coarse system matrices. The coarsening process is
continued until the size of the coarsest system is not greater than a given value,
measured in numbers of unknowns. The coarsest level problem is solved by an
LU-factorization. Because of this, the coarsest level matrix is stored either as a full
matrix or as a band matrix, if the bandwidth is small enough. The factorization is
then calculated “in place’.

Let us study the practical implementation of steps (5) and (6) of Algorithm
1. In the implementation sparse matrices are stored in compressed row storage
(CRS) format. There are two arrays for each row where the column indices and
the values of the nonzero elements are stored. The elements are stored in the
increasing column index order. Before step (5) an auxiliary indexing for Ry is cre-
ated, which lists for each column the rows with a nonzero element in the column.
Then, an arc in the graph Gy, can be formed between any two nodes that are
present in such a list. Especially, all nodes are linked to themselves.

This auxiliary indexing will also be used in step (6). The system matrix
calculation according to the Galerkin formula is performed in two phases: first
we calculate Ty = AkR,I and then Ay, 1 = R;Tk. The matrix multiplication can
be represented with (sparse) vector inner products. In the first phase we take
row vectors of A and column vectors of R,{, which are row vectors of Ry. Thus,
the storage format supports the inner product operation. The temporary result
matrix Ty is stored as its transpose. In the second phase, we take row vectors of Ry
and column vectors of Ty, which are row vectors of T[. Still, we can not afford to
calculate every element of Ty and Ay ;. Here, we can reuse the auxiliary indexing
formed in the beginning of step (5). For the row i we form a set of column indexes
that is a union of all the auxiliary index lists of those columns j for which there is
anonzero element (Ay);;. This is illustrated in the Figure 2.

1 || || || || |

3
2 — H

FIGURE 2 Finding out the sparsity pattern in the matrix multiplication.

In phase one we have the indexes of the nonzero elements of a single row
i of the matrix Ay. In phase two we collect the row indexes of nonzero elements
of Ry in the corresponding locations and in phase three we form the union of
these locations obtaining the final index set for nonzero entries in matrix Ty in
row i. The same procedure can be used to find out the row indexes of all the pos-
sible nonzero elements of Ay in a column j. In case of the compressed column
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storage (CCS) format, R,{ are stored and Ry Ay, are calculated first to a temporary
matrix, then Ay, q.

The structure of AMG iteration is exactly the same as for any multigrid. It
follows Algorithm 2 which has been written in recursive form. The algorithm
presented here is the general y-cycle algorithm. The choices 4y = 1 and p = 2
correspond to V-cycle and W-cycle, respectively. The initial call of the algorithm
has to be made for the finest level.

ALGORITHM 2 Algorithm for the AMG iteration

Input: System matrix Ao, current approximation xo,
right hand side vector by

Output: The iterated approximate solution x*

1 if on the finest level

2 while not converged

3 Presmooth v times: xq := xo + S§ (bo, Ao, Xo)
4, Restrict the residual: by := Rg(by — Agxg)

5. Set x1 := 0 and call cycle y times for the next level
6 Prolongate the correction: xo := xg + R{x

7 Postsmooth v times: xq := xo + S§ (bo, Ag, Xo)
8 if on an intermediate level /

9 Presmooth v times: x; := x; + S} (b}, A, x;)

10. Restrict the residual: by, := R;(b; — Ajx))

11. Set x;;1 := 0 and call cycle u times for the level [ + 1
12. Prolongate the correction: x; := x; + Rl x; 1

13. Postsmooth v times: x; := x; + S} (b}, A;, x;)

14.  if on the coarsest level k

15. Solve x; from Aix; = by

In this thesis a finite element library written in C++ by Dr. Janne Mar-
tikainen is used. The library includes all the usual data structures needed in a
finite element method, for instance vectors, matrices, mesh and different finite
elements. Data structures are implemented as generic classes so that they can
be initialized with different data types. After a finite element stiffness matrix is
assembled, the user initializes a graph-based multigrid object with the stiffness
matrix, an initial graph and the maximum number of unknowns on the coars-
est level. After the setup phase is done, user invokes the solver method of the
graph-based multigrid class with the stiffness matrix, a vector containing an ini-
tial guess, a right hand side vector, stopping criterion and the maximum number
of the multigrid iterations. The W-cycle is used as a default iteration which can be
naturally switched to the V-cycle. The result is stored in the vector that contained
the initial guess. The finite element library and the graph-based multigrid solver
code are available for academic purposes upon a request. A technical manual of
the finite element library will be available in the near future in the report series
of the Department of Mathematical Information Technology.
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FIGURE 3 Multigrid cycles. V-cycle on the left and W-cycle on the right.

\S}

Two different multigrid iterations, called cycles, are illustrated in Figure 3. The
cycles are called V-cycle and W-cycle, depending on how many times coarser
levels are visited in one cycle. In Figure 3 black dots represent the action of the
smoother onlevels 0...2. On the coarsest level 3 a direct solver is applied to solve
A3zx3 = b3, marked by a black square. Arrows pointing downwards describe
restriction and arrows pointing upwards describe prolongation.

1.2 Smoothers for AMG

In this thesis, different kinds of smoothers for graph-based multigrid iteration
are used depending on the application area. With the damping preconditioner
for the Helmholtz and Navier equations introduced in sections 2.1.2 and 2.2.1,
respectively, we have used weighted Jacobi (w-Jacobi) iterations as a smoother. De-
pending on the situation, different weight parameters w are used.

In sections 2.1.3 and 2.2.2, where a controllability method for the Helmholtz
and Navier equations is studied, a Successive Over Relaxation method is employed
as a smoother. The weights for Jacobi w-Jacobi and relaxation parameter for SOR
are problem dependent; different parameters used in numerical experiments are
shown in the included articles [PI]-[PIV].

A decomposition of matrix A to lower and upper triangular matrices L and
U, A = LU, usually produces much more dense matrices L and U than the orig-
inal matrix A, even if A is a sparse matrix. This can be avoided by applying a
dropping rule, or zero pattern, in the decompositioning process, which means
that we leave out some (off-diagonal) elements of the LU decomposition. In the
following Algorithm 3 we present a general incomplete LU (ILU) decomposition
of the matrix A. Different kinds of incomplete factorizations have been proven to
be good smoothers for multigrid methods. See, for example, a work by Wittum
[87].

If matrix A is needed after the decomposition, then the space required to
store elements of ILU decomposition must be reserved. One of the simplest drop-
ping rule is to preserve the original non-zero pattern of matrix A, i.e. no fill-in is
allowed. This factorization is called zero fill-in ILU (ILU(0)) and its pseudo code
is documented in Algorithm 4.

Reserving the original non-zero pattern of matrix A can be viewed as a static



17

ALGORITHM 3 General incomplete LU decomposition

Input: Matrix A, zero pattern P

Output: Incomplete LU decomposition of A
1 foreachi=2,...,n

2 foreachk=1,...,i —1&& (i,k) ¢P
3. Ajk 2= Ak / Axk

4 foreachj=k+1,...,n && (ij) ¢ P
5 aij = Lli]' — Aj * Clk]'

ALGORITHM 4 ILU(0) decomposition

Input: Matrix A, non-zero pattern NZ of A
Output: Incomplete LU decomposition of A
1 foreachi=2,...,n

2 foreachk=1,...,i — 1 && (i,k) € NZ
3. Ajk = A/ gk

4 foreachj=k+1,...,n && (i,j) € NZ
5 tZl']' = lll‘]‘ — Aji * ak]-

pattern for dropping elements in the factorization. One may obtain more robust-
ness in the factorization by allowing some fill-in. It may be done statically, by
using some pre-defined fill-in pattern, or dynamically, by introducing for exam-
ple a threshold value as a dropping rule. This means that in the LU decomposi-
tion process we drop the elements that are smaller than a given tolerance. The
problem here is that it is impossible to know how much fill-in there will be. One
possibility is to apply, in addition to the dropping tolerance, a number for the
largest elements per row that are finally stored. This strategy called ILUT was
introduced by Saad in [67] and it is formulated here as in [68] of Saad:

ALGORITHM 5 ILUT decomposition

Input: Matrix A, dropping tolerance €, maximum no. of elements per row p
Output: Incomplete LU decomposition of A

1 foreachi=1,...,n

2 W = Ajy

3 foreachk=1,...,i —1 && w(k) # 0
4. Wy = wk/akk

5. Apply dropping rule to wy

6 if Wi 75 0

7 W= W — Wy * Uy

8 Apply a dropping rule to row w

9 lijj==wjforj=1,...,i—1

10. Ml',]' ::w]-forj:i,...,n
11. w:=0
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In Chapter 3, these ILU-type smoothers are applied when solving incom-
pressible fluid flow problems with AMG. A great deal of different smoothers for
multigrid methods can be found in the literature. For example, see the book by
Trottenberg et al. [78] and the references therein.



