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Abstract

This work considers scatter and shape estimators, especially those based on the
concepts of spatial sign and rank. A new family of scatter estimators, symmetrized
M-estimators of scatter, is introduced. These have the so called independence
property which in turn is required in the new solution to the independent compo-
nent problem also introduced in this work. Some applications of scatter matrices
in multivariate hypothesis testing are considered, and some robustness and effi-
ciency properties of the suggested methods are studied.
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Chapter 1

Introduction

In classical multivariate statistics the covariance matrix plays a key role. Its simple
form and good properties make it an extremely powerful concept but it is not
completely without flaws. The main shortcoming is that the sample covariance
matrix, the regular estimate of covariance, is extremely sensitive to errors in
data. Moreover, the covariance matrix does not even exist for very heavy tailed
distributions. For these reasons alternative measures and estimators of covariation
in the multivariate setting are needed.

This thesis considers scatter and shape matrices and their use in multivariate
problems. The methods presented are mainly based on the concepts of spatial
signs and ranks which are of nonparametric nature. Most of the theory is derived
under the elliptical model, a large family of distributions containing as an im-
portant special case the normal distribution but also distributions with naturally
occuring extreme values. Robustness properties are therefore also of interest.

In this thesis a new family of multivariate scatter estimators, the symmetrized
M-estimators of scatter, is introduced. The estimators of this family have the
so called independence property which means that the estimators are diagonal
whenever the marginal distributions are independent. These estimators do not
need any auxiliary location estimator which also motivates their use. Scatter
estimators with the independence property are in turn a prerequisite to a new
solution to the independent components problem also presented in this thesis.

Scatter matrices are also considered in the context of hypothesis testing in the
multivariate setting as a means to create affine invariant spatial sign and rank
tests of location and independence. Further, sphericity tests based on spatial sign
and rank scatter matrices are considered. Asymptotic results for the introduced
estimators are found and comparisons to existing methods are done via analytic
efficiency studies and small sample simulations.

The rest of this introductory part is divided into three parts. In Chapter 2 the



basic definitions for the scatter and shape matrices and the multivariate mod-
els considered are given as well as some discussion. Robust and nonparametric
methods especially in the scatter estimation and tools to compare estimators in
this context are considered in Chapter 3. Finally in Chapter 4 some applications
of the scatter and shape matrices, in particular the new method for independent
components analysis, are presented.



Chapter 2

Multivariate data and scatter matrices

Multivariate data are more than just several measurements bundled together.
Covariations and dependencies between individual, univariate random variables
are crucial to any inference based on multivariate data. If they are ignored results
become flawed or difficult to obtain. More importantly, the existence and nature
of the interactions is often the object of interest. Therefore, describing these
interactions is at the heart of multivariate statistics.

2.1 Covariance matrix and the normal model

Mathematically, describing the complete distribution of the random vector de-
scribes also the covariances of the marginal random variables completely. By far
the most important model for multivariate data is the normal model, described
by the gaussian density

fla) = det2ns) P exp (-4 - @S - ),

where p = E[x] is the mean vector and

Y =E[(x-p)(z—p)]

is the covariance matrix. For discussion of the reasons for this see for example
Anderson (1984). The diagonal elements of ¥ give the variances of the marginal
random variables and its off-diagonal elements give the covariances of all pairs of
marginals.

Under the normal model the mean vector and the covariance matrix describe the
distribution completely. Also in the case of a general multivariate distribution
the covariance matrix is useful. Although it does not tell everything about the



dependencies between the marginals it is still closely related to the general shape
and scale of an observed data cloud. This is visualized in Figure 2.1. The top left
plot shows realisations from a bivariate normal distribution, and the top right
plot from a distribution with independent Laplace distributions as marginals,
both having the identity matrix as covariance matrix. The bottom row shows
realisations from distributions that are linear transformations of the ones corre-
sponding to the top row, the same transformation for both sides. The solid line
in each plot shows the equal density contour corresponding to the 0.9 quantile,
that is, 90 percent of the probability mass is contained inside that contour.

