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[L4] J. Lehrbäck, ‘Weighted Hardy inequalities and the size of the bound-
ary’, Manuscripta Math. 127 (2008), no. 2, 249–273.



1 Introduction

This thesis is devoted to different aspects of the so-called Hardy inequalities.
We say that a domain (i.e. an open and connected set) Ω ⊂ Rn admits the
(p, β)-Hardy inequality, for 1 < p < ∞ and β ∈ R, if there exists a constant
C > 0 such that

(1)
∫

Ω
|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω
|∇u(x)|p dΩ(x)β dx

holds for every smooth test-function u ∈ C∞0 (Ω). Here dΩ(x) = dist(x, ∂Ω).
Our main interest is in finding both necessary and sufficient conditions for
a domain Ω ⊂ Rn to admit the (p, β)-Hardy inequality.

1.1 History and the basic setting

The origins of inequality (1) trace back to the early 20th century. The first
appearance of a Hardy inequality was, in a rather weak form and without a
proof, in the 1920 note [7] by G. H. Hardy; the main objects of interest in
this note were the corresponding inequalities for infinite series. However, in
the famous 1925 paper [8], Hardy proved that the inequality

(2)
∫ ∞

0

(
1
x

∫ x

0
f(t) dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0
f(x)p dx,

where 1 < p < ∞, holds whenever f ≥ 0 is measurable and, moreover,
that the constant on the right-hand side is the best possible. An excellent
account on the progress leading to inequality (2), illustrating the sometimes
incoherent nature of mathematical discovery, is given in [17].

Inequality (2), often simply called the Hardy inequality, turned out to be
of its own independent interest, and it, together with the many generaliza-
tions, has been studied extensively ever since. The proof of (2) is rather sim-
ple, the only tools needed are integration by parts and Hölder’s inequality.
Exactly the same method can be applied in order to prove one-dimensional
weighted Hardy inequalities (cf. [9, §330]), which can be formulated as follows
(essentially [16, Thm. 5.2]):

Theorem A. Let 1 < p < ∞ and β 6= p − 1. If u : (0,∞) → R is abso-
lutely continuous with limx→0 u(x) = 0 = limx→∞ u(x), then u satisfies the
inequality

(3)
∫ ∞

0
|u(x)|p xβ−p dx ≤

(
p

|p− 1− β|

)p ∫ ∞

0
|u′(x)|p xβ dx,

where the constant on the right-hand side is the best possible.

5



Notice that (3) is equivalent to (2) in the unweighted case β = 0, and also,
related to (1), that here x = dΩ(x) if we take Ω = (0,∞). See the monograph
[18] and the references therein for further developments concerning (3) and
more general one-dimensional inequalities of Hardy type.

By Theorem A, it is justified to say that the domain (0,∞) ⊂ R admits
the Hardy inequality (1) whenever 1 < p < ∞ and β 6= p− 1. On the other
hand, it is quite easy to verify that a bounded interval (a, b) ⊂ R, where
−∞ < a < b < ∞, admits the (p, β)-Hardy inequality only if 1 < p < ∞ and
β < p − 1. These facts completely settle the question of finding conditions
for one-dimensional domains to admit the (p, β)-Hardy inequality (1).

The case of domains in Rn, for n ≥ 2, the one we are dealing with, is
naturally much more involved. The first occurrence of Hardy inequalities
in this higher dimensional setting was due to J. Nečas [23] in 1962, when
he proved, perhaps a bit surprisingly, that for a bounded Lipschitz domain
Ω ⊂ Rn the results are exactly the same as for bounded intervals in R.

Theorem B (Nečas). Let Ω ⊂ Rn be a bounded Lipschitz domain. Then Ω
admits the (p, β)-Hardy inequality whenever 1 < p < ∞ and β < p− 1.

See also Kufner [16] for related results and applications of Hardy in-
equalities. We recall that Ω ⊂ Rn is a Lipschitz domain if for every w ∈ ∂Ω
there exists r > 0 such that ∂Ω ∩ B(w, r) can be represented as (a part
of) the graph of a Lipschitz-continuous function ϕw : Rn−1 → R. The proof
of Theorem B relies heavily on the one-dimensional Hardy inequalities of
Theorem A.

1.2 Uniform fatness and Hardy inequalities

The smoothness of the boundary, as in Theorem B, is however by no means
necessary for a domain Ω ⊂ Rn to admit Hardy inequalities. For more
general domains an important sufficient requirement turns out to be that
the complement of Ω is somehow “fat” enough — as is always the case with
a smooth boundary.

Before being able to state such conditions we need to introduce concrete
ways to measure the size (“fatness”) of a set. One possibility is given by the
concept of capacity. When Ω ⊂ Rn is a domain and E ⊂ Ω is a compact
subset, we define the (variational) p-capacity of E (relative to Ω) as

capp(E, Ω) = inf
{∫

Ω
|∇u|p dx : u ∈ C∞0 (Ω), u ≥ 1 on E

}
.

