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ABSTRACT

Mattila, Keijo
Implementation techniques for the lattice Boltzmann method
Jyväskylä: University of Jyväskylä, 2010, 177 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 117)
ISBN 978-951-39-3991-5 (PDF), 978-951-39-3973-1 (nid.)
Finnish summary
Diss.

In the field of computational fluid dynamics, a variety of numerical methods
have been constructed with the aim at computer simulations of flow phenomena.
Some of these methods rely on a microscopic description of fluid flows, others are
based on the macroscopic modelling perspective. The separation between these
two extreme scales allows an intermediate, so-called mesoscopic description for
the dynamic behaviour of fluids. The topic of this thesis, the lattice Boltzmann
method, is a particular computational method based on a mesoscopic description.
Equipped with a computer science perspective, we treat here specific aspects of
the lattice Boltzmann method. Namely, we focus on boundary conditions and im-
plementation techniques: the so-called mass-flux-based approach for boundary
conditions, the swap-algorithm, and the bundle data layout, all of which have al-
ready been presented in our recent publications, are here reviewed. Moreover, we
apply a systematic approach to implementing hydrodynamic boundary condi-
tions for the method. This approach allows us to recover some of the well-known
boundary condition implementations, as well as to derive alternative new imple-
mentations. A large part of this thesis is devoted to the physical background of
the lattice Boltzmann method, as well as to a review of its basic properties.

Keywords: mathematical modelling, fluid dynamics, computer simulations, meso-
scopic methods, kinetic theory of gases, the Boltzmann equation, the
lattice Boltzmann method, boundary conditions, implementation tech-
niques, high-performance computing, algorithms, data structures
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It’s strange that by looking into yourself you really get an appreciation of the
mystery of the universe. You don’t by trying to find the laws of physics.

J. Backus



PREFACE

The world is a miracle. Its sheer existence tickles our curious mind. Questions
related to the existence, however, are often so philosophical or abstract that many
will refrain from the speculation. It is rather the small wonders around us, tak-
ing place everyday and everywhere, which truly poke our mind. Consider water
in liquid state for example – we are surrounded by it. Whenever conditions are
favourable, this vital substance can transform into solid ice or gaseuos vapour.
The transformed substance is still water, but the state of the matter has changed:
consequences to the properties of water are remarkable. We can drill holes to an
ice cube or chop pieces from it, but the same actions are impossible for a volume
of liquid water. Have you ever considered why? The next observation is baf-
fling too: pure steam, meaning gaseuos water under specific conditions, occupies
approximately 1600 times the volume of an equal mass of liquid water. Hence,
when a large bucket of water, amounting to say twenty litres in volume, is con-
verted into steam in normal conditions, the steam will occupy roughly 32 cubic
metres of space – a roomful of gaseous water. The list of facts equally peculiar,
but obvious at the same time, is endless.

As we acknowledge enough of cases like the ones above, we are compelled
to ask a question. Is there a fundamental explanation for all the facts we have
observed? The individuals most eager to understand will join the scientic com-
munity; they have an irresistible urge to seek answers. Unfortunately answers are
hard to find, and scientists have to be both very persistent and imaginative since
they will confront a paradox: every time an explanation is found, more profound
questions are asked, and it appears as if our research takes us farther away from
the ultimate truth, not closer. There is no need to be overly depressed by this vi-
cious circle. Science is certainly more than a hunt for the Holy Grail of knowledge
explaining everything. It is possible to find answers to problems in reality by an
apparently simple procedure: first of all, commit to a particular level of analysis,
then collect information on that level, use the information to develop a theory,
and finally deduce immediate or subtle consequences of that theory. This deduc-
tion from phenomena is a way to practise science. In the materials science research
scientists try to understand the composition of matter, and particularly its rami-
fications to the behaviour of matter in specific circumstances. We have indirectly
taken part, with a minor role, in such a quest for knowledge.

We offer here an expedition to the frontier of science which, unknown to
public and mysterious to most, has occupied our attention in recent times. Specif-
ically, we explore the territory of the lattice Boltzmann method – a patch in the
field of computational fluid dynamics. Scientists in the field of fluid dynamics de-
vote their efforts to advance our understanding about fluid behaviour. When sci-
entists harness computers for the same objective, by using computational meth-
ods as mediators between the man and a machine, they operate in the branch of
computational fluid dynamics. Equipped with a computer science perspective,
we have spent some time on investigating and further developing detailed as-



 

pects of the lattice Boltzmann method: a particular computational method. Here
we elaborate these efforts and, above all, give them a context. Let us lay a founda-
tion for the context by borrowing words so vividly stating the principle of modern
science:

The molecular hypothesis has been maintained, in one form or an-
other, by various philosophers for the last 2300 years; but the reason-
ing of the ancients, on this subject at least, is so extremely subtle and
nebolous that it has no value whatever for modern purposes. Nowa-
days the physicist requires us to state our assumption very clearly,
and to deduce from them their necessary consequences. He will then
compare these consequences with the observed facts, and if the two
are in perfect agreement he will accept our assumptions provisionally,
and will believe in our theory until some one can show that we over-
looked some absurd things that could be deduced from our premises,
or until somebody brings forward another theory that is just as good
as ours, or perhaps better. Although this modern spirit of doubt is
rather hard on the “man with a theory,” it is nevertheless quite logi-
cal. It prevents us from being swamped by a multitude of unsound
theories, and enables us to distinguish the grain from the chaff. You
will agree with me, therefore, when I say that the real, healthy growth
of the molecular theory of matter began when attempts were made to
obtain numerical results from it.

Nothing needs to be added to or removed from this perceptive account. The writ-
ing is approximately one hundred years old dating back to the latest golden era
of science; author A.D. Risteen wrote it at the beginning of his book Molecules and
the Molecular Theory of Matter, published in 1895 [Ris95]. The message conveyed
is deceptively trivial, at least for those involved with science. The truth of the
matter is that the message is profound, rich, and deserves to be remembered at
all times. It illustrates how resilient important philosophical ideas can be: they
survive millennia. Simultaneously, it demonstrates how long it may take to ad-
vance from a philosophical hypothesis to a scientific theory. It also suggests that
contemporary applications of science require evermore minute explanations for
the nature.

The message continues: it makes a distinction between philosophy and sci-
ence by implying that the latter ultimately strives for predictive power with con-
crete results, often numbers, whereas the former is rather oriented to improve our
comprehension. It thus positions philosophy to a more abstract level of thinking,
just adjacent to science (see Fig. 1). Finally it implies, rightfully, that in science
‘laws of nature’ are constantly proposed, extended, modified, and even cancelled.
An author of a scientific theory is not shamed when the theory is outdated by sub-
sequent findings. On the contrary, the author is honoured. Moreover, a successful
scientific work does not necessarily have an immediate, direct or indirect, influ-
ence on real life. To expect the contrary is as naive as to presume moral statement
from every book, to consider music not played for dancing purposeless, or to re-
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FIGURE 1 Science is a scheme of things: more abtract than engineering but less abstract
than philosophy. The three disciplines, physics, mathematics, and computer
science, can be practised with a mindset from any of the aforementioned
abstraction levels.

gard only landscapes and portraits as fine art. Many scientific works are invisible
to public, and remain so forever. Some works do not lead to progress at all, not
even progress internal to science, but they can still be fruitful as they can exclude
specific research directions from the set of promising ones. In short, the principal
aim of science is to increase our understanding. In this role science is one of the
three cultural pillars: it stands beside religion and art. It answers to the primitive
urges of human race with equal conviction.

In a scientific work, we have to carefully state the kind of mental leaps re-
quired to follow our otherwise rigorous treatment of the subject, and we have to
very precisely explain under which conditions our arguments are valid. That is,
underlying hypotheses and fundamental assumptions related to our work must
be unambiguously stated. This is exactly what we aim to do here. Our efforts
with the lattice Boltzmann method can be categorised equally well into computa-
tional physics, applied mathematics, and scientific computing. They are nothing
but names for the broad field of research where the three disciplines, physics,
mathematics, and computer science, get together. In our efforts the perspective
of computer science is emphasised more than the others. The three disciplines
can all be practised at various levels of abstraction. Sometimes they are practised
at a level which is closer to philosophy and every now and then the level is closer
to engineering, as depicted in Fig. 1. As this treatise advances from the begin-



 

ning to the end, we will travel from the conceptual border between philosophy
and science all the way to the vague border between science and engineering.

Jyväskylä, August 2010

Keijo Mattila



1 INTRODUCTION

When we are engaged with mathematical modelling of matter, or any other imag-
inable system of interest, we are immediately enforced to make the most funda-
mental choice; we have to choose the level of abstraction for our mathematical
model. That is, a physical description can either include minute details of the
system or it can operate on more general grounds. The esteemed scholar Leo
Kadanoff phrased it elegantly [Kad86]:

Some of the most interesting situations in physics, and indeed in other
sciences as well, concern the connections between two “levels of reality”.

In the context of fluid dynamics, our object of interest, these two levels corre-
spond to the underlying world of atoms and molecules invisible to the eye, and
to a continuum volume of fluid like we perceive it every day. The level of par-
ticles, atoms and molecules, is referred to as the microscopic scale and the bulk
level as the macroscopic scale. The connection between these two extreme levels,
a bridge of a kind, is an intermediate level appropriately referred to as the meso-
scopic scale. Physical descriptions at the mesoscopic level essentially aim for a
compromise between details and abstraction of the system.

Accordingly, fluid dynamical systems can be mathematically modelled with
Hamilton’s equations as well as with the Boltzmann and Navier-Stokes equations
at the micro-, meso-, and macroscales, respectively. This is illustrated in Fig. 2.
Here we are primarily interested in the mesoscopic descriptions, and particularly
in the Boltzmann equation due to its direct connection with the lattice Boltzmann
method. The Boltzmann equation is a statistical mechanical description for trans-
port phenomena, and has an essential role in the kinetic theory of gases, among
other disciplines. The kinetic theory of gases is founded on the fundamental hy-
pothesis that all macroscopic observable properties of a gas can be deduced, at
least in principle, from a knowledge of the forces of interaction and the internal
structure of its molecules.

The topic of this thesis, the lattice Boltzmann method, is a particular compu-
tational method based on a mesoscopic description. We treat here specific aspects
of the lattice Boltzmann method, namely boundary conditions and implementa-
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FIGURE 2 Physical systems can be described at various levels of abstraction. At the
microscopic scale, the level of particles, the system is described in a very
detailed way. At the macroscopic scale, the continuum level, the details
are practically omitted and the description is very abstract. In between is
the mesoscopic scale, an intermediate level, where a compromise is pur-
sued. Accordingly, fluid dynamical systems can be mathematically modelled
with Hamilton’s equations as well as with the Boltzmann and Navier-Stokes
equations.

tion techniques. While our main motivation is to review certain detailed and
even technical developments related to the method, we also use this opportu-
nity to portray the physical background of the lattice Boltzmann method. The
physical exposition is intended especially for computer scientists as the associ-
ated discussion involves well-established concepts in physics. In fact, the aim is
to provide such an introduction to the physical concepts that the published lit-
erature on the method, bulk of which is authored by physicists, becomes more
accessible to computer scientists as well as to engineers and applied mathemati-
cians. A large portion of the presented discussion is hence devoted to the basic
concepts in mathematical modelling and computational methods. Therefore, let
us return to the mathematical modelling of fluid dynamical systems.

Mathematical models, including the three equations mentioned above in
their general form, are only occasionally amenable to analytical treatment, to the
extent where concrete numerical results can be extracted for potentially interest-
ing non-trivial fluid flow configurations – let us call this the ‘pen and paper’ style
of computation. For this reason, the usual convention is to simplify or modify
these models, in any conceivable way, in order to obtain new models for which
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there exist some practical means to extract concrete results. Since the world where
we are currently living has rushed into the digital era some while ago, perhaps
the most practical or at least the most effective way of obtaining numerical results
today is the ‘software and computer’ style of computation. To this end, so-called
discrete counterparts are usually constructed for the original continuous mod-
els; the discrete models are constructed carefully with the purpose of producing
results which approximate, in a consistent and predictable manner, the unattain-
able results of the original models. This is only a paradox, but of course it is not
trivial to estimate the quality of approximations when the true results are gener-
ally unknown. From the perspective adopted in this thesis, the lattice Boltzmann
equation is the best example of the above discussed discrete models: it is a dis-
crete counterpart of the Boltzmann equation.

A numerical method includes not only the particular model equation, but
also well-defined initial and boundary conditions, guaranteeing both the exis-
tence and uniqueness of the approximate solution for a particular flow configu-
ration, as well as meaningful parameters for controlling the model properties.
Furthermore, the method must include a theory for interpreting the obtained
results, their accuracy, and dependence on the model parameters. In this con-
text, an appropriate example is the lattice Boltzmann method. A computational
scheme, in turn, is a concrete descendant of a particular numerical method. Its
every aspect is defined to the extent which allows a straightforward computer
implementation. For example, there is not one or two but many computational
schemes corresponding to the lattice Boltzmann method, distinct in various ways
and intended altogether for a rich set of fluid flows. Computer simulations of a
physical system under investigation are then feasible simply by executing the
computer program, a scientific software, implemented to compute approximate
solutions of our original mathematical model.

There are notable exceptions among the variety of computational schemes,
namely the Lattice-Gas Automata, for fluid flow simulations. They are excep-
tional since they are mathematical models and, at the same time, fully-fledged
computational schemes. That is, the computational schemes involve no approx-
imation or further discretisation whatsoever – they are precise schemes. This is
due to the boolean computation inherent in the models. The boolean computation
is of course a double-edged sword: boolean expressions indeed escape roundoff,
plaguing floating-point computations so typical in other computational schemes,
but a boolean model for the true observed fluid dynamics around us is most cer-
tainly a dramatic simplification and hardly realistic. Hence, it is remarkable that
such simple models allow realistic fluid flow simulations. It is an illustration
of how insensitive, at the macroscopic level, fluid flows can be for the fine mi-
croscopic details at the particle level. The physicist Richard Feynman, always a
master of articulation, found simple words for conveying the idea of the simple
automata [Hil89]:

We have noticed in nature that the behavior of a fluid depends very
little on the nature of the individual particles in that fluid. For exam-
ple, the flow of sand is very similar to the flow of water or the flow of
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a pile of ball bearings. We have therefore taken advantage of this fact
to invent a type of imaginary particle that is especially simple for us
to simulate. This particle is a perfect ball bearing that can move at a
single speed in one of the six directions. The flow of these particles on
a large enough scale is very similar to the flow of natural fluids.

Moreover, the lattice Boltzmann method historically emerged as an improvement
to the Lattice-Gas Automata. Because of the above reasons, we will spend some
time in explaining the basics of the Lattice-Gas Automata – the same discussion
will serve as an introduction to the concepts of the lattice Boltzmann method.

An important intermediate abstraction concept, namely an algorithm, not
mentioned thus far, lies between a particular computational scheme and con-
forming computer implementation. It is a kind of recipe, a list of consecutive
actions to be executed, for the implementation of a computational scheme. It
collects all the essential steps of the scheme, while avoiding unnecessary details,
into a procedure mechanical enough for computers. From the implementation
point of view, algorithms are very convenient instruments for communicating
the essence of a particular scheme. Just like there can be many schemes speci-
fying a single numerical method, there can be, and usually is, many algorithms
corresponding to a given scheme. The hierarchy is completed with the final de-
scription: there can be an arbitrary number of implementations for a specific al-
gorithm – every chef has a personal way of following the recipe.

The four levels in the hierarchy, numerical method, computational scheme,
algorithm, and implementation, all have a marked effect on the computer re-
sources required for the execution of a computer simulation. Here we are partic-
ularly interested in how distinct algorithms and implementations, related to the
lattice Boltzmann method, affect the computational efficiency. In Ref. [PI], we
propose an algorithm for the implementation of a specific class of computational
schemes specifying the lattice Boltzmann method. Furthermore, like mentioned
above, even if an algorithm defines the main steps of a scheme, there is still typ-
ically plenty of freedom in many implementation points. In Ref. [PII] we have
studied some of these implementation points as well as their effect on the com-
putational efficiency. There, for example, we propose a particular data structure
for the unknown dynamic variables of the lattice Boltzmann method.

Finally, in Refs [PIII, PIV] we propose an approach for enforcing boundary
conditions for the simulation of fluid flows with the lattice Boltzmann method.
More specifically, the approach is related to the inlets and outlets of flow domains.
This issue is best explained with an academic flow configuration. Imagine an in-
finitely long straight pipe, full of fluid flowing steadily in one direction. That
is, the pipe does not have a beginning nor an end, but instead continues forever
in both directions – admittedly a very theoretical setting. But our computing re-
sources are unfortunately not infinite; on the contrary, the computing resources
are rather limited. Thus, computer simulation of an infinite system is not pos-
sible, not even in principle. We are enforced to simulate flow only in a finite
segment of the pipe, and rather in a short than in a long segment. So, in order to
obtain a finite segment, we cut the pipe at two points. The cross-sections of the
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pipe at these two cutting points are now in a special role. They are called the inlet
and outlet of the domain: the steady flow of fluid enters and exits the domain
through these two cross sections. By imposing physical (or mathematical) restric-
tions to the flow at the inlet and outlet, the flow inside the finite pipe segment can
be controlled. In other words, depending on what kind of a real pipe system we
are trying to mimic with our computer simulation, we can enforce appropriate
boundary conditions at the inlet and outlet. This portrays the context for Refs
[PIII, PIV].

The body of this thesis begins with mathematical modelling of fluid dynam-
ics, discussed in Chapter 2. It includes macroscopic as well as mesoscopic mod-
elling approaches: specific attention will be paid to the kinetic theory of gases
and to the Boltzmann equation. Chapter 3 gives a historical survey to the lattice
Boltzmann method and, in addition, reviews its basic properties. A review of the
boundary conditions for the method is presented in Chapter 4. Moreover, the
chapter also recapitulates the fundamentals of the mass-flux-based approach for
boundary conditions, originally treated in Refs [PIII, PIV]. Additionally, a sys-
tematic approach for implementing hydrodynamic LBM boundary conditions is
presented. This approach is utilised in Chapter 4, and in Appendix 2, for recov-
ering some of the well-known boundary condition implementations as well as
to derive alternative new implementations. Chapter 5 considers implementation
techniques for the lattice Boltzmann method. Specifically, it elaborates on some
issues related to the swap algorithm and to the bundle data layout, originally
presented in Refs [PI, PII]. Finally, some conclusions are given.



2 MATHEMATICAL MODELLING

Fluid flows provide nothing but opportunities for mathematical modelling. There
are two basic reasons for these opportunities. First of all, fluid flows exhibit a
vast range of relevant length and time scales. This fact is easily demonstrated by
adopting a discrete perspective to the modelling: matter is divided into separate
entities – like atoms. Following this atomistic view, fluid flow represents aver-
age motion in a massive collection of interacting particles. At this microscopic
level of description the interplay between particles, either atoms or molecules, is
of fundamental interest. Computational schemes, methods for simulation with
computers, can be constructed based on this philosophy. A collective name for
such constructions is Molecular Dynamics (MD). According to the current under-
standing, the diameter of an atom is of the order of one Ångström (1 Å = 0.1 nm =
1 × 10−10 m). Molecules are also very small. For example, in a methane molecule
the hydrogen and carbon atoms are bonded with an average distance equal to 1.1
Å = 110 pm.

As (electrically neutral) atoms and molecules fly about, they exert interac-
tion forces on each other from distances comparable to their size. The range of
interaction, defined by the effective interaction radius rμ, is typically limited to
several particle diameters – for larger distances the force is virtually zero. The
interaction radius is an appropriate characteristic measure for a given system of
particles and thus defines the small end of the relevant length scales. In principle
it would be possible to mimic nature in evermore larger scales by relying on the
atomistic view with increasing number of particles. But in just a few grams of wa-
ter there are approximately 1023 molecules! Thus, in practice, such a brute force
strategy is quickly overpowered by limitations on the computing resources. One
must thus rely on intellectual power in order to productively mimic larger scales
in nature. In this chapter, we consider both macroscopic and mesoscopic mod-
els for fluid flows. The macroscopic models considered rely on the continuum
approximation: it is basically assumed that the fluid completely fills the space it
occupies. The fact that the matter is made of atoms, and ultimately is not contin-
uous, is ignored; essentially, the modelling is carried out on length scales much
greater than the range of interaction between atoms.
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In the macroscopic scale, we concentrate on the model described by the
Navier-Stokes equation. After a short discussion about the merits and shortcom-
ings of the model, we advance to the mesoscopic modelling in fluid dynamics.
In particular, we concentrate on the statistical mechanical approach, and on the
kinetic theory of gases. Above all, we focus on the Boltzmann equation due to its
direct connection with the lattice Boltzmann method.

2.1 Macroscopic description of fluid flows

To begin with, we resort to the continuum approximation. Let L denote the char-
acteristic length scale related to a macroscopic flow configuration. For example,
L can be associated with the diameter of a water pipe, length of a wing, or height
of a building diverting wind. In that scale the fluid is now considered as a contin-
uum, composed of infinitesimally small volume elements living side by side with
no empty space in between. That is, fluid flow is examined at a scale much larger
than LΔ here associated with the volume elements: LΔ � L. But when compared
to the atomistic world, the small fluid elements are rather huge – not small at all.

It is important to understand why continuum approximation requires these
three well separated scales to coexist. To begin with, the continuum modelling
of a fluid flow assumes hydrodynamic variables like density ρ, pressure p, tem-
perature T, and velocity u = (ux , uy, uz)

T, as well as their gradients, to be mean-
ingful at the scale of the elementary fluid elements; meaningful in the sense that
the hydrodynamic variables can be considered as continuous functions of space
(r = (rx , ry, rz)T) and time (t) coordinates. Here superscript T denotes the trans-
pose of a matrix and should not be confused with temperature. It is typically
also assumed that the gradients of the hydrodynamic variables are small rather
than large, i.e. they are reasonably smooth functions. On the other hand, hy-
drodynamic variables represent average values computed from the true particle
motion. Because it is intuitive, we here assume that the averages are computed
over spatial space. Alternatively the domain for average computation could be
time or even an ensemble of macroscopically equivalent, but microscopically dis-
tinct, flow configurations. In order to obtain reasonably smooth and continuous
variables, the averages must be computed over large enough spatial domains.
This in turn implies that rμ � LΔ.

The derivation of a macroscopic fluid flow description proceeds with the
above assumptions, and culminates at general conservation equations for the el-
ementary fluid elements:

∂tρ + ∇ · (ρu) = 0, (1)

∂t(ρu) +∇ · Π = 0. (2)

The partial derivatives ∂t = ∂/∂t and ∂α = ∂/∂rα express variation in quantities
with respect to time and space; the divergence, for example ∇ · (ρu) ≡ ∂αρuα ≡
∂xρux + ∂yρuy + ∂zρuz, measures net variation of a quantity in the spatial space. A
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further notational remark is in order: in the index notation, the Einstein summation
convention is implied by repeated indices in a single term, e.g. in ∂αρuα above.
The first and second equations enforce, in a differential form, conservation of
mass and momentum for the elementary fluid elements, respectively; in this case
there are no external forces acting on the elements. For example, the statement
of Eq. (1) is blunt: temporal changes in total mass inside a fluid element must
result from a mass flux through the element boundaries. That is, there are no
mass sources or sinks. Furthermore, the momentum-flux tensor Π ≡ Παβ gives
the flux of the α component of the momentum in the β direction. In general, the
momentum-flux tensor can be decomposed into two terms,

Παβ = ρuαuβ − Πstr
αβ ,

where the first term represents the convective momentum flux and Πstr
αβ is the

stress tensor of the fluid. Conventionally, the internal stresses of a fluid are di-
vided into contributions arising from the pressure p and viscous stresses:

Πstr
αβ = −pδαβ + Πvisc

αβ .

Whenever appropriate, Eqs (1) and (2) are supplemented with an equation
enforcing conservation of energy. There is however a serious dilemma related
to the general conservation equations. Namely, even if we assume a symmetric
momentum-flux tensor Π in the three-dimensional case, Eqs (1) and (2) provide
only four conditions for the ten dynamic variables: the density ρ, the three com-
ponents of the velocity u, and the six independent components of the tensor Π.
That is, the dynamical description is severely undetermined. In order to obtain a
closed description for the fluid dynamics, additional resctrictions for the model
must be imposed.

2.1.1 The incompressible Navier-Stokes equation

A physically apparent restriction assumes incompressible fluids, i.e. the fluid
density is constant. This assumption, ∂tρ ≡ ∂αρ ≡ 0, together with the above
definitions, leads directly to special conservation equations:

∇ · u = 0 (3)

and
ρ∂tu + ρu · ∇u = −∇p +∇ · Π

visc + F, (4)

where F = ρa refers to an external body force due to an additional acceleration a
of a fluid element, representing e.g. gravity. The so-called continuity equation Eq.
(3) enforces conservation of mass in an incompressible fluid. The conservation
of momentum, enforced by Eq. (4), is actually also a manifestation of Newton’s
Second Law. This is apparent after a small rearrangement:

ρ(∂tuα + uβ∂βuα) = −∂αp + ∂βΠvisc
αβ + Fα.
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On the left is the inertia per volume, simply ρDtuα with the material derivative
Dt := ∂t + uβ∂β, and the right-hand side sums up the forces exerted on the vol-
ume.

Nonetheless, the dynamical description is still as undetermined as before.
Next, the number of dynamical variables is radically reduced with a specific con-
stitutive relation for the viscous stresses. Namely, an additional assumption in the
modelling defines a particularly simple expression for the components of the vis-
cous stress tensor. Let us elaborate on this important modelling step. In the con-
tinuum mechanics philosophy, external forces on the fluid enforce motion which,
in turn, causes volume element deformations. Strain is a geometrical measure of
deformation. In a Newtonian fluid, named after Isaac Newton, it is assumed that
the viscous stresses Πvisc

αβ are linearly proportional to the strain rate defined as
Sγδ = (∂δuγ + ∂γuδ)/2:

Πvisc
αβ = ΦαβγδSγδ. (5)

The fourth-rank tensor Φαβγδ with constant components measures the viscosity
of the medium. That is, viscosity characterises how fluids react to strain rate or,
rather informally, it is a measure for the internal friction of the fluid. Generally
speaking, temperature has a strong effect and pressure a moderate if not negligi-
ble effect on viscosity [Whi03]. In isothermal flows temperature is constant, and
all variations in viscosity due to temperature changes can be neglected. For sim-
plicity, we here neglect also the effect of pressure induced changes in viscosity
– a common approximation. Non-Newtonian fluids in general do not respect a
linear relation, with constant coefficients, between the viscous stresses and strain
rate.

The constitutive relation defined by Eq. (5) has effectively reduced the num-
ber of dynamic variables from ten to four: the pressure and the three components
of the flow velocity. Equations (3) and (4) provide an equal number of conditions.
In a general three-dimensional case, however, the fourth-rank tensor Φαβγδ in-
volves 81 undefined components – a staggering number from a practical point of
view. Therefore, an additional reduction in model parameters is pursued by re-
stricting the dynamic description to isotropic fluids. The definition of an isotropic
fluid is straightforward: the tensor Φαβγδ must be isotropic1. The most general
form it may have is then

Φαβγδ = Aδαβδγδ + Bδαγδβδ + Cδαδδβγ, (6)

where A, B, and C are arbitrary constants [Rot97]. Here δαβ is the Kronecker delta.
By substituting this form into the relation Eq. (5), we find that

Πvisc
αβ = (B + C)Sαβ + AδαβSγγ = μ(∂βuα + ∂αuβ) + ξδαβ∂γuγ.

The coefficient ξ := A is related to the compression or bulk viscosity of the fluid
whereas the dynamic viscosity coefficient μ := (B + C)/2 is related to its shear
viscosity.

1 An isotropic tensor is a tensor whose components are unchanged by an orthogonal trans-
formation of coordinates, i.e. by rotations and reflections.
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TABLE 1 Material parameters for some fluids at 1 atm and 20◦C [Whi03].

Fluid Density ρ (kg/m3) Kin. visc. ν (m2/s)

glycerin 1260 1.18 × 10−3

SAE 10W oil 870 1.20 × 10−4

air 1.20 1.50 × 10−5

water 998 1.01 × 10−6

mercury 13 550 1.15 × 10−7

For incompressible fluids, the term related to compression is eliminated
with the continuity equation Eq. (3). Finally, the internal forces emerging from
the viscous stresses in the fluid are manifested with the source term

∇ · Π
visc ≡ ∂βΠvisc

αβ = ∂βμ(∂βuα + ∂αuβ) = μ∂β∂βuα.

The last step involves again application of the continuity equation after chang-
ing the order of derivation. By substituting this source term into the momen-
tum equation Eq. (4), we obtain the Navier-Stokes equation for an incompressible,
isotropic Newtonian fluid:

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u + a, (7)

where ν = μ/ρ is the kinematic viscosity. Here the viscous force term has an
interesting mathematical interpretation. The term involving the vector laplacian
of the velocity field, ν∇2u, represents diffusion of momentum, cf. diffusion of
temperature in the heat equation. Then the kinematic viscosity ν is identified
as the diffusion coefficient for momentum. The second term on the left, the so-
called convective term, is the only nonlinear term. It is notorious as it prohibits
analytical solutions except for a few cases. Thus, numerical methods are required
to obtain approximate solutions for the coupled system of equations, i.e. for Eqs
(3) and (7) together with given boundary conditions. On the other hand, the
nonlinear term is very welcome as it is responsible for many interesting flow
phenomena. For example, it gives rise to turbulence.

Microscopic details of the fluid are completely ignored in the Navier-Stokes
equation. For example, the viscosity of a system is, from a fundamental point of
view, a consequence of the interaction between particles at the atomic level. More
often than not, macroscopic models ignore such connections: partly because the
connections are irrelevant for many applications, and partly because there are no
simple but correct expressions, e.g. for the viscosity, which would rely only on the
atomistic details of the fluid. In the Navier-Stokes equation, the physical proper-
ties of the fluid are modelled with material parameters. That is, the density and
kinematic viscosity are considered as input parameters for the model. Numerical
values for these parameters are available from experimental measurements. Ta-
ble 1 lists parameter values for some fluids. The minimum and maximum values
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in the list, both for the density and kinematic viscosity, differ by four orders of
magnitude. Furthermore, characteristic length scales for everyday flows range
easily from millimeters to kilometers. The Navier-Stokes equation is celebrated
because it is applicable to so many fluids under very diverse flow conditions.

In addition, the Navier-Stokes equation incorporates a very important math-
ematical property which has promoted its application – namely it defines dy-
namic similarity between fluid flows. Remarkably a single parameter can deter-
mine whether two fluid flows are dynamically similar. This parameter, perhaps
the most important parameter in fluid dynamics, is the dimensionless Reynolds
number Re. We explain this important mathematical aspect further and write the
Navier-Stokes equation in its dimensionless form. First we define the relevant
dimensionless variables, and denote them by an asterisk:

r∗α =
rα

L
, u∗

α =
uα

U
, t∗ = t

U
L

, P∗ = P
1

U2 ≡ p
ρ

1
U2 , a∗α = aα

L
U2 ,

where L and U refer to the characteristic length scale and to the characteristic
fluid flow velocity of the macroscopic system, respectively. Since the dimensional
measures L and U are considered constant, the derivatives in the Navier-Stokes
equation are easily transformed into dimensionless form. For example,

∂uβ

∂rα
=

∂(u∗
βU)

∂(r∗αL)
=

U
L

∂u∗
β

∂r∗α
.

Hence, by using the above definitions in Eq. (7), it is straightforward to obtain

U2

L
∂u∗

∂t∗
+

U2

L
u∗ · ∇∗u∗ = −U2

L
∇∗P∗ + ν

U
L2∇2

∗u∗ +
U2

L
a∗

⇐⇒ ∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗P∗ +

1
Re

∇2
∗u∗ + a∗. (8)

The Reynolds number Re = LU/ν provides an estimate for the ratio of iner-
tial forces to viscous forces, quantifying their relative importance for given flow
conditions. For example, low and high Reynolds numbers characterise laminar
and turbulent flow, respectively. More importantly, the dimensionless Navier-
Stokes equation Eq. (8) does not contain any scale, only a single dimensionless
parameter Re. Let us consider a particular flow configuration with given bound-
ary conditions, say a flow past a sphere or a flow in a duct. That is to say, by
fixing the geometry and the boundary conditions of the flow problem, we have
a specific type of flow. Then all fluid flows of this type, but with different val-
ues of L, U, and ν, are described by one and the same dimensionless solution
(u∗, P∗) if their Reynolds numbers are equal – the flows are said to be dynami-
cally similar. This is the property which is treasured among the people applying
the Navier-Stokes equation! The possibility to choose favourable values for L, U,
and ν, while maintaining a desired value for Re, is an immediate advantage in
computer simulations and in experimental measurements.
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2.1.2 Physical aspects of the continuum modelling

The conservation equations themself are universal, only the assumptions behind
the modelling must be maintained. For example, the continuum approximation
is considered valid in the regime of very small Knudsen number Kn; a condition
Kn � 10−2 is often quoted in the literature. Knudsen number is the ratio between
the mean free path �m of a particle to a characteristic length scale L of the macro-
scopic flow configuration. Thus, �m � L implies a small value for Kn. Knudsen
number can also be defined in terms of the mean collision interval and a char-
acteristic time scale. With collisions we refer to the interaction events between
two or more particles. For liquid flows the Knudsen number is typically smaller
than for rarefied gas flows. The message is intuitive: particles in a liquid are in
constant interaction with each other whereas in a gas the free flight of particles
is occasionally interrupted by collisions. In fact, flow regimes are conveniently
classified with the Knudsen number [Str05]:

• The hydrodynamic regime (Kn � 0.01) is very well described by the Navier-
Stokes-Fourier equations2.

• The slip flow regime (0.01 � Kn � 0.1) can still be described by the Navier-
Stokes-Fourier equations, but the equations must be supplemented with
boundary conditions which account for velocity slip and temperature jumps
at the walls.

• The transition regime (0.1 � Kn � 10) is the domain where the Navier-
Stokes-Fourier equations fail; the gas must be described in greater detail, or
by extended macroscopic models.

• Free molecular flow (Kn � 10) is dominated by particle-wall interactions,
and collisions between the particles do not play an important role anymore.

The above classification is widely accepted, but sometimes with slightly different
limits for Kn, see for example Ref. [Ree03]. Gases which are outside the hydro-
dynamic regime (Kn � 0.01) are called rarefied gases. In the regime 0.01 � Kn � 1
gas still behaves as a continuum, but the validity of the Navier-Stokes-Fourier
equations is compromised and eventually broken: more refined sets of contin-
uum equations are called for. Even when we commit ourselves to the hydrody-
namic regime, the Navier-Stokes equation Eq. (7) is valid only for fluid flows
with three more properties. These properties are their incompressibility, isotropy
and Newtonian character. Mach number Ma is a measure of the compressibility
of the fluid. It is the ratio of the characteristic fluid flow velocity U to the speed

2 A coupled set of equations for the conservation of mass, momentum, and energy. Fourier’s
law, utilised in the energy equation, is a linear relation between the heat flux and tempera-
ture gradient: the coefficient of proportionality is called the thermal conductivity. Fourier’s
law is analogous to the linear relation between the viscous stresses and strain rate utilised
in the momentum conservation equation for Newtonian fluids.
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of sound cs in the fluid: Ma = U/cs. In general, the speed of sound for a fluid is
given by

cs =

√
K
ρ

, (9)

where the bulk modulus of compressibility K is related to fluid’s resistance to
uniform compression. K measures the pressure increase needed to cause a given
relative decrease in volume, and its basic unit is Pascal. Ability to resist compres-
sion usually implies faster sound wave propagation in the medium. It is com-
monly stated that compressions in fluids are neglible when Ma = U/cs ≤ 0.3. In
other words, subsonic flows are usually incompressible.

It is also very interesting to consider the Mach number as the ratio of inertial
forces to the compressive forces which are proportional to KL2 [Gra85]. This in-
terpretation immediately leads to a conclusion: if the inertial forces are negligible
in comparison to the compressive forces, i.e. the Mach number is very small, the
variation of density due to the variation of the flow field is insignificant, and the
fluid flow can be considered incompressible. There is also a relation between the
Mach number and the Knudsen number [Bar91]:

Kn ∼ Ma

Re
. (10)

That is, the Knudsen number can also be viewed as the ratio between the viscous
and compressive forces. According to the relation Eq. (10), in the hydrodynamic
regime (Kn � 1) a finite Reynolds number must be compensated with a very
small Mach number. This is the incompressible limit. Finally, a convincing argu-
ment for, or against, the isotropy and Newtonian character of a fluid requires
empirical evidence.

2.1.3 Limitations of the Navier-Stokes equation

After all our praise, it is time to subject the Navier-Stokes equation, a nonlin-
ear partial differential equation, to criticism: theoretical understanding of the
solutions to this equation is still incomplete. This is an issue as such for math-
ematicians, but significant progress in the theoretical understanding would be
a revolution for fluid mechanics. In the meantime, one could avoid the above
criticism by adopting the common prerogative of applied scientist: the rigorous
mathematical issues are neglected and the existence of solution to the equation is
simply assumed. This is the spirit in which the Navier-Stokes equation, and that
of Fourier if heat transfer is also considered, is routinely used by engineers and
others. Unfortunately for applied scientists, but fortunately for the mankind, the
Navier-Stokes equation is too simple to govern alone our complex world.

The equation is generally applicable only to the simplest of real fluid flows.
It is an idealistic description for the behaviour of fluid pressure and velocity with
respect to time; it incorporates many radical assumptions like the Newtonian
character of the fluid. Everyday fluid flows can be overwhelmingly complex
involving multiple phases (e.g. liquid and vapour), multiple components (e.g.
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water and oil), and suspended matter (e.g. sand mixed with fluid). Any realistic
description of such fluid flows, at a macroscopic scale, is far more complicated
than the Navier-Stokes equation. Application and productive utilization of the
complicated equations in experimental measurements or computer simulations
can be very difficult. Mathematical difficulties certainly pile up and analytical
solutions for any non-trivial setting can be even impossible to obtain. The above
discussion portrays the second basic reason for the opportunities in mathematical
modelling: there is practically no limit to the variety of fluid flows.

