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Abstra
tConne
tions are revealed between fra
tional smoothness, strong
onvergen
e, and weak 
onvergen
e of approximations of sto
has-ti
 integrals with respe
t to the Brownian motion and the geo-metri
 Brownian motion. Strong 
onvergen
e is 
onsidered withrespe
t to the Lp norm for p ≥ 2, and fra
tional smoothness ismeasured in terms of Besov spa
es.



TiivistelmäStokastisten integraalien approksimoinnista ja fraktionaalisestasileydestäVäitöskirjassa osoitetaan yhteyksiä vahvan suppenemisen, heikonsuppenemisen ja fraktionaalisen sileyden välillä arvioitaessa sto-kastisia integraaleja Brownin liikkeen ja geometrisen Brownin liik-keen suhteen. Vahvaa suppenemista tarkastellaan Lp-normin suh-teen, kun p ≥ 2, ja fraktionaalisen sileyden kuvaamiseen käyte-tään Besov-avaruuksia.
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lesThis dissertation 
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a-tions:[GT℄ S. Geiss and A. Toivola. Weak 
onvergen
e of error pro
esses in dis-
retizations of sto
hasti
 integrals and Besov spa
es. To appear inBernoulli.[T℄ A. Toivola. Interpolation and approximation in Lp. Preprint 380, De-partment of Mathemati
s and Statisti
s, University of Jyväskylä, 2009.The author of this dissertation has a
tively taken part in the resear
h of thejoint paper [GT℄.



1 Introdu
tionIn approximation theory, 
onvergen
e results answer the question "How mu
hmore resour
es are required for a 
ertain improvement in a

ura
y?" Forrandom variables or pro
esses, this "a

ura
y" 
an be measured in severalways. The strong 
onvergen
e rate, most often 
onsidered with respe
t tothe L2 norm, des
ribes the speed with whi
h the norm of the approximationerror 
onverges to zero. Weak 
onvergen
e, i.e. 
onvergen
e in distribution,requires often less assumptions, but provides also less information. Bothtypes of results yield also estimates for the probabilities of large errors, 
alledtail estimates: denoting the approximation error by C, we would like theprobability P (|C| > λ) to de
rease rapidly as λ > 0 in
reases. The higherintegrability of a weak limit or 
onvergen
e with respe
t to a stronger normprovides better tail estimates. This is one motivation to study Lp 
onvergen
ewith p > 2.Convergen
e properties are not always easy to observe from the sto
hasti
integral itself. We assume that the integral is generated by a fun
tional ofBrownian motion, f(W1) ∈ L2, and look for 
onne
tions between propertiesof f and the 
onvergen
e of
∫ 1

0

Φ(t, Wt)dWt −
n

∑

i=1

Φ(ti−1, Wti−1
)(Wti − Wti−1

),where ∫ 1

0
Φ(t, Wt)dWt = f(W1) − Ef(W1). The main 
ontribution of thiswork is the 
lose 
onne
tion between strong 
onvergen
e, weak 
onvergen
e,and the integrability of a weak limit. The 
onne
ting link is the fra
tionalsmoothness of f , whi
h for many fun
tions 
an be observed by dire
t 
om-putations.These kinds of 
onvergen
e results 
an be applied to the hedging error insto
hasti
 �nan
e, where f is the pay-o� fun
tion of an option, W modelsthe pri
ing pro
ess, and the error appears when a theoreti
al, 
ontinuouslyrebalan
ed portfolio is repla
ed by another one with only �nitely many trad-ing times. Another �eld of appli
ation is simulation: a 
onstru
tion as in(2) below to simulate a sto
hasti
 integral retains the martingale propertywhereas a spline approximation does not.To form a 
lear and 
onsistent pi
ture of the obtained results, in thisoverview we 
onsider only sto
hasti
 integrals driven by the Brownian mo-tion. For appli
ations, other integrator pro
esses are also of interest. Parti
-ularly in sto
hasti
 �nan
e, the pri
e pro
esses should be positive, su
h as thegeometri
 Brownian motion or a di�usion obtained by a suitable sto
hasti
di�erential equation. In [GT℄, a more general setting is employed to in
lude7



