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Abstra
t
This work 
onsiders s
atter and shape estimators, espe
ially those based on the
on
epts of spatial sign and rank. A new family of s
atter estimators, symmetrizedM-estimators of s
atter, is introdu
ed. These have the so 
alled independen
eproperty whi
h in turn is required in the new solution to the independent 
ompo-nent problem also introdu
ed in this work. Some appli
ations of s
atter matri
esin multivariate hypothesis testing are 
onsidered, and some robustness and e�-
ien
y properties of the suggested methods are studied.
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Chapter 1Introdu
tion
In 
lassi
al multivariate statisti
s the 
ovarian
e matrix plays a key role. Its simpleform and good properties make it an extremely powerful 
on
ept but it is not
ompletely without �aws. The main short
oming is that the sample 
ovarian
ematrix, the regular estimate of 
ovarian
e, is extremely sensitive to errors indata. Moreover, the 
ovarian
e matrix does not even exist for very heavy taileddistributions. For these reasons alternative measures and estimators of 
ovariationin the multivariate setting are needed.This thesis 
onsiders s
atter and shape matri
es and their use in multivariateproblems. The methods presented are mainly based on the 
on
epts of spatialsigns and ranks whi
h are of nonparametri
 nature. Most of the theory is derivedunder the ellipti
al model, a large family of distributions 
ontaining as an im-portant spe
ial 
ase the normal distribution but also distributions with naturallyo

uring extreme values. Robustness properties are therefore also of interest.In this thesis a new family of multivariate s
atter estimators, the symmetrizedM-estimators of s
atter, is introdu
ed. The estimators of this family have theso 
alled independen
e property whi
h means that the estimators are diagonalwhenever the marginal distributions are independent. These estimators do notneed any auxiliary lo
ation estimator whi
h also motivates their use. S
atterestimators with the independen
e property are in turn a prerequisite to a newsolution to the independent 
omponents problem also presented in this thesis.S
atter matri
es are also 
onsidered in the 
ontext of hypothesis testing in themultivariate setting as a means to 
reate a�ne invariant spatial sign and ranktests of lo
ation and independen
e. Further, spheri
ity tests based on spatial signand rank s
atter matri
es are 
onsidered. Asymptoti
 results for the introdu
edestimators are found and 
omparisons to existing methods are done via analyti
e�
ien
y studies and small sample simulations.The rest of this introdu
tory part is divided into three parts. In Chapter 2 the6



basi
 de�nitions for the s
atter and shape matri
es and the multivariate mod-els 
onsidered are given as well as some dis
ussion. Robust and nonparametri
methods espe
ially in the s
atter estimation and tools to 
ompare estimators inthis 
ontext are 
onsidered in Chapter 3. Finally in Chapter 4 some appli
ationsof the s
atter and shape matri
es, in parti
ular the new method for independent
omponents analysis, are presented.
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Chapter 2Multivariate data and s
atter matri
es
Multivariate data are more than just several measurements bundled together.Covariations and dependen
ies between individual, univariate random variablesare 
ru
ial to any inferen
e based on multivariate data. If they are ignored resultsbe
ome �awed or di�
ult to obtain. More importantly, the existen
e and natureof the intera
tions is often the obje
t of interest. Therefore, des
ribing theseintera
tions is at the heart of multivariate statisti
s.2.1 Covarian
e matrix and the normal modelMathemati
ally, des
ribing the 
omplete distribution of the random ve
tor de-s
ribes also the 
ovarian
es of the marginal random variables 
ompletely. By farthe most important model for multivariate data is the normal model, des
ribedby the gaussian density

f(x) = det(2πΣ)−1/2 exp

(
−1

2
(x − µ)T Σ−1(x − µ)

)
,where µ = E[x] is the mean ve
tor and

Σ = E
[
(x − µ)(x − µ)T

]is the 
ovarian
e matrix. For dis
ussion of the reasons for this see for exampleAnderson (1984). The diagonal elements of Σ give the varian
es of the marginalrandom variables and its o�-diagonal elements give the 
ovarian
es of all pairs ofmarginals.Under the normal model the mean ve
tor and the 
ovarian
e matrix des
ribe thedistribution 
ompletely. Also in the 
ase of a general multivariate distributionthe 
ovarian
e matrix is useful. Although it does not tell everything about the8