The plotted contours on the left and right hand sides look different but are still
similar because of the similar structure behind them. Another way to explain this
similarity is that, in fact, the distributions corresponding to the bottom row plots
also have a common covariance matrix. This is because the covariance matrix is
affine equivariant: if y is an affine transformation of x, or formally y = Ax + b,
then the covariance matrix of y is related to the covariance matrix of  through

Yy = AX AT

Besides affine equivariance the covariance matrix has other good and strong prop-
erties. It is additive: the covariance matrix of the sum of two independent random
vectors is simply the sum of the individual covariance matrices. This is a key prop-
erty in the analysis of variance component models, see for example Searle et al.
(1992).

Another property that is interesting is the fact that the covariance matrix is
diagonal when the marginals are independent. In the following this is called the
independence property. The converse does not hold in general: diagonality of the
covariance matrix does not imply the independence of the marginals. This is easy
to see by considering the bivariate uniform distribution in the unit square and
its rotations which clearly do not have independent marginals. The covariance
matrix remains diagonal because of the orthogonal multiplying matrices. The
normal model is once again a special case, as the marginals of a gaussian random
vector with a diagonal covariance matrix are always independent.

2.2 Scatter and shape matrix functionals

A general scatter matrix functional is now defined as a kind of generalization of
the covariance matrix: roughly speaking, a matrix valued functional operating on
random vectors is called a scatter functional if it is affine equivariant. Formally,
let  be a random p-vector and y = Ax + b its affine transformation where A is



Figure 2.1: Simulated data to illustrate the connection of the covariance matrix
and the shape of the observed data cloud
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a non-singular p X p matrix, and let C(-) be a positive definite symmetric matrix
valued functional. Then C(+) is a scatter functional if it holds that

O(y) = A C(z)AT

for all such @, A and b. This requirement alone is enough to ensure that the
functional reflects the dependencies between the marginals, or, justifying the
name, how observations of the marginal random variables are scattered together.
For the covariance matrix the affine equivariance holds for any transformation,
even non-singular and non-square matrices, but here it is only required within
this restricted group.

A concept closely related to the scatter matrix functional is the shape matrix:
the definition of a shape matrix functional is the same as that of a scatter matrix
functional but the affine equivariance is required only up to a constant. More
precisely, if

V(y) oc A V(z)AT

holds for any affine transformation as above then V(-) is a shape matrix func-
tional. What may be lost compared to the scatter matrix functional is consistent,
information on scale. However, for many applications only the shape information
is enough. For example, principal components analysis as a method to reduce the
number of variables in data only requires information on the order of the principal
components and the relative magnitudes of their variances. For this, information
about shape is enough, see for example Salibidn-Barrera et al. (2006).

Obviously any scatter functional is also a shape functional but some are inher-
ently shape functionals only. Tyler’s (1987) M-estimator, for example, is defined
as a solution to an estimating equation and this solution is unique only up to
a constant. Therefore an additional restiriction is imposed on the scale, namely,
that the trace of the matrix is p, equal to the number of dimensions. A similar
restriction is common when shape functionals are considered, for example the
requirement that the (1,1)-element is equal to one (e.g. Hallin and Paindaveine
2006) or that the determinant of the matrix is equal to one (e.g. Article C of this
work). Paindaveine (2007) called the shape defined through the restriction of de-
terminant canonical because only that makes the shape and scale asymptotically
independent under the elliptical model (defined in the following).

Sometimes it is reasonable to scale a genuine scatter functional in a way described
above (see for example Article B). Clearly, the resulting functional is a shape
functional.

11



2.3 Elliptically symmetric distribution family

The multivariate normal model can also be generalized. The density function of
a gaussian random variable can be described by its contours which are cocentric
ellipsoids centered at the mean vector and whose shape is given by the covariance
matrix. Now, a random vector & with a density function of the form

fl) = det(2) g (@ — p) 'Sz — p)),

where ¢ is a non-negative function on R such that integral of g(xz’x) over RP
is equal to one, belongs to the elliptically symmetric distribution family. The
contours of such a density function are again cocentric ellipsoids centered at p
and with shape and scale given by X which is called here the scatter parameter.
For early appearances see Maronna (1976) and Huber (1981, Section 8.4).

