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AbstratConnetions are revealed between frational smoothness, strongonvergene, and weak onvergene of approximations of stohas-ti integrals with respet to the Brownian motion and the geo-metri Brownian motion. Strong onvergene is onsidered withrespet to the Lp norm for p ≥ 2, and frational smoothness ismeasured in terms of Besov spaes.



TiivistelmäStokastisten integraalien approksimoinnista ja fraktionaalisestasileydestäVäitöskirjassa osoitetaan yhteyksiä vahvan suppenemisen, heikonsuppenemisen ja fraktionaalisen sileyden välillä arvioitaessa sto-kastisia integraaleja Brownin liikkeen ja geometrisen Brownin liik-keen suhteen. Vahvaa suppenemista tarkastellaan Lp-normin suh-teen, kun p ≥ 2, ja fraktionaalisen sileyden kuvaamiseen käyte-tään Besov-avaruuksia.



List of inluded artilesThis dissertation onsists of an introdutory part and the following publia-tions:[GT℄ S. Geiss and A. Toivola. Weak onvergene of error proesses in dis-retizations of stohasti integrals and Besov spaes. To appear inBernoulli.[T℄ A. Toivola. Interpolation and approximation in Lp. Preprint 380, De-partment of Mathematis and Statistis, University of Jyväskylä, 2009.The author of this dissertation has atively taken part in the researh of thejoint paper [GT℄.



1 IntrodutionIn approximation theory, onvergene results answer the question "How muhmore resoures are required for a ertain improvement in auray?" Forrandom variables or proesses, this "auray" an be measured in severalways. The strong onvergene rate, most often onsidered with respet tothe L2 norm, desribes the speed with whih the norm of the approximationerror onverges to zero. Weak onvergene, i.e. onvergene in distribution,requires often less assumptions, but provides also less information. Bothtypes of results yield also estimates for the probabilities of large errors, alledtail estimates: denoting the approximation error by C, we would like theprobability P (|C| > λ) to derease rapidly as λ > 0 inreases. The higherintegrability of a weak limit or onvergene with respet to a stronger normprovides better tail estimates. This is one motivation to study Lp onvergenewith p > 2.Convergene properties are not always easy to observe from the stohastiintegral itself. We assume that the integral is generated by a funtional ofBrownian motion, f(W1) ∈ L2, and look for onnetions between propertiesof f and the onvergene of
∫ 1

0

Φ(t, Wt)dWt −
n

∑

i=1

Φ(ti−1, Wti−1
)(Wti − Wti−1

),where ∫ 1

0
Φ(t, Wt)dWt = f(W1) − Ef(W1). The main ontribution of thiswork is the lose onnetion between strong onvergene, weak onvergene,and the integrability of a weak limit. The onneting link is the frationalsmoothness of f , whih for many funtions an be observed by diret om-putations.These kinds of onvergene results an be applied to the hedging error instohasti �nane, where f is the pay-o� funtion of an option, W modelsthe priing proess, and the error appears when a theoretial, ontinuouslyrebalaned portfolio is replaed by another one with only �nitely many trad-ing times. Another �eld of appliation is simulation: a onstrution as in(2) below to simulate a stohasti integral retains the martingale propertywhereas a spline approximation does not.To form a lear and onsistent piture of the obtained results, in thisoverview we onsider only stohasti integrals driven by the Brownian mo-tion. For appliations, other integrator proesses are also of interest. Parti-ularly in stohasti �nane, the prie proesses should be positive, suh as thegeometri Brownian motion or a di�usion obtained by a suitable stohastidi�erential equation. In [GT℄, a more general setting is employed to inlude7



the ase of geometri Brownian motion, and in many referenes, even a widerlass of proesses is onsidered. It would be of interest to see whether theresults of [T℄ ould be extended to more general di�usions; for the present,they are developed only for the Brownian motion.We begin with the basi notation and de�nitions. After introduing theonvergene problem and frational smoothness, we disuss some previousresults that form the bakground of this work. Setion 2 ompresses the mainresults of [GT℄ and [T℄ into three theorems, whih are illustrated with sometypial examples. Setion 3 onludes the introdutory part with possibleextensions of this work and ideas for further researh topis.Throughout, γ denotes the standard Gaussian measure on the real line.To denote a proess - usually a Brownian motion - independent of the un-derlying stohasti basis, we use a tilde above the proess, for example W̃ .Let (

Ω, F,P, (Ft)t∈[0,1]