We conclude the treatment of macroscopic modelling with specific cases
where the Navier-Stokes equation is no longer an appropriate description for
the fluid flow. In the hydrodynamic regime, fluids are all the time very close
to thermal equilibrium. The Knudsen number Kn indicates whether a fluid can
maintain conditions of thermodynamic equilibrium. That is, Kn can also be used
as a measure for departure from equilibrium. The process leading to a thermo-
dynamic equilibrium is called thermalisation. For example, in a monoatomic gas
the molecules need roughly three or four collisions to balance momentum and
energy among themselves; the molecules reach thermal equilibrium through mu-
tual interaction [Ree03]. In an equilibrium state, there are no unbalanced forces
driving the fluid. The state can be global or local. In the latter case the balance
is with an immediate surroundings of the point. Departures from equilibrium
are attributed to two interrelated reasons: 1. in a rarefied gas molecules collide
with solid boundaries more frequently than with each other, thus hindering ther-
malisation; 2. the fluid flow properties vary drastically at small scales. Both
situations lead to a conflict with the continuum approximation: hydrodynamic
variables, density ρ, pressure p, temperature T, velocity u, or their gradients, are
not smooth and continuous functions at the scale LΔ associated with infinitesi-
mally small fluid volume elements. According to Ref. [Str05], cases where the
Navier-Stokes equation is not adequate for describing fluid flows include

• High altitude flight: space crafts need to manoeuvre at altitudes of 100 km
where low gas pressure and density are manifested as the long mean free
path of air molecules, �m ≈ 0.1 m, placing the flow well into the transition
regime.

• Microscopic flows: the relevant macroscopic length scales L are very small,
and hence the Knudsen number is not infinitesimal even at normal pres-
sures and densities.

• Propagation of ultrasound: the frequency of sound wave is so high that the
relevant Knudsen number cannot be considered as small.

• Shock waves: a flow changes from supersonic to subsonic over a few mean
free paths, including drastic changes in temperature, pressure, and density,
i.e. the gradients in the flow field are large.

• Boundary value problems at large Knudsen numbers: the presence of a wall
will reduce the local mean free path in the near wall region. The Knudsen
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layer is the limited non-equilibrium region, extending several mean free
paths from the wall, where the linear constitutive relations for shear stress
(and heat flux), assumed in the Navier-Stokes equation, are no longer valid.
In addition to the nonlinear stress-strain relationship in the Knudsen layer,
velocity and temperature of the gas may differ from those of the wall, i.e.
temperature jumps and velocity slip can occur at solid boundaries.

To remedy shortcomings of the Navier-Stokes equation, extended hydrodynamic
equations, more applicable to flows with a high Kn, can be constructed (e.g. Bur-
nett and super-Burnett equations) [Ree03, Str05]. Extensions are typically accom-
plished with expressions for the stress tensor and heat flux containing higher-
order (often nonlinear) terms in the velocity and temperature gradients than in
the Navier-Stokes equation. Alternatively, an altogether distinct approach for
modelling could be followed.

2.2 Mesoscopic description of fluid flows

Many macroscopically observable phenomena related to fluid dynamics have
their origin in the underlying microscopic world. Surface tension is a prime ex-
ample: cohesive (attractive) forces between molecules are responsible for phase
separation in the macroscopic scale and hence for the emergent balancing forces
maintaining an observed interface. Difficulties related to the modelling in macro-
scopic scale are often due to a particular mismatch: evolution equations, con-
forming to the phenomenon of interest, are sought for the macroscopic variables,
say ρ, p, T, and u, while the fundamental mechanisms giving rise to the phe-
nomenon are rather related to a microscopic scale. This mismatch can make
macroscopic descriptions cumbersome; more natural description might involve
evolution equations for dynamic variables of microscopic character – not for the
hydrodynamic ones. An enterprising scientist confronted with the above sce-
nario will initiate a quest for an intermediate description, operating between mi-
croscopic and macroscopic worlds, pursuing an optimal compromise between
details and abstraction. With an additional procedure, for example with averag-
ing, hydrodynamic variables are then computed from the variables of interme-
diate scale. This alternative modelling philosophy is inherent in the mesoscopic
description of fluid flows.

2.2.1 Microscopic origins of the mesoscopic modelling

The derivation of a mesoscopic description of fluid flows usually starts from the
atomic perspective. So, let us return to the microscopic level. Suppose we have N
particles in our three-dimensional system and the instantaneous state of each par-
ticle is reported with its position ri and momentum pi, i = 1, . . . , N. Instead of the
momentum, we could altertanatively use the instantaneous velocity ci = pi/mi
of the particle as a state variable. In what follows, we assume that the mass mi
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of the particle remains constant. Thus, we have a total of 6N degrees of freedom
in our microscopic description of the particle system. Of course, N is usually
a very large number: a realistic order of magnitude approximation is provided
by the Avogadro number NA

∼= 6.0221422 × 1023 mol−1. The equation of motion
for the particles in the system is most conveniently given with the Hamiltonian
formulation:

∂ri

∂t
=

∂H
∂pi

,
∂pi

∂t
= −∂H

∂ri
, i = 1, · · · , N. (11)

If there are no external fields enforcing the particle system, H is the total energy of
the system including kinetic energy and any potential energy due to interaction
forces between the particles.

It is possible to construct a phase space, denoted by P, which has 6N mu-
tually orthogonal axis, and where each axis is associated with a unique degree
of freedom, i.e., with a position or momentum component of a particle. Then,
the instantaneous state of the particle system is specified by a single point q ≡
(r1, p1, . . . , rN, pN) in P. Now suppose we specify the interaction forces between
the particles; there exists quite a number of possibilities for these forces. With
such a specification together with an initial condition, simply a point in the phase
space, we can in theory use Eq. (11) to follow the time evolution of the system to
any later or earlier instant. In other words, a trajectory for a particular system in
the phase space can be computed with Eq. (11). In practice such a calculation is,
of course, impossible. First, the total number of degrees of freedom in any macro-
scopically significant system overpowers any foreseeable computing resources –
as we already stated at the very beginning. Moreover, for virtually every realistic
system, like for a finite amount of gas, it is a practical impossibility to determine
the initial conditions for each constituent molecule.

2.2.2 Classical kinetic theory of gases

The pioneering efforts to explain macroscopically observable features of a fluid
with the properties of the underlying atomic configuration are now considered
as the classical kinetic theory of gases, or kinetic theory of equilibrium gases. The
focus was indeed on gases, rather than on liquids or some other states of matter,
since from the beginning it was intuitively understood that it is easier to math-
ematically treat gases: mainly because the interactions between the constituent
particles are practically limited to the rare occasions appropriately called colli-
sions – an exciting hypothesis at the time. Due to the above discussed reasons,
the early scientists did not derive their results from the detailed equations of mo-
tion for the individual particles, like from Eq. (11), but rather from the average
properties of the system of particles. By doing so, they also established the statis-
tical discipline for treating physical systems. In order to connect with the reality,
and in order to grasp the statistical concepts of the classical kinetic theory, we
consider an example of the properties of a real gas [McQ97, p.1032]:

The number density of nitrogen gas at 25◦C and one bar is ρn = 2.43×
1025/m3. The average speed of N2 molecules in the gas is 475 m/s.
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The collision frequency then is 7.3 × 109 collisions per second. Thus,
at one bar and 25◦C, the mean free flight time of a nitrogen molecule
is 1.4 × 10−10 s – a fraction of a nanosecond. The mean free path is
65 nanometres, which is about 200 times the effective diameter of a
nitrogen molecule.

The book by A.D. Risteen is an another enjoyable source for examples and approx-
imations of gas properties [Ris95].

The classical kinetic theory of gases relies heavily on the concept of an ideal
gas. It is a theoretical gas where point particles interact only through elastic col-
lisions – molecular size and intermolecular attractions are completely neglected.
In an elastic collision the total kinetic energy of the colliding particles is con-
served; elastic collisions occur only if there is no net conversion of kinetic energy
into other forms of energy. During the collision kinetic energy is first converted
to potential energy: the particles approach each other against a repulsive force
between them. As the particles start to travel apart, the potential energy is con-
verted back to kinetic energy. If the gas is monoatomic, the constituent atoms
have three translational degrees of freedom, namely the three components of ve-
locity. Monoatomic molecules do not possess any other degrees of freedom. For
example, they have zero degrees of rotational freedom because they have perfect
three-dimensional symmetry. It is then sensible to expect elastic collisions in such
a gas.

Other than monoatomic molecules, e.g. diatomic molecules such as oxygen
(O2) or nitrogen (N2), three-atomic molecules such as water (H2O) or carbon diox-
cide (CO2), or even larger molecules like methane (CH4), have additional degrees
of freedom due to rotation and vibration [Str05]. Thus, polyatomic molecules of a
gas rarely experience perfectly elastic collisions because kinetic energy may be ex-
changed to energies associated with other, internal degrees of freedom. However,
in a reasonable assumption half of the collisions are, at any one instant, inelastic
to varying extent (the total kinetic energy of the colliding particles is reduced),
and half of the collisions are super-elastic (the particle pair gains kinetic energy).
Thereby, on average and with some assumptions, collisions between polyatomic
molecules of a gas can be regarded as essentially elastic. This is confirmed by an
observed fact: at normal ambient conditions, most real gases behave qualitatively
like an ideal gas.

An ideal gas is a condition allowing particles to fly freely most of the time.
The condition is expressed mathematically as

rμ

�m
� 1;

the effective interaction radius of particles must be much smaller than the mean
free path. In an alternative expression, the mean time for a collision tc must be
small in comparison to the mean free flight time between collisions τm:

tc

τm
� 1.
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Furthermore, the interaction radius rμ must be fixed to a distance above which
the interaction potential, and thus the force, is sufficiently small. More precisely,
the potential evaluated at distance rμ must be small compared to the mean kinetic
energy ek of the particles. The last statement leads us to a third requirement for a
gas to behave ideally [Str05]: the ratio between the average interaction potential
φ and the mean kinetic energy must be small, i.e.,

φ

ek
� 1.

Obviously, low density gases tend to be ideal as the size of the molecules be-
comes less significant compared to the empty space between them. In addition,
the last condition above implies that a hot gas, where particle energies ek are high,
can behave ideally even at larger densities because the work performed by inter-
molecular forces is less significant. Conversely, the ideal gas model tends to fail at
low temperatures or high pressures. Under such conditions intermolecular forces
and molecular size become important. At some point, at low temperature or high
pressure, real gases undergo a phase transition to a liquid or a solid. However,
the ideal gas model does not describe or allow phase transitions, and therefore
more complex modelling is then required. Yet another example of a gas which
cannot be regarded as ideal is water vapour. Namely, in the gas phase of water
the dipole structure of the molecules introduces long range electrostatic forces so
that the interaction radius is considerable larger than the actual molecular diam-
eter, and thus the ratio rμ/�m cannot be considered small anymore [Str05].

The ideal gas law is a mathematical manifestation of the ideal gas model.
It is a simplified equation of state, a constitutive equation in other words, which
provides a relation between the state variables:

pV = nmRT or pV = NkbT.

The macroscopic version of the ideal gas law is on the left and the microscopic
version on the right; p is the pressure and V the volume of the gas. Moreover,
nm is the amount of gas measured in moles (mol), N is again the actual number
of molecules, R = 8.314472 J/(K · mol) is the ideal gas constant, kb = 1.38065 ×
10−23 J/K is the Boltzmann constant, and T is the absolute temperature measured
in kelvins (K). The Boltzmann constant relates energy at the particle level with
temperature at the bulk level and has the same units as entropy (joules divided
by kelvins); the above constants are interrelated by equation kb = R/NA or Nkb =
nmR, where NA is the Avogadro number. The number of moles nm is equal to the
total mass mV in the volume divided by the molar mass M, i.e., nm = mV/M.
This allows us to rewrite the ideal gas law in a very illuminative form,

p =
R
M

ρT, (12)

explicitly linking pressure, density ρ = mV/V, and temperature. More sophis-
ticated equations of state, like the van der Waals equation, allow more complex
behaviour for the fluid – a phase transition for example. In the derivation of
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these equations, the constituent molecules are typically considered particles with
volume, not material points. Also, attractive forces between molecules, acting
at a distance of several molecular diameters, are usually incorporated in the im-
proved models.

There are more classical results for the properties of gases. An important
statistical tool for obtaining these results is the equipartition theorem relating the
temperature of the system with its average energies. The original theorem stated
that, in thermal equilibrium, energy is divided equally among all of its degrees
of freedom. For example there should be, in the equilibrium state and on the av-
erage, exactly the same amount of kinetic energy related to translational motion
of molecules as is to their rotation. When a monatomic ideal gas is in thermal
equilibrium at temperature T, equipartition predicts an average kinetic energy of
(3/2)kBT per particle, attributed entirely to the translational motion – each veloc-
ity component degree of freedom contributes (1/2)kBT. Thus, the heat capacity
of an ideal gas of N particles is (3/2)NkB ; the heat capacity of a mole of such
gas particles is (3/2)NAkB = (3/2)R. The heat capacity is a measure for the heat
energy required to increase the temperature of the substance by a unit tempera-
ture. Furthermore in the equilibrium state, the most probable speed cmp, that is
the speed most likely to be possessed by any molecule, the mean speed cms, and
the root mean square speed crms of the particles of a monoatomic ideal gas are
respectively given by

cmp =

√
2kbT

m
=

√
2RT
M

, cms =

√
8kbT
πm

=

√
8RT
πM

, crms =

√
3kBT

m
=

√
3RT
M

.

These typical speeds are clearly functions of the gas temperature, specifically the
average molecular kinetic energy is proportional to the absolute temperature.
Moreover, the typical speeds are obviously interrelated so that cmp < cms < crms.

The above expression for the root mean square speed, together with the
ideal gas law Eq. (12), gives an interesting relation for the pressure:

p = ρ(c2
rms/3). (13)

It connects a macroscopic property, pressure, to a microscopic property, crms,
which is proportional to the average kinetic energy per molecule. The kinetic
theory of gases provides more such connections. Let us now consider the speed
of sound in a gas, where the bulk modulus of compressibility K in Eq. (9) can be
approximated by K = γp. The speed of sound for an ideal gas is then

cs =

√
γkbT

m
=

√
γRT

M
= cms

√
γπ

8
. (14)

That is, for a given gas the speed of sound is simply a function of temperature or
the mean speed of the molecules. The heat capacity ratio or the adiabatic index
γ is the ratio of the heat capacity at constant pressure CP to the heat capacity at
constant volume CV . For a monoatomic ideal gas with three degrees of freedom,
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γ = 5/3. The expression for the mean free path �m in a monoatomic ideal gas is
a function of temperature and pressure, or simply a function of density,

�m =
kbT√
2πd2p

=
RT√

2πd2pNA
=

1√
2πd2

M
ρNA

, (15)

where d is the effective diameter of molecules. According to the expression,
higher temperatures as well as lower pressures, or densities, imply longer mean
free paths.

By using relations M/NA = mV/N and ρ = mV/V, it is possible to write
an even simpler expression for the mean free path

�m =
V√

2πd2N
. (16)

This expression most certainly conforms with our intuition: when the number of
molecules N in the reference volume V decreases, the mean free path becomes
longer. Finally, the dynamic viscosity of a monoatomic ideal gas in thermal equi-
librium is

μ =
1
2

ρcms�m ⇔ �m =
μ

ρ

√
πm

2kbT
. (17)

Because the mean free path is inversely proportional to the density, see Eq. (15),
the viscosity μ depends only on temperature via the average speed of the molecu-
les. Moreover, the viscosity of a gas increases together with the temperature. At
the time of discovery, this was quite a surprising result.

To summarise the results presented thus far, the classical kinetic theory of
gases has provided a great deal of knowledge about the properties of gases in
equilibrium. Moreover, the classical kinetic theory is not restricted to monatomic
gases, and it has been succesfully applied to a variety of physical systems in-
cluding diatomic and polyatomic gases, mixtures, electrons in semiconductors,
thermal radiation, and many others.

2.2.3 Statistical mechanics approach

While the classical kinetic theory has advanced our understanding about gases in
equilibrium, general theories about gas properties in non-equilibrium are subjects
of research even today. A very general basis for non-equilibrium kinetic theories
is provided by the Liouville equation as well as by the BBGKY hierarchy of equa-
tions. In order to give a short introduction to these equations, let us return to the
microscopic description of matter. The Hamiltonian formulation Eq. (11) for a
system of N particles was presented in Sec. 2.2.1. There it was concluded that the
instantaneous state of a particle system can, in principle, be described by a point
in the so-called phase space, denoted by P. The phase space has 6N mutually
orthogonal axis and each axis is associated with a unique degree of freedom, i.e.
with a position or momentum component of a particle.

In practice, however, it is simply impossible to associate any definitive point
in the phase space to a given macroscopically observable state of a particle sys-
tem. Hence, we must devise some alternative approach for studying dynamics
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of such systems. Here we arrive at the point of departure of statistical and con-
tinuum mechanics. We have already considered the continuum fluid mechanics,
now we follow a statistical approach. The Hamiltonian formulation of dynamics
provides a convenient starting point for a statistical study of complex systems.
Let us envisage a large number of distinct systems, N , which macroscopically are
equivalent to the actual system we are considering. That is, each of the N repli-
cates have exactly the same hydrodynamic properties as the system of interest.
However, the microscopic description for the target system is not specified, and
we expect that the microscopic states differ greatly among the replicates: there
is a large number of microscopic states corresponding to any given macroscopic
state. This collection of replicate systems is referred to as the Gibbs ensemble.

Each replicate in the ensemble is represented by a point q(k) in the phase
space P, k = 1, · · · ,N . If we just assume a large enough value for N , the repre-
sentative points become quite dense in P, and we can describe their distribution
throughout the phase space by a continuous density function. The volume el-
ements of the phase space dq defining the density must be sufficiently large to
contain a significant number of points, but they must also be sufficiently small so
that the density varies continuously [Tho04]. However, if we assume an ensem-
ble involving an infinite number of replicate systems, a theoretical construction,
the aforementioned volume elements dq are infinitesimal and the density func-
tion is then a continuous function even at the scales smaller than the particles.
We can also normalise the density so that it is a probability density in P: the re-
sulting function will be denoted by FN ≡ FN(q, t) ≡ FN(r1, p1, . . . , rN, pN, t). The
fraction of the N points which at time t lie within a 6N dimensional volume ele-
ment dq of the phase space, centered about a point q, is FN dq with the notation
dq ≡ dq1 dq2 · · · dqN and dqi = dri dpi. It is important to make a distinction
between N, the number of particles in a single system, and N , the number of
replicate systems in the ensemble. Furthermore, even if FN is itself a probability,
it evolves in a completely deterministic manner. The evolution is governed by
the Liouville’s theorem [Ale04]:

∂FN

∂t
+

N

∑
i=1

ci · ∂FN

∂ri
+

N

∑
i=1

Fi · ∂FN

∂pi
= 0, (18)

where Fi is the force acting on the ith particle. Equation (18) is in fact a conserva-
tion equation for the probability density, and the derivation involves application
of the Hamilton’s equation Eq. (11). According to the theorem, FN remains con-
stant along any trajectory in the phase space.

2.2.4 BBGKY hierarchy of equations

The progress made so far is purely formal: the evolution equation Eq. (18) in-
volves just as many degrees of freedom as the original microscopic description –
too many. We have to radically omit details in order to obtain a formulation with
any potential for applications. Our next step is to contract the statistical mechan-
ical description by directly utilising the ensemble formalism presented thus far.
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Fortunately the macroscopic properties of greatest practical interest depend on
averages taken with respect to the first few so-called reduced distribution func-
tions. Let us define the R particle reduced distribution function with the follow-
ing contraction:

FR(r1, p1, . . . , rR, pR, t) ≡
∫

FN(r1, p1, . . . , rN, pN, t) dqR+1 · · · dqN .

Now, for example, F1 dq1 is the probability of finding particle 1 in the volume el-
ement dq1 about a given point at time t. Similarly, F2 dq1 dq2 is the probability of
finding particle 1 in the volume element dq1 and, at the same time, finding parti-
cle 2 in the volume element dq2. Furthermore, we can use the probability density
to define a number density fN(r1, p1, t) = N · F1(r1, p1, t), and a mass density
f (r1, p1, t) = m · N · F1(r1, p1, t), such that the expected number of particles and
the expected mass within a volume element are fN dq1 and f dq1, respectively
[Har04]. In the definition of mass density we assumed, for simplicity, that all the
particles are identical and mi ≡ m is the mass of a single particle.

The statistical treatment is still far from complete. In order to describe the
temporal development of FR, we start from the Liouville equation Eq. (18) by in-
tegrating it over the coordinates qR+1 · · · qN. Before giving away the well-known
outcome of the integration, and subsequent mathematical manipulations, at least
one detail must be explained. According to a common assumption in statistical
mechanical description, the interaction forces between the particles are derivable
from a two-particle potential. That is, the force exerted on the ith particle by the
jth is derived from a potential φi,j which is a function of the distance between
the particles. With this assumption, and in a system free from any other kinds of
force, the net force Fi acting on the ith molecule is given by

Fi =
N

∑
j=1

Fi,j := −
N

∑
j=1

∂ φi,j

∂ri
, (Fi, i ≡ 0).

In the case where no external forces act on the system, the famous equation
for FR is

∂FR

∂t
+

R

∑
i=1

ci · ∂FR

∂ri
+

R

∑
i,j=1

Fi,j · ∂FR

∂pi
= (R − N)

R

∑
i=1

∂

∂pi
·
∫

Fi,R+1 FR+1 dqR+1. (19)

It is called the BBGKY hierarchy of equations, named after Bogoliubov, Born, Green,
Kirkwood, and Yvon [Ale04]. Of particular interest are the first two equations of
the hierarchy:

∂F1

∂t
+ c1 · ∂F1

∂r1
= (1 − N)

∂

∂p1
·
∫

F1,2 F2 dq2 (20)

and
∂F2

∂t
+
(

c1 · ∂F2

∂r1
+ c2 · ∂F2

∂r2

)
+
(

F1,2 · ∂F2

∂p1
+ F2,1 · ∂F2

∂p2

)

= (2 − N)

(
∂

∂p1
·
∫

F1,3 F3 dq3 +
∂

∂p2
·
∫

F2,3 F3 dq3

)
.
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Any attempt to apply the BBGKY hierarchy of equations encounters a completely
new problem. Inspection of Eq. (19) reveals that it defines a never-ending chain
of equations where reduced distribution functions are linked together: equation
for FR depends on FR+1. In other words Eq. (19) is not closed. Specifically, equa-
tion for F1 depends on F2 – it is the equation of greatest interest. Now the major
challenge is to remove the F2 dependence, i.e., to make Eq. (20) self-contained in
F1.

2.3 Kinetic theory of non-equilibrium gases

The Liouville equation as well as the BBGKY hierarchy of equations are both
very general descriptions for all states of matter: solid, liquid, gas, and even
plasma. There is little or no hope of finding a general closure equation for F1.
Most amenable for further modelling has been the gas. The kinetic theory of gases
attempts to explain macroscopic properties of gas, like pressure and temperature,
with the statistical mechanics of constituent molecules. While in a liquid or solid
the molecules are in constant ‘contact’ with each other, all the time exchanging
energy and momentum, the molecules in a gas typically travel most of the time
in a free flight, and only once in a while the flight is interrupted by relatively short
interactions referred to as collisions [Str05].

2.3.1 The Boltzmann equation

It was 1872 when Boltzmann’s closed equation for F1 was published [Bol72]. It
is a general non-equilibrium description intended for rarefied gas flows. Boltz-
mann obtained his equation in a phenomenological manner based on convincing
physical arguments. His own forewords in the profound scientific contribution
Lectures on Gas Theory were not an overstatement [Bol96]:

I am conscious of being only an individual struggling weakly against
the stream of time. But it still remains in my power to contribute in
such a way that, when the theory of gases is again revived, not too
much will have to be rediscovered.

Indeed, his work formed the basis for the kinetic theory of rarefied gases and not
too much have been rediscovered.

Prior to Boltzmann, a decade or so, Maxwell had already started a new era
in science by publishing his related discoveries [Max60a, Max60b]. These dis-
coveries opened up an entirely new approach to physics, which led to statisti-
cal mechanics and to a proper understanding of thermodynamics. Maxwell pre-
sented the first statistical law in physics, now known as the Maxwell distribution
of molecular velocities. Maxwell also predicted that the viscosity of a gas should
be independent of density and should increase with increasing temperature, cf.
Eq. (17). The latter prediction was a particularly surprising result since liquids
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tend to behave in the opposite manner. Experiments confirmed these predictions
and gave significant credence to the kinetic theory of gases. Among the most im-
portant papers of Maxwell is On the Dynamical Theory of Gases [Max67]. There, for
example, he introduced the notion of relaxation time: the time it takes a system
to return to a state of equilibrium after being disturbed – a concept now rou-
tinely used in science. Maxwell advanced kinetic theory to the very end of his
life [Max79a, Max79b]. Boltzmann was impressed, and certainly influenced, by
the work of his Scottish colleague. Fascinatingly enough, these two persons had
almost opposite approaches for practising science: Maxwell advocated deduction
from the phenomena, that is he gave empirical evidence a primary role in the forma-
tion of theories, whereas Boltzmann advocated hypothetico-deductive method with
the preference for a theory to come first (as a mental picture to a hidden mech-
anism of reality) and only after its full completion he was willing to compare
theoretical implications against empirical facts [Reg96].

Boltzmann did not derive his equation via Liouville equation nor BBGKY
hierarchy of equations, both of which are very general descriptions for all mat-
ter. Instead, Boltzmann arrived at the closure equation with a more or less in-
tuitive approach. Only much later have procedures been presented where the
Boltzmann equation is rigorously derived all the way from the Liouville equa-
tion; a clarifying mathematical exposition is given by Grad [Gra58], who estab-
lishes very precisely the limit in which the equation is exact. This limit is called
the Boltzmann gas limit or alternatively the Boltzmann-Grad limit (BGL). Here we
are content with an informal, verbal declaration of the underlying assumptions
[Vil02]:

1. The gas is dilute enough so that only binary collisions between constituent
molecules need to be taken into account. This also implies that the inter-
action potential is of sufficiently short range, for even in a rarefied gas the
concept of binary collisions is meaningless if the potential is of such long
range that a given particle interacts with many particles at a particular in-
stant.

2. The collisions are completed in a very limited domain both in space and
time, that is they are purely local and virtually instantaneous events which
occur at a given position r and a given time t. This means that the typical
duration of a collision is very small compared to the typical time scale of
the described flow.

3. Total mass, momentum, and kinetic energy are preserved in every collision.
Hence, the collisions are elastic among other things.

4. The collisions are microreversible. This can be understood either in a purely
deterministic way, meaning microscopic dynamics are time-reversible, or in
a probabilistic way. That is, the probability that particles with velocities c, cR
acquire velocities c, cR in a collision process is the same as the probability
that the velocities c, cR change into c, cR.
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5. The state of molecular chaos is assumed before collisions. This assumption
is also known as the collision number hypothesis, or stosszahlansatz, and it
presumes that the velocities of two particles which are about to collide are
uncorrelated, and independent of position.

For example, an ideal gas would definitively comply with the first three assump-
tions above, but the last two assumptions must be considered as additional and
more elaborate conditions for the gas.

Like stated above, it is possible to carry out a derivation of Boltzmann’s
closed equation for the mass density distribution function f = mNF1 in many
ways: some emphasise physical argumentation more than mathematical tech-
niques. We will simply present the equation. Here f is considered to be a func-
tion of time t, spatial coordinate r, and velocity c, instead of momentum. Fur-
thermore, let VR = c − cR denote the relative velocity of two arbitrary particles
(VR is the corresponding speed). The Boltmann equation is founded on the con-
cept of binary collision, i.e., two particles entering a collision will acquire new
post-collisional velocities in the process. In a fruitful interpretation, the collision
effectively deflects pre-collisional velocities, and the deflection is measured with
a directional vector b(s, ε, θ). The parameters (s, ε, θ) are coordinates in a spheri-
cal coordinate system, typically set up as the scene of action for collisions. Then

∂ f
∂t

+ c · ∂ f
∂r

+ a · ∂ f
∂c

=
1
m

∫
B(VR, θ)( f f R − f fR) dε dθ dcR (21)

is the celebrated Boltzmann equation with an external force F giving rise to the
acceleration a = F/m; in addition, standard abbreviations have been utilised:
f = f (r, c, t), f R = f (r, cR, t), fR = f (r, cR, t). Here c and cR are the particle
velocities which become c and cR in the process of binary collision.

The left hand side of the Boltzmann equation is referred to as the linear
transport operator, and the right hand side as the nonlinear collision operator,
here denoted by J ( f ). The collision operator J ( f ) presented in Eq. (21) is rigor-
ously valid only for repulsive potentials. The original and general collision oper-
ator, applicable for interaction potentials which are both repulsive and attractive,
is

J ( f ) =
1
m

∫
VR( f f R − f fR) dω dcR, (22)

where the collision process is now described in a polar coordinate system (s, ε),
and dω = s ds dε is an area element in a disk. The nonnegative function B(VR, θ)
in Eq. (21) is the Boltzmann collision kernel orchestrating binary collisions. The
explicit form of B(VR, θ) depends on the two-particle interaction potential φi,j. A
set of important collision models is provided by the inverse-power law potentials
[Vil02],

φi,j(r) ∝ r−k+1, k > 2, (23)

where r is the distance between two particles. Remember that the interaction
force is computed as the derivative of the potential, with respect to the mutual
distance. The collision kernel cannot be computed explicitly for the above poten-
tials, but it has been shown that with a particular choice, k = 5, the kernel is no
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longer dependent on the relative velocity between particles, i.e., B(VR, θ) → B(θ).
Particles obeying inverse-power law potentials with k = 5 are called Maxwell
molecules. Both Maxwell and Boltzmann used frequently, but not exclusively, this
admittedly theoretical model for particles – mainly because it allowed many ex-
plicit calculations.

From a mathematical perspective, Boltzmann’s nonlinear integro-differential
equation is anything but amenable for solution. Without solving it, Boltzmann
was able to deduce immediately a very important result from his equation, namely
the H-Theorem. It is a molecular-kinetic interpretation of the second law of ther-
modynamics, and in particular of the statistical meaning of the concept of en-
tropy. In thermodynamics, the entropy is a direct measure for disorder or chaos
of the fluid flow. Boltzmann discovered that it is possible to define the function

H =
∫

f ln f dc

which, if one assumes molecular chaos, must always decrease or remain constant
in a closed system. Relation to the principle of increasing entropy is evident if the
H-function is identified with the negative of entropy, S = −kb H + K, where kb is
the Boltzmann constant and K an additional (here arbitrary) constant.

A molecular interpretation of the law of increasing entropy is thus inti-
mately related to the assumption of molecular chaos and the relation between
entropy and probability. The formula

S = kb ln W

connecting the entropy and the thermodynamic probability W (statistical weight
of the macroscopic state of the system) is inscribed on Boltzmann’s tombstone
[Ale00]. Bolztmann’s discovery culminated in the fact that function H remains
constant only when the gas attains a special velocity distribution previously de-
duced by Maxwell in a more heuristic manner [Max60a, Max67]:

f M(r, c, t; ρ, u, T) = ρ

(
m

2πkbT

)3/2

e−mv 2/2kbT

= ρ

(
1

πc2
mp

)3/2

e−(v/cmp)2
, (24)

where v = c − u is the thermal or relative or peculiar velocity, that is the particle
velocity with respect to the macroscopic fluid flow velocity u; v2 = vαvα = v · v.
The local equilibrium state is provided by the local Maxwellian, Eq. (24), and
accordingly J ( f M) = 0. The Maxwellian distribution function f M is also a map-
ping from hydrodynamic to mesoscopic description. In summary, Boltzmann
presented an impressive bridge between microscopic and macroscopic mechan-
ics.

The assumption of molecular chaos was a key element in Boltzmann’s H-
theorem, but it was initially unrecognised. It added, with no mechanical basis,
another stochastic factor to the kinetic theory. Even if the velocities of colliding
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particles are uncorrelated, they are correlated after the collision. By asserting that
it was acceptable to ignore these correlations in the particle population at times
after the initial time, Boltzmann had introduced an element of time asymmetry.

2.3.2 Hydrodynamic equations from the Boltzmann equation

The rationale for expressing fluid flow dynamics in terms of the mass density dis-
tribution function f is that we can relate the mesoscopic description so obtained
to the macroscopic or fluid mechanical description. As a reminder, f dr dc is the
expected mass in the phase space volume element dr dc about a given phase point
(r, c). Thus, integration of f over its velocity argument will give an expression for
the expected mass in the volume element dr about r:

ρ(r, t) =
∫

f (r, c, t) dc.

In other words, ρ is the macroscopic fluid mass density. Furthermore,

ρ(r, t)u(r, t) =
∫

c f (r, c, t) dc

defines the macroscopic fluid flow velocity u. The density and momentum den-
sity presented above are zeroth and first order moments of f , respectively. Mo-
ments are easily defined up to an arbitrary order:

Mαβ···ν =
∫

cαcβ · · · cν f (r, c, t) dc.

However, a physical interpretation is meaningful only for the low order mo-
ments. The second order moments are related to momentum transfer and energy
density in the fluid. First of all, the total energy related to the molecules in an
ideal gas is entirely due to their translational kinetic energy: mc2/2. Thus, the
energy density in a monoatomic ideal gas is

ρ(r, t)e(r, t) =
1
2

∫
cαcα f (r, c, t) dc;

the particle mass m is already incorporated in the definition of mass density f .
Next we will utilise the definition of the peculiar velocity vα = cα − uα. Evidently,
the first moment of f over vα vanishes. This fact allows us to write the energy
density in the form

ρe =
1
2

∫
vαvα f (r, c, t) dc +

1
2

ρu2 =: ρξ +
1
2

ρu2.

Above we have defined the internal or thermal energy of the gas ρξ, and ρu2/2 is
the kinetic energy contributed to the macroscopic fluid motion. According to the
equipartition theorem

ξ =
3RT
2M

,



45

which establishes a relation between the internal energy and temperature of an
ideal gas. Of course, the equipartition theorem applies strictly to an equilibrium
situation, and hence strong deviations from the equilibrium may compromise the
above relation.

The local Maxwellian, an equilibrium state, also produces the first few mo-
ments:

ρ =
∫

f M dc, ρuα =
∫

cα f M dc, ρξ =
1
2

∫
v2 f M dc = ρ

3RT
2M

.

An another important fact is related to the collision operator J ( f ). Functions
1, cα, and c2 are eigenfunctions of the integral operator

∫ · J ( f ) dc having eigen-
value zero. That is,∫

1J ( f ) dc =
∫

cα J ( f ) dc =
∫

c2 J ( f ) dc = 0.

This property has a simple physical interpretation: mass, momentum, and ki-
netic energy are conserved in the collisions. Of course, we should not be too
astonished, because the conservation properties have been a priori assumed in
the derivation of the collision operator.

The net momentum transfer in a flow is described by the second-rank tensor
Παβ. Components of Π report the amount of momentum locally transported in
each spatial direction. The tensor is a second order moment in the velocity space
by definition

Παβ =
∫

cαcβ f dc = ρuαuβ +
∫

vαvβ f dc =: ρuαuβ − Πstr
αβ ,

where ρuαuβ accounts for the advected momentum. Obviously Π is symmet-
ric, i.e. Παβ = Πβα. The stress tensor Πstr

αβ describes momentum flux due to
the microscopic particle motion in the frame of reference moving with the local
macroscopic fluid flow velocity u. Now, if we relate pressure p to the trace of the
stress tensor, i.e. to the average of the diagonal components of Π

str, we obtain an
interesting relation:

p = −1
3

Πstr
αα =

1
3

∫
vαvα f dc =

2
3

ρξ.

Therefore, if we accept the previously presented relation ξ = 3RT/2M due to the
equipartition theorem, we have

p =
2
3

ρξ = ρ
RT
M

,

which is nothing but the ideal gas law! The recovery of the ideal gas law serves as
a consistency check for the presented identifications of molecular quantities with
the macroscopic variables. Finally, it is common practice to define the viscous
stress tensor as the traceless part of the stress tensor:

Πvisc
αβ := Πstr

αβ − 1
3

Πstr
γγδαβ = Πstr

αβ + pδαβ;
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pδαβ is the so-called mean normal stress tensor and Πvisc
αβ is the stress deviator

tensor, or the viscous stress tensor. In the continuum mechanics interpretation,
the former tends to change the volume of the stressed body and the latter tends
to distort it.

When considering the transport of energy in a fluid flow, expressed with
contracted third order moments in the velocity space, we distinguish between
the net energy flow E and the heat flux Q. The net energy flow is the total kinetic
energy flow per unit area through an imaginary fixed surface, whereas the heat
flux is a similar quantity but through a surface moving with the local macroscopic
fluid flow velocity [Har04]. Thus, the heat flux is only a component of the net
energy flow:

Qα =
∫

vα
v2

2
dc,

Eα =
∫

cα
c2

2
dc =

∫ 1
2
(vα + uα)(v2 + 2vβuβ + u2) dc

= Qα − uβΠstr
αβ + ρuα(ξ +

1
2

u2).

Clearly, the total energy flow includes contributions from heat, work, and ad-
vected energy.

We are now able to connect the Boltzmann equation Eq. (21), a particular
mesoscopic description, with macroscopic descriptions of fluid flows. In general,
we can obtain an equation for the moment of an arbitrary order Mαβ···ν; we sim-
ply multiply the Boltzmann equation by cαcβ · · · cν and then integrate it over c.
Again, we are particularly interested in the equations for the first few moments.
We thus multiply Eq. (21) successively by 1, cα, c2/2 and then integrate the three
equations over the velocity space. This gives us

∂t(ρ) + ∂α(ρuα) = 0,

∂t(ρuα) + ∂β(ρuαuβ − Πstr
αβ) = 0, (25)

∂t
[

ρ(ξ +
1
2

u2)
]
+ ∂α

[
Qα − uβΠstr

αβ + ρuα(ξ +
1
2

u2)
]

= 0,

which are the usual equations of the macroscopic theory for mass, momentum,
and energy conservation (cf. Eqs (1) and (2))! Above we have neglected the exter-
nal force F, and in addition ∂α ≡ ∂/∂rα. These equations elucidate the advantages
of mesoscopic description in a transparent manner. Namely, there are five macro-
scopic equations for determining 13 independent hydrodynamic variables (den-
sity, three velocity components, six components of the symmetric tensor Π

str, and
three heat flux components). For this reason, the above hydrodynamic descrip-
tion is not self-contained. One is compelled to make various assumptions about
the flow phenomena under investigation. These assumptions are then mathe-
matically expressed with constitutive equations, relations between the hydrody-
namic variables, which reduce the number of independent variables. In this way,
one then obtains a closed set of specific equations, e.g. the Euler or Navier-Stokes
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c)
Transition regime
Ideal gas
(rarefied gas)

b)
Hydrodynamic regime
Non-ideal gas
(water vapour, liquid)

a) Hydrodynamic regime
Ideal gas

rμ � �m �m ∼ L

rμ ∼ �m �m � L

rμ � �m �m � L

FIGURE 3 Fluid flows can be categorised in many ways. Here we use ratios of the
effective interaction radius rμ, the mean free path �m, and the characteristic
hydrodynamic length L to define the hydrodynamic regime for a) ideal gases
and b) non-ideal gases as well as c) the transition regime for ideal gases.

equations depending on the assumptions. From a mesoscopic point of view, these
equations are always approximations.