The generalization with respect to the normal model is in the function g which
gives the relative distances of the equal density contours from each other. If ¢
is such that x has first moments then the location parameter p is equal to the
mean vector and if & has second moments then the scatter matrix parameter X
is proportional to the covariance matrix. Because of this > can also be called the
pseudo-covariance matrix.

Without further restrictions the parameters for a given distribution are ambigious
as scale changes of the function g and the scatter matrix 3 can mask each other.
This ambiguity can be avoided by restricting the function g in a suitable way. It
is also possible to consider only shape, or in other words, to restrict the scale of
the scatter parameter for example in one of the three ways explained in Section
2.2. The resulting unique matrix is naturally called a shape parameter.

A special subset of this family consists of the centered and spherically symmet-
ric distributions, that is, the ones with a scatter parameter proportional to the
identity matrix, with origin being the symmetry center, i.e. the location param-
eter. Within this restricted model it is possible to divide the random vector x
into two independent parts, its norm r = ||z|| and its direction vector r~'z. In
fact, the whole elliptically symmetric family is generated by all affine transfor-
mations of spherically symmetric distributions. Conversly, it is always possible
to "re-transform” an elliptically symmetric random vector into a centered and
spherically symmetric random vector by another affine transformation: if  has
Y. as its scatter parameter and p as its location parameter, then

A7z — p),

where A is any matrix for which it holds AA” = X, is spherically symmetric with
respect to the origin. Note that since there are several affine transformations of

12



a spherically symmetric random variable that have the same distribution, or in
particular the same scatter parameter, the standardizing matrix A in the above
equation is not unique. In this work the symmetric and positive definite square
root is always used. It is denoted and defined by

A =UTLU

where L is a diagonal matrix of the square roots of the eigenvalues of A and U
is the matrix of corresponding eigenvectors. The Cholesky decomposition is also
applicable and used in the literature.

2.4 Independence and I1C-model

It was mentioned earlier that the covariance matrix has the independence prop-
erty. Independence of the marginals does not guarantee the diagonality of a gen-
eral scatter matrix functional, though. The diagonality of a scatter matrix func-
tional also does not guarantee that the marginals are independent. The covariance
matrix under the normal model is an exception: the marginals of a gaussian ran-
dom vector are independent if and only if its covariance matrix is diagonal. In fact,
among the spherically symmetric random vectors the only one with independent
marginals is the gaussian random vector.

With these points in mind it is possible to construct another group of multivariate
distributions, the one generated from distributions with independent components
(marginals) by affine transformations. More formally, these distributions have
densities of the form

f(x) = |det(A \ng (Az)Te;),

where ¢g;, i = 1,..., p, are univariate density functions, A is a non-singular p X p
matrix and e; is the ith basis vector (x”e; is thus the ith element of x). This is
called the independent components (IC) -model.

Suppose that a random vector y has independent components and that © = A~'y
and further assume that C(-) is a scatter matrix functional. It then holds, by
definition, that

Clx)=A"CHy)A ) =S

However, an affine transformation z = B~'x where B is such that BBT = S will
not necessarily have the same distribution as y nor even independent components.
This means that, unlike in the elliptical family, it is not possible to re-transform

13



a general member of this family to the generating sub-family using only a scatter
matrix functional. The reason for this is that, using the above notation, C(y)
is not necessarily diagonal while C(z) is. Even if C(-) had the independence
property the components of z could still be dependent.

Finding the "original” independent components in the above situation is the cen-
tral question in independent component analysis, or ICA, which is considered in
Chapter 4.2 and in Article A. It turns out that under certain assumptions two
different scatter matrices can be used to solve this problem, provided that they
both have the independence property.

14



Chapter 3

Robust and nonparametric multivariate methods

Many classical multivariate methods are based on the sample covariance matrix.
Examples of these are the generalized T?-statistic for testing hypotheses about the
mean vector, multivariate analysis of variance, principal components analysis and
canonical correlation analysis (see Anderson 1984). These methods are usually
optimal when the data are from the normal model. The problem is that the
sample covariance matrix, the classical estimate of covariance, is very sensitive
to errors in the data and miss-specification of the model. This causes also the
methods based on the covariance matrix to be unreliable in those cases.

