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Abstract

The overall objective of this thesis is to analyse and evaluate predictions of

missing data values using cell imputation, in which one divides data into disjoint

partitions (cells) and fills in the missing data values by local estimates. In this thesis

cells are formed with the help of clustering algorithms. Imputations using classical

methods such as linear regression and nonparametric regression are included for

comparison.

The analysis and evaluation of imputation is done in a multiobjective way,

where distribution level and unit level are considered. In the literature people typi-

cally considered either distribution level or unit level, which is not sufficient in order

to distinguish between the performance of various imputation methods. In addi-

tion, computational complexities of various methods are numerically analysed here.

Computational complexity is important when methods are used with huge data sets,

such as censuses.

Theoretical analysis consists of deriving results for distribution level and unit

level error quantities. At distribution level the first two moments are mainly consid-

ered. The bias and the variance of the first moment estimator and the bias of the

second moment are derived. An analysis on the behaviour of Kolmogorov-Smirnov

statistic is also developed. At unit level, mean squared error quantities are com-

puted. Both finite sample and asymptotic (limiting) results are derived.

Simulation studies and empirical studies with real-world data sets show that

the proposed cell methods perform well. Two of the proposed methods are able to

preserve multimodal conditional distribution, whereas the competing methods fail in

this. The best competing methods are the 1-nearest neighbour method and the linear

regression methods. However, the computational complexity of the nonparametric

regression methods is inferior compared to the cell method for large sample sizes.

Further, the linear regression method should be used only if the linearity assumption

holds well enough.

A link between the theory and numerical studies is included. An example given

here shows that an approximation of variance for the mean estimator of imputations

done using the cell method works in practice.
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Chapter 1

Introduction

This chapter is organized as follows. We start with a discussion about the back-

ground of the research, which leads to the description of the research problem. A

motivation for our objectives is given next, including some related observations made

during the research. Then the main results of the study are summarized. Finally,

the structure of the thesis and the contributions of the author are described.

It should be noted that the author and the supporting research team come from

the area of computer science, rather than that of statistical sciences. Therefore we

do not have any orthodox views about any best practices in statistical analyses.

Instead, this work should be though as a data engineering approach.

1.1 Background

Many real-world data sets are incomplete. There are various reasons for this state

of affairs, known as missingness in statistics. Some of the reasons are: nonresponse

in surveys and censuses, malfunctioning measurement devices, and errors in data

transfers. A typical consequence of missing data is that analyses that are more

complicated than those complete data sets are needed for incomplete data sets. This

means that more time is consumed in the analysis, and experienced and educated

people are required for it. This easily leads to higher costs. But in practice only

limited resources are available to handle large and complex data sets. Therefore one

must have efficient methods to achieve results under practical constraints.

The background of the current work is based on the development of new meth-

ods for incomplete data. This was started in the EurEdit1 project, which began in

2000 and was finished in 2003. The participants2 were national statistical agencies,

universities, and enterprises. The project was funded by the Statistical Office of

the European Communities (Eurostat). The aim was, whenever possible, to detect

errors in data, correct errors using editing rules, and replace missing data values

by predictions using imputation methodology. The work was done with data sets

1See website www.cs.york.ac.uk/euredit/ for details
2see the appendix for this chapter
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that were collected by national statistical agencies. Such data sets include surveys

and censuses. The research objectives were to develop new methods for editing and

imputation, and to compare new and classical methods.

In EurEdit we were the only partner that was using clustering methods for

imputation. Our methods were based on the tree-structured self-organizing map

(TS-SOM) [55, 56], which is better known as a neural network algorithm. Our

approach with TS-SOM was to divide data into clusters and perform imputation

more or less separately in each of the data subsets. This is essentially the idea

that was proposed by Santos [90], who refers to these methods as cell imputation

methods.

During the EurEdit project we developed several cell imputation methods,

where the missing values inside a cell were selected either from

a) cluster mean,

b) cluster mean with added noise,

c) donor from cluster, or

d) nearest neighbour within a cluster.

Due to limited resources we were not able to analyse the developed methods, nor

were we able to conduct extensive experiments to find the best practices for the

methods. Thus, we should consider the EurEdit results as preliminary studies of

new ideas.

From the results of the EurEdit project it was noticed that the TS-SOM

methodology was relatively good with some data sets, such as the Danish Labour

Force Survey (DLFS), while the methodology was not particularly good for data

sets such as UK Annual Business Inquiry (UK ABI/survey) and UK Sample of

Anonymized Records (UK SARS/census). Therefore a re-evaluation is necessary to

find out why the methodology might not work on a particular case.

In this thesis we shall examine the imputation methods under more compli-

cated missing-data mechanisms and the analysis is focused on the properties of the

methods. In addition to experiments we want to have an analytical insight. So

far, there has not been any deeper analytical study of the developed new methods.

Thus there is gap in theory, which needs to be studied. With a theory we expect to

understand the features, including any pitfalls, of the methods that are important

for real-world applications.

1.2 Lessons from EurEdit

The idea of EurEdit was to evaluate methods using real-world data sets. Several data

sets were employed with many incomplete variables. To evaluate the performance

of different methods, many criteria were used, including measures for distributional

accuracy such as Kolmogorov-Smirnov statistic (KS), and unit level errors such as
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squared unit level error (DL2), and absolute unit level error (DL1). See reference

[10] for details on the statistics.

Two kinds of data sets were used in the project: development data sets and eval-

uation data sets. In the development phase incomplete data sets and corresponding

true data sets were available. However, in the evaluation phase the partners had to

complete incomplete evaluation data sets without knowing corresponding true data

sets. The completed data sets were sent to Office for National Statistics (ONS) for

evaluation.

In EurEdit each partner conducted a couple of imputation experiments with

their methods, which then were evaluated by ONS. While this is a rather objective

way of doing evaluations, it is also problematic in many ways. It was not possible to

eliminate the role of good or bad luck from the results. Especially, the variation in

the imputation results was unknown. Furthermore, each partner had to decide by

themselves how to optimize their methods. While some looked for minimal errors

in distribution, others were optimizing unit level imputations. As a consequence it

is difficult to say which of the methods is better than another. This is discussed in

the evaluation report [116].

The lessons from EurEdit, on which the current thesis tries to improve, can be

summarized as follows:

• Computed evaluation statistics were based on a single imputation without rep-

etitions and the results included no information about statistical confidence.

Because the reliability of the evaluation results was not assessed in the Eu-

rEdit, we cannot be fully certain about whether the results of a method in

a certain setting were good or bad just by an accident. To be of practical

usability it is important to know how a method performs on average, not just

on a single experiment.

• There was only a limited possibility to vary imputation model parameters.

This leads to a conclusion that some methods were artificially good in some

evaluations and artificially bad in others.

• The missing-data mechanism used was mostly MCAR(missing complete at

random, see section 2.1 for details), which is unrealistic. As a consequence

many real differences and thus, practical potentials, of various methods were

not clearly visible in the results of the project.

• There was no theoretical insight into the methods.

Now one may wonder whether some of the data sets used in the EurEdit project

have been used in this thesis also. The answer is no, for two reasons: 1) The EurEdit

project has ended, and the data sets used in it are no longer available, and 2) it

would be unfair to finetune just the TS-SOM methodology for the data sets used in

the project.

Overall, we expect that we shall obtain an understanding of how the methods

perform in different situations. This then would allow us to apply the proposed

methods in a most appropriate way for real-world applications.
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1.3 Research problem

The primary objective of this thesis is to analyse cell imputation methods. This

is done both analytically and empirically, and the focus is to find out what the

differences between the methods are. The advantages and disadvantages of the

methods are studied from a practical viewpoint in order to find the conditions under

which one method is better than another. In this context the first question is:

Why should we analyse imputation methods?

To be more specific, we hope that the analysis of imputation methodology reveals us

how the missingness and imputation methodology affects our statistical estimates,

predictions and conclusions. We hope to obtain an understanding about the types

of errors which are made when using different ways to handle an incomplete set of

observations.

It should be noted that there is no single criteria for judging when one impu-

tation method is better than another. It depends on one’s viewpoint. For example,

one may try either to preserve the unit level properties or distributional properties

of a data set. On a unit level one tries to, for instance, minimize the (squared)

prediction error between single observations, while on a distributional level one is

interested about distributional measures such as the bias of the first and the second

moment. This discussion leads to the following question:

What are the causes of imputation errors, and how these are seen

on a unit level and on a distribution level?

It is well-known that if one manages to minimize the squared prediction error at the

unit level then the variance estimator becomes biased downwards. In this thesis we

go further. The degree of bias is related to the expectation of conditional variance of

the target and the proportion of missing data values. The minimization of unit level

errors decreases the variance of mean estimators, and thus increases their precision.

On the other hand, if distribution level errors are minimized, then the squared

prediction error increases. This increase is related to the expectation of the variance

of the target and the proportion of missing data values. These are just the first

glimpses on the results that are given in this thesis.

Usually there is a big gap between theoretical results and practice. Often this

is due to simplifications that are required for the theoretical study. To decrease the

gap we shall ask:

What are the causes of imputation variances for a finite random

sample on n observations?

This is a difficult question. In theory we can simplify things a lot when n goes to

infinity. We may also study things when we are given a fixed data of n observations.

But as we shall see, both of these simplifications lead to unrealistic conclusions when

compared to errors in the real world. Thus the main challenge of the current thesis
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is to analyse imputation when assuming only that n observations are sampled from

a superpopulation. We then compare the imputation results with superpopulation

parameters.

1.4 Observations

During research we had many unsuccessful attempts to meet our objectives. This

experience can be discussed in terms of observations which we think are of general

interest. The observations are about

• analytical computations for incomplete random sample of n observations,

• conditionalized viewpoints to analytical computations,

• the fairness of the comparison of the methods, and

• computational complexity of the methods.

These topics are discussed with more detail in the following.

1.4.1 Exact analysis and approximations

In our first attempt, we tried to obtain the properties of the methods without using

approximations. However, we observed that the exact analytical computations for

incomplete samples are time demanding, complicated, and sometimes very difficult

or even impossible to do. Therefore we decided to use approximations, which are

mainly based on the Taylor series expansions and the laws of large numbers. The

benefits of approximate results are that they are faster to derive and often easier

to interpret, because approximations are shorter than exact derivations. However,

approximate results hold well only for very large sample sizes, and it easily happens

that the magnitude of an approximation error cannot be solved. And worse, there

are problems in the interpretation of results as well. Although the approximative

equation of the studied property of a method is shorter than the exact one, it often

happens that the causes for the behaviour of the method are hidden. We cannot

always say, for example, what increases the bias of an imputation, despite the fact

that we have an approximative equation for it.

1.4.2 Conditional properties

The reason for the difficulty of interpretation was that we tried to analyse the

whole imputation procedure under a single approximate equation. In other words

we made analytical formulas over a joint distribution of all possible random factors,

such as the number of observations, uncertainty of model parameters etc. With

this approach different random terms got mixed in the way that it was impossible

to say how the user of the method could control the method, and it was virtually

impossible to compare advantages with disadvantages between any two methods.
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The solution for this was based on an observation that it is more clever to compute

formulas under three conditionalization levels. It means that we study the role of

imputation under a given model and a given data set, uncertainty of imputations

with given model and a given training data set, and properties of random sample

from the superpopulation.

1.4.3 When is it fair to draw conclusions

The third observation is that one should be very careful in order to obtain a fair

comparison between the methods. In other words, one can compare the imputation

performance of two methods only under the same assumptions. This is a major

challenge for an overall evaluation, which includes both the estimation of the model

and its use in the imputation task. While the overall performance can be analysed

for standard methods such as linear regression, this is not easy for nonparametric

methods such as neural networks. A major problem is the loss of identifiability

of new methods which prevents us from defining exactly what kind of variability is

caused by the estimation phase of the model. Only empirical estimates can be given.

Therefore some comparisons are fair only when the analysis is conditionalized for

a given (fixed) model, and the role of the model is given via external (empirical)

evaluation.

1.4.4 Practical issues with computationality

The last observation is about the computational complexity of imputation. There

are methods with desirable statistical properties that cannot be used in practice

because of computational problems. Methods whose requirements for computer

memory or time to complete the task grow clearly more than linearly with respect

to the number of observations are often good for academic exercises only. With

real-world data sets, such as census data, we need good computational performance.

Therefore we include computational time requirement as an evaluation criteria in

this work too.

1.5 Main results and claims

There are several types of results. One is the overall study of cell imputation, which

is supported by both theoretical and empirical investigations. Another is a long

list of observations about situations where the behaviour of cell imputation can be

explained in detail. To summarize the results we note especially the following:

i) An equation and an algorithm to compute analytical error estimates of cell

imputation. For example, for a given clustering, we may estimate the variance

of the completed mean of data for a given sample size n. This is given in Chap-

ter 6 (Algorithm 6.4.2). However, due to time limitations variance estimate is

not used in empirical studies in Chapters 7, 8 and 9. The reason for this is
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that the final details of the error estimates were completed after the empirical

studies.

ii) The relative roles of the causes of imputation errors are demonstrated in var-

ious examples. Especially interesting is the difference in errors caused by the

fixed sample and random sample of n observations. See, for example, Sections

4.2.2 and 6.4.3.

iii) Sometimes a noisy model (overtrained model) is good in imputation. There

are several theoretical results and empirical examples demonstrating that non-

parametric methods can achieve the same performance in terms of marginal

moments using either stiff models with added noise or flexible models without

noise.

iv) Multimodal missingness is not a problem for nonparametric methods. Both

nearest neighbour and cell imputation can impute incomplete multimodal data

in terms of marginals, but cell imputation is better when data is conditionalized

as seen in Section 7.2.

v) The advantages of cell imputation are most visible when missingness mech-

anisms are complex. In our examples we see MAR and NMAR type cases,

where cell imputation outperforms other methods.

vi) In Chapter 9 new results about the role of model parametrizations are given.

For example, by changing the amount of added noise in imputations, the

performance can be shifted from unit level to distribution level.

vii) In the empirical part (Chapters 8 and 9) repeated sampling is used to obtain

reliable estimates of real-world imputation performances. The methods are

ranked according to their Pareto optimality.

viii) Computational differences of the methods are studied in detail.

The results can be concluded by a claim

Cell imputation is a good and practical way to do imputation.

Some of the advantages of the proposed methods are that they are nonpara-

metric and contain a tunable bias vs variance tradeoff. Using simple methods inside

the cells, we can show good imputation performance with respect to our evaluation

criteria under both the MCAR and MAR type of missingness. Most notably the

proposed methodology provides good enough performance simultaneously, on both

distributional and on unit level measures, while standard methods tend to do well

only on one type of criteria. From the practical viewpoint we can show that cell im-

putation is easily implemented using Tree-Structured Self-Organizing Maps [55, 56]

which is a computationally efficient version of Kohonen’s SOM algorithm [54].

The nonparametric nature of the proposed methodology implies flexible mod-

elling. Therefore the proposed method is capable of modelling data sets where the

parametric form is not known beforehand. As a consequence of flexibility we need
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to solve a so-called bias-variance dilemma which is a tradeoff between squared pre-

diction bias and prediction variance. A very flexible model has a low prediction bias

and high variance of prediction, whereas a stiff model has a high prediction bias and

low prediction variance. In our case the bias and variance tradeoff can be controlled

quite easily by the user.

The disadvantage of the proposed new methodology is that the parameters of

the model used in the methods are not identifiable. Non-identifiability of parameters

is a problem, because derivation of statistical properties, such as the variance of

parameter estimates, is difficult or even impossible. The non-identifiability problem

is typically encountered in mixture modelling and with other flexible modelling

methods such as neural networks.

There exists evidence for practical usability of the new methods. The experi-

ments done in the Euredit project give some indication that the methods may be

usable in practice. Secondly, the new empirical studies conducted for this thesis

indicate the same. This indicates that the proposed methodology is practically safe

and easy to use for complex data sets whose properties are not fully understood.

1.6 Structure of the thesis

This thesis has ten chapters as shown in Figure 1.1. In addition to Introduction and

Conclusion there are three methodological chapters (4, 5, and 6) and three empirical

chapters (7, 8, and 9). The review of methodology is given in Chapters 2 and the

setup of the problem is described in Chapter 3.

Introduction Theory Empirical Conclusions

Chapter 4
Theory for
simple methods

Chapter 5
Theory for non−
parametric methods

Chapter 6
Theory for
cell imputation

Chapter 1
Introduction

Chapter 2
Review

Chapter 3
Problem setup

Chapter 7
Simulated
examples

Chapter 8
Business 
survey

Chapter 9
Household
survey

Chapter 10
Conclusions

Appendixes
for all derivations

Figure 1.1: Organization of Chapters.

The main results of this thesis are given in Chapters 4, 6, 7, 8, and 9. These

describe the setup of the problem, the main theoretical work about cell imputation,

and the actual evaluation. Chapters 4 and 5 complete the theoretical work by giving

formulas for methods that are used in methodological comparisons, but there is no

clear interpretation of the results.
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There are many approximations in this thesis. To improve the clarity of pre-

sentation, the derivations of the approximations (justifications) are moved to ap-

pendixes. Only some illustrative examples are left in the main text. This has an

additional benefit since it gives more room for derivations, can then be given very

explicitely, using small and easily verifiable steps. As a consequence of this the ap-

pendix forms a set of background data, containing about 100 pages of formulas for

anyone who likes to check them.

Below, a more detailed list of chapter contents:

Chapter 2 begins with a description of missing-data mechanisms. Then common

estimation methods for complete and incomplete data are described. Imputa-

tion and its properties and drawbacks are summarized. The difference between

single and multiple imputation is briefly discussed about. Finally, imputation

model classes and related work done by other people are summarized.

Chapter 3 defines the framework under which the research problem is studied.

The notation which is used in this thesis is described in the beginning. This

is followed by an introduction to a simple practical scenario. Then a theo-

retical setting is concretized by giving details of the scenario. The measures,

on which the actual evaluation statistics is based in this thesis, are defined.

Conditionalizations, approximations, and decompositions, which are used to

ease the interpretation of results, are introduced.

Chapter 4 contains the results for simple methods and linear regression. Two

numerical studies are included. In the first study we investigate preservation

of first moment. The second study is about analysis of variance sources such

as imputation noise vs. sampling errors.

Chapter 5 contains an analysis of nonparametric regression. Nearest neighbour

imputation and kernel regression are studied. The chapter contains a study

about mean squared errors and flexible models.

Chapter 6 is about cell imputation. K-Means, Self-Organizing Map, and TS-SOM

clustering algorithms are briefly introduced, likewise their application in im-

putations is described. In addition to analytical results two numerical studies

are included. In the second study the impact of a clustering algorithm on

imputations is investigated.

Chapter 7 evaluates imputation methods using carefully designed experiments,

in which we focus on some specific phenomena. The chapter contains four

studies: a study about the role of a missing-data mechanism, another one

about imputation of multimodal distribution, a study about a classification

task with multivariate covariate, and a study about computational properties.

Chapter 8 is a step towards a more practical situation (as compared to Chapter

7): a simplified case study is presented. We have formed a finite population by
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cleaning a real-world sample from missing-data values and special values. Im-

putation of continuous turnover of enterprises is evaluated. The study utilizes

a small and medium-sized enterprises data set from the UK.

Chapter 9 contains experiments under the most practical situation (missingness in

covariates and presence of special values). The data set used in the experiments

is Quarterly Labour Force Survey. Imputations of almost continuous variable

AGE and categorical variable SEX (of person) are evaluated.

Chapter 10 contains the conclusions of the thesis. In addition, some ideas for

future research, which may be useful for other researchers, are summarized.

1.7 Contributions of the author

This work is a result of co-operation between the author and the supervisor. The

problem and the imputation methodology as well as many of the given examples

were proposed by the supervisor. The role of the author was to do the theoretical

work and conduct the empirical experiments. Thus

• All the derivations (proofs) were done by the author.

• All the experiments that are presented in this thesis were conducted by the

author.

The theoretical setup of computed properties and examples was done jointly. Some

general ideas came from the supervisor, but the actual details were developed by

the author.

The empirical evaluations were done almost solely using the NDA (Neural Data

Analysis) software, which has been developed in our laboratory (see Häkkinen [42]

for more details). The original versions of the TS-SOM methods for imputation

were developed by the supervisor, but these were partially rewritten by the author.

In addition the author has made all the simulation macros used in this thesis.

All the conclusions that are presented here were drawn up jointly by the author

and the supervisor. The supervisor has been quite helpful in the preparation of the

final text.



Chapter 2

Review of estimation from

incomplete data and imputation of

missing values

This chapter presents a short introduction to the general problem of handling missing

data. The actual problems that are studied in this thesis are introduced in the next

chapter.

The chapter begins with a specification of missing data mechanisms. Then

basic estimation methodology is reviewed for both complete and incomplete data.

This is followed by a short historical review about imputation. Finally an overview

of the imputation models and strategies used in this thesis is given.

2.1 Missing-data mechanisms

This section is about missing-data mechanisms. Rubin and Little [62] have defined

three classes of them: missing completely at random (MCAR), missing at random

(MAR), and not missing at random (NMAR). The mechanisms define the depen-

dency between missingness indicators and data.

To formalize the idea let dn×p be a partially unknown true data matrix which

has p variables and n observations. The true data d is assumed to be a random iid

sample from the joint distribution of variables. Missing data can be specified via a

realization of missingness indicators:

Mj,i =

{
1, if dji is missing,

0, otherwise.

In the MCAR mechanism M is independent of both the observed and the

unobserved part of sample, thus

Pr(M|d) = Pr(M|dobs,dmis) = Pr(M). (2.1)

where dobs means observed values and dmis missing values.
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When the MCAR mechanism applies standard methodology based on iid ran-

dom samples can be used to build an estimator for missing data. This makes an-

alytical studies easiest to do. Unfortunately the MCAR mechanism typically is

considered to be unrealistic for real-world data sets.

In the MAR mechanism the probability of missingness depends on the observed

part of the sample, but not on the unobserved part. Formally we may write it as

Pr(M|d) = Pr(M|dobs,dmis) = Pr(M|dobs). (2.2)

This implies that we should use the observed data to predict missing values. It is

also very likely that the distribution of missing data is different from that of observed

data.

One should note that in the past a different name for missing-data mechanism

was used. For example, Santos writes [90]

”Data are said to be missing at random (MAR) for a specified variate Y

if the respondent stratum is a simple random sample of size R from the

total population.”

However, in the current literature this clearly corresponds to the MCAR mechanism

as defined by Little and Rubin. The point of the remark is to emphasize that one

should not confuse missing-data mechanisms in older and newer publications.

The NMAR mechanism is potentially the most complicated missing-data mech-

anism as the probability of M may depend on both the observed and the unobserved

part of a sample. In some cases, there is an exact logical rule that can be used to

find missing values. If such a rule cannot be found, and the missingness seems to-

tally arbitrary, it might be impossible to impute the missing values. In the case of

statistical modelling, when external knowledge is available about the dependencies

between the missing values as well as about the dependencies between missing and

observed data, one might use the Markov or Gibbs processes for imputation. This

is, however, outside of the scope of the current thesis.

In this thesis we do not need to identify missing-data mechanisms from data,

because we define them in the setup of our experiments. For the interest of the

reader, we briefly summarize the possibilities for missingness identification next. It

is generally impossible to detect an exact missing-data mechanism for an incomplete

data set, but there exist some identification methods, mainly tests, that are able to

distinguish between MCAR and non-MCAR mechanisms.

Likelihood based tests have been proposed by Fuchs (1982)[27] for contigency

tables, and by Little (1988)[61] for multivariate normal data. A nonparametric test

has been proposed by Diggle (1989)[19] for preliminary screening. Rideout and

Diggle (1991)[83] have proposed a parametric test which requires the modelling of

the missing-data mechanism. Chen and Little (1999)[13] have generalized Little’s

(1988)[61] basic idea of constructing test statistics. They avoid distributional as-

sumptions, whereas Little (1988)[61] assumed normal data. Some specific tests for

linear regression models have been proposed too. Simon and Simonoff (1986)[95]
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have written an article in which they describe tools for MAR diagnostic and for

other purposes. They make no assumptions about the nature of the missing value

process. Simonoff has introduced (1998)[96] a test to detect non-MCAR mecha-

nisms. His diagnostics are based on standard outlier and leverage-point regression

diagnostics. Recently Toutenburg and Fieger (2001)[105] introduced methods to

analyse and detect non-MCAR processes for missing covariates. They use an outlier

detection to identify non-MCAR cases.

2.1.1 Ignorability and other assumptions

Assuming that distribution of D can be parametrized with θ∗, distribution of re-

sponse indicators M can be written in the form of f(M|d, ψ∗, θ∗), where ψ∗ is

some set of parameters for the missingness. Without further assumptions the miss-

ing data problem is not solvable, at least when considering maximum likelihood or

Bayesian inferences (see Sections 2.3.2 and 2.3.3). One should note that one can

always do imputations, but the quality of imputations is dependent on the type of

missingness. Analysis of impact of imputation is likely to be difficult in a general

missingness case.

The most usual simplification is to assume that the missingness mechanism is

ignorable, i.e.:

a) missing-data mechanism is missing at random (MAR) and

b) parameters θ∗ and ψ∗ are distinct such that the joint parameter space Ωθ∗,ψ∗

equals to Ωθ∗ × Ωψ∗ .

However, as stated by Little and Rubin [62]

”MAR is typically regarded as the more important condition here, in

the sense that if the data are MAR but distinctness does not hold, in-

ference based on the ignorable likelihood is still valid from the frequency

perspective, but not fully efficient.”

Further, there exists some other factorizations of likelihood for some models and

incomplete data patterns which result in simpler suboptimization tasks [62].

We do not assume ignorability throughout this thesis. Instead we shall assume

that the fully observed part of data Dtrain is iid drawn from an observed distribution

fY obs,Xobs and the incomplete part of data Dtest is iid drawn from an incomplete data

distribution fY mis,Xmis . These notations are explained in Chapter 3, and the required

assumptions are described within the appropriate context.

2.1.2 Missingness and statistical analyses

In statistical analysis there are basically three possible ways to handle missing in-

formation:

i) omit (discard) the incomplete part of data
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ii) replace the missing values with the imputed ones

iii) use a specific estimation methodology for the incomplete data

In the first alternative all incomplete cases (data records) are discarded. One

version of this is called listwise deletion (LD). This is viable for simple problems,

where missigness does not dominate the outcome due to the number amount of

missing values or/and due to the differences between the observed and missing pop-

ulations. Especially in multivariate cases, where any number of variables may hold

missing values, it easily happens that the number of complete records may not be

enough for a reliable estimation. King et al. estimate that the LD approach is used

in approximately 94% of publications in political science field when any one variable

remains missing after filling in guesses for some [51]. King et al. consider publica-

tions recent to year 2001. There are issues with LD. If the missing-data mechanism is

not MCAR then LD is likely to yield biased estimators, possibly highly so. Myrtveit

et al. write [69]

”Specifically, we need to understand the limitations of the seemingly

innocent and widely used, and abused, LD.”

In the quote ”we” refers to researchers in empirical software engineering.

Sometimes a slight improvement to LD is available, allowing a more efficient use

of information, for instance, if one estimates pairwise statistics, such as covariances.

In pairwise deletion (PD) one uses all the available pairs of observations. The

good news is that pairwise deletion does not introduce bias in MCAR cases, if

the statistics is originally unbiased. The bad news is that one has to be careful

when using pairwise computed statistics with univariate statistics. For example, in

computation of correlation one needs covariance and variance. A problem may arise

if the sample sizes used for covariance and variance are different. In such case the

estimated correlation coefficients can be out of the valid range. Further, one may

encounter problems even if one uses the same sample sample size for both covariance

and variance. Namely, the computed correlation matrix may not be positive definite.

See [62] for details on these issues.

The second alternative, imputation, which also is the main topic of this thesis,

is most applicable in cases where a complete data set is required for unspecified

future analyses. That situation is typical, e.g., in statistical offices which offer data

services for a large community of users and disciplines. As it is impossible to find

optimal incomplete data estimators for all purposes using limited resources, the only

sensible solution is to complete the missing values by reasonably good predictions.

An introduction to imputation methodology follows immediately after the reviews

of estimation from complete data set and the third alternative, which follow next.

Theoretically the best alternative for statistical analyses from incomplete data

is to develop specialized estimators for the purpose. The drawback is the complexity

of the task. Although several methods exist, there are many common problems for

which there are no ready-to-use tools available. Then one must either develop one,

or return to alternatives i) or ii) as introduced above.
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2.2 Estimation from complete data set

In estimation one uses an estimator function to obtain values for model parameters

from observed data. Thus the estimator is a function of random sample data, and the

output of an estimator is an estimate for a parameter. For concreteness, we describe

the least squares (LS) estimation, the maximum likelihood (ML) estimation, and

the Bayesian approach.

Least squares estimation

In the least squares (LS) estimation one minimizes the sum-of-squared errors. As

an example we define LS estimation for Y = g∗(x) + ε, where ε is zero mean noise.

The model is a general regression function g(x|θ), where θ is a set of estimates of

parameters.

Let our data be a set of observed pairs {yj,xj}n
j=1 of univariate response Y with

covariates X1, . . . , Xp−1. In LS-regression one tries to find the functional relationship

between Y and X using minimization of sum of square error between observed yj

and modelled response g(xj|θ).

SSE(θ) =
n∑

j=1

(
yj − g

(
xj|θ

))2

,

Thus the estimate is θLS = argminθ SSE(θ). The regression function g needs to be

defined in order to derive an optimum solution. For many flexible models a closed

form solution does not exist, and iterative optimization methods need to be applied.

As a historical insight we note that perhaps the earliest form of the least squares

estimation was published by Legendre in 1805. This was followed by a publication

by Gauss in 1809. They both considered least squares estimation with a linear

regression model. However, according to Gauss he had been using LS estimation

before Legendre. More details can be found from [8], for example.

Maximum likelihood estimation

The concept of maximum likelihood (ML) was introduced by Fisher between 1912

and 1922 (for details see [1]). In maximum likelihood estimation one assumes a

parametrized distribution for data D. Then, one defines a likelihood function L(θ|d)

for parameters with a given data set. The idea is to maximize likelihood function

L(θ|d) such that the estimate θ for parameters θ∗ is

θML = argmax
θ

L(θ|d).

In practice it often turns out to be more easier to maximize log-likelihood, especially

when deriving analytical results and in case of exponential distributions.

As an example, ML estimation of regression function parameters is considered

next. Let data d contain n observations of response Y with a given covariate X,
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and assume that the observations of response are independently sampled with means

g∗
(
xj|θ∗

)
, j = 1, . . . , n. Due to the factorization of independent observations

L(θ|d) ∝
n∏

j=1

f
(
yj|xj,θ

)
.

The corresponding log-likelihood function is then

log L(θ|d) = log
n∏

j=1

f
(
yj|xj,θ

)
=

n∑
j=1

log f
(
yj|xj,θ

)
.

Note that this leads to LS estimation when

f(yj|xj,θ) ∝ exp

(
−

(
yj − g(xj|θ)

)2
)

.

Bayesian approach

The philosophical roots of Bayesian inference go back to Thomas Bayes, whose essay

was published in 1764 by Price. At that time his work was mainly ignored by most,

but the main idea (the Bayes’s theorem) was rediscovered by Laplace (see [99] for

details). In the Bayesian approach a data set is considered as fixed and an unknown

parameter θ is considered as a realization from an unobserved distribution. This is

quite different from classical statistics in which a data set is considered to be random

over repetitions of samplings and a parameter is considered as fixed. Given a data

set one may write the distribution of the parameter as

f(θ|d) =
f(d|θ)f(θ)∫
f(d|θ)f(θ)dθ

,

where f(d|θ) is the likelihood and f(θ) is the prior distribution of the parameter.

The distribution f(θ|d) is called posterior distribution. Prior information about the

parameter θ is incorporated to Bayesian analysis through prior distribution, which

is set before the analysis is carried out. Prior distribution needs not to be proper,

thus it need not integrate to value 1. However, inferences about the parameter are

done from the posterior distribution which must be proper. Posterior corresponds

to prior distribution updated by the data set. As an example, one may compute a

maximum a posteriori (MAP) estimate which is defined as

θMAP = argmax
θ

f(θ|d).

One can find more details on Bayesian inference in [30].

The Bayesian approach and the maximum likelihood method both utilize like-

lihood. However, in Bayesian inference prior knowledge is also incorporated in the

analysis. These methods lead to the same solution in two situations. First is when

the prior has infinite support and the number of observations approaches infinity.

Secondly, maximum a posteriori estimate equals the maximum likelihood estimate

always when prior distribution is uniform with infinite support.



17

2.3 Estimation from incomplete data

In the following we have a short review of estimation from incomplete data. This

includes basic ideas for

a) weighted estimators

b) missing data likelihood estimation, and

c) Bayesian approach and simulation.

The first idea, weighted estimators, is to adjust complete observations with weights

to compensate for the missing ones. The second alternative is based on the Max-

imum likelihood concept that can be generalized for incomplete data. Likelihood

may be decomposed into parts corresponding to observed data and the conditional

distribution of the missing data given the observed data and the parameters. Then

the likelihood is maximized with a suitable method. The third approach is based

on Bayesian inference, where estimates are computed from the posterior distribu-

tion of the parameters of observed data and missing-data indicators. The Bayesian

approach may also be used for imputation. The idea is to draw from the predictive

posterior distribution of missing data given observed data. However, in practice

draws from the predictive distribution may be difficult to do. There exist some

simulation methods to ease in this task.

2.3.1 Weighting methods

In weighting methods the estimators are adjusted for nonequal sampling. Perhaps

the best known weighting method is the so-called Horvitz-Thompson (H-T) esti-

mator [39], where each observation j is weighted by the inverse of its sampling

probability πj. Thus observations Yj are replaced with weighted observations Yj, wj,

where wj = π−1
j and the corresponding sample size is nw =

∑n
j=1 wj. This idea

applies naturally to missing data as well. We only need to consider missingness

as weighted sampling, where sampling probability πj is replaced by the sampling

probability multiplied by the conditional probability for response given unit was

sampled. Typical examples include:

The Horvitz-Thompson estimator [39] of a finite population total is defined as

T̂H−T =
n∑

j=1

Yjπ
−1
j =

n∑
j=1

Yjwj.

For population mean the H-T estimator takes the form

µ̂H−T =
1

nw

n∑
j=1

Yjwj,

In practice conditional probabilities for the response given unit was sampled are not

known. There are multiple approaches to estimate them such as weighting class
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estimators, propensity weighting, and weighted generalized estimation equations.

For simplicity, the details are omitted here. The descriptions of the methods are

given in [62].

One should note that in the sampling theory, in which weighting estimators

are common, a capital letter followed by an index typically denotes (non-random)

population value and a small letter followed by an index denotes random observation.

In the current thesis we do not use that notation.

2.3.2 Likelihood based methods

Likelihood estimation can be extended for incomplete data also. Direct methods are

based on incomplete data likelihoods, while another popular approach is based on

iterative refinement toward expected complete likelihood. Both approaches can be

seen as a generalization of the maximum likelihood principle.

Application of maximum likelihood (ML) to incomplete data is theoretically

straightforward. However, in practice one may encounter some analytical problems

as some equations which are needed in estimation may be difficult to derive. This

difficulty arises typically when the missing-data mechanism is complicated. The

construction of Expectation Maximization is often considered easier than that of the

direct missing likelihood model. Therefore it is possible that with the EM method

more complicated missing-data problems may be solved in practice. Usually both

the direct ML and EM assume that data missingness is ignorable, as described in

Section 2.1.1. We begin by introducing maximum likelihood, after which EM is

described.

Missing data likelihood and its maximization

Maximum likelihood was applied analytically to estimation from incomplete data as

early as 1932 by Wilks [111]. A lot of work has been done with maximum likelihood

(ML) estimators of the first two moments of a population from an incomplete data.

Wilks derived the ML estimators of the parameters (means, standard deviations,

and correlation) of bivariate normal population from incomplete sample. Interest

remained high and more research work followed by such authors as Lord (1951),

Hartley (1958), Edgett (1956), Anderson (1957), Nicholson (1957), Hocking and

Smith (1968), and Morrison (1971) [64, 34, 21, 3, 75, 38, 74] among others. Most of

the research work was restricted on bivariate or trivariate gaussian distribution and

specific missing-data patterns. The idea of Hartley in [34] was to simplify and unify

maximum likelihood computations and estimates from incomplete data.