dependen
ies between the marginals it is still 
losely related to the general shapeand s
ale of an observed data 
loud. This is visualized in Figure 2.1. The top leftplot shows realisations from a bivariate normal distribution, and the top rightplot from a distribution with independent Lapla
e distributions as marginals,both having the identity matrix as 
ovarian
e matrix. The bottom row showsrealisations from distributions that are linear transformations of the ones 
orre-sponding to the top row, the same transformation for both sides. The solid linein ea
h plot shows the equal density 
ontour 
orresponding to the 0.9 quantile,that is, 90 per
ent of the probability mass is 
ontained inside that 
ontour.The plotted 
ontours on the left and right hand sides look di�erent but are stillsimilar be
ause of the similar stru
ture behind them. Another way to explain thissimilarity is that, in fa
t, the distributions 
orresponding to the bottom row plotsalso have a 
ommon 
ovarian
e matrix. This is be
ause the 
ovarian
e matrix isa�ne equivariant: if y is an a�ne transformation of x, or formally y = Ax + b,then the 
ovarian
e matrix of y is related to the 
ovarian
e matrix of x through
Σy = AΣxAT .Besides a�ne equivarian
e the 
ovarian
e matrix has other good and strong prop-erties. It is additive: the 
ovarian
e matrix of the sum of two independent randomve
tors is simply the sum of the individual 
ovarian
e matri
es. This is a key prop-erty in the analysis of varian
e 
omponent models, see for example Searle et al.(1992).Another property that is interesting is the fa
t that the 
ovarian
e matrix isdiagonal when the marginals are independent. In the following this is 
alled theindependen
e property. The 
onverse does not hold in general: diagonality of the
ovarian
e matrix does not imply the independen
e of the marginals. This is easyto see by 
onsidering the bivariate uniform distribution in the unit square andits rotations whi
h 
learly do not have independent marginals. The 
ovarian
ematrix remains diagonal be
ause of the orthogonal multiplying matri
es. Thenormal model is on
e again a spe
ial 
ase, as the marginals of a gaussian randomve
tor with a diagonal 
ovarian
e matrix are always independent.2.2 S
atter and shape matrix fun
tionalsA general s
atter matrix fun
tional is now de�ned as a kind of generalization ofthe 
ovarian
e matrix: roughly speaking, a matrix valued fun
tional operating onrandom ve
tors is 
alled a s
atter fun
tional if it is a�ne equivariant. Formally,let x be a random p-ve
tor and y = Ax + b its a�ne transformation where A is9



Figure 2.1: Simulated data to illustrate the 
onne
tion of the 
ovarian
e matrixand the shape of the observed data 
loud
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a non-singular p× p matrix, and let C(·) be a positive de�nite symmetri
 matrixvalued fun
tional. Then C(·) is a s
atter fun
tional if it holds that
C(y) = A C(x)ATfor all su
h x, A and b. This requirement alone is enough to ensure that thefun
tional re�e
ts the dependen
ies between the marginals, or, justifying thename, how observations of the marginal random variables are s
attered together.For the 
ovarian
e matrix the a�ne equivarian
e holds for any transformation,even non-singular and non-square matri
es, but here it is only required withinthis restri
ted group.A 
on
ept 
losely related to the s
atter matrix fun
tional is the shape matrix:the de�nition of a shape matrix fun
tional is the same as that of a s
atter matrixfun
tional but the a�ne equivarian
e is required only up to a 
onstant. Morepre
isely, if
V (y) ∝ A V (x)ATholds for any a�ne transformation as above then V (·) is a shape matrix fun
-tional. What may be lost 
ompared to the s
atter matrix fun
tional is 
onsistentinformation on s
ale. However, for many appli
ations only the shape informationis enough. For example, prin
ipal 
omponents analysis as a method to redu
e thenumber of variables in data only requires information on the order of the prin
ipal
omponents and the relative magnitudes of their varian
es. For this, informationabout shape is enough, see for example Salibián-Barrera et al. (2006).Obviously any s
atter fun
tional is also a shape fun
tional but some are inher-ently shape fun
tionals only. Tyler's (1987) M-estimator, for example, is de�nedas a solution to an estimating equation and this solution is unique only up toa 
onstant. Therefore an additional restiri
tion is imposed on the s
ale, namely,that the tra
e of the matrix is p, equal to the number of dimensions. A similarrestri
tion is 
ommon when shape fun
tionals are 
onsidered, for example therequirement that the (1,1)-element is equal to one (e.g. Hallin and Paindaveine2006) or that the determinant of the matrix is equal to one (e.g. Arti
le C of thiswork). Paindaveine (2007) 
alled the shape de�ned through the restri
tion of de-terminant 
anoni
al be
ause only that makes the shape and s
ale asymptoti
allyindependent under the ellipti
al model (de�ned in the following).Sometimes it is reasonable to s
ale a genuine s
atter fun
tional in a way des
ribedabove (see for example Arti
le B). Clearly, the resulting fun
tional is a shapefun
tional. 11



2.3 Ellipti
ally symmetri
 distribution familyThe multivariate normal model 
an also be generalized. The density fun
tion ofa gaussian random variable 
an be des
ribed by its 
ontours whi
h are 
o
entri
ellipsoids 
entered at the mean ve
tor and whose shape is given by the 
ovarian
ematrix. Now, a random ve
tor x with a density fun
tion of the form
f(x) = det(Σ)−1/2g

(
(x − µ)T Σ−1(x − µ)