For the basic properties of the p-capacity we refer to [12]. A closed set
E ⊂ Rn is now said to be uniformly p-fat if there exists a constant C > 0
such that

capp

(
E ∩B(x, r), B(x, 2r)

)
≥ C capp

(
B(x, r), B(x, 2r)

)
6



for every x ∈ E and all r > 0. Actually, here capp(B(x, r), B(x, 2r)) =
C(n, p)rn−p for each ball B(x, r) ⊂ Rn (see e.g. [12]).

There are many natural examples of uniformly far sets. For instance,
the complement of a Lipschitz domain is uniformly p-fat for all p > 1, and
if E ⊂ Rn is an affine subspace of dimension m, then E is uniformly p-fat
whenever p > n −m. Moreover, if E ⊂ Rn is a non-empty closed set, then
E is uniformly p-fat for every p > n.

It is easy to see that if a set E ⊂ Rn is uniformly p-fat and p′ > p,
then E is also uniformly p′-fat. However, it is not easy to see that uniform
fatness possesses the following self-improving property: If a set E ⊂ Rn is
uniformly p-fat for some 1 < p < ∞, then there exists 1 < q < p such that
E is uniformly q-fat. This deep result is due to J. Lewis [19, Thm. 1]; see
also [22] for another proof.

The notion of uniform p-fatness is closely related to Hardy inequalities,
as can be seen from the following theorem by A. Ancona [2] (the case p = 2),
J. Lewis [19], and A. Wannebo [25], dating to the late 1980’s.

Theorem C (Ancona, Lewis, Wannebo). Let 1 < p < ∞ and assume that
the complement of a domain Ω ⊂ Rn is uniformly p-fat. Then Ω admits the
p-Hardy inequality (i.e. (1) with β = 0).

Wannebo [25] proved in fact even more, namely that the p-fatness of Ωc

implies (p, β)-Hardy inequalities in Ω for all β < β0, where β0 = β0(p, n, Ω)
is a (small and implicit) positive number. Actually, it is rather easy to
see that if Ω admits the p-Hardy inequality, then there exists some β0 > 0
so that Ω admits (p, β)-Hardy inequalities whenever |β| < β0 (cf. [5]), but
it is not in general true that the p-Hardy inequality would imply (p, β)-
Hardy inequalities for all β < 0. Taking this into account, we see that the
full result of Wannebo is strictly stronger than the claim Theorem C. It
is worth mentioning that Lewis et. al. defined uniform fatness in terms of
different capacities, but by the well-known equivalence results (see e.g. [26])
all these definitions of fatness turn out to be essentially the same. There is
also a converse to Theorem C in the case p = n, i.e., if Ω ⊂ Rn admits the
n-Hardy inequality, then Ωc is uniformly n-fat, see [2] (p = n = 2) and [19,
Thm. 3]. Results related to this are discussed in the next section.

A more geometric interpretation of fatness can be achieved by means of
Hausdorff contents. Recall that the λ-Hausdorff content of a set E ⊂ Rn is
defined as

Hλ
∞(E) = inf

{ ∞∑
i=1

rλ
i : E ⊂

∞⋃
i=1

B(zi, ri)
}

,

and that the Hausdorff dimension of E ⊂ Rn is then given by

dimH(E) = inf
{
λ > 0 : Hλ

∞(E) = 0
}
.

We say that a compact set E is of p-capacity zero, denoted capp(E) =
0, if capp(E, Ω) = 0 for some domain Ω with E ⊂ Ω. A closed set E
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is of p-capacity zero if capp(E ∩ B(0, k)) = 0 for all k ∈ N. Now the
standard result between capacity and Hausdorff dimension of E ⊂ Rn is that
capp(E) = 0 implies dimH(E) ≤ n− p, and conversely, if dimH(E) < n− p,
then capp(E) = 0 (see e.g. [12]). However, there is also a quantitative version
of this connection (cf. [12]), which leads to the following characterization:
A closed set E ⊂ Rn is uniformly p-fat, for 1 < p < ∞, if and only if there
exists some exponent λ > n− p and a constant C > 0 so that

(4) Hλ
∞

(
E ∩B(w, r)

)
≥ Crλ for every w ∈ E and all r > 0.

For our purposes such conditions in terms of Hausdorff contents turn out to
be fruitful; some indication of this will be given already in the next section.