The basic idea, as described by Schafer [91], is that for any incomplete data

dinc the parametrized complete data density can be written as

fY (y|θ) = fY (yobs,ymis|θ) = fY obs(yobs|θ)fY mis|Y obs(ymis|yobs,θ).

The log likelihood can then be written as

l(θ) = l(θ|yobs) + log fY mis|Y obs(ymis|yobs,θ),



19

where l(θ|yobs) is the observed data likelihood and log fY mis|Y obs(ymis|yobs, θ) is the

likelihood for conditional distribution of the missing data given observed data and

parameters.

An advantage of the maximum likelihood approach is that it is sometimes pos-

sible to calculate explicit estimates under an assumption that mathematical compu-

tations related to the problem are not too difficult. Typically one defines the model

for l(θ|yobs) and fY mis|Y obs(ymis|yobs,θ) and solves the maximum likelihood problem

using a suitable method. The development of information technology and the ad-

vantages in stochastic optimization techniques has made this approach feasible for

complex likelihood functions as well.

Expectation Maximization

As stated earlier maximum likelihood inference for complicated missing-data mecha-

nisms can be quite difficult to apply. Expectation-Maximization (EM, introduced by

Dempster, Laird, and Rubin [18]) algorithm provides a way to simplify the problem.

Assuming ignorable (MAR) missing-data mechanism, for simplicity, likelihood

can be written in the form of

L(θ|y) =

∫
fY obs,Y mis(yobs,ymis|θ)dymis.

Instead of maximizing the full likelihood directly the idea of the EM algorithm is to

maximize the expected log likelihood, which is also known as the Q-function

Q(θ|θt) =

∫
log fY (y|θ)fY mis|Y obs(ymis|yobs,θt)dymis,

where θt is the previous estimate of parameters θ∗. This leads to iteration, which in

well-defined problems is shown to converge to a stationary global maximum of full

likelihood (see [112] for more details).

But, not all problems are well defined. There can be multiple modes, sad-

dle points, likelihood ridges, and boundary issues [91]. On the other hand, other

estimation methods must also face the issues.

The EM procedure is described in Algorithm 2.1. At first, an initial parameter

estimate is selected and a convergence criterion is set. In the E step the conditional

expectation of ”missing data” given the observed data and current estimated param-

eters is computed. The quotation marks are used because EM does not necessarily

impute missing values themselves. Little and Rubin have stated [62] that

“The key idea of EM, which delineates it from the ad hoc idea of filling in

missing values and iterating, is that ”missing data” are not Ymis but the

functions of Ymis appearing in the complete-data loglikelihood l(θ|Y ).”

However, there are many ad hoc iterative imputation-estimation methods which in

fact are EM algorithms for models where the complete data loglikelihood l(θ|yobs,ymis)
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is linear in ymis [62]. Note that the EM algorithm does not provide a variance es-

timate. However, Meng and Rubin have introduced a supplemental EM (SEM)

algorithm which does this [68].

Algorithm 2.1 The EM algorithm

1. Set initial parameter estimate θ(1) and convergence criterion δ to some small

positive value close to zero.

2. E-step: compute the expected complete-data loglikelihood if θ were θ(t):

Q(θ|θ(t)) =

∫
l(θ|yobs,ymis)f(ymis|yobs, θ = θ(t))dymis.

3. M-step: maximize the expected complete-data loglikelihood to solve θ(t+1):

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) forall θ.

4. If ||θ(t+1) − θ(t)|| > δ then repeat from Phase 2.

2.3.3 Bayesian approach

Bayesian inference under general missing-data mechanism is obtained from the dis-

tribution f(θ,ψ|y,M), where M is the response indicator matrix. The inference is

related to maximum likelihood inference from full likelihood Lfull. However, prior

information is incorporated in the analysis formally as

f(θ,ψ|yobs,M) ∝ f(θ,ψ)Lfull(θ,ψ|yobs,M),

where Lfull is any function proportional to f(yobs,M|θ,ψ) which is defined as

f(yobs,M|θ,ψ) =

∫
f(yobs,ymis|θ)f(M|yobs,ymis, ψ)dymis.

As before, inference becomes simpler if the missing-data mechanism is ignorable.

Under that assumption

f(θ,ψ|yobs,M) ∝ f(θ)L(θ|yobs)f(ψ)L(ψ|yobs,M)

∝ f(θ|yobs)f(ψ|yobs,M).

Thus, inferences of θ can be based on the posterior distribution f(θ|yobs). It should

be noted that the definition of ignorable mechanism for Bayesian inference is stronger

than for maximum likelihood inference. Namely, a priori independence of parameters

θ and ψ requires distinctness of parameter spaces Ωθ and Ωψ. More details on

Bayesian inference for incomplete data set can found in [62] and [30].

Bayesian methodology may also be used for imputation. In Bayesian imputa-

tion the idea is to draw from the posterior distribution f(ymis|yobs). However, in
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practice draws from the previous distribution are difficult to do. There exist some

methods which may be utilized for imputation. Little and Rubin list data augmen-

tation and the Gibbs sampler, which both are iterative methods and suitable for

ignorable missing-data mechanism. For simplicity we describe data augmentation

only. Details on Gibbs sampling for imputation can be found in [62].

Data augmentation

Data augmentation was invented by Tanner and Wong [100]. It is an iterative

simulation method. The original algorithm consists of a multiple imputation step at

each iteration. However, Little and Rubin consider a definition of data augmentation

that is slightly different from the one of Tanner and Wong. The algorithm steps

considered by Little and Rubin are the following:

I step: draw ymis,(t+1) from f(ymis|yobs, θ(t)), where t denotes iteration number

P step: draw θ(t+1) from f(θ|yobs,ymis,(t+1)).

The first step corresponds to an imputation step, whereas the second one is a pos-

terior step. These two steps are typically simpler than drawing from the posterior

distribution of ymis given yobs. The two steps are repeated sufficiently long. This

iterative process can be shown to yield, in the limit, a draw from the joint posterior

distribution of ymis,θ given yobs. In some sense this method is similar to the EM-

algorithm. As an exception, in the first step the draws are done from a conditional

distribution, whereas in the EM-algorithm conditional means are used. As a con-

sequence, covariance-matrix estimations require no magnitude correction factors as

they do in EM. As a pitfall, estimation efficiency of the mean is lost. However, this

can be compensated by averaging the results of multiple repetitions of the whole

algorithm, but with a computational cost.

2.4 Imputation

This thesis is about imputation, the idea of which is to replace missing data values

by their predictions. It should be noted that replacement of missing data values

may be considered as a data reconstruction problem, which is explained in detail,

for example, in reference [71]. Before describing imputation in more detail we briefly

summarize its history. A more complete overview of the subject can be obtained by

reading the references [46, 62, 115, 89, 2].

The earliest ideas on imputation are probably those by Allan and Wishart in

1930. Rubin [86] writes that

“The formulae giving the least squares estimates for one missing cell in

randomized block and latin square designs were first given by Allan and

Wishart (1930).”
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The Rubin’s paper [86] consists of a non-iterative algorithm for filling in missing

data values in the analysis of any variance design. Other early ideas are refereed in

the introduction part of Cheng’s paper [14]. Cheng writes

“Yates (1933), Bartlett (1937), and Healy and Westmacott (1956) in-

troduced the ideas of filling in the least squares estimates of all missing

values in the analyses of variance and covariance.”

Hartley’s 1956 paper contains a unique formula for filling in missing values in the

analysis of variance for any design [33]. However, in case of multiple missing values

the formula has to be used iteratively. In 1960 Buck defined a regression imputa-

tion method for the estimation of the covariance-variance matrix of any population

from incomplete data [7]. Imputation was used in applications in 1950s and 1960s

for example by Jaszi, Phillips, and Wharton [43, 77, 110]. After the 1960s other

researchers, including Rockwell and Fellegi and Holt, became involved with impu-

tation [84, 23]. According to Zhao [115] the major reason for the use of imputation

was to achieve complete data. Rubin introduced multiple imputation in 1987 [87].

Next we will summarize the desirable properties of imputation, after which the best

known imputation procedures are introduced.

2.4.1 Desirable properties and drawbacks of imputation

We refer to a good review paper of imputation written by Kalton and Kasprzyk [46]

and to a paper written by Jinn [44].

The desirable properties of the imputation are [46]

• “First... it aims to reduce biases in survey estimates from missing data...”,

• “Second, by assigning values at the micro level and thus allowing analyses

to be conducted as if the data set were complete, imputation makes analy-

ses easier to conduct and results easier to present. Complex algorithms to

estimate population parameters in the presence of missing data (e.g., the

Expectation-Maximization algorithm of Dempster, Laird and Rubin, 1977)

are not required.”, and

• “Third, the results obtained from different analyses are bound to be consistent,

a feature which need not apply with an incomplete data set.”.

These viewpoints are especially important in statistical offices. Non-response in

surveys and censuses may cause considerable bias to analyses if it is not taken into

account properly. Therefore the first property is very practical. Secondly, maximum

likelihood and expectation maximization approaches require more trained people,

who may not be able to apply them due to mathematical difficulties. One of the

advantages of the third property is that a covariance matrix from an imputed data

set is likely to be proper, which is not necessary true for covariance matrix estimated

directly from incomplete data set.

Naturally there are some drawbacks as well.
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• Imputation “does not necessarily lead to estimates that are less biased than

those obtained from the incomplete data set” [46],

• ”there is also a risk that analysts may treat the completed data set as if all

the data were actual responses, thereby overstating the precision of the survey

estimates.” [44], and

• “Even if the biases of univariate statistics are reduced, the relationship between

variables may be distorted.” [44].

In the first drawback estimates refer to survey estimates such as mean and total.

A solution for the second drawback is to take imputation uncertainty into account.

This may be accomplished by multiple imputation.

2.4.2 Single imputation

The idea of single imputation is to replace each missing data value by a single

prediction.

The main advantages of single imputation are that it is simple, yields a com-

plete data set, and requires no additional storage space for the data set. Therefore

standard complete-data methods of analysis can be applied after single imputation.

Rubin mentions also that a major advantage of single imputation is that data col-

lector’s knowledge may be incorporated in imputations [87].

A data collector has benefits over a typical user of a data set. The collector

may have better information about and understanding of the process that creates

the missing data. This is an especially important factor in cases where the collector

(for example the Census Bureau) has more information available for imputation

than would be available for public-use on the resultant data bases. Secondly, the

collector is likely to have greater resources for analysis than a typical user of a data

set.

A disadvantage of single imputation is that application of complete-data meth-

ods to imputed data sets treats missing values as if they were known. Treating

missing values as if they were known is problematic. Inferences based on the im-

puted data set will be too sharp, because additional variability due to unknown

values is not being taken into account. Quantities such as correlations that depend

on variabilities can be badly biased. Rubin describes another problematic issue of

single imputation [87]

“when non-response is not really understood, no account is being taken

of the uncertainty arising from not knowing which nonresponse models

for imputation are appropriate”

2.4.3 Multiple imputation

In this thesis we do not consider multiple imputation in analytical or empirical

studies. However, because it is widely referred to in publications and used in appli-
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cations, we consider it important to make the reader aware of it by offering a brief

description here.

The first seeds for multiple imputation were sown by Rubin in the late 1970s

[88], and a lot of development ensued. The idea in multiple imputation is to first

produce several, say k, versions of the completed data sets with an imputation

model. Secondly, normal complete-data set analyses are done for each of the k data

sets. Finally, the results are combined using Rubin’s rules.

The advantages of multiple imputation include the two advantages of single

imputation: it allows the use of complete-data methods of analysis and the incorpo-

ration of the data collector’s knowledge. The second advantage is actually enhanced.

Data collectors can use their knowledge for reflecting uncertainty about which values

to impute. However, there are also three important advantages compared to single

imputation.

First of all, multiple imputation increases the efficiency of estimation. Efficiency

here refers to the reduction of imputation related variance. Secondly, under certain

assumptions one can use a combination of standard complete data methods to do

inferences on imputed data. For example, it is rather straightforward to obtain

estimates of imputation variances. The third advantage is that one can study the

sensitivity of inferences to different models for non-response. The reader is suggested

to read the book by Rubin for more details [87].

The disadvantages compared to single imputation are that more work is needed

to produce the completed data sets, and more space is required to store data. How-

ever, these disadvantages are not severe when the value of k is reasonable (i.e., not

too large). The value of k typically has to be increased as a function of fractions of

the missing information, otherwise the multiple imputation is not fully satisfactory

[87].

2.5 Model classes and imputation strategies

The emphasis of this thesis is in a scenario where incomplete data is replaced with a

single imputed data set. Thus we are not directly involved with multiple imputation.

In addition, we are interested in cell imputation, where imputation is done in subsets

or clusters of data. Roughly put, the idea is to divide data into clusters (cells) that

are made of similar observations and apply imputation in each of these clusters more

or less independently. Optimally data variation inside the cells would correspond to

unexplained noise, while variation between the cells could be explained by observed

covariates.

The above viewpoint leads to several open questions, including

• How is imputation done inside the cells?

• How is the cell partitioning (clustering) obtained?

• How can we evaluate the results?
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To answer these, several imputation models are used together with a couple of

different imputation strategies. More formally, we consider model assisted imputa-

tion in the form of

Y imp = g(xobs|θ) + ε̂(xobs),

where g(xobs|θ) is the approximative model for our data and ε̂(xobs) represents our

estimate of the unexplained noise. For models g(xobs|θ) we use either

i) data mean g(xobs|θ) = µobs, where covariates are ignored, and which serves as

a baseline for comparative evaluations

ii) regression methods, where we use both parametric and nonparametric ap-

proaches, namely linear regression, nearest neighbour regression and kernel

regression.

iii) clustering methods of type g(xobs|θ) = µb(xobs), where µ1, µ2, . . . , µnc are cluster

(cell) centroids and b(xobs) is the selector of the ”best” centroid for observation

xobs.

For noise ε̂(x) we use three imputation strategies

M (mean): where noise is omitted, and which we call (model) mean imputation

R (random): where noise is simulated, implying that ε̂(xobs) is taken as an iid sample

from a noise model fε̂(xobs)(e|xobs)

D (donor): random donor, where ε̂(xobs) is picked randomly with replacements from

a set of centered observed values, {yk − g(xobs|θ)}, yk ∈ dtrain

Since imputation strategies M, R and D can be combined with any of the models

in categories i), ii) and iii), we shall organize the current study according to model

types. When there is no danger of misunderstandings we refer to these types as

mean imputation, regression imputation, and cell imputation.

2.5.1 Mean and random donor imputation

In mean imputation the mean of observed data is substituted as a replacement

for missing data values. In random donor imputation the missing data values are

replaced by drawing observed data values. Drawings may be done with or without

replacements. In this thesis we consider samples with replacement. These baseline

methods do not utilize any covariate information thus they are expected to perform

poorly in regression tasks.

The results for mean and random donor imputation methods are well known

in the literature (for example see [62] for details). However, there exist some results

for random donor imputation which are not available in basic literature. Namely,

Lai’s thesis of 1998 [59] consists of derivation of some analytical properties of mean

estimator based on multivariate random hot deck under MCAR and special MAR

response mechanisms. Some of the Lai’s formulas are also available in a paper

written by Shen and Lai in 2001 [94], which concerns the quality of life data.
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2.5.2 Regression imputation

Regression methods are an obvious choice for any modelwise evaluation of a method-

ology. Assuming that response Y can be explained by fully observed covariates

X1, . . . , Xp−1, some regression model could be an optimal way to solve imputation

problems. There is also a lot of easily obtainable knowledge about regression meth-

ods. Especially the theory of linear regression is well established (see for example

[66]). Therefore linear regression is included in our study as well. For wider perspec-

tive we consider also some nonlinear and nonparametric alternatives such as nearest

neighbour regression [72] and kernel regression [70]. In general all regression meth-

ods are likely to perform better than simple mean and random donor imputation

methods under non-MCAR missing-data mechanisms.

Basic results of linear imputation can be found from standard references such

as [62]. A recent example of analyses can be found from the PhD thesis of Zhao

[115]. He assumes a MAR missing-data mechanism and a fixed design, i.e., the

observations of explanatory variables are fixed. The biases of imputation estimators

for the first two moments are derived, as is the variance of the estimator for the

first moment. Some interesting publications related to imputation and estimation

of the linear regression model have been authored, e.g., by Toutenburg, Skrivastava,

Shalabh, and Jinn [102, 103, 104, 107, 44].

We are not aware of any thorough analyses of k-nearest neighbour methods

(k-NN) in the context of imputation. Chen and Shao (1997) have introduced results

for 1-nearest neighbour imputation in a survey framework [12]. They give an ap-

proximation for bias and variance of the imputed mean of a population. An exact

bias is also derived for some specific distributions, and it is shown that the empiri-

cal distribution function of the imputed data converges asymptotically to the true

distribution function. Cheng (1994) has derived the asymptotic distribution for the

mean of the imputed data for Nadaraya-Watson (NW) kernel regression [14]. Cheng

remarks that the asymptotic distribution is also the same for k-nearest neighbour re-

gression. However, covariate is assumed to be univariate. In another work Hruschka

et al [40] have used K-Means clustering to optimize computational complexity of

k-NN regression imputation. Their idea is similar to binning used to optimize speed

in kernel regression methods (see for example [41] for details).

One problem with nearest neighbour methods is their computational complex-

ity which limits the applicability of the method to small data sets. One possible

solution is proposed by Hruschka et al. [40], where data is first compressed with

K-means clustering. Then the nearest neighbour imputation canditates are searched

from the smaller set of the cluster centroids instead of the original observations. Em-

pirical studies show that the method is suitable, i.e., its results are comparable with

imputations provided by k-NN in a number of regression and classification tasks.

Some of our methods are based on smoothing. In regression smoothing a

weighted mean of response values over a local neighborhood is used as a predic-
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tion. The idea is similar to the borrow-strength† technique, which is used in small

area estimation (SAE) [82]. The idea is that the neighborhood of a small area is

used to increase the number of observations. As a consequence estimation variance

is typically decreased, but squared bias is increased. In the imputation context this

technique has not been studied much. Titterington and Mill (1983) introduced a

kernel-based method for density estimation from incomplete data [101]. That paper

contains consistency results for a density estimate, and the method has been used

for imputation as an application. Cheng (1994) deals with the estimation of expec-

tation of a variable from incomplete data using a nonparametric (kernel) method

[14].

2.5.3 Cell imputation

Cell imputation requires three phases. First, cells are constructed. This may be

done using clustering methods, such as K-Means [32], SOM [54], or mixture mod-

elling [24], but we may also use external knowledge like gender or age categories for

the task. Second, all observations, including incomplete ones, are associated to cells

using observed data. This may require the use of a probabilistic classifier. Finally,

the missing data values are imputed using information that is assigned to the corre-

sponding cell. This can be done using previously introduced methods, for example

mean or donor imputation.

Some analytical research have been done on cell imputation. A report written

by Santos (1981) [90] consists of analytical derivations for cell mean and cell random

hot deck methods. His study also includes a baseline and two linear regression meth-

ods. He considers a general mechanism, a MCAR mechanism, and a MCAR within

clusters missing-data mechanism. The cells are assumed to be fixed, i.e., based on

some deterministic division of the cell covariate. Santos assumes a finite population

sampling framework and presents large sample biases of covariance and variance es-

timators based on imputation. Kalton and Kish (1981) [47] used clustering in order

to reduce variance, due to the hot deck procedure, to neglible level. They stratified

the respondents by their target values into equal-sized stratas. Kim and Fuller [50]

study analytical properties of the mean estimator based on the fractional hot deck

imputation within cells. There are also some empirical studies where K-Means or

SOM clustering has been used in the imputation method.

Self-organizing maps have been used for prediction of missing data values in

some applications. However, all the studies that we know of are empirical. Fessant

et al. compare three different cell imputation methods based on SOM [25]. Their

application consists of imputation of missing values in a French personal transport

data set. Rallo et al. apply SOM to impute missing data values in an application in

the chemical engineering field [80]. Their imputations are based on a SOM prototype

imputation, thus an incomplete data set is assigned to a winning node in which its

missing data values are replaced by the corresponding values of a prototype vector.

†We thank Ray Chambers for this observation.
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Cottrell and Letrémy give ideas about how to apply Kohonen’s algorithm for an

incomplete data set [15]. They also discuss imputation of missing data in three

applications. SOM based multiple imputations are empirically tested by Rallo et al.

[81]. Their application consists of two industrial processes.

Finally we want to note that there are some imputation methods based on

classification and regression tree models [6] which are functionally equivalent to cell

imputation. Imputation methods utilising classification and regression trees have

been used in some applications. Regression tree based imputation methods were

used in the EurEdit project [11]. In addition, Creeli and Krotki have compared

some imputation methods which are based on tree methods [17].

2.6 Summary

Missing-data mechanisms were defined in the beginning of the chapter. Statisti-

cal properties, such as bias of estimators computed from the imputed data may

be crucially affected by the missing-data mechanism. The concept of ignorability

of missing-data mechanism was introduced. Ignorability typically makes maximum

likelihood and Bayesian analyses from incomplete data easier. Methods for identifi-

cation of missing-data mechanism were briefly described.

The basic estimation methodology was reviewed for both complete and incom-

plete data. The least squares, maximum likelihood, and Bayes approaches were

considered for complete data. Estimation alternatives for incomplete data were de-

scribed. The methods included weighting, maximum likelihood, Bayes approach and

simulation. In this thesis we utilize neither the Bayes nor the simulation approach.

Imputation, the main subject of this thesis, was described. A brief review

of the history of imputation was given. Some desirable properties and drawbacks

of imputation were listed. Single and multiple imputation approaches were also

described. In this thesis we are not directly involved with multiple imputation.

Finally, model classes and imputation strategies were introduced. Model classes

included mean imputation (and random donor), regression imputation, and cell

imputation. The main focus in this thesis is on analyses of cell imputation. However,

the first two types mentioned serve as comparative methods. Previous research work

related to model types was described.



Chapter 3

The setup of the problem and

basic decompositions

This chapter defines the research problem and motivates the reader about possible

practical uses of the study. Our description begins with a real-world scenario, where

an incomplete data is replaced with an imputed one. A key note is that unless one

knows exactly what the future use of the imputed data set is, it is impossible to

say what the best imputation method for the task is. Therefore we are interested in

methods that perform reasonably well according to many different viewpoints. Our

hypothesis is that cell imputation is one of such methods.

To quantify our hypothesis, several measures of imputation performance are

introduced. We consider how missingness and imputation methodology affect sta-

tistical estimates, predictions and conclusions. More specifically we are interested

in the trade-off between the preservation of the properties of data on the unit level

and those on the distribution level. The assumptions for and the conditions of the

measures are described in this chapter. An insight about the practical relevance of

our limitations is also explained.

Recall, from Section 2.5, our taxonomy of different imputation models and

strategies. Our aim here is to describe how we are to compare those models against

each other. This leads to a combination of theoretical and simulation studies in

Chapter 7.

Finally, we describe the theoretical framework for the thesis and its relation to

simulation studies and real-world data.

Before describing the real-world scenario, the notation which is used in this

thesis, is defined.

3.1 Notation

We need to distinguish between parameters, random variables, estimators, and fixed

values. Table 3.1 illustrates the notation used for the following quantities: expecta-

tion and variance of target Y, expectation and variance of covariate X, expectation
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of Y given X = x (conditional mean), and expectation of variance of Y given X = x

(over the distribution of covariate X).

Parameter R.v./distribution Estimator Fixed value

µ∗ Y ∼ fY µ̂ µ

τ ∗ Y ∼ fY τ̂ τ

X
∗

X ∼ fX X̂ X

Σ∗
X X ∼ fX Σ̂X ΣX

g∗(x) Y |X ∼ fY |X ĝ(x) g(x)

v∗ ε|x = Y|x − g∗(x) ∼ fε|x(e) v̂ v

Table 3.1: Illustration of notation. R.v. is the abbreviation for random variable.

The notations for data set, variable, and observations are depicted in Table

3.2. Note that the fixed value of the realization of j:th noise term is denoted by ej,

whereas random quantity is denoted by εj.

Random quantity Fixed value/realization

D d

Y y

Yj yj

εj ej

Table 3.2: Notation for data set, variable, and observations.

For some quantities it is also necessary to distinguish the data set to which

the quantity is associated. This is denoted by a superscript as illustrated for the

mean estimators in Table 3.3. Further, in many results of this thesis it is also nec-

essary to mark the imputation method and strategy. This is denoted by superscript
method,strategy. As an example µ̂comp,B,M is the mean estimator which is computed

using baseline imputation strategy.

Symbol Description

µ̂ Estimator is associated to true data set.

µ̂obs Estimator is associated to observed data set

(completely observed observations).

µ̂mis Estimator is associated to missing data set.

µ̂imp Estimator is associated to imputed data set.

µ̂comp Estimator is associated to completed data set.

Table 3.3: Example of notation which is used to depict to which data set the quantity

is associated.

Subscripts are used in indexing (of observations, cells, or covariate dimension)

and for giving details. Examples of the use of subscripts include:
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• Indexing

i) dimension indexing Xu,

ii) observation index xj (paired with the dimension index: xj,u), and

iii) cell index µ̂obs
i or cell index pair hi,l, where hi,l is a quantity between cells

i and l.

• Details about matrix size etc.

i) dimensions of matrix or number of observations on which quantity is

based:

a) An×p matrix with n rows and p columns,

b) dn data set with n observations,

ii) referred variable: for example Σ∗
X , and

iii) number of cells: nc.

3.2 A real-world scenario

This thesis is not from the viewpoint of one method in one specific setting. Instead

we are seeking to obtain an understanding on a more complex problem, i.e.:

How good is the imputation with respect to unknown future uses of

data?

To concretise the idea we have made a simple practical scenario that applies to some

working processes in statistical offices. To put it shortly, we consider a situation

where an incomplete data set is imputed and is then sent to an analyst. This

is depicted in Figure 3.1. The imputer receives an incomplete data and returns

a completed one. This data may then be used for several types of application

dependent analyses. We do not except that the analyst is an expert of statistics

with incomplete data, and therefore he/she must have a complete data set that is

good enough for practical situations. The analysis of a completed sample is supposed

to be done independently of imputations. As is the case in the real-world, the analyst

may not know that the sample has been imputed.
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Superpopulation Sample

Missing-data
mechanism

Imputer

Imputed 
data

Analyst

Estimates

Figure 3.1: Data flow chain.

For simplicity we assume throughout this thesis that missingness is limited to

one variable only, which is denoted by Y , while fully observed variables are denoted

by covariates X1, X2, . . . , Xp−1. This limitation simplifies theoretical analyses, and

allows us to write missingness via a univariable random response variable R, whose

realisation is the indicator

rj =

{
0, when element dj1 ∈ d is missing, and

1, otherwise.

where d is the realization of a true data set.

Let the probability for missingness be p∗, formally Pr(Rj = 0) = p∗. One should

not confuse p∗ and p which have different meanings. Now distributions of Y and X

for random true data D can be written as a two component mixture of the observed

part and the missing part. Formally, the joint distribution can be decomposed as

fY,X(y,x) = (1− p∗)fY obs,Xobs(y,x) + p∗fY mis,Xmis(y,x). (3.1)

The reader should note that here we have neither restricted the framework to be

the selection model

f(R, Y, X) = f(R|Y, X)f(Y |X)f(X)

nor the (pattern)-mixture model

f(R, Y, X) = f(R|X)f(Y |R, X)f(X),

as described in references [63, 62, 87]. See Appendix A3.4.1 for details. Instead,

both models are possible, when f(Y, X) is written in terms of observed and missing
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distributions. It should be noted that the global missingness p∗ does not apply for

measures that are conditionalized with x. For those cases we use notation p∗x instead.

We shall use Equation (3.1) to decompose our evaluation statistics as explained later.

The random data matrix D of n observations can be defined as

D = {Yj,Xj}n
j=1, where Yj,Xj

iid∼ fY,X(y,x).

Given realized data matrix d, we denote the observed vector of responses as

r = [r1, r2, . . . , rn]
T . The application of r to realized true data d gives us a realized

incomplete data set dinc, where some values of dinc
j1 are missing. Once we have

the realizations of D and R, the incomplete data matrix dinc can be given in a

reorganized form

dinc = [dinc
ji ]n×p




y1 x1,1 . . . x1,p−1

...
...

. . .
...

ynobs xnobs,1

... xnobs,p−1

? xnobs+1,1 . . . xnobs+1,p−1
...

...
. . .

...

? xn,1 . . . xn,p−1




,

where ? denotes a missing value and nobs is the number of observed values. Thus

first nobs cases are complete and the rest nmis = n − nobs are incomplete. The

reorganization is applied also to the true data matrix d. To prevent confusion with

d the reorganized true data matrix is denoted as dtrue. Further, to ease indexing

of response indicators for completed data set Dcomp, which is defined in Section 3.3,

we redefine rj to be

rj =

{
0, when element yj is missing in dinc, and

1, otherwise.

From now on rj refers to the response indicator for incomplete data set dinc unless

otherwise stated. Thus there is no risk of confusing it with indicators for original

data set d.

In the block form we use the following notations for partial matrices

dinc =

[
dobs

Y dobs
X

? dmis
X

]
=

[
dtrain

dmis

]

dtrue =

[
dobs

Y dobs
X

dmis
Y dmis

X

]
=

[
dtrain

dtest

]
=

[
dY dX

]
,

where the names of matrices are obvious except dtrain and dtest, which are borrowed

from the community of statistical pattern recognition. Usually dtrain refers to train-

ing data, which is used in model building, while dtest is used for testing the model

performance. In our case dtest is the incomplete part of true observations, and it



34

can be used to ”test” the performance of imputation methodology. Such a parti-

tioning is useful in the analysis of imputations, since it allows the decomposition

into observed and unobserved parts as dobs = dobs
Y ∪ dobs

X ∪ dmis
X . One should note

that random train and test matrices and stochastics of their elements are defined as

Dtrain = {Yj,Xj}Nobs

j=1 where Yj,Xj
iid∼ fY obs,Xobs , and

Dtest = {Yj,Xj}n
j=Nobs+1

where Yj, Xj
iid∼ fY mis,Xmis .

We can concretise the theoretical setting as follows

i) True data d is an iid sample from an unknown distribution. The observed

incomplete data dinc is a result of a random missingness pattern that follows

some distribution fR(r|I), where I may depend on data.

ii) Training data dtrain is an iid sample from fY,X|R=1(y,x) = fY obs,Xobs(y,x) and

test data dtest is an iid sample from fY,X|R=0(y,x) = fY mis,Xmis(y,x). One

should note that this assumption implies that the missing-data mechanism

can belong to the NMAR class.

iii) Data consists of a fixed number of n observations of variable Y and covariates

X1, . . . , Xp−1, where all Xi are fully observed and some of the values of Y

are missing. The number of missing values Nmis is assumed to be a random

variable with mean E[Nmis] = np∗ where p∗ ∈ (0, 1), and given data dinc, we

have realization Nmis = nmis.

iv) Distributions of Y and Xi are unknown, but we know that the first two mo-

ments of Y do exist

E[Y ] = µ∗

Var[Y ] = τ ∗.

The above assumptions also imply a requirement for the existence of condi-

tional moments:

E[Y |X = x] = g∗(x) and

Var[Y |X = x] = v∗(x),

where v∗(x) is usually assumed to be constant v∗(x) = v∗.

Furthermore, theoretical study requires several assumptions, the most common of

which are described below. In the analysis, the existence of corresponding moments

for the covariate X is required. The moments are denoted as

E[X] = X
∗
, and

Var[X] = E[(X −X
∗
)(X −X

∗
)T ] = Σ∗

X ,

where we assume that the variances Var[Xi], i = 1, . . . , p−1 are non-zero. Existence

of the fourth central moment of Y is also required, to ensure that the second moment
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of the variance estimator, corresponding to the observed part of sample, exists. We

do not derive the variances of variance estimators in this thesis, which is explained

later. However, the assumption is still important. Estimation of variance makes

no sense if the variance of an underlying estimator does not exist, because the

distribution of the estimator does not degenerate as the sample size goes to infinity.

The assumptions on the existence of central moments exclude some superpop-

ulations. As a consequence some marginal distributions of Y and X are excluded

from the analysis. For example, existence of the first and second moments, which are

required to make the use of the first sample moment sensible, excludes the Cauchy

distribution family. Neither of the two moments exist for Cauchy distributions.

Secondly, existence of the fourth moment excludes also some distributions. As an

example, there are parameter combinations for Pareto distributions which result in

the inexistence of the fourth moment. In practice these moment assumptions are

required in many other statistical analysis too. Therefore, we do not consider these

to be too restrictive for practicality.

Finally, recall decomposition of f(Y, X) in Equation (3.1). It implies, see Ap-

pendix A3.4.2 for details, that a conditional mean can be written as

g∗(x) = E[Y |X = x] = (1− p∗x)g
∗obs(x) + p∗xg

∗mis(x), (3.2)

where p∗x = Pr(R = 0|x) and g∗obs(x) and g∗mis(x) are the conditional means for ob-

served and missing Y values at x. In the MAR or MCAR case g∗obs(x) = g∗mis(x) =

g∗(x).

3.3 About evaluation

Recall our definitions for (reordered) true and incomplete realized data sets dtrue

and dinc. In imputation we replace dinc with the (randomly) completed data set

Dcomp. In the completed data set the missing values of Y comp
j ∈ Dcomp are given

with a model g(x|θ) as follows

Y comp
j =

{
Y obs

j , if rj = 1, (Yj is observed)

Y imp
j = g

(
Xmis

j |θ)
+ ε̂

(
Xmis

j

)
, when rj = 0 (Yj is missing).

The evaluation of imputation performance is now a study of distributional and

pointwise and unit level properties of an imputation method.

All our evaluations are conditionalized. By this we mean that there is some

set of background assumptions, denoted as Q, under which the analysis is done.

Most commonly we assume that the number of observations is fixed to n, while the

number of missing values Nmis is random. The value of Nmis is ensured, via technical

assumptions, to be such that all the computed estimates do exist. Details of these

conditionalizations are given in Section 3.5.

The aim of the current evaluation is to answer questions about imputation

performance. We like to know
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i) if an imputation method is good enough in general,

ii) under what conditions it is good, and

iii) how different methods compare against each other?

None of the questions can be answered directly, but we can find partial explanations

by developing measures of imputation performance. These measures are related to

true data, Dtrue, and the underlying superpopulation of Y as follows

1) Distributional (aggregate level) measures are related to first and second mo-

ments of the distribution of Y , namely

• expectation µ∗ = E[Y ], and

• variance τ ∗ = Var[Y ].

2) Prediction measures are related to Y |x. On the level of sample Dtrue this is

related to the unit level predictions of Yj given xj.

In other words, we use both distributional and unit level information in our evalu-

ations.

In relation to actual imputation, the above measures are computed from the

completed data set dcomp, which contains n observations of the variable Y comp. This

implies that our evaluation must be done by studying the sample estimates of ycomp
j ∈

dcomp:

µ =
1

n

n∑
j=1

ycomp
j

τ =
1

n− 1

n∑
j=1

(
ycomp

j − µ
)2

, and

as well as the direct values of ycomp
j on the unit level measures. With respect to

these measures, the aim of the imputation is to get estimates µ, τ , and ycomp
j as

close to µ∗, τ ∗, and yj as possible. But closeness itself does not tell us what the

imputation performance is, because the differences between µ and µ∗ are affected

by several reasons

a) estimation errors when computing µ from finite sample

b) imputation errors caused by the model and strategy

c) conditions on data and evaluation measures.

Since we are mainly interested in case b), an extra caution must be taken when

analyzing the results of our studies. Namely, because a) and c) can dominate the

results, which diminishes the role of imputation methodology.
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3.4 Evaluation statistics

The actual evaluation statistics that is used in this thesis is based on following

measures

1) Biases and variances of the first moment estimator of Y

Bias[µ̂comp|Q] = E[µ̂comp − µ∗|Q]

Var[µ̂comp|Q] = E[(µ̂comp − E[µ̂comp|Q])2|Q]

2) Bias of the second moment estimator of Y

Bias[τ̂ comp|Q] = E[τ̂ comp − τ ∗|Q]

3) Expected mean squared error of predictions for Yj

E[m̂se(Y comp)|Q] = E

[
1

Nmis

n∑
j=1

(
Y comp

j − Yj

)2

|Q
]
,

One should note that the divider is random quantity Nmis and not fixed n.

