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Abstract

Connections are revealed between fractional smoothness, strong
convergence, and weak convergence of approximations of stochas-
tic integrals with respect to the Brownian motion and the geo-
metric Brownian motion. Strong convergence is considered with
respect to the L, norm for p > 2, and fractional smoothness is
measured in terms of Besov spaces.



Tiivistelmi

Stokastisten integraalien approksimoinnista ja fraktionaalisesta
sileydesti

Viitoskirjassa osoitetaan yhteyksida vahvan suppenemisen, heikon
suppenemisen ja fraktionaalisen sileyden vililld arvioitaessa sto-
kastisia integraaleja Brownin liikkeen ja geometrisen Brownin liik-
keen suhteen. Vahvaa suppenemista tarkastellaan L,-normin suh-
teen, kun p > 2, ja fraktionaalisen sileyden kuvaamiseen kiyte-
tdan Besov-avaruuksia.
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1 Introduction

In approximation theory, convergence results answer the question "How much
more resources are required for a certain improvement in accuracy?" For
random variables or processes, this "accuracy" can be measured in several
ways. The strong convergence rate, most often considered with respect to
the Ly norm, describes the speed with which the norm of the approximation
error converges to zero. Weak convergence, i.e. convergence in distribution,
requires often less assumptions, but provides also less information. Both
types of results yield also estimates for the probabilities of large errors, called
tail estimates: denoting the approximation error by C', we would like the
probability P (|C] > A) to decrease rapidly as A > 0 increases. The higher
integrability of a weak limit or convergence with respect to a stronger norm
provides better tail estimates. This is one motivation to study L, convergence
with p > 2.

Convergence properties are not always easy to observe from the stochastic
integral itself. We assume that the integral is generated by a functional of
Brownian motion, f(W;) € Ly, and look for connections between properties
of f and the convergence of

1 n
/ @(t, Wt)dVVt - Z ®(ti—17 Wti_l)(Wti - Wti—l)’
0

=1

where [\ ®(t,W;)dW; = f(W)) — Ef(W)). The main contribution of this
work is the close connection between strong convergence, weak convergence,
and the integrability of a weak limit. The connecting link is the fractional
smoothness of f, which for many functions can be observed by direct com-
putations.

These kinds of convergence results can be applied to the hedging error in
stochastic finance, where f is the pay-off function of an option, W models
the pricing process, and the error appears when a theoretical, continuously
rebalanced portfolio is replaced by another one with only finitely many trad-
ing times. Another field of application is simulation: a construction as in
(2) below to simulate a stochastic integral retains the martingale property
whereas a spline approximation does not.

To form a clear and consistent picture of the obtained results, in this
overview we consider only stochastic integrals driven by the Brownian mo-
tion. For applications, other integrator processes are also of interest. Partic-
ularly in stochastic finance, the price processes should be positive, such as the
geometric Brownian motion or a diffusion obtained by a suitable stochastic
differential equation. In [GT], a more general setting is employed to include
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the case of geometric Brownian motion, and in many references, even a wider
class of processes is considered. It would be of interest to see whether the
results of [T| could be extended to more general diffusions; for the present,
they are developed only for the Brownian motion.

We begin with the basic notation and definitions. After introducing the
convergence problem and fractional smoothness, we discuss some previous
results that form the background of this work. Section 2 compresses the main
results of [GT] and [T] into three theorems, which are illustrated with some
typical examples. Section 3 concludes the introductory part with possible
extensions of this work and ideas for further research topics.

Throughout, v denotes the standard Gaussian measure on the real line.
To denote a process - usually a Brownian motion - independent of the un-
derlying stochastic basis, we use a tilde above the process, for example W,

Let (Q, F, P, (fft)te[o,l]) be a stochastic basis, and let W = (W;),(o ) be
a standard Brownian motion, with all paths continuous and Wy = 0 for all
w € €. Assume that (fﬂ)te[m} is the augmentation of the filtration generated

by W and that ¥ = ;. Let f : R — R be a Borel function satisfying
f (W1) € Ly and define the function F : [0,1] x R — R by setting

F(t,z) =B (f (W) | W, = 2) = Ef(z + Wy_,).

Then F' € C*([0,1] x R) (see e.g. |6, Lemma A.2| or [4, p. 4]), and it
satisfies oF  1o2p
10" = f), zeR

and by Ito’s formula, f(Wy) = F(1,W;) = Ef(W;) + fl 9E (s W,)dWj a.s.