)
,where g is a non-negative fun
tion on R su
h that integral of g(xT x) over Rpis equal to one, belongs to the ellipti
ally symmetri
 distribution family. The
ontours of su
h a density fun
tion are again 
o
entri
 ellipsoids 
entered at µand with shape and s
ale given by Σ whi
h is 
alled here the s
atter parameter.For early appearan
es see Maronna (1976) and Huber (1981, Se
tion 8.4).The generalization with respe
t to the normal model is in the fun
tion g whi
hgives the relative distan
es of the equal density 
ontours from ea
h other. If gis su
h that x has �rst moments then the lo
ation parameter µ is equal to themean ve
tor and if x has se
ond moments then the s
atter matrix parameter Σis proportional to the 
ovarian
e matrix. Be
ause of this Σ 
an also be 
alled thepseudo-
ovarian
e matrix.Without further restri
tions the parameters for a given distribution are ambigiousas s
ale 
hanges of the fun
tion g and the s
atter matrix Σ 
an mask ea
h other.This ambiguity 
an be avoided by restri
ting the fun
tion g in a suitable way. Itis also possible to 
onsider only shape, or in other words, to restri
t the s
ale ofthe s
atter parameter for example in one of the three ways explained in Se
tion2.2. The resulting unique matrix is naturally 
alled a shape parameter.A spe
ial subset of this family 
onsists of the 
entered and spheri
ally symmet-ri
 distributions, that is, the ones with a s
atter parameter proportional to theidentity matrix, with origin being the symmetry 
enter, i.e. the lo
ation param-eter. Within this restri
ted model it is possible to divide the random ve
tor xinto two independent parts, its norm r = ‖x‖ and its dire
tion ve
tor r−1x. Infa
t, the whole ellipti
ally symmetri
 family is generated by all a�ne transfor-mations of spheri
ally symmetri
 distributions. Conversly, it is always possibleto �re-transform� an ellipti
ally symmetri
 random ve
tor into a 
entered andspheri
ally symmetri
 random ve
tor by another a�ne transformation: if x has

Σ as its s
atter parameter and µ as its lo
ation parameter, then
A−1(x − µ),where A is any matrix for whi
h it holds AAT = Σ, is spheri
ally symmetri
 withrespe
t to the origin. Note that sin
e there are several a�ne transformations of12



a spheri
ally symmetri
 random variable that have the same distribution, or inparti
ular the same s
atter parameter, the standardizing matrix A in the aboveequation is not unique. In this work the symmetri
 and positive de�nite squareroot is always used. It is denoted and de�ned by
A1/2 = UT LUwhere L is a diagonal matrix of the square roots of the eigenvalues of A and Uis the matrix of 
orresponding eigenve
tors. The Cholesky de
omposition is alsoappli
able and used in the literature.2.4 Independen
e and IC-modelIt was mentioned earlier that the 
ovarian
e matrix has the independen
e prop-erty. Independen
e of the marginals does not guarantee the diagonality of a gen-eral s
atter matrix fun
tional, though. The diagonality of a s
atter matrix fun
-tional also does not guarantee that the marginals are independent. The 
ovarian
ematrix under the normal model is an ex
eption: the marginals of a gaussian ran-dom ve
tor are independent if and only if its 
ovarian
e matrix is diagonal. In fa
t,among the spheri
ally symmetri
 random ve
tors the only one with independentmarginals is the gaussian random ve
tor.With these points in mind it is possible to 
onstru
t another group of multivariatedistributions, the one generated from distributions with independent 
omponents(marginals) by a�ne transformations. More formally, these distributions havedensities of the form

f(x) = |det(A)|
p∏

i=1

gi((Ax)T ei),where gi, i = 1, . . . , p, are univariate density fun
tions, A is a non-singular p × pmatrix and ei is the ith basis ve
tor (xT ei is thus the ith element of x). This is
alled the independent 
omponents (IC) -model.Suppose that a random ve
tor y has independent 
omponents and that x = A−1yand further assume that C(·) is a s
atter matrix fun
tional. It then holds, byde�nition, that
C(x) = A−1 C(y)(A−1)T =: S.However, an a�ne transformation z = B−1x where B is su
h that BBT = S willnot ne
essarily have the same distribution as y nor even independent 
omponents.This means that, unlike in the ellipti
al family, it is not possible to re-transform13