Let us mention here that uniform fatness is a stronger condition than the
famous Wiener criterion, which guarantees continuity up to the boundary
for A-harmonic functions, that is, solutions of the A-harmonic equation
−divA(x,∇u) = 0, where A : Rn × Rn → Rn satisfies certain structural
conditions (cf. [12]). Indeed, uniform p-fatness of Ωc implies even Hölder-
continuity up to the boundary for A-harmonic functions in Ω (provided
that the boundary values are Hölder-continuous); see [12, Chapter 6] for
precise formulations and further information. In the following we give a
new characterization of domains whose complements are uniformly p-fat,
and so our work might be relevant in terms of such applications as well.

We would also like to remark that general capacity-type characterizations
of V. G. Maz’ja (see for instance [21, Chapter 2.3]) yield necessary and
sufficient conditions for a domain to admit Hardy inequalities. Altough
very useful, these results are of quite a different nature than the above
considerations based on the fatness of the complement, and hence they will
not be discussed here any further.

1.3 Pointwise Hardy inequalities

A new chapter in the development of Hardy inequalities was opened in the
late 90’s, when P. Haj lasz [5] and J. Kinnunen and O. Martio [13] noticed,
independently, that the uniform p-fatness of Ωc not only implies the usual
p-Hardy inequality, but also a stronger pointwise p-Hardy inequality.

Theorem D (Haj lasz, Kinnunen-Martio). Let 1 < p < ∞ and assume that
the complement of a domain Ω ⊂ Rn is uniformly p-fat. Then there exist
some exponent 1 < q < p and a constant C > 0 such that the inequality

(5) |u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|q

)
(x)

)1/q

holds for all u ∈ C∞0 (Ω) at every x ∈ Ω.

If the conclusion of Theorem D holds in a domain Ω we say that Ω
admits the pointwise p-Hardy inequality. In (5) MR is the usual restricted
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Hardy-Littlewood maximal operator, defined by

MRf(x) = sup
0<r≤R

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy

for f ∈ L1
loc(Rn). We remark that the self-improving property of uniform

p-fatness plays a crucial role in the proof of Theorem D.
It is very easy to show, using the maximal theorem (cf. [24]), that if the

pointwise p-Hardy inequality (5) holds for a function u ∈ C∞0 (Ω) at every
x ∈ Ω with a constant C1 > 0, then u satisfies the usual p-Hardy inequality
with a constant C = C(C1, p, q, n) > 0. Hence we conclude that a domain
admitting the pointwise p-Hardy inequality also admits the usual p-Hardy
inequality. However, the pointwise p-Hardy inequality is not equivalent to
the usual p-Hardy inequality, since there are domains which admit the latter
for some p, but where the corresponding pointwise inequality fails to hold.
One example of such a domain is the punctured unit ball B(0, 1)\{0} ⊂ Rn,
which admits the pointwise p-Hardy inequality only in the trivial case p > n,
but where the usual p-Hardy inequality also holds when 1 < p < n (see [KL]
for more details). This same example also shows that, apart from the case
p = n, uniform p-fatness of the complement is not necessary for a domain
to admit the p-Hardy inequality, as the complement of B(0, 1) \ {0} ⊂ Rn

is not uniformly p-fat for any p ≤ n; the failure happens of course at the
origin.

Nevertheless, it turns out that uniform p-fatness of Ωc is not only suffi-
cient, but also necessary for Ω to admit the pointwise p-Hardy inequality.
There is also another very natural sufficient and necessary condition for Ω to
admit the pointwise p-Hardy inequality. Namely, that there exists a constat
C > 0 and some exponent λ > n− p so that

(6) Hλ
∞

(
B(x, 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

We refer to requirements of the type (6) as inner boundary density condi-
tions. All in all, let us combine the above equivalent conditions in a theorem,
which is essentially [L1, Thm. 1].

Theorem 1. Let Ω ⊂ Rn be a domain and let 1 < p < ∞. Then the
following assertions are quantitatively equivalent:
(a) The complement Ωc is uniformly p-fat;
(b) Ω admits the pointwise p-Hardy inequality;
(c) There exists some n− p < λ ≤ n so that Ω satisfies the inner boundary

density condition (6) with the exponent λ;
(d) There exists some n− p < λ ≤ n and C > 0 so that

Hλ
∞

(
Ωc ∩B(w, r)

)
≥ Crλ for every w ∈ Ωc and all r > 0.
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As was already discussed, the implications (a)⇒(b) and (d)⇔(a) were
previously known, whereas (b)⇒(c) and (c)⇒(d) were established in [L1];
a more detailed treatment concerning the constants in assertions (a)–(d)
can be found in [L3].