) be a stohasti basis, and let W = (Wt)t∈[0,1] bea standard Brownian motion, with all paths ontinuous and W0 = 0 for all
ω ∈ Ω. Assume that (Ft)t∈[0,1] is the augmentation of the �ltration generatedby W and that F = F1. Let f : R → R be a Borel funtion satisfying
f (W1) ∈ L2 and de�ne the funtion F : [0, 1] ×R→ R by setting

F (t, x) := E (f (W1) | Wt = x) = Ef(x + W1−t).Then F ∈ C∞([0, 1[ × R) (see e.g. [6, Lemma A.2℄ or [4, p. 4℄), and itsatis�es
{

∂F
∂t

+ 1
2

∂2F
∂x2 = 0, 0 ≤ t < 1, x ∈ R

F (1, x) = f(x), x ∈ R (1)and by It�'s formula, f(W1) = F (1, W1) = Ef(W1) +
∫ 1

0
∂F
∂x

(s, Ws)dWs a.s.We disretize the integral on the interval [0, t] with t ≤ 1 using a deter-ministi time net τ (n) := (tni )n

i=0 with 0 = tn0 < tn1 < . . . < tnn = 1, and getthe approximation error proess
Ct(f, τ (n)) :=

∫ t

0

∂F

∂x
(s, Ws)dWs −

n
∑

i=1

∂F

∂x
(tni−1, Wtni−1

)
(

Wtni ∧t − Wtni−1
∧t

)

.(2)Moreover, we denote the size of the time net τ (n) by
∣

∣

∣

∣τ (n)
∣

∣

∣

∣

∞ := max
1≤i≤n

|tni − tni−1|.For onveniene, we denote by τn the equidistant time net of n + 1 timepoints, i.e. τn =
(

i
n

)n

i=0
and ||τn||∞ = 1

n
.For many funtions f , the integrand ∂F

∂x
has a singularity at time 1, andthis makes approximation more di�ult near 1. However, this an be oun-terated by a suitable adaptation of the time nets: we plae more time points8



near 1, so that the time nets are asymptotially more dense near 1, but atthe other end point 0, the distane between time points is multiplied only bya onstant fator.This is our adaptation: for any 0 < θ ≤ 1, we de�ne the time nets
τ θ
n =

(

tn,θ
i

)n

i=0
by setting

tn,θ
i := 1 −

(

1 − i

n

)
1

θ (3)for i = 0, 1, . . . , n. For θ = 1, this de�nition yields an equidistant time net,and for smaller θ, an adjusted time net where the time knots are loser toeah other near 1 (see Figure 1). We all θ the re�nement parameter.
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Figure 1: An illustration of a time net with re�nement parameter θ = 0, 25.To measure the smoothness properties of f , we de�ne in Setion 2.1 of[T℄ the Malliavin Sobolev spae D1,2(γ) and the derivative f ′ via the Hermite9



polynomials, and D1,p(γ), p > 2 as a subset of D1,2(γ) where both f and f ′are Lp integrable.Frational smoothness is desribed by an index θ ∈ [0, 1], where θ = 0implies no smoothness, and θ = 1 di�erentiability in the Malliavin sense.More preisely, we use the Besov spaes
Bθ

p,q(γ) = (Lp(γ),D1,p(γ))
θ,q

(4)whih are intermediate spaes between Lp(γ) and D1,p(γ), p ≥ 2, obtained bythe real interpolation (see e.g. [2℄ and [T, Setion 2.3℄), with the interpolationparameters 0 < θ < 1 and 1 ≤ q ≤ ∞. These spaes have a lexiographialorder: for all p ≥ 2,
Bθ2

p,q1
(γ) ⊂ Bθ1

p,q2
(γ)for any 0 < θ1 < θ2 < 1 and any 1 ≤ q1, q2 ≤ ∞, and

Bθ
p,q1

(γ) ⊂ Bθ
p,q2

(γ)for any 0 < θ < 1 and any 1 ≤ q1 ≤ q2 ≤ ∞. Figures 2 and 3 illustrate theinlusions.
Lp B