a general member of this family to the generating sub-family using only a s
attermatrix fun
tional. The reason for this is that, using the above notation, C(y)is not ne
essarily diagonal while C(z) is. Even if C(·) had the independen
eproperty the 
omponents of z 
ould still be dependent.Finding the �original� independent 
omponents in the above situation is the 
en-tral question in independent 
omponent analysis, or ICA, whi
h is 
onsidered inChapter 4.2 and in Arti
le A. It turns out that under 
ertain assumptions twodi�erent s
atter matri
es 
an be used to solve this problem, provided that theyboth have the independen
e property.
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Chapter 3Robust and nonparametri
 multivariate methods
Many 
lassi
al multivariate methods are based on the sample 
ovarian
e matrix.Examples of these are the generalized T 2-statisti
 for testing hypotheses about themean ve
tor, multivariate analysis of varian
e, prin
ipal 
omponents analysis and
anoni
al 
orrelation analysis (see Anderson 1984). These methods are usuallyoptimal when the data are from the normal model. The problem is that thesample 
ovarian
e matrix, the 
lassi
al estimate of 
ovarian
e, is very sensitiveto errors in the data and miss-spe
i�
ation of the model. This 
auses also themethods based on the 
ovarian
e matrix to be unreliable in those 
ases.Methods that work 
orre
tly even when data 
ontains erroneous and/or extremeobservations are 
alled robust. Robust s
atter estimation usually involves somekind of downweighting of the most extreme observations. Methods that do notmake spe
i�
 assumptions about the distribution of the data, su
h as assuming a�xed distribution, up to a �nite set of unknown parameters, are 
alled nonpara-metri
. Nonparametri
 s
atter estimation 
onsidered in this work uses 
on
eptsof spatial (multivariate) signs and ranks. In both 
ases it is also hoped that themethods do not lose too mu
h of the good properties of the 
lassi
al methods,for example with respe
t to e�
ien
y.3.1 In�uen
e fun
tion, breakdown point and e�
ien
yIn�uen
e fun
tion (see Hampel et al. 1986) is a way to measure the e�e
t of asingle observation on an estimator given in a fun
tional form. It is de�ned as

IF (z; T, F ) = lim
ǫ→0

T (Fǫ) − T (F )

ǫ
,where T (F ) means the value of the estimator fun
tional of interest on a given 
df

F and T (Fǫ) its value on a 
ontaminated distribution
Fǫ = (1 − ǫ)F + ǫδz, 15



where in turn δz is the 
df of a degenerate distribution for whi
h it holds P (z) =
1, that is, the Dira
 δz-measure. In other words, the in�uen
e fun
tion of anestimator is its fun
tional derivative to the dire
tion of a degenerate randomve
tor. It tells the standardized e�e
t on the value of the estimator when a singlenew observation is introdu
ed at z.A robust estimator is desired to have an in�uen
e fun
tion that is 
ontinuous andbounded. Continuity implies that small shifts in data have only small 
hanges inthe estimator. Boundedness implies that no new observation, regardless of howextreme it is, is going to have an arbitrary large e�e
t on the estimator. In thiswork in�uen
e fun
tions are 
onsidered in Arti
le B where the in�uen
e fun
tionof a general symmetrized M-estimator is derived.Boundedness of the in�uen
e fun
tion is loosely 
onne
ted to another measure ofrobustness, the breakdown point (see again Huber 1981). Roughly speaking, it isthe proportion of the data that 
an be 
orrupted without 
ompletely 
orruptingthe estimator based on su
h data. More pre
isely, let T be an estimator and xi,
i = 1, . . . , n, a data set. Next, let x∗

i be as the previous data set but with m �rstve
tors 
hanged to arbitrary values. Then the �nite sample breakdown point is
max

{

m : sup
x
∗

i

{d(T (x1, . . . , xn), T (x∗

1
, . . . , x∗

n)) < ∞}
}

/n.where d(·, ·) is a suitable metri
, relating to the performan
e of the estimatoron the 
ontaminated data with respe
t to the original data. For ve
tor valuedlo
ation estimators this metri
 
an be the ordinary eu
lidian distan
e. For s
attermatri
es this metri
 is usually the largest eigenvalue or the inverse of the smallesteigenvalue, whi
h ever is larger, of the matrix T−1T ∗, where now T stands for thevalue of the estimator on the original data and T ∗ its value on the 
ontaminateddata. Breakdown of s
atter matri
es, though, is not as simple as that of e.g.lo
ation, see Davies and Gather (2005).The breakdown point is then the limit of the �nite sample breakdown point asthe sample size n tends to in�nity. It is now easy to see that if the in�uen
efun
tion of an estimator is not bounded its breakdown point is equal to zero. Arobust estimator naturally should have a high breakdown point.Both the in�uen
e fun
tion and the breakdown point 
onsider the estimator'sability to whitstand errors in the data. Error resistant methods inherently donot �trust� the data 
ompletely. So in a situation where there are no errors anyinferen
e based on a robust estimator will very likely be less reliable than inferen
ebased on a 
lassi
al estimator, that is, su
h that assumes a �xed model and thatit is the 
orre
t one for all data. For hypothesis testing the asymptoti
 relative16



e�
ien
y, or Pitman e�
ien
y, is a 
ommon way to measure this di�eren
e (seefor example Lehmann 1998). The relative e�
ien
y of a test as 
ompared to areferen
e test is often de�ned as the ratio of the sample sizes needed to a
hieve thesame size α and the same power 1 − β for a �xed alternative. For 
hosen valuesof α and β, the limit of this ratio, as the alternative is approa
hing the nullhypothesis at a 
orre
tly 
hosen rate (often 1/
√