2 AMG PRECONDITIONING IN WAVE SCATTERING

We are surrounded by waves. Our hearing is based on sensing pressure changes
in the air, created by some sound source producing pressure waves with a suit-
able frequency for a human ear. Data are transmitted by electro-magnetic waves
from a cell phone antenna to a base station, and vice versa, to let one hear some-
one else’s voice from a more or less longer distance. Foetal development can be
traced in ultrasonography using a device for sending and receiving ultrasonic
waves. These are just a few examples of waves vibrating everywhere around us.

The numerical solution of wave equations has many challenges that have
been under active research in a few past decades. A fundamental problem of the
numerical wave simulation is related to the famous Nyquist-Shannon sampling
theory [70]:

“If a function f(f) contains no frequencies higher than W hertz, it is
completely determined by giving its ordinates at a series of points
spaced 5y seconds apart.”

It states that a signal can be reproduced from discrete sampling points if more
than two samples per wave of the highest frequency is captured. In the space
domain characterized by the wavelength A it means that at least two mesh points
per wavelength are needed.

However, this is only a lower limit for the resolution of the mesh. In practise,
a much more dense mesh must be used for simulation of the waves to reach suf-
ficient accuracy. It is shown (see papers [45] and [46] by Ihlenburg and Babuska)
that for high frequency problems the error of the FEM approximation is propor-
tional to kP T1hP, where p is the order of the basis functions, k is the wave number
and h is the mesh step size. This pollution effect is the main reason that the num-
ber of grid points grows rapidly, especially in 3D problems at high frequencies.
Thus, linear systems become very large and some sophisticated solution method
is needed to solve the equation.

In this chapter we discuss two different solution methods for time-harmonic
wave scattering in fluids and elastic materials. In both of the methods AMG
described in the previous chapter is used as a preconditioner. One is applying
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a (physical) damping preconditioner to time-harmonic wave equations. In this
case AMG is used in approximating the inverse of damped operators. Erlangga
et al. proposed in [30] to use an imaginary shifted-Laplacian operator as a pre-
conditioner for the Helmholtz equation. They applied one cycle of geometric
multigrid to approximate the inverse of the operator. In [PII] we extended this
idea but instead of using geometric multigrid, we employed our graph-based
multigrid. Furthermore, in [PIV] we applied this idea also to solving the Navier
equation describing the behavior of linearly elastic material.

Another approach to solving wave equations is falling back from a time-
harmonic case to a time-dependent case and then using control techniques to
search for a time-periodic solution. We study here a method originally introduced
by Bristeau, Glowinski and Périaux (see, for example [17, 18, 19, 39]), whose prac-
tical realization we have improved. In this approcah the AMG method is used as
a preconditioner for the conjugate gradient method (CG) ([43], [48]). This tech-
nique, applied both to Helmholtz and Navier equations, is presented briefly in
Sections 2.1.3 and 2.2.2. A detailed introduction to the method and numerical
experiments can be found in papers [PI, PIII] as well as in [58] of Monkold. A
comparison of these two different approaches applied to the Helmholtz equation
can be found in [1] by Airaksinen and Monkola.

2.1 Wave scattering in fluids

As long as the changes in velocity, density and deformation are small compared
to unity, mechanical waves can be described by linear wave equations [49]. Let
P(X,t) denote an acoustic pressure field, p(¥) the density of the medium in which
the acoustic wave propagates and F(X,t) a source term. The propagation of the
wave in the medium is then described by the linear acoustic wave function:

RS S O
p(X)c(X)> ot? (%)
Here, t is time and ¢(X) is the speed of sound in the medium. We are aiming

at solving time-harmonic wave equations. By substituting P(¥,t) = p(X)e ',
F(%,t) = f(X)e “and k = ﬁ, w and ¢ being strictly positive functions, we get

VP) =TF. 1)

the time-harmonic Helmholtz equation

v. Loypm K@
MENETE

p(%)

p(%) = f(%). )

The so-called wave number k denotes how many wave lengths there are per unit
length, and it varies as the speed of sound ¢(X) in the medium varies. w is the
angular frequency.

The boundary I of the domain () is composed of two non-overlapping sets,
I' =Ty UT;. Atleast one of these sets is non-empty. On boundary I'y a sound-soft
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boundary is described by the Dirichlet boundary condition

p=8s only 3)
The impedance boundary condition is expressed by
, d
—ivkp + £ =gi, onl; 4)

where 71 (X) is the outer normal vector and i is the imaginary unit. The absorbency
coefficient v (X) € [0, 1] describes the amount of absorption on the boundary TI'’;.

Usually, phenomena like radar wave scattering from an obstacle (aeroplane,
submarine, for example) take place in an infinite domain. It would be unreason-
able, and even meaningless, to model the whole domain while we are actually
interested in what happens near the obstacle. That is why these exterior problems
in infinite domains are truncated into a finite computational domain. An example
of a truncated domain () for the calculation of a wave scattering by an obstacle is
depicted in Figure 4.

Fext

FIGURE 4 Computational domain ) and artificial boundary I'cy;. In the middle is an
obstacle with sound-soft boundary I';.

At a "sufficient" distance from the obstacle, on an artificial boundary, an ab-
sorbing boundary condition is imposed to avoid non-physical reflections from
the boundary. Here we have done this by setting v = 1 in the above impedance
boundary condition (4). It describes a first-order approximation of the Sommer-
feld condition [72] expressing the propagation of the wave through this boundary.
It could be replaced by a second-order approximation to achieve better accuracy;
see the work by Enquist and Majda [28]. There are also several other formulations
of absorbing boundary conditions and other techniques (for instance, Perfectly
Matched Layer) to reduce non-physical reflections. For these, see recent articles
by Thompson [77] and Erlangga [29] and the references therein.

2.1.1 Discretization of the Helmholtz equation

The Helmholtz equation (2) is a partial differential equation (PDE), whose ana-
lytical solution is in general not known. However, it is possible to compute an
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approximation of the solution by using suitable numerical methods. To do this,
continuous functions in the PDE must be replaced by their discrete counterparts.
There are different strategies to discretize partial differential equations: for ex-
ample, finite differences [57], finite volume methods (FVM) [31], boundary ele-
ment methods (BEM) [65] and finite element methods (FEM) [21, 88]. There are
also some special discretizations that are related to the FEM, for example infinite
element methods (IFEM) [8, 38], hp—FEM [5, 24] and spectral element methods
(SEM) [63, 52, 64]. In this thesis we concentrate on FEM and SEM discretizations.

For the FEM discretization we need to introduce a weak (or variational)
formulation of the Helmholtz equation. We choose a test function space Vj and a
solution space V as

Ve ={q€ H'(Q) :g=g(x) onT4}. ()

By multiplying equation (2) by test function g € Vj, integrating over the domain
) and using partial integration together with Green’s formulae, we obtain a weak
formulation for the Helmholtz equation: Find p € V, such that

L iykpa) ds -/ L ikpq) ds = [ faax ©
o rkpq T, P9 01

1 a

1
fV-V‘—kz‘d—/
/QP(P g —k“pg) dx s

for all g € Vp. For a finite element discretization of physical domain (), a mesh 7°
is defined such that
Q= U K,
KeT

that is, (), is an approximation of (). If the boundary of the original domain () is
polygonal, then (), = (). The mesh 7 consists of either triangular or quadrilat-
eral elements K in two-dimensional and of tetrahedra in three-dimensional prob-
lems.

2.1.2 A damping preconditioner for the Helmholtz equation

Discretization of weak the form (6) of equations (2)-(4) by the finite element method
leads to a sparse and linear equation of form

Ax=b, AecCN*N xbecCV, 7)

where N refers to the number of grid points. Complex-valued coefficient ma-
trix A is indefinite, symmetric and non-Hermitian. To maintain the accuracy
of the discretization, a very high number of gridpoints is required, which re-
sults in a highly indefinite and large linear system. Direct methods suffocate
because of substansial fill-in, especially in 3D. Modern iterative solution meth-
ods, like Krylov subspace iterative methods, for example Saad’s GMRES [69] or
Bi-CGSTAB [80] by van der Vorst, multigrid methods and domain decomposition
methods, have low memory-usage (at least when compared to direct methods),
but in Helmholtz-type problems they suffer from significant slow-down of con-
vergence without a proper preconditioning.
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A numerical solution of the Helmholtz equation has attracted a lot of re-
searchers working on the field of computational science. Numerous different
strategies for discrete Helmholtz equations have been introduced in recent years.
A good review of the development of this topic can be found in [77] of Thomp-
son. An introductory book of the topic is [44] by Ihlenburg, which handles a
reliable simulation of scattering problems using finite element methods for the
Helmbholtz equation with moderate and large wave numbers.