1/2
p,42 B

3/5
p,s D1,pBp,q

1/3
B

1/4
p,r

Bp,
1/3

8

Figure 2: The spaes Bθ
p,q(γ) derease as θ inreases, regardless of q.The purpose of this work is to investigate the onvergene properties ofthe error de�ned in (2) as the size of the time net tends to zero, in onnetionwith the smoothness properties of the funtion f .There are several riteria to hoose from when onsidering the onver-gene. It is known that the �nal error C1(f, τ (n)) onverges to zero in prob-ability (see e.g. [11, Proposition 2.13 of Chapter IV℄). The L2 norm also10
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Figure 3: Some examples of inlusions for funtion spaes. Here p > 2.onverges to zero, and with equidistant time nets, the rate of L2 onvergeneis 1√
n
if and only if f ∈ D1,2(γ), see [3, Theorem 2.6℄ and [8, Theorem 3.2℄.This rate is optimal, provided that f is not an a�ne funtion, in whih asethe error is zero (see [4℄). In [9℄, an L2 onvergene rate n− 1

4 was provedfor f(x) = χ[K,∞[ (x), and the rate (

1√
n

)α+ 1

2 for f(x) = (x − K)α
+, K ∈ R,

0 < α < 1
2
, when using equidistant time nets. This showed that the reg-ularity of f has some e�et on the L2 onvergene rate, at least in theseexamples. In general, for a funtion with frational smoothness θ ∈ ]0, 1[,the L2 onvergene rate is (

1√
n

)θ with equidistant time nets, or 1√
n
whenusing appropriately adjusted time nets - the ones de�ned in (3). With or-ret hoies of funtion spaes, these results are sharp. See [3℄ and [8℄ forthe results in L2, and [3℄ for a more extensive overview to the literature onrelated results in L2.A riterion even stronger than L2 is onsidered in [7℄: for Lipshitz on-tinuous funtions f , the error C1(f, τ (n)) has bounded mean osillation, andthe onvergene rate of ∣

∣

∣

∣C(f, τ (n))
∣

∣

∣

∣

BMO
is ∣

∣

∣

∣τ (n)
∣

∣

∣

∣

1

2

∞. For equidistant nets,this rate equals 1√
n
.These results form the starting point for [T℄. Below they are listed omit-11



ting some tehnialities, and the quantity c > 0 may vary from line to line:
f ∈ D1,2(γ) ⇐⇒ ||C1(f, τ)||L2

≤ c ||τ ||
1

2

∞ for any time net τ (5)
f ∈ Bθ

2,∞(γ) ⇐⇒ ||C1(f, τn)||L2
≤ cn− θ

2 (6)
f ∈ Bθ

2,2(γ) ⇐⇒
∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣L2
≤ cn− 1

2 (7)
f ∈ Lip ⇐⇒ ||C(f, τ)||BMO ≤ c ||τ ||

1

2

∞ for any time net τBetween L2 and BMO there are Lp spaes with 2 < p < ∞, and it is naturalto expet some similar results for the Lp norm under suitable onditions. Thetehniques used in [7℄ for the BMO norm are still L2 tehniques, whih relyheavily on orthogonality - or, more preisely, apply the very L2 tehniquesloally (see [T, Appendix℄). Interpolation tehniques yield some estimatesfor the intermediate spaes, but for any sharp results, it was neessary todevelope new tehniques. Theorems 1.1 and 1.2 of [T℄ generalize the results(5) and (6) to Lp, p > 2.Instead of examining strong onvergene rates, we an look for the rightsaling fator for the error so that the limiting distribution is non-trivial,and observe the properties of the ahieved limit distribution. A naturalguess for the fator would be the inverse of the strong onvergene rate, butthis leads to trouble. For example, in [9℄, with equidistant time nets the L2onvergene rate for f(x) = χ[K,∞[ (x) is found to be n− 1

4 (whih was lateralso veri�ed by (6)), but a limit distribution W̃
1

2

R 1

0

h

∂2F

∂x2
(t,Wt)

i2

dt
is ahievedwith the saling fator √n as formulated in (8). This mismath between theonvergene rate and the saling fator is in [9℄ explained by the fat thatthe limit distribution is not L2 integrable for the above mentioned example.In fat, the limit distribution with equidistant time nets is L2 integrable ifand only if f ∈ D1,2(γ) (see [3, Theorems 2.3 and 2.6℄). Denoting the weakonvergene by =⇒, the results to begin with are thus

√
nC1(χ[K,∞[, τn) =⇒ W̃

1

2

R 1

0

h

∂2F

∂x2 (t,Wt)
i2

dt
and (8)

f ∈ D1,2(γ) ⇐⇒ W̃
1

2

R

1

0

h

∂2F

∂x2
(t,Wt)

i2

dt
∈ L2. (9)In [GT℄ we use non-equidistant time nets to obtain a square integrable limitdistribution for a wider lass of funtions, and the re�nement index for thetime net is the same as the frational smoothness of f . Moreover, we obtainonditions under whih the limit distribution is Lp integrable with p > 2.12