Methods that work correctly even when data contains erroneous and/or extreme
observations are called robust. Robust scatter estimation usually involves some
kind of downweighting of the most extreme observations. Methods that do not
make specific assumptions about the distribution of the data, such as assuming a
fixed distribution, up to a finite set of unknown parameters, are called nonpara-
metric. Nonparametric scatter estimation considered in this work uses concepts
of spatial (multivariate) signs and ranks. In both cases it is also hoped that the
methods do not lose too much of the good properties of the classical methods,
for example with respect to efficiency.

3.1 Influence function, breakdown point and efficiency

Influence function (see Hampel et al. 1986) is a way to measure the effect of a
single observation on an estimator given in a functional form. It is defined as

IF(2: T, F) = lim 00 = T(F)

e—0 €

where T'(F') means the value of the estimator functional of interest on a given cdf
F and T(F.) its value on a contaminated distribution

F.=(1—¢)F + €,
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where in turn d, is the cdf of a degenerate distribution for which it holds P(z) =
1, that is, the Dirac d,-measure. In other words, the influence function of an
estimator is its functional derivative to the direction of a degenerate random
vector. It tells the standardized effect on the value of the estimator when a single
new observation is introduced at z.

A robust estimator is desired to have an influence function that is continuous and
bounded. Continuity implies that small shifts in data have only small changes in
the estimator. Boundedness implies that no new observation, regardless of how
extreme it is, is going to have an arbitrary large effect on the estimator. In this
work influence functions are considered in Article B where the influence function
of a general symmetrized M-estimator is derived.

Boundedness of the influence function is loosely connected to another measure of
robustness, the breakdown point (see again Huber 1981). Roughly speaking, it is
the proportion of the data that can be corrupted without completely corrupting
the estimator based on such data. More precisely, let T" be an estimator and x;,
t=1,...,n, a data set. Next, let ] be as the previous data set but with m first
vectors changed to arbitrary values. Then the finite sample breakdown point is

max {m : su*p{d(T(azl, @y, T(x], ... x))) < oo}} /n.

T

where d(-,-) is a suitable metric, relating to the performance of the estimator
on the contaminated data with respect to the original data. For vector valued
location estimators this metric can be the ordinary euclidian distance. For scatter
matrices this metric is usually the largest eigenvalue or the inverse of the smallest
eigenvalue, which ever is larger, of the matrix 7-17*, where now 7T stands for the
value of the estimator on the original data and 7™ its value on the contaminated
data. Breakdown of scatter matrices, though, is not as simple as that of e.g.
location, see Davies and Gather (2005).

The breakdown point is then the limit of the finite sample breakdown point as
the sample size n tends to infinity. It is now easy to see that if the influence
function of an estimator is not bounded its breakdown point is equal to zero. A
robust estimator naturally should have a high breakdown point.

Both the influence function and the breakdown point consider the estimator’s
ability to whitstand errors in the data. Error resistant methods inherently do
not “trust” the data completely. So in a situation where there are no errors any
inference based on a robust estimator will very likely be less reliable than inference
based on a classical estimator, that is, such that assumes a fixed model and that
it is the correct one for all data. For hypothesis testing the asymptotic relative

16



efficiency, or Pitman efficiency, is a common way to measure this difference (see
for example Lehmann 1998). The relative efficiency of a test as compared to a
reference test is often defined as the ratio of the sample sizes needed to achieve the
same size « and the same power 1 — (3 for a fixed alternative. For chosen values
of @ and (3, the limit of this ratio, as the alternative is approaching the null
hypothesis at a correctly chosen rate (often 1/y/n) is then the Pitman efficiency
(if it exists). The reference test is often a classical parametric test based on mean
vector and covariance matrix, or similar.

Asymptotic relative efficiency of estimators can also be defined in a similar man-
ner, now the equal performance is defined as the estimators having values in a
certain neighbourhood of the true value with equal probability. The comparison
with large sample sizes requires that the estimators to be compared are consistent
with the same convergence rate (often 1/4/n) and have limiting normal distribu-
tions. The asymptotic relative efficiency to compare univariate estimators is then
simply the ratio of asymptotic variances of the estimators.