The major advantage of the mesoscopic description is that there is no need
to use macroscopic conservation equations for solving the space and time depen-
dence of the hydrodynamic moment variables. Indeed, by directly solving the
Boltzmann equation, the same information can be extracted from the solution f .
Furthermore, the Boltzmann equation is applicable to infinitely high Knudsen
number flows unlike, e.g., the Navier-Stokes equation – even though the BGL
limit must be replaced in such cases with the so-called Knudsen limit. Because
of the importance, we stress once more that there is no contradiction in mod-
elling hydrodynamic fluid flows (Kn � 1) with the Boltzmann equation, pro-
vided there exists a clear scale separation: rμ � �m � L, see Fig. 3. It is hard to
miss the resemblance between scale separations required here and in the section
of macroscopic modelling! The true limitation stems from the fact that the Boltz-
mann equation is invalid at the time scales of molecular interactions – collisions
are considered instantaneous events. There are propositions for equations which
are valid also in the interaction scales. They are collectively called generalised
Boltzmann equations, see e.g. Refs [Ens22, Ale94, Ale00, Ale04]. Related to this
discussion are general Boltzmann type models which can be constructed by re-
quiring more independent parameters for the mass density distribution function
f . These parameters, accompanying r, c, and t, can label e.g. additional internal
states of the particles [Cha39, Arl02].

The two evolution mechanisms in Eq. (21), the linear transport and the
nonlinear collision, are implicitly weighted by the Knudsen number. The Knud-
sen number appears directly in the Boltzmann equation when it is made dimen-
sionless. Let us introduce dimensionless variables and denote them by asterisk
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[Kel48, Str05]:

rα = L r∗α, cα = cms c∗α, t =
L

cms
t∗, f =

mN
L3c3

ms
f ∗, aα =

c2
ms
L

a∗α,

dω = π d2 dω∗, dcR = c3
ms dc∗R, VR = Vave V∗

R = (
√

2 cms) V∗
R , (26)

where cms is the mean speed of the particles at a reference temperature T0, the
number of particles in the reference volume V = L3 is N, the acceleration aα

is due to an external force, Vave is the average of relative velocities between the
particles, dω and dcR are related to the integrals in the binary collision operator
J( f ), see Eq. (22), and d is the effective diameter of the particles – alternatively,
the interaction radius rμ could have been used instead of d. Just like in the case of
the Navier-Stokes equation, the dimensional measures are considered constant,
and hence the derivatives in the Boltzmann equation are easily transformed into
dimensionless form. By using the above definitions in the Boltzmann equation,
with the collision operator defined in Eq. (22), its dimensionless form is given by

∂∗t f ∗ + c∗α ∂∗rα
f ∗ + a∗α ∂∗cα

f ∗ =
1

Kn
J∗( f ∗), (27)

where we have utilised the expression Eq. (16) for the mean free path �m. This is a
beautiful result: Kn explicitly measures relative importance of the linear transport
operator (the left hand side) and the nonlinear collision operator (the right hand
side). Since the right hand side must remain finite when Kn → 0, it follows that
simultaneously J∗( f ∗) must approach zero which, in turn, is an implicit statement
for f ∗ → f M∗ . The Knudsen number defines dynamic similarity between fluid
flows with respect to the Boltzmann equation and after a particular interaction
potential has been fixed, in the same way as the Reynolds number does with
respect to the Navier-Stokes equation.

2.3.3 Approximate solutions of the Boltzmann equation

The large number of independent variables in the distribution function, seven in
the general case considered here, together with the very complicated structure of
the collision operator Eq. (22), lay a scene where the mathematical treatment of
the Boltzmann equation is a formidable task. To prove theorems like the global
existence and uniqueness of the solutions to this equation is certainly challeng-
ing. One of the earliest attacks on these issues was conducted, with a mathe-
matical rigour, by Torsten Carleman – a swedish mathematician [Car33, Car57].
His famous publication on the topic dates back to the 1930’s, when he considered
solutions in very simple and specific cases. The string of mathematical develop-
ments thereafter is treated, for example, in Refs [Cer88, Cer94, Vil02, Cer09]. It is
worth commenting that Ref. [Vil02] includes over 450 references accompanied by
useful bibliographical notes, which help to orientate through the huge literature.
As usual, instead of seeking for exact solutions to the Boltzmann equation, one
may take an alternative approach, and seek for approximate solutions.
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It was Maxwell himself who already proposed a technique for obtaining
approximate solutions [Max67]. His proposal was based on the moments and
on the moment equations called Maxwell’s equations of transfer. Furthermore,
Maxwell’s procedure for approximate solutions relies on the Maxwell molecules,
i.e. on the specific interaction potential between particles given by the Eq. (23)
with k = 5. Nearly half a century later, in 1912, the great mathematician David
Hilbert came forward with his proposal [Hil12]. He indicated how approximate
solutions of the Boltzmann equation can be obtained by a priori expanding the
distribution function f in a power series of a parameter inversely proportional
to the gas density. For example, the Knudsen number can be used as a small
expansion parameter:

fH(r, c, t) := f M + Kn f (1) + K2
n f (2) + . . . , (28)

where the arguments of f (i)(r, c, t) are simply not written and the zeroth order
approximation f (0) is identified as the Maxwellian distribution f M. Few years
later further progress was made when both Chapman and Enskog, independently
but almost simultaneously (within about a year), obtained their approximate so-
lutions of the Boltzmann equation [Cha16, Ens17]. Their results were identical
from the practical point of view, but their procedures of computation were not
identical– quite the contrary, their means were different with respect to the spirit
as well as details.

Enskog basically generalised Hilbert’s approach allowing a systematic con-
struction of higher-order approximations; their respective treatment of the term
∂ f /∂t in the Boltzmann equation is a particular point of disparity. At the same
time, Chapman extended the procedure of Maxwell and, particularly, did not
constrain himself to the theoretical gas of Maxwell molecules. He accomplished
this by assuming, like Maxwell, a solution f deviating only slightly from the
Maxwellian distribution:

fC(r, c, t) := f M(1 + ϕ(v)), (29)

where ϕ is a general unknown function of small magnitude for which an ex-
pression is to be determined. Here Chapman deviated from Maxwell’s path; he
assumed a different form for the unknown function ϕ, and then used an infinite
set of transfer equations to compute approximate solutions for it. By adhering to
their choices, both Enskog and Chapman were able to compute expressions for
the transport coefficients of fluid flows, i.e. for the viscosity, thermal conductiv-
ity, and diffusion coefficient. Notice that at a macroscopic level of description, the
transport coefficients are typically considered as unknowns or modelling param-
eters.

Later on, Chapman and Cowling wrote their influential book The Mathe-
matical Theory of Non-Uniform Gases [Cha39], where they adopted the method of
Enskog. Since the book, dedicated gentlemanly to David Enskog, was more ac-
cessible to the general audience than the work published by Enskog, and since
the two persons discovered identical expressions for the transport coefficients in-
dependently, the name Chapman-Enskog method is used today. Here we once



50

again have an example of simultaneous discovery which appears to be a persis-
tent feature in the history of modern science. Chapman himself had a healthy
attitude towards these incidents, as is clear from his statement [Bru72, pp.11]:

If a discovery is highly abstract and complicated, the fact that two peo-
ple simultaneously and independently publish the same result tends
to produce much more confidence and acceptance of the result among
other scientists who would not wish to follow through the details of
the calculation; by helping to establish the validity of the discovery,
the simultaneity benefits both discoverers at once.

For anyone interested in the related historical details, we cannot but advertise the
sincere and warm-hearted memoir by Chapman – a delightfully personal account
[Cha67].

The Chapman-Enskog method gives the Euler, Navier-Stokes-Fourier, and
Burnett equations in successive levels of approximation with explicit expressions
for the viscosity, among other transport coefficients. Furthermore, the explicit
expressions depend on the specific interaction potential chosen for modelling the
encounters between molecules. For example, Chapman and Enskog found that
the expression for viscosity μ given in Eq. (17), reformulated as

μ =
(kbTm

π3d4

)1/2
,

is practically a perfect description, at the Navier-Stokes level of approximation,
for a smooth rigid elastic spherical molecules of diameter d – corresponding to a
repulsive force model of type F = Kr−n, where K is an arbitrary coefficient and
n = ∞. For Maxwell molecules, n = 5, their expression for viscosity agreed with
that of Maxwell’s. Generally speaking, all their expressions for viscosity, related
to purely repulsive interaction models of the aforementioned type, are indepen-
dent of density. The dependence of viscosity on temperature for the same models,
according to Chapman and Enskog, is generally of the form μ ∼ T(n+3)/2(n−1).
This agrees with the specific results, obtained already by Maxwell, namely μ ∼
T1/2 (see the above expession) and μ ∼ T for n = ∞ and n = 5, respectively.
Above all, the Chapman-Enskog method allows computation of the viscosity co-
efficient for any interaction force law, in principle at least.

The fundamental assumption justifying the Maxwell-Chapman approach,
as well as the Hilbert-Enskog approach, enforces consideration of approximate
solutions almost equal to the local Maxwellian distribution f M. That is, both ap-
proaches are limited to fluid flows in the small Knudsen number regime – a fact
very evident from the expansion Eq. (28). Essentially these approaches assume
normal solutions of the Boltzmann equation, implying that the distribution func-
tion f is uniquely determined by the five hydrodynamic variables ρ, u, T and their
first derivatives. In order to obtain solutions, not limited exclusively to the small
Knudsen number regime, Harold Grad proposed a different kind of approxima-
tion procedure [Gra49a, Gra49b]. His formal idea was to expand f as a function
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of microscopic velocity c in terms of the generalised Hermite polynomials H(n):

fG(r, c, t) := f M
(

1 + a(1)H(1) +
1
2!

a(2)H(2) +
1
3!

a(3)H(3) + . . .
)

, (30)

where the generalised Hermite polynomials H(n) are given tensors of rank n, and
functions of the microscopic velocity only. For example,

H(2) ≡ H(2)
αβ (c).

The coefficients a(n) of the Hermite polynomials are the primary unknowns, func-
tions of the spatial coordinate r and time t only, and also tensors of rank n, e.g.

a(2) ≡ a(2)
αβ (r, t).

Note how the depence of the distribution function fG on its arguments is reorgan-
ised in the expansion Eq. (30): the known component in the expansion contains
the dependence on c, and the unknown component contains the dependence on
r and t. This is the leitmotif of the Grad expansion!

The true distribution function f is given by the Grad expansion with infinite
number of terms. An approximation for f is obtained when only a finite num-
ber of terms are retained in the expansion. To obtain a definite expression for fG,
with only a finite number of terms in the expansion, the unknown coefficients
a(n) of the Hermite polynomials must be found. The procedure of solving for the
coefficients involves successively multiplying the expansion for fG by Hermite
polynomials, here the left hand side of Eq. (30) is formally taken to be equal to f .
Since the depence of fG on its arguments is decoupled, and since the generalised
Hermite polynomials are orthogonal with respect to an inner product in the ve-
locity space, the aforementioned procedure will immediately yield expressions
for the unknown coefficients. In general, all the coefficients a(n) turn out to be
linear combinations of the moments of f . Grad’s procedure then continues with
the construction of evolution equations for the now determined coefficients. The
procedure is, at least in principle, able to produce non-normal solutions of the
Boltzmann equation, i.e. solutions are not limited to the small Knudsen number
regime. One of the advantages of Grad’s approach is that the dependence of the
approximate solution f on its moments is explicit. That is, moments of higher-
order than ρ, u, T appear directly in the expansion. Probably the best-known ap-
proximation is Grad’s system of 13 equations with the variables ρ, u, T, Π, Q.

There is still one alternative, related to approximate solutions of the Boltz-
mann equation, which we would like to mention. The so-called linear Boltzmann
equation is obtained with the assumption that the distribution function f varies
around the Maxwellian distribution f M such that

fL(r, c, t) := f M(1 + g(r, c, t)).

The above expression for f is then substituted into the Boltzmann equation, and
only terms linear in perturbation g are retained, giving the linear collision opera-
tor

L(g) :=
1
m

∫
B(VR, θ)(gR + g − g − gR) f M(r, cR, t) dε dθ dcR. (31)



52

It is of course an easier task to find solutions of the linear Boltzmann equation,
both exact and approximate, than to tackle the true nonlinear Boltzmann equa-
tion. The perturbation function g is naturally small in magnitude, and hence the
linear Boltzmann equation also describes processes not too far from the thermo-
dynamic equilibrium.

2.3.4 Model Boltzmann equations

From an analytical treatment perspective, the most formidable barrier obstructing
derivation of exact solutions to specific flow problems is the non-linear collision
operator J ( f ) standing on the right-hand side of the Boltzmann equation Eq.
(21). Even with the linearised Boltzmann equation Eq. (31), obtaining solutions
to problems of interest still involves a great deal of painstaking labour. The most
obvious shortcut for obtaining solutions is to replace the complex collision opera-
tor with a simpler expression. These expressions are called collision models, and
any Boltzmann-like equation where J ( f ) is replaced by a simpler collision model
is called a model Boltzmann equation or a kinetic model equation. The rationale
behind this replacement is that the fine structures of the original binary collision
model are not likely to influence significantly the values of many experimentally
measured quantities. In essence, simpler models are blurred images of the origi-
nal binary collision model, and retain only the qualitative and average properties
of J ( f ). Let M( f ) denote a simple collision model. Then M( f ) should at least
respect the most important properties of the original binary collision model:

1. Mass, momentum, and energy are conserved in the collisions. This is guar-
anteed if ∫

1M( f ) dc =
∫

cα M( f ) dc =
∫

c2 M( f ) dc = 0.

2. The production of entropy in the collision process is always positive, i.e.

−
∫

M( f ) ln f dc ≥ 0.

3. In an equilibrium state, the mass density distribution function f is given by
the Maxwellian, or mathematically

M( f ) = 0 ⇒ f = f M(ρ, u, T).

The second property expresses the tendency of the gas to approach the Maxwellian
distribution. This is the inspiration for a broad class of collision models. The sim-
plest scheme of them all was proposed by Bhatnagar, Gross, and Krook, in the
article published in 1954, and independently by Welander in the very same year
[Bha54, Wel54]. In their proposal, collisions explicitly relax distribution functions
towards the Maxwellian distribution, and the relaxation rate is controlled by the
mean free flight time τm between the collisions:

MBGK( f ) =
1

τm
( f M − f ); (32)
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here the collision frequency 1/τm is assumed constant, especially independent of
the particle velocity c, and it is generally treated as an adjustable parameter. This
is a practical model, and the microscopic parameter τm conveniently tunes the
Knudsen number. This single relaxation time scheme is usually called the BGK
model, unfortunately ignoring Welander, and it respects the three properties pre-
sented above. On the other hand, the original binary collision model prescribes
the transport coefficients μ and κ, viscosity and thermal conductivity, so that their
ratio, i.e. the Prandtl number Pr is 2/3. The BGK model differs in this respect
since it enforces Pr = 1. Note also that the BGK model is deceptively simple
and only apparently linear. The BGK model is actually highly non-linear because
the Maxwellian is a complicated function of the hydrodynamic variables, which
themself are moments of the mass density distribution functions in the velocity
space.

A variant of the BGK model, where the collision frequency is velocity de-
pendent, does prescribe transport coefficients so that Pr = 2/3. However, the
variant is not too appealing for other physical reasons [Mie04]. Another mod-
elling approach was presented by Holway [Hol66]: he suggested modifications to
the simple model Eq. (32) by presenting an upgraded version, nowadays called
the ellipsoidal statistical BGK model (ES-BGK). In the ES-BGK model, the Prandtl
number can be controlled by a single model parameter. This property is pro-
vided with the replacement of the Maxwellian equilibrium distribution function
(an isotropic Gaussian) by an anisotropic Gaussian [Mie04, Str05]:

MES( f ) =
1

τm
( f ES − f ), (33)

where

f ES = ρ

(
1

det(2π Tαβ)

)1/2

exp(−1
2

T−1
αβ vαvβ)

includes the matrix

Tαβ =
kbT
m

δαβ +
b
ρ

Πvisc
αβ ;

the function det(·) is the determinant, Π
visc is the traceless viscous stress tensor,

and the inverse of matrix T is positive definite if −1/2 ≤ b ≤ 1. The ES-BGK
model also respects the three properties presented above; the proof of the sec-
ond property, increase of entropy, was presented very recently [And00, And01].
The parameter b can be adjusted to deliver the desired Prandtl number: Pr =
1/(1 − b). Obviously for b = 0, the ES-BGK model reduces to the standard BGK
model. By using the definitions of the dimensionless variables, Eq. (26), the di-
mensionless form of the BGK model is

∂∗t f ∗ + c∗α ∂∗rα
f ∗ + a∗α ∂∗cα

f ∗ =
1

Kn
( f M

∗ − f ∗), (34)

where we have utilised the definition τm = �m/cms. The dimensionless equation
for the ES-BGK model is of equivalent form. Thus, the concept of dynamic sim-
ilarity emerges once again, providing freedom to choose favourable modelling
parameters as long as the desired value is maintained for Kn.
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There is numerical evidence that the above models are accurate at the hy-
drodynamic regime, and are able to give qualitatively good results in the transi-
tion regime [And02, Mie04]. However, they fail to accurately describe flows at
larger Knudsen numbers. This is not too surprising, because the models have a
connection with the linearised Boltzmann equation, see Eq. (31), which describes
processes where the distribution function f is always close to the Maxwellian
distribution f M [Gro59, Har04]. That is, the processes described do not include
strong deviations from the thermodynamic equilibrium, and hence the Knudsen
number must be small. Furthermore, the ES-BGK model is basically constructed
for gases comprised of Maxwell molecules [Kos09]. A comprehensive survey on
model equations is provided in Ref. [Zhe04] (see especially Table 2.1 in the refer-
ence). Finally, it is actually very intriguing to speculate under which conditions
the BGK and ES-BGK models are strictly valid. For example, they do not involve,
at least directly, an assumption of binary collisions. At the moment, we are not
aware of publications describing efforts to derive e.g. the BGK model directly
from the Liouville equation or alternatively from the BBGKY hierarchy of equa-
tions, rather than from the linearised Boltzmann equation.

2.3.5 Kinetic boundary conditions

When attention is focused to applications, it is immediately necessary to consider
appropriate boundary conditions. In a typical scenario, fluid flow is either con-
fined or diverted by solid boundaries – walls if you like. In the kinetic theory of
gases, boundary conditions for such scenarios describe the interaction of the gas
molecules with the solid walls. These interactions give rise to the drag and lift
exerted by the gas on the solid body. They also account for heat transfer between
the gas and the solid boudary. Realistic boundary conditions for e.g. the Boltz-
mann equation are, however, very difficult to formulate [Cer94]. In an optimal
situation, we would have insight into the interaction mechanism combining as-
pects from both the kinetic theory of gases and solid-state physics. Unfortunately,
our understanding even today about such a mechanism is very limited hinder-
ing new innovations on the topic. In general, it is not known how the molecules
of a gas behave when they encounter a solid wall. Maxwell was well aware of
the difficulties related to the modelling of gas dynamics in the close vicinity of
solid walls, and made this known at the appendix of On Stresses in Rarified Gases
Arising from Inequalities of Temperature published in 1879 [Max79a]:

In the paper as sent in to the Royal Society, I made no attempt to ex-
press the conditions which must be satisfied by a gas in contact with
a solid body, for I thought it very unlikely that any equations I could
write down would be a satisfactory representation of the actual con-
ditions, especially as it is almost certain that the stratum of gas nearest
to a solid body is in a very different condition from the rest of the
gas. One of the referees, however, pointed out that it was desirable
to make the attempt, and indicated several hypothetical forms of sur-
faces which might be tried.
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And sure enough, Maxwell makes the attempt in the very same appendix by
presenting his ideas about boundary conditions at the interface between gas and
solid. His idea was a combination of two boundary conditions. Let n(r) denote
an outward unit normal at the solid boundary ΓS, i.e. n points from the solid to
the gas domain. The first and most natural boundary condition he considered
was the specular reflection law:

f (r, Rc, t) = f (r, c, t), Rc = c − 2 [c · n(r)] n(r), r ∈ ΓS. (35)

Here the tangential velocities of impinging molecules remain unchanged, but the
normal components of the velocities are reversed. Since specular reflection im-
plies zero friction in the tangential direction of the boundary, molecules so emit-
ted to the gas do not impose drag on the solid body – there are no shear stresses
acting on the wall. In reality solid walls do resist gas flows, and thus there has to
be a mechanism responsible for friction at the boundary. Maxwell took this into
consideration by introducing the diffuse reflection law:

f (r, c, t) = f M(ρW , uW , TW), c · n(r) > 0, r ∈ ΓS, (36)

where uW and TW are the local wall velocity and temperature, respectively. The
local density ρW is chosen carefully so that the wall does not accumulate or dis-
perse molecules on that site. Here the colliding molecules interact strongly with
the wall, and the emitted molecules leave the wall in a Maxwellian distribution
determined by ρW , uW, and TW. Finally, Maxwell proposed that a realistic bound-
ary condition, at least to some degree, is a linear combination of the two condi-
tions above: a portion χ of the incident molecules is specularly reflected and the
rest (1 − χ) interact diffusively with the wall. This combination, with various
expressions for the accommodation coefficient χ, is still a very popular boundary
condition.

Nearly one hundred years after Maxwell’s contribution, Schnute and Shin-
brot presented their boundary condition [Sch73]. They proposed the reverse reflec-
tion law,

f (r,−c, t) = f (r, c, t), r ∈ ΓS, (37)

which implies zero fluid flow velocity at the boundary. It is an experimental fact
that, in the hydrodynamic regime, most of the real gases in ordinary conditions
effectively stick to a solid wall, i.e. they do not slip or, in other words, the rel-
ative velocity between the gas and the wall is zero at the boundary. Of course,
fluids do slip to some extent when the Knudsen number for a flow is not neglible
anymore. For example in the Maxwell’s composite boundary condition, the slip
can be adjusted with the accommodation coefficient χ. All this suggests that no-
slip is an approximation, on a macroscopic level, to what actually happens at the
boundary of a fluid. Unfortunately the distinction between the slip and no-slip
boundary conditions is not so clear-cut as it may seem from the above discussion.
Namely, the reverse reflection law was originally presented in the context of Li-
ouville equation. Later, Cercignani studied solutions of the linearised Boltzmann
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equation accompanied by the reverse reflection law for specific flow configura-
tions [Cer89]. For a Plane Poiseuille flow, that is for a fluid flow between two par-
allel plates induced by a pressure gradient, the analytical solution he found for
the velocity profile is a parabola. However, this parabola is shifted by a constant
amount, proportional to the square of the Knudsen number. That is, although the
reverse reflection law gives no microscopic slip at the boundary, it may distort
the bulk flow by giving rise to a kind of effective macroscopic slip.

The three boundary conditions above all preserve the mass locally, and this
enforces vanishing normal velocity at the boundary. In addition, the specular and
reverse reflection laws are deterministic. The diffuse reflection on the other hand
is a stochastic law, since the incident velocity of a molecule does not uniquely
determine its velocity after wall encounter. It has also been shown that in the
course of specular as well as reverse reflection, entropy remains constant [Shi78].
We conclude our treatment of the boundary conditions with a final remark: from
the three boundary conditions just presented, only the diffuse reflection law al-
lows control of temperature at the boundary.

2.4 Discrete kinetic theory of gases

The mass density distribution function f , the primary unknown object in the
Boltzmann equation Eq. (21), depends on seven independent variables: three
components of spatial coordinate r, three components of microscopic particle ve-
locity c, and time t. In macroscopic descriptions, an unknown function of interest
is typically dependent only on the spatial coordinate and time. Seeking solutions
for unknown functions of four arguments, instead of seven, is a much easier task
– in principle. This perspective immediately gives an idea of reducing the num-
ber of independent variables in f to, say, four. The reduction is feasible indeed, if
only certain prescribed velocities are allowed for the particles. To this end, let q
denote the finite number of admissible velocities; at any given instant, each of the
particles in the system has a velocity from the set Ψq = {c0, c1, . . . , cq−1}. Then
the discrete Boltzmann equation is expressed as

∂ fi

∂t
+ ci · ∂ fi

∂r
+ a · ∂ fi

∂ci
= Ji(�f ), i = 0, 1, . . . , q − 1, (38)

where fi ≡ f (r, ci , t) and �f is a shorthand for the vector ( f0, f1, . . . , fq−1)
T. In

this discrete representation, the continuous binary collision operator J ( f ) in-
volving integrals is replaced by a discrete counterpart Ji(�f ) involving summa-
tions, which is actually a considerable simplification. All in all, the single equa-
tion Eq. (21) for the unknown function f of seven independent variables is now
replaced by the discrete Boltzmann equation Eq. (38) representing in fact a to-
tal of q coupled equations for the unknown function fi of only four independent
variables. The discrete Boltzmann equation is a generic nonlinear mathematical
model, and the fundamental basis for the discrete kinetic theory of gases. Surveys
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on the topic are available in Refs [Gat75, Gat77, Pla88, Bel91a, Mon91, Bel03], for
example.

The first person to present a discrete Boltzmann equation is presumably
Carleman [Car33, Car57]. His primary subjects of interest were mathematical as-
pects of the Boltzmann equation. Later in the 1960’s, Broadwell proposed some-
what more realistic discrete velocity models, and applied them in studying spe-
cific fluid flow configurations [Bro64a, Bro64b]. His models included four veloc-
ities in two dimensional space, and six or eight velocities in three dimensions.
It is rightfully argued that the work by Broadwell was the starting point for the
discipline of the discrete kinetic theory of gases. Broadwell was immediately
followed by Harris, who investigated properties of the discrete velocity models
[Har66]. He, in turn, introduced a model with six velocities for two dimensional
flows. Moreover, Broadwell and Harris both proposed expressions for the dis-
crete collision operator Ji by considering collisions between two and even three
particles. Let us now consider a four velocity model in two dimensions for illus-
tration purposes. In the model credited to Gatignol, the velocities are along the
two coordinate axes, both in the positive and negative directions, and the single
speed related to the velocities is c [Mon91, p.43]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t f0 + c ∂x f0 = cS ( f1 f3 − f0 f2),

∂t f1 + c ∂y f1 = cS ( f0 f2 − f1 f3),

∂t f2 − c ∂x f2 = cS ( f1 f3 − f0 f2),

∂t f3 − c ∂y f3 = cS ( f0 f2 − f1 f3).

These four equations, for the four unknows, are clearly coupled in a nonlinear
manner. Furthermore, the term S is obviously related to the particle collisions,
and its explicit form depends on the the particular interaction potential chosen for
the collisions. The above set of four equations is a concrete, albeit simple, exam-
ple of discrete velocity models; it incorporates transparently all the main elements
of the general model framework defined by the discrete Boltzmann equation Eq.
(38). A closely related, but very distinctive, discretisation of the microscopic ve-
locity space models a gas of particles having velocities with a finite number of
magnitude but with a continuum of directions. Such a concept is represented
with the so-called semicontinuous Boltzmann equation. It was first proposed in Ref.
[Bel91b], and soon more publications followed [Lon93, Pre93, Pre97, Bel03].

The computation of hydrodynamic as well as non-hydrodynamic variables
from the mass density distribution function f , as explained in the previous sec-
tions, involve weighted integrals over the velocity space, i.e. the variables are
moments in that space. In the case of discrete velocity distribution functions fi,
the same variables are computed as weighted sums over the discrete velocity set
Ψq. Now arises a question: to what extent the discrete velocity moments corre-
spond or conform to the moments computed with the true integral expressions?
In the same breath, what are the properties of the discrete collision operators and
what are the governing evolution equations for the discrete velocity moments?
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These are the questions, among others, for which answers are sought for in the
discipline of discrete kinetic theory of gases [Bob95, Pal97, Cer00]. Apart from
the theoretical issues, the discrete velocity models provide a convenient starting
point for specific computational schemes [Mie00].

For two dimensional flows, Harris introduced a model with six velocities
which correspond exactly with the six directional vectors connecting nodes in a
hexagonal lattice. Interestingly enough, the hexagonal lattice was introduced two
decades later for the Lattice-Gas Automata – an oversimplified particle model
[Fri86]. Moreover, the expressions for the discrete collision operators proposed
by Harris were adopted as collision rules (now expressions of mathematical logic)
for the new automata. Subsequently, the lattice Boltzmann method was derived
from this automata, and the very same collision rules, with slight modifications,
were applied as presented by Harris – again in the role of discrete collision op-
erators. From this perspective, it would have been natural to simply discretise
space and time variables in the discrete velocity model of Harris in order to re-
cover the lattice Boltzmann method. Frisch et al. were aware of this possibility,
as is evident from their statement [Fri86]:

There are many ways of building microscopic models that lead to a
given set of continuum equations. It is known that one can build two-
and three dimensional Boltzmann models, with a small number of ve-
locity vectors, which, in the continuum limit, reproduce quite accu-
rately major fluid dynamical features (e.g., shock waves in a dilute
gas, etc.). Such Boltzmann models are fundamentally probabilistic,
discrete only in velocity, but continuous in space and time. In con-
trast, we will use lattice-gas models, which have a completely dis-
crete phase space and time and therefore may be viewed as made of
“Boolean molecules”.

But, hindsight is a luxury. There are no clear directions to be followed when new
discoveries are pursued: science is a rogue traveller, it has paths of its own. After
the work of Harris, the subsequent developments leading to the lattice Boltzmann
method took a detour of more than twenty years.



3 THE LATTICE BOLTZMANN METHOD

Discrete simulation of fluid dynamics took a leap forward in 1986. The authors
of this progress were Frisch, Hasslacher, and Pomeau: they introduced a mod-
ified version of the Lattice-Gas Automaton (LGA) for the Navier-Stokes equa-
tion [Fri86]. Reborn LGA adventured to simulate, now realistically, fluid flows
with boolean microdynamics providing an exact computational scheme. Indeed,
roundoff plagued floating-point computation is avoided in LGA by boolean ex-
pressions. This was not the end of good news: the extraordinary simple dynamics
with local update rules was ideally suited for parallel computing. These techni-
cal aspect, together with the beautiful concept of digital machinery representing
atomistic view of fluid flow, excited scientists and public [Hil85b, Kad86, Hil89].
Great expectations followed, even the possibility to unravel mysteries of turbu-
lence. All took place in parallel with the commission of new type of general-
purpose [Hil85a] and special-purpose [Tof84, Mar86, Mar87] computers. This
further amplified the expectations. In the end the triumph was never really cel-
ebrated as further numerical studies set LGA among other numerical simulation
schemes; limitations of LGA were soon understood. However, a new avenue for
fluid flow simulation was opened.

Defects of LGA spurred scientists for improvements. McNamara and Zanetti
proposed to replace the boolean variables with real numbers [McN88]. Their pro-
posal in 1988 has been considered as the introduction of the lattice Boltzmann
method (LBM). Rapidly a scientific community grew around this new numeri-
cal method and further developments took place. These developments are the
topic of this chapter. In particular, the basic properties of LBM are here presented
and, furthermore, special attentation is devoted to the so-called conventional lat-
tice Boltzmann schemes. These schemes are specific yet embraced incarnations
of LBM and have many exponents. Also, we demonstrate how lattice Boltzmann
schemes can be derived from the discrete Boltzmann equation. Here the focus
is exclusively on schemes intended for simulation of fluid flows macroscopically
described by the Navier-Stokes equation. In order to elucidate how these hydro-
dynamic lattice Boltzmann schemes approximate the Navier-Stokes equation, we
present a multiple-scale analysis of a specific scheme.
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3.1 From the Lattice-Gas Automaton to LBM

Historically LBM emerged from LGA. In retrospect, the transtion from LGA to
LBM was quite subtle. Originally many components of LGA, and many of its
properties in consequence, were carried over to LBM as such. In this sense, the
history of LGA is the prehistory of LBM. Therefore, let us first consider the major
developments related to LGA.

Principal actors in the early stages of LGA were Hardy, Pomeau, and de
Pazzis. In the beginning of the 1970’s they investigated a rather simple system
of particles in two dimensions [Har72, Har73]. They started off with a kind of
restricted molecular dynamics: only few predefined velocities were allowed for
the particles. That is, a set of particles follow constant trajectories (lines) and the
particles, finite in number, interact only when their trajectories intersect. In free
motion, positions of the particles evolve continuosly in time. In the first devel-
opment stage, they prescribed explicit interaction laws for the particle collisions
which conserve mass, momentum, and energy. Next, the above simple dynamics
was made even simpler by allowing only discrete positions for the particles. In
each unit of time Δt, particles hop, according to their velocity, from a site to an-
other in a regular lattice, and suffer collisions with each other. This is the modus
operandi of LGA.

An additional simplification, characteristic of LGA, was assumed from early
on. Namely, the so-called exclusion principle is enforced: at any given time, par-
ticles sharing both the position and the velocity are not allowed to exist. One bit,
here bi(r, t), is hence enough to state whether a location r is occupied at time t by
a particle with a prescribed velocity ci. This principle facilitates relatively sim-
ple collision rules; both propagation and collision of particles can be coded with
boolean expressions – unconditional stability is a give away. The exclusion princi-
ple also leads to Fermi-Dirac type equilibrium distributions for mean occupation
numbers, not to the Maxwellian distribution. The general evolution equation for
the occupation variables is

bi(r + Δtci , t + Δt) = bi(r, t) + Ωb
i (r, t), (39)

where the collision operator Ωb
i is a boolean expression representing change in

the occupation variable due to particle collisions; coordinates (r + Δtci) coincide
with the nodes of a lattice. The above equation is a convenient definition for
LGA. A two-dimensional computational procedure with a specification for Ωb

i ,
known as the HPP model, was presented in the appendix of Ref. [Har76] – see
the illustration in Fig. 4.

All so far seems too easy, and in a way it is. A critical question is justified
when a computational scheme built upon a discrete system of particles with fic-
titious interaction laws is presented: what kind of equations or laws govern the
collective motion of particles? That is, what kind of a system we are simulating in
a macroscopic sense? Is there even enough particles in the discrete system so that
the collective motion and the macroscopic sense are meaningful concepts? Before
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FIGURE 4 A sketch of particle dynamics in two LGA models. In the HPP and FHP
models, particles live in a square and hexagonal lattices, respectively. During
a discrete time step, the particles first propagate, according to their velocity,
from their current positions (on the left). Then, during the same time step
but after the propagation, particles collide at their new locations and acquire
new velocities (on the right). Here the particles obey collision rules presented
in Ref. [Fri87].

answering, a measure that characterises physical flows is needed. One measure
is provided by the dimensionless Knudsen number Kn. Dense fluid flows and
rarefied gas flows are typically described by small and large Knudsen numbers,
respectively. Furthermore, the Navier-Stokes equation is assumed valid in the
regime of small Knudsen numbers [Raa04]. Now a more refined question is ap-
propriate: given a computational particle-based scheme and a simulation con-
figuration with small Kn, can we simulate solutions of the Navier-Stokes equa-
tion? From the beginning it was known that the answer is no for the HPP model
[Har72].

In the asymptotic limit, the HPP model does not comply with the Navier-
Stokes equation. Two main obstacles are insufficient Galilean invariance and
insufficient isotropy. Term insufficient is meaningful since discrete models can
be upgraded to evermore invariant and isotropic. It is noteworthy that devel-
opments related to LBM have often been propelled by identification of sources
breaking either Galilean invariance or isotropy. The HPP model breaks the prin-
ciple of Galilean invariance at the lowest order since e.g. the pressure turns out to
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be dependent on the average (macroscopic) velocity.1 But even more severe is the
low symmetry of the discretised microscopic velocity space; there are only four
allowed velocities for the particles (cf. Fig. 4). Thus the HPP model is invariant
under π/2 rotations, which is not sufficient to ensure the isotropy of a certain
fourth-rank tensor formed from the discrete velocities and related to the momen-
tum flux. Unfortunately, the momentum flux tensor computed according to the
HPP model does not agree with its counterpart in the Navier-Stokes equation.

Frisch, Hasslacher, and Pomeau set out to remedy the insufficient isotropy.
They presented a version of LGA, the FHP model, with six allowed velocities for
particles [Fri86]. In two dimensions, this set of velocities provides enough sym-
metry; the FHP model was an immediate success since it was shown to conform
with the Navier-Stokes equation in the asymptotic limit. The new model was
exciting especially because adequate isotropy was achieved with six velocity vec-
tors each connecting a node in a hexagonal lattice to one of its neighbours (see Fig.
4). Thus, the computational scheme remained exact as the particles continued to
hop between lattice sites. Other discrepancies of the original LGA relative to the
Navier-Stokes equation were still present. Mass and momentum conserving col-
lision rules, with a random element, were adopted for the FHP model from the
discrete velocity model presented by Harris (see discussion in Sec. 2.4). Frisch et
al. also presented the possibility to have particles with zero velocity in the model,
i.e. the so-called rest particles.

Taking LGA from two dimensions to three dimensions is not as straight-
forward as one would expect at first. Due to computational reasons, two com-
ponents were supposed to be married. A set of discrete velocities, possessing
sufficient symmetry properties, were sought for a regular lattice. These two com-
ponents would live in harmony, if every velocity vector connects two sites of the
lattice. In three dimensions, such a combination cannot be found for any dis-
crete velocity set with only one non-zero speed. A seminal article proposed two
alternative solutions for this problem [d’Hu86a]. In a multi-speed solution, a cu-
bic lattice is used together with 19 discrete velocities connecting lattice sites: the
number of velocities having speed 0, 1, and

√
2 are 1, 6, and 12, respectively. This

model has precisely the velocity set of the so-called D3Q19 model, later proposed
for LBM. A corresponding proposal was made also for two dimensions involving
square lattice with 9 velocities – later known as the D2Q9 model. Multi-speed
solution required elaborate conditions to be satisfied; implementations enforcing
these conditions were not presented. The second solution is more exotic, but read-
ily amenable to implementation. It is a pseudo 3D model operating actually in a
4D face-centered hyper-cubic lattice – hence the name FCHC model. Exactly the
same two opportunities for progress were also recognised by Wolfram [Wol86].

Variants of the original LGA models started to emerge. Particularly, new
models came with modified collision rules [d’Hu86b, Hén87a, d’Hu87a]. In LGA,
the kinematic viscosity is determined by the density2 and the collision rules. The

1 Galilean invariance generally means that equations describing the physics involved are
independed of the inertial frame of reference.