Here we have chosen to use right preconditioning, where the original equa-
tion (7) is replaced by the equation

ABly=b, y=Bx 8)

The preconditioner matrix B is chosen so that the condition number of the precon-

ditioned system AB~! will be reduced. We will use a preconditioner introduced

by Erlangga et al. in [30] that is based on a discretized shifted-Laplacian operator
1 L k(x%)?

B = —V'@V—(ﬁﬁrﬁzl)ﬁz p1, B2 € R, )
where parameters 1 and B, can be freely chosen. A damped Helmholtz operator
will be obtained by choosing 1 = 1 and B, to be positive. The boundary condi-
tions and the discretization of the operator B are identical to those of the original
problem (2). The computation of the exact inverse of the preconditioner B would
require as much computational effort as solving the original problem. Thus, we
use one W-cycle of multigrid presented in the previous chapter with one pre- and
one post-smoothing sweep by under-relaxed Jacobi iteration to approximate the
inversion.

2.1.3 Controllability method for the Helmholtz equation

The exact controllability method for partial differential equations is based on the
Hilbert Uniqueness Method (HUM), introduced by J.L. Lions in [50]. The method
we use here to find time periodic solutions for the Helmholtz equation was intro-
duced in [17]. Instead of solving time-harmonic equations (2)—(4) directly, they
can be substituted for solving an exact controllability problem

0°P 5 .
W—szf, anX[O,T}, (10)
P=Gy onlyx[0,T] (11)
oP JP
g —+ ﬁ = Gir on Fi X [O, T], (12)
. oP .
P(X,0) = e, E(X,O) =e, inQ), (13)
. oP :
P(%,T) = ey, E(x, T)=e¢, inQ. (14)

The idea is to find such initial conditions e = (ep, e1) that the solution P and its
time derivative at time T would coincide with the initial conditions. The numer-
ical solution for this is achieved by minimizing the difference between the initial
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conditions and values of the corresponding variables after time period T. Thus,
the problem is formulated as a least-squares optimization problem

, 1/ OP(X,T)
min 5 o 781’ 1

The space discretization of the weak formulation of the wave equation (10)—(12)
is done by the Spectral Element Method. The discretized objective function of the
least-squares problem (15) reads

2
dx+%/ﬂ |V(P(%,T) —e0|2dx}. (15)

oulN

N
e M(% ) (16)

1
*(MN — EO)TK(MN — 8()) + 5(?

2
where M is the mass matrix and K is the stiffness matrix arising from the dis-
cretization. Time is discretized by the fourth-order Runge-Kutta method (see, for
example [35]).

According to Maday et al. [51], using the conjugate gradient (CG) method
without any preconditioning to solve discrete system (16) would lead to a grow-
ing number of iterations when the order of the elements grows. Here we have
used preconditioned CG described in Algorithm 6 to avoid a slow-down of the
convergence.

ALGORITHM 6 (Preconditioned CG algorithm)

Compute the initial values e; and ey.
Solve the state equation s(e, u(e)) = 0.

Solve the adjoint state equation (as(ael;‘(‘é;')) ) Tp = (a] gz‘(‘e()e)) )T.
Compute the gradient vectors gp and g;.
Solve the linear system with the preconditioner Lw = —g.

Setcg = —(w,g),c=cpandi=1.

Repeat until /= < &

Solve the state equation s(w, u(w)) = 0.

os(wu(w))\T of(wu(w))\T
() e = (s’

Compute the gradient updates v and v;.
Compute = ﬁ

el = e+ Bw.

g=g+pv.

Solve linear system with the preconditioner Lv = —g.

y=Lc=—(v,g),y=cr.

w=v+qw,i=1+1.

O 0 N oG W

[EEE—Y
= O

O N T Y
SN e

In the preconditioning steps (5) and (14) in the Algorithm 6 we use the block-
diagonal preconditioner
L 17)

0 M
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where the matrices K and M are the stiffness and mass matrix, respectively.
In spectral elements, the nodes of the element are located at the Gauss-Lobatto
quadrature points, so the mass matrix is diagonal and the calculation of the in-
version is straightforward. The preconditioning with the stiffness matrix K is
computed by using the AMG method presented in Section 1.1. In practical simu-
lations where dozens of CG iterations are needed to reach sufficient accuracy it is
highly important to have a fast solver like AMG for the preconditioner.

2.2 Wave scattering in elastic materials

A time-harmonic wave U(%,t) = i(X)e ™!, where t is time and w is angular
velocity, propagating in an elastic medium is modelled by the Navier equation

—w?pil =V -5(il) = f, inQ. (18)

In the above equation (18) f is the force term and p is the density of the material.
Stress and strain forces are bound together through Hooke’s law describing the
stress tensor

o(if) = A(V - ii) 4+ 2pé(ii) (19)
and the strain tensor 1

&(it) = 5(Vﬁ +(vin)T). (20)
The Lamé parameters A and y are defined as follows:

E Ev

" " ey M T Ty

(21)
The stiffness of an isotropic material is measured by tensile (Young’s) modulus
E(X). Poisson’s ratio v(X) is the ratio of transverse contraction strain to longitu-
dinal extension strain in the direction of stretching force. Furthermore, the speed
of pressure and shear waves, ¢, and c; respectively, can be expressed as functions
of Lamé parameters and of the density p:

A+2u \/ﬁ
Cp= 4| ———,C=,/—. (22)
PN e T Vo

The wavelengths and wave numbers for pressure and shear waves are

27 w
Ai=ci—, ki=—, i=p,s. 2
=Gy k= i=ps (23)
To solve the equation (18) boundary conditions must be expressed. Here we have
used two kinds of boundary conditions by dividing the boundary dQ) of an elastic
material into two non-overlapping sets 002 = I'; U I’; such that at least one or the

other of these sets is not empty. By the Dirichlet boundary condition

=gy only (24)
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we can describe, for example, a non-movable part of the body by setting § = 0, or
a vibrating source by setting g as something different from zero. The absorbing
boundary condition for the Navier equation is

where the components of the matrix B are defined by
Bij = Cphin; + Cstit]-, in 2D, and (26)
Bif = Cpnin; + Cstitj; +CsS,’S]' in 3D, (27)

where ¢, and ¢ are speeds of pressure from the Equation (22) and shear wave and
g and f are tangentials of the boundary. The vector 7 is an outer normal vector of
the boundary.

2.2.1 A damping preconditioner for the Navier equation

At first it is convenient to introduce some matrices arising from a FEM discretiza-
tion of the Navier equation (18) and its boundary conditions (24) — (25). Here the
matrices introduced in this order are called mass matrix, stiffness matrix and a
matrix arising from the absorbing boundary condition (25):

M= /przu~vdx, (28)
K= /Q 5(u) : &(v) dx, 29)
C=-— /r.’ywpéuwds. (30)

Using the notation above the discretization of the Navier equation in the matrix
form reads:
K+iC-M (31)

Our hypothesis is that the same kind of a physically damped operator as was
used for the Helmholtz equation in the previous section results in an efficient pre-
conditioner also for the Navier equation. Physical damping in an elastic material
is added by using a complex Young’s modulus, i.e. by multiplying the original
Young’s modulus by a complex shift z = ap + Boi. This leads to a preconditioning
operator

B=—w*—2V-5(-), (32)

where &, and f; are freely chosen parameters. The complex shift z also affects the
absorbing boundary condition (25):

iwp\/zBii + 25 ()i =0 onTy;. (33)

Using the matrix notation (31) the discretization of the operator (32) produces a
damped Navier preconditioner

P =zK + /ziC — M. (34)
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2.2.2 Controllability method for the Navier equation

As well as for the Helmholtz equation in Section 2.1.3, the exact controllability
method can be applied to the Navier equation. The time-harmonic Navier equa-
tion (18) with the boundary conditions (24)—(25) transformed back to the corre-
sponding time-dependent wave equation is

02U P
PS5 — V-3l =0,inQ=0x(0,T), (35)
U =Gy ony=Tyx(0,T), (36)
1
pBg +o(U)i=G;, ony; =T;x(0,T), (37)
with the initial conditions

4 ol (%

0(x,0) = &, w — 7. (38)

In the same manner as for the Helmholtz equation in Section 2.1.3, the exact
controllability problem (35)-(38) is formulated as a least-squares problem that
is solved by the preconditioner Conjugate Gradient algorithm 6. The blocks of
the preconditioner L in this case are of the type

K1 K12} {Mll 0 ]
K= , M= , 39
|:K21 Kz 0 My 39)

due to the vector-valued variable il = (uy,u;). Because of the spectral element
discretization the mass matrix M is naturally diagonal. Since we are solving a
vector-valued problem, specific care is needed with the AMG algorithm to keep
different displacement components disconnected on coarser levels. A solution
is to use an initial graph where the sets of graph nodes corresponding to differ-
ent types of unknowns are not interconnected and the restriction matrix is built
blockwise.