We discretize the integral on the interval [0, ] with ¢ S 1 using a deter-
ministic time net 7(") := (#2)7_ with 0 = #§ < 7 < ... <" =1, and get
the approximation error process

oF 6F
Ci(f, T(n)) 3:/ (s, Ws)dW — Z i— 17Wt" ) <Wt?/\t - Wt;gm) .
0

ox
(2)
Moreover, we denote the size of the time net 7(™ by
(n) — n
7] = masc J6 = 112,
For convenience, we denote by 7, the equidistant time net of n + 1 time

points, i.e. 7, = (%)?:0 and ||7,||, = %

For many functions f, the integrand g—f has a singularity at time 1, and
this makes approximation more difficult near 1. However, this can be coun-
teracted by a suitable adaptation of the time nets: we place more time points



near 1, so that the time nets are asymptotically more dense near 1, but at
the other end point 0, the distance between time points is multiplied only by
a constant factor.

This is our adaptation: for any 0 < 6 < 1, we define the time nets

70 = (tw)‘ . by setting
R (1 - 3) (3)
n

(2
7=
fori=0,1,...,n. For § = 1, this definition yields an equidistant time net,
and for smaller #, an adjusted time net where the time knots are closer to
each other near 1 (see Figure 1). We call 6 the refinement parameter.

D=

0,25
|

Adjusted time net for theta

Equidistant time net

Figure 1: An illustration of a time net with refinement parameter § = 0, 25.

To measure the smoothness properties of f, we define in Section 2.1 of
[T] the Malliavin Sobolev space D 5(y) and the derivative f’ via the Hermite
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polynomials, and Dy (), p > 2 as a subset of D; »(y) where both f and f’
are L, integrable.

Fractional smoothness is described by an index 6 € [0, 1], where § = 0
implies no smoothness, and # = 1 differentiability in the Malliavin sense.
More precisely, we use the Besov spaces

Bzﬂqw) = (Lp(7), D1p(7))g 4 (4)

which are intermediate spaces between L,(y) and Dy (), p > 2, obtained by
the real interpolation (see e.g. |2] and |T, Section 2.3]), with the interpolation
parameters 0 < # < 1 and 1 < ¢ < co. These spaces have a lexicographical
order: for all p > 2,
0 0

By () € By, (7)
for any 0 < 0y < 6y <1 and any 1 < ¢y, ¢ < 00, and

By, (v) C By, (7)

p,q1 p,q2

forany 0 < 6 <1 and any 1 < ¢ < ¢o < o0o. Figures 2 and 3 illustrate the
inclusions.

Figure 2: The spaces Bgﬂq('y) decrease as 6 increases, regardless of ¢.

The purpose of this work is to investigate the convergence properties of
the error defined in (2) as the size of the time net tends to zero, in connection
with the smoothness properties of the function f.

There are several criteria to choose from when considering the conver-
gence. It is known that the final error C;(f,7™) converges to zero in prob-
ability (see e.g. |11, Proposition 2.13 of Chapter IV|). The L, norm also

10



T A I I I I S S S T S S S T T T T T S T T T TS \
14 L 12 ' 3/4 ro T MY

| | | |
L, :Bz,q :Bz,r .Bz,s | D1,2 L
X | | Do
| | A
! I | | o
! I | | o
! : ' ! L
X [ e I e '\Ill

! ( 1/2 | lr=-==- !
1 [N

L ! | B | 1 D 1!
1 [N

I I I ' 1
p | | | p.r | O 1vp|.||I|
) 1 X X O prbrh
| ' | I I Pt
| ' | I I Pt
) 1 X X O prbrh
| ' | I I Pt
[ Lo | o ':::,:

| |

\ | : : :: L|p||||||
| ! | | S
\ 1 <« e FEREN
| | L= 71
. N o e e e LT 7

Figure 3: Some examples of inclusions for function spaces. Here p > 2.

converges to zero, and with equidistant time nets, the rate of Ly convergence
is ﬁ if and only if f € D; (), see [3, Theorem 2.6] and [8, Theorem 3.2].
This rate is optimal, provided that f is not an affine function, in which case
the error is zero (see [4]). In [9], an Ly convergence rate n~1 was proved

a+%
for f(x) = X[k,oo[ (¥), and the rate <ﬁ) for f(z) = (v — K), K € R,

0 <ac< %, when using equidistant time nets. This showed that the reg-
ularity of f has some effect on the Ly convergence rate, at least in these

examples. In general, for a function with fractional smoothness 6 € ]0, 1],

0
the Ly convergence rate is (ﬁ) with equidistant time nets, or ﬁ when

using appropriately adjusted time nets - the ones defined in (3). With cor-
rect choices of function spaces, these results are sharp. See [3] and [8] for
the results in Ly, and [3] for a more extensive overview to the literature on
related results in Ls.