2 Here the average number of particles per lattice site, assigned in the system initialisation.
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tuning of collision rules, typically by increasing the number of particle collisions
with additional collision arrangements, strives for a lower viscosity or ultimately
for a higher Reynolds number in simulations. The logic comes from the kinetic
theory of gases: the more collisions there are, the shorter the mean free path is,
and the smaller the viscosity is – provided the number of particles is kept con-
stant at the same time, cf. Eq. (17). Pioneering work in optimising collision
rules for minimum viscosity was done by Hénon [Hén87b]. He also proposed a
general recipe, utilising the molecular chaos assumption, for computing viscosity
directly from the collision rules. Wolfram had used the same approximation in
his notable publication when computing transport coefficients, e.g. viscosity, for
LGA models [Wol86]. Expressions for viscosity so obtained are approximations
by construction, but nevertheless valuable in the analysis and theoretical work.
More stringent values for viscosity, important on the practical side, are obtained
by measuring viscosity with computational experiments – a kind of computa-
tional viscometer is set up. Such measurements are described with enjoyable
clarity of presentation by Kadanoff et al. [Kad87].

At the same time a comprehensive study summarising theoretical aspects
of various LGA models was published [Fri87]. There the main analytical re-
sults thus far were recapitulated: the Navier-Stokes equation is recovered in the
asymptotic limit with the low Mach number assumption; the discrete velocity
set must be chosen so that any tensor up to fourth degree formed from the ve-
locities is isotropic. The equation obtained as such bears a close resemblance to
the Navier-Stokes equation, but is polluted by terms breaking the principle of
Galilean invariance. Specifically there are two problems. The first problem is that
an additional coefficient emerges in front of the convective term. This coefficient
is not necessarily equal to unity, as it should be in a physical system. Ultimately
this is a consequence of the Fermi-Dirac type equilibrium. For constant density
single-phase flows, this problem can be tackled by a density-dependent rescaling
of time, viscosity, and pressure. This rescaling typically decreases the Reynolds
number. In consequence, more computational resources are required for high
Reynolds number simulations. The second problem is related to the equation
of state. That is, for simple fluids the pressure should depend only on the den-
sity and temperature (see the ideal gas law Eq. (12) in Sec. 2.2.2). However, LGA
models with just one non-zero microscopic speed simulate systems with pressure
depending also on the macroscopic flow velocity. The correct physical equation of
state is recovered with LGA models having at least two non-zero particle speeds
[Cho88, Che89b, Che89c, Mol89].

Single-speed LGA models with certain collision rules have an additional pe-
culiarity, potentially leading to dynamical behaviour not described by the Navier-
Stokes equation. These models accommodate so-called spurious invariants. That
is, the models conserve quantities prescribed for them, i.e. mass and momen-
tum, but also others. These extra invariants show up in the equations describ-
ing the macroscopic behaviour of the automata. Spurious invariants are avoided
by appropriate collision rules or by utilising multi-speed models [Wol86, Zan89,
Kad89, d’Hu89, Fah91]. More on the practical side, inherent noise and compress-
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ibility related to the hydrodynamic variables extracted from LGA simulation per-
mit a rather limited domain for simulation parameters yielding the behaviour of
an incompressible Navier-Stokes fluid [Dah87, Che89d]. One equipped with a
positive mind can look at the bright side: such parameters exist! Also, the inher-
ent noise can be seen as an advantage. With large LGA simulations it is possible to
reproduce the full dynamical scale, all the way from the nonlinear Navier-Stokes
dynamics to the small-scale dissipation effects embedded in the noisy pseudo-
molecular fluctuations of the automaton [Lad88, Suc88].

Nonetheless, it was gradually becoming clear that LGA offered no partic-
ular advantage over conventional approaches in high Reynolds number simu-
lations [Ors86, Fri87, Suc88, Zal89]. Actually, LGA turned out be rather lim-
ited with respect to the Reynolds number – killing the high hopes for rapid ad-
vancement in turbulence research. An interesting case study of a particular 3D
simulation with the FCHC model was presented by Rivet et al., illustrating the
difficulty of reaching low viscosity in LGA simulations [Riv88]. With the ben-
efit of hindsight, modelling the collision process with a set of enumerated col-
lision rules, especially in three dimensions, had become the burden for LGA.
Even so, considerable effort was still invested in enhancing the collision rules
[Dub88, Hén89, Rot89a, Som90, Dub90]. Along the way of the aforementioned
developments, a wonderfully rich world of low Reynolds number flows was dis-
covered suitable for simulation with LGA.

Possibility to simulate complex phenomena such as magnetohydrodynam-
ics [Mon87, Che87], fluid flow in porous media [Bal87, Rot88a], fluids with in-
terfaces and multicomponent flows [Bur87, Bur88, Rot88b, Rot89b], multiphase
flows [Che89a, App90], reactive flows [d’Hu87b, Cla88, Sea89], dispersion [Bau89],
and particles suspended in a fluid [Lad88, Lad90] stirred new excitement. These
are often appointed, due to the typical length and time scales involved, as prime
examples of mesoscopic flow phenomena – naturally suited for simulation also
with LBM. Many of the above flow phenomena involve complex boundaries, and
hence boundary conditions often determine whether computer simulations of the
phenomena are feasible. Particularly in this respect, LGA equipped with sim-
ple and operational, albeit crude, boundary conditions is an attractive computa-
tional scheme. This aspect is true also for LBM. Perhaps the most accurate, or
the most rigorous, treatment of the boundary conditions for LGA is presented in
Ref. [Cor91], including reverse and specular reflection laws (see Sec. 2.3.5). In the
context of LGA, as well as LBM, the reverse and specular reflection laws are com-
monly referred to as the bounce-back and bounce-forward boundary conditions.

Finally it appeared as if all major theoretical improvements were squeezed
out of LGA; more technically oriented improvements were still pursued. For ex-
ample, Refs [Hén92, Som92, Adl95, Kob03], published after the golden age of
LGA, provide an interesting account of the high-performance implementation is-
sues related to computations with the FCHC model. For those interested in more
general accounts, thorough and insightful reviews of LGA are available e.g. in
Refs [Has87, Vic89, Boo91, Che91b, Som91]. The history of LGA, as seen today,
portrays a scientific rush where scientists vigorously seek improvements one af-
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ter the other. Soon new improvements became harder to come by, and the rush
gradually lost its momentum. Or actually, as described below, the momentum
was diverted into a new direction.

3.2 Conventional lattice Boltzmann schemes

Numerical analysis of the properties of LGA requires formal computation of aver-
ages for the boolean occupation variables bi(r, t). In this context, several authors
presented the lattice Boltzmann equation (LBE) as an intermediate analysis tool
[Wol86, Fri87, Hén87b]:

fi(r + Δtci , t + Δt) = fi(r, t) + Ωi(r, t); (40)

it was commissioned to govern evolution of the formal averages. The above equa-
tion is equivalent with the LGA equation Eq. (39) except that all boolean variables
have now been replaced with floating-point variables. The function fi(r, t) is re-
ferred to as the single-particle distribution funtion indicating the probability of
finding a particle at site r at time t with velocity ci. The last term on the right,
Ωi(r, t), is the discrete collision operator representing change in the distributions
due to the interactions between particles.

Instead of using LBE merely as an analysis tool, McNamara and Zanetti
utilised the same equation as a numerical tool for computer simulations [McN88].
Their motivation was to eliminate the inherent noise plaguing LGA simulations;
the collision rules of LGA were still utilised for describing the discrete collision
operator Ωi and thus other peculiarities of LGA remained. Their article on the
topic, published in 1988, established LBM – a numerical method for transport
phenomena. McNamara and Zanetti also presented an estimate according to
which the new method is computationally efficient in the region of intermedi-
ate to low Reynolds number. As it happens, this is the region where LBM is
nowadays most often applied. In parallel with McNamara and Zanetti, Higuera
and Jiménez also discovered the opportunity to use LBE as a simulation tool
[Hig89a, Hig89b, Hig89c, Hig89d] – apparently their first article on the topic
was delayed because of the publication process. Higuera and Jiménez under-
stood that, while suppressing the noise present in LGA simulations, a numerical
method based on LBE allowed much more freedom in constructing discrete col-
lision operators and handling the required symmetries of the distribution func-
tions.

3.2.1 LBGK

By modelling the collision term Ωi(r, t) in Eq. (40) with a linearised expression,
then referred to as the enhanced collision, Higuera et al. took LBM further apart
from LGA [Hig89d]. The departure from LGA was completed when not one but
three independent parties simultaneously proposed a scheme for hydrodynamic
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fluid flow simulations where the collision term in LBE is modelled with a simple
relaxation process involving a single parameter [Koe91, Che91a, Che92, Qia92].
Specifically, a scheme was proposed for the simulation of such incompressible
isothermal fluid flows which are described by the Navier-Stokes equation. This
can be regarded as the true breakthrough moment for LBM mainly because of
two reasons: the single relaxation parameter directly controls viscosity and, like
proposed by Qian et al., this simple scheme is a discrete counterpart for the BGK
model defined in Eq. (32). Qian et al. used the descriptive name lattice BGK
scheme (LBGK) when they proposed the evolution equation

fi(r + Δtci , t + Δt) = fi(r, t) − ω

(
fi(r, t) − f eq

i (r, t)
)

; (41)

the discrete equilibrium function f eq
i is an approximation for the true Maxwellian

Eq. (24), and the dimensionless relaxation parameter ω is of the order of unity,
i.e. ω ∼ O(1). Simplicity immediately made LBGK a popular scheme and the
connection to the kinetic theory of gases made it plausible.

In fact, Qian et al. proposed a family of lattice BGK schemes. These schemes,
also referred to as models, share a common discrete equilibrium function:

f eq
i (ρ(r, t), u(r, t)) ≡ f eq

i (ρ, u) := wi ρ

(
1 +

ciαuα

θ
+

ciαuαciβuβ

2θ 2 − uαuα

2θ

)
. (42)

The discrete weight coefficients wi, and the parameter θ, are model dependent.
The arguments of f eq

i are the local density ρ and the flow velocity u. These hy-
drodynamic variables are defined as the zeroth and first order moments of the
discrete distribution function in the microscopic velocity space; they are com-
puted as weighted sums over the discrete velocities:

ρ(r, t) = ∑
i

fi(r, t), (43)

ρ(r, t)uα(r, t) = ∑
i

ciα fi(r, t). (44)

Note that the moments of continuous distributions f (r, c, t) are defined as inte-
grals over the continuous velocity space (see Sec. 2.3.2). Thus the discrete distri-
bution functions fi(r, t) and the continuous distribution function f (r, c, t) neces-
sarily differ in units – otherwise definitions of the moments do not make sence.
Specifically, fi(r, t) is defined in units of density alone, but f (r, c, t) is defined in
units of density divided by velocity cubed.

Specific lattice BGK models emerge when the spatial dimension and the set
of discrete velocities is fixed. For example, the so-called D2Q9 model operates
on a two-dimensional square lattice with nine discrete velocities [Qia92]. Qian
et al. enumerated their models with notation the DdQq, where d and q refer to
the spatial dimension and number of discrete velocities, respectively. The dis-
crete velocity set Ψ9 involves three speeds: the number of velocities having speed
0, cr, and

√
2 cr are 1, 4, and 4, respectively (see Fig. 5). In conventional lattice
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FIGURE 5 The set of nine discrete velocities Ψ9 in the D2Q9 lattice Boltzmann model.
The lattice spacing of the two-dimensional square lattice is Δr. In conven-
tional schemes, the lattice spacing, the reference speed cr, and the discrete
time step Δt are interconnected by the relation Δr = Δt cr ; the components
ciα are equal to the reference speed cr multiplied by an integer. The set Ψ9 in-
cludes three speeds: 0, cr, and

√
2 cr. The numbers of velocities having these

speeds are 1, 4, and 4, respectively.

Boltzmann schemes the underlying lattice is uniform, e.g. a square lattice in the
D2Q9 model, and moreover the reference speed cr is intimately connected to the
lattice spacing Δr and to the discrete time step Δt: Δr = Δt cr. Furthermore, the
components ciα of the discrete velocity vectors are equal to the reference speed
cr multiplied by an integer. Or in other words, in a conventional scheme vectors
Δt ci serve as exact links between the nodes of a uniform lattice.

The models are completely specified when the equilibrium weights wi, and
the parameter θ, are determined. Usually it is assumed that a weight wi depends
only on the speed of the associated microscopic velocity ci; for every speed in
a discrete velocity set there is a prescribed weight value Wp. In the case of the
D2Q9 model, values W0, W1, and W2 are prescribed for the three speeds. That is,
w0 = W0, w1 = w2 = w3 = w4 = W1, and w5 = w6 = w7 = w8 = W2. These
values, as presented by Qian et al. [Qia92], are given in Table 2. Other lattice
BGK models are specified in the same table. The family of lattice BGK schemes
presented by Qian et al. have a common expression for the viscosity:

ν = θ

(
1
ω

− 1
2

)
Δt. (45)

Also, the relation θ = c2
r /3 is true for each of the models. This expression for the

viscosity can be obtained via Chapman-Enskog analysis (see Sec.3.4.1). The same
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TABLE 2 Various lattice BGK models as presented by Qian et al. [Qia92]. They enumer-
ate the models with the notation DdQq, where d and q refer to the spatial di-
mension and number of discrete velocities, respectively. The relation θ = c2

r /3
is true for each model. Likewise, the models have a common expression for
the viscosity: ν = θ(1/ω − 1/2)Δt.

Model W0 W1 W2 W3

D1Q3 2/3 1/6 0 0

D2Q9 4/9 1/9 1/36 0

D3Q15 2/9 1/9 0 1/72

D3Q19 1/3 1/18 1/36 0

D4Q25 1/3 1/36 0 0

analysis shows that an appropriate equation of state for these schemes is p = θρ.
Because in classical mechanics the speed of sound cs is commonly defined with
the relation

c2
s =

∂p
∂ρ

,

our parameter θ can be identified with the speed of sound squared.
By comparing the equation of state p = (c2

r /3)ρ with the equation of state
Eq. (13) introduced in the classical kinetic theory of gases, we immediately iden-
tify the reference speed cr with the root mean square speed crms proportional to
the average molecular kinetic energy which, in turn, is proportional to the abso-
lute temperature. This connection is an indicator of physical consistency for the
schemes. Now, if we utilise a conventional lattice Boltzmann scheme and further-
more fix the lattice spacing Δr = Δt cr in a particular flow simulation, we are left
with two options:

1. either we fix θ (with T0) which then determines cr (or crms), and thereby the
discrete time step Δt is implicitly assigned,

2. or we fix, a priori, the discrete time step Δt which determines cr and so, in
turn, the reference temperature T0 is indirectly prescribed.

It is a matter of convenience which of the two ways is chosen for configuring a
simulation. Of course, the expression Eq. (45) for viscosity is also a coupling of
simulation parameters. At the implementation level, the actual units are typically
hidden; usually for lattice BGK schemes, the discrete equilibrium function Eq.
(42) is implemented with dimensionless variables such that:

f eq
i (ρ, u) ≡ wi ρ

(
1 + 3c∗iαu∗

α +
9
2

c∗iαu∗
αc∗iβu∗

β −
3
2

u∗
αu∗

α

)
, (46)

where variables denoted by an asterisk are dimensionless, i.e. ciα = cr c∗iα and
uα = cr u∗

α. In addition, the schemes are sometimes defined and implemented
with dimensionless distribution functions: fi = ρ0 f ∗i and f eq

i = ρ0 f eq∗
i , where ρ0

is a reference density.
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3.2.2 Derivation of the discrete equilibrium function

From a computer science perspective, construction of specific lattice Boltzmann
schemes is a very interesting topic. Because the discrete equilibrium function is
the key component of many schemes, it is instructive to follow through a deriva-
tion of a particular f eq

i . Thus, let us focus on a scheme for incompressible isother-
mal flow simulations of Newtonian fluids in the hydrodynamic regime – macro-
scopically described by the Navier-Stokes equation.

Since we are here dealing with an isothermal flow, temperature is not an
unknown variable, but instead a material parameter. Typically in isothermal lat-
tice Boltzmann schemes, the temperature T(r, t) is actually not a constant. In the
de facto approach, the temperature is fixed in the equilibrium function with a ref-
erence temperature T0 – a kind of heat bath is envisaged. Inevitably, there will
be a discrepancy between the local temperature T and the reference temperature
T0. This discrepancy is simply neglected because the temperature is not a quan-
tity of interest in isothermal flow simulations. At first sight, it would appear that
similar treatment is possible also for the density in incompressible fluids. How-
ever, such a straightforward approach is not feasible. It turns out that the basic
schemes obey the ideal gas law: pressure is directly proportional to the density.
Since pressure variations are essential in hydrodynamics, the basic schemes must
in some way allow small density variations. Therefore, it is the responsibility
of the simulation configuration to quarantee that the density variations are very
small, with respect to both space and time.

In the next step, we define a constant θ := (kbT0)/m and rewrite the local
Maxwellian Eq. (24) in the form

f eq(c, ρ, u) := f M(c, ρ(r, t), u(r, t), T0) = ρ (2θπ)−d/2 e(−vαvα/2θ)

= ρ (2θπ)−d/2 e(−cαcα/2θ)︸ ︷︷ ︸
=: wb(cα)

· e(cαuα/θ)︸ ︷︷ ︸
=: B(cα,uα)

· e(−uαuα/2θ)︸ ︷︷ ︸
=: C(uα)

, (47)

where d is the spatial dimension, e(·) the exponential function, and vα = cα − uα

the peculiar or relative velocity. The variable
√

θ, here constant, is often referred
to as the thermal speed, and in our discrete model it will be identified with the
speed of sound. Before proceeding, we will recall the Taylor series expansion of
the exponential function:

ex =
∞

∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . .

We utilise this expansion for the two exponential functions B and C, defined
above in Eq. (47):

B(cα, uα) = 1 +

(
cαuα

θ

)
+

1
2

(
cαuα

θ

)2

+ . . . ,

C(uα) = 1 −
(

uαuα

2θ

)
+

1
2

(
uαuα

2θ

)2

+ . . . .
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The above expressions are regarded as expansions with respect to the Mach num-
ber, because Ma ∼ uα/

√
θ and cα ∼

√
θ. By inserting these expansions into the

equilibrium function Eq. (47), and by retaining only terms up to second order
in Ma (low Mach number assumption), we obtain an approximate equilibrium
function:

f̃ eq(c, ρ, u) := wb(cα) ρ

(
1 +

cαuα

θ
+

cαuαcβuβ

2θ 2 − uαuα

2θ

)
.

In the final step, the velocity space is discretised, i.e. a finite set of micro-
scopic velocities Ψq = {c0α, c1α, . . . , c(q−1)α} is introduced for representing the ve-
locity space. Simultaneously, the continuous weight function wb(cα) is replaced
with discrete weight coefficients wi, where subscript i refers to a microscopic ve-
locity. Note that here the function wb(cα) is really discarded. In other words,
coefficients wi are not directly determined by wb(ciα), but rather left unspecified
at the moment. As presented already in Ref. [Qia92], we then arrive at the gen-
eral discrete equilibrium function given in Eq. (42). By simply considering the
zeroth moment of the discrete equilibrium, which should give the density ρ, it
is evident that the coefficients wi are necessarily dimensionless. Hence, even the
units of wb(cα) and wi are different

3.2.3 Construction of lattice BGK schemes

To obtain a specific lattice Boltzmann scheme, the equilibrium weight coefficients
wi must be specified. The coefficients are model dependent, i.e. they must be
determined separately for each set of discrete velocities Ψq. One approach to
determine the coefficients is to require that the moments of the discrete equilib-
rium functions correspond, up to some order, to the moments of the continuous
Maxwellian distribution function. Actually, it turns out that in order to simulate
solutions of the incompressible Navier-Stokes equation Eq. (7), in the asymptotic
limit with the low Mach number assumption, the moments must match up to the
fourth order. This can be guaranteed, when the conditions below are enforced
[Koe91, Wol00]:

∑
i

wi = 1 =
∫

wb(c) dc, (48)

∑
i

wiciαciβ = θ δαβ =
∫

wb(c)cαcβ dc, (49)

∑
i

wiciαciβciγciδ = θ2(δαβδγδ + δαγδβδ + δαδδβγ) =
∫

wb(c)cαcβcγcδ dc. (50)

These can be perceived as isotropy conditions for the even-rank tensors defined
in the equations. Note that the last isotropy condition Eq. (50) for the fourth-rank
tensor is slightly more stringent than the general isotropy condition Eq. (6).

In addition, we assume a symmetric set of discrete velocities Ψq in the sence
that for every non-zero velocity ci there exists an opposite velocity cj, i.e. cj =
−ci; the associated weights are assumed equal, i.e. wi = wj. These assumptions
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have an important consequence: the odd-rank tensors, defined in the same way
as the even-rank tensors above, are identically zero. Whenever the odd-rank ten-
sors vanish, and the isotropy conditions Eqs (48) – (50) are satisfied, the first four
moments of the discrete equilibrium function Eq. (42) are

∑
i

f eq
i (ρ, u) = ρ, (51)

∑
i

ciα f eq
i (ρ, u) = ρuα, (52)

∑
i

ciαciβ f eq
i (ρ, u) = θρδαβ + ρuαuβ, (53)

∑
i

ciαciβciγ f eq
i (ρ, u) = θρ(uαδβγ + uβδαγ + uγδαβ). (54)

Let us now consider a concrete case study, which illustrates how the equi-
librium weights wi can be determined, and thus, how a particular lattice Boltz-
mann scheme is specified. We concentrate on the D2Q9 model introduced in Sec.
3.2.1 (see Fig. 5). In summary, the D2Q9 model operates on a two-dimensional
square lattice with nine discrete velocities. Furthermore, it is assumed that an
equilibrium weight wi depends only on the speed of the microscopic velocity
ci. Hence in the D2Q9 model, the weights wi are prescribed with the three val-
ues: W0, W1, and W2. That is, w0 = W0, w1 = w2 = w3 = w4 = W1, and
w5 = w6 = w7 = w8 = W2. Now the isotropy condition for the zeroth-rank
tensor Eq. (48) requires that

8

∑
i=0

wi = W0 + 4W1 + 4W2 = 1. (55)

The off-diagonal elements of the second-rank tensor in the condition Eq. (49) are
identically zero and hence do not contribute equations to the unknown weights.
However, the diagonal elements are equal to each other, and must fulfil

8

∑
i=0

wicixcix =
8

∑
i=0

wiciyciy = 2c2
r W1 + 4c2

r W2 = θ. (56)

The isotropy conditions Eq. (50) for the off-diagonal elements of the fourth-rank
tensor also do not contribute equations to the unknown weights, except for

8

∑
i=0

wicixcixciyciy = 4c4
r W2 = θ2. (57)

The conditions for the diagonal elements of the fourth-rank tensor require that

8

∑
i=0

wicixcixcixcix =
8

∑
i=0

wiciyciyciyciy = 2c4
r W1 + 4c4

r W2 = 3θ2. (58)

We have now four equations Eqs (55) – (58) for the three unknowns W0, W1,
and W2. We use the extra equation for defining a relation between θ and cr. The
solution is

W0 =
4
9

, W1 =
1
9

, W2 =
1

36
, θ =

c2
r

3
. (59)
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Generally speaking, a solution respecting the isotropy conditions can always be
found, if a large enough discrete velocity set is chosen. In their article, Qian et al.
present various lattice BGK models [Qia92] – here listed in Table 2.

3.3 LBM based on the kinetic theory

Historically, LBM was introduced as an improvement to LGA. In the first lat-
tice Boltzmann scheme, the boolean occupation variables of LGA were simply
replaced by mean occupation variables. The lattice BGK scheme was proposed
soon after and this, at the latest, established LBM as a simulation tool (see Secs
3.1 and 3.2). In the historical approach, also called the bottom-up or particle-
based approach, LBM is constructed directly from discrete particle systems like
LGA. Such an approach highlights the connection to the underlying particles:
the particle interpretation can sometimes help to perceive the concepts of LBM,
and it has definitively inspired many extensions to the conventional schemes.
Furthermore, during the historical developments, a great deal of understanding,
knowledge, and concrete tools for analytical work were transferred from LGA to
LBM.

But, there is an alternative to the bottom-up approach: LBM can be de-
rived also from the Boltzmann equation, or model Boltzmann equations like the
BGK-model. A mathematically rigorous connection with the kinetic theory of
gases was established in the late 1990’s, when several publications presented top-
down or statistical mechanical approaches for the derivation of lattice Boltzmann
schemes directly from the Boltzmann equation [Abe97, He97a, He97b, Sha98].
The distinctive stage, discretisation of the microscopic velocity space, involves
application of the Gauss-Hermite quadratures for approximating the moment inte-
grals in the velocity space – the abscissas of the quadratures are identified as the
discrete velocities. Higher-order quadratures enable accurate approximations of
higher-order moments. Depending on the hydrodynamic equations ultimately
pursued, e.g. the Navier-Stokes equation, an appropriate order is chosen for the
quadratures. Discretisation of the velocity space leads to a discrete Boltzmann
equation (DBE) or, as some prefer, to a discrete velocity model (DVM), see Eq.
(38). In the last step of the top-down approach, the partial derivatives in the
model equation are discretised – a typical step in the construction of computa-
tional schemes in general. A derivation of the lattice BGK scheme from DBE is
presented in Sec. 3.3.1.

The two routes to LBM are illustrated in Fig. 6. They represent two al-
together different philosophies for the construction of computational methods.
Namely, the bottom-up approach is a kind of reverse-engineering approach where
a discrete particle system with fictious interaction rules is carefully set up; the
particle system must obey prescribed dynamics at a macroscopic scale. The top-
down approach, on the other hand, is a very general and traditional strategy
in computational sciences. Ideally, it is only a mathematical discretisation of the
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the Boltzmann equation

Discrete velocity models

DBGK + extra terms

LGA

LBE

LBGK

BGK

the Navier-Stokes equation

+ numerical error terms

Multiple-scale analysis
Simplyfied model

Discretise the
velocity space

Discretise the
velocity space

Discretise space and time
(e.g. finite-differences)

Continuous representation
(e.g. Taylor series expansion)

Numerical analysis

Specify the discrete
collision operator

Define mean occupation variables
(e.g. averages over space or time)

FIGURE 6 The basic concepts and elements related to LBM are illustrated with a graph.
Above all, the graph describes the two routes to LBM. That is, lattice Boltz-
mann schemes can be derived either from the continuous Boltzmann equa-
tion, or model Boltzmann equations (e.g. the BGK-model), with a sequence
of discretisation steps; alternatively, lattice Boltzmann schemes can be con-
structed upon discrete particle systems encompassing simplyfied interaction
dynamics – LGA is a prime example of a fictitious particle system. These
two routes are referred to as the top-down and bottom-up approaches, re-
spectively.

model equation while all physical considerations have already been incorporated
at the modelling stage. The possibility to follow two completely separate routes
in the construction of LBM can be regarded as a major asset of the method. Due
to these two routes, a quite disparate set of lattice Boltzmann schemes have al-
ready been proposed – some of the schemes do not even include a lattice. Hence,
it is very difficult to give a coherent definition for LBM. The bottom-up approach,
and the convetional lattice Boltzmann schemes, suggest a naive but tempting def-
inition: LBM represents a class of schemes where the explicit evolution equation is of
LBE-type, the discrete collision operator is liable for the correct physical description at a
macroscopic scale (whenever the set of microscopic velocity vectors possess sufficient sym-
metry properties), and the velocity vectors Δt ci serve as exact links between the nodes of
a uniform lattice.

However, by following the top-down approach, lattice Boltzmann schemes
not conforming with the above definition arise naturally. For example, such com-
putational schemes, usually classified as lattice Boltzmann schemes, which in-
volve nonuniform grids supplemented with an interpolation procedure [He96],
finite-element treatments [Lee01, Shi03, Li04, Düs06], and finite-volume discreti-
sations [Nan92, Pen99, Xi99, Ube04, Ros05, Sti06, Ube06, Ube08, Pat09] have been
proposed. From the top-down approach perspective, LBM is closely related to
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DBE (or DVM). Even so, LBM and DBE have sprout two quite separate scientific
communities. The difference in philosophy, advocated by the two communities,
is well captured by Sauro Succi [Suc01a]:

Surely DVM and LBE are very close relatives in mathematical terms,
since they both are based on grid-bound particles moving along a set
of discrete speeds.

However, as far as we can judge, they depart significantly in their
practical aim. DVM is genuinely concerned with kinetic theory, the
main aim being to develop stylised Boltzmann equations possibly a-
menable to analytical solutions, or theorem demonstration. Computer
simulation is also in focus, but with no particular obsession on reach-
ing the hydrodynamic scales.

LBE is less and more ambitious at the same time.

Less ambitious, because the idea of a faithful description of kinetic
phenomena is not pursued at all. More, because it challenges the Lion
King in his own den, aiming as it does at capturing hydrodynamic
phenomena (and beyond) more effectively than continuum models
themselves! As we shall see, such a daring task often meets with sig-
nificant success.

The above is rather a manifesto than a definition for LBM, but nevertheless it
encompasses the spirit of LBM which we acknowledge: instead of a faithful de-
scription of kinetic phenomena, prescribed macroscopic dynamics are pursued
with computational schemes which are based on or inspired by kinetic dynam-
ics. Accordingly, it is then critical to expose the exact macroscopic equations for
which approximations are computed with the lattice Boltzmann schemes, and to
estimate the accuracy of these approximations. In Sec. 3.4 we utilise a multiple-
scale analysis when investigating the hydrodynamic properties of LBGK .

3.3.1 LBGK from the discrete Boltzmann equation

In Sec. 3.2, the construction of lattice Boltzmann schemes was based on LBE, Eq.
(40). Here we present how LBE, and specifically LBGK, can be obtained from the
discrete Boltzmann equation (DBE). For simplicity, in our presentation we omit
the term involving an external acceleration. Even without this simplification,
DBE Eq. (38) is a set of constant coefficient first-order hyperbolic partial differen-
tial balance equations or, more narrowly, a set of linear advection equations with
non-linear source terms [LeV02].

To begin with, we recall the discrete Boltzmann equation Eq. (38) without
an external acceleration,

∂ fi

∂t
+ ci · ∂ fi

∂r
= Ji(�f ), i = 0, 1, . . . , q − 1,

and continue with the discretisation of the remaining derivative terms, i.e. ∂t fi
and ciα∂α fi, by finite differences. The philosophy here is to carry out the discreti-
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sation in a macroscopic frame of reference. That is, the small expansion param-
eters Δr and Δt below are perceived small at a macroscopic level rather than at
a microscopic level. In fact, the parameters are large numbers in the microscopic
frame of reference. Again, ∂α refers to differentiation with respect to rα. From the
Taylor series expansion

fi(r, t + Δt) = fi(r, t) + Δt∂t fi(r, t) +
Δt2

2
∂2

t fi(r, t) + . . .

we find the first-order forward-difference approximation for the time derivative:

∂t fi(r, t) =
fi(r, t + Δt) − fi(r, t)

Δt
+ O(Δt), (60)

where O(Δt) represents all the terms neglected in the approximation of the deriva-
tive; the order of the leading error term is Δt. Similarly, from

fi(r + Δtci , t) = fi(r, t) + Δtciα∂α fi(r, t) +
Δt2ciαciβ

2
∂α∂β fi(r, t) + . . .

we find the first-order forward-difference approximation for the convective deriva-
tive:

ciα∂α fi(r, t) =
fi(r + Δtci , t)− fi(r, t)

Δt
+ O(Δt c2

r ). (61)

In the next step, we rearrange the simplified DBE in such a way that only
∂t fi is left on the left hand side of the equation. In addition, we apply the above
forward difference for the time derivative and find that

fi(r, t + Δt) − fi(r, t)
Δt

= −ciα∂α fi(r, t) + Ji(r, t), i = 0, 1, . . . , q − 1. (62)

The discrete collision operator Ji models change in the distribution function fi
due to particle interactions in the underlying microworld. The purpose of this
rearrangement is to highlight an essential decision: when pursuing LBE in the
discretisation, i.e. the evolution equation Eq. (40), everything on the right hand
side is subjected to an upwind treatment. The general principle in upwind-based
schemes is to utilise, or emphasise, the information propagating from the upwind
direction. This is a common approach especially for linear advection equations
[LeV02]. An upwind scheme is stable if the so-called Courant number Co satisfies
the Courant-Friedrichs-Lewy condition [Cou28]:

Co =
cr Δt
Δr

≤ 1.

The relation Δr = Δtcr enforces Co = 1 in conventional lattice Boltzmann schemes,
and thus the condition is satisfied at the limit. The upwind treatment as presented
here is a reminiscence of LGA, where the particles explicitly carry information.
Various finite-difference schemes, distinct from LBE, can be obtained by applying
more elaborate approximations for the derivatives and by selectively adhering to
the upwind principle [Rei95, Cao97, McN95, McN97, He98a, Lee03, Sof03]. At the
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hydrodynamic level, these schemes typically differ at least in their expressions for
the viscosity.

In the context of DBE, the microscopic velocities ci naturally define upwind
as well as downwind directions; a characteristic line is defined by ci. The upwind
treatment here then means that, in Eq. (62), the two terms on the right are both
evaluated at an upwind location (r − Δtci) at time t. From there the information
then propagates along the characteristic line and, in one discrete time step Δt,
arrives at the location of interest r. That is,

fi(r, t + Δt) − fi(r, t)
Δt

= −ciα∂α fi(r − Δtci , t) + Ji(r − Δtci , t).

In this equation, we approximate the convective derivative with the first-order
forward difference Eq. (61). Note that the described discretisation procedure for
the convective derivative is equivalent to the first-order backward-difference ap-
proximation of ciα∂α fi(r, t). Finally, in the resulting equation we formally replace
r with r + Δtci :

fi(r + Δtci , t + Δt) − fi(r + Δtci , t)
Δt

= − fi(r + Δtci , t) − fi(r, t)
Δt

+ Ji(r, t)

⇔ fi(r + Δtci , t + Δt) = fi(r, t) + ΔtJi(r, t). (63)

The above equation conforms to LBE when ΔtJi is identified with Ωi.
In order to obtain a particular scheme, instead of a general evolution equa-

tion, the collision operator Ji must be specified. Here our aim is to obtain LBGK
from the discrete kinetic theory. Hence, we introduce a discrete counterpart for
the BGK model Eq. (32):

Ji(r, t; τm, λ) = − λ

τm
f neq
i (r, t), (64)

where f neq
i ≡ fi − f eq

i ; the discrete equilibrium function f eq
i is defined in Eq. (42).

The discrete BGK model includes now two parameters: τm and λ. The mean free
flight time between molecular collisions τm is a material parameter, and the char-
acteristic time at a microscopic scale. The dimensionless parameter λ is an addi-
tional simulation parameter. The interpretation of Eq. (64) is straightforward: the
change in fi due to particle interactions is −λ f neq

i during one period of τm, or per
one collision. By applying this collision operator in Eq. (63), we find that

fi(r + Δtci , t + Δt) = fi(r, t) − λΔt
τm

f neq
i (r, t). (65)

An important note is now in order. When we exclusively commit to hy-
drodynamic fluid flow simulations, and to nothing else, the lattice spacing Δr
and the discrete time step Δt provide the lower limits for the characteristic length
and time scales at a macroscopic level, respectively. That is, for a particular fluid
flow simulation, they indicate the smallest scales in which the variation of hy-
drodynamic variables can be meaningfully differentiated. For example, the char-
acteristic macroscopic length scale in a fluid flow simulation must be defined as
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L = L∗Δr, where L∗ > 1. At the microscopic level, the characteristic length scale
is given by the mean free path �m. Furthermore, �m/τm = cms ∼ O(cr). The
Knudsen number is small in the hydrodynamic regime , Kn � 1, and then the
most stringent definitions of Knudsen number, Kn = �m/Δr and Kn = τm/Δt,
require �m � Δr and τm � Δt, respectively. Evidently, our target equation Eq.
(41), LBGK, is obtained from the above equation by setting λ ≡ ωτm/Δt = ωKn,
where ω ∼ O(1). We arrive at the same equation directly with the discrete colli-
sion operator

Ji(r, t; Δt, ω) = Kn · Ji(r, t; τm, ω).

The above equation is illuminative: the original BGK model Eq. (32) must be
multiplied by the Knudsen number, a very small number in the hydrodynamic
regime, in order to arrive at the evolution equation for LBGK.

From a modelling perspective this can be interpreted in many ways. First
of all, locally the fluid is close to a thermodynamic equilibrium due to the small
Knudsen number assumption. However, the small deviations from the equilib-
rium are apparently persistent, i.e. the process of thermalisation is very slow
in comparison to the original BGK model. Informally speaking, since τm must
be small with respect to Δt, a great number of collisions is required to reach a
local equilibrium. For example, we may consider that the average interaction
potential is very weak, again in comparison to the original BGK model. Hence,
comparatively small mean kinetic energies still fulfil the condition of an ideal gas
(see Sec. 2.2.2). Remember that the reference velocity cr is associated with the
average molecular kinetic energy. Be that as it may, the computational interpre-
tation is clear: whatever value is assigned for the macroscopic time step Δt, the
microscopic time step τm is always perceived as much smaller, i.e. τm = KnΔt.
Whether this small Knudsen number assumption is physically sensible, depends
on the simulation configuration. Nonetheless, the approach taken is consistent
and pragmatic for hydrodynamic fluid flow simulations. With the choices made
above, the scheme does not depend directly on the Knudsen number any more,
and any deviations in simulation results from the hydrodynamic solution are at-
tributed to computational errors.

3.4 Hydrodynamic equations from LBGK

A lattice Boltzmann scheme provides means to compute time evolution of the
discrete distribution functions fi. Since hydrodynamic variables, e.g. density and
flow velocity, are moments of fi in the microscopic velocity space, their time evo-
lution is indirectly computed by the same scheme. This raises a question: what
equations govern the time evolution of the hydrodynamic variables at a macro-
scopic level? That is, are there physically meaningful hydrodynamic equations
to which our simulated flow field provides an approximate solution? In what
follows, we use LBGK as an example and show that, with suitable assumptions,
it produces approximate solutions to the Navier-Stokes equation.
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In the previous section, we used Taylor series expansion in order to get
finite-difference approximations for the derivatives at a macroscopic level. Now
we use the same approach again, but in an opposite manner. Namely, from Taylor
series expansions we find that

fi(r + Δtci , t + Δt) = fi(r, t + Δt) + Δtciα∂α fi(r, t + Δt)

+
Δt2ciαciβ

2
∂α∂β fi(r, t + Δt) + . . .

and

fi(r, t + Δt) = fi(r, t) + Δt∂t fi(r, t) +
Δt2

2
∂2

t fi(r, t) + . . . .

The expansion parameters Δr = Δt cr and Δt are still considered small at a macro-
scopic scale and, at the same time, large at a microscopic scale. Next we combine
these two expansions, and retain derivatives only up to second order:

fi(r + Δtci , t + Δt) = fi(r, t) + Δt∂t fi(r, t) +
Δt2

2
∂2

t fi(r, t) + Δtciα∂α fi(r, t)

+ Δt2ciα∂α∂t fi(r, t) +
Δt2ciαciβ

2
∂α∂β fi(r, t).