2.2.3 Forming the graph for higher-order FEM or SEM

In this thesis, different kinds of higher-order finite element methods have been
used for the discretization of Helmholtz and Navier equations. Damped precon-
ditioning operators for both Helmholtz (2) and Navier equation (18), as well as
weak forms of these equations, are discretized using first, second, and third order
Lagrange finite elements. In 2-D triangular elements are employed and tetraehe-
dral elements are used in 3-D examples. In Figure 5 a second-order triangular
Lagrange element is depicted on the left.

In controllability method investigations for both Helmholtz and Navier equa-
tions rather simple geometries in 2-D were studied. Instead of higher-order La-
grangian elements, a so-called Spectral Element Method (SEM) was used to dis-
cretize the equations. In spectral elements, nodes of the element are located at the
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FIGURES5 A second-order triangular Lagrange element on the left and a third-order
spectral element on the right.

Gauss-Lobatto qudrature points. Rectangular spectral elements up to the fifth or-
der were used. In Figure 5 a third-order spectral element is depicted on the right.
Higher-order finite element discretization is discussed in general in book [71] by
Solin et al.

In Section 1.1 it was shown how to select coarse graph nodes for the prob-
lems discretized with first-order elements. If we were to use the original graph of
higher-order finite element discretization to select coarse graph nodes, we would
end up in way too coarse grids. This is because the graph would contain con-
nections between every node in a higher-order element. In this case, choosing
a coarse node from a higher-order element would eliminate all the other nodes
from the element. This is prevented by feeding to the method an initial graph
that contains only connections between the closest neighbours of a node. This is
analogous to the situation that we would form a finite element grid of first-order
elements using the same nodes as in a higher-order element grid.



3 APPLICATION OF THE AMG SOLVER IN CFD

In this chapter we test our graph-based multigrid in computational fluid dynam-
ics (CFD) applications. We will use it as a solver in the numerical simulation of
incompressible fluid flows modelled by Stokes and Navier-Stokes equations.

3.1 Stokes equations

Stationary, incompressible and slow fluid flow, strongly dominated by the vis-
cous effects, is modelled by the Stokes equation with suitable boundary condi-
tions on the boundary dQ of the domain Q C R?,d =2 or 3.

—vAii+Vp = f .
{ v.i —o 0% (40)

where ii is the velocity of the fluid, p is the pressure and f is the body force. Here
the kinematic viscosity v is assumed to be equal to unity; therefore it is dropped
in the further notations.

The boundary dQ) is assumed to be polygonal or polyhedral and it consists
of two non-overlapping sets () = I'p U I'y. Here it is assumed that the Dirichlet
part of the boundary is non-trivial, as otherwise uniqueness of the velocity so-
lution would not be assured. The boundary conditions associated with equation
(40) are

—

% —ip = 0 onTy, 41)
where g is a given function and 7i(¥) is the outer normal vector. The left condition
is the Dirichlet boundary condition and the right one is the Neumann boundary
condition. In this thesis, on Neumann parts of the boundaries a "natural outflow"
boundary condition is used, which is the reason why we have set the Neumann
boundary condition equal to 0.

For the finite element discretization we need to introduce a weak formula-

ii=gonlp,
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tion for the Stokes equations. We choose function spaces V; and Q to be

ng{ﬁe Hl(Q)d:ﬁzgonFD}, Q = L2(Q). (42)

The space V) is chosen as a test function space for the velocity field and a solution
for the velocity is sought from the space V,. For the pressure, both the test func-
tion and solution spaces are the same space Q. By multiplying Equation (40) with
test functions 7 € Vp and g € Q, integrating over the domain () and taking into
account boundary conditions (41), we obtain a weak formulation for the Stokes
problem: Find if € Vg and p € Q such that

V@iV pVide— [ f3d
/Q ii: Vi—p-Vidx vax

(43)
/ qV -iidx = 0.
Q
forall 7 € Vj and g € Q. Furthermore, let us define discrete function spaces
Vi = {5 e HY(Q)?:  |xe P", 5= §on rD},
(44)

Qi = {7 12(Q) 1 q ke P},

where P¥ denotes polynomials of order k or less. Here we have used linear trian-
gular elements in 2D problems and linear tetrahedral elements in 3D problems.
That is, the polynomial degrees in discrete function spaces (44) are m = n = 1.
In order to be able to use the same piecewise linear approximations for both ve-
locity and pressure, some stabilization is needed to prevent oscillating pressure
modes. Here we have used the stabilized finite element method for the Stokes
problem introduced in [37] by Franca, Hughes and Stenberg. For the piecewise
linear approximations of the velocity field the method reduces to the following
form. Find i), € Vg, and pj, € Q) such that

Vit : Vo, —p- Vo dx = [ foid
/Q uy : Vo, —p- Vo, dx .Qf 0y, dx

/ qnV iy dx — ) / ah?Vpy, - Vg dx = — ) /uch%f-thdx.
0 KeT /K KeT /K

(45)

for all 9, € Vy, and q;, € Qy. Here 7 is a non-overlapping partition of the do-
main () into elements K. The stabilization parameter « is a given constant and
hy is the diameter of element K. A choice of the stabilization parameter « to be
too large may lead to overstabilization of the Stokes problem (see, for example
discussion by Elman et al. in [27]). Aware of this, we remain within the stabilized
method (45), for it is very easy to implement and it has a favourable affect on the
convergence of iterative solvers.

However, it is worthwhile to mention other possibilities for dealing with the
stability issues. In mixed methods polynomial approximations of different order
for the velocity and pressure are used to form a stable discretization. For exam-
ple, in Taylor-Hood elements (see, for example, [23]), a quadratic approximation
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is used for velocity components and a linear one for the pressure. Other stable
pairings of polynomial approximations for the Stokes equations can be found for
example in the book [27] by Elman et al.

A parameter-free stabilization scheme for the Stokes problem is introduced
in [26] by Dohrmann and Bochev. In this method a local projection of the pressure
is used to correct the mismatch between the discrete divergence of the velocity
field and the discrete pressure space. In this way a stable linear approximation
for both the pressure and the velocity field is achieved without introducing any
"arbitrary” stabilization parameter.

3.2 Navier-Stokes equations

In order to take into account momentum effects in a stationary incompressible
flow, the Navier-Stokes equations are
—vA#l +p(il - V)il + Vp = f
oV =f o (46)
V.i=0

where v is the kinematic viscosity of the fluid. We assume that the viscosity and
the density p of the fluid are given constants. Furthermore, it is assumed that the
density is equal to unity so that it is dropped from the following notations. The
properties of a particular flow are often related to the Reynolds number, which is
defined by Re = pvl/v, where v and [ are the characteristic velocity and length
scale of the flow.
The Navier-Stokes equations are nonlinear due to the convective term (i -
V)ii and they must be linearized before using our linear solver. We have chosen
to use the Picard linearization because it has a larger convergence radius than the
Newton linearization. A disadvantage is that the Picard linearization converges
only linearly, whereas in the Newton method convergence is quadratic. By the
Picard linearization a solution to the nonlinear problem is sought as follows: se-
lect iiy (e.g. ilp = 0) and proceeding from u;, subsequently solve u;,1 and p; ;1
from the equations
{ —VAjq + (i V)il + Vpipr = f nQ, )
Vi1 =0

until the solution (if;,1,p;+1) satisfies equations (46) well enough. In practice the
iteration may need some underrelaxation. Thus, instead of taking ii;,, directly
as the solution of (47) we assign ii;;1 to be a convex combination of if;;1 solved
from (47) and the previous velocity ;. Giving a relaxation parameter 7 € [0,1]
the new velocity approximation is computed by

tiy1 = i1 + (1 —n)id;.
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This linear problem is a special case of the so-called Oseen problem where,
instead of the old approximation ii;, there is a given sufficiently smooth convec-
tive vector field 4. In this context a pseudo time integration can be used to stabi-
lize the iteration and to make the linear systems easier to solve, as suggested by
Wabro in [81]. The pseudo time integration consists of adding the terms

Kiliy1, Kilj, (48)

to the left and right hand side of the first equation in (47), respectively. Here «
is a suitable (small) parameter which can also be a function of the position, such
that the pseudo time integration is used only in some parts of the computational
domain.

We choose function spaces Vi and Q as in (42) and obtain a weak formula-
tion for the Oseen (linearized Navier-Stokes) problem: Find i € Vyand p € Q
such that

/vVﬁ:V5+(E~V)ﬁ-z7—pV-z7dx:/f-z?dx
@) Q (49)
V-

|

for all 7 € V) and g € Q. Here 4 denotes some known vector field.