the 
ase of geometri
 Brownian motion, and in many referen
es, even a wider
lass of pro
esses is 
onsidered. It would be of interest to see whether theresults of [T℄ 
ould be extended to more general di�usions; for the present,they are developed only for the Brownian motion.We begin with the basi
 notation and de�nitions. After introdu
ing the
onvergen
e problem and fra
tional smoothness, we dis
uss some previousresults that form the ba
kground of this work. Se
tion 2 
ompresses the mainresults of [GT℄ and [T℄ into three theorems, whi
h are illustrated with sometypi
al examples. Se
tion 3 
on
ludes the introdu
tory part with possibleextensions of this work and ideas for further resear
h topi
s.Throughout, γ denotes the standard Gaussian measure on the real line.To denote a pro
ess - usually a Brownian motion - independent of the un-derlying sto
hasti
 basis, we use a tilde above the pro
ess, for example W̃ .Let (

Ω, F,P, (Ft)t∈[0,1]

) be a sto
hasti
 basis, and let W = (Wt)t∈[0,1] bea standard Brownian motion, with all paths 
ontinuous and W0 = 0 for all
ω ∈ Ω. Assume that (Ft)t∈[0,1] is the augmentation of the �ltration generatedby W and that F = F1. Let f : R → R be a Borel fun
tion satisfying
f (W1) ∈ L2 and de�ne the fun
tion F : [0, 1] ×R→ R by setting

F (t, x) := E (f (W1) | Wt = x) = Ef(x + W1−t).Then F ∈ C∞([0, 1[ × R) (see e.g. [6, Lemma A.2℄ or [4, p. 4℄), and itsatis�es
{

∂F
∂t

+ 1
2

∂2F
∂x2 = 0, 0 ≤ t < 1, x ∈ R

F (1, x) = f(x), x ∈ R (1)and by It�'s formula, f(W1) = F (1, W1) = Ef(W1) +
∫ 1

0
∂F
∂x

(s, Ws)dWs a.s.We dis
retize the integral on the interval [0, t] with t ≤ 1 using a deter-ministi
 time net τ (n) := (tni )n

i=0 with 0 = tn0 < tn1 < . . . < tnn = 1, and getthe approximation error pro
ess
Ct(f, τ (n)) :=

∫ t

0

∂F

∂x
(s, Ws)dWs −

n
∑

i=1

∂F

∂x
(tni−1, Wtni−1

)
(

Wtni ∧t − Wtni−1
∧t

)

.(2)Moreover, we denote the size of the time net τ (n) by
∣

∣

∣

∣τ (n)
∣

∣

∣

∣

∞ := max
1≤i≤n

|tni − tni−1|.For 
onvenien
e, we denote by τn the equidistant time net of n + 1 timepoints, i.e. τn =
(

i
n

)n

i=0
and ||τn||∞ = 1

n
.For many fun
tions f , the integrand ∂F

∂x
has a singularity at time 1, andthis makes approximation more di�
ult near 1. However, this 
an be 
oun-tera
ted by a suitable adaptation of the time nets: we pla
e more time points8



near 1, so that the time nets are asymptoti
ally more dense near 1, but atthe other end point 0, the distan
e between time points is multiplied only bya 
onstant fa
tor.This is our adaptation: for any 0 < θ ≤ 1, we de�ne the time nets
τ θ
n =

(

tn,θ
i

)n

i=0
by setting

tn,θ
i := 1 −

(

1 − i

n

)
1

θ (3)for i = 0, 1, . . . , n. For θ = 1, this de�nition yields an equidistant time net,and for smaller θ, an adjusted time net where the time knots are 
loser toea
h other near 1 (see Figure 1). We 
all θ the re�nement parameter.