We mention here that, in the spirit of the pointwise p-Hardy inequal-
ity of Haj lasz and Kinnunen-Martio, the following pointwise version of the
weighted Hardy inequality (1) was introduced in [KL]:

(7) |u(x)| ≤ CdΩ(x)1−
β
p

(
M2dΩ(x)

(
|∇u|qdΩ

β
p

q)(x)
)1/q

,

where again 1 < q < p. We now say that a domain Ω ⊂ Rn admits the
pointwise (p, β)-Hardy inequality if there exist some 1 < q < p and a con-
stant C > 0 so that the inequality (7) holds for all u ∈ C∞0 (Ω) at every
x ∈ Ω with these q and C. As in the unweighted case, the pointwise (p, β)-
Hardy inequality can be easily seen to imply the usual weighted (p, β)-Hardy
inequality.

2 Model examples

New sufficient conditions for Hardy inequalities were established in [KL] and
[L4]. Before going into the general results, let us briefly discuss what can
be expected to hold in some particular domains, which will then work as
model cases for our conditions in the following. By means of these examples
we also hope to make the somewhat technical formulations of our theorems
a bit more accessible and transparent. We let the exponent 1 < p < ∞ be
fixed throughout this section.

First of all, let us record a well-known case for reference:

Example 2.1 (Unit ball). Let Ω = B(0, 1) ⊂ Rn be the unit ball. It then
follows from Theorem B that Ω admits the (p, β)-Hardy inequality whenever
β < p− 1 = p−n + (n− 1). Here n− 1 = dimH(∂Ω). On the other hand, it
is easy to see that Ω does not admit the (p, β)-Hardy inequality if β ≥ p−1.
For instace, we may consider test-functions uj ∈ C∞0 (Ω) with uj(x) = 1
if dΩ(x) ≥ 2−j+1, uj(x) = 0 if dΩ(x) ≤ 2−j , and |∇uj(x)| ≤ 2j+2 when
2−j ≤ dΩ(x) ≤ 2−j+1. Then

(8)

∫
Ω |uj |pdΩ

β−p∫
Ω |∇uj |pdΩ

β

j→∞−−−→∞

if β ≥ p− 1.

We remark that the above functions uj implement a general rule which
says, roughly, that the sequence (|∇uj |) concentrates at the boundary of Ω
whenever the sequence (uj) is “critical” for the p-Hardy inequality, as is the
case in (8). See [20] for the precise statements.
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Now one could ask what happens if we, instead of a domain with a
smooth boundary, like the above unit ball, consider a domain with a highly
irregular boundary, say a fractal like the snowflake.

Example 2.2 (von Koch snowflake). The construction of the usual von
Koch -snowflake curve K is indicated in Figure 1. More precisely, K is the
self-similar invariant set of the iterated function system consisting of the
four similitudes which map the segment [(0, 0), (1, 0)] ⊂ R2 to the leftmost
curve in Fig. 1 — here the “end-points” of all the curves are assumed to be
(0, 0) and (1, 0). Then, using the standard results of fractal geometry (see
e.g. [4]), we easily obtain that dimH(K) = λ = log 4/ log 3.

Figure 1: The construction of the von Koch -snowflake curve

The snowflake domain Ω ⊂ R2 is constructed by joining three copies of
K at their end-points in a suitable way; Ω is then the domain bounded by
these curves, see Figure 3 for reference. We may now consider test-functions
uj ∈ C∞0 (Ω) which have exactly the same properties as the corresponding
functions of the unit ball in Example 2.1 above, but now (8) holds only if
β ≥ p− 2 + λ (notice that here p− 2 + λ > p− 1), meaning that the (p, β)-
Hardy inequality might hold for a larger set of weight exponents β as in the
case of B(0, 1) ⊂ R2, and, indeed, we claim that Ω admits the (p, β)-Hardy
inequality whenever β < p− 2 + λ.

It is not hard to see that if we remove a point, say the origin, from the
ball B(0, 1) ⊂ Rn, then the domain B(0, 1)\{0} admits the (p, β)-Hardy for
all β < p− 1 but for β = p− n = p− n + 0 ; here 0 = dimH({0}). Likewise,
if we remove a point from the snowflake domain Ω of Example 2.2, the new
domain should admit the (p, β)-Hardy inequality for all β < p − 2 + λ but
for β = p − 2. Behavior similar to this is expected even if we remove more
complicated (compact) sets from the domain:

Example 2.3 (snowflake with dust). Consider the snowflake domain Ω of
the previous example, and let I = [a, b] ⊂ Ω be a compact line segment
between points a, b ∈ Ω. Now remove from Ω a standard 1

3 -Cantor set (or
Cantor’s dust), denoted C, obtained from the segment I by first removing
the middle-third interval of I, and then repeating the same progress in the
smaller intervals ad infinitum. Then C is a compact self-similar set of di-
mension µ = log 2/ log 3, and we claim, in accordance with the punctured
unit ball and Example 2.2, that the domain Ω \ C admits the (p, β)-Hardy
inequality for all β < p− 2 + λ but for β = p− 2 + µ.