This makes sense as we want to measure the average error per prediction

(observed Y values are not predicted). However, we may have problems with

interpretations.

In addition, we sometimes study other properties as well, for example the Kolmogorov-

Smirnov distance

4) E[K̂∞|Q] = E

[
supy |FY mis(y)− F̂Y imp(y)|

∣∣∣Q
]
,

where FY mis is the cumulative distribution function of Y mis, and F̂Y imp is an esti-

mator for the empirical cumulative distribution function of Y imp which is based on

data Dimp
Y .

Due to mathematical difficulty, we omit analytical results that concern Var[τ̂ comp|Q].

Other researchers, such as Zhao[115] and Santos[90], have also done so. To explain

why it is feasible to do that, Santos lists three reasons do [90]:

• “variances and mean squared errors of covariance estimator (and for complex

statistics in general) are complicated and tedious to derive”,

• “results are complex and difficult to interpret”, and

• “for large samples variances of most statistics are small”.

The above evaluation measures 1), 2) and 3) can often be rewritten in another form,

depending on conditionalizations Q. In our formulas population mean µ∗ is usually

not dependent on Q, and thus

Bias[µ̂comp|Q] = E[µ̂comp|Q]− µ∗.
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Another thing to note is that the mean squared prediction errors are sometimes at

some given point Xmis = x0 for a missing Y value, instead of data set d. This

quantity is defined as

5) mse(Y imp|x0, n
mis, n) = E

[
(Y imp
|x0

− Y mis
|x0

)2|Xmis = x0, n
mis, n

]
,

where prediction Y imp
|x0

= ĝ(x0|θ̂)+ ε̂(x0). Integration is done over the joint distribu-

tion of target and prediction given point x0, the number of missing data values nmis,

and sample size n. The reason for conditionalizing by the number of the missing

data values is to fix the training sample size and thus make the results from the

literature easy to apply. Error measure 5) is related to error measure 3), which

becomes apparent in Section 3.8.3. However, it is easier to compute and interpret

than E[m̂se(Y comp)|Q] as there is less randomness.

3.4.1 About interpretations

When doing interpretations about evaluation statistics, one should keep in mind

that none of the measures alone can tell us what the performance of a particular

imputation method is. Some of the reasons for this are:

• Mean imputation, which reduces Var[µ̂comp], and therefore improves µ esti-

mate, easily increases the bias of τ̂ comp.

• Some sources of variation in Var[µ̂comp] are due to a small sample size rather

than the imputation method. It might be a good idea to compare the results

to the natural estimation variance Var[µ̂]. Thus instead of population mean

µ∗, we should compare the results against estimate µ̂ = 1
n

∑n
j=1 Yj.

• Minimization of prediction errors like m̂se(Y comp) tends to increase errors in

distributional measures, and vice versa.

There are also different levels of interpretations. Most notably we include the results

for finite versions of conditionalized estimators with respect to the number of obser-

vations n. Asymptotic versions are included when mathematically feasible. Usually

asymptotic versions are simpler to read and interpret, but they lack information of

the imputation behaviour with a small sample size. In addition, asymptotic results

are often approximated using the Taylor series, which may lead to problems in inter-

pretations. A further aid for interpretations is based on conditionalizations which

are described next.

3.5 Conditionalizations: Q1, Q2, Q3 and QP

There are two reasons for conditionalizations: interpretation and technical. Techni-

cal reasons are due to complications in mathematical analyses. In most occasions

these represent purely pathological cases of no real interest for the reader. In condi-

tionalization we focus our interest on more common situations. A typical example
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is the variance of an estimator in a cell that has only one observation. Surely this

is not interesting, and we limit our analyses for cells that have always a reasonable

number of observations for the current study.

Conditionalizations that aim for better interpretations are more interesting. To

summarise, we have three main levels of these:

1) Q1 = {n}, where only the number of observations is fixed. Thus data D,

with n observations, is sampled from the superpopulation, and number of

missing data values Nmis is sampled from its distribution. The imputation

model is then estimated from the data, and imputation is done using the

newly obtained estimators for Y imp. Sampling Nmis is connected to drawing

the response pattern R from its distribution.

2) Q2 = {n,dtrain
nobs , g(x|θ)}, where the sample size, training data, and imputation

model remain the same but the test data still varies. One should observe

that conditionalising by sample size and training data fixes also the number

of missing data values.

3) Q3 = {dtrain
nobs ,dtest

nmis , g(x|θ)}, where everything is fixed except the response

indicators and randomness of imputation, which is sampled from fε̂(x). One

should note that conditionalization by train and test data sets fixes the number

of observations n and the number of missing data values Nmis = nmis. Further,

the sum of response indicators is constant but the indicators are random.

However, the randomness of the indicators has no effect on the statistics which

we compute.

The role of the above conditionalizations is to limit the sources of variation in

such a way that on the last level, Q3, we know that the variation must be due to

unexplained randomness ε̂(x). At the second level Q2 the variation is due to ε̂(x)

and partially to the observed part of data. Finally, at the first level randomness is

due to data, to the number of missing-data values (missing-data pattern), to the

model, and to unexplained randomness. One should note that at levels Q2 and Q3

quantities ĝ(x) and ε̂(x) are independent, which allows us to decompose some of the

computed properties in a useful manner.

As an example, the connections for the conditionalized expectations of the first

moment are as follows. The expectation of µ̂comp at the third level can be written

as

E[µ̂comp|Q3] = E[µ̂comp|dtrain,dtest, g(x|θ)]

=

∫
µfµ̂comp|Q3

(
µ|dtrain,dtest, g(x|θ)

)
dµ.

One should notice that at the third level the randomness of µ̂comp comes from the

noise terms which are described via noise distribution fε̂(x)(e|x). The connection
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between the second and the third level can be derived as

E[µ̂comp|Q2] = E[µ̂comp|n,dtrain, g(x|θ)]

=

∫ [ ∫
µfµ̂comp|Q3

(
µ|dtrain,dtest, g(x|θ)

)
dµ

]
f(dtest)ddtest

=

∫
E[µ̂comp|Q3]f(dtest)ddtest.

Hence the link between the third and the second level is simple. One just needs

to integrate the third level result with respect to the distribution of the partially

observed part of data. Similarly one can derive the connection between the first and

the second level

E[µ̂comp|Q1] = E[µ̂comp|n]

=

∫
E[µ̂comp|Q2]f

(
nmis,dtrain, g(x|θ)

)
d
(
nmis,dtrain, g(x|θ)

)
.

The benefit of these derivations becomes apparent when the first level equations

become difficult to interpret. Such situations are typically seen with the evalua-

tion of cell imputation (Chapter 6). Via conditionalizations we get at least some

understanding about the role and magnitude of noise terms, training data, etc.

3.5.1 Technical conditionalization QP

As noted earlier, sometimes our evaluation is conditionalized at point Xmis = x0.

Similarly, some imputation models like those that are based on kernel and nearest

neighbour are easiest to study at a given point x0. In the case of imputation we may

select x0 to be xmis ∈ dmis
X , which leads us to conditionalization QP = {n,dmis

X }.
Remark that conditionalising by dmis

X fixes the number of missing data values Nmis =

nmis.

In other words, training data Dtrain, and thus the imputation model, and Dmis
Y

are allowed to be random, but the statistics is computed for a given point xmis and

for a fixed sized training data. Although this leads to some problems in interpreta-

tions, it has the benefit that many results from the literature are directly applicable,

especially concerning nonparametric methods [72]. Remark that the prediction tar-

get is Y mis ∈ Dmis
Y .

Although conditionalizations QP are not comparable with Q3 and Q2, we can

compute Q1 by integrations like

E[µ̂comp|Q1] =

∫
E[µ̂comp|QP ]f(nmis,dmis

X )d(nmis,dmis
X ).
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3.6 Presentation of results via theorems, approx-

imations, proofs, justifications, and simula-

tions and experiments

In this thesis we want results which have practical interpretation. This means that

the results for a finite sample size n have to be derived. In the literature asymptotic

results (n → ∞) are often given. However, this is not realistic in practice because

the sample size n is finite or often quite small. Derivation of results for a finite n

leads to problems because of mathematical difficulty which is partly due to random

number of observations and technical conditionalisations. We have dealt with this

issue by decompositions (see Section 3.7 for example) and approximations. Rigorous

treatment of random number of observations is quite complicated even for some

specific estimation problem with large n (see for example [97]). Decompositions

allow easier interpretation, whereas approximations make the derivation of results

more feasible. Empirical evaluation is included to verify that our approach works.

Next we introduce the terminology used for approximations and describe how

it corresponds to the terminology for exact results. The terminology for approxima-

tions is used to distinguish approximative results, and their derivations, from exact

results.

3.6.1 Theorems and proofs vs. approximations and justifi-

cations

The correspondence between the terminology used in exact results and approxima-

tive results is shown in Table 3.4 where approximation is similar to theorem, con-

sequence to corollary, intermediate step to lemma, and justification to proof. The

difference between exact and approximative results is that derivation of approxima-

tive results is mathematically less exact. However, some approximative results (at

least the asymptotic ones) might be turned into exact results, provided a careful

analysis of the approximation error terms were done.

Exact results Approximative results

Theorem Approximation

Corollary Consequence

Lemma Intermediate step

Proof Justication

Table 3.4: Corresponce between the terminology for exact results and that of ap-

proximative results.
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3.6.2 About some error terms

In some of the given approximative results there are higher order terms which are

inversely proportional to the sample size squared. One may wonder whether these

terms are important. There are situations in which such terms are significant in

practice. For example the higher order term may have considerably higher constant

(bias) than the lower order term which is inversely proportional to the sample size

(recall that order notation supresses constants). As a result the higher order term

may be important, at least for small sample sizes. An example of such behavior is

given in Appendix A4.4.

3.6.3 About simulations and experiments

Another viewpoint to methodological evaluation is obtained by simulations and ex-

periments. When easily done, we shall compare experiments with theory. Otherwise,

simulations and experiments allow us to see how methods behave in practice. When

presenting results, especially in Chapters 7, 8 and 9, the best results for a given

statistic are underlined, and some that are close to it are written in boldface. There

was also an attempt to see if the best results are significantly different than others,

and it seems that this is the case, probably because of the large number of repetitions

in our simulations.

3.7 Basic decompositions for moments

Our methodology is strongly based on decompositions, where superpopulation is

divided between observed and missing information. The lemma below gives the

decompositions of the first two moments of a superpopulation for Y . The lemma

follows directly from the previous assumptions ii) and iii).

Lemma 3.1 Decomposition of superpopulation moments.

For Yj ∈ D,

a) the first moment of Yj can be decomposed as

µ∗ = (1− p∗)µ∗obs + p∗µ∗mis, (3.3)

where p∗ is the probability of non-response, µ∗obs is the expectation of observed

Y obs
j ∈ Dobs

Y and µ∗mis is the expectation of Y mis
j ∈ Dmis

Y .

b) the variance of Yj ∈ D may be decomposed as

τ ∗ = (1− p∗)τ ∗obs + p∗τ ∗mis

︸ ︷︷ ︸
within variance

(3.4)

+ p∗(1− p∗)(µ∗mis − µ∗obs)2

︸ ︷︷ ︸
between variance

,

where τ ∗obs is the variance of the observed Y obs
j values and τ ∗mis is the variance

of the unobserved Y mis
j values.
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There are two clusters in the previous decompositions: one corresponding to response

and other to non-response. Therefore the decomposition of variance (Equation 3.4)

consists of the variance within clusters (the first two terms) and the variance between

clusters (the last term). In case of two clusters the variance between clusters can

be written as one term as shown previously. A partial proof of Lemma 3.1 is given

next.

Proof 3.2 Partial proof of Lemma 3.1.

a)

µ∗ = E[Yj] = E
[
E[Yj|Rj]

]

= Pr
(
Rj = 1

)
E[Yj|Rj = 1] + Pr

(
Rj = 0

)
E[Yj|Rj = 0]

= Pr(Rj = 1)µ∗obs + Pr
(
Rj = 0

)
µ∗mis

= (1− p∗)µ∗obs + p∗µ∗mis,

where p∗ is the probability for non-response, µ∗obs is the expectation of the

observed Y obs
j ∈ Dobs

Y , Rj is the response indicator for the random true data

set D, and µ∗mis is the expectation of Y mis
j ∈ Dmis

Y . This decomposition is

based on the fact that fY (y) = (1− p∗)fY obs(y) + p∗fY mis(y).

b) using similar technique as in i) (see proof in Appendix A3.2.2 for details),

we can decompose the variance of Yj ∈ D as

τ ∗ = Var[Yj]

= E
[
Var[Yj|Rj]

]
+ Var

[
E[Yj|Rj]

]

= (1− p∗)τ ∗obs + p∗τ ∗mis

︸ ︷︷ ︸
within variance

+ p∗(1− p∗)(µ∗mis − µ∗obs)2

︸ ︷︷ ︸
between variance

,

where Rj is the response indicator for random true data set D, τ ∗obs is the

variance of the observed Y obs
j values and τ ∗mis is the variance of the unobserved

Y mis
j values.

Decompositions similar to the ones above can be written for imputed data set

Dcomp also. Thus trivially

Lemma 3.3 Decomposition of the estimators for the first two moments of Y comp.

a)

µ̂comp =
1

n

(
Nobsµ̂obs + Nmisµ̂imp

)
, and (3.5)
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τ̂ comp =
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp

︸ ︷︷ ︸
within variance

+
NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2

︸ ︷︷ ︸
between variance

, (3.6)

where

µ̂obs =
1

Nobs

∑

Y obs∈Dobs
Y

Y obs,

µ̂imp =
1

Nmis

∑

Y imp∈Dimp
Y

Y imp,

τ̂ obs =
1

Nobs − 1

∑

Y obs∈Dobs
Y

(Y obs − µ̂obs)2, and

τ̂ imp =
1

Nmis − 1

∑

Y imp∈Dimp
Y

(Y imp − µ̂imp)2.

Proof: Trivial for µ̂comp. A bit more complicated for τ̂ comp (see Appendix A3.2.1

for details).

As n →∞ we get the following approximations

Approximation 3.4 Approximations for asymptotics of µ̂comp and τ̂ comp.

Limits for expectations of µ̂comp and τ̂ comp can be approximated as

a)

lim
n→∞

E[µ̂comp|n] ≈ (1− p∗)µ∗obs + p∗µ∗imp,

where p∗ is the probability of missingness and µ∗imp is the limiting mean of

imputed values Y imp
j ∈ Dimp

Y .

b)

lim
n→∞

E[τ̂ comp|n] ≈ (1− p∗)τ ∗obs + p∗τ ∗imp

︸ ︷︷ ︸
within variance

+ p∗(1− p∗)(µ∗imp − µ∗obs)2

︸ ︷︷ ︸
between variance

,

where p∗, τ ∗obs, and µ∗obs are as before and τ ∗imp is the limiting variance of

the imputed values.

The above approximation is derived by i) applying the first order Taylor approxima-

tion to both quantities and ii) taking the limit and assuming that the approximation

error (corresponding to the Taylor remainder term) goes to zero as n → ∞. The

details are given in Appendix A3.3.

Although everything seems quite trivial now, the reader should note that the

solution requires us to

i) state what µ∗imp and τ ∗imp are. This may be difficult if the imputation mech-

anism is complicated, and

ii) compute the solutions with random number of Nmis missing values.
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3.8 Basic decompositions for evaluation statistics

In order to say how a certain imputation method performs and why, we shall de-

compose the final evaluation statistics so that the causes of behaviour are easier to

read. To do this we apply our previouly introduced ideas. For simplicity, in the cur-

rent context, we omit the most rigorous notations of conditions that are required to

ensure that the above estimates exist. When required, such conditions are discussed

in the following chapters and in the appendixes.

3.8.1 Bias of 1st moment

Equations (3.3) and (3.5) allow us to decompose the bias of the first moment µ̂comp

in the following form:

Bias[µ̂comp|Q] = E[µ̂comp|Q]− µ∗ (3.7)

= E

[(
1− Nmis

n

)
µ̂obs|Q

]

︸ ︷︷ ︸
Sample estimate

− (1− p∗)µ∗obs

︸ ︷︷ ︸
True of observed

︸ ︷︷ ︸
A

+E
[Nmis

n
µ̂imp|Q

]

︸ ︷︷ ︸
Impute estimate

− p∗µ∗mis

︸ ︷︷ ︸
True of missing

︸ ︷︷ ︸
B

.

Term A in the decomposition is not really about imputation methodology since

it is due to sampled estimates of the observed part of the data. For this reason

we shall refer to it as sample bias. The second term B is more interesting as it

measures the role of the imputed data with respect to true data. Thus it tells

us about the imputation methodology. Further simplification is possible when the

conditionalizations are specified.

Decomposition is simplified and most usable when Q = Q1:

Bias[µ̂comp|Q1] = E

[
Nmis

n
µ̂imp|Q1

]
− p∗µ∗mis + O(n−1),

where term O(n−1) is due to technical reasons as explained in Appendix A3.3. How-

ever, one should note that expectation may be difficult to compute or the result may

be difficult to interpret.

By applying the first order Taylor approximation and taking limit n → ∞
(assuming the approximation error goes to zero) we get

lim
n→∞

Bias[µ̂comp|Q1] ≈ p∗
(

lim
n→∞

E[µ̂imp|Q1]− µ∗mis
)

= p∗(µ∗imp − µ∗mis).
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3.8.2 Bias of the 2nd moment

Using similar techniques as before, the bias of the second moment τ̂ comp may be

decomposed using (3.4) and (3.6) as:

Bias[τ̂ comp|Q] = E[τ̂ comp|Q]− τ ∗ = A + B + C (3.8)

= E
[
(1− Nmis

n− 1
)τ̂ obs|Q

]
− (1− p∗)τ ∗obs

︸ ︷︷ ︸
A

+E
[Nmis − 1

n− 1
τ̂ imp|Q

]
− p∗τ ∗mis

︸ ︷︷ ︸
B

+ E
[NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|Q

]
− p∗(1− p∗)(µ∗obs − µ∗mis)2

︸ ︷︷ ︸
C

.

As before term A is due to the sampling estimates of τ ∗obs from the observed data.

The role of the imputation methodology is again most directly seen in term B,

where τ̂ imp is compared with true τ ∗mis of the imputed part of the data. The

additional term C is due to cross terms that become important when missingness

is not completely random or if the estimated imputation model does not fit to the

data well.

Again the above decomposition is simplified when Q = Q1:

Bias[τ̂ comp|Q1] = B + C + O(n−1).

Yet the result is still somewhat difficult to interpret with finite n, because the es-

timation variances are mixed into the terms. A more interpretable decomposition

based on the first order Taylor approximation, when mathematically feasible (the

required limits may be difficult to compute), may be written at the first level as

lim
n→∞

Bias[τ̂ comp|Q1] ≈ p∗( lim
n→∞

E[τ̂ imp|Q1]− τ ∗mis)

+ p∗(1− p∗)
(

lim
n→∞

E[(µ̂obs − µ̂imp)2|Q1]− (µ∗obs − µ∗mis)2
)

= p∗(τ ∗imp − τ ∗mis)︸ ︷︷ ︸
A

+ p∗(1− p∗)
(
(µ∗obs − µ∗imp)2 − (µ∗obs − µ∗mis)2

)

︸ ︷︷ ︸
B

,

where term A is the asymptotic difference between the variances of imputed and

missing Y values. The term measures how well an imputation method has pre-

served the second moment of missing Y values. If the imputation method provides

(asymptotically) an unbiased second moment estimator then A is zero. Term B

measures how well the first moment is preserved by the imputation method. If the

imputation method yields (asymptotically) an unbiased first moment estimator then

B is zero.

3.8.3 Bias-variance decompositions

In statistical literature it is well known that mean squared error can always be

decomposed into (squared) bias, variance and noise components [36]. Now we shall
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apply this fact in the context of imputation. We begin from a predictive model of

missing Y at some point Xmis = x0, where we assume that the target follows model

Y|x0 = g∗mis(x0) + εmis
x0

and our predictive model at the same point is

Ŷ|x0 = ĝ(x0) + ε̂x0 ,

where E[εmis
x0

] = 0 and E[ε̂x0 ] = 0.

For clarity of formulas we omit the somewhat rigorous notation Y mis
|x0

and Y imp
|x0

here, and thus use Y|x0 and Ŷ|x0 .

The mean squared error at the test point is defined as an expectation

mse(Ŷ |x0, n
mis, n) = E

[
(Ŷ|x0 − Y|x0)

2|nmis, n
]
,

where integration is done with respect to Ŷ and Y given x0, number of missing data

values nmis, and sample size n. Conditionalising by nmis and n ensures that the size

of the training data set, which is used to form the imputation model, is fixed. This

allows us to easily apply the results from the literature, especially for nonparametric

methods. Mean squared error can be decomposed as follows:

Theorem 3.5 Decomposition for mean squared error mse(Ŷ |x0, n
mis, n).

mse(Ŷ |x0, n
mis, n) =

(
E[ĝ(x0)|x0, n

mis, n]− g∗mis(x0)︸ ︷︷ ︸
imputation bias at x0

)2

+ Var[Ŷ|x0,nmis,n]︸ ︷︷ ︸
imputation variance at x0

+ Var[Y|x0 ]︸ ︷︷ ︸
v∗mis(x0), target noise at x0

.

Proof:

mse(Ŷ |x0, n
mis, n) = EŶ ,Y |x0,nmis,n[Ŷ

2
|x0
− 2Ŷ|x0Y|x + Y 2

|x0
] (3.9)

= E[Ŷ 2
|x0

+ E[Ŷ|x0 ]− E[Ŷ|x0 ] + 2E[Ŷ|x]Ŷ|x0 − 2E[Ŷ|x0 ]Ŷ|x0 ]

+E[Y 2
|x0

+ E[Y|x0 ]− E[Y|x0 ] + 2E[Y|x]Y|x0 − 2E[Y|x0 ]Y|x0 ]

−2E[Ŷ|x0Y|x0 ]

= E[(E[Ŷ|x0 ]− Ŷ|x0)
2] + E[(E[Y|x]− Y|x0)

2]

+E[Ŷ|x0 ]
2 − 2E[Ŷ|x0Y|x0 ] + E[Y|x0 ]

2 || ∗
= Var[Ŷ|x0 ] + Var[Y|x0 ] + (E[Ŷ|x0 ]− E[Y|x0 ])

2 − 2Cov[Ŷ|x0 , Y|x0 ]

= (E[Ŷ|x0 ]− E[Y|x0 ])
2 + Var[Ŷ|x0 ] + Var[Y|x0 ]

=
(
E[ĝ(x0)|x0, n

mis, n]− g∗mis(x0)︸ ︷︷ ︸
imputation bias at x0

)2

+ Var[Ŷ|x0,nmis,n]︸ ︷︷ ︸
imputation variance at x0

+ Var[Y|x0 ]︸ ︷︷ ︸
v∗mis(x0), target noise at x0

,
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where at * we have applied the fact that E[Ŷ Y ] = E[Ŷ ]E[Y ] + Cov[Ŷ , Y ]. The

covariance term Cov[Ŷ|x0 , Y|x0 ] is zero because Ŷ and Y are conditionally independent

given x0.

Further, one should note that imputation variance can be decomposed as

Var[Ŷ|x0,nmis,n] = Var[ĝ(x0) + ε̂x0|x0, n
mis, n] (3.10)

= Var[ĝ(x0)|x0, n
mis, n]︸ ︷︷ ︸

variance of conditional mean estimate

+Var[ε̂x0|x0, n
mis, n]︸ ︷︷ ︸

imputation noise, v̂(x0)

+ 2Cov[ĝ(x0), ε̂x0|x0, n
mis, n]︸ ︷︷ ︸

cross term

.

One should note that the cross term above is often zero. The reason for this is

that the expectation of the estimated noise term is typically zero. Further, the

conditional mean estimate and the noise term often are conditionally independent

given training data (recall the chain rule of covariance).

As before, we can conditionalize the result for better intepretation. For exam-

ple, if we want to study the role of simulated noise ε̂|x we should fix the model ĝ(x).

Then Var[Ŷ|x0,nmis,n] = Var[ε̂|x0,nmis,n], thus with given model g(x) we get

mse
(
Ŷ |x0, n

mis, n, g(x)
)

=
(
g(x0)− g∗mis(x0)︸ ︷︷ ︸

model bias

)2
+ Var[ε̂|x0,nmis,n]︸ ︷︷ ︸

v̂(x0)

+Var[εmis
|x0

]︸ ︷︷ ︸
v∗mis(x0)

. (3.11)

Decomposition (3.11) reveals us that prediction error can be minimized by decreasing

simulated noise (Var[ε̂|x,nmis,n]). On the other hand, by decreasing variance we are

likely to introduce bias to the 2nd moment of the computed data as shown in Section

3.8.2.

Bias-variance decompositions can also be written on a population level as shown

in the next theorem.

Theorem 3.6 Bias-variance decomposition at population level.
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E[m̂se(Y comp)|n] = VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

(3.12)

+ (µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

+ ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ ENmis,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

.

The proof of the above theorem follows after a discussion below.

From the first row of Equation (3.12) one can notice a link between the previ-

ously defined error measures 3) and 5) (see Section 3.4). In the innermost integration

the conditionalizer is QP = {n,dmis
X } (remembering that xmis ∈ dmis

X ). Then after

integrating first over the marginal density of Dmis
X and then over number of missing

data values Nmis we are at the Q1 level. The innermost conditionalizer may seem

a bit rigorous, however it just fixes the imputation position and the size of training

data (and the total sample size). One should note that the cross term (in the second

last row) is typically zero, as in Equation (3.10).

Expected squared imputation bias consists of four terms: squared global bias,

variability of estimated model, variability of true conditional mean, and a cross term.

Global bias measures the difference between the first moments of imputed Y and

missing Y values. The role of the cross term can be significant. The variance terms

measure the variability of the estimated and true models. One can only affect the

variability of the estimated model. A more stiff model has less variability but on the

other hand is likely to yield an increase in the squared global bias. The reason for

this is that (too) stiff a model is likely to yield biased predictions. Interpretation of

the cross term is complicated, and it is generally not neglible. For example, consider

unbiased predictions: E[ĝ(Xmis)|nmis,xmis, n] = g∗mis(xmis). Then the cross term

equals to minus two times variability of g∗mis(xmis).
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Proof 3.7 for Theorem 3.6.

E[m̂se(Y comp)|n] (3.13)

= ENmis,Xmis|n

[
mse(Y imp|Xmis, nmis, n)

]

= ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− g∗mis(Xmis)

)2
]

+ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n] + Var[ε̂xmis|xmis, nmis, n]

+2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]
+ v∗mis

= ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− g∗mis(Xmis)

)2
]

︸ ︷︷ ︸
expected squared imputation bias (ESIB)

+ ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ENmis,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

.

Further, one should note that expected squared imputation bias (ESIB) can be de-

composed as

ESIB = ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n (3.14)

+ µ∗imp
n − µ∗mis + µ∗mis − g∗mis(Xmis)

)2
]

= VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

+ ENmis,Xmis|n

[(
µ∗imp

n − µ∗mis + µ∗mis − g∗mis(Xmis)

)2]

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]
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= VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]
+ (µ∗imp

n − µ∗mis)2 + Var[g∗mis(Xmis)]

+ 2ENmis,Xmis|n

[
(µ∗imp

n − µ∗mis)(µ∗mis − g∗mis(Xmis)

]

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

= VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

+(µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

,

where µ∗imp
n = ENmis,Xmis|nE[ĝ(Xmis)|nmis,xmis, n].

Result (3.12) follows by plugging decomposition (3.14) into (3.13)

From the decompositions (3.13) and (3.14) we get an insight to the preservation

of the second moment. Namely, the variance of imputed Y values for sample size n

is

τ ∗imp
n = VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]
+ v∗imp

n ,

The above decomposition states that equation limn→∞ τ ∗imp
n = τ ∗mis (unbiased sec-

ond moment) may be achieved in multiple ways. For example, one may use a stiff

conditional mean estimate with more varying noise terms or one may use a flexible

model with less varying noise terms to yield the same τ ∗imp
n .

Finally, for an even better interpretation the limit of expectation of m̂se(Y comp)

can be computed:

Corollary 3.8 Asymptotics of E[m̂se(Y comp)|n].

lim
n→∞

E[m̂se(Y comp)|n] = Var[g∗imp(Xmis)]︸ ︷︷ ︸
limit of variance of conditional mean ”estimator”

+ (µ∗imp − µ∗mis)2

︸ ︷︷ ︸
limiting global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ lim
n→∞

2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
limit of cross term

+ v∗imp︸ ︷︷ ︸
limit of imputation noise

+ v∗mis︸ ︷︷ ︸
expected target noise

,
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where g∗imp(x) is the limit of conditional mean estimate at point x.

The proof of above corollary is given after the discussion below.

We can conclude that the limit consists of a squared bias term, asymptotic

imputation noise, and expected target noise (irreducible term). The squared bias

term is zero for any pointwise consistent conditional mean estimate. One should

remember that in the NMAR case for a nonparametric method it is likely that

g∗imp(x) = g∗obs(x). Therefore in NMAR asymptotic squared bias can be consider-

able. In the MAR and MCAR cases there are typically no such problem because

g∗(x) = g∗obs(x) = g∗mis(x). Asymptotic imputation noise can be controlled. How-

ever, reducing it (too much) is likely to yield an asymptotically biased s econd

moment estimator.

In the computation of limit of m̂se(Y comp) we have assumed that the cross

covariance term (the fourth row in Equation (3.12) goes to zero as the sample size

goes to infinity. This can be considered as a sensible assumption, because for many

methods this term is zero even for a finite sample size n.

Proof 3.9 to Corollary 3.8.

lim
n→∞

E[m̂se(Y comp)|n]

= lim
n→∞

ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− g∗mis(Xmis)

)2
]

+ lim
n→∞

ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]
+ lim

n→∞
v∗imp

n

+ lim
n→∞

EM,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]
+ lim

n→∞
v∗mis

≈ EXmis

[(
g∗imp

(
xmis

)
− g∗mis

(
xmis

))2
]

︸ ︷︷ ︸
asymptotic expected squared bias (AESB)

+ v∗imp︸ ︷︷ ︸
asymptotic imputation noise

+ v∗mis︸ ︷︷ ︸
expected target noise

.

(3.15)

One should note that asymptotic expected squared bias (AESB) term can be decom-
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posed using Equation (3.14) as

AESB = lim
n→∞

VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]
(3.16)

+ lim
n→∞

(µ∗imp
n − µ∗mis)2 + lim

n→∞
Var[g∗mis(Xmis)]

+ lim
n→∞

2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

= Var[g∗imp(Xmis)]︸ ︷︷ ︸
variance of asymptotic conditional mean ”estimate”

+ (µ∗imp − µ∗mis)2

︸ ︷︷ ︸
asymptotic global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ lim
n→∞

2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
limit of cross term

,

where µ∗imp is the asymptotic expectation of the imputed Y values. All the other

terms are quitet straightforward to interpret but the limit of the cross term is quite

complicated.

Corollary 3.8 follows by plugging Equation (3.15) into Equation (3.16)

3.9 Summary

This chapter introduced the background of the thesis. First, a real-world scenario

for potential applications was described. It corresponds to typical working pro-

cesses in statistical offices. Primary assumptions, which are needed to concretise

the theoretical setting, were also desribed.

As a summary, we studied estimators and their properties were introduced.

This included estimators for sample moments and the mean squared error. To aid

interpretations, several types of conditionalizations were used. These limit variation

sources and thus ease the analyses.

Finally basic decompositions were given. Decompositions are based on the roles

of observed and missing data, as well as on the role of estimators. Decompositions

make the interpretation of results easier, which is vital for the comparison of impu-

tation methods.



Chapter 4

Imputation using simple methods

and linear regression

In this chapter we introduce some basic methods that are used as a reference when

analysing the imputation performance of cell imputation. The presentation contains

descriptions of the methods, and an analysis of their imputation performances in

terms of evaluation statistics. The analysis follows previously explained guidelines.

An incomplete random data Dinc with n observations is imputed such that the miss-

ing values of an univariate real valued target Y mis are replaced with imputed ones

Y imp. For each method we like to know how the imputation error, which is mea-

sured through evaluation statistics, can be decomposed and explained. This leads

to a methodological comparison in Chapter 7 and it also explains the performance

of the methods with real-world data in Chapter 8.

The methods that are studied in this chapter are denoted with letters B and

L, where

B is short for baseline, and

L indicates linear regression.

Each method can be applied to imputation using three (or two) types of imputation

strategies which are denoted with letters M, R and D as follows:

M (mean imputation),

R (simulated random imputation), and

D (donor imputation).

Note that donor strategy is omitted for linear regression.

Using the shorthand notation, we shall denote completed variables as

Y comp,model,strategy, for example Y comp,L,R denotes that Y comp was imputed with lin-

ear regression with added simulated noise. Similarly for the evaluation statistics,

concerning some statistic θ we shall use notation θmodel,strategy.
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4.1 Baseline methods

Perhaps the simplest way to impute missing values is to put them into the mean of

observed data. Since this underestimates the second moment, a natural next step

is to add randomness to imputation. We call these as baseline methods, where the

completed target variable Y comp given data and response indicators (conditionalisa-

tion Q3 and r) is

Y comp,B
j =

{
yj, if rj = 1, yj is observed

µobs + ε̂, if rj = 0, yj is missing,

where µobs = 1
nobs

∑nobs

j=1 yj, yj ∈ dtrain and ε̂ is a random term, which is chosen

according to our imputation strategy (see Section 2.5):

i) M(mean), ε̂M = 0, which implies mean imputation

ii) R(random), ε̂R ∼ f̂ε(e), simulated noise where ε̂ is iid sampled from noise

distribution f̂ε(e). For simplicity we assume normal distribution N(0, vobs) for

ε̂ where the variance estimate comes from dtrain:

vobs = τ obs =
1

nobs − 1

nobs∑
j=1

(
yj − µobs

)2

, yj ∈ dtrain.

iii) D(donor), ε̂D ∼ {yk − µobs}, where residual is taken from the randomly se-

lected observation yk ∈ dtrain with k ∈ {1, . . . , nobs}. This is a sampling with

replacement, because the donor indeces are selected independently from dtrain.

Of course, this is same as ycomp
j = yk, with random yk ∈ dtrain.

The reason for naming these as baseline methods, is that they give us a reference

point for imputation performance. We except that a more advanced method should

do better than these baselines, at least when the problem is more complex than that

of simple MCAR.

The evaluation of the imputation performance of baseline methods is quite

straightforward. These are, after all, well known methods in the literature (see

references [62] and [90] for an example). In the current context we only need to

write the results in a form that is compatible with our evaluation statistics.

The main results are summarized in Theorem 4.1 and Approximation 4.3. Since

there is no difficulty in interpreting these results we omit some details such as the

results with conditionalisations Q2 and Q3.

4.1.1 Preservation of moments

When the missingness mechanism is MCAR, baseline methods are expected to per-

form well considering the preservation of the first moment. However, the second

moment estimators differ due to the differences in imputation strategies. This is
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quite obvious for mean imputation, but also the estimation of the noise model is a

potential source of errors.

The weakness of the baseline methods is revealed when Y depends on covariates

and the missingness mechanism is more complicated than MCAR. Then all the

moments of Ŷ comp are likely to be biased against the true moments of Y .

The reliability of the estimated moments depends on the number of observa-

tions, the distribution of Y obs, the distribution of Nmis, and the imputation strategy.

Especially, the variance of the first moment, Var[µ̂comp,B], depends on sample size n,

variance τ ∗obs, the proportion of missing observations p∗, and the variance of Nmis.

Let us denote the first moment of the completed data as µ̂comp,B, where B stands

for the baseline method. The bias of µ̂comp,B with respect to population mean is:

Theorem 4.1 Bias of the first moment µ̂comp,B

The bias of µ̂comp,B for n observations is

Bias[µ̂comp,B|n] = p∗(µ∗obs − µ∗mis).