Equidistant time net

A
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d 
tim

e 
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a 
=

 0
,2

5

Figure 1: An illustration of a time net with re�nement parameter θ = 0, 25.To measure the smoothness properties of f , we de�ne in Se
tion 2.1 of[T℄ the Malliavin Sobolev spa
e D1,2(γ) and the derivative f ′ via the Hermite9



polynomials, and D1,p(γ), p > 2 as a subset of D1,2(γ) where both f and f ′are Lp integrable.Fra
tional smoothness is des
ribed by an index θ ∈ [0, 1], where θ = 0implies no smoothness, and θ = 1 di�erentiability in the Malliavin sense.More pre
isely, we use the Besov spa
es
Bθ

p,q(γ) = (Lp(γ),D1,p(γ))
θ,q

(4)whi
h are intermediate spa
es between Lp(γ) and D1,p(γ), p ≥ 2, obtained bythe real interpolation (see e.g. [2℄ and [T, Se
tion 2.3℄), with the interpolationparameters 0 < θ < 1 and 1 ≤ q ≤ ∞. These spa
es have a lexi
ographi
alorder: for all p ≥ 2,
Bθ2

p,q1
(γ) ⊂ Bθ1

p,q2
(γ)for any 0 < θ1 < θ2 < 1 and any 1 ≤ q1, q2 ≤ ∞, and

Bθ
p,q1

(γ) ⊂ Bθ
p,q2

(γ)for any 0 < θ < 1 and any 1 ≤ q1 ≤ q2 ≤ ∞. Figures 2 and 3 illustrate thein
lusions.
Lp B

1/2
p,42 B

3/5
p,s D1,pBp,q

1/3
B

1/4
p,r

Bp,
1/3

8

Figure 2: The spa
es Bθ
p,q(γ) de
rease as θ in
reases, regardless of q.The purpose of this work is to investigate the 
onvergen
e properties ofthe error de�ned in (2) as the size of the time net tends to zero, in 
onne
tionwith the smoothness properties of the fun
tion f .There are several 
riteria to 
hoose from when 
onsidering the 
onver-gen
e. It is known that the �nal error C1(f, τ (n)) 
onverges to zero in prob-ability (see e.g. [11, Proposition 2.13 of Chapter IV℄). The L2 norm also10
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Lp

BBB
1/2 3/4
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2,q
1/4

2,r 2,s

p,r
1/2

Figure 3: Some examples of in
lusions for fun
tion spa
es. Here p > 2.
onverges to zero, and with equidistant time nets, the rate of L2 
onvergen
eis 1√
n
if and only if f ∈ D1,2(γ), see [3, Theorem 2.6℄ and [8, Theorem 3.2℄.This rate is optimal, provided that f is not an a�ne fun
tion, in whi
h 
asethe error is zero (see [4℄). In [9℄, an L2 
onvergen
e rate n− 1

4 was provedfor f(x) = χ[K,∞[ (x), and the rate (

1√
n

)α+ 1

2 for f(x) = (x − K)α
+, K ∈ R,

0 < α < 1
2
, when using equidistant time nets. This showed that the reg-ularity of f has some e�e
t on the L2 
onvergen
e rate, at least in theseexamples. In general, for a fun
tion with fra
tional smoothness θ ∈ ]0, 1[,the L2 
onvergen
e rate is (

1√
n

)θ with equidistant time nets, or 1√
n
whenusing appropriately adjusted time nets - the ones de�ned in (3). With 
or-re
t 
hoi
es of fun
tion spa
es, these results are sharp. See [3℄ and [8℄ forthe results in L2, and [3℄ for a more extensive overview to the literature onrelated results in L2.A 
riterion even stronger than L2 is 
onsidered in [7℄: for Lips
hitz 
on-tinuous fun
tions f , the error C1(f, τ (n)) has bounded mean os
illation, andthe 
onvergen
e rate of ∣

∣

∣

∣C(f, τ (n))
∣

∣

∣

∣

BMO
is ∣

∣

∣

∣τ (n)
∣

∣

∣

∣

1

2

∞. For equidistant nets,this rate equals 1√
n
.These results form the starting point for [T℄. Below they are listed omit-11



ting some te
hni
alities, and the quantity c > 0 may vary from line to line:
f ∈ D1,2(γ) ⇐⇒ ||C1(f, τ)||L2