2 ResultsWe begin with strong onvergene. With the equidistant time nets, Theorem1.2 of [T℄ generalizes the L2 result seen in (6) to
f ∈ Bθ

p,∞(γ) ⇐⇒ ||C1(f, τn)||Lp
≤ cn− θ

2 (10)for p ≥ 2. It thus also provides an alternative proof for (6). For smoothfuntions, interpolation between the results in L2 and BMO yields
f ∈ D1,p(γ) =⇒ ||C1(f, τ)||Lp

≤ c ||τ ||
1

2

∞ for any time net τ,as seen in Theorem 1.1 of [T℄. We do not know how to dedue the equivaleneas in (5). However, the result is nearly sharp, as we see from (10).For weak onvergene, we employ the non-equidistant time nets de�nedin (3). With 0 < θ < 1 and f ∈ L2(γ), the weak limit of the error at time
t ∈ [0, 1[ is omputed in [GT℄ as

√
nCt

(

f, τ θ
n

)

=⇒ W̃
1

2θ

R t

0

h

(1−u)1−θ ∂2F

∂x2
(u,Wu)

i2

du
,where W̃ is an independent Brownian motion. If f ∈ Bθ
2,2(γ), this limitextends to t = 1 and is L2 integrable. Moreover, if p > 2 and f ∈ Bθ+ǫ

p,∞(γ)for some 0 < ǫ < 1 − θ, then the limit is Lp integrable.We an formulate the main results of [T℄ and [GT℄ in the following threetheorems, assisted with an L2 result from [3℄ and [8℄. These theorems onsistof impliations between strong onvergene, weak onvergene and frationalsmoothness. In addition, results in [GT℄ onnet the frational smoothnessof f to the Lp onvergene of E (f(W1) | Ft) as t → 1, and establish links toother onepts of frational Sobolev spaes (see Proposition 3.5 and Remark3.6 of [GT℄).Let us shorten the notation with the following abbreviation:
(

MLp

) : On some stohasti basis, there exists a ontinuousLp integrable martingale M = (Mt)t∈[0,1], suh thatThis abbreviation will be used in ontext of weak onvergene. We onsiderthe weak onvergene on the level of proesses, in partiular the error pro-esses C
(

f, τ (n)
) assoiated with the time nets τ (n), instead of the randomvariables C1

(

f, τ (n)
). This we do to obtain the equivalene we are lookingfor; we do not know whether the frational smoothness follows from the weakonvergene of the �nal error. We denote the weak onvergene in C[0, 1] by

=⇒C[0,1].For onveniene, in the following theorem we use the notation B1
2,2(γ) :=D1,2(γ). 13



Theorem 2.1. Let f ∈ L2(γ) and 0 < θ ≤ 1. Then the following areequivalent:(i) f ∈ Bθ
2,2(γ),(ii) (ML2

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M , and(iii) ∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣L2
≤ c 1√

n
for some c > 0.Proof. For the equivalene of (i) and (iii), see [3℄ and [8℄. The equivalene of(i) and (ii) is inluded in Theorem 2.1 of [GT℄.Along with (6), reprodued below, Theorem 2.1 provides a omplete pi-ture in the L2 setting:

f ∈ Bθ
2,∞(γ) ⇐⇒ ||C1(f, τn)||L2

≤ cn− θ
2 for some c > 0.Theorem 2.2. Let f ∈ L2(γ) and 2 < p < ∞, and onsider the followingonditions:(i) f ∈ D1,p(γ),(i') f ∈

⋂

0<θ<1 Bθ
p,∞(γ),(ii) (

MLp

) : √nC (f, τn) =⇒C[0,1] M , and(iii) ||C1 (f, τn)||Lp
≤ c 1√

n
for some c > 0.Then the following impliations hold:

(i) ⇐⇒ (ii) =⇒ (iii) =⇒ (i′).Proof. Theorem 1.1 and Corollary 1.3 of [T℄ inlude the impliations (i) =⇒
(iii) =⇒ (i′). By the Burkholder-Davis-Gundy inequalities,

sup
0<t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞ (11)implies that f ∈ Lp(γ). Thus (11) is equivalent to (i) by Lemma 4.8 of [T℄.Furthermore, (11) is equivalent to
sup

0≤t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt) −

∂F

∂x
(0, 0)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞,whih oinides with the ondition given in [GT, Corollary 3.3 (ii)℄ for Brow-nian motion and β = 1. 14