The proof of this theorem and justifications of other approximations and a conse-

quence about the preservation of moments are given after Consequence 4.4.

The variance of the first moment depends on the imputation strategy, as spec-

ified in Approximation 4.2.

Approximation 4.2 Approximation for the variance of the first moment µ̂comp,B

The variance Var[µ̂comp,B] with n observations is approximately

Var[µ̂comp,B] ≈ τ ∗obs

(
1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

︸ ︷︷ ︸
due sampling

+ C︸ ︷︷ ︸
due imputation strategy

)
,

where term C depends on imputation strategy ε̂S as follows:

C =





0 :S=M (for mean imputation strategy),
p∗
n

:S=R (for simulated random imputation), and
p∗
n

(
1− 1

n(1−p∗)

)
:S=D (for random donor).

We can summarize Theorem 4.1 and Approximation 4.2 in such a way that error

in the first moment depends on missingness probability p∗, the difference between

µ∗obs − µ∗mis, sample size n, and data variance τ ∗obs. Of course in MCAR cases

µ∗obs = µ∗mis, which makes µ̂comp to be unbiased.

Approximation 4.3 Approximation for the bias of the 2nd moment τ̂ comp,B

The bias of τ̂ comp,B for n observations is approximately

Bias[τ̂ comp,B|n] ≈ p∗(τ ∗imp − τ ∗mis)− p∗(1− p∗)(µ∗mis − µ∗obs)2

+C + O(n−1),
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where imputation variance τ ∗imp and sampling error C depend on imputation strategy

ε̂S. Imputation variance τ ∗imp and term C depend on imputation strategy ε̂S as

follows:

τ ∗imp =

{
0 :S=M (for mean imputation strategy), and

τ ∗obs :S=R and S=D (random and donor imputation).

and sample error C is

C =





0 :S=M (for mean imputation strategy),
1−p∗

n
τ ∗obs :S=R (for simulated random imputation), and

n(1−p∗)−1
n2 τ ∗obs :S=D (for random donor).

When n →∞ we get the asymptotics as follows:

Consequence 4.4 (Approximation to) asymptotical moments for baseline methods

Asymptotically we have (approximately) the following

lim
n→∞

Bias[µ̂comp,B|n] = p∗(µ∗obs − µ∗mis)

lim
n→∞

Var[µ̂comp,B|n] ≈ 0

lim
n→∞

Bias[τ̂ comp,B|n] ≈ p∗
[
(τ ∗imp − τ ∗obs)− (1− p∗)(µ∗mis − µ∗obs)2

]
,

where

τ ∗imp =

{
0 :S=M (for mean imputation strategy) and

τ ∗obs :S=R and S=D (random and donor imputation).

The proofs and justifications for the above consequence, approximations and

theorem are quite straightforward.

Proof 4.5 for Theorem 4.1 is quite trivially

Bias[µ̂comp,B|n] = E[µ̂comp,B|n]− µ∗

= µ∗obs − (1− p∗)µ∗obs − p∗µ∗mis

= p∗(µ∗obs − µ∗mis)

Recall the conditionalizations levels that are used in this thesis

Q1 = {n}
Q2 = {n,dtrain, g(x|θ)}
Q3 = {dtrain,dtest, g(x|θ)}.

with the help of these the justification of the second approximation can be derived

quite easily. For clarity this is given for a simulated random imputation strategy.

In justification of Approximation 4.2 one needs to compute expectation E[ 1
Nobs ].

Note that the ratio in expectation may be written as 1
n
/Nobs

n
(the ratio between
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two mean estimators, which of the first estimator is deterministic). Hence, some

asymptotic properties might be derived by applying the Slutsky’s theorem (see [92]

for details). However, small sample properties are here of interest. A closed form

solution is not possible as the distribution function of Nmis is unknown. There-

fore the second order Taylor approximation, ignoring higher order terms, is applied.

Intermediate Step 4.6 gives the approximate value of the expectation. This approx-

imation is actually equal to the approach taken by Kempen and Vliet who consider

expectation and the variance of the ratio of estimators [49].

Intermediate Step 4.6 An approximation for E[ 1
Nobs ] can be given as:

E
[ 1

Nobs

]
≈ 1

n(1− p∗)
+

(
n(1− p∗)

)−3

Var[Nmis|n].

Justification: Using Taylor approximation at E[Nobs] and Nobs = n−Nmis we

get

E
[ 1

Nobs

]
≈ E

[ 1

E[Nobs]
+

1

1!

( ∂

∂Nobs

1

Nobs

)
Nobs=E[Nobs]

(Nobs − E[Nobs])

+
1

2!

( ∂2

∂Nobs∂Nobs

1

Nobs

)
Nobs=E[Nobs]

(Nobs − E[Nobs])2
]

=
1

E[Nobs]
+

1

2

(
2(Nobs)−3

)
Nobs=E[Nobs]

Var[Nobs|n]

Nobs=n−Nmis

≈ 1

n(1− p∗)
+

(
n(1− p∗)

)−3

Var[Nmis|n],

where ∂
∂Nobs is ordinary derivative (not stochastic).

Justification 4.7 partial justification of Approximation 4.2.

It is easiest to start deriving first conditionalizing level Q3 and then proceed towards

Q1. Clearly for

Var[µ̂comp,B,R|Q3] = Var

[
µ̂comp,B,M +

1

n

nmis∑
j=1

ε̂mis
j |Q3

]
=

nmis

n2
τ obs.

Variance in the second conditionalisation level is same as it is in the third level be-

cause covariates are not utilized. The result at the first conditionalization level is de-

rived using the chain rule of variance and second order Taylor approximation (Inter-

mediate Step 4.6). The required quantities are E[µ̂comp,B,R|Q2] and Var[µ̂comp,B,R|Q2],

thus:

Var[µ̂comp,B,R|n] = Var[µ̂obs|n] + E
[Nmis

n2
τ̂ obs|n

]

= E
[ 1

Nobs

]
τ ∗obs + Var[µ∗obs|n] + E

[Nmis

n2
τ̂ obs|n

]

Taylor≈ τ ∗obs

(
1

n(1− p∗)
+

(
n(1− p∗)

)−3Var[Nmis|n] +
p∗

n

)
,

where the second term is of the order O(n−2) if Nmis is binomially distributed.
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Further details and complete justifications for all the imputation strategies can

be found in Appendix A4.

One should notice that the second order Taylor approximation reveals more

details of the behaviour of the variance of µ̂comp than does the first order approxi-

mation (the first term plus the third term). Actually, the first order approximation

would be good only for a large sample size. However, typically the first order Tay-

lor approximation is used to compute variance because it is mathematically feasible.

However, with baseline methods the second order approximation is easy to compute.

For compactness we limit the justification of Approximation 4.3 again to simu-

lated random imputation strategy. Thus we consider situtation Bias[τ̂ comp,B,R|n]. A

full version of the justification can be found in Appendix A4.

Justification 4.8 partial justification of Approximation 4.3.

Quantity τ̂ imp can be written as

τ̂ imp =
1

nmis − 1

nmis∑
j=1

(
ε̂mis
j − ε̂

mis
)2

,

where ε̂
mis

is the mean of imputation noise terms. At conditionalization level three

quantities ε̂mis
j are identically and independently distributed with the expectation zero

and variance τ obs. Therefore the expectation of τ̂ imp is τ obs. Now with

Q3 = {dtrain,dtest, g(x|θ)}

E[τ̂B,R|Q3] = E
[nobs − 1

n− 1
τ̂ obs +

nmis − 1

n− 1
τ̂ imp +

nmisnobs

n(n− 1)
(µ̂obs − µ̂imp)2|Q3

]

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
τ obs +

nobs

n(n− 1)
τ obs.

Expectation and bias are same in the second level as in the third level, because

covariate information is not used. The first level expectation Q1 = {n} is now

E[τ̂B,R|Q1] = ENmis,Dtrain|n
[Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ obs +

Nobs

n(n− 1)
τ̂ obs

]

≈ n− np∗ − 1

n− 1
τ ∗obs +

np∗ − 1

n− 1
τ ∗obs +

n− np∗

n(n− 1)
τ ∗obs

= (1− p∗)τ ∗obs + p∗τ ∗obs +
1− p∗

n
τ ∗obs

+O(n−1).

Justifications for consequences are quite obvious and are omitted in the current

context. Further details are given in the appendixes.

4.1.2 An example: preservation of the first moment

Theorem 4.1 and Approximation 4.3 give us an insight about the imputation per-

formance of baseline methods. It seems that when the number of observations is
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small errors in the moments of completed data Y comp are caused mainly by a model

missmatch and estimation variance. Of course the severity of these errors depends

on data and the type of missingness.

In the simplest case, we see that imputation strategy has very little effect to

the error in the first moment µ̂comp,B. Instead, errors are mainly due to sampling

and MAR types of differences between µ∗mis and µ∗obs. This is easily seen also

when using simulations. In the following example, (see Figure 4.1), target Y given

covariate x is defined as

Y|x =
1

500
x3 + ε,

where ε ∼ N(0, 0.15) is about 28% of the variance of Y. Now let the missingness be

of MAR type, where

Xobs ∼ N(−2, 15), while Xmis ∼ N(2, 15),

as depicted in Figure 4.1.

−15 −10 −5 0 5 10 15

−
4

−
2

0
2

4

−15 −10 −5 0 5 10 15

−
4

−
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4

g(x)

f(Xobs) f(Xmis)

Figure 4.1: True model g(x), marginal distributions of Xobs (solid) and Xmis

(dashed), and a random sample of size 100. Training data is denoted by square

plots and draws from the missing population using black dots.
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Following our theory we shall take a random sample of n observations, where

a random number of Nmis observations are missing using approximately Nmis ∼
Bin(n, 1

2
) observations from Y|Xmis , Xmis ∼ fXmis(x) and Nobs observations from

Y|Xobs , Xobs ∼ fXobs(x). Now we have everything that is required for the analysis.

Clearly baseline methods are not optimal for this type of data, but we could

still get a rather good imputation performance for the first moment. However,

the results are quite strongly dependent on the number of observations and the

missingness probability (now p∗ = 0.5).

To compare the simulation results with analytical formulas we need to solve the

first two moments of Y obs and Y mis. This requires some analytical computations

(see Appendix A4.5 for details). The moments are

E[Y obs] = −0.196 (4.1)

Var[Y obs] = 0.49074

E[Y mis] = 0.196

Var[Y mis] = 0.49074, which leads to

Var[Y ] = 0.49074 + 0.5(1− 0.5)(−0.196− 0.196)2 = 0.529156 ≈ 0.53

The mean squared error of the first moment can be defined as

MSE[µ̂comp,B|n] = Bias2[µ̂comp,B|n] + Var[µ̂comp,B|n].

Applying Theorem 4.1 with the theoretical moments and the setup of our experiment

we see that

Bias[µ̂comp,B|n] ≈ 0.5(−0.196− 0.196) = −0.196 ≈ −0.2.

This bias result was verified by our simulations. However, we omit the result as it

is not interesting: roughly a flat line as a function of the sample size.

More interestingly, recall that Var[Nmis|n] ≈ 0.5(1 − 0.5)n = 0.25n, because

Nmis is roughly Bin(n, 0.5) distributed, we get approximations for variances from

Approximation 4.2:

Var[µ̂comp,B,M |n] ≈ Var[µ̂obs] + 0 ≈ 0.98

n
+

2

n2

Var[µ̂comp,B,R|n] ≈ Var[µ̂obs] +
p∗

n
τ ∗obs ≈ 0.98

n
+

2

n2
+

0.5

n
∗ 0.49

Var[µ̂comp,B,D|n] ≈ Var[µ̂obs] +
p∗

n

(
1− 1

n(1− p∗)

)
τ ∗obs

≈ 0.98

n
+

2

n2
+

0.5

n
(1− 1

n(1− 0.5)
) ∗ 0.49.

where Var[µ̂obs] ≈ τ∗obs

n(1−p∗) + Var[Nmis]
n3(1−p∗)3 ≈ 0.49

0.5n
+ 0.25

0.125∗n2 = 0.98
n

+ 2
n2 . Further, due

to sampling errors the variance for the true data mean estimator Var[µ̂OPT |n] is

approximately 0.53/n. We shall use this as a reference, since variances other than
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Var[µ̂OPT |n] correspond to too small or large (analytical) confidence intervals for

the mean estimator.

Now let n = b10 ∗ 1.7kc, when k = 0, . . . , 9. Table 4.1 contains the theoretical

results which are computed using analytical formulas. The results can be verified

by simulations, where data is first sampled from Y for missing and observed parts,

and then imputed. To minimize simulation variance this was repeated 8000 times,

giving Figures 4.2 and 4.3, where the mean result over all the simulation runs is

given.

n 10 17 28 49 83 141 241 410 697 1185

S k=0 k=5 k=9

R 0.143 0.079 0.046 0.026 0.015 0.009 0.005 0.003 0.002 0.001

D 0.138 0.077 0.046 0.026 0.015 0.009 0.005 0.003 0.002 0.001

M 0.118 0.065 0.038 0.021 0.012 0.007 0.004 0.002 0.001 0.001

OPT 0.053 0.032 0.019 0.011 0.006 0.004 0.002 0.001 0.001 0.000

Table 4.1: Theoretical variances Var[µ̂comp,B|n], with 3 digit precision, for imputation

strategies, S, and sampling errors from true data Var[µ̂OPT |n] (OPT). The variance

for the mean of the observed Y values is the same as in mean imputation strategy

M.

OPT

 0.00
n

 0.12

 0.16

 0.04

 0.08

MSE_muest(n)

B,M

B,D

B,R

 10  1185
 k=9 k=0  k=2

 28  83
 k=4  k=6

 241

Figure 4.2: Simulated mean squared er-

ror of the first moment.
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 k=4
 241
 k=6

Figure 4.3: Simulated variance of the

first moment.

The simulated results (Figure 4.3) correspond to the computed ones (Table

4.1). The theoretical variance results have slightly higher values than the simulated

results. One reason for this is that the expectation of Nmis is less than 0.5n, especially

for small sample sizes. This is due to technical conditionalization, as we need to

ensure that the estimated quantities exist. Secondly, Taylor approximations which

are used to derive the analytical formulas may be inaccurate.

The variance and squared bias ratio is roughly 1:1 for all the three imputation

strategies at sample size 28. For a smaller sample size the variance contributes the
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major part of errors to results. Squared bias dominates the mean squared error for

the higher sample size. Therefore the simulated results verify our conclusions that for

a small sample size choosing imputation strategy is important when considering the

mean squared error of µ̂comp,B. In general, random imputation strategies product a

significant increase in variance when compared to the mean imputation strategy. The

variance is increased roughly by 20%. The variance for random donor imputation

could be reduced by altering the donor sampling strategy.

Variances for all the imputation strategies are larger than for optimal mean

µ̂OPT . Thus the corresponding confidence intervals are too large (when compared

to the confidence intervals of µ̂OPT ). The absolute difference in variances, and thus

in confidence intervals, decreases as the sample size grows.

4.1.3 Unit level prediction errors

Baseline methods are maximally stiff, because they ignore the covariates. As a con-

sequence (squared) prediction bias is typically high. Variance of predictions does

not depend on statistical properties of observations of covariate. Therefore vari-

ance decreases as a function of sample size, and increases as a function of expected

proportion of missing data values. These properties are inherited in unit level eval-

uation statistics. As we can see, baseline methods are most usable at a unit level if

the conditional mean of Y given covariate is approximately µ∗obs. Approximations

4.9 and 4.10 verify these considerations.

Recall that the conditional mean of Y given x can be decomposed as

g(x) = (1− p∗x)g
∗obs(x) + p∗xg

∗mis(x), where p∗x is the probability for missingness of

Y given X = x and g∗obs(x) and g∗mis(x) are the conditional means for observed

and missing Y values at x (see Equation 3.2).

Approximation 4.9 An approximation for the expected mean squared prediction

error for n observations

Expectation of m̂se(Y comp,B) with n observations is approximately

E[m̂se(Y comp,B)|n] ≈ (µ∗obs − µ∗mis

︸ ︷︷ ︸
global bias

)2 + VarXmis [g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ τ ∗obs
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)

︸ ︷︷ ︸
expected sampling variance

+ Cτ ∗obs︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where constant C depends on imputation strategy S:

C =





0 :S=M (for mean imputation strategy),

1 :S=R (for simulated random imputation), and

1− 1
n(1−p∗) + Var[Nmis]

n3(1−p∗)3 :S=D (for random donor).
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One should note that the sum of global bias squared and the variability of true

model equal to the expected squared bias for baseline methods.

Approximation 4.10 The mean squared error at a given point Xmis = xmis.

Mean squared error mse(Y imp|xmis, nmis, n) can be approximated as:

mse(Y imp|xmis, nmis, n) ≈ (
µ∗obs − g∗mis(xmis)

)2

︸ ︷︷ ︸
squared bias

+
1

nobs
τ ∗obs

︸ ︷︷ ︸
sampling variance

+ Cτ ∗obs︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

.

where term C depends on imputation strategy S:

C =





0 :S=M (for mean imputation strategy),

1 :S=R (for simulated random imputation), and

1− 1
nobs :S=D (for random donor).

Consequence 4.11 Approximation to asymptotics of E[m̂se(Y comp,B)|n].

Limit of expectation of m̂se(Y comp,B) is approximately

lim
n→∞

E[m̂se(Y comp,B)|n] ≈ (µ∗obs − µ∗mis

︸ ︷︷ ︸
global bias

)2 + VarXmis [g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ Cτ ∗obs︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where constant C depends on imputation strategy S:

C =

{
0 :S=M (for mean imputation strategy), and

1 :S=R,S=D (for random strategies).

Justification of Consequence 4.11 is straightforward. However, full justifications

for Approximations 4.9 and 4.10 are omitted here for compactness. The justifications

are given in Appendix A4.3.

4.2 Imputation with linear regression

In this thesis the role of linear regression is similar to that of baseline methods. We

use it in comparative evaluations between cell methods and standard algorithms. We

hope that in the case of linear data, our advanced methods should not be completely

inferior when compared to the optimal linear method. And in the case of complex

data, our new methods should do better.

Using the standard linear regression (OLS) [36], our completed target variable

Y comp is defined under conditionalizations Q3 and responses r by

Y comp,L,S
j =





yj, if rj = 1,

xT
j βobs

︸ ︷︷ ︸
gobs

L (x|θ)

+ε̂S, when rj = 0,
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where covariate xj = [xj,0, xj,1, . . . , xj,p−1]
T , with xj,0 = 1 and the noise term ε̂S

depends on the imputation strategy

ε̂S ∼
{

0, S=M (mean imputation),

N(0, vobs,L,R) S=R (simulated random imputation).

Constant xj,0 = 1 defines the role of intercept βobs
0 , while other the parameters

βobs
−0 = [βobs

1 , . . . , βobs
p−1]

T define the orientation of the regression surface.

Recall matrix partitioning dX = [dobs
X dmis

X ] from Chapter 2. The regression

coefficients βobs are defined using the standard least squares (OLS) estimation from

training data dtrain
nobs . With a slight change of notation, where

dXX = dtrain
XX = [1nobs dobs

X,nobs ] =




1 x1,1 x1,2 . . . x1,p−1

...
...

...
...

...

1 xnobs,1 xnobs,2 . . . xnobs,p−1


 ,

and dYY = dtrain
YY = dobs

Y,nobs = [y1, . . . , ynobs ]T , the regression coefficients are

βobs = (dT
XXdXX)−1dT

XXdYY.

One should note that above estimate is defined if the matrix dXX has a full rank,

formally rank(dXX) = p. Technical assumptions ensure this in our analysis.

The random term ε̂R is drawn iid from Normal distribution N(0, vobs,L,R), where

the variance is estimated as

vobs,L,R =
1

nobs

[
dYY − dXXβobs

]T [
dYY − dXXβobs

]
.

The analysis of the imputation performance of linear regression follows standard

references like [62], but is adapted to the current problem setup. For this purpose

we define the covariates for the missing part as a matrix

dmis
XX = [1nmis dmis

X,nmis ] =




1 xnobs+1,1 xnobs+1,2 . . . xnobs+1,p−1
...

...
...

...
...

1 xn,1 xn,2 . . . xn,p−1


 .

4.2.1 Preservation of moments

The most obvious benefit of linear regression imputation over baseline methods is

that the method is expected to perform better under MAR missingness. However,

for the preservation of the first two moments of Y , we have less strict conditions, as

explained by the following four approximations.

Approximation 4.12 Approximation for the bias of the first moment µ̂comp,L.

The approximation for the bias of µ̂comp,L for n observations is

Bias[µ̂comp,L|n] ≈ p∗(E[β̂
obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis)

where −0 subscript means that all other regression coefficients are picked except in-

tercept term, E[β̂
obs|n] is the expected regression coefficients over training data and

X
∗mis

= E[Xmis] is the expected covariate vector over missing data.
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The variance of µ̂comp,L depends on the sample size, model fit and covariates.

Given n, the result is quite complicated. Therefore we shall first see the variance of

µ̂comp,L at conditionalisation levelQ2 where the model, training data and missingness

indicators are fixed such that Nmis = nmis.

Approximation 4.13 Approximation for Var[µ̂comp,L|n,dtrain
nobs ,βobs].

The variance of the first moment µ̂comp,L given Q2 is approximately

Var[µ̂comp,L|Q2] ≈ nmis

n2

(
(βobs

−0)
TΣ∗mis

X βobs
−0 + C

)

where

C =

{
0 :S=M (mean imputation), and

vobs,L,R :S=R (simulated random imputation).

According to Approximation 4.13 there is no variance due to the intercept term at

conditionalisation Q2. The reason for this is that the model is fixed at that level.

The variance Var[µ̂comp,L|n] requires rather complex integrations. Therefore we

shall give the result in a form of an approximation.

Approximation 4.14 Approximation for the Var[µ̂comp,L|n].

When the variance of Y obs|xobs is constant v∗obs (homoscedastic situation) an ap-

proximation for the variance of the first moment µ̂comp,L given n observations is

Var[µ̂comp,L|n] = E
Nmis,Dtrain

Nobs ,
ˆβ

obs

[
Var[µ̂comp,L|Q2]

]

+Var
Nmis,Dtrain

Nobs ,
ˆβ

obs

[
E[µ̂comp,L|Q2]

]

≈ T1 + T2 + C︸ ︷︷ ︸
the variance due to noise modelling

+ O
(
n−1

)
︸ ︷︷ ︸

approximation error

,

where T1 is an approximation for E
Nmis,Dtrain

Nobs ,
ˆβ

obs [Var[µ̂comp,L,M |Q2]] thus

T1 =
v∗obs

n2

p∗

1− p∗
tr

((
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
Σ∗mis
X

)

︸ ︷︷ ︸
variance due to estimated coefficients

+
p∗

n
Var

[
EDtrain

Nobs |n

[(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y

]T

Xmis

]

︸ ︷︷ ︸
variability of expected model
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and T2 is an approximation for Var
Nmis,Dtrain

Nobs ,
ˆβ

obs [E[µ̂comp,L|Q2]] hence

T2 =
1

n2

(
n(1− p∗)τ ∗obs + (µ∗obs)2Var[Nobs]

)

︸ ︷︷ ︸
sampling variance (due to µ̂obs and Nobs)

+
1

n
v∗obs (p∗)2

1− p∗
(X

∗mis
)T

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

X
∗mis

︸ ︷︷ ︸
imputation variance part 1

+
1

n2
Var[Nmis]

(
E

[(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y |n
]T

X
∗mis

)2

︸ ︷︷ ︸
imputation variance part 2

+
2

n2

[
np∗ + µ∗obsE

[(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y |n
]T

X
∗misVar[Nmis]

]

︸ ︷︷ ︸
cross term (covariance)

,

in which

C =





0

:S=M (mean),

p∗
n

(
v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 ]

)2
]

+O
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

))

:S=R (random)

One should remark that Approximation 4.14 has been derived by approximating

the variance of regression coefficients without the intercept term. Underestimation

of variance is compensated by the approximation error term. Even approximation

for variance computed in Approximation 4.14 is quite complicated. However, one

can notice that variance is function of sample size, proportion of missing data values,

variance for noise for observed Y values, and on the first two moments of Xobs and

Xmis. Provided X
∗mis

= 0 then a more usable approximation of Var[µ̂comp,L|n] can

be given in the form of the following consequence.

Consequence 4.15 Simplification of Var[µ̂comp,L|n].
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Provided X
∗mis

= 0 then for Q1 = {n}

Var[µ̂comp,L|n] ≈ v∗obs

n2

p∗

1− p∗
tr

((
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
Σ∗mis
X

)

︸ ︷︷ ︸
imputation variance part 1 (due to estimated coefficients)

+
p∗

n
Var

[
EDtrain

Nobs |n

[(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y

]T

Xmis

]

︸ ︷︷ ︸
imputation variance part 2 (variability of expected model)

+
1

n2

(
n(1− p∗)τ ∗obs + (µ∗obs)2Var[Nmis]

)

︸ ︷︷ ︸
sampling variance (due to µ̂obs and Nmis)

+
2

n
p∗

︸ ︷︷ ︸
cross term (covariance)

+ C︸ ︷︷ ︸
variance due to noise modelling

+ O
(
n−1

)
︸ ︷︷ ︸
approximation error

,

where term C is as earlier.

Clearly the approximation of variance of µ̂comp,L goes to zero as sample size

goes to infinity.

The bias of the second moment τ̂ comp,L depends on the variance of covariates

Σ∗mis
X , the model fit and the true simulated noise level, as given in the following

approximation.

Approximation 4.16 Approximation for the bias of τ̂ comp,L.

Bias of τ̂ comp,L for n observations can be approximated with

Bias[τ̂ comp,L|n] ≈ p∗
(
tr(Σ∗mis

X E[β̂
obs

−0(β̂
obs

−0)
T |Q1]) + C − τ ∗mis

)

︸ ︷︷ ︸
A

+ p∗(1− p∗)
[
(µ∗obs − E[β̂

obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 − (µ∗obs − µ∗mis)2
]

︸ ︷︷ ︸
B

+O(n−1),

where term A is due to difference between the variance of the imputed and missing Y

values and B is due to model missmatch. Term A varies for imputation strategies:

namely, added imputation variance C is

C =





0

:S=M (mean imputation)

v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)

:S=R (random imputation)



69

Consequence 4.17 Approximation for the asymptotic bias of τ̂ comp,L.

Asymptotically we have the following approximation

lim
n→∞

Bias[τ̂ comp,L] ≈ p∗
(
(β∗obs

−0 )TΣ∗mis
X β∗obs

−0 + Cv∗obs,L,R − τ ∗mis
)

︸ ︷︷ ︸
A

+ p∗(1− p∗)

{[
µ∗obs − (β∗obs

−0 )T X
∗mis − (β∗obs

0 )
]2

− (µ∗obs − µ∗mis)2

}

︸ ︷︷ ︸
B

,
(4.2)

where

C =

{
0 :S=M (mean imputation), and

1 :S=R (simulated random imputation).

Term A is bias due to difference between the variance of imputed and missing Y

values. The difference between the mean of the imputed and missing Y values is

measured by bias term B. Further, v∗obs,L,R = limn→∞ E[v̂obs,L,R] is the optimal noise

variance parameter over all possible training data.

The justifications for Approximations 4.14-4.16 and Consequence 4.17 are given

in Appendix A4.6.

4.2.2 An example: the role of conditionalization levels

As we see from Approximation 4.14, the finite sample error of the first moment of

µ̂comp,L contains many variance components. The actual role of these components

is difficult to interpret without conditionalizations Q1, Q2, and Q3. Therefore we

shall study the differences between

Err1 = Var[µ̂comp,L,R|Q1], where Q1 = {n}
Err2 = E

[
Var[µ̂comp,L,R|Q2]

]
, where Q2 = {n,dtrain

nobs , βobs}, and

Err3 = E
[
Var[µ̂comp,L,R|Q3]

]
, where Q3 = {dtrain

nobs ,dtest
nmis ,β

obs},

In addition we shall compute the sampling variance

Var[µ̂obs|n] ≈ τ ∗obs(
1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3
)

for comparison purposes.

Note that error component Err1 contains Err2 which contains Err3. Thus we



70

know that

Err1 = Var[µ̂comp,L,R|n] (4.3)

= Err2 + Var
[
E[µ̂comp,L,R|Q2]

]
,

Err2 = E
[
Var[µ̂comp,L,R|Q2]

]

= E

[
Nmis

n2

(
v̂obs,L,R + (β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

)]

= Err3 + E
[Nmis

n2
(β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

]
.

The numerical values of components Err1, Err2, and Err3 shall reveal us the im-

portance of estimation errors and errors caused by imputation strategy.

Theoretical insight

Computation of Err1 is done using Approximation 4.14. However, this requires

- superpopulation moments µ∗obs = E[Y obs] and τ ∗obs = Var[Y obs],

- biased slope term β∗obs,biased
−0 = E

[(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y |n
]
,

- variance of imputation noise (term C in Approximation 4.14), and

- the data generator from example 4.1.2, page 59 (which is used here too).

Therefore the moments have already been computed (see Equation 4.1 in page 61).

The required four quantities are (see Appendix A4.7 for details on derivation)

µ∗obs = −0.196

τ ∗obs = 0.49074

β∗obs,biased
−0 = 1051/9500

C ≈ 0.15︸ ︷︷ ︸
E

Xobs [Var[Y obs|Xobs]]

+ 69639/475000︸ ︷︷ ︸
squared bias

,

where the squared bias is
∫∞
−∞( 1

500
x3 − β∗obs,biased

−0 ∗ x)2fXobs(x)dx.

Given the above quantities error term Err1 may be computed using Approx-

imation 4.14. However, a bit of work needs to be done in order to compute Err2

and Err3. Quantity Err2 is easiest to compute using the decomposition given in

Equation (4.3). By applying the Taylor approximation to the second term in the

decomposition of Err2 and using β∗obs,biased
−0 one gets

E
[Nmis

n2
(β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

]
≈ E[

Nmis

n2
]E[β̂

obs

−0 ]
TΣ∗mis

X E[β̂
obs

−0 ]

≈ p∗

n
β∗obs,biased
−0 ∗ 15 ∗ β∗obs,biased

−0

=
0.5

n
∗ 1051

9500
∗ 15 ∗ 1051

9500
.



71

Error term Err3 is approximated as

Err3 = E[Var[µ̂comp,L,R|Qi]] = E[
Nmis

n2
v̂obs,L,R]

Taylor≈ E[
Nmis

n2
]E[v̂obs,L,R] ≈ p∗

n
C =

0.5

n
∗ (0.15 + 69639/475000).

The sampling variance equals approximately to 0.98
n

+ 2
n2 in this example.

Data generator, the setup of the problem, and imputation model

We shall use the same data generator that was introduced in example 4.1.2 (page 59).

However, the sample size range is a bit different, it is specified now as n = b25∗1.6kc,
where k = 0, . . . , 9. The data cannot be explained by a linear model but unlike with

the previous example, it is possible to get a roughly unbiased first moment of Y also

with MAR type missingness. The data and an example estimate of the linear model

is shown in Figure 4.4, and the scatter between true and imputed values is shown

in Figure 4.5.

 0.00 15.00 7.50
x

−7.50−15.00

 0.00

 5.00

 2.50

y

−2.50

−5.00

g(x)

EST g(x)

training data

Figure 4.4: True model g(x), estimated

linear model EST g(x), training data,

and X positions for missing Y values (on

X-axis).

=IMP

OPTIMAL

 1.27 0.25−1.78
x

−0.77

 1.27

 0.25

 2.79

−1.78  2.79

y

−0.77

=TRUE

Figure 4.5: Scatter plot of true and im-

puted Y values. Optimal predictions are

shown on diagonal.

The symmetry of scatter in Figure 4.5 indicates unbiasedness, whereas the

spread is due to Var[µ̂comp,L,R|n]. Underestimation of missing Y values occur when

the value of covariate is approximately between [−7.5, 0], whereas the target values

are overestimated when in [0, 7.5]. This is seen in Figure 4.4.

Results

The simulated results for conditionalized variances Err1, Err2 and Err3 are summa-

rized in Figure 4.6, and the simulated results for benchmark measure Var[µ̂obs|n] are

given in Figure 4.7. Further, the results are summarized in Table 4.2, that consists

of both analytical and simulated results.
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The roles of conditionalized variance components Var[µ̂comp,L,R|Q1], Var[µ̂comp,L,R|Q2]

and Var[µ̂comp,L,R|Q3] are shown in Figure 4.6. Conditionalising by Q2 drops vari-

ance approximately by 75% (when comparing to Q1). Further, variance is dropped

roughly by 88% when conditionalising by Q3. One can notice that Err2 ≈ 2∗Err3.

Variance increase is highest from the conditionalisation Q2 to Q1. This can be

expected as many quantities become simultaneously random.

From the simulated results in Table 4.2 and Figures 4.6-4.7 we can see that

the sampling variance for µ̂obs is larger than the variance of µ̂comp,L,R at Q1 (Err1)

at least for a small sample size. The obvious reasons for this are the use of linear

model and the increase of observations in the completed data dcomp against partially

observed data dtrain that decreases the variance error. This is good news, since also

the bias between µ∗ and µ̂comp is decreased. The bias for linear regression with the

random strategy is approximately 0.02, and the bias is approximately -0.20 for the

baseline mean strategy. Thus, in this example linear imputation clearly decreases

imputation variance.

From Table 4.2 one can see that the approximations for Err2 and Err3 are

quite accurate even for small sample size n. Approximation for Err1 yields too large

a variance (roughly twice as large as it should be). The approximations (Taylor

and large sample) which have been used to derive the analytical formula may be

inaccurate. Note that absolute values are typically more difficult to get correct

than relative values. Therefore we also computed analytically and numerically the

relative efficiency

Eff[µ̂comp|n] =
Var[µ̂comp,L,R|n]

Var[µ̂comp,L,M |n]
=

Err1

Err1 − Err3

,

where µ̂comp,L,M is used as the reference estimator. The efficiency results are given in

Table 4.3. Theoretical efficiencies give a slightly optimistic view of the L,R method.

Namely, the efficiency there is better (closer to one) than according to simulations.

n 25 40 64 102 163 262 419 671 1073 1717

k=0 k=5 k=9

Err1(simulated) 0.0324 0.0198 0.0132 0.0082 0.0053 0.0030 0.0019 0.0012 0.0007 0.0005

Err1(theoretical) 0.0602 0.0376 0.0235 0.0147 0.0092 0.0057 0.0036 0.0022 0.0014 0.0009

Err2(simul.) 0.0084 0.0053 0.0035 0.0022 0.0014 0.0009 0.0006 0.0003 0.0002 0.0001

Err2(theor.) 0.0096 0.0060 0.0038 0.0024 0.0015 0.0009 0.0006 0.0004 0.0002 0.0001

Err3(simul.) 0.0042 0.0032 0.0020 0.0013 0.0009 0.0005 0.0003 0.0002 0.0001 0.0001

Err3(theor.) 0.0059 0.0037 0.0023 0.0015 0.0009 0.0006 0.0004 0.0002 0.0001 0.0001

Var[µ̂obs|n] (theor.) 0.0424 0.0258 0.0158 0.0098 0.0061 0.0038 0.0024 0.0015 0.0009 0.0006

Var[µ̂obs|n] (simul.) 0.0359 0.0228 0.0162 0.0094 0.0056 0.0036 0.0021 0.0014 0.0008 0.0005

Table 4.2: Simulated and theoretical conditionalized variances Erri =

E[Var[µ̂comp,L,R|Qi]], i = 1, 2, 3 as functions of the sample size n = b25 ∗ 1.6kc. Vari-

ance Var[µ̂obs|n] (both theoretical and simulated) is included for comparison with

Err1.
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n 25 40 64 102 163 262 419 671 1073 1717

k=0 k=5 k=9

Eff[µ̂comp|n](simulated) 1.1489 1.1928 1.1786 1.1884 1.2045 1.2000 1.1875 1.2000 1.1667 1.2500

Eff[µ̂comp|n](theoretical) 1.1092 1.1094 1.1095 1.1095 1.1010 1.1096 1.1096 1.1096 1.1096 1.1096

Table 4.3: Simulated and theoretical efficiencies as functions of the sample size.