n) is then the Pitman e�
ien
y(if it exists). The referen
e test is often a 
lassi
al parametri
 test based on meanve
tor and 
ovarian
e matrix, or similar.Asymptoti
 relative e�
ien
y of estimators 
an also be de�ned in a similar man-ner, now the equal performan
e is de�ned as the estimators having values in a
ertain neighbourhood of the true value with equal probability. The 
omparisonwith large sample sizes requires that the estimators to be 
ompared are 
onsistentwith the same 
onvergen
e rate (often 1/
√

n) and have limiting normal distribu-tions. The asymptoti
 relative e�
ien
y to 
ompare univariate estimators is thensimply the ratio of asymptoti
 varian
es of the estimators.In the 
ase where the estimator is inherently multivariate the e�
ien
y of allmarginals need not be the same. For example the s
atter matrix estimators 
on-sidered in this work are su
h that, in the spheri
ally symmetri
 
ase, the e�
ien
yof estimation of the diagonal and o�-diagonal elements are di�erent. However, thee�
ien
ies of the shape estimators 
onsidered 
an be des
ribed by the o�-diagonallimiting varian
es only. This is 
onsidered in detail in Arti
le B, where the formof the limiting distribution of s
atter estimators in the introdu
ed family of sym-metrized M-estimators is found. The e�
ien
ies of 
ertain examples of shapeestimators based on those s
atter estimators are also 
omputed. E�
ien
ies ofspheri
ity tests are 
omputed in Arti
le C.3.2 Spatial signs and ranksUsing the signs and ranks of the observations instead of the original observationsis a well known way to implement nonparametri
 methods in the univariate 
ase,see for example Lehmann (1998) and the referen
es given in its prefa
e. Theseideas 
an be generalized to the multivariate 
ase as well but it is not always verystraightforward as there is no natural ordering in the multidimensional spa
e.The most obvious way to generalize the univariate sign is to use marginal signsto produ
e ve
tors with values 1 and −1. These have been used (see Puri andSen, 1971) but there are problems, most notably the fa
t that su
h sign ve
torsare not a�ne equivariant, nor even rotation invariant. Using marginals of theobservations as univariate observations measured simultaneously also ignores the17



idea underlined in the beginning of Chapter 2, that multivariate data is not a
olle
tion of the marginal data.A better way to generalize the univariate signs to the multivariate 
ase be
omesobvious if the univariate sign fun
tion is written as sign(x) = |x|−1x. Interpretingthe absolute value as the univariate eu
lidian norm naturally suggests that thespatial sign fun
tion is
U(x) =

x

‖x‖ ,with the 
onvention 0/0 = 0. Spatial sign ve
tors are thus unit ve
tors (
f.the division of a spheri
ally symmetri
 ve
tor to its length and dire
tion ve
tor,page 12). However, this de�nition still does not lead to a�ne equivariant signsalthough rotation equivarian
e, that is, equivarian
e with respe
t to orthogonaltransformations, is obtained. The spatial rank fun
tion is now de�ned under agiven distribution F by
R(x) = Ey[U(x − y)],where y is distributed a

ording to F and similarly, the signed rank fun
tion

Q(x) =
1

2
Ey[U(x − y) + U(x + y)].See also Möttönen and Oja (1995). When these fun
tions are applied to a sampleof observations and the empiri
al distribution fun
tion the sign, rank and signedrank ve
tors of the data are obtained. Both rank fun
tions 
orrespond to theirunivariate 
ounterparts through the fa
t that the univariate ordinary rank is thesum of signs of pairwise di�eren
es (when the sign of zero is taken to be one).In the sample 
ase a related 
on
ept, the set of symmetrized signs is de�ned by

U s(xi, xj) = U(xi − xj), i, j = 1, . . . , n.It is then possible to write
R(xi) = avej{U s(xi, xj)},
Q(xi) = (avej{U s(xi, xj)} + avej{U s(xi,−xj)})/2for the sample spatial ranks and signed ranks. Methods suggested and 
onsideredin Arti
le C and Arti
le D rely 
ompletely on these four transformations of thedata. 18



3.3 Robust and nonparametri
 s
atter and shapeestimationAll of the data transformations introdu
ed in the previous se
tion 
an be used to
reate analogies of the 
ovarian
e matrix. These are the spatial sign 
ovarian
ematrix
SCov(x) = E[U(x)U(x)T ],the symmetrized spatial sign 
ovarian
e matrix

SSCov(x) = E[US(x, x′)US(x, x′)T ],where x′ is an independent 
opy of x, the spatial rank 
ovarian
e matrix
RCov(x) = E[R(x)R(x)T ]and the signed rank 
ovarian
e matrix