Theorem 2.3. Let 2 < p < ∞, f ∈ Lp(γ) and 0 < θ < 1, and onsider thefollowing onditions:(i) f ∈ Bθ
p,∞(γ),(ii) (

MLp

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M ,(ii') (

MLp

) : √nC
(

f, τ θ−ǫ
n

)

=⇒C[0,1] M for any 0 < ǫ < θ, and(iii) ||C1 (f, τn)||Lp
≤ cn− θ

2 for some c > 0.Then the following impliations hold:
(ii) =⇒ (i) ⇐⇒ (iii) =⇒ (ii′).Proof. The equivalene of (i) and (iii) is proven in Theorem 1.2 of [T℄. ByLemma 4.7 of [T℄, ondition (i) is equivalent to

sup
0<t<1

(1 − t)
1−θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞.Corollary 3.4 of [GT℄ for Brownian motion ompletes the proof.The equivalene of (i) and (iii) in Theorem 2.3 generalizes (6) to Lp for
p > 2. The disparity between onditions (ii) and (ii') in Theorem 2.3 inomparison with Theorem 2.1 suggests that for an equivalene onerningweak onvergene, one might want to onsider Bθ

p,q(γ) for some q < ∞ insteadof Bθ
p,∞(γ). We formulate this as a onjeture.Conjeture 2.4. Let 2 < p < ∞, f ∈ Lp(γ) and 0 < θ < 1. Then thereexists a parameter 1 ≤ q < ∞ suh that the following ondititions are equiv-alent:(I) f ∈ Bθ

p,q(γ),(II) (

MLp

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M , and(III) ∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣Lp
≤ c 1√

n
for some c > 0.A natural �rst guess for q, arising from Theorem 2.1, would be q = 2 or

q = p. Theorem 2.3 shows a lose onnetion, if not quite an equivalene,between (I) and (II), but for (III), we do not yet have a haraterization.Theorem 5.3 of [T℄ shows that improvement in the Lp onvergene rate ispossible with the non-equidistant time nets de�ned in (3), but it does notprovide a lear onnetion between the properties of f and the re�ning pa-rameter neessary for the optimal onvergene rate. This diretions remainsopen for further researh. 15



2.1 ExamplesWe illustrate the obtained results by an example.Example 2.5. Let −1
2

< α ≤ 1 and de�ne
fα(x) :=

{

0, x ≤ 0
xα, x > 0

.Then, for p ≥ 2:
• if 1

p
+ α > 1, then� fα ∈ D1,p(γ),� ||C1(fα, τn)||Lp

≤ c√
n
for some c > 0 depending only on p and α,� for all λ > 0, P(

|C1(fα, τn)| ≥ λ

n
1

2

)

≤ cpλ−pfor some c > 0 depending only on p and α, and� for an independent Brownian motion W̃ ,
√

nC1 (fα, τn) =⇒ W̃
1

2

R

1

0

h

∂2F

∂x2 (u,Wu)
i2

du
∈ Lp,where we ignore the set of measure zero where ∫ 1

0

[

∂2F
∂x2 (u, Wu)

]2

dumay be in�nite;
• if 0 < 1

p
+ α < 1, then� fα ∈ B

1

p
+α

p,∞ (γ),� ||C1(fα, τn)||Lp
≤ c

(

1√
n

)
1

p
+α with some c > 0 depending only on

p and α,� for all λ > 0, P(

|C1(fα, τn)| ≥ λ

n
1+αp

2p

)

≤ cpλ−pfor some c > 0 depending only on p and α, and16



� for any 0 < θ < 1
p

+ α, and an independent Brownian motion W̃ ,
√

nC1

(

fα, τ θ
n

)

=⇒ W̃
1

2θ

R

1

0

h

(1−u)1−θ ∂2F

∂x2 (u,Wu)
i2

du
∈ Lp,where we ignore the set of measure zero where

∫ 1

0

[

(1 − u)1−θ ∂2F
∂x2 (u, Wu)

]2

du may be in�nite.Computations to verify the frational smoothness of fα are similar toExamples 5.1 and 5.2 of [T℄. The onvergene properties follow from thetheorems above, and the tail estimates from Chebysev's inequality.Notie that 1
p

+ α = 1 does not imply that fα ∈ D1,p(γ), but only that
fα ∈ Bθ

p,∞(γ) for all 0 < θ < 1. For f0 we have the jump funtion, and for
α < 0, the funtion fα has a singularity at 0. Funtions with singularitiesare studied more arefully in Setion 3 of [GT℄, pages 14-16.Figure 4 illustrates how the frational smoothness θ dereases when pinreases, for ertain funtions. The dash urves represent the positions of fβ,
f0, f 1