Q2

Q3

Q1

25 1717
n

VARIANCE_muest(n)

k=0 k=9

 0.035

 0.026

 0.017

 0.009

 0.000

Err1

Err2

Err3

k=2 k=4 k=6
64 163 419

Figure 4.6: Simulated be-

haviour of decomposed variances

Var[µ̂comp,L,R|n], E[Var[µ̂comp,L,R|Q2]]

and E[Var[µ̂comp,L,R|Q3]] with increasing

number of observations.

Q1

Q1

n

k=0 k=9
171725

VARIANCE_obsmuest(n)

 0.035

 0.026

 0.017

 0.009

 0.000

k=0 k=0 k=0
64 163 419

Figure 4.7: Behaviour of sampling vari-

ance Var[µ̂obs|n] with increasing number

of observations.

4.2.3 Unit level prediction errors with linear regression

Linear regression methods are more flexible than baseline methods. As a conse-

quence (squared) prediction bias is expected to be lower. There are cases for which

the baseline methods perform better. As an example, if a true model is nonlinear

and the missing-data mechanism is MAR then linear regression may lead to larger

absolute bias of the first moment estimator due to extrapolation errors. Naturally

linear regression methods are best at a unit level if E[Y mis|x] is close to xT β∗obs.

These and other considerations are verified by Approximations 4.18 and 4.19.

Approximation 4.18 Approximation for the expectation of m̂se(Y comp|n) for lin-

ear regression

Provided variance of Y obs|xobs is constant v∗obs (homoscedastic situation) the expec-
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tation of m̂se(Y comp,L) with n observations can be approximated as:

E[m̂se(Y comp,L)|n] ≈ E[β̂
obs

−0 |n]TΣ∗mis
X E[β̂

obs

−0 |n]︸ ︷︷ ︸
variability of approximative model

+
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis

)2

︸ ︷︷ ︸
global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]

)(
µ∗mis − g∗mis(X

∗mis
)
)

︸ ︷︷ ︸
cross term

+ v∗obs
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)
tr(A)

︸ ︷︷ ︸
expected variance of approximative model predictions

+ C︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

+ O
(
n−1

)
︸ ︷︷ ︸

approximation error

,

where A =

((
Σ∗mis
X + X

∗mis
(X

∗mis
)T

)(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1)
and term C

depends on imputation strategy S:

C =





0

:S=M mean imputation

v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)

:S=R random imputation

In Approximation 4.18 the first three lines of E[m̂se(Y comp,L)|n] result from the ex-

pected squared bias. Further, the expected variance of approximative model predic-

tions (row 4) is formally defined as ENmis,Xmis [Var[(β̂
obs

−0)
T Xmis + β̂obs

0 |xmis, nmis, n]].

Furthermore, one should note the following remarks:

• part 3 of the expected squared bias has been partly approximated using the

first order Taylor expansion, and

• expected sampling variance has been approximated using predictions done by

the coefficient estimator without the intercept term (the approximation error

is used to compensate the lack of the intercept term in the analysis).

Approximation 4.19 Approximation for mse(Y imp|xmis, nmis, n).

Provided variance of Y obs|x is constant v∗obs for all x (homoscedastic situation) the
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mean squared error mse(Y imp|xmis, nmis, n) can be approximated as:

mse(Y imp|xmis, nmis, n) ≈
(
E[β̂

obs

−0 |nmis, n]Txmis + E[β̂obs
0 |nmis, n]− g∗mis(xmis)

)2

︸ ︷︷ ︸
prediction bias

+ (xmis)T v∗obs

nobs

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

xmis

︸ ︷︷ ︸
sampling variance (slopes)

+ C︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

+ O
(
(nobs)−1

)
︸ ︷︷ ︸

approximation error

.

where constant C depends on imputation strategy S:

C =





0

:S=M (mean imputation),

v∗obs︸ ︷︷ ︸
expectation of variance of Yobs|Xobs

+EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

︸ ︷︷ ︸
expected squared bias

+ O
(
(nobs)−1

)
︸ ︷︷ ︸

sampling variance

:S=R (random imputation).

Remark:

• sampling variance has been approximated using the predictions done by the

coefficient estimator without the intercept term (approximation error is used

to compensate the lack of the intercept term in the analysis).

Lemma 4.20 Simplification to the trace of the matrix A (expected sampling vari-

ance in Approximation 4.18).

Provided that the second moments and the square of the first moments of Xobs and

Xmis are equal (holds always under MCAR), then

tr(A) = p− 1.

Recall that the cross term in Approximation 4.18 is close to minus two times

the variability of the true model when the MAR missingness and linear model as-

sumption hold. Therefore one can conclude that the expected squared bias (sum of

the first three lines of the result) is roughly zero under MAR when the linear model

assumption holds, formally

E[Y mis|x] ≈ E[β̂
obs

−0 ]
Tx + E[β̂obs

0 ].

The expected variance of approximative model predictions is somewhat complicated

to interpret in general case. However, provided that the assumptions of Lemma
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4.20 hold its interpretation becomes clear. Then the quantity is (p− 1)v∗obsO(n−1).

Therefore the expected variance is significant if v∗obs is large and ratio of dimension of

covariate, p−1, and sample size n are large. Thus, for a small sample size with many

covariates and high residual variance the expected variance is significant. However,

asymptotically its impact vanishes. Further, the role of imputation variance (term

C) for random strategy is significant if v∗obs is large or if the expected squared bias

is large. In such case the estimated noise variance is large.

Similar considerations as above hold also for Approximation 4.19. Prediction

bias at xmis is large if conditional mean g∗mis(xmis) differs considerably from the

expected linear prediction. Further, prediction variance (sampling variance term) is

quadratic in position xmis. Secondly, it is controlled by the variance of regression

coefficients β̂
obs

. The variance of the coefficients is a function of residual variance

v∗obs, size of training data Dtrain, and the expectation of square of Xobs. The latter

equals to the variance of Xobs plus the expectation of Xobs squared. Therefore large

training data, large variance and expectation of Xobs decrease prediction variance.

On the other hand, high residual variance v∗obs and large norm ||xmis|| increase the

prediction variance.

Consequence 4.21 Approximation to asymptotics of E[m̂se(Y comp,L)].

Limit of expectation of m̂se(Y comp,L) can be approximated as:

lim
n→∞

E[m̂se(Y comp,L)|n] ≈ (β∗obs
−0 )TΣ∗mis

X β∗obs
−0︸ ︷︷ ︸

variability of limit of approximative model

+
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0 − µ∗mis

)2

︸ ︷︷ ︸
asymptotic global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0

)(
µ∗mis − g∗mis(X

∗mis
)
)

︸ ︷︷ ︸
cross term

+ C︸ ︷︷ ︸
asymptotic imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where term C depends on the imputation strategy S:

C =





0 :S=M (mean imputation)

v∗obs,L,R :S=R (simulated random imputation),

in which v∗obs,L,R = limn→∞ E[v̂obs,L,R|n]. The expectation E[v̂obs,L,R|n] is decomposed

in Approximation 4.16 (see term C for random strategy).

For compactness we give next only some ideas about justifications to Approxi-

mations 4.18 and 4.19. Full justifications, which are in Appendix A4.8 , are omitted

here due to mathematical complexity (technical details) involved. The proof for

Lemma 4.20 is given last, and a justification to Consequence 4.21 is omitted as it is

straightforward.
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The idea behind justifying Approximation 4.18 is to integrate the result of the

theorem with respect to the joint distribution of the number of missing data values

Nmis and Xmis given sample size n. In practice, we do this by first integrating over

the distribution of Xmis and then over Nmis.

Approximation needs to be used in order to ease the derivation of Approxima-

tion 4.19. In the derivation of squared bias (term C) we assume that E[β̂
obs|nmis, n] ≈

E[β̂
obs|n] + O

(
(nobs)−1

)
. Further, variance is approximated by computing the vari-

ance for predictions done using the coefficients estimate without an intercept term.

The lack of the intercept term in the analysis is compensated by the approxima-

tion error term. This approximation is quite rough but eased the computation of

variance considerably.

Proof 4.22 Proof to Lemma 4.20 is trivial as:

tr(A) = tr

((
Σ∗mis
X + X

∗mis
(X

∗mis
)T

)(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
)

= tr

((
Σ∗
X + X

∗
(X

∗
)T

)(
Σ∗
X + X

∗
(X

∗
)T

)−1
)

= tr

(
I(p−1)×(p−1)

)
= p− 1

4.3 Summary

For baseline methods it was found that reliability of estimated moments depends on

the number of observations, the distribution of Y obs, the distribution of the number

of missing data values (Nmis), and on imputation strategy. Baseline methods are

likely to yield high absolute biases of the first two moments under MAR and NMAR

missingness. At unit level the baseline methods perform poorly because prediction

is too stiff as a function of covariate: it is constant. As a consequence, squared

prediction bias will be high. However, prediction variance for mean strategy is low.

A benefit of linear regression methods over baseline methods is that they are

expected to perform better under MAR missingness. However, there are cases in

which linear regression yields a higher absolute bias than baseline methods in first

moment estimator. This is when the linear model assumption does not hold and

predictions are badly biased. The bias of the first moment is dependent on how

well the linear model assumption holds. Variance of the first moment is a function

of sample size, a proportion of missing data values, variance for noise for observed

Y values, and of first two moments of Xobs and Xmis. For mean strategy the

bias of the second moment depends on how close the variability of the model is

to variability Var[g∗mis(Xmis)]. Random strategy may be used to reduce bias by

modelling the noise terms. At unit level linear regression is likely to perform better

than the baseline methods. However, there are exceptions (as in case of the first

two moments). Expectation of the mean squared error estimator E[m̂se(Y comp,L,S)]
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is quite complicated, but under MCAR is slightly simplified. If data generator is

approximately linear and the variances of Xobs and Y obs|Xobs are small or sample

size is large then this quantity is low.

To summarize, if the data generator is close to linear then linear regression

methods are likely to yield good results. A suitable nonlinear transform of data

may render the linear regression methods usable even in nonlinear cases. Finding a

transform, if such exists, requires user expertise. Under NMAR missingness, errors

due to possible differences between conditional means E[Y obs|x] and E[Y mis|x] may

render the validity of linearity assumption and estimation biases irrelevant.



Chapter 5

Imputation using nonparametric

regression

Although the use of nonparametric regression for imputation is not the main topic of

this thesis, it is an important family of methods that shares some properties with cell

imputation. We shall therefore include nonparametric regression in this study, but

we shall not use many pages to explain and interpret the results. As a consequence

of this, the approximations of this chapter are more ”technically involved” than in

other chapters. There are, however, some clarifying examples.

A major problem with our baseline methods and linear regression is the fixed

model assumption, which easily leads to a large bias in pointwise predictions. Non-

parametric methods may provide an answer to this problem, but there are other

benefits as well. From the imputation viewpoint it is especially interesting that we

may change the role of variance components, as discussed in Chapter 3, page 51.

In this context we consider two closely related nonparametric regression meth-

ods: the K-nearest neighbour regression and kernel regression. In our regression

context these can be written in the form of Nadaraya-Watson kernel regression

[70, 109] for the observed dtrain
nobs×p

sample as

gobs,K(x0) =

∑nobs

j=1 K
(
x0,xj

)
yj∑nobs

j=1 K
(
x0,xj

) =
nobs∑
j=1

K
(
x0,xj

)
yj =

nobs∑
j=1

wjyj, (5.1)

where kernel function K(x0,x) characterizes the method and K(·, ·) is normalized

kernel.

In kernel regression kernels are selected with fixed width (bandwidth) λ. Later

we denote that bandwidth is a function of sample size by λ(nobs). Next we assume

that the bandwidth parameter is the same for all the components of X. This

allows us to make a direct link between the kernel and the k-nearest neighbour

regressions. Further, this is no restriction in scope of this thesis, because later we

analyse univariate X based kernel regression. Typically

K(x0,x) = Kλ

(
x0 − x

)
=

1

λp−1
K

(x0 − x

λ

)
, where (5.2)
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where K(·) is the kernel function, Kλ(·) = 1
λp−1 K( ·

λ
) is the rescaled kernel with a

bandwidth λ. Kernel function K and bandwidth λ define the shape of the kernel.

Let ξ = x0 − x. Now lim||ξ||→∞ Kλ(ξ) = 0. Next we introduce kernels in the

probability density function form. The reason for this is that Rosenblatt’s kernel

regression results, which are given and applied later, require it [85]. The most typical

choices are box kernel

K(ξ) =

{
1

vp−1
, if ||ξ|| < 1,

0, otherwise,
(5.3)

where vp−1 is volume of unit ball in Rp−1, and (spherical) Gaussian kernel

K(ξ) =
( 1√

2π

)p−1

exp(−||ξ||2/2).

In the nearest neighbour case the kernel width λ is defined implicitly by a constant

number of k-nearest neighbours. To be more specific the bandwidth is specified by

the distance to the k:th nearest neighbour from the regression position x0. Therefore

(generalized) k-nearest neighbour regression formula can be written using the kernel

regression formula with the kernel:

K(x0,x) =
1

dp−1
k

K
( ξ

dk

)
, (5.4)

where dk is the distance to the k:th nearest neighbour. With k-nn one has to be more

strict about kernel K(ξ) than with kernel regression for applying Mack’s results [72].

Namely, it has to be a probability density function and its support has to be (−1, 1).

The above formulation for a generalized k-nn is adapted from Mack [72].

In this thesis we consider ordinary k-nearest neighbour regression. This is

derived by using the box kernel (5.3) in (5.4) that yields the most common form of

k − nn:

gobs,N(x0) =
1

k

∑

j∈Nk(x0)

yj,

where the set of k-nearest neighbours to point x0 is defined as

Nk(x0) =

{
j
∣∣∣ ||x0 − xj|| ≤ ||x0 − xl||

}
, l /∈ Nk(x0) and #(Nk(x0)) = k,

in which #{A} denotes the cardinality of set A.

In an imputation context kernel (and NN) regression can be applied to estimate

the missing values of Y as a function of observed covariates x. Thus

Y comp,K,S
j =

{
yj, when rj = 1,

gobs,K
(
xobs

j

)
+ ε̂K,S

j , when rj = 0,

where ε̂K,S is an estimate of residual variance and depends on imputation strategies

such that

ε̂K,S ∼





0 :S=M (mean imputation strategy),

N(0, vobs,K,R) :S=R (simulated random imputation), and

{yj − gobs,K(xobs
j )}nobs

j=1 :S=D (random donor),
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where vobs,K,R = 1
nobs

∑nobs

j=1

(
yj − gobs,K

(
xobs

j

))2

and in random donor strategy ε̂ is

randomly drawn from the set {yj − gobs,K(xobs
j )}nobs

j=1 with equal probabilities.

A general property that is best seen with kernel (and NN) imputation is that

given data d, the variance of imputed values Var[Y imp,K,S|d, n] is explained by a mix-

ture of model variance Var[ĝobs,K,S|d, n] and residual variance Var[ε̂K,S|d, n]. Due

to the flexibility of nonparametric methods, we may get a good imputation per-

formance, (also in terms of mse), with overestimated (too flexible) models. Thus,

overtraining might not be harmful in the imputation context. This will be explained

in the forthcoming example.

5.1 Preservation of moments

Due to the nonparametric nature of kernel (and NN) methods it is difficult to derive

properties in fine details. However some analyses can be made using the general

results of the kernel and nearest neighbour methods (see [72] and [85] for examples).

We can express the bias of the kernel (and NN) methods in the form of the

following approximation.

Approximation 5.1 An approximation for the bias of µ̂comp,K/N

The bias of the first moment for kernel and k-nn can be approximated with

Bias[µ̂comp,K/N |n] ≈ p∗
(
EXmis [g∗obs(Xmis)− g∗mis(Xmis)]

)

︸ ︷︷ ︸
NMAR bias

+ ENmis

[
Nmis

n
C

]

︸ ︷︷ ︸
estimation bias wrt. g∗obs(xmis)

+ D︸ ︷︷ ︸
bias due to noise estimation

+ O(n−1)︸ ︷︷ ︸
approximation term

,

where terms C = EXmis

[
Bias[ĝobs,K/N(xmis)|nmis, n]

]
(expected conditional mean es-

timation bias) and D vary according to kernel/k-nn and imputation strategy as

C =





(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

2f
Xobs(X

∗mis
)

∫
ξ2K(ξ)dξλ2(nobs)

+o
(
λ2(nobs)

)
+ O

(
(nobsλ(nobs))−1

)
(Kernel, p = 2)

(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

24f3
Xobs(X

∗mis
)

(
k(nobs)/nobs

)2

+o
(
(k(nobs)

nobs )2
)

+ O
(
(k(nobs))−1

)
(K− nn, p = 2)

Q(g∗obsf
Xobs )(X

∗mis
)−g∗obs(X

∗mis
)Q(f

Xobs)(X
∗mis

)

2f
Xobs(X

∗mis
)(vp−1f

Xobs(X
∗mis

))2/(p−1)
(k(nobs)

nobs )2/(p−1)

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O
(
(k(nobs))−1

)
(K− nn, p > 2),
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and

D =





0

:S=M/S=R (mean and random strategy)

p∗µ∗obs − ENmis

[
Nmis

n
1

Nobs

∑nobs

j=1 EDtrain|n,nmis

[
ĝobs,K/N

(
Xj

)]
]

:S=D (random donor)

where the second derivative of function h(x) is denoted as h′′(x), and the product of

functions g(x) and f(x) is denoted as (gf)(x) = g(x)f(x),

Q(h)(x) =

p−1,p−1∑

i=1,l=1

∫

Rp−1

ξiξl
∂

∂xi

∂

∂xl

h(x)I(||ξ|| < 1) ∗ (1/vp−1)dξ, (5.5)

p− 1 is a dimension of X, and vp−1 is the volume of the unit ball in X space which

is Rp−1.

Note that in Approximation 5.1 unit level bias terms require regularity conditions,

as described in [72] and [85]. Further, we assume integrability of unit level bias over

the distribution of Xmis. For kernel predictions this means that a trimmed kernel

estimate has to be used or more regularity conditions have to be set (see [14] for

example).

From Approximation 5.1 one sees that bias consists of NMAR bias, estimation

bias, noise term modelling bias, and an approximation term. The bias due to the

NMAR mechanism is quite obvious as the true model for Y obs and Y mis may differ.

The estimation technique, which is used to construct imputation model ĝobs(x), also

contributes to the bias of µ̂comp. Further, random donor strategy for noise terms

may also impact the bias.

Even though our approximation is quite rough one sees that the estimation bias

increases quadratically as smoothing is increased. This holds for both the kernel and

k-nn. One should also note that the effective number of parameters for k-nn is nobs/k,

and that the k-nn bias is inversely proportional to it. Namely, when the number of

effective parameters grows the model becomes more flexible and thus less biased.

In the non-NMAR case the bias of µ̂comp is due to unit level prediction biases,

which are dependent on the density of Xobs. From Approximation 5.1 one observes

the well-known difference in prediction biases between kernel and k-nn regression.

The bias for kernel regression is inversely proportional to the density of Xobs, and

the bias for k-nn is inversely proportional to fXobs(x)3. Thus, the bias of µ̂comp,K

can be considerable if density fXobs(X
∗mis

) is low.

Consequence 5.2 Bounds for Bias[µ̂comp,K/N |n]

The following bounds can be derived for the kernel and nearest neighbour methods

lim
λ→∞

Bias[µ̂comp,K/N |n] = Bias[µ̂comp,B|n] = p∗(µ∗mis − µ∗obs)

lim
λ→0,n→∞

Bias[µ̂comp,K/N |n] = p∗EXmis [g∗obs(Xmis)− g∗mis(Xmis)].
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In the first result we do not assume that smoothing is a function of sample size as

is assumed in Approximation 5.1. The first result is obvious, since λ → ∞ implies

that the method will become same as baseline imputation. For k-nn this means

that k → nobs. In the second case imputation follows 1-nearest neighbour, which is

undefined for kernel regression unless n →∞.

The variance of the first moment depends also on the level of smoothing. Due

to mathematical difficulty the result is left in an implicit form. However, it can be

subjected to some interpretation as shown after the approximation.

Approximation 5.3 Approximation for the variance of µ̂comp,K/N

The variance of the first moment for kernel and k-nn can be approximated with

Var[µ̂comp,K/N |n] ≈ ENmis|n

[
(Nobs

n

)2Var[µ̂obs|nmis]︸ ︷︷ ︸
sampling variance

+ (
Nmis

n
)2

( 1

Nmis

(
EXmis|nmis,n

[
Var[ĝobs,K/N(Xmis)|Xmis, Nmis, n]︸ ︷︷ ︸

A

]

︸ ︷︷ ︸
variance due to conditional mean prediction

+ VarXmis|nmis,n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]︸ ︷︷ ︸

B

]

︸ ︷︷ ︸
variance due to conditional mean prediction

)

+ O
(
(Nobs)−

1
2

)
︸ ︷︷ ︸

due to correlated predictions

)
+ 2

NobsNmis

n2
O

(
(NmisNobs)−

1
2

)
︸ ︷︷ ︸

approximation for cross term (covariance)

]

+ VarNmis|n

[
(
1− Nmis

n

)
µ∗obs +

Nmis

n

(
EXmis [g∗obs(Xmis)]

︸ ︷︷ ︸
E[µ̂comp,K/N,M |nmis]

+EXmisBiasK/N [Xmis|nmis, n]
)

︸ ︷︷ ︸
E[µ̂comp,K/N,M |nmis]

]
+ C︸ ︷︷ ︸

imputation noise variance

,

where terms A, B, and C depend on the estimation method (kernel or k-nn) and on

imputation strategy ε̂S as follows:

A =





Var[Y obs|Xobs=Xmis]
f

Xobs(Xmis)nobsλ(nobs)

∫
K2(ξ)dξ + o

(
1

nobsλ(nobs)

)
(Kernel, p = 2),

vp−1Var[Y obs|Xobs=Xmis]

k(nobs)
+ o((k(nobs))−1) (K− nn, p ≥ 2),
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B =





(g∗obsf
Xobs)′′(Xmis)−g∗obs(Xmis)f ′′

Xobs(Xmis)

2f
Xobs (Xmis)

∫
ξ2K(ξ)dξλ2(nobs)

+o(λ2(nobs)) + O((nobsλ(nobs))−1) (Kernel, p = 2),

(g∗obsf
Xobs)′′(Xmis)−g∗obs(Xmis)f ′′

Xobs(Xmis)

24f3
Xobs(Xmis)

(k(nobs)/(nobs))2

+o((k(nobs)
nobs )2) + O((k(nobs))−1) (K− nn, p = 2),

Q(g∗obsf
Xobs)(Xmis)−g∗obs(Xmis)Q(f

Xobs)(Xmis)

2f
Xobs(Xmis)(vp−1f

Xobs(Xmis))2/(p−1)

(k(nobs)
nobs

)2/(p−1)

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O((k(nobs))−1) (K− nn, p > 2),

where Q(h)(x) is defined in Equation (5.5) and

C =





0

:S=M (mean imputation)

p∗v∗obs

n
+ 1

n2ENmis

[
NmisEXobs

[(
g∗obs(Xobs)− EDtrain|nmis [ĝobs,K/N

(
Xobs

)
]
)2

]]

:S=R,S=D (random and donor strategies)

One can notice from Approximation 5.3 that increasing smoothing will reduce vari-

ance due to conditional mean estimate (see term A). This is obvious as the model

becomes more stiff. From the theorem one sees also the vulnerability of k-nn re-

gression. Prediction variance for k-nn is inversely proportional to fXobs(x0) at a

point x0. Therefore if there are regions in the X space in which fXobs(x) is low and

Var[Y obs|Xobs = x] is high then kernel regression may yield higher variance than

k-nn (for suitable value of k) due to the conditional mean estimate. The following

consequence will give bounds to variance:

Consequence 5.4 Bounds for Var[µ̂comp,K/N |n]

lim
λ→∞

Var[µ̂comp,K/N |n] = Var[µ̂comp,B|n]

lim
n→∞

Var[µ̂comp,K/N |n] ≈ 0.

Again the first result is obvious (and it requires that smoothing is not a function

of sample size), since λ → ∞ implies that the method will become the same as

baseline imputation. For k-nn this means that k(nobs) → nobs. The second case is

also assumed to hold exactly: estimator µ̂comp converges asymptotically to its limit.

The bias of the second moment depends on both the model flexibility (amount

of smoothing) and the imputation strategy. Due to technical difficulty the results

are given in an implicit form in the following theorem.
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Approximation 5.5 Approximation for bias of τ̂ comp,K/N

Approximate bias can be written as

Bias[τ̂ comp,K/N |n] ≈ p∗(VarNmis,Xmis|n
[
E[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of expected conditional mean estimate

+ C︸ ︷︷ ︸
imputation noise variance

−τ ∗mis)

+ p∗(1− p∗)

[
(µ∗obs − E[Y imp,K/N |n])2 − (µ∗obs − µ∗mis)2

]

+ p∗ENmis,Xmis|n
[
Var[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected sampling variance

+ O(n−1)︸ ︷︷ ︸
sampling variance of µ̂imp and approximation error (finite sample vs asymptotic)

,

where term C is

C =





0

:S=M (mean imputation)

v∗obs + ENmis,Xobs

[(
g∗obs(Xobs)− E[ĝobs,K/N(Xobs)|Xmis, nmis, n]

)2
]

︸ ︷︷ ︸
expected squared bias

+O(n−1) :S=R,D (random strategies)

and E[Y imp|n] = ENmis,Xmis

[
E[ĝobs,K/N(Xmis)|Xmis, Nmis, n]

]
is

E[Y imp|n] ≈





EXmis [g∗obs(Xmis)] + ENmis,Xmis

[
BiasK/N [Xmis|nmis, n]

]

:S=M,R (mean and random)

EXmis [g∗obs(Xmis)] + ENmis,Xmis

[
BiasK/N [Xmis|nmis, n]

]

+µ∗obs − E[ 1
Nobs

∑Nobs

j=1 ĝobs,K/N
(
Xj

)
]

:S=D (random donor)

where Bias[Xmis|Nmis, n] is estimation bias with respect to g∗obs(Xmis).

Even though the above approximative bias of τ̂ comp is in an implicit form we can

state the following considerations. The bias is affected by sample size, type of con-

ditional mean estimate (kernel or k-nn), and smoothing. Sample size affects the

estimation variances and biases. Smoothing has an impact on the variability of the

expected conditional mean model, expected sampling variance, and expected pre-

diction E[Y imp,K/N |n]. If smoothing is increased then the variability of the expected

model and sampling variance reduce. However, error in the form of a difference
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between E[Y imp,K/N |n] and µ∗mis is likely to grow. For random strategies decreasing

smoothing will increase term C, because the expected squared bias grows. This is

actually a trade-off between the variability of the conditional mean estimate and the

amount of modelled noise terms. The bounds for the bias are given in the following

consequence.

Consequence 5.6 Bounds for Bias[τ̂ comp,K/N |n]

lim
λ→∞

Bias[τ̂ comp,K/N |n] = Bias[τ̂ comp,B|n]

lim
λ→0,n→∞

Bias[τ̂ comp,K/N |n] ≈ p∗(Var[g∗obs(Xmis)] + C − τ ∗mis)

+p∗(1− p∗)[(µ∗obs − E[g∗obs(Xmis)]−D)2

−(µ∗obs − µ∗mis)2],

where terms C and D depend on imputation strategy ε̂S as follows:

C =





0

:S=M (mean),

v∗obs + limENmisEXobs

[(
g∗obs(Xobs)− EDtrain|nmis [ĝobs,K/N

(
Xobs

)
]
)2

]

:S=R,D (random),

and

D =





0 :S=M,R (for mean and random imputation),

µ∗obs − limENmis,Dtrain

[
1

Nobs

∑Nobs

j=1 ĝobs,K/N
(
xj

)]

:S=D (for random donor).

In the bounds above we have assumed that random donor strategy behaves asymp-

totically as simulated random imputation (term C).

Justifications for all the above approximations are given in Appendix A5.1.

5.2 Unit level prediction performance of nonpara-

metric methods

The prediction performance of kernel (and NN) regression has been studied, e.g., by

Rosenblatt [85], Mack [72], Gasser and Müller [28, 29]. From the viewpoint of the

current thesis these results can be summarized as follows:

Bias and variance of nearest neighbour regression

Assuming n iid observations for training data, the following pointwise bias and

variance for k-nn are based on Mack’s theorems 1 and 2 [72]. Provided k = o(n),
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log n = o(k), and suitable regularity conditions hold [72], then bias and variance for

(ordinary) k-nearest neighbour can be written as

Theorem 5.7 Application of Mack’s results for Bias[ĝN(x0)] and Var[ĝN(x0)].

Bias[ĝN(x0)] = g∗obs(x0)− g∗mis(x0)︸ ︷︷ ︸
NMAR bias

+
Q(g∗obsfXobs)(x0)− g∗obs(x0)Q(fXobs)(x0)

2fXobs(x0)(vp−1f(x0))2/(p−1)

(k

n

)2/(p−1)

︸ ︷︷ ︸
estimation bias wrt. g∗obs(x0)

+ o

((k

n

)2/(p−1)
)

+ O(k−1)

︸ ︷︷ ︸
estimation bias wrt. g∗obs(x0)

Var[ĝN(x0)] =
vp−1Var[Y obs|Xobs = x0]

k
+ o(k−1),

where Q(h)(x) =
∑p−1,p−1

i=1,l=1

∫
Rp−1 ξiξl

∂
∂xi

∂
∂xl

h(x)I(||ξ|| < 1) 1
vp−1

dξ, and volume of unit

ball in Rp−1 is vp−1 = π(p−1)/2/Γ((p− 1 + 2)/2).

Theorem 5.7 follows straightforwardly from Mack’s theorems 1 and 2 [72]: only

the NMAR bias term has been added. One should note that Mack derives the results

for generalized k-nn regression (see Equation 5 in [72]). Some work is required to get

the above results (see Appendix A5.4 for details). One must also recall that k-nn

prediction is likely to be asymptotically biased in the NMAR case. The reason for

this is that g∗mis(x0) and g∗obs(x0) are likely to be different, and the k-nn prediction

converges to the latter one (provided smoothing is properly decreased as assumed

by Mack).

Bias and variance of kernel regression

The following pointwise bias and variance results are based on Rosenblatt’s theorem

2 [85], and are derived by Mack [72]. When λ(n) → 0 and n−1λ(n)−1 = o(1)

as n → ∞ and suitable regularity conditions hold (see [85] for details), then the

asymptotic bias and variance for kernel regression with univariate X are as follows:

Theorem 5.8 Application of Rosenblatt’s and Mack’s results for Bias[ĝK(x)] and

Var[ĝK(x)].
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Bias[ĝK(x)] = g∗obs(x0)− g∗mis(x0)︸ ︷︷ ︸
NMAR bias

+
(g∗obsfXobs)′′(x0)− g∗obs(x0)f

′′
Xobs(x0)

2fXobs(x0)

∫
ξ2K(ξ)dξλ2(n)

︸ ︷︷ ︸
estimation bias wrt. g∗obs(x0)

+ o
(
λ2(n)

)
+ O

(
nλ(n))−1

)
︸ ︷︷ ︸
estimation bias wrt. g∗obs(x0)

Var[ĝK(x)] =
Var[Y obs|Xobs = x0]

fXobs(x0)nλ(n)

∫
K2(ξ)dξ + o(

1

nλ(n)
),

where λ(n) denotes kernel bandwidth under n observations.

Again only NMAR bias has been added to Rosenblatt’s and Mack’s original results.

For simplicity the study of kernel regression for multivariate X is omitted in the

current thesis. For comparison between kernel and k-nn the following corollary

gives univariate bias and variance for the nearest neighbour.

Corollary 5.9 Bias and variance for (ordinary) k-nearest neighbour regression es-

timate for univariate X.

Bias[ĝN(x0)] = g∗obs(x0)− g∗mis(x0)︸ ︷︷ ︸
NMAR bias

+
(g∗obsfXobs)′′(x0)− g∗obs(x0)f

′′
Xobs(x0)

24f 3
Xobs(x0)

(k/n)2 + o
((k

n

)2
)

+ O(k−1)

︸ ︷︷ ︸
estimation bias wrt. g∗obs(x0)

Var[ĝN(x0)] =
2Var[Y obs|Xobs = x0]

k
+ o(k−1).

Corollary 5.9 follows from Theorem 5.7. On the other hand, the bias and

variance results for generalized k-nn regression for univariate X are given in Table

1 of Mack’s paper [72]. The weight function for Mack’s formula is w(v) = 1 when

|v| < 1 and 0 otherwise. The corollary follows by substituting
∫

v2w(v)dv = 1
3

and∫
w2(v)dv = 1

2
to Mack’s Table 1.

One may wonder how big are ”kernel integral quantities” in Theorem 5.8 For

illustration purpose we next compute them for gaussian N(0, 1) kernel.

Lemma 5.10 Kernel integrals for gaussian N(0, 1) kernel.

In case of univariate gaussian density function, N(0, 1), as kernel K following hold
∫

ξ2K(ξ)dξ = 1,

and ∫ ∞

−∞
K2(ξ)dξ =

1

2
√

π
≈ 0.282
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Proof 5.11 for Lemma 5.10. The second moment of kernel is
∫

ξ2K(ξ)dξ = 1

because variance of K = N(0, 1) is one. Expectation of squared kernel, formally∫
K2(ξ)dξ, is derived next. By using symbolical integration software (Mathematica)

one gets ∫ ∞

−∞
e−ξ2/2e−ξ2/2dξ =

√
π.

As a consequence

∫ ∞

−∞
K2(ξ)dξ =

∫ ∞

−∞

[
1√
2π

e−ξ2/2

]2

dξ

=
1

2π

∫ ∞

−∞
e−ξ2/2e−ξ2/2dξ =

1

2π

√
π =

1

2
√

π
.

Approximations for MSE

We are now ready to summarize the results of unit level measures in terms of mean

squared error. In the following we have the results for

i) mseK/N(Y imp|x0, n
mis, n) which is mse at a given point x0,

ii) E[m̂se(Y comp,K/N)|n] where i) is generalized over fXmis(x), and

iii) limn→∞,λ→0 E[m̂se(Y comp,K/N)|n] which is the simpler asymptotic result of ii).

In the imputation context, we are mainly interested about results ii) and iii). Both

are, however, best explained via result i) which is explained next.

The computation of mse is based on previously given bias and variance terms.

In the imputation context we need to add the role of the added noise term ε̂K/N,S,

which depends on our imputation strategy. This allows us to write mse(x) in the

form of the following theorem.

Approximation 5.12 Approximative mseK/N(Y imp|x0, n
mis, n)

Over distribution of training data set with nobs observations the mean squared error

at point x0 can be approximated as follows:

mseK/N(Y imp|x0, n
mis, n) ≈

(
g∗obs(x0)− g∗mis(x0)︸ ︷︷ ︸

NMAR bias

+ Bias[ĝobs,K/N(x0)|nmis, n]︸ ︷︷ ︸
A: estimation bias wrt. g∗obs(x0)

+ C︸ ︷︷ ︸
Bias due to noise modelling

)2

+ Var[ĝobs,K/N(x0)|nmis, n]︸ ︷︷ ︸
B: imputation model variance

+ D︸ ︷︷ ︸
imputation noise variance

+ v∗mis(x0)︸ ︷︷ ︸
target variance

.
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where terms A-D depend on nonparametric estimate (kernel vs k-nn) and imputation

strategy as follows

A =





(g∗obsf
Xobs)′′(x0)−g∗obs(x0)f ′′

Xobs(x0)

2f
Xobs(x0)

∫
ξ2K(ξ)dξλ2(nobs) (Kernel, p = 2),

+o(λ2(nobs)) + O
(
(nobsλ(nobs))−1

)

(g∗obsf
Xobs)′′(x0)−g∗obs(x0)f ′′

Xobs(x0)

24f3
Xobs(x0)

(
k(nobs)/nobs

)2
(K− nn, p = 2),

+o((k(nobs)
nobs )2) + O

(
(k(nobs))−1

)

Q(g∗obsf
Xobs )(x0)−g∗obs(x0)Q(f

Xobs)(x0)

2f
Xobs(x0)(vp−1f(x0))2/(p−1) (k(nobs)

nobs )2/(p−1) (K− nn, p > 2),

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O
(
(k(nobs))−1

)

B =





Var[Y obs|Xobs=x0]
f

Xobs(x0)nobsλ(nobs)

∫
K2(ξ)dξ + o

(
1

nobsλ(nobs)

)
(Kernel, p = 2),

vp−1Var[Y obs|Xobs=x0]

k(nobs)
+ o

(
(k(nobs))−1

)
(K− nn, p ≥ 2),

and

C =





0

:S=M,R (mean and simulated random),

µ∗obs − E
[

1
nobs

∑nobs

j=1 ĝobs,K/N(Xj)|nmis, n
]

+ O(n−1)

:S=D (random donor),

and

D =





0

:S=M (mean),

v∗obs + EXobs

[
(g∗obs(Xobs)− EDtrain|nmis,n[ĝ

obs,K/N(Xobs|n, nmis])2

]

:S=R (simulated random),

v∗obs + EXobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K/N(Xobs|n, nmis])2

]

+EDtrain
nobs |nmis,n

[(
1

nobs

∑nobs

j=1

(
Yj − ĝobs,K/N

(
Xj

)))2
]

:S=D (random donor).