In the case where the estimator is inherently multivariate the efficiency of all
marginals need not be the same. For example the scatter matrix estimators con-
sidered in this work are such that, in the spherically symmetric case, the efficiency
of estimation of the diagonal and off-diagonal elements are different. However, the
efficiencies of the shape estimators considered can be described by the off-diagonal
limiting variances only. This is considered in detail in Article B, where the form
of the limiting distribution of scatter estimators in the introduced family of sym-
metrized M-estimators is found. The efficiencies of certain examples of shape
estimators based on those scatter estimators are also computed. Efficiencies of
sphericity tests are computed in Article C.

3.2 Spatial signs and ranks

Using the signs and ranks of the observations instead of the original observations
is a well known way to implement nonparametric methods in the univariate case,
see for example Lehmann (1998) and the references given in its preface. These
ideas can be generalized to the multivariate case as well but it is not always very
straightforward as there is no natural ordering in the multidimensional space.

The most obvious way to generalize the univariate sign is to use marginal signs
to produce vectors with values 1 and —1. These have been used (see Puri and
Sen, 1971) but there are problems, most notably the fact that such sign vectors
are not affine equivariant, nor even rotation invariant. Using marginals of the
observations as univariate observations measured simultaneously also ignores the

17



idea underlined in the beginning of Chapter 2, that multivariate data is not a
collection of the marginal data.

A better way to generalize the univariate signs to the multivariate case becomes
obvious if the univariate sign function is written as sign(z) = |z|~'x. Interpreting
the absolute value as the univariate euclidian norm naturally suggests that the
spatial sign function is

x
U(x) = 7,
]
with the convention 0/0 = 0. Spatial sign vectors are thus unit vectors (cf.

the division of a spherically symmetric vector to its length and direction vector,
page 12). However, this definition still does not lead to affine equivariant signs
although rotation equivariance, that is, equivariance with respect to orthogonal
transformations, is obtained. The spatial rank function is now defined under a
given distribution F' by

R(z) = Ey[U(z — y)),

where vy is distributed according to F' and similarly, the signed rank function
1
Qz) = 5E,[U(z —y) +U(z +y)|

See also M6ttonen and Oja (1995). When these functions are applied to a sample
of observations and the empirical distribution function the sign, rank and signed
rank vectors of the data are obtained. Both rank functions correspond to their
univariate counterparts through the fact that the univariate ordinary rank is the
sum of signs of pairwise differences (when the sign of zero is taken to be one).

In the sample case a related concept, the set of symmetrized signs is defined by
US(.’BZ‘, .’Bj) = U(.’Bz - w]’), Z,j = 1, Lo, n.
It is then possible to write

R(z;) = ave;{U*(zi, z;)},
(ave {U*(zi, x;)} + ave,{U* (i, —x;)})/2

<
8
I

for the sample spatial ranks and signed ranks. Methods suggested and considered
in Article C and Article D rely completely on these four transformations of the
data.

18



3.3 Robust and nonparametric scatter and shape
estimation

All of the data transformations introduced in the previous section can be used to
create analogies of the covariance matrix. These are the spatial sign covariance
matrix

SCov(z) = E[U(x)U(x)"],

the symmetrized spatial sign covariance matrix
SSCov(x) = E[U® (x, 2" \U® (x,x')7],
where x’ is an independent copy of x, the spatial rank covariance matrix
RCov(zx) = E[R(z)R(x)"]
and the signed rank covariance matrix
SRCov(z) = E[Q(x)Q(x)"],

with sample versions obtained by replacing the expectation with the average over
the sample (and the two copies of the random vector in the case of the sym-
metrized spatial sign covariance matrix with pairs of observations). All of these
are in fact U-statistics as the average is over either the observations themselves
or pairs or triplets of them. With the sign covariance matrix and the signed rank
covariance matrix it is implicitly assumed that the location is known and equal
to the origin, otherwise they have to be combined with a location estimator. See
Visuri et al. (2000).