This expression is then substituted into the left hand side of the LBGK evolution
equation Eq. (41). In the resulting equation, the distribution functions all have ex-
actly the same arguments, viz. the spatial coordinate r and time t. For simplicity,
the arguments are omitted below, e.g. fi ≡ fi(r, t):

Δt∂t fi +
Δt2

2
∂2

t fi + Δtciα∂α fi + Δt2ciα∂α∂t fi +
Δt2ciαciβ

2
∂α∂β fi = −ω f neq

i . (66)

In the limit of very small Δr and Δt, this is a second-order continuum description
of LBGK. In order to proceed, we utilise a particular analysis procedure.

3.4.1 Chapman-Enskog analysis

Hydrodynamic equations which conform to a lattice Boltzmann scheme can be
obtained by resorting to a multiple-scale analysis. Specifically, we assume that the
dynamical description above Eq. (66) involves two relevant hydrodynamic time
scales: the convective (fast) T1 and the diffusive (slow) T2 scales. We introduce
a small parameter ε which relates these two scales to the discrete time step Δt:
T1 = ε−1Δt and T2 = ε−2Δt. In other words, the small parameter is the ratio
between the computational time step and the characteristic convective time scale,
i.e. ε = Δt/T1. Moreover, these definitions imply T2 = ε−1T1; the scale T2 is
indeed long in comparison to T1. Let t1 and t2 denote the time variables which
act on the two scales, respectively. That is, t1 = t∗1T1 and t2 = t∗2T2, where t∗1 and
t∗2 are dimensionless time variables of the order of O(1).

The essence of the multiple-scale analysis is captured when we assert that
the distribution functions depend on two independent time variables instead of
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one: fi(r, t) → fi(r, t1, t2). The time derivative is redefined accordingly:

∂t :=
∂

∂t1
+

∂

∂t2
≡ ∂

(1)
t + ∂

(2)
t . (67)

In a moment, we continue with a Chapman-Enskog style of analysis. It is a pecu-
liarity of the Chapman-Enskog analysis that the spatial variable is not subjected
to a two-scale expansion. The single characteristic length scale is associated with
the convective time scale, i.e. L = crT1. A simple dimensional analysis reveals
the order of magnitudes for the relevant partial derivatives:

Δt∂t = Δt
(

∂

∂t∗1T1
+

∂

∂t∗2T2

)
= ε

∂

∂t∗1
+ ε2 ∂

∂t∗2
,

Δtciα∂α = Δtc∗iαcr
∂

∂r∗αL
= Δtc∗iαcr

∂

∂r∗αcrT1
= εc∗iα

∂

∂r∗α
. (68)

In the subsequent presentation, we use notation ∂α ≡ ∂
(1)
α whenever it is appro-

priate.
In the spirit of multiple-scale analysis, the above time scale expansion is

supplemented with an additional expansion for the target function, here the dis-
tribution function fi. The section 2.3.3 already included a discussion about how
approximate solutions of the Boltzmann equation can be obtained by expanding
the distribution function in a power series in terms of a parameter inversely pro-
portional to the gas density. The parameter might as well be the Knudsen number
Kn, like in the expansion Eq. (28). Here our objective is different: we pursue hy-
drodynamic equations which conform to our computational scheme. Particularly,
our aim is to understand how these hydrodynamic equations are affected by our
computational parameters; the most important parameters are the time step Δt,
the lattice spacing Δr, and the relaxation parameter ω. Thus, we use ε = Δt/T1
as the expansion parameter in the power series, i.e.

fi := f (0)
i + ε f (1)

i + ε2 f (2)
i + . . . . (69)

Alternatively, we could have defined the parameter ε as the ratio of the lattice
spacing to the convective length scale. Note the philosophical difference: in-
stead of using the multiple-scale analysis for investigating macroscopic prop-
erties of a discrete mathematical model controlled by physical parameters, e.g.
by the Knudsen number, we investigate numerical properties of a computational
scheme for hydrodynamic fluid flow simulations where the properties depend
on the discretisation parameters. There is an another tacit, if not insignificant,
difference with the previously presented expansion Eq. (28): the first term is not
automatically identified with the equilibrium function.

When we substitute the expansion Eq. (69) into Eq. (66), together with the
assumption of two time-scales, we only retain terms up to second-order in the
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small parameter ε – recall the order of magnitudes from Eq. (68). Thus,

Δt
(

∂
(1)
t f (0)

i + ∂
(2)
t f (0)

i + ε∂
(1)
t f (1)

i

)
+

Δt2

2
∂
(1)
t ∂

(1)
t f (0)

i

+ Δtciα

(
∂
(1)
α f (0)

i + ε∂
(1)
α f (1)

i

)
+ Δt2ciα∂

(1)
α ∂

(1)
t f (0)

i +
Δt2ciαciβ

2
∂
(1)
α ∂

(1)
β f (0)

i

= −ω

(
f (0)
i + ε f (1)

i + ε2 f (2)
i − f eq

i

)
. (70)

The fundamental idea in a multiple-scale analysis is to equate terms order by
order. Here the order is defined by the small parameter ε. Equipped with this
perspective, we simply assort the terms in Eq. (70). Remembering that ω ∼ O(1)
we find

O(ε0) : 0 = −ω
(

f (0)
i − f eq

i

)
, (71)

O(ε1) : Δt∂(1)
t f (0)

i + Δtciα∂
(1)
α f (0)

i = −ωε f (1)
i , (72)

O(ε2) : Δt
(

∂
(2)
t f (0)

i + ε∂
(1)
t f (1)

i + εciα∂
(1)
α f (1)

i

)
+

Δt2

2

(
∂
(1)
t ∂

(1)
t + 2ciα∂

(1)
α ∂

(1)
t + ciαciβ ∂

(1)
α ∂

(1)
β

)
f (0)
i = −ωε2 f (2)

i . (73)

From the first equation Eq. (71) we can immediately identify f (0)
i with f eq

i .
Furthermore, by utilising Eq. (72) twice in Eq. (73), we find that

O(ε0) : f (0)
i = f eq

i , (74)

O(ε1) : ∂
(1)
t f (0)

i + ciα∂
(1)
α f (0)

i = −ωε

Δt
f (1)
i , (75)

O(ε2) : ∂
(2)
t f (0)

i + ε

(
1 − ω

2

)(
∂
(1)
t f (1)

i + ciα∂
(1)
α f (1)

i

)
= −ωε2

Δt
f (2)
i . (76)

With the identification f (0)
i ≡ f eq

i , and by neglecting all the terms higher than
second order in ε, the first hydrodynamic moments of the expansion Eq. (69)
become

∑
i

f neq
i ≡ ∑

i

(
ε f (1)

i + ε2 f (2)
i

)
= 0 ⇒ ∑

i
f (1)
i = −ε ∑

i
f (2)
i , (77)

∑
i

ciα f neq
i ≡ ∑

i
ciα

(
ε f (1)

i + ε2 f (2)
i

)
= 0 ⇒ ∑

i
ciα f (1)

i = −ε ∑
i

ciα f (2)
i . (78)

Note that these moment equations do not correspond to the formal constraints
usually exploited in the analysis:

∑
i

f (k)
i = 0, ∑

i
ciα f (k)

i = 0, k ≥ 1. (79)

The formal constraints are appropriate when approximate solutions of the
Boltzmann equation are pursued with an analytical procedure. However, when
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the objective is to understand the behaviour of a computational scheme, it seems
more appropriate instead to incorporate Eqs (77) and (78) into the procedure –
especially since these equations are fulfilled at the computational level. Another
related aspect is the Chapman-Enskog ansatz: it asserts that the distribution func-
tion fi depends implicitly on time via the hydrodynamic variables, here ρ and u.
That is, fi is not a function of time t directly, but rathet a functional of ρ(r, t) and
u(r, t) [Har04]. Formally then

fi(r, t) → fi(r; ρ(r, t), u(r, t))

or actually
fi(r, t1, t2) → fi(r; ρ(r, t1, t2), u(r, t1, t2)).

Then, due to the implicit dependence, the time derivative of fi is computed with
the chain rule:

∂ fi

∂t
=

∂ fi

∂ρ

∂ρ

∂t
+

∂ fi

∂uα

∂uα

∂t
.

A similar assertion can be postulated for the dependence of the distribution func-
tion fi on the spatial variable r. In what follows, however, we do not explicitly
utilise the Chapman-Enskog ansatz.

In the next step of the analysis, we compute moments of Eqs (75) and (76).
The lowest order moments of the first order equation Eq. (75) are

∑
i

→ ∂
(1)
t ρ + ∂

(1)
α ρuα = −ωε

Δt
ρ(1), (80)

∑
i

ciα → ∂
(1)
t ρuα + ∂

(1)
β Π

(0)
αβ = −ωε

Δt
j(1)
α , (81)

∑
i

ciαciβ → ∂
(1)
t Π

(0)
αβ + ∂

(1)
γ S(0)

αβγ = −ωε

Δt
Π

(1)
αβ , (82)

where

Π
(0)
αβ := ∑

i
ciαciβ f eq

i = θρδαβ + ρuαuβ, (83)

S(0)
αβγ := ∑

i
ciαciβciγ f eq

i = θρ(uαδβγ + uβδαγ + uγδαβ), (84)

ρ(1) := ∑
i

f (1)
i , j(1)

α := ∑
i

ciα f (1)
i , Π

(1)
αβ := ∑

i
ciαciβ f (1)

i . (85)

Here we have used Eqs (51) – (54). Similarly, the zeroth and first order moments
of the second order equation Eq. (76) are

∑
i

→ ∂
(2)
t ρ + ε

(
1 − ω

2

)(
∂
(1)
t ρ(1) + ∂

(1)
α j(1)

α

)
= −ωε2

Δt
ρ(2), (86)

∑
i

ciα → ∂
(2)
t ρuα + ε

(
1 − ω

2

)(
∂
(1)
t j(1)

α + ∂
(1)
β Π

(1)
αβ

)
= −ωε2

Δt
j(2)
α . (87)
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Now we add up moment equations of equal order; first we sum the zeroth
order moment equations Eqs (80) and (86) and find(

∂
(1)
t + ∂

(2)
t

)
ρ + ∂

(1)
α ρuα + ε

(
1 − ω

2

)(
∂
(1)
t ρ(1) + ∂

(1)
α j(1)

α

)
= − ω

Δt

(
ερ(1) + ε2ρ(2)

)
.

The left hand side is simplified with the definition of the time derivative, i.e. with
Eq. (67). And according to Eq. (77), the right hand side is zero, if we neglect the
terms higher than second-order in the expansion Eq. (69). We thus find that

∂tρ + ∂αρuα = −ε

(
1 − ω

2

)(
∂
(1)
t ρ(1) + ∂

(1)
α j(1)

α

)
. (88)

If the awkward terms on the right are ignored, the equation obtained is the mass
conservation equation for a compressible fluid. If we furthermore assume a very
low Mach number flow, the density variations in the fluid are negligible and we
get the continuity equation of an incompressible fluid – see the discussion around
Eq. (9). Note that the low Mach number assumption here is consistent with the
Taylor series expansion of the exponential function, i.e. the equilibrium function,
presented in Sec. 3.2.1.

There are many arguments for ignoring the additional terms in Eq. (88). If
the formal moment constraints are acknowledged, as defined in Eq. (79), all the
terms on the right hand side vanish automatically. On the other hand, one could
neglect the second order terms in the expansion Eq. (69), and obtain a first order
approximation:

fi := f (0)
i + ε f (1)

i .

Then the formal constraints Eq. (79) would be true for f (1)
i . This purpose-oriented

approach is also factitious since our multiple-scale analysis necessarily involves
terms of the order O(ε2); the omission of the second order terms from the expan-
sion Eq. (69) does not correspond to the analytical framework nor to the com-
putational reality. In fact, we are not aware of a single argument which would
rigorously eliminate the additional terms. Without better means, we content to
the following approximation. First we employ Eqs (77) and (78):

∂tρ + ∂αρuα = ε2
(

1 − ω

2

)(
∂
(1)
t ρ(2) + ∂

(1)
α j(2)

α

)
=: E0

(
ω, ε2, f (2)

i

)
.

The error function E0 defined here now incorporates all the unwanted terms. By
neglecting the error function, we have the approximation

∂tρ + ∂αρuα � 0 (89)

which, in the incompressible limit where ∂tρ → 0 and ∂αρ → 0, gives

∂αuα ≈ 0. (90)
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After obtaining the mass conservation equation, we proceed to the evolu-
tion equation for the momentum. We advance by summing the first order mo-
ment equations, namely Eqs (81) and (87):

∂tρuα + ∂β(ρuαuβ) = −∂α(θρ) − ε

(
1 − ω

2

)
∂β Π

(1)
αβ

− ε

(
1 − ω

2

)
∂
(1)
t j(1)

α − ω

Δt

(
εj(1)

α + ε2 j(2)
α

)
.

We can identify the first term on the right with the pressure gradient by adopting
the equation of state p = θρ, i.e. the ideal gas law. In addition, on the left hand
side we utilise the approximation Eq. (89), and the last term on the right vanishes
with the approximation Eq. (78). Thus, we are left with

ρ∂tuα + ρuβ ∂βuα = −∂α p − ε

(
1 − ω

2

)
∂β Π

(1)
αβ − ε

(
1 − ω

2

)
∂
(1)
t j(1)

α . (91)

The last term on the right is eventually embedded into an another error
function. Now we concentrate on the first order tensor on the right; it will be
related to the viscous stress tensor. We use Eq. (82) together with Eqs (80) and
(81) to derive an expression for it. The details of the derivation are presented in
Appendix 1. With the expression for the tensor,

Π
(1)
αβ = − Δt

ωε

(
θρ
(
∂
(1)
β uα + ∂

(1)
α uβ

)− ∂
(1)
γ ρuαuβuγ

)
+

(
δαβθρ(1) + uβ j(1)

α + uα j(1)
β − uαuβ ρ(1)

)
, (92)

we find that

ρ∂tuα + ρuβ ∂βuα = −∂αp + θ

(
1
ω

− 1
2

)
Δt ∂β

(
ρ
(
∂βuα + ∂αuβ

)− ∂γρuαuβuγ

)
− ε

(
1 − ω

2

)(
∂
(1)
t j(1)

α + ∂αθρ(1) + ∂βuβ j(1)
α + ∂βuα j(1)

β − ∂βuαuβ ρ(1)

)
.

From the above equation we can identify the kinematic viscosity ν = μ/ρ, i.e.

ν := θ

(
1
ω

− 1
2

)
Δt;

this expression was presented already in Eq. (45). Furthermore, after the applica-
tion of Eqs (77) and (78), the last terms are incorporated into an error function

E1
(
ω, ε2, f (2)

i

)
:= ε2

(
1 − ω

2

)(
∂
(1)
t j(2)

α + ∂αθρ(2)

+ ∂βuβ j(2)
α + ∂βuα j(2)

β − ∂βuαuβ ρ(2)

)
. (93)
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Then,

ρ∂tuα + ρuβ ∂βuα = −∂αp + ν ∂β

(
ρ
(
∂βuα + ∂αuβ

)− ∂γρuαuβuγ

)
+ E1

(
ω, ε2, f (2)

i

)
.

Next we discard the error function E1. In addition, the usual convention is
to neglect the term involving velocity cubed, uαuβuγ, because it shoud be neg-
ligible due to the low Mach number assumption; recall that in the Taylor series
expansion of the exponential function, presented in Sec. 3.2.1, only terms up to
second-order in u were retained. This all leads to the approximation

ρ∂tuα + ρuβ ∂βuα � −∂α p + ν ∂βρ
(
∂βuα + ∂αuβ

)
.

The last term remaining on the right encompasses the so-called strain rate tensor
Sαβ :=

(
∂βuα + ∂αuβ

)
/2, see Sec. 2.1. In a Newtonian fluid, the viscous stresses

are linearly proportional to the strain rate. This linear approximation assumes,
particularly, very small strain rates. According to the product rule of derivation,

∂βρ
(
∂βuα + ∂αuβ

)
= ρ∂β

(
∂βuα + ∂αuβ

)
+
(
∂βuα + ∂αuβ

)
∂βρ. (94)

Now, in the incompressible limit, the spatial variations of density must be very
small. Thus, the last term in Eq. (94) is a product of two small terms, and it will
be neglected in the approximation

∂βρ
(
∂βuα + ∂αuβ

) � ρ∂β

(
∂βuα + ∂αuβ

)
= ρ∂β∂βuα + ρ∂α∂βuβ.

Once again, in the incompressible limit, the last term on the right vanishes
with the approximation Eq. (90). This leads to our final result,

ρ∂tuα + ρuβ∂βuα = −∂α p + νρ∂β∂βuα,

which is the Navier-Stokes equation without an external acceleration, cf. Eq.
(7). In summary, the presented (rather lengthy) multiple-scale analysis proce-
dure yields the hydrodynamic equations which conform to LBGK. Along the
way, several assumptions as well as approximations were made. Perhaps the
most essential assumption, from a physical perspective, is the assumption of
an almost incompressible fluid. At the computational level, this assumption
is not enforced at all; it must be maintained with the simulation configuration.
Whenever the assumption is compromised, so-called compressibility errors arise
[Sko93, Rei95, Hou95, Del01, Ház03, Del03]. The approximation neglecting the
term involving velocity cubed is both mathematical and physical in character,
and is related to the low Mach number assumption. There are publications ad-
dressing this approximation [Qia93a, Che94, Qia98, Ház06, Nie08a, Pra09]. The
error functions E0 and E1 are considered as numerical errors of the computational
scheme for hydrodynamic fluid flow simulations; they are not discarded on the
grounds of a physically meaningful argument. Finally, the presented Chapman-
Enskog style multiple-scale analysis is just one approach to investigating hydro-
dynamic properties of lattice Boltzmann schemes: there are other ways of analy-
sis [Swi96, Ina97, Hol04, Jun05a, Sbr06, Jun08a, Cai09].
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3.5 Various lattice Boltzmann schemes

So far we have consider only the lattice Boltzmann scheme which is based on the
BGK collision operator, i.e. LBGK. It is perhaps the simplest of the lattice Boltz-
mann schemes, and it has been a convenient representative when illustrating
general or typical aspects and concepts related to the lattice Boltzmann method.
However, LBM has spurred scientist to develop a whole family of schemes. The
schemes do not address a single issue. Quite the contrary, they have been mo-
tivated by a rich set of interesting problems. For example, some of the schemes
have a different definition for the discrete collision operator Ωi, for whatever rea-
son, others try to remedy compressibility errors, and many incorporate additional
physical mechanisms, usually via the equilibrium function or body force, in order
to simulate complex flows like multiphase flows and magnetohydrodynamics.
Here we list some of these schemes.

3.5.1 TRT

Most of the definitions for the discrete collision operator Ωi rely on a relaxation-
based procedure. That is, typically the collision operators enforce distribution
functions towards the local equilibrium, and the relaxation rate is controlled by
simulation parameters. The simplest example is LBGK Eq. (41), where the linear
relaxation rate of the non-equilibrium part is controlled by the single parameter
ω. The so-called two-relaxation-time scheme (TRT), perhaps the second simplest
relaxation scheme, also involves linear relaxation, but now controlled by two pa-
rameters [Gin05, Gin07, Gin08a, Ser08]. Before presenting the scheme in a com-
pact form, we need to present some definitions. First of all, let index −i denote
such a microscopic velocity vector for which ci = −c−i. Then, the symmetric and
antisymmetric distribution functions are defined as

f̂i :=
1
2
( fi + f−i), f̃i :=

1
2
( fi − f−i),

respectively. These distribution functions fulfil the relations

fi = f̂i + f̃i, f−i = f̂i − f̃i, f̂i = f̂−i, f̃i = − f̃−i.

The last two relations expose the fundamental property incorporated in TRT: odd
moments of the symmetric function vanish, as well as even moments of the anti-
symmetric function. Accordingly, the symmetric and anti-symmetric functions
are also called the even and odd parts of the distribution function fi, respectively.

With the above definitions, TRT is described by the equation

fi(r + Δtci , t + Δt) = fi(r, t) − ωe f̂ neq
i (r, t) − ωo f̃ neq

i (r, t)

= fi(r, t) − 1
2
(
ωe + ωo

)
f neq
i (r, t) − 1

2
(
ωe − ωo

)
f neq
−i (r, t). (95)
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Clearly, TRT is a special version of a general two-relaxation-time scheme:

fi(r + Δtci , t + Δt) = fi(r, t) − ω1 f neq
i (r, t) − ω2 f neq

−i (r, t).

This scheme, in turn, is a very simple incarnation of the linear multi-relaxation-
time scheme:

fi(r + Δtci , t + Δt) = fi(r, t) − Λij f neq
j (r, t), (96)

where Λij is a generic collision matrix carrying all the relaxation parameters.
However, it is difficult to treat, in a physically meaningful manner, all the de-
grees of freedom present in such a generic formulation. Hence, simpler schemes
are defined for practical purposes. For examle in TRT, the relaxation parame-
ter ωe tunes viscosity, which is obviously related to the viscous stresses which
themself are prescribed by a second-order (even) moment of the distribution
function. In TRT, the expression for viscosity is the same as in LBGK, see Eq.
(45). The other relaxation parameter ωo, connected to odd moments of fi, pro-
vides an additional degree of freedom. Usually it is chosen so as to minimise
the viscosity dependence of the slip velocity – a numerical peculiarity of LBM.
The viscosity-dependence is minimised, at least in a simple Poiseuille flow, by
choosing ωo = 8(2 − ωe)/(8 − ωe) [Gin03, Gin08a, Gin08b, Ver09a, d’Hu09].

3.5.2 MRT

As discussed above, the problem with the general multi-relaxation-time scheme
Eq. (96) is related to the treatment of the large number of degrees of freedom
present. That is, in general, there are q× q adjustable relaxation parameters in the
matrix Λij, q being the number of discrete velocity vectors. A particular solution
for the oversupply of freedom is to consider relaxation of moments towards their
equilibrium values, instead of directly considering relaxation of the distribution
functions [d’Hu92, Bou01a, d’Hu01, d’Hu02]. Here we give only a very brief
explanation of the basic idea. For more details, see the above references.

To begin with, moments are simply linear combinations of fi. It is thus pos-
sible to define a set of linearly independent moments mi = Mij fj with a linear
transformation Mij, where i, j = 0, . . . , q − 1. If the moments mi are defined suit-
ably, the transformation M is orthogonal or even orthonormal. The moments can
be categorised into hydrodynamic and non-hydrodynamic moments, meaning
that the former have a physical interpretation, from a hydrodynamic perspec-
tive, whereas the latter do not. Furthermore, some of the moments are conserved
quantities, like density and momentum, and they remain unaltered in the relax-
ation procedure. The others are relaxed towards their equilibrium values meq

i ; the
non-equilibrium parts of the non-conserved quantities are reduced by −ωkmneq

i .
The relaxation can also be written with a diagonal matrix R specifying the re-
laxation parameters ωk, i.e. the non-equilibrium parts are reduced by −Rijm

neq
j .

This is the essence of the multi-relaxation-time scheme (MRT) under discussion:
it is easier to associate a physical meaning, at least in principle and in a hydrody-
namic sense, for the individual relaxation parameters – the moments, or some of
them, have a hydrodynamic interpretation.
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Finally, the change in the distribution functions fi, due to relaxation of the
moments, is obtained with the inverse transformation ( fi = M−1

ij mj). In summary,
MRT is governed by the evolution equation

fi(r + Δtci , t + Δt) = fi(r, t) − Λij f neq
j (r, t)

with Λ := M−1RM. Properties of MRT are investigated, for example, in Refs
[Lal00, Del03]. Besides MRT, also the so-called regularisation schemes, and alike,
naturally fit the general collision matrix framework defined in Eq. (96) [Lad94a,
McN95, Lad01, Che06a, Lät06, Zha06, Zha07].

3.5.3 Incompressible lattice Boltzmann schemes

The macroscopic equations describing hydrodynamic behaviour of LBGK were
derived in Sec. 3.4. These equations are similar, but not identical, to the Navier-
Stokes equation for incompressible fluid flows. Specifically, the derived equa-
tions involve spatial and temporal gradients of density, which can give rise to
the so-called compressibility errors. For this reason, there have been efforts to
construct incompressible lattice Boltzmann schemes where the compressibility
errors are effectively reduced [Fri87, Ale93, Zou95a, Lin96, He97c, Guo00]. Here
we present the incompressible scheme proposed in Ref. [He97c].

The first step in the proposed scheme is to decompose the density into a
constant and fluctuating part: ρ = ρ0 + δρ. Then it is argued that the fluctua-
tions δρ should be of the order of O(M2

a) in the incompressible limit, i.e. when
Ma → 0. The essence of the model is to neglect all the terms proportional to
δρ(u/cr) and δρ(u/cr)2, which are of the order of O(M3

a) or higher. In particular,
the above mentioned terms are neglected in the equilibrium distribution function
after substituting the expression for the fluctuating density. When the procedure
described is applied to the equilibrium function Eq. (42), we find that

f eq
i (ρ, u) = wi

(
ρ + ρ0

[
ciαuα

θ
+

ciαuαciβuβ

2θ 2 − uαuα

2θ

])
. (97)

The second modification is related to computation of the macroscopic fluid flow
velocity. That is, originally the basic hydrodynamic variables, the mass density ρ

and the momentum density ρuα, are calculated from the zeroth and first moments
of the distribution functions such that

ρ = ∑
i

fi, ρuα = ∑
i

ciα fi.

However, the momentum density, and thus the velocity, is redefined in the in-
compressible scheme [He97c]:

ρ0uα := ∑
i

ciα fi.
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3.6 LBM as a computational method

We have treated LBM as a numerical method for hydrodynamic fluid flow simu-
lations. Indeed, the most successful lattice Boltzmann schemes are constructed
for simulation of incompressible, isothermal Newtonian fluids – the Knudsen
number must be very small. The Boltzmann equation, on the other hand, ap-
plies for fluid flows with arbitrary Knudsen number. Because LBM can be de-
rived from the Boltzmann equation, directly or via the discrete Boltzmann equa-
tion, many features of the Boltzmann equation have been abandoned in favour of
computational feasibility. The distinctive stage in the derivation involves discreti-
sation of the microscopic velocity space such that the chosen set of discrete veloc-
ities is enough for recovering appropriate hydrodynamic equations in the con-
tinuum limit [Che94, Abe97, He97a, He97b, Pav98, Qia98, Sha98, Chi06a, Phi06,
Sha06, Che08, Chi08, Nie08a, Rub08, Chi09, Kar10].

Computational properties of the hydrodynamical lattice Boltzmann schemes,
e.g. stability, have been investigated by many authors [Anc94, Beh94, Ste96,
Wor97, Töl98, Lal00, Wol00, Bog01, Bou01a, Aok02, Set02, Lal03a, Ban06, Bro07,
Sie08, Yon09]. In the case of LBGK, for example, these investigations conclude
an experimentally observed fact: stability is compromised when the relaxation
parameter ω approaches 2, i.e. when the viscosity approaches zero. From a phys-
ical point of view, stability issues are related to the H-theorem; an unconditional
stability would be guaranteed by the H-theorem. However, unlike for the Boltz-
mann equation and for the BGK model, there is no H-theorem for relaxation-
based schemes with a polynomial equilibrium like Eq. (42) – certainly not for
the standard LBGK [Wag98, Luo00b, Yon03, Yon05]. For this reason, there have
been efforts to construct lattice Boltzmann schemes which admit an H-theorem
[Kar98a, Kar98b, Ren98, Kar99, Bog01, Suc02, Ans03, Bog03, Bog04a, Bog04b,
Ans05, Kea07, Asi09]. Actually, Koelman can be regarded as a pioneer also in this
respect, since he derived his equilibrium function with the principle of maximis-
ing the local entropy [Koe91]. Not surprisingly, also the entropic schemes have
drawbacks [Del02, Yon03]. Another attempt to enhance stability is the so-called
cascaded lattice Boltzmann automaton [Gei06, Gei09]. Moreover, it is worth re-
marking that the stability issues are manifested particularly in thermal flows.
There has been considerable interest in developing lattice Boltzmann schemes for
fluid flows with temparature variation [Ale93, McN93, Qia93b, Che94, Che95a,
McN95, Che97a, McN97, He98a, Ren98, Soe98, Pen04, Guo07, Pra07, Nie08b, Sbr09].
So far the success has been limited, but since some of the above references are
very recent, the current state of affairs remains to be settled.

The formal accuracy of the conventional lattice Boltzmann schemes is second-
order both in space and time [Sko93, Anc94, Rei95, Ste96, Hol04]. This somewhat
surprising property results from the interpretation of certain numerical errors as
physics. Namely, numerical errors have been incorporated in the definition of
viscosity: this is manifested by the term −1/2 in Eq. (45). However, in prac-
tise the realisable accuracy is only first-order with respect to time because of the
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compressibility errors (the discrete time step Δt must decrease faster than the
lattice spacing Δr due to consistency reasons) [Rei95, Jun01, Hol04]. In fact, the
compressibility errors are suppressed with the diffusive scaling of numerical pa-
rameters, i.e. the discrete time step Δt should scale like (Δr)2. In the role of a
computational method for hydrodynamics, LBM has been compared with other
numerical methods. Comparisons have been conceptual [Anc94, Xu98, Jun01],
and with respect to accuracy as well as computational efficiency [Mar94, Rei95,
Hou95, Nob96, Ber99, Kan99a, Lai01, He02, Xu03, Gel06a, Mar09]. According
to these comparisons, LBM appears to be a competitive alternative for computa-
tional fluid dynamics (CFD), especially for transient low-Reynolds number flows.

The low Reynolds number, Re = UL/ν, is almost inherent in the conven-
tional schemes where Δr = Δtcr . Namely, the characteristic velocity U must be
small due to the compressibility errors (low Mach number) and, on the other
hand, the viscosity ν cannot be too small due to stability issues. Then, the only
way to increase the Reynolds number in the simulations is to configure a large
number of lattice spacings per characteristic length scale L – which is of course
computationally expensive [He96, He97a, He97d]. This is one of the reasons
why scientists have pursued alternative discretisations of the discrete Boltzmann
equation Eq. (38). These efforts include nonuniform grids supplemented with
an interpolation procedure [He96], finite-element treatments [Lee01, Shi03, Li04,
Düs06], and finite-volume discretisations [Nan92, Pen99, Xi99, Ube04, Ros05, Sti06,
Ube06, Ube08, Pat09].

In conclusion, LBM has been most successful in simulations of complex
flows in the low-Reynolds number regime – just like LGA. Pioneering work in
complex flow simulations was done soon after the emergence of LBM: magneto-
hydrodynamics [Che91a], multiphase and multicomponent fluids [Gun91, Gru93,
Sha93, Sha94, Swi95], reactive flows [Che95b], fluid flow in porous media [Suc89,
Can90, Kop98], and suspension flows [Lad93, Lad94a, Lad94b, Aid95]. A prime
example of complex flow simulations with LBM is the multicomponent flow in
porous media [Gun93, Fer95, Mar96] – a very difficult problem for any compu-
tational method. There are five main reasons why LBM has been successful in
simulations of complex flows:

1. The conventional lattice Boltzmann schemes are easy to implement because
of the uniform lattice and because of the simple relaxation-based time step-
ping.

2. The conventional lattice Boltzmann schemes involve a discrete evolution
equation which is explicit in time and highly local in space; the schemes are
ideal for parallel computing.

3. The conservation of relevant hydrodynamic quantities is exact, both locally
and globally. This compliance to basic physical principles is not only a the-
oretical issue; for example, even a slight drainage of mass per one discrete
time step would severely hinder very long fluid flow simulations.
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4. There are simple, albeit crude, boundary conditions which are feasible even
in arbitrarily complex domains.

5. It is relatively easy to extend the schemes with additional physical mecha-
nisms. These supplementary mechanisms are naturally included via body
force or modified equilibrium functions.

The body force, mentioned in the last point above, is not trivial to impose, but
many practical implementations for it have been proposed [He98a, He98b, Luo98,
Mar98, Luo00a, Bui00, Wol00, Lad01, Guo02a, Sha06]. The above reasons are all
individually important but, even so, they are really not that exceptional features.
The true merit is that the above features are all harmoniously packed into LBM.
Finally, if we were compelled to pick up one of the features above the others, we
would choose the last one. It is clear that by doing so we agree with Sauro Succi;
we conclude our general treatment of LBM with his statement [Suc08]:

In this work, we have brought up three examples of LB schemes for
complex flows across scales, from macroscopic turbulence down to
nanofluids of biological interest. The interesting point, from a statis-
tical mechanical perspective, is that each of these examples calls for a
significant extension of the original LB scheme for Navier-Stokes hy-
drodynamics. Far from being the result of numerical thinking alone,
these extensions are deeply rooted into the basic physical principles
governing the phenomena they are meant to desribe. This is why, in
our opinion, LB should most appropriately be viewed not just as a
smart Navier-Stokes solver in disguise, but rather like a fully-fledged
simulation strategy for complex flows across scales, well grounded
into the basic principles of non-equilibrium statistical physics. It is re-
markable that such a broad variety of complex fluid phenomena can
be mould within a common mathematical framework, and actually
with relatively minor changes of the original computational architec-
ture. This is a major asset, deeply rooted in the stream-collide mathe-
matical structure of kinetic theory.



4 BOUNDARY CONDITIONS

A mathematical model including a partial differential equation for the unknown
quantity, like a conservation or balance equation, is incomplete. From a mathe-
matical point of view, the governing equation imposes restrictions on the function
describing the unknown quantity – flow velocity for example. Or, the same state-
ment rephrased, the undetermined function must conform with the rules set by
the partial differential equation. But, in general, there are an infinite number of
functions which obey the given rules. Thus, it is necessary to impose more re-
strictions on the undetermined function so as to single out a particular function
which then is the solution and determines the quantity of interest. Additional
restrictions can be enforced by boundary conditions. The number of boundary
conditions required depends on the governing equation. All this applies for com-
putational methods as well. For example, all the lattice Boltzmann schemes dis-
cussed in the previous section must be supplemented with an appropriate num-
ber of boundary conditions before they can be used for computer simulations.

Boundary conditions appear in many ways. Initial conditions further re-
strict the undetermined functions at a given instant: a solution for the unknown
quantity is then pursued at times later than the initial instant. In the LBM con-
text, initial conditions have been treated e.g. in Refs [Sko93, Cai05, Mei06, Lee09].
On the other hand, spatial boundary conditions are typically associated with in-
terfaces. For example, envisage a solid body submerged in a fluid. In addition,
the body is stationary at all times and unpermeable for the fluid. Then, the sur-
face of the body constitutes a fluid-solid interface. If we are interested e.g. in the
flow of fluid around the body, the local flow velocity, here the quantity of inter-
est, is meaningfully defined only in the domain exterior to the body. Hence, it is
necessary to define a boundary condition for the flow velocity at the fluid-solid
interface: typical choices include the so-called no-slip and slip conditions. At the
interface, the former enforces equal velocities for the fluid and solid component,
and the latter enforces equal normal velocities but allows friction-free flow in the
tangential direction.

Boundary conditions of a third type are inherent for computational meth-
ods. Namely, mathematical models can in principle operate in infinite domains.
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For instance, consider our above example involving the submerged body. In a
theoretical investigation, the domain exterior to the body can extend infinitely
far away from the fluid-solid interface. Obviously, in computer simulations such
a configuration is not possible due to the limited computing resources. Thus,
the domain must be somehow truncated for computational purposes, and the
conditions enforced at the edge of the truncated domain are often called articial,
absorbing, open, or free boundary conditions – depending on the physical system
under investigation and on the purposes of the conditions.

From a technical point of view, the role of spatial boundary conditions in
LBM is clear. Consider a lattice node located close to a boundary, or even exactly
at the boundary. Let us refer to it as a boundary node; whether the boundary is an
edge of the computational domain, an open boundary, or a fluid-solid interface,
does not matter here. In the course of time evolution, the distribution functions at
the boundary node, as well as everywhere else in the domain, must be updated.
The update procedure involves distribution functions from the neighbouring lat-
tice nodes but, for the boundary nodes, some of these neighbours reside outside
of the computational domain. That is, some of the distribution functions needed
for the update procedure at a boundary node are unknown. Pictorially speaking,
the unknown distribution functions depart from the exterior of the domain and
propagate to the boundary nodes. Therefore, the role of spatial boundary condi-
tions in LBM is to provide expressions for these unknown distribution functions.

From a physical point of view, however, the role of spatial boundary con-
ditions in LBM is not so clear. Namely, the expressions for the unknown distri-
bution functions provided by the boundary condition may be constructed either
upon microscopic, mesoscopic, or macroscopic considerations. That is, the ex-
pressions may be derived from particle dynamics, statistical mechanics, or from
hydrodynamics. Nevertheless, once the unknown distribution functions at the
boundary are determined, hydrodynamic variables are readily available as the
first few moments of the distribution functions. The analytical computation of
these moments, or approximation when appropriate, gives the hydrodynamic in-
terpretation for a boundary condition – regardless of the physical origins of the
expressions. For hydrodynamic lattice Boltzmann schemes this is of course a
critical point. Accordingly, in a pragmatic strategy for imposing boundary con-
ditions, the hydrodynamic variables or their derivatives are first prescribed at
the boundary and then, in the second step, this information is utilised in the ex-
pressions for the unknown distribution functions. We say that the expressions
enforce the given conditions whenever the moments agree with the prescribed
hydrodynamic information. Or, in computer science parlance, the expressions pro-
vide an implementation for the prescribed hydrodynamic condition. Implementations
of hydrodynamic boundary conditions for LBM is the topic considered in Sec. 4.3
as well as in Appendix 2.

The open boundary conditions and the fluid-solid interface conditions typi-
cally differ with respect to the hydrodynamic information available at the bound-
ary. Namely, the local fluid velocities are typically known (or prescribed) at the
fluid-solid interfaces but the local densities, which are directly proportional to
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the local pressures via the ideal gas law, almost necessarily remain unknown.
At the open boundaries, on the other hand, such discrimination is not natural.
Whether the local velocities, densities, or their derivatives are considered un-
known at the open boundary, depends entirely on the simulation configuration
and on the purpose of the open boundary condition. In Sec. 4.2 we elaborate on
a particular approach to the problem of using LBM for simulating physical flow
systems involving open boundaries. There we focus on the so-called mass-flux-
based approach for the inlet and outlet boundary conditions. The approach is
somewhat unconventional as it relies on a global condition imposed at the open
boundary – a fixed average velocity at the inlet is an example of a global con-
dition. Prior to the treatment of the mass-flux-based approach, we review the
boundary conditions proposed in the literature for LBM at fluid-solid interfaces.