Justifications for this approximation can be found in Appendix A5.2.

From Approximation 5.12 one can notice that the mean squared error at a given

point consists of three bias and variance terms. In case of the NMAR mechanism,

the difference of models g∗obs(x) and g∗mis(x) yields an NMAR bias. Nonparametric
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methods converge towards g∗obs(x) provided smoothing is increased as sample size

grows. There is also an estimation bias with respect to g∗obs(x). This bias vanishes

asymptotically provided smoothing is increased. Vulnerability of k-nn method is

shown in the estimation bias. Namely, it is inversely proportional to fXobs(x0)
3.

Therefore, if density is low then the estimation bias can be large. Finally, the

strategy used for estimation of noise terms may cause bias, and this is the case with

random donor. The variance sources are estimated model, imputation noise, and

target variability. Vulnerability of kernel regression is shown in the variability of the

estimated model. It is inversely proportional to density fXobs(x0).

The properties of the mean squared error are inherited to the expectation of

the mean squared error which is given in Approximation 5.13. Therefore the above

considerations for Approximation 5.12 apply indirectly. Namely, the expected value

is derived by integrating the pointwise mean squared error over the distributions of

Xmis and the number of missing data values Nmis. The expected quantity consists of

squared imputation bias, variance of conditional mean estimate, imputation noise,

cross term, target noise, and terms for approximation. Squared imputation bias

can be further decomposed into: variability of expected conditional mean estimate,

squared global bias, variability of true model, and cross term.

Approximation 5.13 Approximation for E[m̂se(Y comp,K/N)|n]

Expectation of mean square error can be approximated as

E[m̂se(Y comp,K/N)|n] ≈ A︸ ︷︷ ︸
expected squared imputation bias

+ ENmis,Xmis|n

[
Var[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
B: expected variance of conditional mean estimate

+ v∗obs,K/N
n︸ ︷︷ ︸

C: expected imputation noise

+ ENmis,Xmis|n

[
2Cov[ĝobs,K/N(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
D: cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

+ O
(
n−1

)
︸ ︷︷ ︸

technical term

,

where the terms are:
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A = VarNmis,Xmis|n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]

]

︸ ︷︷ ︸
variability of expected conditional mean estimate

+(EXmis

[
g∗obs(Xmis)

]
+ E − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝobs,K/N(Xmis)|xmis, nmis, n]− EXmis

[
g∗obs(Xmis)

]
− E

)

︸ ︷︷ ︸
cross term(

EXmis

[
g∗obs(Xmis)

]
+ E − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

,

in which term E is

E =





[
Q(g∗obsf

Xobs)(X
∗mis

)−g∗obs(X
∗mis

)Q(f
Xobs)(X

∗mis
)

2f
Xobs(X

∗mis
)(vp−1f(X

∗mis
))2/(p−1)

(E
[

k(Nobs)

]

n(1−p∗)

)2/(p−1)

+o
(
(E[k(Nobs)]

n(1−p∗) )2/(p−1)
)]

+ O
(
E[k(Nobs)]−1

)
(k− nn, p > 2),

[
(g∗obsf

Xobs )′′(X∗mis
)−g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

24f3
Xobs(X

∗mis
)

(
E[k(Nobs)]/n(1− p∗)

)2

+o
((E[k(Nobs)]

n(1−p∗)

)2
)

+ O
(
E[k(Nobs)]−1

)
]

(k− nn, p = 2),

(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

2f
Xobs(X

∗mis
)

∫
ξ2K(ξ)dξλ2

(
n(1− p∗)

)

+o
(
λ2

(
n(1− p∗)

))
+ O

((
n(1− p∗)λ(n(1− p∗))

)−1
)

(kernel, p = 2).

Terms B-D are the following:

B =





vp−1

E[k(Nobs)]

(
v∗obs(X

∗mis
) + 1

2
tr

(
Hv∗obsVar[Xmis]

))
+ o

(
E[k(Nobs)]−1

)

(k− nn, p > 2),

2
E[k(Nobs)]

(
v∗obs(X

∗mis
) + 1

2

(
∂2

∂xmis∂xmis v
∗obs(xmis)

)
xmis=X

∗mis
Var[Xmis]

)

+o
(
E[k(Nobs)]−1

)
(k− nn, p = 2)

v∗obs(X
∗mis

)

f
Xobs (X

∗mis
)(n(1−p∗))λ(n(1−p∗))

∫
K2(ξ)dξ + o

(
1

(n(1−p∗))λ(n(1−p∗))

)

(kernel, p = 2),
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where Hv∗obs is Hessian of Var[Y obs|X = x] and

C =





0 :S=M (mean),

v∗obs + ENmis,Xobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K/N(Xobs|n, nmis])2

]

:S=R,D (random)

and

D =

{
0 :S=M/S=R (mean and simulated random),

O(n−1) :S=D (random donor).

5.2.1 An example: mse and flexible models

The aim of this example is to demonstrate that imputation performance is some-

times unaffected by model fit. As discussed in Chapter 3 we may achieve the same

distribution of Ŷ with different models. More concretely, we shall study how the

relation of the variance of flexible models is related to the variance of residuals of

noisy imputation (simulated randomness strategy). For this purpose we shall use

(approximately) unbiased k-nearest neighbour models with smoothing that increases

from one nearest neighbour to five (k ∈ {1, 3, 5}). The results are measured in terms

of mse, which in this context is rewritten in the form (see Appendix A5.3 for details):

E[m̂se(Y comp)|n] = EXmis

[
mse(Y imp|Xmis, n)

]

= EXmis

[(
E[ĝobs(Xmis)|xmis, n]− g∗mis(Xmis)

)2
]

︸ ︷︷ ︸
A: expected squared imputation bias

+ EXmis

[
Var[ĝobs(Xmis)|xmis, n]

]

︸ ︷︷ ︸
B: expected variance of model

+ v∗obs
n︸ ︷︷ ︸

C: variance of imputation residuals

+ v∗mis︸ ︷︷ ︸
D: expected variance of target Ymis

.

In our experiments we try to keep term A (bias) close to zero. Then the result

depends on terms B (model variance) and C (simulated noise) because the term D

does not depend on our model or strategy.

Our data is generated from model

Y = g(x) + ε, ε ∼ N(0, 0.15),

where

g(x) =
1

1 + exp(−x)
− 0.5.

Observations are selected randomly under MAR type of missingness such that

Xobs ∼ N(−1, 5), and

Xmis ∼ N(1, 1).
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An example of data is visualized in Figure 5.1 where Var[ε] represents approximately

50% of Var[Y ].

Due to complexity of theoretical results the problem is studied empirically.

The values of the studied quantities A-C reveal us the differences between the three

imputations with different level of smoothing.
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Figure 5.1: True model g(x), marginal distributions of Xobs (solid) and Xmis

(dashed), and random sample of size 70. Training data is denoted by square plots,

whereas draws from missing population are denoted by black dots.

Three k-nearest neighbour models with k=1, k=2 and k=5 have been used in

imputations, with simulated random strategy such that

Ŷ imp = ĝk−NN(xmis) + ε̂, ε̂ ∼ N(0, v̂obs),
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where v̂obs was estimated from model residuals

v̂obs =
1

nobs

nobs∑
j=1

(
ĝk−NN(xobs

j )− yobs
j

)2

.

The obtained models are visualized in Figure 5.2.
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Figure 5.2: Three k-nn models with a) k=1, b) k=2 and c) k=5. Clearly v̂obs = 0

for model k = 1.

The results of imputation performance are depicted in Table 5.1. All models

yield approximately the same MSE and the models are almost unbiased, because

term A is close to zero.

The real difference is that model k=1 has zero in term C (v̂obs = 0). As the

smoothness of the model increases we can see that term B (model variance) decreases

and term C (simulated randomness) increases.

Method Sample size A B C MSEtotal

k=1 50 0.001 0.153 0.000 0.304

1033 0.001 0.151 0.000 0.302

k=2 50 0.000 0.074 0.077 0.301

1033 0.000 0.076 0.075 0.301

k=5 50 0.002 0.033 0.124 0.309

1033 0.000 0.031 0.120 0.301

Table 5.1: Terms A-C of mean squared error decomposition for three k-nn impu-

taton methods. A=model bias (squared), B=model variance, C=simulated noise,

MSEtotal=A+B+C+0.15 where the last value is v∗mis (irreducible error).

An obvious conclusion is that in terms of mse(Y comp) unbiased models with

different smoothness can yield the same performance.

5.3 Summary

An advantage of nonparametric kernel methods (and k-NN) is that they are flex-

ible. However, due to the nonparametric nature of kernel methods (and k-NN) it
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was difficult to derive results in fine detail. Some analyses were possible by apply-

ing results from the literature. If missingness is NMAR then a difference between

conditional means g∗obs(x) and g∗mis(x) has an effect on biases (of the first moment

estimator or at unit level). Possible bias due to the difference is irreducible even

asymptotically, and may dominate results even at small sample sizes. Under MAR

or MCAR missingness bias is due to estimation bias. This bias is well known to

asymptotically vanish under suitable regularity conditions. However, for small sam-

ple sizes this may be an issue. To summarize, if conditional mean is nonlinear then

nonparametric methods are especially recommended.



Chapter 6

Cell imputation

This chapter provides the main result of this thesis: a practical way to estimate

imputation errors of cell methods. The result is highlighted in a form of an example

algorithm in Section 6.4.2 and its usability is tested in an example that follows in

Section 6.4.3.

In cell imputation data are divided into subsets (cells), and imputation is done

more or less separately for each cell. For successful imputation, cell methods must

fullfill two conditions

i) differences between data subsets should reflect predictable differences (by co-

variates X) between the missing values, and

ii) it should be possible to associate an incomplete observation to an approxi-

mately correct cell using observed part of data.

Thus the applicability of cell imputation methodology depends on a data and miss-

ingness mechanism. Optimally, missing values in the data clusters can be predicted

using observed covariates.

There are several ways to build cell models: using side information, categorial

covariates or clustering algorithms. In this context our focus is in clustering, but

most of our results apply to other types of cell methods as well. These results

are written in terms of decompositions, similar to those described in the previous

chapters. But a fully detailed analysis of imputation based on clustering algorithms

is quite challenging due to the ”ad hoc” nature of many algorithms. Therefore some

of the results are left in an implicit form.

There are not very many specific publications about cell imputation. One such

study was done by Santos [90] in 1981. In addition there are two analytical studies

and a number of empirical studies. Santos assumes a finite population sampling

framework and presents large sample biases of covariance and variance estimators.

He also assumes that the cells are fixed. Kalton and Kish [47], in 1981, used clus-

tering to reduce the variance of donor imputations. Kim and Fuller [50] studied

analytical properties of mean estimator based on fractional hot deck imputation

within cells in 2004. See [15], [25], [80], and [81] for empirical studies on imputa-

tions using self-organizing map and Section 6.2.1 for details of the SOM algorithm.
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6.1 An overview of cell imputation in the current

thesis

In this thesis three types of clustering approaches are considered for imputation

i) Standard (K-Means type of) clustering, where only completely observed covari-

ates Xobs are used to define the clusters. In our applications, two algorithms

are used for this, where

C : is short for ”standard” K-Means clustering [31, 32].

T : denotes ”standard” TS-SOM algorithms [56], as described in Section 6.2.1

ii) Clustering of joint distribution fY,X(y,x). There are two ways to do this.

Using completely observed part of data or a specific incomplete data training

algorithm. We use K-Means for the first option and two variants of the TS-

SOM algorithm [57] for the latter option. The options are denoted by

CJ : K-Means clustering with observed Y, X using completely observed part

of data.

TJ : A new EM-type of incomplete data training algorithm for TS-SOM using

all data

TJ* : TS-SOM clustering similar to K-Means with observed Y, X using com-

plete observed part of data

iii) Smoothed imputation, where cell specific imputation models borrow strength

[82] from ”neighboring” clusters. This option applies only to TS-SOM algo-

rithms and is denoted by a small s after the imputation strategy, like

T,Ss : smoothed TS-SOM imputation with covariate X clusters

TJ,Ss : smoothed TS-SOM with incomplete training for joint data (Y, X),

where strategy S ∈ {M, R} (smoothed donor imputation is not computed).

6.1.1 Realization of cell imputation

There are many variations of cell imputations. A practical application is done in

several steps, which may be implemented in many alternative ways. In this thesis

we consider a case where the basic steps are as follows:

1) For a given incomplete data dinc we use some clustering algorithm to build

cells. These cells are parametrized with cell centroids w{i} = wY,{i}∪wX,{i}, i =

1, . . . , nc, where wY,{i} is the Y part of centroids and wX,{i} is the X part.

2) We use some classifier b(x′|w{i}) to associate all observations x′ ∈ dinc to cells.

Our notation x′ implies that x′ may consist of either covariate x or both (y,x),
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depending on the current situation. Thus for a given data set dinc we get data

divisions such that

Ωi = {j|b(x′j) = i}
3) Using some imputation strategy, we create a completed data set dcomp such

that

Y comp
j =

{
yj, if rj = 1 (yj is observed),

µmethod
i + ε̂strategy

i , if rj = 0 (yj is missing),

where µmethod
i is the (possible smoothed) mean estimate for Y (cell mean) in

the cluster i = b(xobs
j ) and randomness follows the imputation strategy as

before

i) M (mean), ε̂i = 0

ii) R (random), where ε̂i ∼ fε(e|i), typically fε(e|k) = N(0, τmethod
i )

iii) D (donor), where ε̂i ∼ {yj∈Ωi
− µmethod

i },
where τmethod

i is the (possible smoothed) variance estimate for Y (cell variance) in

the cluster i.

The last step, actual imputation, is basically an application of current baseline

methods for subsets of data. In theory we could replace this step with more advanced

methods, which would lead to some kind of multilevel approach in imputation.

There are some obvious ways to make variations in Steps 1) and 2). We can have

different kinds of clustering methods, as described later. And we can use different

types of classifiers to determine how incomplete observations are to be associated to

cells. Obviously, the realization of a classifier plays a major role in cell imputation.

As a preliminary move towards a deeper study, it is useful to define the following

notations.

Let x′ ∈ Rm be some realization of random vector X ′, a soft classifier for class

i is a decision function

gi(x
′|θ) : Rm → [0, 1],

where θ is a set of classifier parameters, if any. A typical example of a soft classifier

is the Bayes classifier that gives a posterior probability of class i, where

gi(x
′) =

fX′(x′|i)Pr(i)

fX′(x′)
,

where fX′(x′|i) is the class specific density of X ′ and Pr(i) is the prior probability

of class i. This also obeys the rather usual condition

nc∑
i=1

gi(x
′) = 1, (6.1)

since posterior probabilities add to one.

In our implementations we consider two possibilities to convert soft classes into

crisp ones. The first is maximum posterior classifier that is defined by

b(x′) = argmax
l

gl(x
′).
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The second alternative is randomized classifier where crisp class is sampled from

categorial distribution

bε(x′) ∼ cat
(
g1(x

′), . . . , gnc(x
′)
)
,

where class bε ∈ {1, . . . , nc} is selected randomly according to probabilities g1(x
′), . . . , gnc(x

′)
under a requirement that condition 6.1 holds.

In both cases the result of classification can be coded in terms of binary indicator

vector

c =




c1

...

cnc


 , where ci =

{
1, if b(x′) = 1

0, otherwise,

and in the case of categorial distribution this is the same as c ∼ Multin(1; g1(x
′), . . . , gnc(x

′)).
One should also note that in many mathematical derivations it is convenient to

use soft classifiers gi(x
′) instead of crisp ones. For example, we can define derivates

∂gi(x
′)

∂x′ .

6.2 Brief introduction to K-Means and TS-SOM

clustering algorithms

K-Means [31, 32] is perhaps the world’s best known clustering algorithm. It is also

known as the Lloyd vector quantization method [65]. The basic idea is simple: one

tries to minimize distortion measure

J =
∑

j

∑
i

∣∣∣
∣∣∣x′j −wi

∣∣∣
∣∣∣
2

2
, i = argmin

l

∣∣∣
∣∣∣wl − x′j

∣∣∣
∣∣∣
2

2

by finding the best values for centroids wi, i = 1, . . . , nc where nc is a fixed number

of clusters. For distributions the problem can be written as

min
w

J ′ =
∑

l

∫

Vl

∣∣∣∣x′ −wl

∣∣∣∣2
2
fX′(x′)dx′,

Vl =

{
x′

∣∣∣
∣∣∣∣x′ −wl

∣∣∣∣2
2
≤

∣∣∣∣x′ −wi

∣∣∣∣2
2
, i 6= l

}
,

where Vl is the Voronoi cell for prototype wl. The continuous problem is solvable

only for simple forms of fX′(x′). With data {x′j}nc
j=1 one usually uses the following

algorithm that can be regarded as a special case of EM-estimation:

1. Initialize randomly

wi ∼ {x′j}, i = 1, . . . , nc

2. Divide data into Voronoi cells

Ωi =

{
j
∣∣∣||x′j −wi|| ≤ ||x′j −wl||, l 6= i

}
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3. Compute new centroids (cluster means)

wnew
i =

1

ni

∑
j∈Ωi

x′j, ni = #Ωi

4. Check convergence

if ||wnew −w|| > δ then set w := wnew and GOTO 2

else stop.

The above algorithm is not guaranteed to converge to global minimum but

it usually gives relatively good clusterings. It is, however, recommended that the

algorithm is run several times with random initializations to eliminate problems with

bad locally optimal solutions. Some statistical properties of the K-Means algorithm

may be read from [31, 78, 79].

6.2.1 The self-organizing map (SOM) and its tree-structured

variant (TS-SOM)

The TS-SOM [56], which is used in this thesis, belongs to a specific class of self-

organizing neural network algorithms. Like the original self-organizing map (SOM)

it can be interpreted as an implementation of principal curves and surfaces [35, 60].

The original SOM [54] by Kohonen can be written as a kernel smoothed K-Means

algorithm that tries to build a lower-dimensional nonlinear manifold in training

data. The smoothing is done along a discretized latent surface that in the SOM

terminology defines a neighborhood structure of the centroids. The neighborhood

structure of the SOM is depicted in Figure 6.1 for 2-D SOM in 3-D data.

X1

X2

X3

SOM LATTICE

i

Ne(i)

a) b)

Figure 6.1: a) A two-dimensional SOM in 3-D data, b) the neighborhood of node i.
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The SOM lattice which is made of connected data clusters, is a discrete repre-

sentation of a lower dimensional latent space that is fitted in data. Typically the

lattice is defined in a 2D-neighborhood of clusters as shown in Figure 6.1b, which

implies that a 2D latent space is fitted in m-dimensional data x′x ∈ Rm.

A very basic SOM training algorithm can be written as follows

1. Initialize randomly

wi ∼ {x′j}, i = 1, . . . , nc

2. Divide data into Voronoi regions

Ωi =

{
j
∣∣∣||x′j −wi|| ≤ ||x′j −wl||, l 6= i

}

3. Compute centroid mean

x′i =
1

ni

∑
j∈Ωi

x′j, where ni = #Ωi

4. Do SOM smoothing along neighborhood (latent space)

wnew
i =

∑
l hi,lnlx

′
l∑

l hi,lnl

(6.2)

5. Check convergence

if ||wnew −w|| > δ then set w := wnew and GOTO 2

else stop.

Step 4 (Equation 6.2) is also known as the Nadaraya-Watson kernel smoother,

which in the case of SOM is applied in data clusters over a latent SOM space. The

smoothing kernel hi,l defines the latent structure. In the simplest case it is a box

kernel in a 2-dimensional neighborhood Ne(i) of node i such that

hi,l =

{
1, if l = i or l ∈ Ne(i),

0, otherwise.
(6.3)

In the original SOM the neighborhood of node i Ne(i) changes over the time of

training. Initially it covers more nodes (clusters), which implies stronger smoothing

than in the end of training. This idea is somewhat similar to simulated annealing

[52, 9], where one first tries to do optimization on a coarse level and later on gets to

the finer details. The actual kernel, which is used in this thesis, under the TS-SOM

algorithm, is introduced in Equation 6.8 (page 104). The convergence properties

and some statistical properties for an SOM algorithm can be found in [114].

The TS-SOM algorithm [56] is a tree-structured variant of SOM that imple-

ments decreasing smoothing via a constructive training algorithm, where several

SOM networks (layers) are trained with an increasing number of nodes (clusters).

When the neighborhood is defined via a constant number of nearest neighbors, the

increase of nodes effectively decreases the smoothing. The structure of the TS-SOM

is depicted in Figure 6.2. As we can see, there are 2(l−1)D
nodes on layer l, where D

is the dimension of the SOM lattice.
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LAYER 1

LAYER 2

LAYER 3

LAYER 1

LAYER 2

LAYER 3

Figure 6.2: The structure of the TS-SOM is made of several SOM layers in a tree

structure.

Since TS-SOM is not the topic of the current thesis we shall omit most of the

details of the algorithm. All we need to know is that we would normally use TS-

SOM like K-Means (or SOM) to define clusters (or smoothed clusters). There is,

however, one additional benefit in the current implementation of the TS-SOM. It

can be trained with partially observed incomplete data. Thus the Y variate can

have a role in the clustering. In Chapter 7 we shall see that this allows one to build

imputation models for cases where conditional distribution fY |X(y|x) is multimodal.

Due to practical reasons we shall limit our analysis to the usage of clustering in

imputation. Thus differences between different clustering algorithms are considered

to be external information, which could be measured via cluster compactness or

quantization rate.

6.2.2 About the use of K-Means and TS-SOM in imputa-

tions

As described in Section 6.1 we shall examine three clustering method approaches in

cell imputation: a standard method with fully observed covariates X, joint cluster-

ing using both X and Y , and smoothed clustering using TS-SOM. In all these cases

the role of clustering is to define the imputation model by dividing data into subsets

Ωi. The actual imputation is then a union of imputations for subsets of incomplete

observations. This can be described in terms of cell means {µi}nc
i=1 and cell variances

{τi}nc
i=1 using the observed part of data.

In standard approach denoted by C (K-Means) and T (TS-SOM) the esti-

mates µi and τi are computed directly from the observed part of data, e.g.

µi = µobs
i =

1

nobs
i

∑
j∈Ωi,rj=1

yobs
j , and (6.4)

τi = τ obs
i =

1

nobs
i − 1

∑
j∈Ωi,rj=1

(
yobs

j − µi

)2
(6.5)

and the cluster is selected to be the nearest one

b(xj|w{l}) = argmin
l

||xj −wX,l||.



104

In ”joint”-clustering (denoted by CJ, TJ, and TJ*) clusters are defined for

distribution fY,X(y,x). For K-Means CJ cell i is selected using the whole observation

for complete records and the observed covariate part for incomplete records. Crisp

classifier is applied as

i = b(x′j|w{l}) =

{
argminl ||xj −wX,l||, (if yj is missing),

argminl ||(yj,xj)
T −wl||, (if yj is observed),

However, for TS-SOM a randomized classifier is applied for incomplete records using

a sample from the categorial distribution as

i = b(x′j|w{l}) =

{
B ∼ cat

(
gi(xj|wX,1), . . . , gnc(xj|wX,nc)

)
(if yj is missing),

argminl ||(yj,xj)
T −wl||, (if yj is observed).

The smoothing approach applies to TS-SOM only because it requires the

concept of neighborhood. The idea is to ”borrow strength” from the neighboring

cells using kernel smoothing. More formally we replace µi and τi by

µs
i =

∑
l h

s
i,lnlµi∑

l h
s
i,lnl

and (6.6)

τ s
i =

∑
l h

s
i,lnlτi∑

l h
s
i,lnl

, (6.7)

where hs
i,l is the smoothing kernel. We might use the box kernel as in Equation 6.3,

but in this thesis we have used

hi,l = hs
i,l =





α if l = i,

β if l ∈ Ne(i), l 6= i

0 otherwise.

(6.8)

Also in this thesis, the neighborhood Ne(i) is defined to be the nearest neighbors of

node i, and kernel weights are kept in constant values α = 1, β = 0.5.

As a concluding statement it should be noted that sometimes, but not always,

cell means µi (or µs
i ) are the same as cell centroids wY,i. The equality applies only

with crisp classifier b(x′j|wobs
{l}) when the joint (X, Y ) clustering model is trained

using exactly the same data that is used in the computation of cell means µi. Yet

in practical applications it often is necessary to control the building of clusters

by data preprocessing, where original data {xj, yj}n
j=1 are replaced with prepro-

cessed data {x̃j, ỹj}n
j=1. Then classification must be done using preprocessed data

{x̃j, ỹj}n
j=1, while cell means {µi}nc

i=1 and variances {τi}nc
i=1 are obtained using ”raw

data” {xj, yj}n
j=1, and centroids wY,i are not same as cell means µi (or µs

i ).

6.3 Theoretical preliminarities for approximations

The analysis of the performance of cell imputation is more complicated than any of

the analyses in the previous chapters. Therefore we must do more simplifications in

order to interpret the outcomes of the analyses.
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6.3.1 A note about Taylor approximations

As before simplifications are based on Taylor approximations, where some functions

F(Z) of multivariate random variables Z are approximated ”around” expectations

E[Z]. In our case F is, for example, the first moment of data µ and the random

vector Z is the observation vector. For the sake of simplicity, we use mainly ”rough”

first order linear approximations

F(Z) ≈ F(E[Z]) + (Z − E[Z])TF ′(E[Z]),

where F ′(Z) denotes vector derivate ∂
∂Z
F(Z).

The problem with using the first order Taylor approximation is that the de-

rived result may be quite inaccurate. As an example, Kempen and Vliet noticed

that approximation for variance (of ratio) underestimated true variability [49]. We

could apply higher order approximations but they would yield formulas which are

complicated and difficult to interpret. An approximate bias of the first moment esti-

mator for unsmoothed methods is likely to be accurate enough. A bias of the second

moment estimator, variances of the moment estimator, and the mean squared error

at a given point (and other mean squared error results derived from it) are likely to

be less accurate. However, the results are readable and quite interpretable, as we

wish.

In cell imputation the function F(Z) is typically of a form

F(Z) = α(Z)
nc∑

i=1

βi(Z)

where quantities α(Z), βi(Z) depend on random vector Z.

Then, for the sake of example, the computation of imputation statistics like

Var[F(Z)] takes the form of

F ′(E[Z])TVar[Z]F ′(E[Z]),

where F ′(E[Z]) = α′(E[Z])
∑nc

i=1 βi(E[Z]) + α(E[Z])
∑nc

i=1 β′i(E[Z])

It should be noted that for smoothed imputation methods T,Ms/Rs and TJ,Ms/Rs

randomness in terms βi is of ratio form (random quantity divided by random quan-

tity). Typically one handles ratio quantities by computing a second order approx-

imation for expectation and a first order approximation for variance, as was done

for example by Kempen and Vliet [49]. However, in order to obtain readable results

we apply here the first order Taylor approximation for both quantities.

6.3.2 Priors, posteriors, classifiers, and randomness

The role of classifiers is essential in the analysis of cell imputation. The imputation

model is defined as a collection of cells {i} = {1, . . . , nc}, which themselves are

defined by classifiers. We may therefore say that the ”model” is actually a soft

classifier of the type

g(x′|w{i}) = [g1(x
′|w{i}), . . . , gnc(x

′|w{i})]
T , where w{i} = w1, . . . ,wnc .
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This is also behind ”crisp” selection of classes that can be either deterministic

b(x′) = argmax
l

gl(x
′|w{i})

or randomized

bε(x′) ∼ cat
(
g1(x

′|w{i}), . . . , gnc(x
′|w{i})

)
.

Because classifiers are trained from data, the classification result is also subject to

uncertainty in the estimator of parameters Ŵ {i}. This complicates our studies a lot,

because everything that is related to cells becomes random. This is illustrated in

Figure 6.3. To make our notation clear we need to introduce the following classifiers

which are trained from random data

b̂(x′) = argmax
l

gl(x
′|Ŵ {i}) and

b̂ε(x′) ∼ cat
(
g1(x

′|Ŵ {i}), . . . , gnc(x
′|Ŵ {i})

)
.

where Ŵ {i} is the estimator of cell centroids. Thus we have several types of ran-

domness in classification, one caused by our randomized selection bε and one caused

by randomness in estimates of parameters w{i}. In addition we shall apply classifiers

to random data, which can be conditionalized in several ways.
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Figure 6.3: Change in estimates of parameters wi changes the decision boundaries

of Voronoi cells Vi, as well as the cell specific data fX′(x′|i) and its realization Ωi.

Yet another complication is caused by the classification of incomplete data un-

der joint (Y, X) clustering. Here we have a possibility of ”misclassifications” of

training data”. In other words we might have a case where the ”true” cell of obser-

vation pair (Y mis,Xmis) should be i but using only covariates Xmis it is classified

to some other cell l. In some cases (TS-SOM) this randomness can be written in

terms of randomized classifier b̂ε, but in the case of joint (Y, X) clustering version

of K-Means it is an additional source of concern.
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In order to make our notation rigid we need to specify how classifiers are ap-

plied in various contexts. Assume first that w{i} are fixed and we know the true

distribution of data fY,X(y,x). Then the cell priors are defined by

πi =

∫

Vi

fY,X(y,x), where

regions are defined by maximum posterior classifier b(x′|w{i}). Then given Q3 =

{dtrain,dtest,w{i}} we define the ”correct” classification probability of classifier b(x)

using indicator Ib(x)=i as

qi = E[
1

ntrue
i

∑

j∈dtrue
i

Ib(xmis
j )=i|Q3]

=
1

ntrue
i

∑

j∈dtrue
i

Ib(xmis
j )=i,

where dtrue
i denotes the part of observations whose true values belong to cell i, and

ntrue
i is the size of dtrue

i . For randomized classifier bε(·) replace Ib(xmis
j )=i by gi(x

mis
j ).

We also define the expected classification probability at conditionalization

Q2 = {n,dtrain,w{i}} as

E[q̂i|Q2] = E[
1

N true
i

∑

j∈dtrue
i

Ib(Xmis
j )=i|Q2],

Recalling that random observations in true data are iid the above expectation may

be computed as

E[q̂i|Q2] =

∫

Vi

(
b(xmis) = i

)
fXmis|i(x

mis)dxmis,

where fXmis|i(x
mis|i) is the density of observation Xmis in cell i for which∫

Vi
fXmis|i(x

mis|i) = 1. For a randomized classifier we need to replace b(xmis) = i

with gi(x
mis).

Probabilities related to πi and qi can help us to describe the characteristics

of cell imputation. In another level we have actual classification probabilities that

depend on our conditionalization level. For a fixed cell structure w{i} that cor-

responds to our conditionalization level Q3 = {n,dtrain,dtest,w{i}} we have the

posterior probability for single observation xmis
j and randomized classifier as

Pr(bε(xmis
j ) = i|Q3) = gi(x

mis
j |w{i}).

For a maximum posterior classifier b(·) the above probability is one if xmis
j is closest

to cell i and zero otherwise.

When these are applied to random variable Xmis at Q2 we have class posteriors

over data as

Pr
(
b(Xmis) = i|Q2

)
=

∫
Pr(b(xmis) = i)fXmis(xmis)dxmis.
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For randomized classifier bε(·) we replace Pr(b(xmis) = i) by gi(x
mis). When con-

ditionalization is changed to Q1 = {n} the probability is computed over uncertain

classifier

Pr(b̂(Xmis) = i|n) =

∫
Pr

(
b(xmis|w{i}) = i

)
fXmis(xmis)fŴ |n(w)dxmisdw.

It should be noted that under the assumption of (approximate) MCAR with cells

missingness we may approximate

Pr(b(Xmis) = i|Q2) ≈ πipi

p∗
,

where pi is the missingness proportion in cell i and p∗ is the probability of missing-

ness. Quantities pi, i = 1, . . . , nc are defined as

pi =

∫
Vi

Pr(R = 0|y,x)fY,X(y,x)dydx∫
Vi

fY,X(y,x)dydx
,

in which Pr(R = 0|y,x) is the probability of missingness at y,x.

6.4 Preservation of moments

The analysis of cell imputation is quite a challenging problem. Imputation perfor-

mance depends on the positions of cells in input space and possible uses of smoothers,

which add strength to cell estimates. In addition there are two ways to associate

(classify) incomplete observations to cells: deterministic and randomized.

To make the results as readable as possible, we start from a fixed model (con-

ditionalization level Q2). This means that Voronoi regions (cells) are fixed, which

eliminates difficult questions about the estimation distribution of Voronoi cells for

a given data set with n observations. Later we try to answer these questions by

characterizing the properties of cell methods. One should note that the results for

smoothed random donor strategy are not included in this study.

The result is given in terms of Approximation 6.1, which is derived from

Bias[µ̂comp|Q2] = E
[1

n
(Nobsµ̂obs + Nmisµ̂imp)− µ̂ + µ̂− µ∗|Q2

]

= E
[1

n
(

nc∑
i=1

Nmis
i µ̂imp

i − Nmisµ̂mis)|Q2

]
+ E[µ̂|Q2]− µ∗,

in terms of expected values of Nmis
i and µ̂imp

i in cells i = 1, . . . , nc.

Approximation 6.1 Approximation of Bias[µ̂comp|Q2], Q2 = {n,dtrain,w{i}}.
The bias of µ̂comp for n observations, with fixed training data, and fixed imputation
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model may be approximated as

Bias[µ̂comp|Q2] ≈ 1

n
(
∑

i

E[Nmis
i |Q2]E[µ̂imp

i |Q2]− nmisµ∗mis)

︸ ︷︷ ︸
bias due to imputation method

+
1

n
(nobsµobs + nmisµ∗mis)− µ∗

︸ ︷︷ ︸
finite sample estimation error

,

where E[Nmis
i |Q2] = Pr

(
b(Xmis) = i|Q2

)
nmis and

E[µ̂imp
i |Q2] =





µobs
i : C/CJ/T/TJ(S = M/R/D)

E[µ̂s
i |Q2] ≈

P
l hi,l(n

obs
l +E[Nmis

l |Q2])µobs
lP

l hi,l(n
obs
l +E[Nmis

l |Q2])
: T/TJ(S = Ms/Rs),

where Pr
(
b(Xmis) = i|Q2

)
is the probability that random data Xmis is associated to

the i:th cell. Note that in the above approximation b(Xmis) is replaced by bε(Xmis)

for TS-SOM joint (Y, X) clustering methods.

The bias of the first moment estimator depends on two quantities: the bias

due to imputation method and the finite sample estimation error. The second

quantity cannot be affected, whereas the first quantity may be varied by changing

the imputation method.

The proof for this and for Approximations 6.2-6.5 and Consequence 6.6 are

given in Appendix A6. Approximation 6.1 was derived by applying the first order

Taylor approximation. However, it is possible to see that the difference between

standard X and joint (Y, X) clustering via TS-SOM methods depends on how

incomplete observations are classified to cells. To get more insight to quantities

Pr
(
b(Xmis) = i|Q2

)
, the distribution of missing data values has to be specified.

Such distributions are proposed in Section 6.4.1 together with a more detailed de-

composition of probability.

The bias Bias[µ̂comp|n] requires quite complex integrations. Therefore we shall

summarize the result in a form of Approximation 6.2.

Approximation 6.2 Approximation of Bias[µ̂comp|n].