As the sign and rank transformations are not affine equivariant, neither are the
covariance matrices based on them and so they are not scatter or shape matrix
functionals. However, when the distribution is spherical all of these matrices have
expected values proportional to the identity matrix. Therefore they can be applied
in the context of sphericity testing. This is thoroughly studied in Article C.

It is possible to suggest shape matrix estimates related to each of the covariance
matrices above by an implicit equation. For the sign covariance matrix this is (in
the sample form, the function form is obtained by replacing the average by the
expectation)

1

ave {U (V22 UV g} = =1,

p
This is to say that the estimated shape matrix is the one that standardizes the
data so that the signs of the standardized data appear to be "uncorrelated”, or in
other words the sign covariance matrix of the standardized data is proportional
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to the identity matrix. The scale of any possible solution matrix V' is ambiguous
in this equation. Therefore this equation does not constitute a scatter matrix but
it is quite clear that a solution, if any exist, together with a restriction to fix its
scale is a shape matrix.

A solution to this particular equation does exist and is known as Tyler’s M-
estimate (Tyler 1987). Tt is found by an iterative algorithm suggested by the
equation. It is a special case of general M-estimates of scatter (with location
known to be the origin, the original form in Maronna (1976) has two simultaneous
equations, one for location and another one for scatter) are defined as solutions
to equations of the form

ave {w(HV’l/QwiH)U(V’l/Zwi)U(V’UZwi)T} x I,

where w is some fixed weight function. Tyler’s M is thus obtained by choosing
w(r) =1.

The shape estimator corresponding to the symmetrized spatial sign covariance
matrix also exists, it is known as Diimbgen’s (1998) estimator. It is now possible
to suggest a family of estimators such that Diimbgen’s estimator is a similar
special case of it as Tyler’s M is a special case of the M-estimators. This family,
symmetrized M-estimators of scatter, is suggested and studied in Article B. They
are defined as solutions to equations of a similar form as the regular M-estimators
but with signs of the pairwise differences of the observations instead of the signs
of the original observations.

The symmetrization makes it unnecessary to know the location of the original
observations because the pairwise differences are always located at the origin.
What is more important is the fact that symmetrized M-estimators of scatter all
have the independence property which is not true for the ordinary M-estimators
of scatter and generally overlooked in the literature. The independence property
makes it possible to use the symmetrized M-estimators of scatter in independent
component analysis, see Section 4.2.

The existence of the scatter estimates corresponding to the rank and signed rank
covariance matrices in the general non-elliptic case is uncertain. This is discussed
in more detail in Article C. Studying the so called k-step versions of these is on
the other hand feasible. It is possible to start with an estimator whose properties
are known and apply an iteration step of the form

Vi Vklﬁ ROOU(Vkill/Qw)Vklﬁﬁ

scaled as chosen, which is similar to the one used to find Tyler’s or Diimbgen’s
estimators. The result after a finite number of steps is an estimator whose prop-
erties are fairly easy to find. In practice, this sequence appears to converge after a
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relatively small number of steps and to a consistent value regardless of the start-
ing point. The properties of this hypothetical limit would most likely be very close
to those of a corresponding k-step estimator. The independence property is again
of particular interest. If the initial estimator has it, so do all k-step estimators in
the iteration sequence of the form given above.
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Chapter 4

Applications of sign and rank covariance matrices

In addition to their immediate use in describing the data, the spatial sign and
rank covariance matrices and their affine equivariant counterparts can now be
applied in several ways. In the following a brief introduction of the methods
considered in this work is given. For further reviews on such methods see also
Marden (1999a), Mottonen and Oja (1995) and Oja and Randles (2004).

Many of the methods presented here are implemented in the R-package SpatialNP
(available at CRAN, http://cran.r-project.org). The contents of the package
is thoroughly discussed and examples of use are given in Article D.

4.1 Affine invariant nonparametric tests of location and
independence and testing of sphericity

A straightforward way to suggest nonparametric tests is to modify an existing

classical test by replacing the observations with their signs or ranks. For ex-

ample, the classical Hotelling’s 7% (Anderson 1984) test statistic for location is

constructed by noting that, under the null hypothesis that true location (the
mean vector) is the origin,

vnave{z;} —4 N,(0, B),

where B is the covariance matrix of a;. Under the null hypothesis the squared
norm of the average vector & then has a limiting non-central x? distribution and
when standardized using the sample covariance matrix

B= ave{z;x} }

it holds that R N
(B~22)"(B~22) —a X (p).
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This statistic is affine invariant. If now the data is replaced with their spatial signs
U(x;) and the sample covariance matrix by the sample spatial sign covariance
matrix SCov a test statistic with the same y? distribution is obtained but it is
not affine invariant.