The discretization of the weak Oseen problem is done by the finite ele-
ment method using equal-order linear approximations for the velocity compo-
nents and pressure. This approximation is unstable, so we will use a stabilization
method introduced in [36] by Franca and Frezzi. For linear approximations of the
velocity field, the stabilization method reduces to a streamline-upwind /Petrov-
Galerkin (SUPG) type of formulation (describred for example in [20] by Brooks
and Hughes). The stabilized weak formulation for the Oseen problem reads: Find
ily, € Vo, and pj, € Qy, such that

dx =0.

/(')vvﬁh:v5h+(aﬂV)ah.5h—phv-z7h+(svﬁhv.5hdx

+ Z /I<R0~Todx=/0f~5hdx+ Z /Kf-Tde, (50)

KeT KeT
/th~ﬁh— Z/TVph-thdx:— Z/Tf-thdx
Q KeT /K KeT /K

holds for all 7, € Vy, and g, € Qp. In Equation (50) appears many different
parameters which are discussed next. At first, the term 0V - i}V - 7}, dx is used
for the continuity stabilization. In article [36] by Franca et al. the parameter ¢ is
defined by 6 = A||@(X)||hg min(Reg(X), 1), where A > 0 is a positive parameter.
In the numerical tests we have chosen A = 1. An element-specific Reynolds
number Reg(X) is defined as

m|[d(%)||hk

REK()?) = 4v

(51)
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where it is sufficient to choose mg = % when linear interpolations are used. No-
tations Rp and Ty are used for abbreviating the following stabilization terms:

Rp := (ﬁ V)ﬁh +Vpn, To:= T((ﬁ V)Z_fh - th), (52)
where 7 is the stabilization parameter

_ hg min(Reg(X),1)

LG 3)

Other stabilization methods for the incompressible Navier-Stokes equations can
be found, for example, in [23, 61, 62, 75, 76, 86].

3.3 Adjusting the AMG for incompressible flow problems

For incompressible flow problems we form the initial graph using a finite element
mesh. There is a graph node for each type of unknown in each nodal point of
the mesh. The graph nodes corresponding to the same type of unknown are
connected if the corresponding nodal points in the finite element mesh share at
least one common element. Nodes for the coarser level are chosen as describes
in Section 1.1. Moreover, we eliminate the degrees of freedom corresponding to
Dirichlet type boundary conditions after the coarsening process. This way we
do not have to use a "double coarsening strategy” suggested in [81] by Wabro for
avoiding stability problems.

In the numerical experiments smoothers for the AMG are the standard in-
complete LU factorization without fill-in (ILU(0)) presented in Algorithm 4 in
Section 1.2 and a variant of ILUT decomposition presented in Algorithm 5 in the
same section. In smoothing steps we use relaxation. The relaxation parameter is
either given by the user for every level of the AMG except for the coarsest level,
where a direct solver is used, or an optimal relaxation parameter is calculated to
minimize the 2-norm of the residual. In the second case the relaxation parameter
is calculated for a discrete problem Ax = f as follows: First we set dy = Sry,
where dy is the new search direction (as in a minimization procedure), S corre-
sponds to the action of the smoother and ry is the residual in the iteration step k
defined by r; = f — Ax;. The approximate solution is updated by

(r, Ady)

(Ady, Ady)’ (54)

Xg+1 = Xk + Brdy, where By =
Unless stated otherwise, we use W-cycles with one pre- and one post-smooth on
any other level except the coarsest. The numbering of the degrees of freedom
in the discrete system has some effect on the ILU-smoother of the AMG. Also, it
changes the bandwidth, and thus the storage format, of the coarsest system. A

resonable requirement is that the degrees of freedom corresponding to a specific
nodal point are numbered sequentially.
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3.3.1 Stability issues

The stabilization of the pressure in both Stokes and Navier-Stokes problems, as
well as of the convection term in Navier-Stokes, calls for elementwise added
terms, which have an h-dependent coefficient in front of them. With AMG this
causes a problem, since this coefficient transfers to the coarse levels as such,
which will impair the stability. As analyzed in [81], the stability of the coarse
grid systems can be assured, for example, by postprocessing the corresponding
matrix elements in the coarse grid systems. However, when using an unstruc-
tured mesh, postprocessing is not straightforward as we do not know how to
scale the h-dependent coefficients correctly, because the sizes of the “elements” in
coarse levels are unknown. Additionally, we want to construct a method which
is as close to a black box algorithm as possible, and therefore we will do no post-
processing. Instead, only a few coarser levels are used such that the stability is
not lost. While this is admittedly in contradiction with the multigrid ideology, we
will show that the constructed method is still good for practical purposes.

3.4 Numerical examples

3.4.1 A Stokes flow in 2D lid-driven cavity

We start by solving the stabilized Stokes problem in a classic lid-driven cavity
setting. The computational domain of the problem is the unit square. On the top
of the square we set the velocity field of the flow equal to (1,0) and it vanishes
on the other boundaries. The iteration is continued starting from a zero initial
guess until the 2-norm of the residual is below 10~°. The problem is solved on a
sequence of uniform meshes. The smoother here is ILU(0).

First, as a comparison, we solve the Stokes problem so that degrees of free-
dom related to the Dirichlet boundary are eliminated before the coarsening pro-
cess. Additionally, no relaxation is used in the smoothing steps. Finite element
meshes used in discretization are structured and they consist of linear triangular
elements. The element sizes vary from 1/32 to 1/256 for four different meshes.

The results are shown in Table 1. Starting from the left, the mesh step size h,
the size of the discrete system (after eliminating Dirichlet boundary conditions),
the discretization time, the number of levels in the AMG and its initialization
time, the ILU factorization time, the system solve time, number of iterations and
the averaged residual contraction per cycle are shown. The various times are in
CPU-seconds.

As can be seen from Table 1 the results are quite discouraging. The AMG
solver fails to achieve convergence as the number of levels of AMG increases.
Even though we restrict the number of levels to three, the biggest problem does
not converge at all and the second biggest problem converges very slowly.

We next solve the same problem as above, but this time we use elimina-
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TABLE 1 The Stokes flow in a lid-driven cavity, pre-elimination, no relaxation.

h size Discr. levels AMGinit. ILUinit. Solve Iter. Rate
1/32 3011 0.03s 2 0.04s 0.01s 0.09s 9 0.154
1/64 | 12163 0.15s 0.22s 0.05s 0.49s 9 0.158

1/128 | 48899 - - - - - -
1/128 | 48899 -
1/128 | 48899 0.67s
1/256 | 196099 -
1/256 | 196099 -
1/256 | 196099 -

2.03s 0.15s 14.46s 54 0.770

W = U1 W = U1 W

tion after coarsening discussed in Section 1.1, and optimal relaxation (54) in the
smoothing steps of Algorithm 2. Same meshes as above are used. The results
are gathered in Table 2, where the explanations of the columns are equivalent to
those for the previous table.

TABLE 2 The Stokes flow in a lid-driven cavity with optimal relaxation, elimination
after coarsening.

h size Discr. levels AMGinit. ILU init. Solve Iter. Rate
1/32 3011 0.03s 0.05s 0.01s 0.05s 7 0.094
1/64 | 12163 0.15s 0.21s 0.04s 0.31s 8 0.102

1/128 | 48899 0.81s 1.55s 0.20s 3.07s 9 0.151
1/256 | 196099 - - - - - -
1/256 | 196099 2.55s 6.91s 0.63s 11.1s 10 0.196

= U1 = LN

The results of this experiment are much more positive than those of the
previous one, but we can still observe the slowing of the convergence with respect
to the number of levels in AMG. There are two explanations for this. First, any
multigrid method applying a direct solver for the coarsest problem converges
better (also theoretically) for a smaller number of levels. Secondly, the further
we coarsen the system the more we have problems with stability. This manifests
itself in the largest problem, where the solver fails. The method works well again
when the number of coarse levels is smaller.

This phenomenon can be futher confirmed by increasing the stabilization
parameter. We choose now the pressure stabilization parameter x = 1/12 and
compute the corresponding results. Here optimal relaxation is used and elimi-
nation is carried out after the coarsening. For the higher stabilization parameter
(Table 3), we observe better convergence rates and we do not experience any
problems even during the largest simulation.

In Figure 6 is illustrated the memory usage of our AMG solver for meshes
used above. The memory usage of the whole running program is shown on the
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TABLE 3 The Stokes flow in a lid-driven cavity, « = 1/12.

h‘ size Discr. levels AMGinit. ILU init. Solve Iter. Rate

1/32 3011 0.04s 2 0.04s 0.01s 0.07s 7 0.008
1/64 | 12163 0.15s 3 0.24s 0.03s 0.39s 7 0.078
1/128 | 48899 0.62s 4 1.23s 0.15s 1.84s 7 0.077
1/256 | 196099 2.59s 5 6.85s 0.60s 9.12s 7 0117

left side of the figure and on the right is shown the portion of the AMG com-
ponents, including fine level graph, coarse level matrices and vectors, restriction
matrices, ILU and LU factorizations.