As all the claims in the previous examples can indeed be verified, there
seems to be a clear pattern: We remove a compact subset E ⊂ Ω of dimen-
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sion µ < λ from a domain Ω which admits the (p, β)-Hardy inequality for
all β < p − n + λ, and we obtain a new domain Ω \ E which admits the
(p, β)-Hardy inequality for all β < p− n + λ but for β = p− n + µ. Let us
now take a look at yet another example.

Example 2.4 (snowflake with an antenna). Let 0 < α < 1/2. We construct
a fractal called the antenna set with an iteration process as in Figure 2, where
α is the “height” of the antenna set A and the “width” of the antenna is 1.
Then A is a self-similar set of dimension µ, where µ is the solution of the
equation 2 ·2−µ + 2αµ = 1, in particular µ > 1 (see [KL] for more details).

Figure 2: The construction of the antenna set with α = 1/4

Now remove a suitably dilated copy of the antenna set of dimension
µ < λ = log 4/ log 3, still denoted A, from the snowflake domain Ω of Exam-
ple 2.2, see Fig. 3. By the previous examples it is expected that the domain
Ω \A admits the (p, β)-Hardy inequality for all β < p− 2 + λ, with the sole
exception of β = p−2 +µ. However, by choosing appropriate test-functions
uj ∈ C∞0 (Ω \ A) supported in a small square below the antenna (cf. [KL]
for similar considerations), it can be easily shown that Ω does not admit
the (p, p − 1)-Hardy inequality either; here p − 1 < p − 2 + µ. We also
remark that the inner boundary density condition (6) holds in Ω with the
exponent µ, but still Ω does not admit the (p, β)-Hardy inequality for every
β < p− 2 + µ.

Figure 3: von Koch -snowfake domain with an antenna set removed

12



3 Sufficient conditions for Hardy inequalities

3.1 Hardy inequalities on domains with a uniformly
dense boundary

The above Example 2.4 shows, among other things, that the density of
the boundary alone is not sufficient for weighted Hardy inequalities. The
problem in Example 2.4 is that even though the boundary of Ω \A is dense
in the sense of (6), with an exponent µ > 1, it appears to be 1-dimensional
from the points below (and near) the antenna, whence we say that the thick
part of the boundary is not visible from such points.

One might then suggest that we should, instead of B(x, 2dΩ(x)) ∩ ∂Ω,
consider in (6) only the x-component of B(x, 2dΩ(x)) ∩ Ω, denoted D(x),
i.e., require that Hλ

∞(∂D(x) ∩ ∂Ω) ≥ CdΩ(x)λ for every x ∈ Ω. However,
a slightly more complicated example from [KL] shows that even such a
condition is not sufficient for Ω to admit the (p, β)-Hardy inequality for
every β < n − p + λ. In the domain of Example 2.4 a similar phenomenon
could be achieved by making small enough “holes” to the antenna.

It turns out that the desired visibility can be formulated in terms of
John curves as follows: We say that w ∈ ∂Ω is in the c-visible boundary near
x ∈ Ω, denoted vx(c)–∂Ω, if w is accessible from x by a c-John curve, that
is, there exists a curve γ = γw,x : [0, l] → Ω, parametrized by arc length,
with γ(0) = w, γ(l) = x, and satisfying d(γ(t), ∂Ω) ≥ t/c for every t ∈ [0, l].
If there now is enough of the c-visual boundary near each x ∈ Ω, for some
fixed c ≥ 1, the domain Ω admits even pointwise Hardy inequalities. This
is the main theorem of [KL].

Theorem 2. Let 1 < p < ∞ and let Ω ⊂ Rn be a domain. Assume that
there exist 0 ≤ λ ≤ n, c ≥ 1, and C0 > 0 so that

(9) Hλ
∞

(
vx(c)–∂Ω

)
≥ C0dΩ(x)λ for every x ∈ Ω.

Then Ω admits the pointwise (p, β)-Hardy inequality whenever β < p−n+λ.

To give a bit more concrete insight into Theorem 2 we mention that if
Ω ⊂ Rn is a uniform domain satisfying the inner boundary density condi-
tion (6) with an exponent λ, then Ω satisfies the visible boundary density
condition (9) with the same exponent λ, and hence admits the (p, β)-Hardy
inequality for all β < p − n + λ. See [KL] for the definitions and precise
statements. As the snowflake domain of Example 2.2 is indeed a uniform
domain and (6) holds in Ω with λ = log 4/ log 3, we conclude that Ω admits
(p, β)-Hardy inequalities for all 1 < p < ∞ and β < p−2 +λ. Likewise, it is
easy to see that (9) holds in the domain Ω\C of Example 2.3 with the expo-
nent log 2/ log 3, and in the domain Ω\A of Example 2.4 with λ = 1, leading
to pointwise Hardy inequalities for β < p − 2 + log 2/ log 3 and β < p − 1,
respectively.
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Thorem 2 can in some sense be considered as a partial extension of
both Theorem B (from smooth to non-smooth domains) and Theorem C
(with an additional accessibility condition). For instance, if 1 < p < ∞
and Ω ⊂ Rn is a uniform domain such that Ωc is uniformly q-fat, for some
1 < q < ∞, we obtain, by combining the knowledge from Theorem 1 with
the previous remark on uniform domains, that Ω admits the (p, β)-Hardy
inequality whenever β ≤ p− q. This is well in accordance with Theorems B
and C.