≤ c ||τ ||
1

2

∞ for any time net τ (5)
f ∈ Bθ

2,∞(γ) ⇐⇒ ||C1(f, τn)||L2
≤ cn− θ

2 (6)
f ∈ Bθ

2,2(γ) ⇐⇒
∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣L2
≤ cn− 1

2 (7)
f ∈ Lip ⇐⇒ ||C(f, τ)||BMO ≤ c ||τ ||

1

2

∞ for any time net τBetween L2 and BMO there are Lp spa
es with 2 < p < ∞, and it is naturalto expe
t some similar results for the Lp norm under suitable 
onditions. Thete
hniques used in [7℄ for the BMO norm are still L2 te
hniques, whi
h relyheavily on orthogonality - or, more pre
isely, apply the very L2 te
hniqueslo
ally (see [T, Appendix℄). Interpolation te
hniques yield some estimatesfor the intermediate spa
es, but for any sharp results, it was ne
essary todevelope new te
hniques. Theorems 1.1 and 1.2 of [T℄ generalize the results(5) and (6) to Lp, p > 2.Instead of examining strong 
onvergen
e rates, we 
an look for the rights
aling fa
tor for the error so that the limiting distribution is non-trivial,and observe the properties of the a
hieved limit distribution. A naturalguess for the fa
tor would be the inverse of the strong 
onvergen
e rate, butthis leads to trouble. For example, in [9℄, with equidistant time nets the L2
onvergen
e rate for f(x) = χ[K,∞[ (x) is found to be n− 1

4 (whi
h was lateralso veri�ed by (6)), but a limit distribution W̃
1

2

R 1

0

h

∂2F

∂x2
(t,Wt)

i2

dt
is a
hievedwith the s
aling fa
tor √n as formulated in (8). This mismat
h between the
onvergen
e rate and the s
aling fa
tor is in [9℄ explained by the fa
t thatthe limit distribution is not L2 integrable for the above mentioned example.In fa
t, the limit distribution with equidistant time nets is L2 integrable ifand only if f ∈ D1,2(γ) (see [3, Theorems 2.3 and 2.6℄). Denoting the weak
onvergen
e by =⇒, the results to begin with are thus

√
nC1(χ[K,∞[, τn) =⇒ W̃

1

2

R 1

0

h

∂2F

∂x2 (t,Wt)
i2

dt
and (8)

f ∈ D1,2(γ) ⇐⇒ W̃
1

2

R

1

0

h

∂2F

∂x2
(t,Wt)

i2

dt
∈ L2. (9)In [GT℄ we use non-equidistant time nets to obtain a square integrable limitdistribution for a wider 
lass of fun
tions, and the re�nement index for thetime net is the same as the fra
tional smoothness of f . Moreover, we obtain
onditions under whi
h the limit distribution is Lp integrable with p > 2.12



2 ResultsWe begin with strong 
onvergen
e. With the equidistant time nets, Theorem1.2 of [T℄ generalizes the L2 result seen in (6) to
f ∈ Bθ

p,∞(γ) ⇐⇒ ||C1(f, τn)||Lp
≤ cn− θ

2 (10)for p ≥ 2. It thus also provides an alternative proof for (6). For smoothfun
tions, interpolation between the results in L2 and BMO yields
f ∈ D1,p(γ) =⇒ ||C1(f, τ)||Lp

≤ c ||τ ||
1

2

∞ for any time net τ,as seen in Theorem 1.1 of [T℄. We do not know how to dedu
e the equivalen
eas in (5). However, the result is nearly sharp, as we see from (10).For weak 
onvergen
e, we employ the non-equidistant time nets de�nedin (3). With 0 < θ < 1 and f ∈ L2(γ), the weak limit of the error at time
t ∈ [0, 1[ is 
omputed in [GT℄ as

√
nCt

(

f, τ θ
n

)