160

140 |

120 |

100 F

Memory usage (Mb)
Memory usage (Mb)

%0 000 40000 w000 000 100000 120000 140000 160000 10000 20000C ®0 00 0000 60000 50000 100000 120000 140000 160000 180000 200000
Number of unknowns Number of unknowns

FIGURE 6 Memory usage in Stokes problem in 2D driven cavity on different meshes.
Whole running program (left) and AMG components (right).

Finally for this section, we test our algorithm with an unstructured mesh.
For comparison we will use the coarsening strategy proposed by Kickinger in
the paper [47], in which the selection of coarse nodes is carried out in a straight-
forward manner according to the numbering of the unknowns. For the test we
generated two unstructured meshes with arbitrary numbering of the nodes. The
smaller mesh contains 3007 nodes and 5812 triangular elements, while the larger
one has 14697 nodes and 28416 elements. The results are shown in Table 4. The
labeling of the columns is equivalent to that in the previous tables except for the
first column where we mark our coarsening strategy by ‘I’ and the strategy used
in [47] by 'II". In these cases, slightly better convergence rates can be achieved
with our coarsening strategy. With structured meshes both coarsening strategies
produce similar coarse levels and, thus, similar convergence rates.

3.4.2 A Navier-Stokes flow in 2D lid-driven cavity

Next we solve the Navier-Stokes equations with the Picard-iteration in the same
test setting as in the previous examples. Using the current approximate solution
ily, py of the Picard iteration step k and the Oseen system (50), we can calculate the
residual ry_g of the nonlinear equations. The Picard iteration is continued until
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TABLE 4 The Stokes flow in a lid-driven cavity, unstructured mesh

size Discr. levels AMGinit. ILU init. Solve Iter. Rate

I| 821 0.11s 3 0.32s 0.04s 0.67s 10 0.183
Ir| 8621 0.11s 3 0.30s 0.03s 0.73s 11 0.235
142139 0.64s 4 4.99s 017s 4.85s 14 0.282
IT | 42139 0.64s 4 4.70s 020s 5.61s 16 0.339

the residual norm ||y _g||2 is smaller than a prescribed parameter. The presented
AMG method is used as an inner iteration and it is stopped when the residual of
the Oseen problem rp; satisfies the following condition:

[x0s]l2 < 1073 (Jrn—s]2.

The initial guess for the inner iteration is the current solution iy, py. The strat-
egy for choosing the relaxation parameter 7 for the outer Picard iteration is the
following. We start with the value # = 1. If, in some step, the outer iteration
diverges, the new parameter is # = max(0.1,%/2). In the case of convergence, 7
is updated to min(1.0,1.17). In this way, the problems are usually solved without
an intervention from the user.

In the AMG method, ILU(0) is used as a smoother with the optimized re-
laxation parameter (54). The density of the fluid is p = 1.0 and the viscosity is
v = 2.0-1073, giving the Reynolds number Re=500. For the outer Picard itera-
tion the initial guess for the velocity is ilp = 0 and for the pressure pg = 0. The
nonlinear iteration was stopped when ||ry_s||» < 10~® was reached. The method
is tested with respect to the mesh step size. The results are reported in Table 5.

TABLE 5 The Navier-Stokes flow in a lid-driven cavity.

h size lvls P.it. A.it. Discr. A.in. L in. Solve Total
1/32 3011 10 40 0.05s 0.06s 0.01s 0.05s 1.94s
1/64 | 12163 11 40 0.19s 0.33s 0.05s 0.30s 10.44s

1/128 | 48899 11 40 0.83s 1.66s 024s 1.41s 49.72s
1/256 | 196099
1/256 | 196099

10 39 327s 857s 1.01s 574s 204.26s

= 01 = W N

The table shows the mesh step size, the size of the discretized system, the num-
ber of levels in the AMG, the number of outer iterations, the average number of
inner iterations per outer iteration and the total CPU-time of the program. Solve
time refers to time of one outer iteration. Since the structures of the discrete prob-
lems are the same as for the Stokes flow, the individual initialization times are
comparable to those of the Stokes flow results.

Again, we notice the lack of convergence for the largest problem using five
levels in the AMG. This is due to the loss of stability and it can be circumvented by
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taking one less coarse level. Otherwise the method behaves well and the number
of inner iterations required for each outer iteration is very low.

In the next sequence of tests the effect of viscosity on the method is under
consideration. Therefore we set the fluid density p = 1 and measure the compu-
tational times with the viscosity parameter v ranging from 10! to 107°. We are
well aware that these simulations are not physically realistic without turbulence
modelling and these experiments are performed only to test the method. The set-
ting of the problem is the same as before and the mesh is uniform with & = 1/128.
The results are reported in Table 6.

TABLE 6 The Navier-Stokes flow in a lid-driven cavity.

v P iter. A.iter. Discr. A.in. L in. Solve Total
1.0e-1 4 450 086s 1.67s 0.25s 1.63s 20.93s
1.0e-2 7 414 0.84s 1.70s 0.24s 1.50s 33.63s

1.0e-3 13 400 0.85s 1.71s 0.25s 1.46s 60.01s
5.0e-4 15 427 0.79s 159s 0.23s 145s 65.38s
2.0e-4 17 576 0.78s 1.58s 0.23s 2.06s 83.87s
1.0e-4 30 863 0.79s 159s 0.23s 323s 181.55s
5.0e-5 44 1166 0.83s 1.67s 0.24s 471s 336.80s
2.0e-5 80 2785 0.79s 1.59s 0.23s 11.14s 1114.15s
1.0e-5 — — — — — — —

As expected, viscosity affects the convergence of the outer iteration and the
solution phase of the AMG inner iteration. The last row of the table reveals that
the inner iteration did not converge for v = 10~°. This problem can be circum-
vented by using pseudo time integration (48). Table 7 shows the results of the
same experimets with the pseudo time integration weight x = 0.01.

TABLE 7 The Navier-Stokes flow in a lid-driven cavity, pseudo time integration.

v P iter. A.iter. Discr. A.in. Iin. Solve Total
1.0e-1 4 450 0.78s 1.58s 0.23s 1.51s 19.37s
1.0e-2 7 414 082s 159s 023s 1.40s 31.68s

1.0e-3 15 4.00 0.81ls 1.59s 023s 1.35s 64.13s
5.0e-4 17 424 080s 1.60s 0.24s 145s 7441s
2.0e-4 23 648 0.84s 1.66s 024s 247s 12592s
1.0e-4 29 772 084s 1.67s 024s 3.02s 174.37s
5.0e-5 55 10.64 0.85s 1.68s 0.25s 4.25s 396.88s
2.0e-5 118 2075 0.83s 1.65s 0.24s 850s 1343.97s
1.0e-5 210  36.00 0.83s 1.65s 0.24s 14.88s 3727.18s

This time the problem with v = 1073 could also be solved. However, the
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pseudo time integration seems to have a tendency of considerably slowing down
the convergence of the outer iteration.

Figure 7 shows scaled velocity vectors near the lower right corner of the
computational domain at viscosities v=1.0e-3, v=5.0e-5 and v=2.0e-5. Secondary
and tertiary vortices can be observed.

FIGURE 7 Scaled velocity vectors at viscosities v=1.0e-3, v=5.0e-5 and v=2.0e-5.

3.4.3 A 2D backward facing step

Let us study next the well known backward facing step problem setting. Here the
computational domain is the union of two rectangles, |0,2[x]0.5,1[and |2,16[x]0, 1],
which depict a two-dimensional ‘pipe” with a sudden expansion in the direction
of the flow. The velocity field at the inlet has a parabolic distribution u(0,y) =
16.0(y — 0.5)(1.0 — ).

We solve the problem on an unstructured finite element mesh which con-
sists of 12867 nodal points and 24818 linear triangular elements. The discrete
problem has a total of 36811 unknowns. The results are reported in Table 8.

TABLE 8 The Navier-Stokes flow past a backward facing step.

v P.iter. A.iter. Discr. A.in. ILin. Solve  Total
1.0e-1 5 5.00 0.60s 1.87s 0.22s 1.80s 25.55s
1.0e-2 11 5.00 0.60s 1.87s 0.23s 1.78s 53.14s
1.0e-3 — — — — — — —

The method diverges already at the viscosity value v=1.0e-3. The main prob-
lem with the method is the lack of robustness in the settings where a large vortex
reaches the computational boundary. This is precisely what happens in this test
case and in several other tests not reported here. A partial solution to this problem
is to use pseudo time integration or to increase the length of the computational
domain.