The bias of first moment µ̂comp given n observations can be approximated as

Bias[µ̂comp|n] ≈ p∗(
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− µ∗mis

︸ ︷︷ ︸
(weighted) difference between mean of imputed and missing Y values

)

+ O(n−1)︸ ︷︷ ︸
approximation error

,

where

E[µ̂imp
i |n] =





E[µ̂obs
i |n] = µ∗obs

i : C/CJ/T/TJ(S = M/R/D),

E[µ̂s
i |n] ≈

Pnc
l=1 hi,lE[Nl|n]µ∗obs

lPnc
l=1 hi,lE[Nl|n]

: T/TJ(S = Ms/Rs)
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where µ∗obs
l is the expectation of observed Y values in the l:th cell and in which

E
[
Nl|n

]
= E

[
Nobs

l |n
]

+ E
[
Nmis

l |n
]

≈ n(1− p∗)Pr
(
b̂
(
(Y obs,Xobs)T

)
= l|n

)

︸ ︷︷ ︸
expected number of complete observations

+ np∗Pr
(
b̂(Xmis) = l|n

)

︸ ︷︷ ︸
expected number of incomplete observations

.

Note that b̂(Xmis) is replaced by b̂ε(Xmis) for TS-SOM joint (Y, X) clustering meth-

ods.

Overall bias is accumulated by the biases within cells, which are weighted by

the proportion of imputed data values in the cells. There are two sources for the

biases in the cells. First, expectations of observed and missing values of Y in cells

may differ under MAR and NMAR mechanisms. Secondly, smoothing may cause

bias, even under the MCAR mechanism. However, bias due to these sources may

accumulate to neglible value. In our standard cell methods with X clustering,

the number of imputed Y values within cells is the same as the correct number

of missing Y values belonging to the cells. Therefore there is no ”prior bias” for

standard clustering, but this is not true for joint cell methods, because the numbers

of imputed and missing values may differ considerably. The reason for this is that

only covariate information is available for classification. Further, TS-SOM methods

use a randomized cell selector b̂ε(Xmis) which may increase the average number of

incorrect classifications.

The variance of µ̂comp is also affected by the imputation strategy and the random

nature of the number of missing data values within the cells. As earlier, we first

give the result at conditionalization Q2, after which an implicit result is given at

Q1. The result is given in the form of Approximation 6.3.

Approximation 6.3 Approximation of Var[µ̂comp|Q2], Q2 = {n,dtrain,w{i}}.
The variance of µ̂comp for n observations, fixed training data and fixed imputation

model can be approximated as

Var[µ̂comp|Q2] ≈ 1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

︸ ︷︷ ︸
due to randomness of number of missing Y values within cells

+
nmis

n2

nc∑
i=1

Pr
(
b(Xmis) = i|Q2

)
E[τ̂ imp

i |Q2]

︸ ︷︷ ︸
A: due to modelled noise

,

where E[µ̂imp|Q2] = (E[µ̂imp
1 |Q2], . . . ,E[µ̂imp

nc
|Q2])

T in which

E[µ̂imp
i |Q2] =





E[µ̂obs
i |Q2] = µobs

i : C/T/CJ/TJ(S = M/R/D) ,

E[µ̂s
i |Q2] ≈

P
l hi,l(n

obs
l +E[Nmis

l |Q2])µobs
lP

l hi,l(n
obs
l +E[Nmis

l |Q2])
: T/TJ(S = Ms/Rs) .
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Term Nmis = (Nmis
1 , . . . , Nmis

nc
)T and term E[τ̂ imp

i |Q2] depends on the cell method

and on imputation strategy ε̂S as follows:

E[τ̂ imp
i |Q2] =





0 : S = M/Ms ,

E[τ̂ obs
i |Q2] = τ obs

i : C/CJ/T/TJ(S = R) ,

τ obs
i (1− 1

nobs
i

) : C/CJ/T/TJ(S = D) ,

E[τ̂T,Rs

i |Q2] = E[
Pnc

l=1 hi,lNlτ̂
obs
lPnc

l=1 hi,lNl
|Q2] : T(S = Rs) ,

≈
Pnc

l=1 hi,lE[Nl|Q2]τobs
lPnc

l=1 hi,lE[Nl|Q2]

E[τ̂TJ,Rs

i |Q2] = E[
Pnc

l=1 hi,lNlτ̂
w
lPnc

l=1 hi,lNl
|Q2] : TJ(S = Rs) ,

≈
Pnc

l=1 hi,lE[Nl|Q2]E[τ̂w
l |Q2]Pnc

l=1 hi,lE[Nl|Q2]

in which

τ̂ obs
i =

1

Nobs
i

Nobs
i∑

j=1

(Y obs
j,i − µ̂obs

i )2

E[τ̂w
l |Q2] = E[

1

Nobs
l

Nobs
l∑

j=1

(Y obs
j,l − µ̂s

l )
2|Q2] ≈ 1

nobs
l

nobs
l∑

j=1

(yobs
j,l − E[µ̂s

l |Q2])
2,

where Y obs
j,l is the j:th random observation of Y obs in l:th cell and

E[µ̂s
l |Q2] ≈

∑nc

l=1 hi,l

(
nobs

l + E[Nmis
l |Q2]

)
µobs

∑
l hi,l

(
nobs

l + E[Nmis
l |Q2]

) .

According to Approximation 6.3, the main part of the variance is caused by

the first term, which is due to the variance of mean imputations. Its value is con-

trolled by the variance of the number of missing data values within the cells and the

weighted sum of smoothed mean estimates. The diagonal and off-diagonal elements

of covariance-variance matrix Var[Nmis|Q2] are of the order O(nmis), because the

number of incomplete observations within cells must sum to nmis. As earlier, if one

is able to define the distribution of Nmis, then one could derive the covariance-

variance structure of Approximation 6.3, as given in Section 6.4.1. Further, from

Approximation 6.3 one can discover the factors causing the variance increase due to

modelled noise terms. This quantity is the term A. For random (R) and donor (D)

imputation strategies the increase in variance is proportional to ratio nmis

n2 , classifi-

cation probabilities and noise variance estimates within cells. Increase of variance

due to modelled noise terms can be considerable if nmis

n2 or estimated noise terms are

large.

Again the derivation of Var[µ̂comp|Q1] is rather complex, and therefore we shall

give the result in a quite implicit form. The result given in Approximation 6.4 is

derived by applying the chain rule of variance as follows

Var[µ̂comp|n] = E
[
Var[µ̂comp|Q2]

]
+ Var

[
E[µ̂comp|Q2]

]
,

where Approximation 6.3 is applied to compute Var[µ̂comp|Q2].
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Approximation 6.4 Approximation of Var[µ̂comp|n].

The variance of the first moment µ̂comp given n observations can be approximated

as

Var[µ̂comp|n]

≈ E

[
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

∣∣∣∣n
]

︸ ︷︷ ︸
due to randomness of test data and classification of incomplete observations

+ Var

[
1

n

(
Nobsµ̂obs + Nmis

nc∑
i=1

Pr(b(Xmis) = i|Q2)E[µ̂imp
i |Q2]

)∣∣∣∣n
]

︸ ︷︷ ︸
due to randomness of training data,imputation model, and number of missing Y values

+
p∗

n

nc∑
i=1

Pr(b̂(Xmis) = i|n)E[τ̂ imp
i |n]

︸ ︷︷ ︸
variance due to modelled noise

,

where E[µ̂imp|Q2] = (E[µ̂imp
1 |Q2], . . . ,E[µ̂imp

nc
|Q2])

T in which

E[µ̂imp
i |Q2] =





µ∗obs
i

: C/CJ/T/TJ(S = M/R/D),

E[µ̂s
i |Q2] ≈ 1

n

∑nc

i=1 Pr(b(Xmis) = i|Q2)
Pnc

l=1 hi,lE[Nl|Q2]µ̂obs
lPnc

l=1 hi,lE[Nl|Q2]

: T/TJ(S = Ms/Rs),

and terms E[τ̂ imp
i |n] depend on cell method and on imputation strategy ε̂S as follows:

E[τ̂ imp
i |n] =





0 : S = M/Ms,

E[τ̂ obs
i |n] ≈ τ ∗obs

i : C/CJ/T/TJ(S = R),

≈ τ ∗obs
i

(
1− 1

n(1−p∗)Pr

(
b̂
(
Xobs

)
=i|n

)
)

: C/T(S = D),

≈ τ ∗obs
i

(
1− 1

n(1−p∗)Pr

(
b̂
(
(Y obs,Xobs)T

)
=i|n

)
)

: CJ/TJ(S = D),

E[τ̂T,Rs

i |n] ≈
Pnc

l=1 hi,lE[Nl|Q1]τ∗obs
lPnc

l=1 hi,lE[Nl|Q1]
: T(S = Rs), and

E[τ̂TJ,Rs

i |n] ≈
Pnc

l=1 hi,lE[Nl|Q1]E[τ̂l|Q1]Pnc
l=1 hi,lE[Nl|Q1]

: TJ(S = Rs).

in which

τ̂l =
1

Nobs
l

Nobs
l∑

j=1

(Y obs
j,l − µ̂s

l )
2,

where Y obs
j,l is j:th (random) observation of Y obs in the l:th cell.

For TS-SOM joint (Y, X) clustering methods classifier in quantities b̂(Xmis) and

b(Xmis) is replaced by randomized classifiers b̂ε and bε.
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The bias of the second moment is dependent on the distribution of cells, on

smoothing, on the classifier of incomplete observations, and on imputation strategy.

The derivation of the result is based on the computation of

Bias[τ̂ comp|n] = E[τ̂ comp|n]− τ ∗

= E[(1− Nmis

n− 1
)τ̂ obs +

Nmis − 1

n− 1
τ̂ imp +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|n]− τ ∗,

where the result is computed by applying the first order Taylor approximation

around expected value of all random variables. We can summarize the behavior

of the bias using Approximation 6.5.

Approximation 6.5 Bias[τ̂ comp|n].

The bias of τ̂ comp for n observations may be approximated as

Bias[τ̂ comp|n] ≈ p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + B − τ ∗mis)

︸ ︷︷ ︸
difference between variance of imputed and missing Y values

+ p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)

︸ ︷︷ ︸
difference between mean of imputed and missing Y values

+ O(n−1)︸ ︷︷ ︸
approximation error

,

where the term pmis
l = Pr

(
b̂(Xmis) = l|n

)
, and terms µ∗imp

l depend on the cell

method and strategy as follows:

µ∗imp
l =

{
µ∗obs

l : T/TJ(S = M/R/D) ,

µ∗sl : T/TJ(S = Ms/Rs) ,

and term B is due to noise modelling, and depends on the cell method and on

imputation strategy ε̂S as follows:

B =





0 : S = M/Ms ,

∑nc

l=1 pmis
l E[τ̂ obs

l |n] : CJ/TJ/C/T(S = R) ,∑nc

l=1 pmis
l E[τ̂ obs

l |n](1− 1
E[Nobs

l |n]
) : CJ/TJ/C/T(S = D) ,

∑nc

l=1 pmis
l E[τ̂T,Rs

l |n] : T(S = Rs) , and∑nc

l=1 pmis
l E[τ̂TJ,Rs

l |n] : TJ(S = Rs) .

Quantity b̂(·) is replaced by b̂ε(·) in pmis
l for TS-SOM joint (Y, X) clustering methods.

There are two possible sources for bias. First, the variance of the imputed

and missing Y values may differ. Secondly, the means of the imputed and missing

Y values may differ. Typically imputation leads to underestimation of the second
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moment (for finite sample size n), even if noise is modelled. Joint Y, X clustering

with TS-SOM or K-Means methods are exceptions to this. Namely, they may yield a

positively biased (overestimated) second moment. The reason for this is the misclas-

sification of incomplete observations. It is possible that on average more incomplete

observations are classified to cells with high variances than should be.

As always these results are simplified when n → ∞. The asymptotics is given

in the form of Consequence 6.6.

Consequence 6.6 Approximation of asymptotic behaviour n →∞ of the first two

moment estimators.

Asymptotically we have the following approximations

i)

lim
n→∞

Bias[µ̂comp|n] ≈ p∗(
nc∑

i=1

pmis
i µ∗imp

i − µ∗mis)

lim
n→∞

Var[µ̂comp|n] ≈ 0,

where

µ∗imp
i =

{
µ∗obs

i : C/CJ/T/TJ(S = M/R/D) ,

µ∗si ≈
P

l hi,l(p
mis
l +pobs

l )µ∗obs
lP

l hi,l(p
mis
l +pobs

l )
: T/TJ(S = Ms/Rs) .

ii)

lim
n→∞

Bias[τ̂ comp|n]

≈ p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + C − τ ∗mis)

︸ ︷︷ ︸
difference between variance of imputed and missing Y values

+ p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)

︸ ︷︷ ︸
difference between the mean of imputed and missing Y values

,

where pmis
i = limn→∞ Pr

(
b̂(Xmis) = i|n

)
, pobs

i = limn→∞ Pr
(
b̂
(
(Y obs, Xobs)T

)
=

i|n
)
, and C in ii) is due to noise modelling and depends on the cell method and on

imputation strategy ε̂S as follows:

C =





0 : (S = M/Ms) ,∑nc

l=1 pmis
l τ ∗obs

l : C/CJ/T/TJ(S = R/D) ,

∑nc

l=1 pmis
l limn→∞ E[τ̂T,Rs

l |n] : T(S = Rs) , and∑nc

l=1 pmis
l limn→∞ E[τ̂TJ,Rs

l |n] : TJ(S = Rs) .
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From Consequence 6.6 one sees that the approximative variance of the first mo-

ment estimators go to zero as sample size grows to infinity. This is likely to hold

exactly (unless imputation variance goes to infinity which is not realistic). There-

fore these estimators are consistent. The estimator of the second moment may be

asymptotically biased. The main difference between the finite and limiting results

is that the limiting results are clearer, because there are no finite sample estimation

errors. Justifications for all approximations and the above consequence are given in

Appendix A6.

Next we give some insight to covariance-variance matrix Var[Nmis|Q2] which

appears in the approximative variances of the mean estimator. Further, some details

of Pr(bε(Xmis) = l|Q2) are given also.

6.4.1 Distribution assumptions for the number of missing

data values in the cells

In order to use Approximations 6.2, 6.4 and 6.5 in practice one should be able

to estimate the values of Pr(b̂(Xmis) = i|n), E[µ̂imp
i |n], E[µ̂imp|Q2], Var[Nmis|Q2],

Pr(b(Xmis) = i|Q2), and E[τ̂ imp
i |n]. Therefore our purpose here is to obtain es-

timates for some of these. Most importantly we are interested about variance-

covariance matrix that describes the number of missing data values within cells:

Var[Nmis|Q2]. In addition, we need to know the classification probabilities

Pr(b(Xmis) = l|Q2). Recall that Approximation 6.3 about variance of mean esti-

mator Var[µ̂comp|Q2] contains term Var[Nmis|Q2]. Our approach is to define the

distribution of Nmis given Q2 (or Q3) for standard cell methods with X cluster-

ing and for TS-SOM joint (Y, X) clustering under some assumptions. Note that

the ”interpretable” distribution assumption is difficult to set at conditionalization

Q1 = {n}, because the imputation model (cells) is not identifiable. We do not know

the number of incomplete observations, and the number of complete observations

within the cells is random. Thus conditionalization Q1 is not considered here.

The assumptions are characterized using cell specific quantities pi and πi, which

are representing missingness and the prior of the cells, as explained later. The exact

values of pi and πi for each of the cells i = 1, . . . , nc depend on the data and on the

clustering method. Thus an application of the results of this chapter requires that

one obtains the distributions of pi and πi via experiments, for example.

Standard clustering of X-space

First note that at conditionalization Q3 = {dtrain,dtest,w{i}} the number of com-

plete and incomplete observations within cells are fixed. Therefore covariance-

variance matrix Var[Nmis|Q3], where Nmis = (Nmis
1 , . . . , Nmis

nc
), is zero.

Thus, the real interest is to study conditionalization Q2 where the test data

Dtest is random. We shall do this under the assumptions

i) Missingness between the cells is of MAR type where,
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Pr(”Y is missing”|x, i,Q2) ≈ pi, i = 1, . . . , nc.

ii) Missingness inside the cells is MCAR.

iii) The distribution of Nmis|Q2 (for incomplete observations counts) is assumed

to follow multinomial distribution

Nmis|n,dtrain,w{i} ∼ Multin

(
nmis;

π1p1

p∗
, . . . ,

πncpnc

p∗

)
, (6.9)

where nc is the number of cells, nmis is the number of incomplete observations,

πi = Pr(i|Q2) is the prior of the i:th cell.

Under these assumptions the variance of Nmis|Q2 can be written in terms of ap-

proximation 6.7.

Approximation 6.7 Approximation to second order moments of Nmis|Q2.

Given assumption (6.9) the second order moments of Nmis can be approximated

as:

Var[Nmis
i |Q2] ≈ nmis πipi

p∗
(1− πipi

p∗
) (6.10)

Cov[Nmis
i , Nmis

l |Q2] ≈ −nmis πipiπlpl

(p∗)2
, i 6= l.

The result follows immediately from the assumptions when using the basic prop-

erties of multinomial distribution (see Appendix A3.1.2 for details). Note that the

covariances between the counts are negative because the counts must add to nmis.

The result can be simplified if the missingness between the cells is MCAR. Then

Consequence 6.8 holds.

Consequence 6.8 Simplification under MCAR mechanism.

Under MCAR second order moments simplify to

Var[Nmis
i |Q2] ≈ nmisπi(1− πi) (6.11)

Cov[Nmis
i , Nmis

l |Q2] ≈ −nmisπiπl, i 6= l.

The result follows immediately when we notice that under MCAR pi = p∗, i =

1, . . . , nc.

Joint (Y, X)-clustering with TS-SOM

The main difference between our standard clustering with X-space and joint clus-

tering with (Y, X)-space using TS-SOM is the way in which data are associated to

cells. In standard clustering, classification of (ymis,xmis) is done deterministically

by finding the closest cell to xmis. In joint (y,x) clustering, where decisions on ”cor-

rect” cell depend on incomplete data Y , the selection of the best cell is randomized

according to cell posterior probabilities Pr(i|xmis). The benefit is that TJ type of

imputation is able to handle multimodal distributions of fY mis|Xmis(ymis|x). The
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problem is that xobs may not be associated to a ”correct” cell, which makes the

analysis of counts Nmis
i more difficult.

In our approach we need to decompose Nmis
i to ”correct” and ”incorrect” counts

as below. Let Nmis
i,l be a random variable denoting how many observations belonging

to the i:th cell were classified to the j:th cell, thus i = 1, . . . , nc and l = 1, . . . , nc.

The number of incomplete observations in the i:th cell is the sum of the number of

correctly classified incomplete observations and misclassifications from other cells,

formally

Nmis
i = Nmis

i,i︸ ︷︷ ︸
correct classifications

+
∑

l 6=i

Nmis
l,i

︸ ︷︷ ︸
misclassifications from other cells

=
nc∑

l=1

Nmis
l,i .

We assume that misclassifications of incomplete observations belonging to a cell

are uniformly spread to other cells. Distributions of Nmis
i,l are supposed to be

Nmis
1,1 , . . . , Nmis

1,nc
|Q3 ∼ Multin

(
nmis,c

1 ; q1,
1

nc − 1
(1− q1), . . . ,

1

nc − 1
(1− q1)

)
,

...

Nmis
nc,1, . . . , N

mis
nc,nc

|Q3 ∼ Multin
(
nmis,c

nc
;

1

nc − 1
(1− qnc), . . . ,

1

nc − 1
(1− qnc), qnc

)
,

where nmis,c
i is the correct number of incomplete observations belonging to the i:th

cell and qi is the expected success ratio in the classification of incomplete observa-

tions belonging to the i:th cell given Q3. Value one of qi means that all incomplete

observations belonging to cell i are classified to it on expectation. However, in prac-

tice the value of qi is below one because the Y part is missing. If the cells are well

separated in the X space then the quantities qi can be high, however if the cells are

overlapping then qis are expected to be somewhat low.

At conditionalization Q2 the number of complete observations remains fixed due

to the conditionalization of a complete part of the true sample. However, the true

number of incomplete observations belonging to cells becomes random. Provided

the MCAR within cells approximation holds then the distribution is assumed to be

Nmis,c
1 , . . . , Nmis,c

nc
|Q2 ∼ Multin

(
nmis;

π1p1∑
i πipi

, . . . ,
πncpnc∑

i πipi

)
.

The distribution of classification counts is supposed to be the following:

Nmis
1,1 , Nmis

1,2 , . . . , Nmis
1,nc

, . . . , Nmis
nc,1, N

mis
nc,2, . . . , N

mis
nc,nc−1, N

mis
nc,nc

|Q2 ∼
Multin

(
nmis;

1

z
π1p1E[q̂1],

1

z

1

nc − 1
π1p1(1− E[q̂1]), . . . ,

1

z

1

nc − 1
π1p1(1− E[q̂1]),

...

1

z

1

nc − 1
πncpnc(1− E[q̂nc ]), . . . ,

1

z

1

nc − 1
πncpnc(1− E[q̂nc ]), πncpncE[q̂nc ]

)
,

(6.12)
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where z =
∑nc

i=1 πipi is the normalization constant and E[q̂i|Q2] is the expected

success ratio in classification of incomplete observations belonging to the i:th cell

given the conditionalizers of the second level.

Given the above assumptions we can now i) compute the expected number

of the missing data values within cells, and ii) compute the covariance-variance

structure for the number of missing data values. The former allows one to better

understand quantity Pr(bε(Xmis) = i|Q2) and the latter gives detailed information

about Var[Nmis|Q2]. The result is summarized in Approximation 6.9.

Approximation 6.9 Pr(bε(Xmis) = l|Q2) with randomized classification.

Under assumption of MCAR within cells and distribution (6.12), the randomized

classification probability can be approximated as:

Pr(bε(Xmis) = l|Q2) ≈ 1

z
πlplE[q̂l|Q2]

︸ ︷︷ ︸
probability for correct classication

+
nc∑

j 6=l

1

z

1

nc − 1
πjpj(1− E[q̂j|Q2])

︸ ︷︷ ︸
probability for misclassication from other cells

,

which holds because

nmisPr(bε(Xmis) = l|Q2) = E[Nmis
l |Q2] = E[

nc∑
j=1

Nmis
j,l |Q2]

≈ nmis 1

z
πlplE[q̂j|Ql]

︸ ︷︷ ︸
expected number of correct classifications

+ nmis

nc∑

j 6=l

1

z

1

nc − 1
πjpj(1− E[q̂j|Q2])

︸ ︷︷ ︸
expected number of misclassifications

.

Under the MCAR missingness the randomized classification probability simpli-

fies, as showin in consequence 6.10.

Consequence 6.10 Simplification to Pr(bε(Xmis) = l|Q2) under MCAR.

Under MCAR:

Pr
(
bε(Xmis) = l|Q2

) ≈ πlE[q̂l|Q2] +
nc∑

j 6=l

1

nc − 1
πj(1− E[q̂j|Q2]),

because

E[Nmis
l |Q2] ≈ nmisπlE[q̂l|Q2] + nmis

nc∑

j 6=l

1

nc − 1
πj(1− E[q̂j|Q2]).
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Computing covariance-variance matrix Var[Nmis|Q2] is a bit more complicated.

See Appendix A6.3 for details on derivation of variance and covariance results, which

are given in Approximation 6.11.

Approximation 6.11 Second order moments of Nmis|Q2, with randomized classi-

fication.

Under the assumption of MCAR within cells and distribution (6.12) one may ap-

proximate:

Var[Nmis
i |Q2]

≈ nmis 1

z
πipiE[q̂i](1− 1

z
πipiE[q̂i])

︸ ︷︷ ︸
variance due correct classifications

+ nmis(nc − 1)
1

z
πipi(1− E[q̂i])

(
1− 1

z
πipi(1− E[q̂i])

)
︸ ︷︷ ︸

variance due to misclassifications

− nmis
∑

l 6=i

1

z
πipiE[q̂i]

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between correct classifications to cell i and misclassifications from other cells

− nmis
∑

j 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z
πipiE[q̂i]

︸ ︷︷ ︸
covariance between misclassifications from other cells and correct classifications to cell i

−nmis
∑

l 6=j,j 6=i,l 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between misclassifications

.

For i 6= l covariance term is approximated as

Cov[Nmis
i , Nmis

l |Q2]

≈ −nmis
∑

j 6=i

∑

u6=l

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z

1

nc − 1
πupu(1− E[q̂u])

−nmis
∑

j 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z
πlplE[q̂l]

−nmis
∑

u 6=l

1

z
πipiE[q̂i]

1

z

1

nc − 1
πupu(1− E[q̂u])

−nmis 1

z

1

nc − 1
πipi(1− E[q̂i])

1

z

1

nc − 1
πlpl(1− E[q̂l]).

In the above variance and covariance formulas conditionalisation Q2 has been omit-

ted from expectations E[q̂i] to make the formulas easier to read.

The second order statistics of the number of missing data values simplify under

MCAR, as shown in Consequence 6.12.
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Consequence 6.12 Simplification to distribution of Nmis|Q2 under MCAR.

Under MCAR mechanism pi = p∗, i = 1, . . . , nc and z = p∗, thus:

Var[Nmis
i |Q2]

≈ nmisπiE[q̂i](1− πiE[q̂i])︸ ︷︷ ︸
variance due correct classifications

+ nmis(nc − 1)πi(1− E[q̂i])(1− πi

(
1− E[q̂i])

)
︸ ︷︷ ︸

variance due to misclassifications

− nmis
∑

l 6=i

πiE[q̂i]
1

nc − 1
πl(1− E[q̂l])

︸ ︷︷ ︸
covariance between correct classifications to cell i and misclassifications from other cells

− nmis
∑

j 6=i

1

nc − 1
πj(1− E[q̂j])πiE[q̂i]

︸ ︷︷ ︸
covariance between misclassifications from other cells and correct classifications to cell i

−nmis
∑

l 6=j,j 6=i,l 6=i

1

nc − 1
πj(1− E[q̂j])

1

nc − 1
πl(1− E[q̂l])

︸ ︷︷ ︸
covariance between misclassifications

.

Covariance term for i 6= l is approximated as

Cov[Nmis
i , Nmis

l |Q2]

≈ −nmis
( ∑

j 6=i

∑

u6=l

1

nc − 1
πj(1− E[q̂j])

1

nc − 1
πu(1− E[q̂u])

+
∑

j 6=i

1

nc − 1
pj(1− E[q̂j])πlE[q̂l] +

∑

u6=l

πiE[q̂i]
1

nc − 1
pu(1− E[q̂u])

+
1

nc − 1
πi(1− E[q̂i])

1

nc − 1
πl(1− E[q̂l])

)
.

Covariance-variance matrix Var[Nmis|Q2] is simple under the above assump-

tions for standard clustering methods. Variance Var[Nmis
i |Q2] (the i:th diagonal

element in the matrix) depends on the number of observations, on the prior of the

i:th cell, on the missingness probability in the i:th cell, and on the cells. Covariance

Cov[Nmis
i , Nmis

l |Q2], i 6= l (off-diagonal element in the matrix) is of negative sign and

depends on the number of observations, priors and missingness probabilities in the

i:th and l:th cells. Under MCAR, missingness quantities simplify as missingness

probabilities vanish.

Covariance-variance matrix Var[Nmis|Q2] is quite complicated for joint (Y, X)-

clustering with TS-SOM due to the randomized classifier (which causes misclassifica-

tions). Variance Var[Nmis
i |Q2] depends on the variance of correct classifications, vari-

ance of misclassifications, and on covariance terms. Covariance Cov[Nmis
i , Nmis

l |Q2], i 6=
l depends on four covariance terms, and is difficult to interpret. Classification prob-

abilities Pr(bε(Xmis) = l|Q2) were decomposed into a probability for correct classifi-

cation and a probability for misclassification from other cells. Decomposition terms
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for Var[Nmis|Q2], covariance Cov[Nmis
i , Nmis

l |Q2], and classification probabilities de-

pend on cell priors, missingness within cells, and classification success ratios. Under

MCAR, dependency on missingness probabilities vanishes. Note that in our approx-

imation it was assumed that misclassifications spread uniformly to other cells. This

is a slightly pessimistic assumption. In practice if Y and X are dependent enough

then it is likely that misclassifications spread close to the ”correct cell”. However,

in such case the distribution of Nmis is likely to be more complicated.

6.4.2 How to apply results of Section 6.4 in practice

We demonstrate the applicability of previous results by the construction of a practi-

cal algorithm to use Approximation 6.4. Similar algorithms can be written for other

approximations as well when the actual usage of these approximations is known.

The current usage is demonstrated in the following example in Section 6.4.3.

The basic idea of the algorithm is simple: we just plug-in the assumptions given

in Section 6.4.1 into Approximation 6.4.

First the approximation has to be rewritten in an explicit form for a given

single data set. For this we assume that a first order Taylor approximation is

sufficient (first row of the approximation). Next, for simplicity, it is assumed that

the variance term (second row of the approximation) is only due to Nmis and Nobs

and that covariance between Nmis/n and Nobs/n is neglible with respect to other

terms. Now Approximation 6.4 may be simplified as follows

Var[µ̂comp|n] ≈ 1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

︸ ︷︷ ︸
=A

(6.13)

+
Var[Nmis]

n2

[
E[µ̂obs]2 + (

nc∑
i=1

Pr(b̂(Xmis) = i|n)E[τ̂ imp
i |n])2

]

︸ ︷︷ ︸
=B

+
p∗

n

nc∑
i=1

Pr(b̂(Xmis) = i|n)E[τ̂ imp
i |n]

︸ ︷︷ ︸
=C

.

Note that the variance of the number of missing data values Var[Nmis] cannot be

estimated from a single data set. As a consequence one has to assume a parametric

distribution form for Nmis to compute the variance. As an example, if Nmis ∼
Bin(n, p∗) then Var[Nmis] = np∗(1− p∗).

Secondly, one has to estimate all the quantities in Equation (6.13). The struc-

ture of covariance-variance matrix Var[Nmis|Q2] depends on the clustering algo-

rithm. For standard X-clustering the entries of the matrix are computed using the

results of the Approximation 6.7, whereas for joint (Y, X) clustering one uses Ap-

proximation 6.11. For joint clustering one has to set by hand or by other means

the classification success ratios E[q̂i], which cannot be estimated from a completed

data set in practice, because the missing Y values are not known. If there is no
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other information then value 0.5 is a ’good guess’. Finally all values are assigned

into Equation (6.13).

Assuming that we have applied standard TS-SOM clustering for a data set of

n observations and obtained a clustering with nc cells having the properties
cell means [µobs

1 , . . . , µobs
nc

]T = µobs ≈ E[µ̂imp|Q2]

cell variances [τ obs
1 , . . . , τ obs

nc
]T ≈

[
E[τ̂ imp

1 |Q2], . . . ,E[τ̂ imp
nc
|Q2]

]T

cell sizes [n1, . . . , nnc ]
T

missingness [nmis
1 , . . . , nmis

nc
]T ,

and let the mean estimate of the observed data values be µobs ≈ E[µ̂obs]. Then the

practical algorithm can be written as follows

Algorithm 1: Application of 6.4 for standard TS-SOM clustering

Step 1:

A =
1

n2
(µobs)TVµobs,

where covariance-variance matrix V = {vil}i=1,...,nc,l=1,...nc is defined as

vil =





nmis
(

ni
n

)∗( nmis
i
ni

)

( nmis

n
)

(
1− (

ni
n

)∗( nmis
i
ni

)

( nmis

n
)

)
, if i = l

−nmis
(

ni
n

)(
nmis
i
ni

)(
nl
n

)(
nmis
l
nl

)

( nmis

n
)2

, if i 6= l

Step 2:

B =
n(nmis

n
)(1− nmis

n
)

n2

[
[µobs]2 + (

nc∑
i=1

nmis
i

nmis
τ obs
i )2

]
,

where nmis =
∑nc

i=1 nmis
i .

Step 3:

C =
(nmis

n
)

n

nc∑
i=1

nmis
i

nmis
τ obs
i

Step 4: variance estimates for imputation strategies are

Var[µ̂comp,T,M |n] ≈ A + B

Var[µ̂comp,T,S|n] ≈ A + B + C,

where strategy S ∈ {R,D}.
Note that in Step 2 of the algorithm we have assumed that Nmis ∼ Bin(n, p∗). If

this does not hold then nominator n(nmis

n
)(1− nmis

n
) of the term B should be replaced

by a suitable estimate for Var[Nmis|n]. Further, if the sample size is small (or the

number of cells nc is relative large) then one may encounter problems in Step 1 of

the algorithm. Namely, there can be division by a zero in the estimation formulas

for entries of the matrix V. In such case one may either i) set the corresponding

’problematic’ vil entries to zero or ii) decrease the number of cells and redo clustering.
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6.4.3 An example: the role of conditionalisation levels

In this example we demonstrate the role of conditionalisation levels. We study the

joint (Y, X) clustering method with simulated random imputation strategy. Further,

we assume that imputed data Y imp|Xmis is multimodal. This requirement excludes

many imputation methods which would yield lower error quantities than the studied

method. For simplicity, we investigate the aggregate level properties of µ̂comp,TJ,Rs
.

More complicated error measures are utilized in the next chapter, where different

imputation methods are compared.

It turns out that the bias of µ̂comp,TJ,Rs
is neglible, and therefore we can focus to

variance. The finite sample error of the first moment of µ̂comp,TJ,Rs
contains various

variance components, as seen from Approximation 6.4, but the roles of the compo-

nents are difficult to interpret. To ease interpretation we utilize conditionalizations

Q1, Q2, and Q3, as was done in Example 2 in Chapter 4. The studied quantities are

Err1 = Var[µ̂comp,TJ,Rs|Q1], where Q1 = {n}
Err2 = E

[
Var[µ̂comp,TJ,Rs|Q2]

]
, where Q2 = {n,dtrain

nobs ,w{i}}, and

Err3 = E
[
Var[µ̂comp,TJ,Rs|Q3]

]
, where Q3 = {dtrain

nobs ,dtest
nmis ,w{i}}.

Data generator and the setup of the experiment

Our data generator is a four component mixture of gaussians (see Figure 6.4). The

joint distribution of Y, X is

fY,X(y, x) =
4∑

i=1

Pr(i)fY,X|i(y, x),

which parameters are given in Table 6.1. The distributions of Y obs, Xobs and Y mis, Xmis

are:

fY obs,Xobs(y, x) =
4∑

i=1

1

4
fY,X|i(y, x),

fY mis,Xmis(y, x) =
1

2
fY,X|i=2(y, x) +

1

2
fY,X|i=3(y, x),

where fY,X|i, i = 1, . . . , 4 are bivariate gaussian distributions as described in Table

6.1. Figure 6.5 shows the marginal distributions of Xobs and Xmis. It should be

noted that the missing data mechanism is NMAR. This becomes apparent as we

notice that conditional expectations E[Y obs|x] and E[Y mis|x] are different, as shown

in Figure 6.6.

We shall take a random sample of n observations, where a random number

of Nmis observations are missing, using approximately Nmis ∼ Bin(n, 0.25) obser-

vations from Y mis, Xmis ∼ fY mis,Xmis(y, x) and Nobs = n − Nmis observations from

Y obs, Xobs ∼ fY obs,Xobs(y, x). The sample sizes are n = b25∗1.6kc, where k = 0, . . . , 9.

A two-dimensional TS-SOM with four layers is fitted to data. This corresponds to

modelling with 64 cells. Now we have everything that is required for the analysis.
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Gaussian component i Prior Pr(i) E[Y,X|i] Var[Y, X|i] Pr(”missing”|i)
1 3/16 (1,−1) diag(0.15, 0.4) 0

2 5/16 (1, 0) diag(0.15, 0.4) 0.4

3 5/16 (−1, 0) diag(0.15, 0.4) 0.4

4 3/16 (−1, 1) diag(0.15, 0.4) 0

Table 6.1: Parametrization for data generator.
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Figure 6.4: Random sample of size 262 from superpopulation and conditional ex-

pectation E[Y |x]. The squares denote training data and the draws from missing

population are denoted by black dots. 90% confidence ellipses (dashed lines) are

drawn for each Gaussian component.
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Figure 6.5: Distributions of Xobs and Xmis.
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Figure 6.6: Conditional expectations E[Y obs|x] and E[Y mis|x] of observed and miss-

ing data.