The remedy for the lack of affine invariance is to first standardize the data such
that the resulting sign covariance matrix is already, and more importantly, affine
invariantly equal to the identity matrix. The test statistic is thus

npllave{U (z:)}|* —a x*(p)

~

where z; = V~"/“x; where in turn V is Tyler’s shape estimated on x;. The same
kind of location test can be done with signed ranks and the corresponding shape
estimator. Further, this method of inner standardisation can be used to find affine
invariant nonparametric test of independence similar to the classical Wilks (1935)
test, see Taskinen et al. (2003).

—-1/2

As stated above, the spatial sign and rank covariance matrices are proportional
to the identity matrix when the data come from a spherical distribution. This
fact can be utilized to construct a test for sphericity, or, more generally a test
for null hypothesis of the shape parameter being equal to a given matrix. The
latter can always be returned to the former by transforming the data according
the hypothesized matrix such that under the null the transformed data comes
from a spherical distribution. These tests are considered in Article C.

Each of the four sign and rank covariance matrices constitutes a different test.
Each test also gives another view to the four shape matrices based on spatial
signs and ranks, Tyler’s M, Diimbgen’s estimator, shape based on spatial ranks
and shape based on spatial signed ranks: the shape estimate is the matrix which
receives the highest p-value when a corresponding test with that matrix as the
null value is performed. In other words the estimate of shape is the one that is
least prone to rejection or fits the data best in the light of the test.

4.2 Independent component analysis based on two scatter
matrices

Independent component analysis, or ICA, considers a setting where unknown
independent random variables, usually called sources in this context, are mixed
by an unknown linear mixing, the result of which is observed. The problem is then
to find the original sources, or equivalently, the unmixing linear transformation.
ICA is then one way to do blind signal separation, that is, to find a set of signals
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behind observed data that can be considered "unmixed” in some sense, without
much information on what these signals are. Principal components analysis is
another example. The difference between the two is that in PCA one wishes
to find uncorrelated components that successively explain as much of the total
variance as possible. Uncorrelated components can still be dependent, so ICA
requires more while on the other hand variance is of no importance.

There are some points that any ICA-method has to take into account. It is never
possible, without some technical restrictions, to find exactly the original sources.
This is because permutations and rescalings of the sources retain their indepen-
dence. So, if P is a permutation matrix and D is a diagonal matrix it holds
that

As = (AP'D ') (DPs) ==z

and there is no way to choose between s and DPs when only a is observed.
Another point is that an orthogonal transformation of two independent gaussian
variables with equal variances are still independent. This means that if there are
more than one gaussian source they cannot be unmixed except up to a rotation.

Many existing ICA-algorithms are based on the following idea: a linear combina-
tion of two independent non-gaussian random variables is "more gaussian” than
either one of them. This is justified by the central limit theorem. Starting with
the observed mixed components the linear combination that is "least normal”
then should be one of the original sources. The optimization is then repeated in
the remaining orthogonal space, until only one (possibly gaussian) component
remains.

This idea requires some measure of gaussianity. FastICA, a popular method pro-
posed by Hyvérinen et al. (2001), chooses entropy, since the normal distribution is
the one with maximal entropy when first two moments are fixed. FastICA thus in-
volves a gradient based optimization that minimizes entropy. InfoMax proposed
by Adah et al. (2004), in short, aims to maximize the mutual information of
separated sources which happens when the sources are independent. Not every
algorithm uses optimization, though. For example FOBI (Cardoso, 1989) algo-
rithm is based on fourth order moments, leading to kurtosis as the separating
measure.