A criterion even stronger than L, is considered in [7]: for Lipschitz con-
tinuous functions f, the error C;(f,7™) has bounded mean oscillation, and

the convergence rate of HC(f, T is HT(")HZ For equidistant nets,

this rate equals \}

_n.
These results form the starting point for [T|. Below they are listed omit-

Msao
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ting some technicalities, and the quantity ¢ > 0 may vary from line to line:

fED() < [[Ci(f, DI, < cll7||2 for any time net 7 (5)
fFeB() <= [Ci(f,ma)ll, <en (6)
fe Bl = ||a (£ )|, <en? (7)

felip < ||IC(f,")lgmo < CH’THO%O for any time net 7

Between Ly and BMO there are L, spaces with 2 < p < oo, and it is natural
to expect some similar results for the L, norm under suitable conditions. The
techniques used in 7] for the BMO norm are still Ly techniques, which rely
heavily on orthogonality - or, more precisely, apply the very Lo techniques
locally (see |T, Appendix|). Interpolation techniques yield some estimates
for the intermediate spaces, but for any sharp results, it was necessary to
develope new techniques. Theorems 1.1 and 1.2 of [T| generalize the results
(5) and (6) to L,, p > 2.

Instead of examining strong convergence rates, we can look for the right
scaling factor for the error so that the limiting distribution is non-trivial,
and observe the properties of the achieved limit distribution. A natural
guess for the factor would be the inverse of the strong convergence rate, but
this leads to trouble. For example, in [9], with equidistant time nets the Lo
convergence rate for f(r) = X(k,co[ () is found to be n~1 (which was later

also verified by (6)), but a limit distribution W% fol[ o2r (th)]zdt

with the scaling factor \/n as formulated in (8). This mismatch between the
convergence rate and the scaling factor is in [9] explained by the fact that
the limit distribution is not L, integrable for the above mentioned example.
In fact, the limit distribution with equidistant time nets is Ly integrable if
and only if f € Dj () (see [3, Theorems 2.3 and 2.6]). Denoting the weak
convergence by =, the results to begin with are thus

is achieved

\/ﬁcl (X[K,oo[a Tn) —

D = W
f€Dia(v) 1 [gQTE(t,Wt)]th €
In [GT] we use non-equidistant time nets to obtain a square integrable limit
distribution for a wider class of functions, and the refinement index for the
time net is the same as the fractional smoothness of f. Moreover, we obtain
conditions under which the limit distribution is L, integrable with p > 2.

12



2 Results

We begin with strong convergence. With the equidistant time nets, Theorem
1.2 of [T] generalizes the Ly result seen in (6) to

fe B ()= lICi(fim)ll, <en s (10)

for p > 2. It thus also provides an alternative proof for (6). For smooth
functions, interpolation between the results in Ly, and BMO yields

f€Dip(y) = [ICi(f, )], < cHTHéO for any time net 7,

as seen in Theorem 1.1 of [T]. We do not know how to deduce the equivalence
as in (5). However, the result is nearly sharp, as we see from (10).

For weak convergence, we employ the non-equidistant time nets defined
in (3). With 0 < 6 < 1 and f € Ls(7), the weak limit of the error at time
t € [0, 1] is computed in |[GT] as

0 -
\/ﬁOt (f’ Tn) — W% I [(l—u)l‘Q%(u,Wu)]Qdu’
where W is an independent Brownian motion. If f € B ,(v), this limit
extends to ¢ = 1 and is L, integrable. Moreover, if p > 2 and f € Bgfgg('y)
for some 0 < e <1 — 0, then the limit is L, integrable.

We can formulate the main results of [T] and [GT] in the following three
theorems, assisted with an Ly result from [3] and [8]. These theorems consist
of implications between strong convergence, weak convergence and fractional
smoothness. In addition, results in [GT| connect the fractional smoothness
of f to the L, convergence of E (f(WW;) | F;) as t — 1, and establish links to
other concepts of fractional Sobolev spaces (see Proposition 3.5 and Remark
3.6 of [GT]).