4.1 A survey of LBM boundary conditions

Due to their prominent status, the discussion must start from the so-called bounce-
back and bounce-forward schemes: they are the prototype solutions for imple-
menting no-slip and slip conditions, respectively. These two boundary condition
schemes were utilised in LGA from the very beginning [Fri86, Wol86], and were
immediately carried over to LBM. At the same time, they are incarnations of the
kinetic boundary conditions, the reverse and specular reflection laws, presented
already in Sec. 2.3.5. The reverse and specular reflection laws can be appropri-
ately classified as mathematical models describing the macroscopic effects of the
true underlying microscopic dynamics at the fluid-solid interace. These models
are readily amenable to mathematical analysis of their properties [Sch73], and
hence it is not entirely fair to state that boundary schemes based directly on these
models are simply heuristic – as is sometimes proclaimed.

It is, however, fair to state that the bounce-back and bounce-forward schemes
are the icons of LBM boundary conditions – their simplicity, even for arbitrarily
complex interfaces, is an allure which has arguably promoted application of LBM.
The bounce-back boundary scheme became even more appealing when Anthony
Ladd presented his modification of the scheme for moving interfaces [Lad94a]:
a simple expression alters the values of the reflected distribution functions so
as to mimic additional momentum transfer at the interface. Similar boundary
conditions had already been proposed for LGA [Lad88, Rem89]. However, the
simplicity is of course also the weakness of the reflection schemes. From early
on it was understood that the bounce-back and bounce-forward schemes have
deficiencies. For example, the simulated flow velocities at the interfaces are af-
fected by the simulation parameters in an undesirable manner: e.g. slip veloci-
ties may be observed when no-slip conditions are pursued [Cor91, Lav91, Zie93,
Zou95b]. This issue was briefly touched upon in Sec. 3.5.1. Above all, the sim-
ple schemes degrade the spatial accuracy of LBM, and only first-order accuracy
is obtained in general configurations [Cor91, Gin94, Gal97]. A particular version
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FIGURE 7 Schematic descriptions of halfway reflection boundary conditions for LBM.
The fluid-solid interface is located halfway between the fluid and solid
nodes. The halfway bounce-back and bounce-forward schemes are depicted
on the left and on the right, respectively. In the course of streaming, the
values of the distribution functions, associated with the discrete velocities
represented by the arrows, propagate along the paths indicated by the dot-
ted lines – at every discrete time step. Note that in the standard versions, the
values of the distribution functions involved remain unaltered: the values
are simply associated with different discrete velocities before and after the
reflection – possibly at a new location.

of the reflection boundary conditions provides some remedy [Rem89, Cor91]: so-
called halfway bounce-back and bounce-forward schemes can deliver second-
order spatial accuracy in specific flow configurations, e.g. in the case of a plane
Poiseuille flow – the peculiar slip velocity dependence on the simulation parame-
ters still remained [He97e, Sbr05]. The halfway reflection schemes are illustrated
in Fig. 7. In conclusion, our major point here is that the above discussed de-
ficiencies have encouraged scientist to devise alternative, improved boundary
conditions.

During the years, various approaches for constructing boundary conditions
have been adopted. A simple strategy, in principle, is to directly use hydrody-
namic variables prescribed at the boundary, and their derivatives, for approxi-
mating the unknown distribution functions one by one. Let us assume that the
boundary node is located exactly at a boundary for which the hydrodynamic
variables are known. Then we can use the decomposition fi = f eq

i + f neq
i for

reconstructing the unknown distribution functions. The equilibrium part can
be computed directly and, by using multiple-scale analysis, approximations in-
volving derivatives of the hydrodynamic variables can be deviced for the non-
equilibrium part [Kin92, Sko93]. If necessary, the derivatives can be computed
e.g. with finite differences. Unfortunately, this reconstruction strategy immedi-
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ately encounters two major difficulties: 1. the densities are usually unknown as
discussed above, at least for the fluid-solid interfaces, and thus the computation
of the equilibrium part is possible only if the density is also somehow approxi-
mated; 2. finite-difference approximations of the derivatives at the boundaries
may not be practical, certainly not when the boundary has a complex shape.
These two aspects have suppressed application of the above direct reconstruc-
tion schemes.

A particularly notable approach for constructing hydrodynamic boundary
conditions was presented by Noble et al. [Nob95a]. They presented their approach
for the hexagonal FHP model, and assumed that the boundary nodes lie exactly
at a straight boundary for which the local flow velocities are known; this is the
setting for which also D. Ziegler presented his boundary condition [Zie93]. The
fundamental idea of the approach is to utilise definitions of the moments as con-
ditions for the unknown variables. In particular, the density and the momen-
tum density are zeroth and first order moments of the discrete distribution func-
tions, see Eqs (43) and (44). In two dimensions, their definitions provide three
equations. In the two-dimensional setting considered by Noble et al., there is lo-
cally three unknown variables: two distribution functions and the density. In this
special case, the number of independent equations and the number of unknown
variables agree, and a solution is available. This was demonstrated with simula-
tions of Poiseuille flow and machine accuracy was attained independently of the
imposed viscosity and pressure gradient. However, when the boundary is not
straight, or when the lattice Boltzmann scheme involves more discrete velocities,
as in D2Q9, the number of equations and unknown variables do not match in
general. Then some additional constraints, approximations of some sort, must be
imposed so as to obtain a linear system of equations which can be solved.

For example, in Ref. [Nob95b] Noble et al. use the above approach to con-
struct a hydrodynamic boundary condition for the D2Q9 model – the boundary
configuration is exactly the same. In this case, the number of unknown variables
is four, three distribution functions and the local density, and hence they use en-
ergy considerations to provide an additional constraint. That is, they enforce a
fixed internal energy at the boundary in order to provide the fourth equation for
the unknown variables. Since the internal energy is not a conserved quantity in
the athermal D2Q9 model – it is rather a free variable – this constraint is only an
approximation. For the same D2Q9 model, and for the same boundary configu-
ration, Zou and He proposed a different approximation: they used bounce-back
of the non-equilibrium part for one unknown distribution function, which pro-
vides the fourth equation [Zou97]. For the D3Q15 model, now 6 unknowns and 4
equations, they utilised bounce-back of the non-equilibrium part for all unknown
distribution functions. In addition, they introduced so-called correction terms for
some of the unknown distribution functions so as to enforce correct tangential
velocities at the boundary. This strategy is relatively straightforward to apply
e.g. for the D3Q19 model [PIV, Hec10]. Bounce-back of the non-equilibrium part
is an intermediate step also in the regularisation boundary scheme [Lät08].

Perhaps the most elaborate scheme for determining the unknown distribu-



96

tion functions from a linear system of equations, at least among the pioneer-
ing works, was presented by Ginzburg and d’Humières [Gin96]. They utilise not
only the prescribed velocity at the boundary, but also known derivatives of the
boundary velocities to construct approximations for the distribution functions,
as in Refs [Kin92, Sko93]. All this information is used to set up a linear sys-
tem of equations which is then solved. It is noteworthy that, unlike in Refs
[Kin92, Sko93], derivatives of the velocities are not approximated with finite dif-
ferences – their values are simply deduced from the physical setting, e.g. the
derivatives along the boundary are identically zero whenever the boundary ve-
locity is spatially uniform. The strategy proposed by Ginzburg and d’Humières
for constructing boundary schemes was later recognised and adapted by Halliday
et al. [Hal02, Hol06, Hol08].

On the other hand, the approach for the D3Q15 model presented in Ref.
[Zou97] is actually very similar to the boundary condition scheme presented ear-
lier by Maier et al. [Mai96]. They also considered boundary nodes exactly at the
wall and proposed two versions. First, in the velocity boundary condition, the
bounce-back procedure gives provisional values for the unknown distribution
functions: this defines the local density at the wall and enforces zero normal mo-
mentum. In the second step, mass is redistributed among the reflected distribu-
tion functions so as to enforce the prescribed tangential momentum. In general
interfaces, where the boundary is not straight, i.e. the interface includes edges
and corners, special approximations must be included. For the open bound-
aries, they again propose a two-step procedure. To begin with, provisional values
for the unknown distribution functions are computed by a first-order extrapola-
tion. Then the values are adjusted to satisfy the prescribed density and velocity
constraints. A somewhat similar boundary scheme was presented by Behrend
[Beh95]: bounce-back at the boundary together with a velocity-correction term.

At the same time, Chen et al. proposed a boundary scheme for arbitrarily
complex boundaries [Che96]: the unknown distribution functions are obtained
by extrapolating along the characteristics. In addition to the extrapolation, pre-
scribed boundary densities and velocities are used in the equilibrium function –
also here the boundary nodes reside exactly at the boundary. This scheme was
later extended for the treatment of curved boundaries [Guo02b]. The problem of
treating curved boundaries is related to the fact that, in general, nodes of a regular
lattice do not coincide with the boundary. The distance from the boundary nodes
to the curved boundary is arbitary, as the boundary resides somewhere between
two adjacent lattice nodes.

Another strategy for imposing velocity boundary condition was presented
by Inamuro et al. [Ina95]. Their approach was inspired by the Maxwell’s diffu-
sive reflection boundary condition, see Sec. 2.3.5. Specifically, they presented a
scheme where the unknown distribution functions are determined by the equilib-
rium distribution function which, in turn, is evaluated with a so-called counter-
slip velocity. The essence is then to compute the counter-slip velocity so that the
local flow velocity corresponds to the wall velocity. The scheme was demon-
strated with simulations of Poiseuille flow: machine accuracy was attained in-
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dependently of the relaxation parameter. Their scheme can be applied for mod-
els with an arbitrary number of discrete velocities, but only for straight walls.
Also, mass conservation at the boundary is not guaranteed, as pointed out in Ref.
[Cho03].

Actually, many boundary schemes are similarly imperfect – for example the
extrapolation scheme presented above do not guarantee mass conservation. Mo-
tivated by the conservation of mass, Chopard et al. proposed a boundary con-
dition scheme of their own [Cho03]: for the case of a straight wall and D2Q9
model, a system of 6 unknowns and three equations was set up. They argued
that, in principle, the extra degrees of freedom can then be used to tune the ac-
curacy of the simulations. However, a systematic procedure for tuning the extra
degrees of freedom in general simulation configurations was not presented. In
addition to the boundary scheme by Inamuro et al. [Ina95], a boundary scheme
presented by Ansumali et al. is also based on the diffusive reflection boundary
condition [Ans02]. A similar, kinetically inspired diffusive boundary scheme was
soon there after presented for thermal flows [Sof05, Sof06].

The problem of treating curved boundaries, or actually any off-lattice in-
terfaces, was mentioned above. In order to accurately treat curved boundaries,
Filippova and Hänel proposed a boundary-fitting scheme together with local grid
refinement [Fil97, Fil98]. The boundary-fitting scheme was soon improved by
Mei et al. [Mei99, Mei00]. A well-known boundary scheme for curved boundaries
involves combination of the bounce-back and spatial interpolation of the distri-
bution functions along the characteristics [Bou01b]. Both linear and quadratic in-
terpolations were proposed, and the scheme can be modified for treating moving
boundaries [Bou01b, Lal03b]. The approach based on combining the bounce-back
and interpolation along the characteristics was later generalised in Ref. [Gin03];
the multireflection boundary condition was also presented in the same publication.
Unfortunately, the schemes discussed above, i.e. [Fil97, Mei99, Bou01b, Gin03],
do not conserve mass in general.

Another distinctive class of boundary schemes is provided by the so-called
volumetric approaches [Che98a, Che98b, Ver00, Ver01, Roh02]. A kind of volu-
metric approach was proposed by Noble and Torczynski [Nob98]. In their ap-
proach, the percentage of volume occupied by a solid is determined for each
cell in the lattice. If the solids represent moving obstacles, like suspended par-
ticles in a fluid, the percentages are recomputed at every discrete time step. An
additional term, a function of the local solid volume percentage, is then intro-
duced to a lattice Boltzmann scheme to account for the fluid-solid interactions
within each cell. This approach is especially appealing for dynamic geometries,
since a relatively simple implementation can provide smooth fluid-solid inter-
action dynamics. This is in contrast to e.g. the bounce-back scheme, where the
coarse, staircase description of the moving solid boundaries inherently produces
abrupt or fluctuating dynamics. Later this approach was considered as an im-
mersed boundary method [Coo04, Str07], and it has been applied to suspension
flows [Han07, Fen10]. Other immersed boundary methods for LBM are presented
e.g. in Refs [Fen04, Niu06, Shu07, Dup08, Wu09, Hao10, Lia10]. External bound-
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ary force schemes are closely related to the immersed boundary methods, and
have been proposed also for LBM [Wu10a, Wu10b]. Moreover, the volumetric
approach proposed by Noble and Torczynski bears a resemblance to the partial
bounce-back schemes [Gao94, Dar98a, Dar98b, Wal09].

In addition, a diverse set of boundary schemes has been proposed over the
years, see e.g. Refs [Kim00, Roh03, Jun05b, Jun05c, Chu07, Bao08, Kao08, Cha09,
Ver09b, Izq10, Jeo10]. The literature addressing LBM boundary schemes is ap-
parently broad and expanding. The interest in the topic is due to the quest for an
ideal boundary scheme. Such a scheme would fulfil an impressive list of require-
ments:

1. Second-order spatial accuracy is guaranteed, which conforms with the for-
mal accuracy of LBM.

2. The second-order spatial accuracy is obtained even for curved, general bound-
aries.

3. Implementation of the second-order accurate scheme is feasible in an arbi-
trary complex geometry.

4. The scheme is not limited to a particular discrete velocity set, and it is ap-
plicable in a three-dimensional setting.

5. The scheme provides accurate transient solutions, not only steady-state flow
fields.

6. The scheme provides smooth dynamics for moving fluid-solid interfaces.

7. The scheme is accurate in the above sense independent of the remaining
simulation parameters; for example, there are no unphysical slip-velocity
peculiarities.

8. Conservation of mass is always guaranteed.

9. The scheme is explicit in time.

10. The scheme is numerically stable.

11. The update procedure at the boundary allows simulation of multiphase
flows, or other complex fluids.

12. The scheme can be applied, or at least extended, to thermal flows.

At present, a scheme complying with all of the above requirements remains to be
discovered. Whether an optimal scheme can be found or not is an open issue. In
the meantime, application of a compromise scheme depending on the simulation
setting is mandatory.
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4.2 Mass-flux-based open boundary conditions

After the fluid-solid interface conditions, we concentrate on open boundary con-
ditions for LBM – periodic boundary conditions are excluded from the discussion.
We begin with a brief review of the topic. Ladd’s approach for moving interfaces
can be employed at the open boundaries with prescribed velocities [Lad94a]. This
approach involves bounce-back supplemented with a simple expression altering
the values of the reflected distribution functions. Extrapolation-based boundary
schemes for inlets and outlets were presented in Refs [Che96, Mai96]. The open
boundary scheme proposed by Zou and He provides the unknown distribution
functions by solving a linear system of equations [Zou97] – the scheme involves
bounce-back of the non-equilibrium part.

In the approach proposed by Yu et al., the local densities and velocities
are given at the inlet boundary which, in general, is not located exactly at the
lattice nodes [Yu05]. Then interpolation, together with the bounce-back of the
non-equilibrium part, is used to compute the unknown distribution functions. A
boundary scheme based on a reconstruction of the unknown distribution func-
tions from approximate hydrodynamic moments was presented in Ref. [Chi06b].
Implementation of several Navier-Stokes outflow boundary conditions in the
LBM context was presented by Junk and Yang [Jun08b, Jun09]. Finally, some of
the above schemes were analysed and compared in Ref. [Izq09]. Many other
boundary schemes originally intended for fluid-solid interfaces can also be ap-
plied at the open boundaries – at least after some modification. Such schemes are
presented e.g. in Refs [Gin96, Hal02, Hol06, Hol08]. Typically in these schemes,
the local velocities, and sometimes even the densities, are considered as given
values at the boundary.

Here we elaborate on a different kind of approach to the problem of using
LBM for simulating physical flow systems that involve open boundaries. Namely,
we propose a mass-flux-based framework for the inlet and outlet boundary con-
ditions in LBM simulations. The framework includes three distinctive steps:

1. A global condition is imposed for an inlet or outlet boundary. For example,
the condition can enforce a mass flow rate over the inlet or, as in Ref. [PIII],
an average velocity at the inlet.

2. At the boundary, the local densities and velocities are deduced by utilising
the global condition together with the locally known distribution functions.
The deduction involves additional assumptions about the flow configura-
tion.

3. The unknown distribution functions are approximated based on the above
determined local densities and velocities. The expressions for the unknown
distribution functions can be assigned independently of the first two steps;
Sec. 4.3 and Appendix 2 provide a discussion on this topic.
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4.2.1 A global condition at the open boundary

Indeed, the mass-flux-based approach is motivated by a practical property: by
utilising additional assumptions, the local hydrodynamic variables can be com-
puted from a given global condition – they are not prescribed a priori. Therefore,
we first focus on global conditions at the open boundary. For example, let us
consider a case where the mass flow rate Q(t) is controlled at the inlet Γ. The
area of the inlet is Ain, and the inlet is located at x=0. We choose to utilise the
incompressible lattice Boltzmann scheme presented in Sec. 3.5.3 [He97c]. Then
an appropriate definition for the mass flow rate is

Q(t) :=
∫

Γ
ρ0u(r, t) · n dA ≡ Ain · ρ0ua(t), (98)

where ρ0 is the average or reference density and n is the unit, inward normal
vector. Let us further assume a unidirectional inflow in the x-direction; the inflow
is perpendicular to the inlet Γ which lies on the yz-plane (cf. Fig. 8). Therefore,
u · n = ux, and accordingly ua is the average inlet velocity in the x-direction.
When the simulation geometry is represented in a discrete lattice, and the fluid-
solid interface is located halfway between the fluid and solid nodes (again, see
Fig. 8), the inlet area is directly available from the number of lattice nodes Nin at
the inlet, i.e. Ain = Nin · Δr2. It is evident from Eq. (98) that, by controlling the
average inlet velocity, the mass flow rate is also controlled. In this demonstration,
let ua be our single boundary scheme parameter. For simplicity, it is considered
independent of time.

On the other hand, if we take a glance at the underlying microscopic world,
there are constantly particles leaving and entering our computational domain.
Thus, the macroscopic mass flow rate actually emerges from the imbalance be-
tween the two sets of particles. It is hence sensible to view the net mass flow rate
Q at the inlet as the difference between the mass inflow rate Q+ and the mass
outflow rate Q−, i.e. Q(t) = Q+(t) − Q−(t). This decomposition is most fruitful
in the LBM context. Namely, the conventional lattice Boltzmann schemes in fact
allow computation of Q−. This opportunity, together with the predetermined Q,
gives us an expression for the mass inflow rate: Q+(t) = Q + Q−(t). The ex-
pression for Q+ is essential when we set out to determine the local densities and
velocities at the boundary.

Let us first explain why Q− can be computed, or actually measured. The
time evolution in conventional lattice Boltzmann schemes can be decomposed
into two steps: streaming and collision of distribution functions. At time step t,
the instant after a streaming step, and hence immediately before the next collision
step, is denoted by t∗. At the boundary, some of the velocity vectors point into the
computational domain, and some point out of the domain. In the case of D3Q19,
illustrated in Fig. 8, there are five inbound as well as outbound velocities; the
remaining nine velocities point along the inlet plane. After the streaming step,
all the distribution functions are known at the boundary, except those associated
with the inbound velocities. Hence, the mass outflow rate Q−(t∗) can be com-
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FIGURE 8 An arbitrarily shaped inlet: here unidirectional inflow in the x-direction is
envisaged; the inflow is perpendicular to the inlet which lies in the yz-
plane. The fluid-solid interface is located halfway between the fluid and
solid nodes. Velocity vectors of the D3Q19 model are also presented and enu-
merated. The logic of the enumeration is as follows: east (E) and west (W)
denote positive and negative directions along the x-axis, respectively; simi-
larly, north (N) and south (S) denote positive and negative directions along
the y-axis; finally, top (T) and bottom (B) denote positive and negative direc-
tions along the z-axis. Not shown is the symbol C which refers to the zero
velocity vector. At the inlet boundary, the eastbound velocities point into the
computational domain, whereas the westbound velocities point out of the
domain. Thus, at the boundary, there are five inbound as well as outbound
velocities. The remaining nine velocities point along the inlet plane. From
the open boundary condition perspective, the distribution functions associ-
ated with the inbound velocities are considered as the primary unknowns
and expressions must be assigned to them.

puted from the distribution functions associated with the outbound velocities:

Q−(t∗) := − ∑
r∈Γ

Δr2

(
∑

i∈I−
cix fi(r, t∗)

)
= Δr2 ∑

r∈Γ

q−(r, t∗).

Above the first summation is over the lattice nodes at the inlet, and the second
summation is over the outbound velocities denoted by index set I−. Further-
more, the above defined quantity q−(r, t) is the local mass outflux, i.e. the rate
of mass flow across a unit area. There is a minus sign in front of the first sum
because we prefer to define q− and Q− as positive values: the x-components
cix of the outbound velocity vectors are negative due to our choice of the inlet
boundary (located at x=0) – distribution functions fi are by definition positive.
The mass flux has the same units as the momentum density, here denoted by
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jα(r, t). In LBM, the momentum density is the first-order moment in the micro-
scopic velocity space, and specifically the momentum density in the x-direction
is jx(r, t) := ρ0ux(r, t) = q+(r, t) − q−(r, t); the local mass influx q+ is defined in
the same way as q−.

4.2.2 Local hydrodynamic variables from a global condition

As presented in the previous section, an expression for Q+ can be derived from
an appropriately defined global condition. This expression is essential in the next
step where we set out to determine the local densities ρ(r, t∗) and momentum
densities jx(r, t∗) – they are unknown variables before the collision step. This
task is accomplished by determining q+(r, t∗), as demonstrated below. Let us
start off by decomposing also the local density into two parts:

ρ(r, t∗) = ∑
i∈Ikn

fi(r, t∗) + ∑
i∈I+

fi(r, t∗) =: ρkn(r, t∗) + ρ+(r, t∗), (99)

where the index set Ikn := I \ I+ denotes all the discrete velocities for which
the distribution functions are known after the streaming step, i.e. the inbound
velocities I+ are excluded; ρ+(r, t∗) is an unknown quantity at the inlet. Now we
make an additional assumption. Namely, we assume that

cix = −cr, i ∈ I− and cix = cr, i ∈ I+,

i.e. the x-components of the outbound and inbound velocity vectors are equal
in magnitude to cr. All standard lattice-Boltzmann models, e.g. D2Q9, D3Q15,
D3Q19, and D3Q27, fulfil this condition. With this assumption, we can directly
relate the two unknown local quantities: ρ+(r, t∗) = q+(r, t∗)/cr.

There is only one intermediate step remaining, and it requires computation
of the average density ρc(t∗) at the inlet:

ρc(t∗) =
1

Nin
∑
r∈Γ

ρ(r, t∗) =
1

Nin
∑
r∈Γ

(
ρkn(r, t∗) + ρ+(r, t∗)

)
= ρkn(t∗) +

1
cr

q+(t∗),

where the overbar denotes an average computed over the inlet boundary. The
average mass influx q+ is computed from the expression for Q+:

q+(t∗) =
1

Ain
Q+(t∗) = ρ0ua +

1
Ain

Q−(t∗) = ρ0ua + q−(t∗).

Since we assumed an inflow perpendicular to the inlet boundary, there cannot
be any pressure gradients along (parallel to) the boundary. Due to the ideal gas
law, p = c2

s ρ, this implies constant density along the boundary. This constant
density is now available in the form of the average density and, furthermore, an
expression for ρ+ is obtained from Eq. (99):

ρ+(r, t∗) = ρc(t∗)− ρkn(r, t∗) = ρkn(t∗)− ρkn(r, t∗) +
1
cr

(
ρ0ua + q−(t∗)

)
.
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With the above results, and assumptions, the local inlet velocities are also
immediately available (uy = uz = 0):

q+(r, t∗) = cr · ρ+(r, t∗) ⇒ ux(r, t∗) =
1
ρ0

(
q+(r, t∗)− q−(r, t∗)

)
.

Hence, at this point, we have time-dependent expressions for the local densities
and velocities at the inlet. Now it remains to enforce these local hydrodynamic
variables by assigning values for the unknown distribution functions. The local
hydrodynamic variables can be enforced for example with the boundary schemes
presented in the following section. Note that the mass-flux-based approach just
presented is not too restricted: it can be applied in conjunction with many lat-
tice Boltzmann schemes involving different relaxation schemes. The approach
is, however, somewhat unconventional as it involves a global condition at the
open boundary, and the time-dependent expression for Q+(t) introduces a kind
of feedback mechanism to the flow system.

4.3 Implementations of hydrodynamic boundary conditions

As discussed in the introduction of this chapter, hydrodynamic boundary condi-
tions for LBM involve two steps. First the hydrodynamic variables, or possibly
their derivatives, are prescribed at the boundary. Then the prescribed informa-
tion is utilised in the expressions for the unknown distribution functions. That
is, the expressions must be defined in such a way that, when the relevant hy-
drodynamic moments are computed from the distribution functions, the results
agree with the prescribed hydrodynamic information – the expressions enforce
the given hydrodynamic condition. Or in other words, the expressions provide
an implementation for the prescribed hydrodynamic condition. Some implemen-
tations, referred to as boundary schemes, are presented in this section.

Specifically, we present here various boundary schemes that provide ex-
pressions for the unknown distribution functions of the D2Q9 model. The two-
dimensional model allows us to demonstrate the relevant issues in a more trans-
parent way – at least the formulae along the way are simpler to read. Boundary
schemes that provide expressions for the unknown distribution functions of the
D3Q19 model are given in Appendix 2. The two-dimensional setting for which
we are about to present the boundary schemes is illustrated in Fig. 9. Specifi-
cally for this setting, the index sets introduced in the previous section are used:
I+ = {SE, E, NE}, I− = {SW, W, NW}, and Ikn = {SW, W, NW, S, C, N}. That
is, the unknown distribution functions after the streaming step are fSE, fE, fNE.

We utilise below the incompressible lattice Boltzmann scheme with the dis-
crete equilibrium function given in Eq. (97). The equilibrium coefficients for
the D2Q9 model are given in Table 2 (W0 = 16/36, W1 = 4/36, W2 = 1/36).
Furthermore, the speed of sound for the D2Q9 model is defined by the relation
θ = c2

s = c2
r /3. Perhaps the most straightforward boundary scheme at the inlet is
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FIGURE 9 A simple two-dimensional flow geometry. The flow is in the x-direction and
perpendicular to the inlet. In addition, an enumeration for the velocity vec-
tors of the D2Q9 model is presented. The logic of the enumeration is the
same as in Fig. 8: east (E), west (W), north (N), and south (S) denote positive
and negative directions along the x- and y-axis. Moreover, center (C) refers
to the zero-velocity vector. At the inlet, the eastbound and westbound ve-
locities point into and out of the computational domain, respectively. Thus,
at the boundary, there are three inbound as well as outbound velocities. The
remaining three velocities point along the inlet plane. The distribution func-
tions associated with the inbound velocities are considered as the primary
unknowns and expressions must be assigned to them.

to compute the values of the equilibrium distribution functions, and then simply
assign these values to the unknown distributions:

fSE(r, t∗) = f eq
SE(ρc, u), fE(r, t∗) = f eq

E (ρc, u), fNE(r, t∗) = f eq
NE(ρc, u);

here the local densities and velocities are considered available after the streaming
step. However, this scheme does not enforce the desired hydrodynamic variables
at the inlet. That is, if we compute the zeroth and first-order moments of the
distribution functions after we have assigned the equilibrium function values,
they do not correspond to the prescribed ρc and u. Therefore, more elaborate
expressions for the unknown distribution functions must be pursued.

4.3.1 Bounce-back of the non-equilibrium part

In what follows, we simplify further the notation. Namely, we omit the argu-
ments from the distribution functions whenever they are obvious, e.g. fSE ≡
fSE(r, t∗) and f eq

SE ≡ f eq
SE(ρc, u). An intuitive improvement supplements the sim-

ple equilibrium scheme with the bounce-back of the non-equilibrium part,

fSE = f eq
SE + f neq

NW , fE = f eq
E + f neq

W , fNE = f eq
NE + f neq

SW .
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With the incompressible equilibrium function Eq. (97), this is equivalent to

fSE = fNW + 2W2 ρ0
cSE · u

θ
,

fE = fW + 2W1 ρ0
cE · u

θ
, fNE = fSW + 2W2 ρ0

cNE · u
θ

. (100)

In fact, exactly the same expressions were proposed by Ladd for the treatment
of moving fluid-solid interaces [Lad94a]: bounce-back with an additional term
related to the local non-zero velocity at the interface. The difference to Ladd’s
scheme is minor: first and foremost, Ladd considered interfaces located halfway
between the lattice nodes.

Now we have to check whether this scheme enforces the prescribed hydro-
dynamic variables. We start from the definition of density:

∑
i

fi =
( ρkn = ρc−ρ+︷ ︸︸ ︷

fSW + fW + fNW + fS + fC + fN
)
+

= ρ−︷ ︸︸ ︷
fNW + fW + fSW

+ 6W2︸︷︷︸
=1/6

ρ0ux

cr
+ 6W1︸︷︷︸

=4/6

ρ0ux

cr
+ 6W2︸︷︷︸

=1/6

ρ0ux

cr

⇔ ∑
i

fi = ρc − ρ+ + ρ− +
ρ0ux

cr
= ρc − ρ+ + ρ− +

1
cr

(
q+ − q−

)
= ρc.

Indeed, the correct density is recovered. Next we check the momentum density
in the x-direction. Some intermediate steps which were explicitly presented in
the above verification of density are now skipped:

∑
i

cix fi = cr
(

fSE + fE + fNE − fSW − fW − fNW
)

= cr
(
ρ− +

ρ0ux

cr
− ρ−

)
= ρ0ux.

The correct momentum in the x-direction is hence recovered. Finally, let us check
the momentum density in the y-direction. Remember that we have prescribed
uy = 0 which, however, is not relevant – we could prescribe any other value for
uy as well:

∑
i

ciy fi = cr
(

fNW + fN + fNE − fSW − fS − fSE
)

= cr
(

fN + 6W2
ρ0ux

cr
− fS − 6W2

ρ0ux

cr

)
= cr

(
fN − fS

)
.

In general, the y-component is not zero! Therefore, with this boundary scheme
we cannot guarantee correct velocities in the transverse y-direction. Hence, an
even more elaborate boundary scheme is desired.

Before presenting an improved boundary scheme, an explanation is in or-
der. Why did the simple bounce-back of the non-equilibrium part recover both
the correct density as well as the velocity in the normal direction? First of all, let
us forget the above bounce-back of the non-equilibrium part scheme for a mo-
ment, and simply consider f u

SE, f u
E , f u

NE as unknown variables at the inlet – here
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the extra superscript u further highlights the unknown variables. In addition,
the distribution functions at the inlet (the known and unknown together) must
respect the prescribed hydrodynamic variables. Here it suffices to concentrate on
the density, ρc, and the x-component, ρ0ux, of the momentum density. In other
words, the moments of the distribution functions must match with these hydro-
dynamic variables. Mathematically, the distribution functions must fulfil two
linear equations:{

fSW + fW + fNW + fS + fC + fN + f u
SE + f u

E + f u
NE = ρc,

cr
(

f u
SE + f u

E + f u
NE − fSW − fW − fNW

)
= ρ0ux

⇔
⎧⎨⎩

f u
SE + f u

E + f u
NE = ρc − ρkn = ρ+,

f u
SE + f u

E + f u
NE = (ρ0ux)/cr + ρ− = ρ+.

The two moment equations provide exactly the same condition for the three un-
known variables! Thus, enforcing a given density necessarily enforces the corre-
sponding normal momentum, and vice versa.

In more general terms, the two moment equations for the density and the
x-component of the momentum density are linearly dependent for the prede-
termined unknown variables f u

SE, f u
E , f u

NE. This is the key point here: the set of
unknown variables determines whether the moment equations are linearly in-
dependent or not. For example, let us reinterpret the bounce-back of the non-
equilibrium part scheme. First of all, we postulate a bounce-back scheme supple-
mented with additional terms:

fSE = fNW + a, fE = fW + 4a, fNE = fSW + a, (101)

where a is an unknown variable to be determined and the 4a term for the distri-
bution function fE is motivated by the ratio between the equilibrium coeffients
(W1/W2 = 4). It is easily verified that for the only unknown variable, a, the
moment equations for the density and for the x-component of the momentum
density provide exactly the same condition – just like above. That is, we have
a single equation for one unknown. This linear system of equations is trivially
solved:

a =
ρ0ux

6cr
⇒ fSE = fNW +

ρ0ux

6cr
, fE = fW +

4ρ0ux

6cr
, fNE = fSW +

ρ0ux

6cr
.

These expressions were presented already in Eq. (100). In summary, the bounce-
back of the non-equilibrium part scheme provides the prescribed density ρc and
normal momentum density ρ0ux , but fails to provide the correct transverse mo-
mentum density, or the velocity component parallel to the inlet boundary.

4.3.2 A scheme for the D2Q9 model: enforcing 1+2 moments

With an intuitive extension to the boundary scheme formulation Eq. (101), it is
possible to correctly reproduce the three hydrodynamic variables, the density ρc
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(the zeroth-order moment) as well as the momentum density components ρ0ux

and ρ0uy (the two first-order moments). Namely, we introduce another unknown
variable b, and postulate a bounce-back scheme:

fNE = fSW + a + b, fE = fW + 4a, fSE = fNW + a − b. (102)

Then, we set up a linear system of equations by utilising the definitions of the
hydrodynamics variables ρc, ρ0ux, ρ0uy, i.e. the zeroth and first-order moment
equations.

Since the equations for ρc and ρ0ux again provide exactly the same con-
dition, we have two equations for the two unknown variables. By solving this
system, we obtain

a =
ρ0ux

6cr
, b = −1

2
(

fN − fS
)
+

ρ0uy

2cr
;

the expressions for the unknown distribution functions are

fE = fW +
2ρ0ux

3cr
,

fNE = fSW +
ρ0ux

6cr
− 1

2
(

fN − fS
)
+

ρ0uy

2cr
,

fSE = fNW +
ρ0ux

6cr
+

1
2
(

fN − fS
)− ρ0uy

2cr
.

These are exactly the same expressions as presented by Zou and He [Zou97]; the
right hand sides involve only known variables. For example, in the simple two-
dimensional flow configuration presented in Fig. 9, we assign uy = 0 and ux is
computed with the mass-flux-based approach.

It is interesting to note that there appears to be no unique way of construct-
ing this boundary scheme. That is, the unknown variables a and b can be defined
in various ways. For example, instead of relying on Eq. (102), we could have
based our boundary scheme construction on

fNE = a, fE = f eq
E + f neq

W , fSE = b,

or
fNE = f eq

NE + a, fE = f eq
E + f neq

W , fSE = f eq
SE + b. (103)

All these formulations provide the same solution. However, the last formulation
above is especially fruitful since it will guide us to even more precise boundary
schemes.

4.3.3 A second-order upgrade: enforcing 1+2+1 moments

The problem of assigning values to the unknown distribution functions is a del-
icate matter. When pursuing hydrodynamic fluid flow simulations, the funda-
mental idea is deceptively simple: the aim is to incorporate information about
the local hydrodynamic state into the unknown distribution functions – the state
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is described by a suitable set of hydrodynamic variables. On the other hand, the
moment equations serve as kinetic definitions for the hydrodynamic variables.
That is, the values of the hydrodynamic variables can be computed directly from
the distribution functions. Therefore, it is essential that the information about the
hydrodynamic state is incorporated in a very precise way: the reverse computa-
tion must recover exactly the prescribed values, i.e. the values computed from
the moment equations must match with the prescribed values. Otherwise there
is a mismatch, and the distribution functions do not carry information about the
true hydrodynamic state.

In the previous section, we presented a scheme which correctly incorpo-
rated information about the local densities and velocities into the unknown dis-
tribution functions. However, those three variables do not provide a complete
description about the local hydrodynamic state. In particular, information about
the viscous stresses is not included and hence, from the hydrodynamic point of
view, the assigned distribution functions are underspecified. Here we present
a boundary scheme which incorporates information about the viscous stresses.
First of all, we utilise an approximative relation between the viscous stresses and
the second-order moments of the non-equilibrium functions:

∑
i

ciαciβ f neq
i = Π

neq
αβ ≈ Π

(1)
αβ ≈ −2Δtθρ0

ω
Sαβ =: Πvisc

αβ , (104)

where Sαβ = (∂βuα + ∂αuβ)/2 is the strain rate tensor, and we have used ρ0 in
order to be consistent with the incompressible lattice Boltzmann scheme. This
approximation is based on the Chapman-Enskog analysis, see Eqs (91) and (92)
or Appendix 1, and has been employed in the construction of boundary schemes
for example by Halliday et al. [Hal02].

Since the tensors in the relation Eq. (104) are symmetric, they involve three
independent components in two dimensions. Hence, we get three conditions for
the non-equilibrium functions:

Π
neq
xx : c2

r

(
f neq
NE + f neq

E + f neq
SE + f neq

NW + f neq
W + f neq

SW

)
= Πvisc

xx ,

Π
neq
xy : c2

r

(
f neq
NE − f neq

SE − f neq
NW + f neq

SW

)
= Πvisc

xy ,

Π
neq
yy : c2

r

(
f neq
NE + f neq

N + f neq
NW + f neq

SE + f neq
S + f neq

SW

)
= Πvisc

yy .

The above three equations are actually very useful since, as demonstrated in the
formulation Eq. (103), we can construct a boundary scheme by treating non-
equilibrium parts as the unknown variables. Therefore, the above three condi-
tions provide equations for our unknown variables.

We can immediately obtain three more equations for the non-equilibrium
functions. Namely, in order to enforce the prescribed density and momentum
density, we require that the zeroth and first moments of the non-equilibrium parts
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are identically zero:

ρ : f neq
NE + f neq

E + f neq
SE + f neq

N + f neq
C + f neq

S + f neq
NW + f neq

W + f neq
SW = 0,

ρ0ux : cr

(
f neq
NE + f neq

E + f neq
SE − f neq

NW − f neq
W − f neq

SW

)
= 0,

ρ0uy : cr

(
f neq
NE + f neq

N + f neq
NW − f neq

SE − f neq
S − f neq

SW

)
= 0.