Next we use pseudo time integration in the whole computational domain
with the weight parameter ¥ = 0.1. The corresponding results are shown in Table
9. The drawback of the pseudo time integration is its negative influence on the
convergence of the outer and inner iterations.

Next we use a variant of ILUT by Saad [67] as a smoother of AMG. In ILUT
the dropping threshold of the matrix elements is relative to the maximum norm
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TABLE9 The Navier-Stokes flow past a backward facing step.

v ‘ P iter. A.iter. Discr. A.in. ILin. Solve Total
1.0e-1 5 560 0.61s 1.78s 0.22s 1.99s 25.96s
1.0e-2 13 538 0.59s 1.76s 022s 1.89s 61.92s

1.0e-3| 138 3841 061s 183s 023s 158ls 2567.83s
5.0e-4 - I — — —

of the particular row of the matrix to be factored. However, since there is a possi-
bility that a diagonal element of the triangular factors vanishes, all diagonal ele-
ments smaller than a given constant are replaced with the same constant. Results
are shown in Table 10. We can observe better convergence rates when using ILUT
as a smoother. A disadvantage is that the computation of the ILUT factorization
is much more expensive than the standard ILU(0).

TABLE 10 The Navier-Stokes flow past a backward facing step.

v P.iter. A.iter. Discr. A.in. ILin. Solve Total
1.0e-1 5 440 059s 1.79s 091s 1.66s 27.67s
1.0e-2 11 409 058s 1.78s 091s 1.53s 56.34s
1.0e-3 97 6.81 0.59s 1.80s 091s 278s 602.90s
5.0e-4 224 794 0.59s 1.80s 092s 3.27s 1500.28s

3.4.4 A 3D lid-driven cavity

As the first three-dimensional problem we consider the previously described lid-
driven cavity problem. The computational domain is a unit cube [0,1]> with
Dirichlet boundary conditions #i = (1,0,0) on the top face of the cube, and
il = (0,0,0) on other faces. For the computations, we have created a structured
finite element mesh consisting of 35937 nodal points and 196608 tetrahedra ele-
ments. The number of unknowns on the finest level is 125310 and the number of
levels in AMG is five. As we can see from the Table 11, the number of outer iter-
ations increases substantially when viscocity decreases, but the number of inner
iterations remains reasonably small.

3.4.5 A 3D square pipe with cylindrical obstacle

In this example we simulate the flow in a pipe with a square cross section in
which a cylindrical obstacle has been introduced. The exact domain for the com-
putations is

10,2[x]0,1[2\B(0.75,0.5,0.2) x]0, 1|,
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TABLE 11 The Navier-Stokes in 3D lid-driven cavity.

v P.iter. A.iter. Discr. A.in. I in. Solve Total
1.0e-1 4 5.00 14.93s 37.20s 3.41s 9.23s 313.72s
1.0e-2 10 550 15.11s 37.37s 3.45s 10.36s 721.11s
5.0e-3 21 5.86 15.77s 38.84s 3.59s 11.60s 1532.60s
2.0e-3 61 730 15.61s 38.38s 3.54s 14.64s 4490.53s
1.0e-3 254 8.92 15.62s 38.30s 3.54s 18.25s 19429.60s

where B(0.75,0.5,0.2) represents a ball on the x-y —plane at (0.75,0.5) with a ra-
dius 0.2. The computational domain is illustrated in Figure 8.
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FIGURE 8 Pipe and a cylindrical obstacle.

The flow comes into the domain from the left boundary (x = 0) with a bi-
quadratic profile i = 16.0y(1.0 — y)z(1.0 — z) and leaves it at the right boundary
(x = 2). An unstructured finite element mesh has been generated for the geome-
try having 18672 nodal points and 94304 tetrahedra. The results are gathered in
Table 12. As the results show, our method is still capable of convergence at the
viscosity value v = 1.0e — 3.

TABLE 12 The Navier-Stokes flow past a cylindrical obstacle.

v P.iter. A.iter. Discr. A.in. L in. Solve Total
1.0e-1 5 560 9.93s 28.03s 2.65s 7.05s 278.67s
1.0e-2 8 6.25 10.20s 28.79s 2.73s 826s 443.50s

5.0e-3 11 8.64 10.02s 28.35s 2.69s 11.67s 625.70s
2.0e-3 19 10.05 10.10s 28.43s 2.69s 13.86s 1106.20s
1.0e-3 42 10.67 10.06s 28.26s 2.68s 14.77s 2449.26s

With these test settings, the finest level system matrix has about 4 million
nonzero elements. The running program uses approximately 163 megabytes of
memory and 56% of this is reserved for the AMG components, such as fine level
graph, coarse level matrices and vectors, restriction matrices, ILU and LU factor-
izations.



4 CONCLUSIONS

In this thesis a graph-based multigrid method for solving large and sparse linear
equations was studied. The main goal was to construct a simple and easy to
implement, yet efficient, algebraic multigrid method to be used in the numerical
simulation of different physical phenomena.

The starting point for the study was a graph-based multigrid introduced by
Kickinger in [47]. It was improved by processing the Dirichlet boundary con-
ditions after the whole multigrid hierarchy was constructed. Additionally, the
method was modified so that any graph related to the problem could be fed into
the coarsening process. In practice, the graph is extracted from the mesh used
in the discretization or from the system matrix. Along with this modification we
gained more flexibility in our method at the cost of losing a pure black box feature
that is often associated with the AMG methods. The fast multiplication of sparse
matrices introduced in Section 1.1, along with the straightforward graph-based
coarsening, enabled a rapid computation of coarse levels.

In Chapter 2 we considered our method as a preconditioner for linear time-
harmonic wave equations. The propagation of acoustic waves was modelled by
the Helmholtz equation and that of elastic waves by the Navier equations. We
studied a physical damping preconditioner for both Helmholtz and Navier equa-
tions. The numerical results in papers [PII] and [PIV] show that our method is
suitable for approximating the inverse of the damped preconditioner with higher-
order discretizations in complicated domains. Especially for low-frequency and
mid-frequency Helmholtz problems our approach is well suited. In high-frequency
Helmholtz problems a doubling of GMRES iterations was observed.

Another approach for solving wave scattering problems using control tech-
niques was studied in Section 2.1.3 for the Helmholtz equation and in Section
2.2.2 for the Navier equation. In this case a time-harmonic wave equation was
represented as an exact controllability problem for the time-dependent equation.
The exact controllability problem was formulated as a least squares optimization
problem whose solution was sought using the preconditioned conjugate gradient
method. Here we used our multigrid method to compute the preconditioning
step of the CG algorithm. Higher-order spectral methods were used to discretize
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the equations. Numerical tests in paper [PI] show that the use of the AMG pre-
conditioner in acoustic scattering problems keeps the number of CG iterations
independent of the order of the spectral element basis, which confirms that the
proposed method is suitable for higher orders. The percentage of overall com-
putational costs remained very low for the AMG preconditioner. For the Navier
equation, proportion of the AMG preconditioner of computational costs also re-
mained very low but more fine-tuning was needed to keep the number of AMG
iterations low. For instance, the relaxation parameter of the Successive Over Re-
laxation (SOR) smoother had to be adjusted according to the order of discretiza-
tion, as can be seen from the numerical results in article [PIV].

In Chapter 3 we applied our multigrid method as a solver for applications
in computational fluid dynamics. An incompressible fluid flow was modelled
with both Stokes and Navier-Stokes equations. In both cases the discretization
was done by the stabilized finite element method. In the numerical tests in Sec-
tion 3.4 we showed that it is necessary to process the Dirichlet boundary condi-
tions after the coarse level matrices are computed. Furthermore, the calculation
of the optimal relaxation of the ILU smoother was discovered to be an efficient
way to reduce the number of AMG iterations. Overall, taking into account that
our method is constructed from quite simple algorithms, it was shown that the
method is a quite efficient solver even for flows with the Reynolds number of
order 10*.

One improvement for solving the Navier-Stokes equations would be to use
Newton-Raphson linearization instead of that of Picard. It has quadratic con-
vergence but it needs a better initial guess than Picard linearization. An option
would be to use one or two steps of Picard iteration and then start the Newton
iteration. In both Newton and Picard linearizations the stiffness matrix must be
computed again at the beginning of the iteration. This could be avoided by using
so called quasi-Newton methods that are widely used in numerical optimization
(see, for instance [59], a book by Nocedal and Wright).