Let us shorten the notation with the following abbreviation:

(MLP) : On some stochastic basis, there exists a continuous

L, integrable martingale M = (M), ), such that

This abbreviation will be used in context of weak convergence. We consider
the weak convergence on the level of processes, in particular the error pro-
cesses C' (f, T(")) associated with the time nets 7" instead of the random
variables C (f, 7(”)). This we do to obtain the equivalence we are looking
for; we do not know whether the fractional smoothness follows from the weak
convergence of the final error. We denote the weak convergence in C[0, 1] by
==C[0,1]-

For convenience, in the following theorem we use the notation Bj ,(7) :=
Dia(v).

13



Theorem 2.1. Let f € Ly(y) and 0 < 6 < 1. Then the following are
equivalent:

(i) fe ng(V);
(H) (ML2> ; \/ﬁc (f> Tg) :>C[0,1] M; and
(iii) H01 (f, T,‘j)HL2 < cﬁ for some ¢ > 0.

Proof. For the equivalence of (i) and (iii), see [3] and [8]. The equivalence of
(i) and (ii) is included in Theorem 2.1 of [GT]. O

Along with (6), reproduced below, Theorem 2.1 provides a complete pic-
ture in the Ly setting:

fe Bg,w(v) = ||Ci(f, )y, < en~% for some ¢ > 0.

Theorem 2.2. Let f € Ly(y) and 2 < p < oo, and consider the following
conditions:

(1) f S Dl,p(’y);

(17) f € m0<0<1 Bg,oo(7>:

(11) (ML;D) N \/ﬁC’ (f, Tn) :>C[O,l] M, and
(i) [|C1 (f,m)llr, < cﬁ for some ¢ > 0.
Then the following implications hold:

(i) <= (ii) = (iii) = ().

Proof. Theorem 1.1 and Corollary 1.3 of |T| include the implications (i) =
(iii) = (i'). By the Burkholder-Davis-Gundy inequalities,

OF
—(t’ Wt)

11
e <00 (11)

sup
0<t<1

Ly

implies that f € L,(y). Thus (11) is equivalent to (i) by Lemma 4.8 of [T].
Furthermore, (11) is equivalent to

oF oF
%(t, W) — %(0,0)

sup < 00,

0<t«1

Ly

which coincides with the condition given in [GT, Corollary 3.3 (ii)] for Brow-
nian motion and § = 1. O

14



Theorem 2.3. Let 2 < p < oo, f € Ly(y) and 0 < 0 < 1, and consider the
following conditions:

(i) f € By,
(i) (My,) - VnC (£, 7)) =cro M,
(ii") (Mi,) : vnC (f,757) =>cloa) M for any 0 < e <6, and
(iii) [[C1 (f, )l < en~2 for some ¢ > 0.
Then the following implications hold:
(i) = (i) < (iii) = (it").

Proof. The equivalence of (i) and (iii) is proven in Theorem 1.2 of [T]. By
Lemma 4.7 of [T, condition (i) is equivalent to

—o ||OF
sup (1 — t)¥ —(t,W)|| < oc.
0<t<1 x Ly
Corollary 3.4 of |GT] for Brownian motion completes the proof. O

The equivalence of (i) and (iii) in Theorem 2.3 generalizes (6) to L, for
p > 2. The disparity between conditions (ii) and (ii’) in Theorem 2.3 in
comparison with Theorem 2.1 suggests that for an equivalence concerning
weak convergence, one might want to consider Bg ,(7) for some g < oo instead
of BY (7). We formulate this as a conjecture.

Conjecture 2.4. Let 2 < p < oo, f € L,(y) and 0 < 6§ < 1. Then there
exists a parameter 1 < q < oo such that the following condititions are equiv-
alent:

(0 f € By,(),
(IL) (My,) : /nC (f,78) =>cpp1 M, and
(III) HCl (f, Tg)HLP < cﬁ for some ¢ > 0.

A natural first guess for ¢, arising from Theorem 2.1, would be ¢ = 2 or
q = p. Theorem 2.3 shows a close connection, if not quite an equivalence,
between (I) and (II), but for (III), we do not yet have a characterization.
Theorem 5.3 of |T] shows that improvement in the L, convergence rate is
possible with the non-equidistant time nets defined in (3), but it does not
provide a clear connection between the properties of f and the refining pa-
rameter necessary for the optimal convergence rate. This directions remains
open for further research.
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2.1 Examples

We illustrate the obtained results by an example.