In summary, we have a total of six equations for the non-equilibrium functions.
However, the number of independent equations is not six in general, but depends
on the unknown variables we choose for our boundary scheme. For example, if
we straightforwardly choose the non-equilibrium parts of the inbound veloci-
ties as our unknown variables, i.e. f neq

NE , f neq
E , and f neq

SE , we recognise that the
equations provided by ρ, ρ0ux , and Π

neq
xx are linearly dependent and cannot be

fulfilled simultaneously. Similarly, the equations provided by ρ0uy and Π
neq
xy are

also linearly dependent. Although there actually are three linearly independent
equations for the three unknowns in this example, we cannot obtain a solution
which would simultaneously guarantee the prescribed values for ρ and ρ0ux.

From the kinetic theory point of view, a consistent strategy for constructing
boundary schemes first guarantees correct values for the low-order moments,
here density and momentum density, and then attempts to enforce higher-order
moments. We utilise this strategy with the observation that there are discrete
velocity vectors pointing along the open boundary. Distribution functions asso-
ciated with these velocities, some or all of them, are quite naturally treated as
unknown variables. In our two-dimensional setting, the non-equilibrium dis-
tribution functions associated with the vectors pointing along the boundary are
f neq
N , f neq

S , and f neq
C , see Fig. 9. We choose the last one, f neq

C , as our fourth un-
known variable. To be more precise, the philosophy we propose is as follows:
fC is actually known after the streaming step. Thus, it can be used e.g. in the
mass-flux-based approach for computing the local densities and flow velocities.
However, after the hydrodynamic variables have been determined, and we de-
cide to enforce them together with the viscous stresses, we choose to replace f neq

C
with the value presented in this boundary scheme.

Hence, the four unknown variables for the present boundary scheme are

fC = f eq
C + a, fNE = f eq

NE + b, fE = f eq
E + c, fSE = f eq

SE + d. (105)

Then, after some rearranging, the previously presented six conditions for the non-
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equilibrium functions are

ρ : a + b + c + d = −
(

f neq
NW + f neq

N + f neq
S + f neq

W + f neq
SW

)
, (106)

ρ0ux : b + c + d =

(
f neq
NW + f neq

W + f neq
SW

)
, (107)

ρ0uy : b − d = −
(

f neq
NW + f neq

N − f neq
S − f neq

SW

)
, (108)

Π
neq
xx : b + c + d = −

(
f neq
NW + f neq

W + f neq
SW

)
+

1
c2

r
Πvisc

xx , (109)

Π
neq
xy : b − d =

(
f neq
NW − f neq

SW

)
+

1
c2

r
Πvisc

xy , (110)

Π
neq
yy : b + d = −

(
f neq
NW + f neq

N + f neq
S + f neq

SW

)
+

1
c2

r
Πvisc

yy . (111)

Clearly, the equations above provided by ρ0ux and Π
neq
xx , as well as by ρ0uy

and Π
neq
xy , are linearly dependent. In these kinds of cases, we resolve the conflict

by always utilising the equation from the lowest order moment. Accordingly, we
utilise here the four linearly independent equations provided by the moments
ρ, ρ0ux , ρ0uy, and Π

neq
yy to determine expressions for the four unknown variables:

a = −
(

2 f neq
NW + f neq

N + f neq
S + 2 f neq

W + 2 f neq
SW

)
,

b = −
(

f neq
NW + f neq

N

)
+

1
2c2

r
Πvisc

yy ,

c =

(
2 f neq

NW + f neq
N + f neq

S + f neq
W + 2 f neq

SW

)
− 1

c2
r

Πvisc
yy ,

d = −
(

f neq
S + f neq

SW

)
+

1
2c2

r
Πvisc

yy .

Notice that in our simple inlet flow configuration, the component Syy of the strain
rate tensor is identically zero implying Πvisc

yy = 0. Hence, we do not need to use
e.g. finite-difference schemes for the approximation of ∂yuy.

4.3.4 A further improvement: enforcing 1+2+2 moments

By comparing Eq. (108) provided by ρ0uy and Eq. (110) provided by Π
neq
xy ,

we observe that these equations become linearly independent if even one the
two remaining non-equilibrium distribution functions propagating along the in-
let boundary, f neq

N or f neq
S , is treated as an unknown variable – in the sense ex-

plained in the previous section. Here we choose to treat f neq
N as an additional

unknown. Then we have a total of five unknown variables,

fC = f eq
C + a, fNE = f eq

NE + b, fE = f eq
E + c, fSE = f eq

SE + d, fN = f eq
N + e, (112)
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for which we have five linearly independent equations:

ρ : a + b + c + d + e = −
(

f neq
NW + f neq

S + f neq
W + f neq

SW

)
,

ρ0ux : b + c + d =

(
f neq
NW + f neq

W + f neq
SW

)
,

ρ0uy : b − d + e = −
(

f neq
NW − f neq

S − f neq
SW

)
,

Π
neq
xy : b − d =

(
f neq
NW − f neq

SW

)
+

1
c2

r
Πvisc

xy ,

Π
neq
yy : b + d + e = −

(
f neq
NW + f neq

S + f neq
SW

)
+

1
c2

r
Πvisc

yy .

The solution to this linear system of equations is given by

a = −
(

2 f neq
S + 2 f neq

W + 4 f neq
SW

)
+

1
c2

r
Πvisc

xy ,

b =

(
f neq
NW − f neq

S − 2 f neq
SW

)
+

1
c2

r
Πvisc

xy +
1

2c2
r

Πvisc
yy ,

c =

(
2 f neq

S + f neq
W + 4 f neq

SW

)
− 1

c2
r

Πvisc
xy − 1

c2
r

Πvisc
yy ,

d = −
(

f neq
S + f neq

SW

)
+

1
2c2

r
Πvisc

yy ,

e = −
(

2 f neq
NW − f neq

S − 2 f neq
SW

)
− 1

c2
r

Πvisc
xy .

The off-diagonal component Πvisc
xy involves partial derivatives ∂xuy and ∂yux. It

is relatively easy to approximate the latter: finite-difference schemes along the
inlet boundary are not difficult to implement. For example, second-order accu-
rate (biased) central-difference schemes presented in Appendix 3 can be applied.
That is, ∂yux can be conveniently measured and then utilised. The partial deriva-
tive ∂xuy can also be measured, but now forward finite-differences must be used.
Alternatively, we could impose an additional hydrodynamic boundary condition
by requiring that ∂xuy ≡ 0 at the inlet.

4.3.5 Enforcing hydrodynamic moments up to second order

For the boundary scheme presented here, we assume that there is information
available about the complete viscous stress tensor at the open boundary – here
the tensor has three independent components. The information is either mea-
sured, approximated e.g. with finite-differences, or it is provided by additional
boundary conditions, for example ∂xux ≡ 0. We start off just like in the previous
section. By comparing Eq. (107) provided by ρ0ux and Eq. (109) provided by
Π

neq
xx , we observe that these equations become linearly independent if any of the
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non-equilibrium distribution functions associated with the three outbound veloc-
ity vectors, f neq

NW , f neq
W , or f neq

SW , is treated as an unknown variable – the meaning
of this treatment has already been explained. Here we choose to treat f neq

W as the
sixth unknown variable:

fC = f eq
C + a, fNE = f eq

NE + b, fE = f eq
E + c,

fSE = f eq
SE + d, fN = f eq

N + e, fW = f eq
W + g. (113)

For this set of unknown variables we have six linearly independent equa-
tions:

ρ : a + b + c + d + e + g = −
(

f neq
NW + f neq

S + f neq
SW

)
,

ρ0ux : b + c + d − g =

(
f neq
NW + f neq

SW

)
,

ρ0uy : b − d + e = −
(

f neq
NW − f neq

S − f neq
SW

)
,

Π
neq
xx : b + c + d + g = −

(
f neq
NW + f neq

SW

)
+

1
c2

r
Πvisc

xx ,

Π
neq
xy : b − d =

(
f neq
NW − f neq

SW

)
+

1
c2

r
Πvisc

xy ,

Π
neq
yy : b + d + e = −

(
f neq
NW + f neq

S + f neq
SW

)
+

1
c2

r
Πvisc

yy .

The solution to this linear system of equations is given by

a =

(
2 f neq

NW − 2 f neq
S − 2 f neq

SW

)
− 1

c2
r

Πvisc
xx +

1
c2

r
Πvisc

xy ,

b =

(
f neq
NW − f neq

S − 2 f neq
SW

)
+

1
c2

r
Πvisc

xy +
1

2c2
r

Πvisc
yy ,

c = −
(

f neq
NW − 2 f neq

S − 3 f neq
SW

)
+

1
2c2

r
Πvisc

xx − 1
c2

r
Πvisc

xy − 1
c2

r
Πvisc

yy ,

d = −
(

f neq
S + f neq

SW

)
+

1
2c2

r
Πvisc

yy ,

e = −
(

2 f neq
NW − f neq

S − 2 f neq
SW

)
− 1

c2
r

Πvisc
xy ,

g = −
(

f neq
NW + f neq

SW

)
+

1
2c2

r
Πvisc

xx .

This concludes our treatment of boundary schemes. With the same ap-
proach as adopted here, we present boundary schemes for the D3Q19 model in
Appendix 2. In summary, the above presented scheme is almost equivalent to the
one presented by Halliday et al. [Hal02]. The schemes differ in their sets of un-
known variables. With their parlance and our two-dimensional setting, Halliday
et al. consider f neq

C , f neq
SW , and f neq

W as the so-called free variables in their scheme;
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the corresponding variables in our scheme are f neq
S , f neq

SW , and f neq
NW – there are

many other viable choices for the free variables. Whether this difference in the
set of unknown variables has some consequences on hydrodynamic fluid flow
simulations, is a matter which we leave open here. Computationally the two
schemes are equally demanding. They involve similar expressions for the un-
known variables; the hydrodynamic information for the expressions may require
approximation of the partial derivatives of the local flow velocities with e.g. finite
differences. Also, the two schemes both utilise information propagating from the
interior of the flow domain to the same extent. Finally, the boundary schemes
presented here and in Ref. [Hal02] are both asymmetric to some degree: with this
remark we refer to the fact that, for example, in our scheme the non-equilibrium
function f neq

N is considered as one of the unknown variables but the function f neq
S

is not. This arbitrary choice discriminates the two opposite directions, and hence
introduces a kind of asymmetry to the scheme. However, some degree of asym-
metry is unavoidable in the selected approach.



5 IMPLEMENTATION TECHNIQUES

Generally speaking, the discussion presented thus far has covered mathematical
modelling of physical phenomena, as well as discretisation of the resulting mod-
els. Discretisation aims at computational schemes which can be implemented
and ultimately executed on computers. For example, the discretisation procedure
replaces such mathematical operators as integrals and derivatives with approxi-
mations that involve only elementary operations, i.e. summation, multiplication,
and division – computers compute with elementary operations. The approxima-
tion of mathematical operators is inherently related to the essential step in the
discretisation procedure: continuous variables are replaced by the corresponding
discrete variables defined e.g. at the nodes of the lattice. An approximative so-
lution for the original mathematical model is then pursued by solving the associ-
ated discrete problem with a computational scheme constructed for the purpose.

Nevertheless, from the programming point of view, the mathematical de-
scription of a computational scheme is still quite abstract, and leaves many issues
undetermined. With the implementation of a computational scheme we refer to
the treatment of the remaining issues as well as to the concrete programming.
The final outcome of the implementation is a source code, written with a pro-
gramming language, which is then compiled into a computational software. Fi-
nally, computer simulation of a physical phenomenon concretely means that we
command execution of the program on a computer: a suitable set of parameters
is introduced for controlling the simulation configuration. Here we consider as-
pects related to the implementation of the lattice Boltzmann schemes. By doing
so, we enter the territory of computer science and of high-performance comput-
ing (HPC) in particular.

The objective in HPC is to economically utilise the always limited comput-
ing resources; HPC focuses on the efficient execution of computational schemes
on modern computers. Several arguments can be given for why HPC has emerged
as a distinctive discipline:

• The developed solutions provide an immediate practical gain: limited com-
puting resources are utilised to their full extent.
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• There is an intellectual charm in developing the fastest, or most frugal, com-
puter implementation of a computational scheme – the most elegant solu-
tions inspire people.

• Often the solutions are like operational principles, and the principles may
find applications in unexpected domains – not only in the domain where
they were initially presented.

• In order to reach high effiency with an implementation, it is often neces-
sary to have understanding of computer hardware. Thus, HPC promotes
the knowledge of contemporary hardware among the people implement-
ing computational software.

Indeed, the understanding of computer hardware is often essential when tack-
ling challenges in HPC. For example, today most of the modern computers in-
volve a memory interface which transmits data between the main memory and
the central processing unit (CPU) of the computer. The technical development of
computer hardware has led to a situation where the memory interface struggles
with an enormous data traffic. Nowadays it is even typical that the efficiency of
an implementation is limited by the capability of the interface: the interface con-
stitutes the so-called von Neumann bottleneck, coined by John Backus in his ACM
Turing Award Lecture [Bac78]. In order to relieve some of the burden from the
interface, auxiliary hardware components have been introduced. Most notably a
hierarchy of cache memories have been mounted between the main memory and
CPU: typically the hierarchy includes L1, L2, and even L3 cache memories. The
property of the hierarchy is that the cache memories grow in size from L1 to L3.
The counterbalance is that the time it takes to transfer data between CPU and the
cache memories gets longer from L1 to L3. Actually, the data transferred between
CPU and L3 usually travels via L1 and L2. Nonetheless, even the L3 cache mem-
ory is much smaller in size than the main memory, and also significantly faster
with regard to the data transfer speed. Therefore, a common problem in the field
of HPC is to find a way to maximally exploit the small but fast cache memories
in an implementation of a given computational scheme. Basic cache utilisation
techniques are reviewed e.g. in Ref. [Kow03].

There are at least three apparent ways to relieve some of the burden from
the memory interface, and to promote efficient utilisation of the cache memory
hierarchy:

1. An implementation of a computational scheme should use data per unit
task as little as possible. This will directly reduce the data traffic between
the main memory and CPU.

2. Surplus data traffic must be avoided. For example, when data are retrieved
from the main memory, they are typically transferred in blocks or lines, e.g.
a block includes not one but many floating-point numbers. It is desirable
that all the data in a block will participate in the computations. That is,
there should be a minimal amount of data which pointlessly stow away in
the blocks.
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3. Once data are retrieved from the main memory to CPU, or actually to one
of the cache memories, they should be exploited as many times as possible.
Otherwise the data must be retrieved from the main memory separately
for every occasion where they are needed – retrieving data from the cache
memory is much faster.

Here, and in Refs [PI, PII], we consider implementation techniques which were
motivated by the above three, rather general principles. Implementation tech-
niques for the lattice Boltzmann schemes, directly concerning efficient utilisation
of the cache memory hierarchy, have also been treated e.g. in Refs [Poh03, Vel04,
Wel06, Zei08]. In addition, the brute-force strategy of high-performance comput-
ing relies on parallel computing. Various parallel computing aspects related to
LBM have been treated e.g. in Refs [Pun94, Kan98, Dup00, Bel02, Sch02, Mas02,
Pan04, Wan05, Axn08, Zei08, Vid10]. The so-called grid-refinement techniques,
on the other hand, utilise non-uniform grids in an attempt to intelligently al-
locate computing resources to the spatial regions of the computational domain
where large gradients are expected to arise: for example, a fine grid spacing is
pursued in the vicinity of fluid-solid interfaces whereas a coarser spacing serves
the purpose in the regions far away from the interfaces – the battle is between
accuracy and limited computing resources. Grid-refinement techniques for LBM
have been consider for example in Refs [Fil98, Töl98, Fil00, Kan00, Lin00, Suc01b,
Yu02, Cro03, Dup03, Rei05, Che06b, Gel06b, Roh06, Töl06]. Also, several tech-
niques for accelerating steady-state fluid flow simulations with the lattice Boltz-
mann method have been proposed [Töl98, Kan99b, Ver99, Ber01, Kan01, Ber02,
Töl02, Ber03, Lee03, Guo04, Ima05, Mav06, Liu08, Pre09].

5.1 Algorithms

From the programming point of view, as already stated, many issues not ad-
dressed by the mathematical description of a computational scheme must be de-
termined at the implementation stage. An algorithm provides a bridge between
the description of a computational scheme and its realisation on a computer. That
is, an algorithm is an intermediate abstraction concept: it collects all the essential
steps of the scheme, while avoiding unnecessary details, into a procedure me-
chanical enough for computers. Essentially, an algorithm is a step towards the
programming language manifestation of the scheme. One of the main issues ad-
dressed by the algorithms for the lattice Boltzmann schemes, and schemes in gen-
eral, is the data dependence. This issue is particularly common in schemes that
involve time evolution of the dynamic variables, here the distribution functions.

Consider for example the LBE Eq. (40): it explicitly states that the distribu-
tion function fi(r + Δtci , t + Δt) depends on the distribution function fi(r, t) to-
gether with the collision term Ωi(r, t). Similarly, the distribution function fi(r, t +
Δt) depends on fi(r − Δtci , t), and so forth. When the scheme is executed on a
computer, the distribution functions must be concretely stored in the main mem-
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ory. Let us assume that in the implementation stage we allocate two virtual
memory locations for the distribution functions fi(r + Δtci , t) and fi(r, t). Dur-
ing the time evolution, the distribution value stored at the location for fi(r, t)
must be replaced with the value of fi(r, t + Δt) computed according to LBE – ba-
sically the value fi(r, t) is overwritten. Hence, the data needed for the update
of fi(r + Δtci , t) are lost, i.e. the value fi(r + Δtci , t + Δt) cannot be computed
anymore.

It turns out that the simple data dependence introduced by LBE can be han-
dled in many ways. In fact, the data dependence in LBE Eq. (40) is the sim-
plest of all dependences – excluding of course the case of no dependence at all!
Namely, the distribution functions are dependent along the characteristics only
and, moreover, the dependence is on the upwind-direction to the nearest neigh-
bour – it is a one-to-one dependence. This favourable state of affairs is compro-
mised in such specific lattice Boltzmann schemes where only the hydrodynamic
moments are stored into the main memory instead of the actual distribution func-
tions. Such schemes, together with appropriate implementation techniques for
the treatment of the more compex data dependences, are presented e.g. in Refs
[Mar02, Arg04]. There are at least five algorithms for handling the simple data
dependence: the two-lattice, two-step, shift (or compressed grid) [Poh03], swap
[PI], and lagrangian [Mas02] algorithms all operate in a distinct way. The op-
erational principles of the two-lattice and shift algorithms are illustrated in Fig.
10. In a similar way, the essence of the two-step as well as the swap algorithm is
presented in Fig. 11. For simplicity, the figures present a purely synthetic setting
composed of a one-dimensional lattice and a lattice Boltzmann scheme with two
discrete velocities pointing to the left and right.

Essentially, just like the two-lattice and shift algorithms, the swap algorithm
allows execution of both the streaming and collision steps for a single node at a
time. In practice, this is computationally more efficient than iterating the lattice
at least twice, as is done in the two-step algorithm. In addition, the swap and
shift algorithms enable the fused streaming and collision step without the sec-
ond lattice – the single lattice must however be extended in the shift algorithm.
The usage of only a single lattice directly reduces the memory consumption and,
hence, also the memory traffic by striving for minimal amount of data per unit
task. Moreover, due to the relocation of the distribution values by the swapping
operation, the memory access pattern in the swap algorithm has potential for re-
ducing surplus memory traffic and, therefore, it may promote efficient utilisation
of the cache memory hierarchy.

5.2 Data layouts

The data dependence is just one of the many technical points which must be
addressed in the implementation of a lattice Boltzmann scheme. For example, it
is possible to implement the schemes by first executing the streaming step which
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FIGURE 10 Operational principles of the two-lattice and shift algorithms presented in
a one-dimensional setting with the D1Q2 model. The 1D cells of the lat-
tice are represented with squares only for graphical reasons. The extreme
cells of the 1D lattice, represented with the dashed squares, are so-called
ghost or halo or buffer cells facilitating implementation of the streaming
step together with e.g. periodic boundary conditions. The solid arrows rep-
resent the distribution functions associated with the two discrete velocities
pointing to the left and right. The dashed arrows illustrate how the val-
ues of the distribution functions are shuffled in the virtual memory during
a streaming step. The grey cells indicate that both the streaming and col-
lision steps have already been executed at the corresponding lattice node.
In the two-lattice algorithm, the distribution functions are retrieved from a
given lattice, and stored into the other one. The roles of the two lattices are
exchanged between the time steps. The shift algorithm operates with a sin-
gle lattice which, however, is appropriately extended – here one extra cell
for the 1D lattice is enough. The extension is carefully utilised: again, the
values of the distribution functions are retrieved and stored into different
virtual memory locations. During a given time step in the shift algorithm,
the lattice nodes are iterated from the last node to the first, as above, and
during the next time step, the iteration proceeds in the opposite direction.
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FIGURE 11 Operational principles of the two-step and swap algorithms presented in
a one-dimensional setting with the D1Q2 model. The caption of Fig. 10
explains the imagery. In the two-step algorithm, all the distribution values
are first carefully propagated along the characteristics, i.e. the streaming
step is first executed for the whole lattice. Thereafter, the whole lattice is
iterated again in order to execute the collision step. The swap algorithm,
on the other hand, operates in a manner which allows execution of both
the streaming and collision step for a single node at a time. Namely, while
the lattice nodes are traversed, some of the distribution values are explicitly
exchanged or swapped between the neighbours – the data dependence be-
tween neighbouring nodes is consequently broken. Note that in the swap
algorithm, the lattice iteration must be initialised: here the initialisation
has exchanged the distribution values between the ghost node and the first
node of the lattice.

is then followed by the collision step, or the order of execution can be reversed.
These two approaches are referred to as the ‘pull’ and ‘push’ update procedures,
respectively [Wel06]. Furthermore, let us consider iteration of the lattice nodes
during the update of the distribution functions: it is necessary to determine in
which order the nodes are iterated. An order can be defined by enumerating the
nodes; the enumeration numbers can either be computed on the fly, e.g. from
the integer coordinates of a node, (i, j, k) in the three-dimensional setting, or they
can be predetermined by a given procedure and the numbers are actually stored
into the main memory. A natural numbering for the nodes of a two-dimensional
lattice is presented in Fig. 12(a): the numbering advances first in the x-direction.
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FIGURE 12 An illustration of data layouts and related concepts. In part (a), an enu-
meration for the nodes of a two-dimensional lattice is defined with natu-
ral numbering. Part (b) presents a definition of the so-called distribution
function bundles, here B1,B2, and B3; the logic behind the definitions is ex-
plained in the text. Finally, three alternative data layouts for storing the
values of the distribution functions into a single one-dimensional array are
presented in part (c). These three data layouts store the distribution values
node-wise, link-wise, and bundle-wise.

It is also necessary to resolve the manner in which the distribution functions
are stored into the memory. One choice is to store all the distribution functions
into a long, one-dimensional array. However, this choice does not completely
determine the issue: it is still necessary to specify how exactly the distribution
functions are stored in the 1D array – the specification is referred to as the data
layout. There are two almost opposite alternatives: in the so-called collision op-
timised data layout, all the distribution functions of a single node are assembled
and stored consecutively into the 1D array, whereas in the propagation optimised
layout, all the distribution functions associated to a discrete velocity vector are as-
sembled from the whole lattice and stored consecutively into the array [Wel06].
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That is, in the collision and propagation data layouts, the distribution functions
are stored node-wise and link-wise, respectively. This is illustrated in Fig. 12(c).
A particular compromise between the two alternatives was proposed in Ref. [PII]:
in the so-called bundle data layout, the distribution functions are grouped into
small bundles which are then assembled from the whole lattice and stored con-
secutively into the 1D array. The small bundles are defined in Fig. 12(b) for the
D2Q9 model; Fig. 12(c) illustrates how these bundles are assembled and stored.

The logic of defining the small bundles is actually quite simple, and more-
over intimately related to the order in which the lattice nodes are iterated during
the update procedure. Specifically, let us consider the two-dimensional lattice
presented in Fig. 12(a) together with the natural numbering of lattice nodes –
the numbering defines the order of iteration for the nodes. In addition, let us
assume that, during the update procedure, the iteration has advanced to node 6.
The update of fNW at node 6 requires the value of fNW at node 3. Once all the
distribution functions of node 6 are updated, the iteration proceeds to node 7,
where the update of fN requires the value of fN at node 3. Similarly, the update
of fNE at node 8 requires the value of fNE at node 3. In other words, the values of
the distribution functions fNW , fN , and fNE at node 3 are required for the update
of nodes 6,7, and 8, respectively. Hence, in order to reduce redundant memory
traffic and also to promote efficient utilisation of the cache memory hierarchy, it
is sensible to fetch the values of the three distribution functions all at once. This is
the logic behind the definition of bundle B3, presented in Fig. 12(b) – the bundles
B1 and B2 are defined with a similar logic.

5.3 Arithmetic precision

The swap algorithm and the bundle data layout both try to reduce the unneces-
sary memory traffic in a very detailed manner. According to the current trends
in computing hardware, a detailed control of the memory traffic is likely to be
even more important than before – not less. Such a conclusion is at least tempt-
ing from the publications concerning implementations of LBM on graphics pro-
cessing units (GPU), see Refs [Zha08, Töl08, Ber09, Kau09, Rie09, Ber10, Kuz10,
Töl10]. Related to the implementation of LBM on GPU, there is an issue which
deserves some consideration. Namely, the implementation of a lattice Boltz-
mann scheme with single-precision floating-point arithmetic, instead of double-
precision, results in significant memory savings and, therefore, reduces mem-
ory traffic and promotes efficient utilisation of the cache memories; today, single-
precision floating-point arithmetic is the default in GPU rather than double-precision.

However, a straightforward single-precision implementation of LBM is vul-
nerable to numerical roundoff during the arithmetic operations. The reason for
the potential roundoff problems lies in the discrete equilibrium function f eq

i . That
is, consider Eq. (42): since θ has been indentified as the speed of sound squared,
c2

s , the terms inside the parentheses are evidently of the order of O(1),O(Ma),
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and O(M2
a). In order to simulate such fluid flows with LBM which obey the

incompressible Navier-Stokes equation, the Mach number Ma must be small.
On the other hand, in the simulation configurations where Ma gets smaller and
smaller, the terms in f eq

i become more and more disparate in size. Unfortunately,
the basic arithmetic operations on computers, particularly summation, are prone
to numerical roundoffs whenever the two operands are of very different size.

A particular remedy for the problem was proposed in Ref. [Sko93] (see also
Ref. [Del03]). Basically, simulations are carried out with distribution functions
redefined by a simple algebraic transformation:

gi := fi − wiρ0, geq
i := f eq

i − wiρ0 = wi

(
δρ + ρ

[
ciαuα

θ
+

ciαuαciβuβ

2θ 2 − uαuα

2θ

])
,

where ρ0 is the reference or average density; the fluctuating part of the density
δρ = ρ − ρ0 is of the order of O(M2

a), as already discussed in Sec. 3.5.3. Hence,
the terms in the redefined equilibrium function geq

i are of the order of O(Ma)
and O(M2

a), which is an improvement to the original state of affairs from the
computer arithmetic point of view. Note that the first moments of the redefined
distribution functions are

∑
i

gi = ∑
i

geq
i = δρ, ∑

i
ciα gi = ∑

i
ciαgeq

i = ρuα,

∑
i

ciαciβ gi = Παβ − ρ0θδαβ, ∑
i

ciαciβ geq
i = δρθδαβ + ρuαuβ.

The incompressible lattice Boltzmann scheme, together with the modified equi-
librium function Eq. (97), can be redefined in a similar manner.

This concludes our treatment of the implementation techniques for lattice
Boltzmann schemes. A concrete implementation example for the collision step
of the D3Q19 model is given in Appendix 4. In the example, written in C/C++
-style, the collision operator is modelled with the standard single-relaxation-time
BGK model.



6 CONCLUSION

With the string of chapters presented here, we have advanced from the very ab-
stract to the most concrete. Along the way, the chapters covered special top-
ics such as mathematical modelling in fluid dynamics, computational methods,
boundary conditions, and implementation of computational schemes. A large
portion of the presented discussion was devoted to the physical background of
the lattice Boltzmann method. The physical exposition was intended especially
for computer scientists as the associated discussion involved well-established
concepts in physics. Although the lattice Boltzmann method, a mesoscopic method
for the computer simulation of fluid flow phenomena, has attracted scientists and
engineers in many fields, it has occasionally been referred to as the ‘method of
physicist’. Be that as it may, this playful statement embodies a true tone reflect-
ing the physical origins of the method.

It is a well-worn claim in the literature that the lattice Boltzmann method
is increasingly recognised among the scientific community at large due to its
favourable properties: simplicity in coding, amenable for parallel computing,
simple boundary conditions facilitating simulations in even arbitrarily complex
domains, and so forth. While many of the above properties are individually ap-
pealing, they are really not that exceptional and often even compromise other
desirable properties, for example accuracy. The true merit of the method is that
it harmoniously combines many computationally exploitable features enabling
simulations of many difficult flow problems on the whole. The same pattern re-
peats when the lattice Boltzmann method is investigated from a scientific com-
puting point of view. The standard version of the method is derived by dis-
cretising the Boltzmann equation in several consecutive steps, many of which in-
volve rather rudimentary techniques such as first-order upwind finite-difference
schemes. Nevertheless, the combined effect of all the discretisation steps together
is that the resulting computational scheme is formally second-order accurate both
in space and time. Moreover, the discretisation of the velocity space is perhaps
a distinctive step in the derivation of the method but, from the numerical anal-
ysis point of view, it lacks certain charm due to the indirect manner in which
the discretisation is usually carried out. Namely, a set of discrete velocities is
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constructed by matching the moments with the continuous model up to a given
order. A direct discretisation of the velocity space, for example with some con-
ceivable basis functions, is a strategy not yet considered in the lattice Boltzmann
method literature – at least to our knowledge.

Hence, we argue, the profound appeal of the lattice Boltzmann method in-
deed stems from the physics considerations. The method is based on a meso-
scopic description of fluid dynamics, and on the kinetic theory of gases in par-
ticular. From the modern perspective, kinetic theory of gases is the tour de force
of statistical mechanics. It provides an original description for the dynamic be-
haviour of fluid flows and, at the same time, it establishes physically relevant
connections between the alternative descriptions operating at the microscopic
and macroscopic scales. These inherent connections truly separate kinetic the-
ory of gases from many other modelling approaches. Moreover, the connections
are eventually carried over into the lattice Boltzmann method, where they con-
stitute its true asset. In other words, the natural connections to the microscopic
and macroscopic worlds enable relatively effortless extensions of lattice Boltz-
mann schemes. These extensions usually have physically transparent origins and
may incorporate, e.g., additional interaction mechanisms that allow simulation of
complex phenomena like multiphase flows.

Here, in this thesis, we have recapitulated some of our recent, already pub-
lished efforts related to LBM. Specifically, we have presented the mass-flux-based
approach to open boundary conditions in Sec. 4.2 as well as the swap algorithm
for the implementation of lattice Boltzmann schemes in Sec. 5.1. The bundle data
layout was presented in Sec. 5.2: it is a detailed description for the manner in
which the distribution functions are stored into the main memory of the com-
puter. The mass-flux-based approach is based on a global condition imposed,
e.g., at the inlet of a computational domain. A fixed average velocity at the inlet
is an example of a global condition. Arguably, the application of a global con-
dition is a somewhat unconventional strategy in computational fluid dynamics.
Moreover, the mass-flux-based approach operates in a way which introduces a
kind of feedback mechanism to the flow system. This aspect suggests that the
approach is perhaps best suited for steady-state fluid flow simulations.

The most restricting assumption in the presented approach is the flow per-
pendicular to the boundary, i.e. there are no pressure gradients along the bound-
ary which in turn implies, together with the equation of state of an ideal gas,
a constant density along the boundary. In the current presentation, this fact is
explicitly utilised in the derivation of expressions for the unknown, local hydro-
dynamic variables. In the future, it would be interesting to investigate whether
the mass-flux-based approach could be extended to configurations where the in-
flow is, for example, unidirectional at the boundary, instead of perpendicular to
the boundary. This would facilitate simulations of fluid flows in, e.g., inclined
channels and pipes. Furthermore, no explicit boundary conditions for the local
hydrodynamic variables have been presented which would conform to the mass-
flux-based approach specified with, e.g., a prescribed average velocity at the inlet.
Such formulations could be a topic for future work.
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The two other contributions, the swap algorithm and the bundle data lay-
out, both belong conceptually to the territory of high-performance computing. In
essence, they try to reduce the unnecessary memory traffic between CPU and the
main memory of the computer in a very detailed manner. Particularly, they aim at
efficient utilisation of the small but fast cache memories in the implementations of
lattice Boltzmann schemes. According to the current trends in computing hard-
ware, a detailed control of the memory traffic is likely to be even more important
than before. Such a conclusion is indicated by the recent publications concern-
ing implementations of LBM on graphics processing units (GPU). It would be a
relevent study to investigate how the swap algorithm and the bundle data layout
affect computational efficiency of the implementations on new, emerging com-
puter architectures like the promising general purpose graphics processing units
(GP-GPU). In addition, efficient implementation of lattice Boltzmann schemes
with a relatively large number of discrete velocities is an interesting topic for fu-
ture work – even schemes such as D3Q125 have been proposed. Due to their
inherent properties, the swap algorithm and the bundle data layout are promis-
ing candidates for such implementations.

In addition to the above discussed contributions, we have here introduced
particular implementations of hydrodynamic LBM boundary conditions. These
implementations, not previously published, enforce a given number of prescribed
moments at straight boundaries. The most elaborate implementations presented
enforce hydrodynamic moments up to second order (six and ten moments in two
and three dimensions, respectively). Specifically, in Sec. 4.3 we present boundary
condition implementations for the D2Q9 model, and in Appendix 2 for the D3Q19
model. As is evident from these presentations, and from the summary at the end
of Sec. 4.3, these implementations are not unique: there is plenty of freedom in
the implementation of hydrodynamic boundary conditions. That is, with the ap-
proach adopted here, a number of distinct implementations can be derived which
all enforce the same prescribed moments. It remains to be investigated whether
these distinct implementations differ in their numerical properties. Numerical
validations for the presented implementations were not given here; validations
are left as a work for the future.



APPENDIX 1 THE FIRST-ORDER MOMENTUM TRANSFER
TENSOR

In the context of a multiple-scale analysis (Sec. 3.4.1), where hydrodynamic equa-
tions conforming to a lattice Boltzmann scheme are sought for, a second-rank
tensor is encountered. This tensor is apparently related to viscous momentum
transfer in the momentum conservation equation, see for example Eq. (91). Here
we derive, in detail, an expression for the above mentioned tensor, i.e.

Π
(1)
αβ := ∑

i
ciαciβ f (1)

i .

The derivation is based on the repeated usage of Eqs (80) and (81). Also, an oper-
ation from tensor calculus is frequently applied: the Kronecker delta symbol δαβ

changes indices, e.g. δαβ ∂β ≡ ∂α. Since all the partial derivatives involved are
of the first order in magnitude with respect to the small expansion parameter ε,
we omit the superscripts (1) carrying this information – the superscripts are rein-
troduced in the final expression. With the underbraces we denote the equation
which will be used when the associated term is substituted. We start from the
moment equation Eq. (82), and immediately apply Eq. (83) as well as Eq. (84):

−ωε

Δt
Π

(1)
αβ = ∂tΠ

(0)
αβ + ∂γS(0)

αβγ

= ∂t
(
θρδαβ + ρuαuβ

)
+ ∂γθρ

(
uαδβγ + uβδαγ + uγδαβ

)
= uβ ∂tρuα︸ ︷︷ ︸

(81)

+ρuα∂tuβ + θ∂βρuα + θ∂αρuβ + δαβθ
(

∂tρ︸︷︷︸
(80)

+∂γρuγ

)
= −uβ∂γΠ

(0)
αγ + ρuα∂tuβ + θ∂βρuα + θ∂αρuβ

−ωε

Δt

(
δαβθρ(1) + uβ j(1)

α

)
.

The expression for the tensor is not yet completed, but let us simplify the no-
tation in the subsequent intermediate expressions. The last two terms, multiplied
by the coefficient ωε/Δt, will remain unaltered to the very end of the deriva-
tion. Furthermore, eventually these terms will be embedded in an error term,
and ultimately neglected in the final approximation for the momentum conser-
vation equation. So, let us not carry these terms through the intermediate steps;
we acknowledge their presence, but omit them from the equations along the way.
These terms will be reintroduced at the final expression. With this in mind, we
proceed such that

−ωε

Δt
Π

(1)
αβ = −uβ∂γ

(
θρδαγ + ρuαuγ

)
+ ρuα∂tuβ + θ∂βρuα + θ∂αρuβ

= −θuβ∂αρ − uβ∂γρuαuγ + ρuα∂tuβ + θ∂βρuα + θuβ∂αρ + θρ∂αuβ

= −uβ∂γρuαuγ + (uα ∂tρuβ︸ ︷︷ ︸
(81)

−uαuβ ∂tρ︸︷︷︸
(80)

) + θ∂βρuα + θρ∂αuβ
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⇔ −ωε

Δt
Π

(1)
αβ = −uβ∂γρuαuγ − uα∂γΠ

(0)
βγ + uαuβ∂γρuγ + θ∂βρuα + θρ∂αuβ

−ωε

Δt

(
uα j(1)

β − uαuβ ρ(1)

)
.

Again, the last two terms on the right are considered unwanted, and hence
they are embedded in the error term. Thus, these two terms are omitted from
the subsequent intermediate expressions. As discussed above, these terms will
be reintroduced at the final expression. Let us proceed:

−ωε

Δt
Π

(1)
αβ = −(∂γρuαuβuγ − ρuαuγ∂γuβ

)− uα∂γ

(
θρδβγ + ρuβuγ

)
+uαuβ∂γρuγ + θ∂βρuα + θρ∂αuβ

= ρuαuγ∂γuβ − θuα∂βρ − uα∂γρuβuγ + uαuβ∂γρuγ

+θ
(
ρ∂βuα + uα∂βρ

)
+ θρ∂αuβ − ∂γρuαuβuγ

= uα

(
ρuγ∂γuβ + uβ∂γρuγ − ∂γρuβuγ

)
+θρ

(
∂βuα + ∂αuβ

)− ∂γρuαuβuγ

= θρ
(
∂βuα + ∂αuβ

)− ∂γρuαuβuγ.

The first term on the right now involves the so-called strain rate tensor
Sαβ :=

(
∂βuα + ∂αuβ

)
/2, see Sec. 2.1. The second term is usually neglected be-

cause it involves the velocity cubed, u3, which shoud be negligible due to the low
Mach number assumption; recall that in the Taylor series expansion of the expo-
nential function, presented in Sec. 3.2.1, only terms up to second order in u were
retained. Nonetheless, the complete expression is

Π
(1)
αβ = − Δt

ωε

(
θρ
(
∂
(1)
β uα + ∂

(1)
α uβ

)− ∂
(1)
γ ρuαuβuγ

)
+

(
δαβθρ(1) + uβ j(1)

α + uα j(1)
β − uαuβ ρ(1)

)
.