The main ingredients in the proof of Theorem 2 are a rather standard
chaining argument using the Poincaré inequality on cubes, and estimates
for the shadows of Whitney cubes on the visual boundary with respect to
John-curves; we measure the sizes of such shadows by a Frostman measure
µ supported on the visual boundary.

3.2 Hardy inequalities on John domains

We say that a domain Ω ⊂ Rn is a c-John domain, if there exists some
x0 ∈ Ω so that each x ∈ Ω can be joined to x0 by a c-John curve, as
defined in the previous section. Even though the visual boundary condition
in Theorem 2 is obviously closely related to John domains, it is not true
that Theorem 2 holds for all John domains with a uniformly big boundary,
in the sense of (6); the domain of Example 2.4 works as a counterexample.

However, we were able to prove in [KL] that each simply connected
John domain in the plane admits pointwise (p, β)-Hardy inequalities for all
β < p − 1. This improves on Theorem B, since each bounded Lipschitz
domain is in fact a John domain. More generally, if Ω ⊂ Rn, n ≥ 3, is
a John domain and if in addition Ω is quasiconformally equivalent to the
unit ball of Rn, then Ω admits pointwise (p, β)-Hardy inequalities for all
β < p− 1, see [KL]. In spite of these results on John domains, we presume
that in the case β < p − 1 the visibility of the boundary plays no essential
role, but this question still remains to be more extensively studied.

3.3 Hardy inequalities on domains with a thin part
in the boundary

To deal with the cases where ∂Ω is not dense enough to satisfy the assump-
tion of Theorem 2 we need another concept of dimension, introduced by
H. Aikawa (cf. [1]). When E ⊂ Rn is a closed set with an empty interior,
we let G(E) denote the set of those s > 0 for which there exists a constant
Cs > 0 such that

(10)
∫

B(x,r)
d(y, E)s−n dy ≤ Csr

s

for every x ∈ E and all r > 0. Then the Aikawa dimension of E is de-
fined by dimA(E) = inf G(E). If a set E has a non-empty interior, we set
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dimA(E) = n. When E ⊂ Rn is closed, we always have that dimH(E) ≤
dimA(E) ≤ n, and there are many examples of sets with dimH strictly less
than dimA. However, if E is sufficiently regular, e.g. a compact submani-
fold of Rn or a nice self-similar fractal, then dimH(E) = dimA(E). See [L4]
for details and examples concerning the relations between these different
notions of dimension.

In Theorem 2 the (p, β)-Hardy inequality holds, loosely speaking, be-
cause ∂Ω is fat enough, in particular dimH(∂Ω) > n − p + β. But the
Hardy inequality may also hold if ∂Ω is small, especially we need that
dimA(∂Ω) < n − p + β, as is the case in the following theorems. The
first one, by P. Koskela and X. Zhong, was implicitly contained in [15].

Theorem E. Let Ω ⊂ Rn be a domain, and let 1 < p < ∞. If dimA(∂Ω) <
n− p, then Ω admits the p-Hardy inequality.

A weighted version of Theorem E was then obtained in [L4]:

Theorem 3. Let Ω ⊂ Rn be an unbounded John domain, and let 1 < p < ∞
and β ∈ R. If dimA(∂Ω) < n − p + β, then Ω admits the (p, β)-Hardy
inequality.

Moreover, it was shown in [L4] that, contrary to the unweighted case of
Theorem E, the requirement that Ω is a John domain can not be removed
from the assumptions in the weighted case of Theorem 3. See [L4] for the
definition of unbounded John domains.