Example 2.5. Let —% < a <1 and define

fa(x)::{o,a z <0 '

% x>0
Then, for p > 2:

° if%+o¢>1, then

- fa € Dl,p(ﬁ)/)i
— HCl(fa,’Tn)HLp < ﬁ for some ¢ > 0 depending only on p and «,
— for all A > 0,

P (\cmfa,m)! > %) < @\
nz

for some ¢ > 0 depending only on p and o, and

— for an independent Brownian motion W,

\/EOI (foan) — W

L2 ] © Ly

2
. 1 [ 52
where we ignore the set of measure zero where fo [%TI;(U, Wu)} du

may be infinite;
e if0< %+a< 1, then

lia
- fa 6 BP?’OO (7)}

+
= IC1(fa, ), < ¢ (ﬁ)p with some ¢ > 0 depending only on

1

p and «,
— for all A >0,

P (‘Ol(foan)‘ > %ap) < PP
n 2v

for some ¢ > 0 depending only on p and «, and

16



— for any 0 < 0 < ]l) + «, and an independent Brownian motion W,

\/ﬁcl (faaTg) — WL

LR a2 ] € 1

where  we ignore the set of measure zero  where

IN [(1 —u) 0 CE (y, Wu)] i du may be infinite.
Computations to verify the fractional smoothness of f, are similar to

Examples 5.1 and 5.2 of [T]. The convergence properties follow from the

theorems above, and the tail estimates from Chebysev’s inequality.

Notice that 117 + a = 1 does not imply that f, € Dy ,(7), but only that
fa € Bgm(v) for all 0 < 8 < 1. For fy, we have the jump function, and for
a < 0, the function f, has a singularity at 0. Functions with singularities
are studied more carefully in Section 3 of [GT], pages 14-16.

Figure 4 illustrates how the fractional smoothness 6 decreases when p
increases, for certain functions. The dash curves represent the positions of f3,
fos f% and f, with —% <pB< —]10 and % <a< 1—% in the Besov spaces Bg,oo
for different p > 2 and different 0 < ¢ < 1. Recall that f1 € Bj (7)\D12(7)
for any 0 < 6 < 1, and that fz & L,(7).

112 o
Lz ) |/32,oo o D1,2 |
i i e |
f /// f // f // ! :
g 0 vz : |
/ 4 !
,f A
II ! ’I // ! I
p Y PR
I p+1/2 _1lp+a ! |
Lp Bp,oo Bp © Bp ©o Dl,p |
1 1 | I
: I
| |
| |
| |
|

Figure 4: An illustration of f3, fo, f% and f, when —1 < 8 < —% and

2
%<oz<1—1.
p

For the exponential tail estimates of the weak limit, see Remark 3.13 of

17



|GT|. For an n-Hélder continuous function f, for example,

2

A
> /\) <ce e

P ('Wl S [(Pu)l—e %(%Wu)] * du

0

for all A > 0 with any 0 < # < n < 1, where we ignore the set of measure
2
zero where fol [(1 — ) ZE oy, Wu)} du may be infinite.

Ox2

3 Conclusions

In this thesis, we have obtained close connections between strong conver-
gence, weak convergence and fractional smoothness when approximating
stochastic integrals. These results are restricted to the case of Brownian
integrals, partly including integrals with respect to the geometric Brownian
motion.

Extentions to more general diffusions would be interesting for applications
especially in stochastic finance. The results of |T| seem to be extendable to
the geometric Brownian motion. In [3], the related Ly results are obtained
for diffusions satisfying dY; = o(Y;)dW,, Yy = yo, with some conditions on
o, so that one might expect similar extensions for L,, p > 2. For processes
with jumps, the ongoing research of [5] extends some Ly results of [8] to Lévy
processes.

A natural next step within the Brownian motion setting would be a com-
plete characterization of time nets required for optimal L, convergence rate
as seen in Conjecture 2.4.

In [GT], there are also connections to other concepts of fractional smooth-
ness, for example the one mentioned in [1] related to approximation of
stochastic differential equations. Further study in this direction would extend
the setting beyond the Gaussian case.

The results presented here concern first-order approximations of stochas-
tic integrals. Considering higher orders of fractional smoothness might reveal
interesting convergence properties for higher order approximations.

For more irregular functions, existence of arbitrarily slow L, convergence
rates was shown in [10] when optimized over all deterministic time nets.
In [12|, there is a characterization of functions for which the optimized Lo

convergence rate is ﬁ, and an example where, for a given 0 < 3 < 1, the

optimized convergence rate is n~%. This takes us outside the polynomial scale
of the Besov spaces considered here. Further research on this logarithmic
approach might reveal new connections to L, convergence for p > 2 or even
to weak convergence.
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