Altogether, the graph-based multigrid method studied here was shown to
be a suitable solver and preconditioner for quite a wide range of physical appli-
cations. However, some work remains to be done. Now, when there are dozens
of cores even in a single processor, parallelization and scalability of algorithms
are more and more of great importance. Parallelization of the solution phase is
quite straightforward, especially when the smoother is parallel by construct. For
example, in the Jacobi method the components of the new iteration may be com-
puted simultaneously and, thus, it is naturally parallel. For ILU-type smoothers,
an alternative is to use graph-coloring techniques (see, for example, [68] by Saad)
to color adjacent nodes with different colors. Then, unknowns of the same color
can be determined simultaneously. This approach is quite attrative to us since
the adjacency graph of the unknowns is already at hand. A more challenging
task is to parallelize the setup phase of AMG that is inherently sequential. Many
approaches to make the setup phase parallel can already be found from the liter-
ature (see, for example [40] by Griebel et al. and references therein). For us, this
is the next step to be taken to improve our algorithm.
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YHTEENVETO (FINNISH SUMMARY)

Tassa vaitoskirjassa tarkastellaan graafipohjaista monihilamenetelmasd, joka on
suurten, lineaaristen ja harvojen yhtdloryhminen ratkaisemiseen kaytettdva itera-
tiivinen ratkaisumenetelma. Viitoskirjan suomenkielinen otsikko on "Graafipoh-
jainen monihilamenetelma sovelluksineen". Vaitoskirja koostuu johdanto-osiosta
ja neljdsta kansainvélisestd, vertaisarvioidusta lehtiartikkelista. Johdanto-osiossa
esitellddn monihilamenetelmd sekd eri sovellusalueet, joihin monihilamenetel-
méd on sovellettu tdssd tutkimustyossd. Tutkimustyon padmaddrand on ollut ke-
hittaa yksinkertaisista ja helposti toteutettavista algoritmeista koostuva monihil-
amenetelmd, joka kuitenkin soveltuu kéytettavaksi hyvinkin erilaisten fysikaal-
isten ilmididen numeerisessa simuloinnissa.

Fysikaalisten ilmididen matemaattiset mallit ovat usein osittaisdifferenti-
aaliyhtdloita (ODY), joiden tarkkaa ratkaisua ei yleensd tunneta kuin yksinkertai-
sissa erikoistapauksissa. Yhtdlon ratkaisulle on kuitenkin mahdollista etsid nu-
meerinen likiarvo tietokonetta ja numeerisia menetelmia apuna kayttden. ODY:t
on kuitenkin diskretisoitava, ennen kuin niitd voidaan ratkoa tietokoneella.

Osittaisdifferentiaaliyhtédloiden diskretointimenetelmia on useita. Tadssd vai-
toskirjassa kdytettavit diskretointimenetelmét ovat elementtimenetelmad ja spek-
traalielementtimenetelma. Muita yleisid menetelmid ovat esimerkiksi differens-
simenetelmad ja ddrellisen tilavuuden menetelméd. Yhteinen piirre eri diskretoin-
timenetelmille on se, ettd ne tuottavat suuren yhtdloryhman, jossa voi olla jopa
miljardeja tuntemattomia ratkaistavana. Téllaisen yhtdloryhmén ratkaiseminen
on tyoldstd perinteisilld ratkaisumenetelmilld. Esimerkiksi LU-hajotelman muo-
dostaminen téllaiselle suurelle ja harvalle matriisille on erittdin raskas ja tietoko-
neen muistiresursseja runsaasti kuluttava operaatio, etenkin jos taustalla oleva
ilmi6é mallinnetaan monimutkaisessa, kolmiulotteisessa geometriassa. Toisaalta
taas yksinkertaisten iteratiivisten ratkaisumenetelmien, kuten vaikkapa Jacobin-
menetelmdn, konvergenssi voi hidastua merkittavasti, jolloin riittdvan tarkan li-
kiarvon saavuttaminen voi kestaa kohtuuttoman pitkaan.

Eréditd tehokkaimpia ratkaisumenetelmid talld hetkelld ovat niin kutsutut
monihilamenetelmit, jotka jakautuvat algebrallisiin ja geometrisiin monihilame-
netelmiin. Monihilamenetelmien tehokkuus perustuu perinteisten iteratiivisten
menetelmien virhettd silottavaan ominaisuuteen ja harvemmalla hilalla tai tasolla
laskettavaan approksimaation korjaukseen. Geometrisissa monihilamenetelmissa
ndama harvemmat hilat ja siirto-operaattorit hilojen vilillda muodostetaan ekspli-
siittisesti, kun taas algebrallisissa menetelmissd harvemmat tasot ja operaattorit
muodostetaan automaattisesti kerroinmatriisin avulla.

Téssd vaitoskirjassa esiteltdvd monihilamenetelmd pohjautuu E. Kickingerin
esittelemddn menetelmadn. Kickingerin menetelmaéssd algebrallisen monihila-
menetelmédn (AMG) harvempien tasojen muuttujat valitaan kerroinmatriisin naa-
puruusgraafin avulla. Graafin kdytostd saadaan se etu, ettd harvan tason muuttu-
jien valinta on nopeaa ja suoraviivaista. Tdssd tydssd on paranneltu Kickingerin
menetelmdd. Tarkein parannus on Dirichlet'n reunaehtojen kisittely, toisin sa-
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noen niiden eliminointi yhtdloryhmastd vasta kun kaikki harvempien tasojen
matriisit on muodostettu. Ndin on saatu huomattavasti lisda vakautta erilais-
ten yhtdloryhmien ratkaisemiseen. Lisdksi menetelmédd on muunnettu siten, ettd
kaytettdvan graafin ei valttdamattd tarvitse olla matriisin naapuruusgraafi, vaan
menetelméddn on mahdollista syottdad jokin muukin ratkaistavaan tehtavaan li-
ittyvd graafi. Kdytannossa tarvittavat graafit saadaan tehtdvddn liittyvéastd ele-
menttiverkosta. Ndin on saatu lisdd joustavuutta menetelmddn, mutta samalla
on vihennetty ratkaisumenetelmén niin kutsuttua musta laatikko -ominaisuutta,
joka yleensi liitetddn algebrallisiin monihilamenetelmiin. Liséksi on esitelty no-
pea tapa laskea harvan tason systeemimatriisi. Kaksi viimeksi mainittua omi-
naisuutta nopeuttavat harvempien tasojen muodostamista, joka on tyoldin oper-
aatio algebrallisissa monihilamenetelmissa.

Graafipohjaista monihilamenetelméa on tédssd véitoskirjassa kdytetty aika-
harmonisten aaltoyhtdltiden ratkaisemisessa ja laskennallisessa virtausdynamii-
kassa. Akustisten ja elastisten aaltojen etenemistd kuvaavavien Helmholtzin ja
Navierin yhtiloiden ratkaisemiseen on kéytetty kahdenlaista ldhestymistapaa.
Ensimmadisessd ldhestymistavassa on kdytetty vaimennettua pohjustinta helpot-
tamaan aikaharmonisten aaltoyhtaldiden ratkaisemista. Pohjustinmatriisi on muo-
dostettu diskretoimalla aaltoyhtdld, johon on lisdtty keinotekoista vaimennusta.
Ndin saatava pohjustettu yhtdloryhma on ratkaistu iteratiivisella GMRES-me-
netelmalld, jossa pohjustinmatriisin kdénteismatriisia approksimoidaan yhdelld
monihila-iteraatiolla.

Toisessa lahestymistavassa aikaharmonisten aaltoyhtdldiden ratkaisemiseen
kdytetdadn sdatoteoriaan perustuvaa tekniikkaa. Aikaharmoninen aaltoyhtdlo muun-
netaan ajasta riippuvaksi tarkan sdddettavyyden tehtaviksi, joka edelleen muo-
toillaan pienimmaén nelibsumman optimointitehtavéksi. Optimointitehtdva rat-
kaistaan kdyttden pohjustettua liittogradienttimenetelm&a. Pohjustin on diago-
naalinen lohkopohjustin, jonka muodostamisessa syntyy diskretoitujen aaltoyh-
taloiden jaykkyysmatriisin sisdltavat yhtaloryhmat. Nama yhtaloryhmat ratkais-
taan graafipohjaisella monihilamenetelmélld. Numeeriset tulokset artikkeleissa
[PI]-[PIV] osoittavat, ettd monihilamenetelmd on tehokas pohjustin molemmissa
lahestymistavoissa.

Liséksi tdssa vaitoskirjassa on tarkasteltu monihilamenetelméan toimintaa
virtausta kuvaavien Stokesin ja Navier-Stokesin yhtéloiden diskretoinnista syn-
tyvien yhtdloryhmien ratkaisumenetelmédnd. Numeeriset tulokset luvussa 3.4
osoittavat, ettd esitelty menetelma kykenee ratkaisemaan virtaustehtavia, joissa
Reynoldsin luku on jopa kertaluokkaa 10*. Nain ollen menetelmamme soveltuu
hyvin jopa erityisen vaativien yhtdloryhmien ratkaisemiseen.
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