The situation with domains having boundary parts of different size, as
in Examples 2.3 and 2.4, is naturally more complicated, and depends, in
addition to the sizes and dimensions of the boundary parts, on the geometry
of the domain as well. Sufficient conditions for Hardy inequalities in such
domains are given in [L4]. Reflecting these conditions to the domain of
Example 2.3, the idea is as follows: Suppose that a domain Ω ⊂ Rn can be
divided into two parts: (i) a “good” part Ωg (the part near the snowflake
curves in Ex. 2.3), where the visual boundary condition (9) holds with an
exponent λ for all x ∈ Ωg (λ = log 4/ log 3 in the example), whence a slight
modification of Theorem 2 yields the pointwise (p, β)-Hardy inequality at
the points x ∈ Ωg for β < p − n + λ; and (ii) a “bad” part Ωb (the part
near the dust in 2.3), with dimA(∂Ωb ∩ ∂Ω) = µ < λ (µ = log 2/ log 3 in the
example). Then the geometric requirement in our condition is that there
exists a constant c ≥ 1 and some x0 ∈ Ωb satisfying the visual boundary
condition (9) with the exponent λ, and such that for each point x ∈ Ωb we
can find a c-John curve γx joining x to x0 in Ωb. Under these assumptions
we are able to conclude that Ω admits the (p, β)-Hardy inequality whenever
p − n + µ < β < p − n + λ. Notice the connection between this result and
Theorem 3.

The case of Example 2.4 is even more sophisticated, as there the domain
Ω \ A can be divided into three different parts based on the behavior with
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respect to Hardy inequalities. Namely, we have Ω1, the good part near the
snowflake boundary, where the pointwise (p, β)-Hardy inequality holds for
all β < p−2+λ, with λ = log 4/ log 3; and Ω2, the part above the antenna A,
with dimA(∂Ω2 ∩ ∂Ω) = µ, the dimension of the antenna; and finally Ω3,
the part below the antenna, with dimA(∂Ω3 ∩ ∂Ω) = 1. Since it is obvious
that the accessibility conditions (as in the above considerations related to
Example 2.3) hold for both Ω2 and Ω3, we infer that Ω admits the (p, β)-
Hardy inequality in the cases p−1 < β < p−2+µ and p−2+µ < β < p−2+λ.

See [L4] for the precise conditions and results in more general domains.
The proofs of these results are again based on a chaining argument and
estimates for the shadows of Whitney cubes with respect to John-curves. In
these estimates the fact that dimA is small is crucial.

4 The dimension of the complement

4.1 Pointwise case

There are not only sufficient, but also necessary conditions for the size of the
complement (or the boundary) of a domain Ω admitting Hardy inequalities.
Examples of such conditions were already given in Theorem 1, where the
p-fatness of the complement and inner density (6) of the boundary, with an
exponent λ > n− p, were shown to be necessary for the pointwise p-Hardy
inequality.

A similar density condition is necessary for weighted pointwise Hardy
inequalities as well. The following theorem was proven in [L3]. Recall that
when x ∈ Ω, we let D(x) denote the x-component of B(x, 2dΩ(x)) ∩ Ω.

Theorem 4. Suppose that a domain Ω ⊂ Rn admits the pointwise (p, β)-
Hardy inequality for 1 < p < ∞ and β ∈ R. Then there exist a constant
C > 0 and some λ > n− p + β such that

(11) Hλ
∞

(
∂D(x) ∩ ∂Ω

)
≥ CdΩ(x)λ

for every x ∈ Ω.

In particular, it follows from Theorem 4 that if Ω admits the pointwise
(p, β)-Hardy inequality, then Ωc satisfies the uniform density condition (4)
with an exponent λ > n − p + β (see [L1] and [L3]), and so the Hausdorff
dimension of Ωc is, even locally, strictly greater than n− p + β. However, in
the weighted case it is not possible to achieve such a nice equivalence as in
Theorem 1 for the pointwise p-Hardy inequality, since the density alone is
not sufficient for weighted Hardy inequalities, as was shown in Example 2.4.

Theorem 4 follows with a rather straight-forward construction if β ≥ 0,
but in the case β < 0 the same idea only leads to a weaker (a priori) density
condition in terms of a Minkowski-type content, where all of the covering
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balls are required to be of the same radius. Nevertheless, it was shown in
[L3] that such a Minkowski-type condition, for some λ0 > 0, yields a similar
condition in terms of the λ-Hausdorff content for all λ < λ0, and so (11)
holds in the case β < 0 as well.

4.2 Self-improvement

The following self-improving property of Hardy inequalities is needed as an
essential tool in the considerations related to the size of the boundary in
the general case. This result, established in [L2], is of course also of its own
independent interest.

Theorem 5. Let 1 < p < ∞ and β0 ∈ R, and suppose that a domain
Ω ⊂ Rn admits the (p, β0)-Hardy inequality. Then there exists ε > 0 such
that Ω admits the (q, β)-Hardy inequality whenever p − ε < q < p + ε and
β0 − ε < β < β0 + ε. Moreover, the constant in all these inequalities can be
chosen to be independent of the particular q and β.

Theorem 5 generalizes earlier results from the unweighted case β0 = 0
by Koskela and Zhong [15] and Haj lasz [5].