In this work a new method for ICA is proposed. This method does not rely on
optimization of non-gaussianity but on the properties of scatter matrices and the
sources themselves. Suppose that S; and Sy are scatter matrices and that both
have the independence property. The unmixing matrix based on these matrices
and an observed mixing x is

B = MQ(Sl (CL’)_l/2CL')Sl (33)_1/2,
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where Ms(z) is the matrix of eigenvectors of Sy(z). The resulting estimate of the
source vector y = Bz is such that Si(y) = I, and Sy(y) is diagonal, with diagonal
elements ordered from highest to lowest. If the original independent sources are
such that also for them Si(s) = I, and S(s) is an ordered diagonal matrix then
y equals s up to sign changes, otherwise y equals s up to a rescaling and a
permutation.

Since the method uses the eigenvectors of Sy these should be unambigous to
give exactly the correct result. Therefore, in addition to the restriction of there
not being more than one gaussian source, no two sources should have the same
distribution. If there are, an orthogonal mixing of these sources is found while
the other sources are found correctly.

The transformation described above is useful even when the observed data is not
produced by a linear mixing of independent sources. The setting is such that the
transformed random vector y = Bx is ordered with respect to marginal kurtosis
defined by the two scatter matrices. In this sense the method is related to the
FOBI (Cardoso, 1989) algorithm. Whether this ordering is from high to low or
from low to high kurtosis depends on the particular pair of scatter matrices.
However, one extremity of kurtosis is a bimodal distribution. This means that
this two scatter matrix transformation can be used to find groups in the data:
they will be revealed by the first or the last components.

This transformation has yet another useful property: the transformed data set
is affine invariant. In other words, the "sources” found are the same regardless
of the coordinate system used to describe the original data. Because of this the
transformation can be said to describe the data in a data-driven invariant coor-
dinate system, or ICS. It is therefore possible to device affine invariant tests by
changing in to these coordinates and performing a corresponding marginal test.
The multitude of choices for the two scatter matrices provided for example by
the family of symmetrized M-estimators allows for a wide range of tests with for
example different robustness or efficiency properties.

4.3 Other methods based on sign and rank covariance
matrices

It has been stated above that shape matrices in general and in particular the
sign and rank covariance matrices and their affine equivariant counterparts can
act as replacements or alternatives of the regular covariance matrix. In principal
this carries over to any situation where covariance matrix is used and scale is
either of no importance or can be estimated by other means. An example of such
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a situation is the principal component analysis as also mentioned before. For a
studies of sign and rank covariance matrices in this context see for example Croux
et al. (2001) and Marden (1999b).

The main reason for the possibility to use sign and rank covariance matrices in
PCA is the fact that principal components are eigenvectors and eigenvectors are
of arbitrary length. In canonical correlation analysis the aim is to find linear com-
binations of two random vectors such that both have uncorrelated marginals and
the covariance matrix between the vectors is diagonal with descending diagonal
values. This again leads to the eigenvalue setting and therefore to the possibility
of using scatter and shape matrices. For a thorough study see Taskinen et al.
(2006).

The sign and rank covariance matrices can also be used in multivariate regression
setting. An estimate of regression coefficients can be stated as a solution to an
estimating equation based on a location estimator, which in turn can be based
on spatial signs or ranks. Affine equivariance is then obtained through inner
standardization by the corresponding covariance matrix, as with the location
and independence tests above. See Article D.
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Summary of original publications

In Article A the problem of independent component analysis is stated and a new
solution to it based on two scatter matrices with the independence property is
given. A proof that this is a solution is given and its performance is illustrated
by examples.

Article B considers symmetrized M-estimators of scatter. The family is defined
and the influence function and asymptotic distribution of its members are found.
Asymptotic relative efficiencies of some members of this group are computed, and
a small sample simulation study is performed.

In Article C the covariance matrices and estimates of shape based on spatial signs,
symmetrized signs, ranks and signed ranks are treated uniformly. The asymptotic
distributions are found and test statistics based on all four transformations for a
null hypothesis of sphericity are given. Efficiencies are computed and some power
comparisons of the tests in small sample cases are done via a simulation study.

Article D introduces the R package SpatialNP and the methods implemented in
it. The use of inner standardization of multivariate tests based on spatial signs
and ranks to aquire affine invariance is suggested.
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