SRCov(x) = E[Q(x)Q(x)T ],with sample versions obtained by repla
ing the expe
tation with the average overthe sample (and the two 
opies of the random ve
tor in the 
ase of the sym-metrized spatial sign 
ovarian
e matrix with pairs of observations). All of theseare in fa
t U-statisti
s as the average is over either the observations themselvesor pairs or triplets of them. With the sign 
ovarian
e matrix and the signed rank
ovarian
e matrix it is impli
itly assumed that the lo
ation is known and equalto the origin, otherwise they have to be 
ombined with a lo
ation estimator. SeeVisuri et al. (2000).As the sign and rank transformations are not a�ne equivariant, neither are the
ovarian
e matri
es based on them and so they are not s
atter or shape matrixfun
tionals. However, when the distribution is spheri
al all of these matri
es haveexpe
ted values proportional to the identity matrix. Therefore they 
an be appliedin the 
ontext of spheri
ity testing. This is thoroughly studied in Arti
le C.It is possible to suggest shape matrix estimates related to ea
h of the 
ovarian
ematri
es above by an impli
it equation. For the sign 
ovarian
e matrix this is (inthe sample form, the fun
tion form is obtained by repla
ing the average by theexpe
tation)
ave

{
U (V −1/2xi)U(V −1/2xi)

T
}

=
1

p
Ip.This is to say that the estimated shape matrix is the one that standardizes thedata so that the signs of the standardized data appear to be �un
orrelated�, or inother words the sign 
ovarian
e matrix of the standardized data is proportional19



to the identity matrix. The s
ale of any possible solution matrix V is ambiguousin this equation. Therefore this equation does not 
onstitute a s
atter matrix butit is quite 
lear that a solution, if any exist, together with a restri
tion to �x itss
ale is a shape matrix.A solution to this parti
ular equation does exist and is known as Tyler's M-estimate (Tyler 1987). It is found by an iterative algorithm suggested by theequation. It is a spe
ial 
ase of general M-estimates of s
atter (with lo
ationknown to be the origin, the original form in Maronna (1976) has two simultaneousequations, one for lo
ation and another one for s
atter) are de�ned as solutionsto equations of the form
ave

{
w(‖V −1/2xi‖)U(V −1/2xi)U(V −1/2xi)

T
}
∝ Ip,where w is some �xed weight fun
tion. Tyler's M is thus obtained by 
hoosing

w(r) = 1.The shape estimator 
orresponding to the symmetrized spatial sign 
ovarian
ematrix also exists, it is known as Dümbgen's (1998) estimator. It is now possibleto suggest a family of estimators su
h that Dümbgen's estimator is a similarspe
ial 
ase of it as Tyler's M is a spe
ial 
ase of the M-estimators. This family,symmetrized M-estimators of s
atter, is suggested and studied in Arti
le B. Theyare de�ned as solutions to equations of a similar form as the regular M-estimatorsbut with signs of the pairwise di�eren
es of the observations instead of the signsof the original observations.The symmetrization makes it unne
essary to know the lo
ation of the originalobservations be
ause the pairwise di�eren
es are always lo
ated at the origin.What is more important is the fa
t that symmetrized M-estimators of s
atter allhave the independen
e property whi
h is not true for the ordinary M-estimatorsof s
atter and generally overlooked in the literature. The independen
e propertymakes it possible to use the symmetrized M-estimators of s
atter in independent
omponent analysis, see Se
tion 4.2.The existen
e of the s
atter estimates 
orresponding to the rank and signed rank
ovarian
e matri
es in the general non-ellipti
 
ase is un
ertain. This is dis
ussedin more detail in Arti
le C. Studying the so 
alled k-step versions of these is onthe other hand feasible. It is possible to start with an estimator whose propertiesare known and apply an iteration step of the form
Vk ∝ V

1/2

k−1
RCov(V

−1/2

k−1
x)V

1/2

k−1
,s
aled as 
hosen, whi
h is similar to the one used to �nd Tyler's or Dümbgen'sestimators. The result after a �nite number of steps is an estimator whose prop-erties are fairly easy to �nd. In pra
ti
e, this sequen
e appears to 
onverge after a20



relatively small number of steps and to a 
onsistent value regardless of the start-ing point. The properties of this hypotheti
al limit would most likely be very 
loseto those of a 
orresponding k-step estimator. The independen
e property is againof parti
ular interest. If the initial estimator has it, so do all k-step estimators inthe iteration sequen
e of the form given above.
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Chapter 4Appli
ations of sign and rank 
ovarian
e matri
es
In addition to their immediate use in des
ribing the data, the spatial sign andrank 
ovarian
e matri
es and their a�ne equivariant 
ounterparts 
an now beapplied in several ways. In the following a brief introdu
tion of the methods
onsidered in this work is given. For further reviews on su
h methods see alsoMarden (1999a), Möttönen and Oja (1995) and Oja and Randles (2004).Many of the methods presented here are implemented in the R-pa
kage SpatialNP(available at CRAN, http://
ran.r-proje
t.org). The 
ontents of the pa
kageis thoroughly dis
ussed and examples of use are given in Arti
le D.4.1 A�ne invariant nonparametri
 tests of lo
ation andindependen
e and testing of spheri
ityA straightforward way to suggest nonparametri
 tests is to modify an existing
lassi
al test by repla
ing the observations with their signs or ranks. For ex-ample, the 
lassi
al Hotelling's T 2 (Anderson 1984) test statisti
 for lo
ation is
onstru
ted by noting that, under the null hypothesis that true lo
ation (themean ve
tor) is the origin,