2

and fα with −1
2

< β < −1
p
and 1

2
< α < 1− 1

p
in the Besov spaes Bθ

p,∞for di�erent p ≥ 2 and di�erent 0 < θ < 1. Reall that f 1

2

∈ Bθ
2,∞(γ)\D1,2(γ)for any 0 < θ < 1, and that fβ 6∈ Lp(γ).
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Lp

L2

B
1/p
p, 8

B
1/2
2, 8

α+
Bp, 8

1/p
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fβ
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Figure 4: An illustration of fβ, f0, f 1

2

and fα when −1
2

< β < −1
p
and

1
2

< α < 1 − 1
p
.For the exponential tail estimates of the weak limit, see Remark 3.13 of17



[GT℄. For an η-Hölder ontinuous funtion f , for example,P(
∣

∣

∣

∣

W̃
1

2θ

R

1

0

h

(1−u)1−θ ∂2F

∂x2 (u,Wu)
i2

du

∣

∣

∣

∣

> λ

)

≤ ce−
λ2

cfor all λ > 0 with any 0 < θ < η ≤ 1, where we ignore the set of measurezero where ∫ 1

0

[

(1 − u)1−θ ∂2F
∂x2 (u, Wu)

]2

du may be in�nite.3 ConlusionsIn this thesis, we have obtained lose onnetions between strong onver-gene, weak onvergene and frational smoothness when approximatingstohasti integrals. These results are restrited to the ase of Brownianintegrals, partly inluding integrals with respet to the geometri Brownianmotion.Extentions to more general di�usions would be interesting for appliationsespeially in stohasti �nane. The results of [T℄ seem to be extendable tothe geometri Brownian motion. In [3℄, the related L2 results are obtainedfor di�usions satisfying dYt = σ(Yt)dWt, Y0 = y0, with some onditions on
σ, so that one might expet similar extensions for Lp, p > 2. For proesseswith jumps, the ongoing researh of [5℄ extends some L2 results of [8℄ to Lévyproesses.A natural next step within the Brownian motion setting would be a om-plete haraterization of time nets required for optimal Lp onvergene rateas seen in Conjeture 2.4.In [GT℄, there are also onnetions to other onepts of frational smooth-ness, for example the one mentioned in [1℄ related to approximation ofstohasti di�erential equations. Further study in this diretion would extendthe setting beyond the Gaussian ase.The results presented here onern �rst-order approximations of stohas-ti integrals. Considering higher orders of frational smoothness might revealinteresting onvergene properties for higher order approximations.For more irregular funtions, existene of arbitrarily slow L2 onvergenerates was shown in [10℄ when optimized over all deterministi time nets.In [12℄, there is a haraterization of funtions for whih the optimized L2onvergene rate is 1√

n
, and an example where, for a given 0 < β < 1, theoptimized onvergene rate is n−β

2 . This takes us outside the polynomial saleof the Besov spaes onsidered here. Further researh on this logarithmiapproah might reveal new onnetions to Lp onvergene for p > 2 or evento weak onvergene. 18
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93. KÄENMÄKI, ANTTI, Iterated function systems: Natural measure and local structure. (14 pp.)
2003

94. TASKINEN, SARA, On nonparametric tests of independence and robust canonical correlation
analysis. (44 pp.) 2003

95. KOKKI, ESA, Spatial small area analyses of disease risk around sources of environmental
pollution: Modelling tools for a system using high resolution register data. (72 pp.) 2004

96. HITCZENKO, PAWE L, Probabillistic analysis of sorting algorithms. (71 pp.) 2004
97. NIEMINEN, TOMI, Growth of the quasihyperbolic metric and size of the boundary. (16 pp.)

2005
98. HAHLOMAA, IMMO, Menger curvature and Lipschitz parametrizations in metric spaces.

(8 pp.) 2005
99. MOLTCHANOVA, ELENA, Application of Bayesian spatial methods in health and population

studies using registry data. (55 pp.) 2005
100. HEINONEN, JUHA, Lectures on Lipschitz analysis. (77 pp.) 2005
101. HUJO, MIKA, On the approximation of stochastic integrals. (19 pp.) 2005
102. LINDQVIST, PETER, Notes on the p-Laplace equation. (80 pp.) 2006
103. HUKKANEN, TONI, Renormalized solutions on quasi open sets with nonhomogeneous

boundary values. (41 pp.) 2006
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