There is also another observation in [L2] which is needed for the necessary
conditions of [L4]. Namely, if Ω admits the (p, β)-Hardy inequality, then Ω
admits the (p + s, β + s)-Hardy inequality for all s > 0. In particular, if
β < 0, we may in many occasions replace the original inequality with another
inequality where the weight exponent is positive, so that the distance term
on the right-hand side of (1) is bounded near the boundary, but, importantly,
the quantity n− p + β remains unaltered.

4.3 General case

Theorem 4 gives a rather strict necessary condition for domains which ad-
mit the pointwise (p, β)-Hardy inequality. For the usual Hardy inequality (1)
the possibilities are much more varied, but there are nonetheless some re-
quirements for the size of the complement — which actually are realized as
requirements for the dimension of the boundary in the case where (a part
of) the complement has an empty interior. Again, the following theorems
from [L4] are generalizations of unweighted results from [15]. To begin with,
let us state a global dichotomy result for the dimension of the complement.

Theorem 6. Let 1 < p < ∞ and β 6= p, and suppose that a domain Ω ⊂ Rn

admits the (p, β)-Hardy inequality. Then there exists δ > 0, depending only
on the given data, such that either dimH(Ωc) > n−p+β +δ or dimA(Ωc) <
n− p + β − δ.

Recall here that always dimH(Ωc) ≤ dimA(Ωc). Such a dichotomy for
the dimension of the complement also holds locally, in the sense of the next
theorem.
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Theorem 7. Let 1 < p < ∞, β 6= p, and assume that a domain Ω ⊂ Rn

admits the (p, β)-Hardy inequality. Then there exists δ > 0, depending only
on the given data, such that for each ball B ⊂ Rn either

dimH(4B ∩ Ωc) > n− p + β + δ

or
dimA(B ∩ Ωc) < n− p + β − δ.

The requirement β 6= p is really needed in the preceding theorems, as
an example from [L4] shows. Notice however that this requirement is only
relevant in the case where the domain Ω is unbounded, since a bounded
domain Ω can not admit the (p, β)-Hardy inequality for any β ≥ p. To see
this, it suffices to consider functions uj as in Example 2.1.

We immediately obtain from Theorem 7 that if the complement Ωc has
an isolated part of (Hausdorff or Aikawa) dimension µ < n, then Ω can not
admit the (p, p − n + µ)-Hardy inequality. Especially, the domain Ω \ C
of Example 2.3 can not admit the (p, p − 2 + µ)-Hardy inequality for µ =
dimH(C) = dimA(C) = log 2/ log 3. As we already observed that Ω \ C
admits the (p, β)-Hardy inequality for every β < p−2+µ and every p−2+µ <
β < p− 2 + λ, with λ = log 4/ log 3, all the claims of this example are now
justified. Likewise, the domain Ω \ A of Example 2.4 can not admit the
(p, p−2+dimH(A))-Hardy inequality, and so this domain admits the (p, β)-
Hardy inequality for all β < p−2+log 4/ log 3, but for β = p−2+dimH(A)
and β = p− 1.

5 Final remarks

We have seen that the different forms of Hardy inequalities and the size
and geometry of the boundary have an intimate connection for domains of
the Euclidean space Rn. In the light of our theorems and examples a full
geometric characterization of domains admitting the (p, β)-Hardy inequality
seems to be slightly beyond our reach, or at least such a characterization is
destined to be of a rather complicated nature. Still, the necessary and suffi-
cient conditions introduced in the previous sections complement each other
in quite a nice way, and offer many possibilities to determine in concrete ex-
amples the values of p and β for which a domain admits Hardy inequalities,
as the considerations related to Examples 2.2 – 2.4 show.

Even tough we have restricted ourselves to the case of domains in Rn,
our techniques do not rely on the special characteristics of Euclidean spaces.
Indeed, all of our main tools, including Poincaré inequalities, chaining ar-
guments using Whitney-type cubes, the different notions of dimension, and
even the self-improving property of p-fatness (see [3]), are available also in
the more general setting of a metric measure space (X, d, µ), under some

18



assumptions on the geometry of X and the measure µ. More precisely, in
order to be able to develop the basic machinery of analysis, one usually
has to presume that the space (X, d, µ) supports a Poincaré inequality and
that the measure µ is doubling. Natural examples of such metric spaces —
and substantially different from the Euclidean spaces — are the Heisenberg
groups. We refer to [6], [10], the excellent survey [11], and the references
therein for more information about the analysis on metric spaces.

Hardy inequalities have already been studied in metric measure spaces
to some extent. For instance, Theorem C (cf. [3]), a converse to Theorem C
(cf. [14]), and the theorems of [15] hold in suitable metric spaces. As it
now seems that at least most of our results can be transferred into metric
measure spaces with a reasonable amount of effort, we hope that our work
provides one small tool for the further development of analysis in this more
general setting as well.
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