√
nave{xi} →d Np(0, B),where B is the 
ovarian
e matrix of xi. Under the null hypothesis the squarednorm of the average ve
tor x̄ then has a limiting non-
entral χ2 distribution andwhen standardized using the sample 
ovarian
e matrix

B̂ = ave{xix
T
i }it holds that

(B̂−1/2x̄)T (B̂−1/2x̄) →d χ2(p). 22



This statisti
 is a�ne invariant. If now the data is repla
ed with their spatial signs
U(xi) and the sample 
ovarian
e matrix by the sample spatial sign 
ovarian
ematrix SCov a test statisti
 with the same χ2 distribution is obtained but it isnot a�ne invariant.The remedy for the la
k of a�ne invarian
e is to �rst standardize the data su
hthat the resulting sign 
ovarian
e matrix is already, and more importantly, a�neinvariantly equal to the identity matrix. The test statisti
 is thus

np‖ave{U(zi)}‖2 →d χ2(p)where zi = V̂ −1/2xi where in turn V̂ is Tyler's shape estimated on xi. The samekind of lo
ation test 
an be done with signed ranks and the 
orresponding shapeestimator. Further, this method of inner standardisation 
an be used to �nd a�neinvariant nonparametri
 test of independen
e similar to the 
lassi
al Wilks (1935)test, see Taskinen et al. (2003).As stated above, the spatial sign and rank 
ovarian
e matri
es are proportionalto the identity matrix when the data 
ome from a spheri
al distribution. Thisfa
t 
an be utilized to 
onstru
t a test for spheri
ity, or, more generally a testfor null hypothesis of the shape parameter being equal to a given matrix. Thelatter 
an always be returned to the former by transforming the data a

ordingthe hypothesized matrix su
h that under the null the transformed data 
omesfrom a spheri
al distribution. These tests are 
onsidered in Arti
le C.Ea
h of the four sign and rank 
ovarian
e matri
es 
onstitutes a di�erent test.Ea
h test also gives another view to the four shape matri
es based on spatialsigns and ranks, Tyler's M, Dümbgen's estimator, shape based on spatial ranksand shape based on spatial signed ranks: the shape estimate is the matrix whi
hre
eives the highest p-value when a 
orresponding test with that matrix as thenull value is performed. In other words the estimate of shape is the one that isleast prone to reje
tion or �ts the data best in the light of the test.4.2 Independent 
omponent analysis based on two s
attermatri
esIndependent 
omponent analysis, or ICA, 
onsiders a setting where unknownindependent random variables, usually 
alled sour
es in this 
ontext, are mixedby an unknown linear mixing, the result of whi
h is observed. The problem is thento �nd the original sour
es, or equivalently, the unmixing linear transformation.ICA is then one way to do blind signal separation, that is, to �nd a set of signals23



behind observed data that 
an be 
onsidered �unmixed� in some sense, withoutmu
h information on what these signals are. Prin
ipal 
omponents analysis isanother example. The di�eren
e between the two is that in PCA one wishesto �nd un
orrelated 
omponents that su

essively explain as mu
h of the totalvarian
e as possible. Un
orrelated 
omponents 
an still be dependent, so ICArequires more while on the other hand varian
e is of no importan
e.There are some points that any ICA-method has to take into a

ount. It is neverpossible, without some te
hni
al restri
tions, to �nd exa
tly the original sour
es.This is be
ause permutations and res
alings of the sour
es retain their indepen-den
e. So, if P is a permutation matrix and D is a diagonal matrix it holdsthat
As = (AP−1D−1)(DPs) = xand there is no way to 
hoose between s and DPs when only x is observed.Another point is that an orthogonal transformation of two independent gaussianvariables with equal varian
es are still independent. This means that if there aremore than one gaussian sour
e they 
annot be unmixed ex
ept up to a rotation.Many existing ICA-algorithms are based on the following idea: a linear 
ombina-tion of two independent non-gaussian random variables is �more gaussian� thaneither one of them. This is justi�ed by the 
entral limit theorem. Starting withthe observed mixed 
omponents the linear 
ombination that is �least normal�then should be one of the original sour
es. The optimization is then repeated inthe remaining orthogonal spa
e, until only one (possibly gaussian) 
omponentremains.This idea requires some measure of gaussianity. FastICA, a popular method pro-posed by Hyvärinen et al. (2001), 
hooses entropy, sin
e the normal distribution isthe one with maximal entropy when �rst two moments are �xed. FastICA thus in-volves a gradient based optimization that minimizes entropy. InfoMax proposedby Adah et al. (2004), in short, aims to maximize the mutual information ofseparated sour
es whi
h happens when the sour
es are independent. Not everyalgorithm uses optimization, though. For example FOBI (Cardoso, 1989) algo-rithm is based on fourth order moments, leading to kurtosis as the separatingmeasure.In this work a new method for ICA is proposed. This method does not rely onoptimization of non-gaussianity but on the properties of s
atter matri
es and thesour
es themselves. Suppose that S1 and S2 are s
atter matri
es and that bothhave the independen
e property. The unmixing matrix based on these matri
esand an observed mixing x is