=⇒ W̃
1

2θ

R t

0

h

(1−u)1−θ ∂2F

∂x2
(u,Wu)

i2

du
,where W̃ is an independent Brownian motion. If f ∈ Bθ
2,2(γ), this limitextends to t = 1 and is L2 integrable. Moreover, if p > 2 and f ∈ Bθ+ǫ

p,∞(γ)for some 0 < ǫ < 1 − θ, then the limit is Lp integrable.We 
an formulate the main results of [T℄ and [GT℄ in the following threetheorems, assisted with an L2 result from [3℄ and [8℄. These theorems 
onsistof impli
ations between strong 
onvergen
e, weak 
onvergen
e and fra
tionalsmoothness. In addition, results in [GT℄ 
onne
t the fra
tional smoothnessof f to the Lp 
onvergen
e of E (f(W1) | Ft) as t → 1, and establish links toother 
on
epts of fra
tional Sobolev spa
es (see Proposition 3.5 and Remark3.6 of [GT℄).Let us shorten the notation with the following abbreviation:
(

MLp

) : On some sto
hasti
 basis, there exists a 
ontinuousLp integrable martingale M = (Mt)t∈[0,1], su
h thatThis abbreviation will be used in 
ontext of weak 
onvergen
e. We 
onsiderthe weak 
onvergen
e on the level of pro
esses, in parti
ular the error pro-
esses C
(

f, τ (n)
) asso
iated with the time nets τ (n), instead of the randomvariables C1

(

f, τ (n)
). This we do to obtain the equivalen
e we are lookingfor; we do not know whether the fra
tional smoothness follows from the weak
onvergen
e of the �nal error. We denote the weak 
onvergen
e in C[0, 1] by

=⇒C[0,1].For 
onvenien
e, in the following theorem we use the notation B1
2,2(γ) :=D1,2(γ). 13



Theorem 2.1. Let f ∈ L2(γ) and 0 < θ ≤ 1. Then the following areequivalent:(i) f ∈ Bθ
2,2(γ),(ii) (ML2

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M , and(iii) ∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣L2
≤ c 1√

n
for some c > 0.Proof. For the equivalen
e of (i) and (iii), see [3℄ and [8℄. The equivalen
e of(i) and (ii) is in
luded in Theorem 2.1 of [GT℄.Along with (6), reprodu
ed below, Theorem 2.1 provides a 
omplete pi
-ture in the L2 setting:

f ∈ Bθ
2,∞(γ) ⇐⇒ ||C1(f, τn)||L2

≤ cn− θ
2 for some c > 0.Theorem 2.2. Let f ∈ L2(γ) and 2 < p < ∞, and 
onsider the following
onditions:(i) f ∈ D1,p(γ),(i') f ∈

⋂

0<θ<1 Bθ
p,∞(γ),(ii) (

MLp

) : √nC (f, τn) =⇒C[0,1] M , and(iii) ||C1 (f, τn)||Lp
≤ c 1√

n
for some c > 0.Then the following impli
ations hold:

(i) ⇐⇒ (ii) =⇒ (iii) =⇒ (i′).Proof. Theorem 1.1 and Corollary 1.3 of [T℄ in
lude the impli
ations (i) =⇒
(iii) =⇒ (i′). By the Burkholder-Davis-Gundy inequalities,

sup
0<t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞ (11)implies that f ∈ Lp(γ). Thus (11) is equivalent to (i) by Lemma 4.8 of [T℄.Furthermore, (11) is equivalent to
sup

0≤t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt) −

∂F

∂x
(0, 0)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞,whi
h 
oin
ides with the 
ondition given in [GT, Corollary 3.3 (ii)℄ for Brow-nian motion and β = 1. 14



Theorem 2.3. Let 2 < p < ∞, f ∈ Lp(γ) and 0 < θ < 1, and 
onsider thefollowing 
onditions:(i) f ∈ Bθ
p,∞(γ),(ii) (

MLp

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M ,(ii') (

MLp

) : √nC
(

f, τ θ−ǫ
n

)