APPENDIX 2 BOUNDARY SCHEMES FOR THE D3Q19
MODEL

In the context of hydrodynamic boundary conditions for LBM, we derive and
present boundary schemes that provide expressions for the unknown distribu-
tion functions of the D3Q19 model. The presentation here is a catalogue of bound-
ary schemes rather than a comprehensive discussion; Chapter 4, and especially
Section 4.3, should be consulted whenever more elaborate explanations are de-
sired. For example, the enumeration used for the velocity vectors of the D3Q19
model is explained in Fig. 8. The three-dimensional setting considered here in-
volves a flat boundary for which the local density ρ and momentum density ρ0u
are available.

Let the boundary be located at x=0, i.e. it is parallel to the yz-plane. Then at
the boundary nodes (also located at x=0), the index set {SE, BE, E, TE, NE} refers
to the five velocity vectors which point into the computational domain (east-
bound or inbound velocities). The index set {SW, BW, W, TW, NW} refers to the
five velocity vectors which point out of the computational domain (westbound
or outbound velocities). The remaining nine velocity vectors point along the
boundary (inplane velocities): {BS, S, TS, B, C, T, BN, N, TN}. The distribution
functions associated with the inbound velocities are considered as the primary
unknown variables, after the streaming step, and expressions must be assigned
to them.

We utilise the incompressible discrete equilibrium function given in Eq.
(97): W0 = 12/36, W1 = 2/36, and W2 = 1/36 are the equilibrium coefficients
for the D3Q19 model, see Table 2. The speed of sound for the D3Q19 model is
defined by the relation θ = c2

s = c2
r /3. In the most straightforward boundary

scheme, the values of the equilibrium distribution functions are computed, and
then these values are simply assigned to the unknown distributions. However,
this procedure does not enforce the desired hydrodynamic variables at the in-
let. Therefore, more elaborate expressions for the unknown distribution functions
must be pursued.

APPENDIX 2.1 Bounce-back of the non-equilibrium part

An intuitive improvement supplements the simple equilibrium scheme with the
bounce-back of the non-equilibrium part. With the incompressible equilibrium
function Eq. (97), this is equivalent to

fSE = fNW +
ρ0(ux − uy)

6cr
, fBE = fTW +

ρ0(ux − uz)

6cr
, fE = fW +

2 ρ0ux

6cr
,

fTE = fBW +
ρ0(ux + uz)

6cr
, fNE = fSW +

ρ0(ux + uy)

6cr
.

This boundary scheme guarantees prescribed density and momentum density in
the x-direction, but it does not enforce correct transverse velocities at the bound-
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ary. That is, the scheme does not enforce the prescribed y-component of the mo-
mentum density, nor the z-component. Specifically, in a general case,

∑
i

ciy fi = cr
(

fBN + fN + fTN − fBS − fS − fTS +
ρ0uy

3cr

) �= ρ0uy,

∑
i

ciz fi = cr
(

fTS + fT + fTN − fBS − fB − fBN +
ρ0uz

3cr

) �= ρ0uz.

With the boundary scheme presented next, this discrepancy is corrected.

APPENDIX 2.2 Enforcing density and momentum density

It is possible to construct a boundary scheme which correctly reproduces the four
hydrodynamic variables, the density ρ (the zeroth-order moment) as well as the
momentum density components ρ0ux, ρ0uy, and ρ0uz (the three first-order mo-
ments). Namely, we postulate a bounce-back scheme with three unknown vari-
ables (a, b, and c):

fNE = fSW + a + b, fSE = fNW + a − b, fE = f eq
E + f neq

W ,

fTE = fBW + a + c, fBE = fTW + a − c.

Then we impose conditions for the unknown variables by demanding that the ze-
roth and first-order moment equations yield the prescribed hydrodynamic vari-
ables (four equations in total):

∑
i

fi = ρ, ∑
i

cix fi = ρ0ux, ∑
i

ciy fi = ρ0uy, ∑
i

ciz fi = ρ0uz.

Since the moment equations for ρ and ρ0ux provide exactly the same condi-
tion for the postulated scheme, we have three linearly independent equations for
the three unknown variables. By solving the system of equations, we obtain the
following expressions for the unknown distribution functions:

fE = fW +
ρ0ux

3cr
,

fNE = fSW +
ρ0ux

6cr
− 1

2
( fBN + fN + fTN − fBS − fS − fTS) +

ρ0uy

2cr
,

fSE = fNW +
ρ0ux

6cr
+

1
2
( fBN + fN + fTN − fBS − fS − fTS)− ρ0uy

2cr
,

fTE = fBW +
ρ0ux

6cr
− 1

2
( fTS + fT + fTN − fBS − fB − fBN) +

ρ0uz

2cr
,

fBE = fTW +
ρ0ux

6cr
+

1
2
( fTS + fT + fTN − fBS − fB − fBN) − ρ0uz

2cr
.

This is the boundary scheme proposed by Zou and He [Zou97]. By using their ap-
proach, explicit expressions for the unknown distribution functions of the D3Q19
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model have been presented at least in Refs [Kut06, PIV, Hec10]. Unfortunately,
expressions presented in Ref. [Kut06] are incorrect. Also the expressions pre-
sented in Ref. [Hec10] appear to include a small mistake: the transverse velocity
component terms in the expressions are divided by 3. They should be divided by
2 (cf. the above expressions). The above expressions were presented in Ref. [PIV]
for the special case of uy = uz = 0. There the use of dimensionless flow velocities
was manifested with cr = 1.

APPENDIX 2.3 An upgrade: enforcing six hydrodynamic moments

In the previous section, we presented a scheme which correctly incorporated in-
formation about the local densities and velocities into the unknown distribution
functions. However, these four variables do not provide a complete description
for the local hydrodynamic state. In particular, information about the viscous
stresses were not included. Here we present a boundary scheme which incor-
porates information about the viscous stresses. We utilise an approximative re-
lation between the viscous stresses and the second-order moments of the non-
equilibrium functions:

∑
i

ciαciβ f neq
i = Π

neq
αβ ≈ Π

(1)
αβ ≈ −2Δtθρ0

ω
Sαβ =: Πvisc

αβ ,

where Sαβ is the strain rate tensor, and ρ0 is used in order to be consistent with
the incompressible lattice Boltzmann scheme.

Since the tensors in the above relation are symmetric, they involve six inde-
pendent components in three dimensions. Hence, we get six conditions for the
non-equilibrium functions:

f neq
NE + f neq

BE + f neq
E + f neq

TE + f neq
SE + f neq

NW + f neq
BW + f neq

W + f neq
TW + f neq

SW =
1
c2

r
Πvisc

xx ,

f neq
NW + f neq

BN + f neq
N + f neq

TN + f neq
NE + f neq

SW + f neq
BS + f neq

S + f neq
TS + f neq

SE =
1
c2

r
Πvisc

yy ,

f neq
TW + f neq

TS + f neq
T + f neq

TN + f neq
TE + f neq

BW + f neq
BS + f neq

B + f neq
BN + f neq

BE =
1
c2

r
Πvisc

zz ,

f neq
NE − f neq

SE − f neq
NW + f neq

SW =
1
c2

r
Πvisc

xy ,

f neq
TE − f neq

BE − f neq
TW + f neq

BW =
1
c2

r
Πvisc

xz ,

f neq
TN − f neq

BN − f neq
TS + f neq

BS =
1
c2

r
Πvisc

yz .

In addition, we require that the zeroth and first-order moments of the non-equilibrium
functions are identically zero. This provides four additional conditions:

∑
i

f neq
i = ρ, ∑

i
cix f neq

i = 0, ∑
i

ciy f neq
i = 0, ∑

i
ciz f neq

i = 0.
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Thus, we have a total of ten conditions for the 19 non-equilibrium functions.
Here we construct a boundary scheme which enforce six hydrodynamic mo-

ments. To begin with, we postulate a scheme with six unknown variables:

fC = f eq
C + a, fNE = f eq

NE + b, fBE = f eq
BE + c,

fE = f eq
E + d, fTE = f eq

TE + e, fSE = f eq
SE + g. (114)

In order to obtain equations for the unknown variables a, b, c, d, e, and g, we
rewrite the ten conditions for the non-equilibrium functions such that

ρ
:

a
+

b
+

c
+

d
+

e
+

g
=

−( fne
q

N
W

+
fne

q
B

W
+

fne
q

W
+

fne
q

T
W

+
fne

q
SW

+
fne

q
B

S
+

fne
q

S
+

fne
q

T
S

+
fne

q
B

+
fne

q
T

+
fne

q
B

N
+

fne
q

N
+

fne
q

T
N

) ,

ρ
0u

x
:

b
+

c
+

d
+

e
+

g
=

( fne
q

N
W

+
fne

q
B

W
+

fne
q

W
+

fne
q

T
W

+
fne

q
SW

) ,

ρ
0u

y
:

b
−

g
=

−( fne
q
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+
fne

q
B
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+

fne
q
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+

fne
q
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q
SW
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q
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fne
q

S
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fne
q

T
S
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ρ
0u

z
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−
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+
e
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T
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T
S
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q
T
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q
T
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fne
q
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−
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q
B

S
−

fne
q

B
−

fne
q

B
N

) ,

Π
ne

q
xx

:
b
+

c
+

d
+

e
+

g
=

−( fne
q

N
W

+
fne

q
B

W
+
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q
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+

fne
q
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+
fne

q
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) +
1 c2 r

Π
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Π
ne

q
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b

+
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+
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B
N

+
fne

q
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+
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S

+
fne

q
T

S

) +
1 c2 r

Π
vi

sc
yy

,

Π
ne

q
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+

c
+

e
=
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S
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B
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q
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) +
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xy
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Π
ne

q
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−

c
+

e
=
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q
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W

−
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q
B
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) +
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Π
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,

Π
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q
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0

=
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T
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T
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+
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.
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We immediately observe that the moment equations provided by ρ0ux and Π
neq
xx

are linearly dependent. Likewise, the moment equations provided by ρ0uy and
Π

neq
xy as well as by ρ0uz and Π

neq
xz are linearly dependent. In these kinds of conflict,

we always utilise the equations from the lowest order moments. Furthermore,
the moment equation provided by Π

neq
yz does not involve any of the unknown

variables.
Hence, the moments ρ, ρ0ux, ρ0uy, ρ0uz, Π

neq
yy , and Π

neq
zz provide six linearly

independent equations for the six unknown variables. This system of equations
is relatively easy to solve. For example, by subtracting the equation enforcing
ρ0ux from the equation enforcing ρ, an expression for a is obtained. Moreover, by
adding up the moment equations provided by ρ0uy and Π

neq
yy , an expression is ob-

tained for b, and hence also for g. Similarly, by adding up the moment equations
provided by ρ0uz and Π

neq
zz , an expression is obtained for e and c. The solution of

the linear system of equations defines the boundary scheme under construction
such that

a = −
(

f neq
BS + f neq

S + f neq
TS + f neq

B + f neq
T + f neq

BN + f neq
N + f neq

TN

)
− 2
(

f neq
NW + f neq

BW + f neq
W + f neq

TW + f neq
SW

)
,

b = −
(

f neq
NW + f neq

BN + f neq
N + f neq

TN

)
+

1
2c2

r
Πvisc

yy ,

c = −
(

f neq
BW + f neq

BS + f neq
B + f neq

BN

)
+

1
2c2

r
Πvisc

zz ,

d = 2
(

f neq
NW + f neq

BW + f neq
TW + f neq

SW + f neq
BS + f neq

TS + f neq
BN + f neq

TN

)
+

(
f neq
W + f neq

N + f neq
S + f neq

T + f neq
B

)
− 1

c2
r

Πvisc
yy − 1

c2
r

Πvisc
zz ,

e = −
(

f neq
TW + f neq

TS + f neq
T + f neq

TN

)
+

1
2c2

r
Πvisc

zz ,

g = −
(

f neq
SW + f neq

BS + f neq
S + f neq

TS

)
+

1
2c2

r
Πvisc

yy .

The partial derivatives ∂yuy and ∂zuz included in the definitions of Πvisc
yy and Πvisc

zz ,
respectively, are either approximated by e.g. finite differences or they are given
by a boundary condition, e.g. ∂yuy = ∂zuz = 0. Which of the two alternatives is
more appropriate depends on the interface and on the simulation configuration.

Note also that f neq
C is, in principle, known after the streaming step. As ex-

plained in Sec. 4.3, the procedure proposed here actually involves two steps: first,
the value of fC after the streaming step can be used e.g. in the mass-flux-based
approach for computing the local densities and flow velocities. Then, in the sec-
ond step, we choose to replace f neq

C with the value presented in this boundary
scheme – a kind of reconstruction is executed.
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APPENDIX 2.4 A further improvement: enforcing seven hydrody-
namic moments

Since we are considering a flat boundary, where the y- and z-directions are in-
plane or tangential directions, it might be of practical importance to consider
special boundary schemes enforcing only those second-order moments which
involve partial derivatives along the boundary. For example, if the prescribed
velocity components at the boundary are constant, e.g. zero velocity at a no-slip
boundary, partial derivatives along the boundary vanish automatically: ∂yux =
∂yuy = ∂yuz = 0 and ∂zux = ∂zuy = ∂zuz = 0. The second-order moments
which involve partial derivatives only along the boundary are Πvisc

yy , Πvisc
zz , and

Πvisc
yz . The first two are enforced by the boundary scheme presented in the pre-

vious section. The last moment, Πvisc
yz , can be enforced in two ways. First of all,

we could proceed exactly as before; we could increase the number of unknowns
with a new variable h:

fC = f eq
C + a, fNE = f eq

NE + b, fBE = f eq
BE + c, fE = f eq

E + d,

fTE = f eq
TE + e, fSE = f eq

SE + g, fTN = f eq
TN + h. (115)

We could equally well associate the variable h with f neq
BN , f neq

TS , or f neq
BS . The ten

conditions for the non-equilibrium functions provide seven linearly independent
equations for these seven unknown variables. The system of equations can be
solved, and a boundary scheme is so defined.

However, there is an attractive alternative. By inspecting the moment equa-
tion enforcing Πvisc

yz ,

f neq
TN − f neq

BN − f neq
TS + f neq

BS =
1
c2

r
Πvisc

yz ,

we realise that the equation is fulfilled if we assign

f neq
TN = f neq

BS =
1

4c2
r

Πvisc
yz , f neq

TS = f neq
BN = − 1

4c2
r

Πvisc
yz . (116)

That is, we reconstruct the four non-equilibrium functions in the sense explained
in the previous section (and in Sec. 4.3). This is a very convenient approach since
these four non-equilibrium functions appear in the other nine conditions in such
a way that, with this reconstruction, they always cancel each other – resulting in
a null contribution to the other conditions.

In summary, we propose a boundary scheme which enforces seven hydro-
dynamic moments: ρ, ρ0ux , ρ0uy, ρ0uz, Π

neq
yy , Π

neq
zz , and Π

neq
yz . This is accomplished

with the reconstruction presented in Eq. (116) together with the expressions for
the six unknown variables presented in the previous section. In conjunction with
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Eq. (116), these expressions are

a = −
(

f neq
S + f neq

B + f neq
T + f neq

N

)
− 2
(

f neq
NW + f neq

BW + f neq
W + f neq

TW + f neq
SW

)
,

b = −
(

f neq
NW + f neq

N

)
+

1
2c2

r
Πvisc

yy ,

c = −
(

f neq
BW + f neq

B

)
+

1
2c2

r
Πvisc

zz ,

d = 2
(

f neq
NW + f neq

BW + f neq
TW + f neq

SW

)
+

(
f neq
W + f neq

N + f neq
S + f neq

T + f neq
B

)
− 1

c2
r

Πvisc
yy − 1

c2
r

Πvisc
zz ,

e = −
(

f neq
TW + f neq

T

)
+

1
2c2

r
Πvisc

zz ,

g = −
(

f neq
SW + f neq

S

)
+

1
2c2

r
Πvisc

yy .

APPENDIX 2.5 Enforcing hydrodynamic moments up to second
order

The last boundary scheme here proposed for the D3Q19 model enforces a total
of ten hydrodynamic moments: one zeroth-order moment (ρ), three first-order
moments (ρ0ux, ρ0uy, ρ0uz), and the six second-order moments related to the vis-
cous stresses (Πneq

xx , Π
neq
xy , Π

neq
xz , Π

neq
yy , Π

neq
zz , Π

neq
yz ). We propose a scheme which is a

specific extension of the schemes presented in the previous sections. Particularly,
this scheme enforces also the three second-order moments which involve partial
derivatives in the normal direction (i.e. in the x-direction): Πvisc

xx , Πvisc
xy , and Πvisc

xz .
To begin with, we utilise the reconstruction presented in Eq. (116). Due to the
reconstruction, the condition for the non-equilibrium functions provided by Π

neq
yz

becomes obsolete, i.e. it is automatically satisfied, and hence we have a total of
nine conditions left.

Therefore, we increase the number of unknowns with three new variables
denoted by k, l, and m:

fC = f eq
C + a, fNE = f eq

NE + b, fBE = f eq
BE + c,

fE = f eq
E + d, fTE = f eq

TE + e, fSE = f eq
SE + g,

fN = f eq
N + k, fT = f eq

T + l, fW = f eq
W + m. (117)

This definition of the three new variables is certainly not the only choice available
– many other definitions are equally valid. We choose to associate the variables
with f eq

N , f eq
T , and f eq

W because, in this way, the emerging linear system of equa-
tions is relatively easy to solve.
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The nine conditions for the non-equilibrium functions, together with the
nine unknown variables defined in Eq. (117) and with the reconstruction pre-
sented in Eq. (116), give rise to a linear system of equations:

ρ
:

a
+

b
+

c
+

d
+

e
+

g
+

k
+

l+
m

=
−( fne

q
N

W
+

fne
q

B
W

+
fne

q
T

W
+

fne
q

SW
+

fne
q

S
+

fne
q

B

) ,

ρ
0u

x
:

b
+

c
+

d
+

e
+

g
−

m
=

( fne
q

N
W

+
fne

q
B

W
+

fne
q

T
W

+
fne

q
SW

) ,

ρ
0u

y
:

b
−

g
+

k
=

−( fne
q

N
W
−

fne
q

SW
−

fne
q

S

) ,

ρ
0u

z
:

−
c

+
e

+
l

=

( fne
q

B
W

−
fne

q
T

W
+

fne
q

B

) ,

Π
ne

q
xx

:
b
+

c
+

d
+

e
+

g
+

m
=

−( fne
q

N
W

+
fne

q
B

W
+

fne
q

T
W

+
fne

q
SW

) +
1 c2 r

Π
vi

sc
xx

,

Π
ne

q
yy

:
b

+
g

+
k

=
−( fne

q
N

W
+

fne
q

SW
+

fne
q

S

) +
1 c2 r

Π
vi

sc
yy

,

Π
ne

q
zz

:
+

c
+

e
+

l
=

−( fne
q

B
W

+
fne

q
T

W
+

fne
q

B

) +
1 c2 r

Π
vi

sc
zz

,

Π
ne

q
xy

:
b

−
g

=

( fne
q

N
W
−

fne
q

SW

) +
1 c2 r

Π
vi

sc
xy

,

Π
ne

q
xz

:
−

c
+

e
=

−( fne
q

B
W

−
fne

q
T

W

) +
1 c2 r

Π
vi

sc
xz

.

This system of equations is actually quite simple in structure, and it is not too
difficult to determine its solution. For example, by subtracting the equation en-
forcing ρ0ux from the equation enforcing Πvisc

xx , an expression for m is obtained.
Similarly, by subtracting the moment equation provided by Π

neq
xy from the equa-

tion provided by ρ0uy, and the moment equation provided by Π
neq
xz from the equa-

tion provided by ρ0uz, expressions for k and l are obtained, respectively. Then by
substituting the expressions back to the system of equations, the remaining vari-
ables can be solved in the same way as in the case of six unknown variables. In
summary, the boundary scheme is defined by Eq. (116) and by the expressions
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found for the nine unknown variables:

a = 2
(

f neq
NW − f neq

BW + f neq
TW − f neq

SW − f neq
S − f neq

B

)
− 1

c2
r

(
Πvisc

xx − Πvisc
xy − Πvisc

xz

)
,

b =

(
f neq
NW − 2 f neq

SW − f neq
S

)
+

1
2c2

r
Πvisc

yy +
1
c2

r
Πvisc

xy ,

c = −
(

f neq
BW + f neq

B

)
+

1
2c2

r
Πvisc

zz ,

d = −
(

f neq
NW − 3 f neq

BW + f neq
TW − 3 f neq

SW − 2 f neq
S − 2 f neq

B

)
+

1
c2

r

(
1
2

Πvisc
xx − Πvisc

yy

− Πvisc
zz − Πvisc

xy − Πvisc
xz

)
,

e = −
(

2 f neq
BW − f neq

TW + f neq
B

)
+

1
2c2

r
Πvisc

zz +
1
c2

r
Πvisc

xz ,

g = −
(

f neq
SW + f neq

S

)
+

1
2c2

r
Πvisc

yy ,

k = −
(

2 f neq
NW − 2 f neq

SW − f neq
S

)
− 1

c2
r

Πvisc
xy ,

l =

(
2 f neq

BW − 2 f neq
TW + f neq

B

)
− 1

c2
r

Πvisc
xz ,

m = −
(

f neq
NW + f neq

BW + f neq
TW + f neq

SW

)
+

1
2c2

r
Πvisc

xx .



APPENDIX 3 BIASED ONE-DIMENSIONAL CENTRAL
DIFFERENCES

Some of the boundary schemes presented in Sec. 4.3 and Appendix 2, may re-
quire approximation of the partial derivatives of the fluid flow velocity at an open
boundary. For example, the partial derivatives along the boundary are straight-
forwardly approximated with standard second-order central-difference schemes.
However, at the open boundary lattice nodes located next to a fluid-solid inter-
face, the approximation of the derivatives with a central difference scheme is
somewhat delicate. Considered for example the one-dimensional configuration
presented in Fig. 13 and, for a moment, let us assume that the fluid-solid inter-
face is located at point A; points 0 and B belong to the fluid domain. Hence, the
fluid flow velocities are available at these three points: ua ≡ u(−ha), u0 ≡ u(0),
and ub ≡ u(hb). Let us further assume that we are applying halfway reflection
boundary conditions at the fluid-solid interfaces – here h denotes the lattice spac-
ing. Then, ha = h/2 �= hb = h. Hence, the fact that the information available
is biased towards point A must be taken into account in the central difference
scheme. Biased central difference schemes are nothing special either, but we pre-
fer to be self-contained in the presentation of the boundary schemes and, for this
reason, we provide here a general biased central-difference scheme. Moreover,
from the general scheme we derive schemes for a few special cases.

We set out to construct a spatially second-order accurate finite-difference
scheme for the general case ha �= hb. To begin with, we assume that locally the
function u is accurately approximated with a second-order polynomial,

p(x) = c1x2 + c2x + c3, x ∈ [−ha, hb].

That is, the above definition interpolates the values of function u between points
A, 0, and B with second-order accuracy. The dashed line in Fig. 13 represents
polynomial p. The three unknown coefficients c1, c2, and c3 are solved from linear
system of equations which arises from the requirements p(−ha) = ua, p(0) = u0,
and p(hb) = ub: ⎧⎪⎨⎪⎩

c1h2
a − c2ha + c3 = ua,

c3 = u0,

c1h2
b + c2hb + c3 = ub.

The coefficient c3 is immediately determined. The solutions to the other two co-
efficients are given by

c1 =
ub − u0 − r2(ua − u0)

hahb + h2
b

+
ua − u0

h2
a

,

c2 =
ub − u0 − r2(ua − u0)

hb + hbr
,

where r = hb/ha is the ratio between the distances from the origin (0) to points A
and B.
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x

y

0A B
ha hb

ua

u0

ub

FIGURE 13 An illustration of the configuration for biased central-difference schemes in
one dimension. The distance from the origin (0) to point A and B is −ha and
hb, respectively. It is assumed that the value of function u is known in a set
of discrete points. In particular, the value of the function is avaible in the
three points, A, 0, and B: ua ≡ u(−ha), u0 ≡ u(0), and ub ≡ u(hb). In this
configuration, the aim is to approximate the derivatives of u at the origin by
utilising these three values. In this sense, a central finite-difference scheme
is pursued. The term biased refers to the fact that in general ha �= hb.

The solution for the three coefficients completely determines the second-
order interpolation function p. The solution is not ideal: if the distances ha or hb
approach zero, the expression for coefficient c1 or c2 may diverge – a common
nuisance in computational schemes. Nonetheless, it is possible to analytically
compute the derivatives of p: here the first and second derivatives are denoted by
p′(x) and p′′(x), respectively. Then, the values of the derivatives can be evaluated
at a given point, in particular at the origin. Let us first consider the simplest
example, where ha = hb = h:

p(x) =

(
ub − 2u0 + ua

2h2

)
x2 +

(
ub − ua

2h

)
x + u0.

By computing the first and second derivatives of the above function, and by
evaluating the derivatives at the origin, we obtain very familiar finite-difference
schemes:

p′(0) =
ub − ua

2h
, p′′(0) =

ub − 2u0 + ua

h2 . (118)

These are the conventional second-order, central finite-difference approximations
for the first and second derivative of function u at point 0. An alternative proce-
dure for obtaining these approximations relies on a Taylor series expansion.
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Next we consider special cases relevant for simulations where halfway re-
flection boundary conditions are utilised, i.e. the fluid-solid interfaces are as-
sumed to locate halfway between the lattice nodes. In such simulations, and with
the configuration presented in Fig. 13, the interface may locate at points A and
B, corresponding to cases ha = h/2 and hb = h/2, respectively. For example, let
ha = h/2 and hb = h:

p(x) =

(
2ub − 6u0 + 4ua

3h2

)
x2 +

(
ub + 3u0 − 4ua

3h

)
x + u0.

By computing the first and second derivatives, and by evaluating them at the ori-
gin, we find biased central-difference schemes for approximating the derivatives
of u at point 0:

p′(0) =
ub + 3u0 − 4ua

3h
, p′′(0) =

4ub − 12u0 + 8ua

3h2 . (119)

We find finite-difference schemes for the case ha = h and hb = h/2 in a similar
way:

p(x) =

(
4ub − 6u0 + 2ua

3h2

)
x2 +

(
4ub − 3u0 − ua

3h

)
x + u0,

p′(0) =
4ub − 3u0 − ua

3h
, p′′(0) =

8ub − 12u0 + 4ua

3h2 . (120)

Finally, in the case ha = hb = h/2:

p(x) =

(
2ub − 4u0 + 2ua

h2

)
x2 +

(
ub − ua

h

)
x + u0,

p′(0) =
ub − ua

h
, p′′(0) =

4ub − 8u0 + 4ua

h2 . (121)

Actually, the last expressions Eq. (121) can be obtained directly from Eq. (118) if
h is formally replaced by h/2 – recall that h refers here to the lattice spacing.



APPENDIX 4 IMPLEMENTING THE D3Q19 MODEL: AN
EXAMPLE

In order to promote modularity in the simulation software, it is necessary to
clearly separate the implementations of the streaming and collision steps inherent
in the lattice Boltzmann schemes. Here we provide an implementation example
for the collision step of the D3Q19 model; the collision operator is modelled with
the single-relaxation-time BGK model. The discrete equilibrium function is im-
plemented with dimensionless variables, see Eq. (46) in Sec. 3.2.1. The example
relies heavily on the concepts and techniques presented in Chapter 5 as well as
in Refs [PI, PII]. First of all, the lattice nodes are enumerated, and the enumera-
tion number is computed with the macro N(i, j, k), where (i, j, k) are the spatial
coordinates of the node. Secondly, the fluid nodes have an exclusive enumera-
tion – no memory is allocated to the distribution functions of the solid nodes –
and this enumeration is retrieved with the macro ENUM_N(n). The distribution
functions of a fluid node are accessed from the global array with, e.g., the macro
F_SW(n f ), where n f is the fluid-node enumeration number. The discrete veloc-
ities are enumerated with the logic presented in Fig. 8. Also, the example does
not include an assignment of body forces.

Special attention is devoted here to two issues: we have made some effort
to reduce the number of floating-point operations in the implementation and, at
the same time, we have attempted to avoid unnecessary dependences between
instructions. With the latter objective we aim to promote out of order execution
of the instructions, see Ref. [PI] for a more detailed discussion. Below the con-
stants W0, W1, W2, and CS2 refer to the equilibrium coefficients and to the speed
of sound squared, respectively. The example is written in a C/C++ -style:

// ===================================================
// RELAXATION (total of 159 floating-point operations)
// ===================================================
// ----------------------------------------------
// Collect distribution values into a local array
// ----------------------------------------------
double f[Q]; // Q=19 for the D3Q19 model
int n = N(i,j,k); // Enumeration for the node (i,j,k)
int nf = ENUM_N(n);// Fluid-node enumeration number

f[SW] = F_SW(nf); f[BW] = F_BW(nf); f[W] = F_W(nf);
f[TW] = F_TW(nf); f[NW] = F_NW(nf);

f[BS] = F_BS(nf); f[S] = F_S(nf); f[TS] = F_TS(nf);
f[B] = F_B(nf); f[C] = F_C(nf); f[T] = F_T(nf);
f[BN] = F_BN(nf); f[N] = F_N(nf); f[TN] = F_TN(nf);

f[SE] = F_SE(nf); f[BE] = F_BE(nf); f[E] = F_E(nf);
f[TE] = F_TE(nf); f[NE] = F_NE(nf);
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// --------------------------------------------------
// Density and momentum components with 33 operations
// --------------------------------------------------
double aw = f[SW]+f[BW]+f[W]+f[TW]+f[NW],
ae = f[SE]+f[BE]+f[E]+f[TE]+f[NE],
as = f[BS]+f[S]+f[TS], an = f[BN]+f[N]+f[TN],

den = ae + aw + an + as + f[B] + f[C] + f[T],
jx = ae - aw,
jy = an - as + f[NE] + f[NW] - f[SE] - f[SW],
jz = f[TW] + f[TS] + f[T] + f[TN] + f[TE]

- f[BW] - f[BS] - f[B] - f[BN] - f[BE];
//---------------------------------------
// Auxiliary variables with 29 operations
//---------------------------------------
double den1 = W1*den, inv_den1 = 1.0/(den1),
// tx = (W2/CS2)*den*ux, HBFN = 0.5*(W1/CS2),
tx = HBFN*jx, ty = HBFN*jy, tz = HBFN*jz,

// tx_p_ty = W2*den*3.0*(ux-uy)
tx_p_ty = (tx+ty), tx_p_tz = (tx+tz),
ty_p_tz = (ty+tz), tx_m_ty = (tx-ty),
tx_m_tz = (tx-tz), ty_m_tz = (ty-tz),

// txx = W2*den*4.5*ux*ux, NOTE inv_den1
txx = tx*tx*inv_den1,
tyy = ty*ty*inv_den1,
tzz = tz*tz*inv_den1,

// tt = W2*den*1.5*(ux*ux+uy*uy+uz*uz)
tt = CS2*(txx + tyy + tzz),
cmmn2 = W2*den - tt,
cmmn1 = 2.0*cmmn2;

// tx = (W1/CS2)*den*ux
// txx = W1*den*4.5*ux*ux
tx *= 2.0; ty *= 2.0; tz *= 2.0;
txx *= 2.0; tyy *= 2.0; tzz *= 2.0;
//--------------------------------------------------
// Update the distribution values with 97 operations
//--------------------------------------------------
double cmmn_xpy = cmmn2 + inv_den1*tx_p_ty*tx_p_ty;
f[SW] = f[SW] - r1*(f[SW] - (cmmn_xpy - tx_p_ty));
f[NE] = f[NE] - r1*(f[NE] - (cmmn_xpy + tx_p_ty));
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double cmmn_xpz = cmmn2 + inv_den1*tx_p_tz*tx_p_tz;
f[BW] = f[BW] - r1*(f[BW] - (cmmn_xpz - tx_p_tz));
f[TE] = f[TE] - r1*(f[TE] - (cmmn_xpz + tx_p_tz));

double cmmn_x = cmmn1 + txx;
f[W] = f[W] - r1*(f[W] - (cmmn_x - tx));
f[E] = f[E] - r1*(f[E] - (cmmn_x + tx));

double cmmn_xmz = cmmn2 + inv_den1*tx_m_tz*tx_m_tz;
f[TW] = f[TW] - r1*(f[TW] - (cmmn_xmz - tx_m_tz));
f[BE] = f[BE] - r1*(f[BE] - (cmmn_xmz + tx_m_tz));

double cmmn_xmy = cmmn2 + inv_den1*tx_m_ty*tx_m_ty;
f[NW] = f[NW] - r1*(f[NW] - (cmmn_xmy - tx_m_ty));
f[SE] = f[SE] - r1*(f[SE] - (cmmn_xmy + tx_m_ty));

double cmmn_ypz = cmmn2 + inv_den1*ty_p_tz*ty_p_tz;
f[BS] = f[BS] - r1*(f[BS] - (cmmn_ypz - ty_p_tz));
f[TN] = f[TN] - r1*(f[TN] - (cmmn_ypz + ty_p_tz));

double cmmn_y = cmmn1 + tyy;
f[S] = f[S] - r1*(f[S] - (cmmn_y - ty));
f[N] = f[N] - r1*(f[N] - (cmmn_y + ty));

double cmmn_ymz = cmmn2 + inv_den1*ty_m_tz*ty_m_tz;
f[TS] = f[TS] - r1*(f[TS] - (cmmn_ymz - ty_m_tz));
f[BN] = f[BN] - r1*(f[BN] - (cmmn_ymz + ty_m_tz));

double cmmn_z = cmmn1 + tzz;
f[B] = f[B] - r1*(f[B] - (cmmn_z - tz));
f[T] = f[T] - r1*(f[T] - (cmmn_z + tz));

f[C] = f[C] - r1*(f[C] - 6.0*cmmn1);
//----------------------------------------------
// Store the new values back to the global array
//----------------------------------------------
F_SW(nf) = f[SW]; F_BW(nf) = f[BW]; F_W(nf) = f[W];
F_TW(nf) = f[TW]; F_NW(nf) = f[NW]; F_BS(nf) = f[BS];
F_S(nf) = f[S]; F_TS(nf) = f[TS]; F_B(nf) = f[B];
F_C(nf) = f[C]; F_T(nf) = f[T]; F_BN(nf) = f[BN];
F_N(nf) = f[N]; F_TN(nf) = f[TN]; F_SE(nf) = f[SE];
F_BE(nf) = f[BE]; F_E(nf) = f[E]; F_TE(nf) = f[TE];
F_NE(nf) = f[NE];
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YHTEENVETO (FINNISH SUMMARY)

Laskennallinen virtausdynamiikka on tutkimusala, jossa tietokonesimulaatioilla
pyritään jäljittelemään todellisia virtausilmiöitä. Yleisesti ottaen tavoitteena on,
että näiden simulaatioiden avulla saavutetaan laajempi tai syvällisempi ymmär-
rys todellisten virtausten käyttäytymisestä. Tietokonesimulaatiot pohjautuvat
lähtökohtaisesti matemaattisesti esitettyihin virtausmalleihin: nämä matemaat-
tiset mallit ovat yksikäsitteisiä, mutta toisaalta myös yksinkertaistettuja kuvauk-
sia todellisten virtausten käyttäytymiselle. On myös huomionarvoista, että mate-
maattisen mallin laatiminen edellyttää aina perustavanlaatuista valintaa. Nimit-
täin, yhtä luonnonilmiötä voi fysikaalisesti kuvata monen eri mittakaavan mal-
leilla. Esimerkiksi virtaus on pohjimmiltaan atomien ja molekyylien liikettä suu-
ressa mittakaavassa; atomien ja molekyylien skaalassa operoiva malli on mikro-
skooppisen tason kuvaus. Toisaalta, meidän arkipäiväinen kokemus virtauksista
on toisenlainen: virtaus on nesteen yhtenäistä, katkeamatonta liikettä – tosin liike
voi ajoittain olla hyvinkin kaoottista. Tällaiseen jatkumoperiaatteeseen nojautuva
malli on makroskooppisen tason kuvaus virtauksille.

Tässä väitöskirjassa, jonka otsikko on Virtausdynamiikan tietokonesimulaatioita
Hila-Boltzmann –menetelmällä: implementointi ja reunaehdot, keskitytään mesoskoop-
pisen tason kuvauksiin virtauksille. Mittakaavoissa tämä taso sijoittuu mikro-
skooppisen ja makroskooppisen tason väliin. Yleisesti ilmaistuna tässä väitöskir-
jassa perehdytään keinoihin, joilla mesoskooppisen tason matemaattisesta mal-
lista edetään laskennallisen virtausmenetelmän tietokonetoteutukseen. Lyhyesti
selitettynä, kun kaikki matemaattiseen malliin liittyvät yksityiskohdat on kiin-
nitetty, kuten esimerkiksi niin sanotut reunaehdot ja materiaaliparametrit, mallin
muodostaville yhtälöille on olemassa yksikäsitteinen ratkaisu. Tämä ratkaisu on
mallin ennustama kuvaus nesteen tai kaasun käyttäytymiselle kulloisessakin vir-
taustilanteessa. Laskennallinen menetelmä puolestaan on kuvaus mekaanisesta
menettelytavasta, jota noudattamalla voidaan laskea likiarvo alkuperäisen mal-
lin ratkaisulle. Menettelytapa on niin mekaaninen, että se voidaan ohjelmoida
tietokoneelle – tällöin puhutaan laskennallisen menetelmän tietokonetoteutuk-
sesta. Toisin sanoen, tietokonesimulaatioilla lasketaan likiarvoja alkuperäisen
matemaattisen mallin ratkaisuille.

Täsmällisesti ilmaistuna tämä väitöskirja käsittelee tutkimustyömme sitä
osaa, jossa olemme vertailleet ja kehittäneet erilaisia vaihtoehtoja Hila-Boltzmann
–laskentamenetelmän tietokonetoteutukselle; Hila-Boltzmann –menetelmä perus-
tuu Boltzmannin yhtälöön, joka on mesoskooppisen tason matemaattinen malli
sekä statistisen mekaniikan tunnetuimpia kuljetusyhtälöitä. Edellisen aihepiirin
lisäksi tämä väitöskirja käsittelee myös Hila-Boltzmann –menetelmän reunaeh-
toja: tutkimustyössämme olemme kehittäneet niin sanottuja massavuopohjaisia
sisään- ja ulosvirtausreunaehtoja. Väitöskirjan alkuosa on laajennettu johdanto
yllä mainituille tutkimusaiheille.



A closed mind is like a closed book – just a block of wood.

Chinese Proverb
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