B = M2(S1(x)−1/2x)S1(x)−1/2, 24



where M2(z) is the matrix of eigenve
tors of S2(z). The resulting estimate of thesour
e ve
tor y = Bx is su
h that S1(y) = Ip and S2(y) is diagonal, with diagonalelements ordered from highest to lowest. If the original independent sour
es aresu
h that also for them S1(s) = Ip and S2(s) is an ordered diagonal matrix then
y equals s up to sign 
hanges, otherwise y equals s up to a res
aling and apermutation.Sin
e the method uses the eigenve
tors of S2 these should be unambigous togive exa
tly the 
orre
t result. Therefore, in addition to the restri
tion of therenot being more than one gaussian sour
e, no two sour
es should have the samedistribution. If there are, an orthogonal mixing of these sour
es is found whilethe other sour
es are found 
orre
tly.The transformation des
ribed above is useful even when the observed data is notprodu
ed by a linear mixing of independent sour
es. The setting is su
h that thetransformed random ve
tor y = Bx is ordered with respe
t to marginal kurtosisde�ned by the two s
atter matri
es. In this sense the method is related to theFOBI (Cardoso, 1989) algorithm. Whether this ordering is from high to low orfrom low to high kurtosis depends on the parti
ular pair of s
atter matri
es.However, one extremity of kurtosis is a bimodal distribution. This means thatthis two s
atter matrix transformation 
an be used to �nd groups in the data:they will be revealed by the �rst or the last 
omponents.This transformation has yet another useful property: the transformed data setis a�ne invariant. In other words, the �sour
es� found are the same regardlessof the 
oordinate system used to des
ribe the original data. Be
ause of this thetransformation 
an be said to des
ribe the data in a data-driven invariant 
oor-dinate system, or ICS. It is therefore possible to devi
e a�ne invariant tests by
hanging in to these 
oordinates and performing a 
orresponding marginal test.The multitude of 
hoi
es for the two s
atter matri
es provided for example bythe family of symmetrized M-estimators allows for a wide range of tests with forexample di�erent robustness or e�
ien
y properties.4.3 Other methods based on sign and rank 
ovarian
ematri
esIt has been stated above that shape matri
es in general and in parti
ular thesign and rank 
ovarian
e matri
es and their a�ne equivariant 
ounterparts 
ana
t as repla
ements or alternatives of the regular 
ovarian
e matrix. In prin
ipalthis 
arries over to any situation where 
ovarian
e matrix is used and s
ale iseither of no importan
e or 
an be estimated by other means. An example of su
h25



a situation is the prin
ipal 
omponent analysis as also mentioned before. For astudies of sign and rank 
ovarian
e matri
es in this 
ontext see for example Crouxet al. (2001) and Marden (1999b).The main reason for the possibility to use sign and rank 
ovarian
e matri
es inPCA is the fa
t that prin
ipal 
omponents are eigenve
tors and eigenve
tors areof arbitrary length. In 
anoni
al 
orrelation analysis the aim is to �nd linear 
om-binations of two random ve
tors su
h that both have un
orrelated marginals andthe 
ovarian
e matrix between the ve
tors is diagonal with des
ending diagonalvalues. This again leads to the eigenvalue setting and therefore to the possibilityof using s
atter and shape matri
es. For a thorough study see Taskinen et al.(2006).The sign and rank 
ovarian
e matri
es 
an also be used in multivariate regressionsetting. An estimate of regression 
oe�
ients 
an be stated as a solution to anestimating equation based on a lo
ation estimator, whi
h in turn 
an be basedon spatial signs or ranks. A�ne equivarian
e is then obtained through innerstandardization by the 
orresponding 
ovarian
e matrix, as with the lo
ationand independen
e tests above. See Arti
le D.
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Summary of original publi
ations
In Arti
le A the problem of independent 
omponent analysis is stated and a newsolution to it based on two s
atter matri
es with the independen
e property isgiven. A proof that this is a solution is given and its performan
e is illustratedby examples.Arti
le B 
onsiders symmetrized M-estimators of s
atter. The family is de�nedand the in�uen
e fun
tion and asymptoti
 distribution of its members are found.Asymptoti
 relative e�
ien
ies of some members of this group are 
omputed, anda small sample simulation study is performed.In Arti
le C the 
ovarian
e matri
es and estimates of shape based on spatial signs,symmetrized signs, ranks and signed ranks are treated uniformly. The asymptoti
distributions are found and test statisti
s based on all four transformations for anull hypothesis of spheri
ity are given. E�
ien
ies are 
omputed and some power
omparisons of the tests in small sample 
ases are done via a simulation study.Arti
le D introdu
es the R pa
kage SpatialNP and the methods implemented init. The use of inner standardization of multivariate tests based on spatial signsand ranks to aquire a�ne invarian
e is suggested.
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