=⇒C[0,1] M for any 0 < ǫ < θ, and(iii) ||C1 (f, τn)||Lp
≤ cn− θ

2 for some c > 0.Then the following impli
ations hold:
(ii) =⇒ (i) ⇐⇒ (iii) =⇒ (ii′).Proof. The equivalen
e of (i) and (iii) is proven in Theorem 1.2 of [T℄. ByLemma 4.7 of [T℄, 
ondition (i) is equivalent to

sup
0<t<1

(1 − t)
1−θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣Lp

< ∞.Corollary 3.4 of [GT℄ for Brownian motion 
ompletes the proof.The equivalen
e of (i) and (iii) in Theorem 2.3 generalizes (6) to Lp for
p > 2. The disparity between 
onditions (ii) and (ii') in Theorem 2.3 in
omparison with Theorem 2.1 suggests that for an equivalen
e 
on
erningweak 
onvergen
e, one might want to 
onsider Bθ

p,q(γ) for some q < ∞ insteadof Bθ
p,∞(γ). We formulate this as a 
onje
ture.Conje
ture 2.4. Let 2 < p < ∞, f ∈ Lp(γ) and 0 < θ < 1. Then thereexists a parameter 1 ≤ q < ∞ su
h that the following 
ondititions are equiv-alent:(I) f ∈ Bθ

p,q(γ),(II) (

MLp

) : √nC
(

f, τ θ
n

)

=⇒C[0,1] M , and(III) ∣

∣

∣

∣C1

(

f, τ θ
n

)
∣

∣

∣

∣Lp
≤ c 1√

n
for some c > 0.A natural �rst guess for q, arising from Theorem 2.1, would be q = 2 or

q = p. Theorem 2.3 shows a 
lose 
onne
tion, if not quite an equivalen
e,between (I) and (II), but for (III), we do not yet have a 
hara
terization.Theorem 5.3 of [T℄ shows that improvement in the Lp 
onvergen
e rate ispossible with the non-equidistant time nets de�ned in (3), but it does notprovide a 
lear 
onne
tion between the properties of f and the re�ning pa-rameter ne
essary for the optimal 
onvergen
e rate. This dire
tions remainsopen for further resear
h. 15



2.1 ExamplesWe illustrate the obtained results by an example.Example 2.5. Let −1
2

< α ≤ 1 and de�ne
fα(x) :=

{

0, x ≤ 0
xα, x > 0

.Then, for p ≥ 2:
• if 1

p
+ α > 1, then� fα ∈ D1,p(γ),� ||C1(fα, τn)||Lp

≤ c√
n
for some c > 0 depending only on p and α,� for all λ > 0, P(

|C1(fα, τn)| ≥ λ

n
1

2

)

≤ cpλ−pfor some c > 0 depending only on p and α, and� for an independent Brownian motion W̃ ,
√

nC1 (fα, τn) =⇒ W̃
1

2

R

1

0

h

∂2F

∂x2 (u,Wu)
i2

du
∈ Lp,where we ignore the set of measure zero where ∫ 1

0

[

∂2F
∂x2 (u, Wu)

]2

dumay be in�nite;
• if 0 < 1

p
+ α < 1, then� fα ∈ B

1

p
+α

p,∞ (γ),� ||C1(fα, τn)||Lp
≤ c

(

1√
n

)
1

p
+α with some c > 0 depending only on

p and α,� for all λ > 0, P(

|C1(fα, τn)| ≥ λ

n
1+αp

2p

)

≤ cpλ−pfor some c > 0 depending only on p and α, and16



� for any 0 < θ < 1
p

+ α, and an independent Brownian motion W̃ ,
√

nC1

(

fα, τ θ
n

)

=⇒ W̃
1

2θ

R

1

0

h

(1−u)1−θ ∂2F

∂x2 (u,Wu)
i2

du
∈ Lp,where we ignore the set of measure zero where

∫ 1

0

[

(1 − u)1−θ ∂2F
∂x2 (u, Wu)

]2

du may be in�nite.Computations to verify the fra
tional smoothness of fα are similar toExamples 5.1 and 5.2 of [T℄. The 
onvergen
e properties follow from thetheorems above, and the tail estimates from Chebysev's inequality.Noti
e that 1
p

+ α = 1 does not imply that fα ∈ D1,p(γ), but only that
fα ∈ Bθ

p,∞(γ) for all 0 < θ < 1. For f0 we have the jump fun
tion, and for
α < 0, the fun
tion fα has a singularity at 0. Fun
tions with singularitiesare studied more 
arefully in Se
tion 3 of [GT℄, pages 14-16.Figure 4 illustrates how the fra
tional smoothness θ de
reases when pin
reases, for 
ertain fun
tions. The dash 
urves represent the positions of fβ,
f0, f 1

2

and fα with −1
2

< β < −1
p
and 1

2
< α < 1− 1

p
in the Besov spa
es Bθ

p,∞for di�erent p ≥ 2 and di�erent 0 < θ < 1. Re
all that f 1

2

∈ Bθ
2,∞(γ)\D1,2(γ)for any 0 < θ < 1, and that fβ 6∈ Lp(γ).

D1,p

D1,2

Lp

L2

B
1/p
p, 8

B
1/2
2, 8

α+
Bp, 8

1/p
B

1/p
p, 8

+1/2

f1/2f0
fβ

fα

Figure 4: An illustration of fβ, f0, f 1

2

and fα when −1
2

< β < −1
p
and

1
2

< α < 1 − 1
p
.For the exponential tail estimates of the weak limit, see Remark 3.13 of17



[GT℄. For an η-Hölder 
ontinuous fun
tion f , for example,P(
∣

∣

∣

∣

W̃
1

2θ

R

1

0

h

(1−u)1−θ ∂2F

∂x2 (u,Wu)
i2

du

∣

∣

∣

∣

> λ

)

≤ ce−
λ2

cfor all λ > 0 with any 0 < θ < η ≤ 1, where we ignore the set of measurezero where ∫ 1

0

[

(1 − u)1−θ ∂2F
∂x2 (u, Wu)

]2

du may be in�nite.3 Con
lusionsIn this thesis, we have obtained 
lose 
onne
tions between strong 
onver-gen
e, weak 
onvergen
e and fra
tional smoothness when approximatingsto
hasti
 integrals. These results are restri
ted to the 
ase of Brownianintegrals, partly in
luding integrals with respe
t to the geometri
 Brownianmotion.Extentions to more general di�usions would be interesting for appli
ationsespe
ially in sto
hasti
 �nan
e. The results of [T℄ seem to be extendable tothe geometri
 Brownian motion. In [3℄, the related L2 results are obtainedfor di�usions satisfying dYt = σ(Yt)dWt, Y0 = y0, with some 
onditions on
σ, so that one might expe
t similar extensions for Lp, p > 2. For pro
esseswith jumps, the ongoing resear
h of [5℄ extends some L2 results of [8℄ to Lévypro
esses.A natural next step within the Brownian motion setting would be a 
om-plete 
hara
terization of time nets required for optimal Lp 
onvergen
e rateas seen in Conje
ture 2.4.In [GT℄, there are also 
onne
tions to other 
on
epts of fra
tional smooth-ness, for example the one mentioned in [1℄ related to approximation ofsto
hasti
 di�erential equations. Further study in this dire
tion would extendthe setting beyond the Gaussian 
ase.The results presented here 
on
ern �rst-order approximations of sto
has-ti
 integrals. Considering higher orders of fra
tional smoothness might revealinteresting 
onvergen
e properties for higher order approximations.For more irregular fun
tions, existen
e of arbitrarily slow L2 
onvergen
erates was shown in [10℄ when optimized over all deterministi
 time nets.In [12℄, there is a 
hara
terization of fun
tions for whi
h the optimized L2
onvergen
e rate is 1√

n
, and an example where, for a given 0 < β < 1, theoptimized 
onvergen
e rate is n−β

2 . This takes us outside the polynomial s
aleof the Besov spa
es 
onsidered here. Further resear
h on this logarithmi
approa
h might reveal new 
onne
tions to Lp 
onvergen
e for p > 2 or evento weak 
onvergen
e. 18
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