Theoretical insight

Approximation 6.4 is applied to compute Err1 from a single completed data set of

size n = 1073 using Algorithm 1 (page 122). We need to modify the algorithm for

TS-SOM joint (Y, X) clustering. Unsmoothed quantities µobs
i and τ obs

i are replaced

by smoothed ones. Further, estimation formulas for the entries of the covariance-

variance matrix V are updated using Approximation 6.11. There are nmis = 262

imputed values in the data set. A suitably large completed data set is required in

this example because many parameters need to be estimated (5 parameters for each

of the 64 cells). In Phase 4 of the algorithm we assume that the number of missing

data values is distributed as Nmis ∼ Bin(n, p∗). Therefore the variance of Nmis is

Var[Nmis] = np∗(1− p∗) ≈ n
262

n
∗ (1− 262

n
).

Even though we do know the value of p∗ and the missing Y values (in this example)

we do not use them to compute Var[Nmis] or classification success ratios, because

in practice this information is not available. However, we try three values of clas-

sification success ratios: 75%, 50%, and 25%. This affects only analytical quantity

Err1(theor), and in practice we may approximate the real success ratio with some

experimentations.

Error component Err3(theor) is computed using the term C of Equation 6.13

(page 121), thus

Err3(theor) ≈ 262

n

nc∑
i=1

Pr(b̂(Xmis) = i|n)E[τ̂ imp
i |n],

where the probability terms and expectation of the second moments of imputed data

are computed by applying Algorithm 6.4.2.
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Results

The simulation results are shown in Figure 6.7 and Table 6.2 which contains also

the theoretical values of Err1 and Err3. For comparison with Err1, the variance

of the mean of observed data (same as Var[µ̂comp,B,M |n]) is shown in Figure 6.8 and

in Table 6.2. The results show how the conditionalization level affects the variance

of the mean estimator. The B,M imputation method is not able to model the

modes of marginal distribution of Y properly, as expected. The bias of µ̂comp,TJ,Rs
is

approximately zero, and is thus omitted. Variance at conditionalization Q3 is small.

One can notice that the variance increase from Q2 to Q1 is the largest, as it was

in Example 2 of Chapter 4. The increase in variance is due to additional variance

sources: the number of missing data values, training data, and imputation model.

The following observations can be made from the theoretical results:

• Unfortunately all Err1 values are larger than Var[µ̂obs|n], which indicates that

imputation leads to loss of efficiency. We note however that TJ,Rs is among

the most random of all the strategies used in this thesis. We shall see in

Section 9.4 that in practice it is better to use lower simulated noise than what

is the estimated variance in the cells. Therefore a possible reason for large

Err1 values may be simulated noise level. To verify whether this is the reason

we computed Err1 for the TJ,Ms method using simulations and using an

analytical approximation formula (for classification success ratio 0.75). The

results were almost identical to the corresponding results for the TJ,Rs method

for each sample size. This implies that the estimated variance in the cells (for

TJ,Rs) is close to zero. Hence loss of efficiency might be reduced by decreasing

the number of cells and simulated noise level.

• Theoretical formula for Err1 overestimates the variance for classification suc-

cess ratio 0.5, which is likely to mean that the assumed success ratio of only 0.5

is pessimistic. Classification success ratio 0.75 yields quite accurate variance

results even for small sample size n.

• Theoretical formula for Err1 shows that if the classification success ratio de-

creases then the variance of µ̂comp,TJ grows. Note that if the ratio decreases

then incomplete observations spread to wider area.

• Theoretical formula for variance increase due to estimated noise, term Err3(theor),

is quite accurate from sample size 64 onwards.

Note that to verify that the theoretical results are not due to randomness we

computed the analytical results using two other samples of size 1073. Similar results

were observed.
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Figure 6.7: Simulation studies of mea-

sures Erri = E[Var[µ̂comp,TJ,Rs|Qi]] as a

function of sample size n using TS-SOM.
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Figure 6.8: Simulated variance

Var[µ̂obs|n] (same as Var[µ̂comp,B,M |n])

at Q1 (it is zero at other two condition-

alisations).

n 25 40 64 102 163 262 419 671 1073 1717

(k=0) (k=5) (k=9)

Err1(simulated) 0.1008 0.0578 0.0340 0.0235 0.0143 0.0092 0.0060 0.0040 0.0025 0.0019

Err1(theor/0.75) 0.0978 0.0611 0.0382 0.0240 0.0150 0.0093 0.0058 0.0036 0.0023 0.0014

Err1(theor/0.5) 0.1850 0.1156 0.0723 0.0453 0.0284 0.0177 0.0110 0.0069 0.0043 0.0027

Err1(theor/0.25) 0.2708 0.1693 0.1058 0.0664 0.0415 0.0258 0.0162 0.0101 0.0063 0.0039

Err2(simul) 0.0089 0.0060 0.0036 0.0025 0.0017 0.0009 0.0005 0.0003 0.0002 0.0001

Err3(simul) 0.0005 0.0011 0.0013 0.0012 0.0006 0.0003 0.0002 0.0001 0.0001 0.0000

Err3(theor) 0.0036 0.0022 0.0014 0.0009 0.0005 0.0003 0.0002 0.0001 0.0001 0.0000

Var[µ̂obs|n](simul) 0.0640 0.0379 0.0226 0.0155 0.0087 0.0053 0.0034 0.0024 0.0013 0.0008

Table 6.2: Error components Erri = E[Var[µ̂comp,TJ,Rs|Qi]] as functions of the sam-

ple size n = b25 ∗ 1.6kc. Error components Err1 and Err3 are computed also

theoretically. Theoretical value of Err1 for varying classification success ratio is

shown (values 0.75, 0.5, and 0.25 in parenthesis). Simulated variance Var[µ̂obs|n] is

included for comparison with Err1.

In order to interpret the causes of imputation errors Err1, Err2, and Err3 we

utilize the properties of data generator. Namely, marginal distributions of Y obs and

Y mis have two modes. As a consequence, the mean estimator may be decomposed

for a better interpretation as:

µ̂comp =
1

n
(Nobs

1 µ̂obs
1 + Nobs

2 µ̂obs
2 + Nmis

1 µ̂imp
1 + Nmis

2 µ̂imp
2 ),

where the partitions for observed and imputed Y correspond to two modes. Ob-

servations of Y (observed or imputed) are classified to the upper mode cell if their

values are greater or equal to 0.0, otherwise they are classified to the lower mode

cell.
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Bias and variance may be written as

Bias[µ̂comp] = E[
1

n
(Nobs

1 µ̂obs
1 + Nobs

2 µ̂obs
2 + Nmis

1 µ̂imp
1 + Nmis

2 µ̂imp
2 ]− µ∗

= E[
Nobs

1

n
µ̂obs

1 ]− (1− p∗)
1

2
µ∗obs

1︸ ︷︷ ︸
Bias due to observed Y in upper cell

+E[
Nobs

2

n
µ̂obs

2 ]− (1− p∗)
1

2
µ∗obs

2︸ ︷︷ ︸
Bias due to observed Y in lower cell

+ E[
Nmis

1

n
µ̂imp

1 ]− (p∗)
1

2
µ∗mis

1︸ ︷︷ ︸
Bias due to imputed Y in upper cell

+ E[
Nmis

2

n
µ̂imp

2 ]− (p∗)
1

2
µ∗mis

2︸ ︷︷ ︸
Bias due to imputed Y in lower cell

,

Var[µ̂comp,TJ,Rs

] = Var[µ̂comp,TJ,Ms

] + Var[µ̂comp,TJ,Rs

]− Var[µ̂comp,TJ,Ms

]︸ ︷︷ ︸
due to noise modelling, denoted by Vnoise

= Var[
1

n
(Nobs

1 µ̂obs
1 + Nobs

2 µ̂obs
2 + Nmis

1 µ̂imp
1 + Nmis

2 µ̂imp
2 )] + Vnoise

= Var[
Nobs

1

n
µ̂obs

1 ]
︸ ︷︷ ︸
Variance due to observed Y in upper cell

+ Var[
Nobs

2

n
µ̂obs

2 ]
︸ ︷︷ ︸
Variance due to observed Y in lower cell

+ Var[
Nmis

1

n
µ̂imp

1 ]
︸ ︷︷ ︸

Variance due to imputed Y (upper)

+ Var[
Nmis

2

n
µ̂imp

2 ]
︸ ︷︷ ︸
Variance due to imputed Y (lower)

+ 2Cov[
Nobs

1

n
µ̂obs

1 ,
Nobs

2

n
µ̂obs

2 ] + 2Cov[
Nmis

1

n
µ̂imp

1 ,
Nmis

2

n
µ̂imp

2 ]
︸ ︷︷ ︸

Covariance terms

+2Cov[
Nobs

1

n
µ̂obs

1 +
Nobs

2

n
µ̂obs

2 ,
Nmis

1

n
µ̂imp

1 +
Nmis

2

n
µ̂imp

2 ]
︸ ︷︷ ︸

Covariance terms cont.

+Vnoise,

where µ∗obs
1 = 1, µ∗obs

2 = −1, µ∗mis
1 = 1, µ∗mis

2 = −1, and Vnoise = Var[µ̂comp,TJ,Rs
] −

Var[µ̂comp,TJ,Ms
].

According to our simulations, the joint (Y, X) clustering cell method is able

to model mixture distribution quite well. Namely, the last two terms in the above

bias decomposition are roughly zero. As a consequence the bias of µ̂comp,TJ,Rs
is

approximately zero. Therefore we can concentrate on the analysis of imputation

variance.

One is interested in how much of variability of µ̂comp,TJ,Rs
is due to the com-

ponents of variance decomposition. These are measured by computing the ratios be-

tween the terms in the previous equation for Var[µ̂comp,TJ,Rs|n] and Var[µ̂comp,TJ,Ms|n].

We compute these quantities at conditionalization Q1 = {n} (for Err1 measure).

Table 6.3 contains ratios for sample size 1717. The values for other sample sizes are

similar.

From Table 6.3 one can conclude that variances due to observed parts (first

two rows) are equal, the same holds also for imputed parts (rows 4-5). The reason



129

for this is due to the ”symmetry” of data generator. Further, the cell model seems

to be roughly symmetric in imputation Y values belonging to the upper and the

lower mode cells. The covariance terms between the observed means and imputed

means are positive. The distributions of µ̂obs
1 and µ̂obs

2 are equal up to the sign

of expectation. Therefore the two quantities are negatively correlated. However,

number of observations Nobs
1 and Nobs

2 are also negatively correlated, because they

have sum to Nobs. As a consequence covariances between the products of the mean

estimators and the observation count quantities are positively correlated. A similar

reasoning holds also for the covariance term with µ̂imp quantities. The value of the

last covariance term shows that the dependency between imputed and observed data

contributes to approximately 20% of total variance. Finally, the ratio of variances

of µ̂comp,TJ,Rs
and µ̂comp,TJ,Ms

shows that the random imputation strategy yields

approximately 1% higher variance (at sample size 1717).

Quantity Quantity/Var[µ̂comp,TJ,Ms|n]

Var[N
obs
1

n
µ̂obs

1 ] 0.090

Var[N
obs
2

n
µ̂obs

2 ] 0.090

2Cov[N
obs
1

n
µ̂obs

1 , Nobs
2

n
µ̂obs

2 ] 0.086

Var[N
mis
1

n
µ̂imp

1 ] 0.229

Var[N
mis
2

n
µ̂imp

2 ] 0.218

2Cov[N
mis
1

n
µ̂imp

1 , Nmis
2

n
µ̂imp

2 ] 0.090

2Cov[N
obs
1

n
µ̂obs

1 + Nobs
2

n
µ̂obs

2 , Nmis
1

n
µ̂imp

1 + Nmis
2

n
µ̂imp

2 ] 0.197

Vnoise 0.012

Var[µ̂comp,TJ,Rs|n] 1.012

Table 6.3: Ratios at sample size 1717.

6.5 Unit level prediction errors

Cell methods are more flexible than our baseline methods and linear regression meth-

ods. For example, the smoothed version of our standard cell imputation T,Ms can

be seen as a discrete approximation of kernel imputation. Unfortunately, flexibility

leads to mathematical complexity of the analysis of the imputation properties of cell

methods. Due to this difficulty the following results are given in a partially implicit

form. As a consequence, the differences between the standard X and joint (Y, X)

clustering methods are not fully visible from the formulas.

As a new notation, a vector of the estimates of the means of the missing Y

values within the cells is denoted by µimp
{u} = (µimp

1 , . . . , µimp
nc

)T .

Results are derived under the following assumptions

• Predictions based on crisp classifiers (maximum posterior and randomized)

are approximated using a soft classifier: the estimator of Y mis at xmis given
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conditionalisation Q3 is

Y imp|xmis,Q3 ≈
nc∑

i=1

gi(x
mis|wX,{u})µ

imp
i,nobs

︸ ︷︷ ︸
=Y

imp

xmis , mean prediction

+ ε̂(xmis)︸ ︷︷ ︸
imputation noise

, (6.14)

where u = 1, . . . , nc, and E[ε̂(xmis)|Q3] = 0 for any xmis. Note that in clas-

sification of incomplete observations only X part wX,{u} of centroids w{u} is

used.

• Posterior probabilities gi(x
mis|wX,{u}), i = 1, . . . , nc are continuous and have

first derivative with respect to xmis and wX,{u}.

• Covariance between ŴX,{u} and µ̂imp is neglible.

In addition, the first order Taylor approximation is used.

Next, variances of imputation noise at point Xmis = xmis are defined given Q3.

The results for mean squared error at point xmis are derived from Q3 conditionali-

sation by integrating over distribution of Dtrain
nobs , ŴX,{u},Dmis

Y,nmis|dmis
X,nmis .

The difference between the imputations done using a crisp and a randomized

classifier (which are both approximated using a soft classifier) is that the distribu-

tion of ε̂(xmis) is unimodal for the crisp classifier, whereas it is multimodal for the

randomized classifier. As a consequence the variance of ε̂(xmis) consists of between

(and possibly) within components for TS-SOM joint (Y, X) clustering methods. For

other methods variance is the weighted sum of within cell variance estimators. The

variances of ε̂(xmis) are

Var[ε̂(xmis)|Q3] =





0 : C/T/CJ(S = M)/

T(S = Ms),

∑nc

i=1 gi(x
mis|wX,{u})τ obs

i : C/T/CJ(S = R) ,

∑nc

i=1 gi(x
mis|wX,{u})τ

T,Rs

i : T(S = Rs) ,

∑nc

i=1 gi(x
mis|wX,{u})τ obs

i (1− 1
nobs

i
) : C/T/CJ(S = D) ,

∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = M/Ms) ,

∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = R) ,

+
∑nc

i=1 gi(x
mis|wX,{u})τ obs

i

∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = Rs)

+
∑nc

i=1 gi(x
mis|wX,{u})τ

TJ,Rs

i ,

where gi(x
mis|wX,{u}) is an estimate of the posterior probability of the i:th cell at

Xmis = xmis.
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Note that the results of this section for joint (Y, X) clustering with TS-SOM and

mean strategy have a non-zero noise variance, as was shown in the above variance

formulas. This is due to the fact that the impact of random selection of the best

cell is formalized as multimodal imputation noise distribution.

Approximation for Y imp|xmis,Q3, which was given in Equation (6.14) holds

best for TS-SOM joint (Y, X) clustering methods. Further, a soft classifier with a

donor strategy would yield a multimodal imputation noise distribution. To simplify

things we analyse donor strategy as a random strategy (with soft classifier), but

with smaller within cells variance estimates. The reason for selecting this approach

is that it is closer to our practical implementation.

Mean squared error results at a given point xmis are summarized in Approxi-

mation 6.13:

Approximation 6.13 Approximation to mean squared error at a given point Xmis =

xmis.

Mean squared error mse(Y imp|xmis, nmis, n) can be approximated as

mse(Y imp|xmis, nmis, n)

≈
(

nc∑
i=1

gi(x
mis|Q)µ∗imp

i,nobs − E[Y mis|xmis]

︸ ︷︷ ︸
bias

)2

+
nc∑

i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)TVar[vec(ŴX,{u})|dmis
X , nmis, n]

nc∑
i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)

︸ ︷︷ ︸
sampling variance due to estimation of classifier parameters

+
(
g1(x

mis|Q) . . . gnc(x
mis|Q)

)
Var[µ̂imp

{u} |dmis
X , nmis, n]

(
g1(x

mis|Q) . . . gnc(x
mis|Q)

)T

︸ ︷︷ ︸
sampling variance due to estimation of imputation model parameters

+
nc∑

i=1

gi(x
mis|Q)E[τ̂ imp

i (xmis)|nmis, n]

︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

u = 1, . . . , nc,

the expected prediction in the i:th cell is

µ∗imp
i,nobs =





µ∗obs
i,nobs ≈ µ∗obs

i + O
(
(nobs)−1

)

: C/T/CJ/TJ(S = M/R/D),

µ∗s
i,nobs ≈

P
l hi,lE[Nl|nmis,n]µ∗obs

lP
l hi,lE[Nl|nmis,n]

+ O
(
(nobs)−1

)

: T/TJ(S = Ms/Rs),

Q = E[ŴX,{u}|dmis
X , nmis, n], quantity g′i(·) is derivative of gi(·) with respect to

vec(ŴX,{u}) which is evaluated at E[ŴX,{u}|dmis
X , nmis, n], and term E[τ̂ imp

i (xmis)|nmis, n]
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depends on imputation strategy S:

E[τ̂ imp
i (xmis)|nmis, n] =





0 : C/T/CJ(S = M)/,

T(S = Ms),

≈ τ ∗obs
i : C/T/CJ(S = R),

≈ τ ∗obs
i (1− 1

E[Nobs
i |nmis,n]

) : C/T/CJ(S = D),

E[τ̂T,Rs

i |nmis, n] ≈
P

l hi,lE[Nl|nmis,n]E[τ̂s
l |nmis,n]P

l hi,lE[Nl|nmis,n]
: T(S = Rs),

E[(µ̂imp
i,nobs − Ŷ

imp

xmis)2|nmis, n] : TJ(S = M/Ms),

E[τ̂ obs
i |nmis, n] + E[(µ̂obs

i − Ŷ
imp

xmis)2|nmis, n] : TJ(S = R),

E[τ̂TJ,Rs

i |nmis, n] + E[(µ̂s
i − Ŷ

imp

xmis)2|nmis, n] : TJ(S = Rs),

in which quantities µ̂imp
i,nobs − Ŷ

imp

xmis are location shifts from mean prediction Ŷ
imp

xmis to

the modes of multimodal imputation noise distribution.

A justification of Approximation 6.13 is given in Appendix A6.2. In Approxi-

mation 6.13 one sees the decomposition of the mean squared error into squared bias,

sampling variance, imputation variance, and target variance.

Approximative expected prediction, which is a part of the prediction bias, is

based on the first order Taylor approximation. The first term of the approximation

equals the approximate posterior probability of classifying to the i:th cell multiplied

by the expectation of the corresponding mean estimator. Squared bias is expected

to be low for large sample size and sufficient number of cells under MCAR. Large-

sample performance is also good under MAR if the support of Xobs covers the

support of Xmis. As in kernel regression it is likely that one needs to decrease

smoothing as the sample size grows to reduce squared bias. Under NMAR there is

an irreducible squared bias if E[Y obs|xmis] and E[Y mis|xmis] are different.

Sampling variance is derived using the first order Taylor approximation. The

variance consists of two parts: variance due to classifier parameter estimation and

variance due to estimation of imputation model parameter estimation. Both parts

are of quadratic form. The variance due to the estimation of classifier parameters is

smaller the closer all expected predictions are to zero point or the larger the sample

size is. The variance due to the estimation of imputation model parameters gets

smaller as the sample size is increased.

The increase in the mean squared error due to noise modelling is measured by

the imputation variance term. Mean strategy yields a lower variance than random

strategy. Further, donor strategy yields a lower variance than random strategy.

Note that the noise variance is non-zero for joint (Y, X) clustering with TS-SOM

and mean strategy because of random selection of node (however noise variance

within any cell is zero). One can notice that for joint (Y, X) clustering with TS-

SOM and mean strategy there is between and within variance components. This is

because noise distribution is multimodal.
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Variance of target, an irreducible term, cannot be affected by the imputation

method. If the signal to noise ratio is low, or in other words variability of the

conditional mean is low relative to target variance, then the irreducible term may

have a significant impact on the mean squared error. Note also that an increase of

sample size does not affect the irreducible error.

Expectation of m̂se(Y comp) with n observations is computed by integrating mse

at xmis over distribution of the number of missing values Nmis and Dmis
X . The result

is given in the form of Approximation 6.14:

Approximation 6.14 The expected mean squared prediction error for n observa-

tions.

Expectation of m̂se(Y comp) with n observations can be approximated as

E[m̂se(Y comp)|n]

≈ VarNmis,Dmis
X |n

[
nc∑

i=1

gi(X
mis|E[ŴX,{u}|nmis, n])µ∗imp

i,Nobs

]

︸ ︷︷ ︸
variability of conditional mean estimate

+(µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2

+Var
[
E[Y mis|Xmis]

]
︸ ︷︷ ︸
variability of true model

+ 2ENmis,Dmis
X |n

[( nc∑
i=1

gi(X
mis|E[ŴX,{u}|nmis, n])µ∗imp

i,Nobs − µ∗imp
n

)

︸ ︷︷ ︸
cross term

+

(
µ∗imp

n − E[Y mis|Xmis]

)]

︸ ︷︷ ︸
cross term (cont.)

+
nc∑

i=1

µ∗imp
i g′i(X

∗mis|Q)TVar[vec(ŴX,{u})|E[Dmis
X , Nmis|n]]

nc∑
i=1

µ∗imp
i g′i(X

∗mis|Q)

︸ ︷︷ ︸
expected sampling variance due to estimation of classifier parameters

+ g(X
∗mis|Q)TVar[µ̂imp

{u} |E[Dmis
X , Nmis|n]]g(X

∗mis|Q)
︸ ︷︷ ︸

expected sampling variance due to estimation of imputation model parameters

+
nc∑

i=1

gi(X
∗mis|Q)E[τ̂ imp

i (Xmis)|n]

︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

u = 1, . . . , nc,

where

µ∗imp
n = E[µ̂imp|n] ≈

{ ∑nc

i=1 gi(X
∗mis|Q)µ∗obs

i : C/CJ/T/TJ(S = M/R/D),∑nc

i=1 gi(X
∗mis|Q)µ∗si : T/TJ(S = Ms/Rs),

Q = E[ŴX,{u}|E[Dmis
X ],E[Nmis], n], g(X

∗mis|Q) = [g1(X
∗mis|Q), . . . , gnc(X

∗mis|Q)]T

and constant E[τ̂ imp
i (Xmis)|n] depends on the imputation method and strategy S as
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follows:

E[τ̂ imp
i (Xmis)|n] =





0 : C/T/CJ(S = M)/ ,

T(S = Ms)

≈ τ ∗obs
i : C/T/CJ(S = R),

≈ τ ∗obs
i (1− 1

E[Nobs
i |n]

) : C/T/CJ(S = D),

E[τ̂T,Rs

i |n] : T(S = Rs),

E[(µ̂imp
i − Ŷ

imp

X
∗mis)2|n] : TJ(S = M/Ms) ,

E[τ̂ obs
i |n] + E[(µ̂obs

i − Ŷ
imp

X
∗mis)2|n] : TJ(S = R),

E[τ̂TJ,Rs

i |n] + E[(µ̂s
i − Ŷ

imp

X
∗mis)2|n] : TJ(S = Rs),

Expectation of m̂se(Y comp) with n observations is quite complicated. In Ap-

proximation 6.14 we have decomposed it into more interpretable terms, similarly as

was done in Approximation 6.13. Mean squared error consists of expected squared

bias, expected sampling variance, imputation variance, and target variance. The

expected squared bias is decomposed into variability of conditional mean estimate,

squared global bias, variability of true model (which cannot be affected by the im-

putation method), and cross term.

Note that the variance of imputed values equals to variability of conditional

mean estimate plus expected imputation variance. As a consequence it is possible

(at least under MAR with suitable assumptions) to recover the first two moments

of Y in multiple ways. One may use a stiff model with a large imputation variance,

or a flexible model with a lower variance. With cell methods the stiff model equals

to a low number of cells or high amount of smoothing. The flexible model equals to

a large number of cells with no or relative low amount of smoothing.

Justifications to the above approximations and consequences can be found in

Appendix A6. Next an example which demonstrates the differences between cell

methods is given.

6.6 Example: comparison of cell methods

The purpose of this example is to demonstrate the differences between the proposed

cell imputation methods. All six cell methods that were introduced in Chapter

6.1 are evaluated under the mean imputation strategy. The reason why the mean

strategy is used is that clustering properties and imputation performances are easier

to show when there is no added noise in the imputation results.

In our example we use a simple generator of Y, X data. The data generator is

Y = X + ε, X ∼ N(0, 1), ε ∼ N(0, 1),

as shown in Figure 6.9. It is easy to see that the correlation between Y and

X is 1/
√

2 ≈ 0.71 (strong linear dependency). The missing-data mechanism is
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MCAR with 25% expected missingness. We shall take an iid sample of size n.

As a consequence the number of missing observations is Nmis ∼ Bin(n, 0.25), and

Nobs = n − Nmis. In the experiments the sample size n is varied as: 32, 44, 62, 87

and 122.

 0.00  4.50

x

−4.50

 0.00

 4.50

y

−4.50

Figure 6.9: Random sample of size 122 from population. The squares are training

data and the dots denote draws from the missing population.

Characteristics of clustering can be measured using decomposition of total-

scatter matrix for training data. The total-scatter matrix is

Ŝtotal =
Nobs∑
i=1

(Zi − Z)(Zi − Z)T ,

where Zi = (Y obs
i , Xobs

i )T and Z = (µ̂obs, X̂)T . Elements of Ŝtotal, which are used in

later quantities, are denoted as

Ŝtotal =

[
Ŝtotal

Y Y Ŝtotal
Y X

Ŝtotal
XY Ŝtotal

XX .

]
. (6.15)

Note that τ̂ obs = 1
Nobs−1

Ŝtotal
Y Y and E[ 1

nobs Ŝ
total|nobs] ≈ Var[(Y obs, Xobs)T ].

Decomposition for total-scatter matrix is

Ŝtotal = Ŝbetween︸ ︷︷ ︸
between−cells−scatter matrix

+ Ŝwithin︸ ︷︷ ︸
within−cells−scatter matrix

,

where Ŝbetween =
∑nc

i=1(Zj − Z)(Zj − Z)T , in which Zj is the j:th cell position in

the Y, X space. The between-cells scatter matrix characterizes statistics of the cells,

and the within-cells scatter matrix can be considered as a residual structure.
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Because the scatter matrices are symmetric, it is sufficient to compute three

quantities:

T1 = E
[ Ŝbetween

Y Y

Ŝtotal
Y Y

|n
]
, T2 = E

[ Ŝbetween
XX

Ŝtotal
XX

|n
]
, T3 = E

[ Ŝbetween
Y X

Ŝtotal
Y X

|n
]
.

Quantity T1 measures how well the variance of Y obs is preserved. Preservation of

variance of Xobs is measured by T2, and quantity T3 can be used to evaluate how

well the covariance between Y obs and Xobs is preserved. If quantities T1 − T3 are

all close to one then the clustering method is able to explain the variability of Y obs,

Xobs, and the covariance between Y obs and Xobs. Note that 1 − T1 = E[
Ŝwithin

Y Y

Ŝtotal
Y Y

|n]

(and similarly for 1− T2 and 1− T3).

Imputation performance is measured using imputed data values. Mean squared

error, and its decomposition, of mean estimator is computed as

MSE[µ̂imp|n] = (E[µ̂imp − µ∗mis|n]︸ ︷︷ ︸
bias

)2 + Var[µ̂imp|n]︸ ︷︷ ︸
variance

,

Further, the mean squared error of the second moment estimator is

MSE[τ̂ imp|n] = (E[τ̂ imp − τ ∗mis|n]︸ ︷︷ ︸
bias

)2 + Var[τ̂ imp|n]︸ ︷︷ ︸
variance

,

Note that in this example µ∗mis = 0 and τ ∗mis = 2. The purpose of decomposition

is to demonstrate the differences between biases and variances. This is useful when

showing differences between unsmoothed and smoothed imputation methods.

In our experiments the number of cells is nc = 16 for all methods. One dimen-

sional TS-SOM is used, implying lattice topology.

6.6.1 Summary of results

The results of clustering characteristics for all the methods are summarized in Tables

6.4-6.6. The variances of mean estimators are also shown in Figure 6.10. Squared

biases are neglible, and thus the relative efficiencies of estimators can be given as

Eff[µ̂imp|n] =
Var[µ̂imp,CJ,M |n]

Var[µ̂imp|n]
,

where µ̂imp,CJ,M is used as a reference estimator because it performs the worst for

all sample sizes. Interpretation of the relative efficiency is simple. As an example,

if efficiency is two then estimator µ̂imp,CJ,M requires twice as many observations

to reach the same performance as estimator µ̂imp. Efficiency results are shown in

Table 6.7, and the results for the second moment estimators are shown in Figures

6.11-6.13.
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n 32 44 62 87 122
Method
T,M 0.79 0.72 0.66 0.61 0.58
T,Ms 0.55 0.53 0.51 0.49 0.48
C,M 0.84 0.73 0.66 0.61 0.57
TJ,M 0.98 0.98 0.97 0.97 0.96
TJ,Ms 0.89 0.88 0.87 0.87 0.86
CJ,M 0.99 0.98 0.97 0.96 0.96

Table 6.4: Quantity T1 (preservation of

Var[Y obs]) as a function of the sample

size.

n 32 44 62 87 122
Method
T,M 0.96 0.95 0.94 0.93 0.93
T,Ms 0.96 0.95 0.94 0.93 0.93
C,M 1.00 0.99 0.99 0.99 0.99
TJ,M 0.96 0.94 0.91 0.90 0.88
TJ,Ms 0.85 0.85 0.84 0.84 0.83
CJ,M 0.98 0.96 0.94 0.93 0.92

Table 6.5: Quantity T2 (preservation of

Var[Xobs]) as a function of the sample

size.

n 32 44 62 87 122
Method
T,M 0.98 0.97 0.96 0.96 0.96
T,Ms 0.94 0.93 0.93 0.92 0.92
C,M 1.00 0.99 0.99 0.99 0.99
TJ,M 1.06 1.07 1.08 1.08 1.09
TJ,Ms 1.09 1.09 1.10 1.10 1.10
CJ,M 1.00 1.00 1.00 1.00 1.00

Table 6.6: Quantity T3 (preservation of

Cov[Y obs, Xobs]) as a function of the sam-

ple size.

n 32 44 62 87 122
Method
T,M 1.28 1.37 1.55 1.91 2.28
T,Ms 1.74 1.92 2.11 2.42 2.72
C,M 1.19 1.39 1.63 2.00 2.33
TJ,M 1.14 1.20 1.25 1.41 1.52
TJ,Ms 1.20 1.27 1.35 1.51 1.65
CJ,M 1.00 1.00 1.00 1.00 1.00

Table 6.7: Efficiencies as functions of the

sample size. Method CJ,M is used as

reference.
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Figure 6.10: Variance Var[µ̂imp|n] as a

function of sample size.
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Figure 6.11: Mean squared error of τ̂ imp

as a function of sample size.
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Figure 6.12: Bias of τ̂ imp as a function of

sample size.
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Figure 6.13: Variance Var[τ̂ imp|n] as a

function of sample size.

From the results one can notice that joint cell methods CJ and TJ without

smoothing preserve the variability of Y obs best. The variability of Xobs is preserved

best by C, T, and CJ. The covariance between Y obs, Xobs is best preserved by the K-

Means cell methods C and CJ. Smoothing used by TS-SOM leads to underestimation

of the second moment, and it affects the covariance structure as well. However,

smoothing is able to improve the mean estimator as discussed next.

Strength borrowing, which is due to neighborhood smoothing in the TS-SOM

methods T,Ms and TJ,Ms, brings the cells closer to each other. This leads to un-

derestimation of variability. On the other hand, smoothing reduces the variance

of the first moment estimator without introducing bias. Variance reduction is vis-

ible in Figure 6.10 (compare T,M/T,Ms or TJ,M/TJ,Ms pairs). As a consequence

smoothed mean estimators µ̂imp,T,Ms
and µ̂imp,TJ,Ms

have the lowest mean squared

errors. Further, efficiencies for them are the best, especially for the smoothed co-

variate method.

A difference between X-clustering and joint (Y,X) clustering methods is that

the latter ones are able to model the variability of Y obs considerably better. This is

expected, because covariate cell methods do not utilize the target variable.

Dependency between the characteristics of clustering and imputation perfor-

mance is visible in the bias of the second moment estimators. For all methods,

except the joint TS-SOM methods, the bias of the second moment is approximately

Bias[τ̂ imp|n] ≈ (T1 − 1)Var[Y mis]

= −E
[ Ŝwithin

Y Y

Ŝtotal
Y Y

|n
]
Var[Y mis],

where Var[Y mis] = τ ∗mis = 2. Therefore the underestimation of the second moment

depends on how large the residual variance of Y (related to the component Ŝwithin
Y Y

in the within-cells scatter matrix) is. For joint TS-SOM methods dependency is

more complicated because of probabilistic classification of incomplete observations.
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Further, if the missingness were other than MCAR then the dependency would be

even more complicated.

We note that all the results are sensitive to the number of cells, amount of

smoothing used, and the number of observations. The second point is that TS-

SOM cell methods may need different amounts of smoothing for mean estimators

and variance estimators to better preserve the first two moments simultaneously. A

change in the imputation strategy to random or donor is likely to yield a less biased

second moment estimator.

Finally, it is interesting to see what the decision boundaries of the cells for

the evaluated methods are. Figures 6.14-6.19 depict the decision boundaries for

all the methods, which were trained with a sample of size 122. From Figure 6.17

one can notice the 1-D continuum that is constructed by the smoothed joint (Y,X)

clustering TS-SOM method. The impact of smoothing on cell positions is visible in

Figures 6.15 and 6.17. Smoothed cells deviate less from diagonal line y = x. Linear

trend, which is a data generator, is best preserved by the smoothed TS-SOM cell

methods. The joint K-Means method does not form any kind of continuum, the

cells are spread along the data space.
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Figure 6.14: Decision boundaries for X-

clustering method T,M (TS-SOM), dots

denote cells and the sample size is 122.

Figure 6.15: Decision boundaries for

joint (Y,X) clustering method TJ,M

(TS-SOM).
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Figure 6.16: Decision boundaries for X-

clustering method T,Ms (TS-SOM).
Figure 6.17: Decision boundaries for

joint (Y,X) clustering method TJ,Ms

(TS-SOM).
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Figure 6.18: Decision boundaries for X-

clustering method C,M (K-Means).
Figure 6.19: Decision boundaries for

joint (Y,X) clustering method CJ,M (K-

Means).

6.7 Summary

Imputation methods based on standard (K-Means type) clustering using completely

observed X-covariates, as well as clustering of joint distribution fY,X(y,x), and

smoothed imputation (TS-SOM methods) approaches in imputation were analysed.

When considering the results, there are two differences between the approaches: i)

how incomplete observations are classified to cells and ii) how smoothing is used. If

incomplete observations are classified in a probabilistic manner (joint (Y, X) clus-

tering using TS-SOM) then one is likely to produce misclassifications. However, the

benefit is that one is able to model and impute multimodal distributions. Smoothing

aims to improve estimates by borrowing strength from the neighborhood. The hope

is that smoothing will reduce estimation variance without significantly increasing

the estimation bias.
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Variance of mean estimator given a model depends on the covariance structure

of the missing data. This quantity is somewhat abstract. To give some insight to

this structure, an assumption on the distributions of a number of missing data values

within cells were given, under a MAR assumption, for a given model. A simulation

example showed that a derived analytical formula may be used to estimate variance

of mean estimator.

A view about differences between cell methods was given by a simulation exam-

ple. Characteristics of clustering algorithms were evaluated by total scatter matrix

and its decomposition into a between-cells scatter matrix and within-cells scatter ma-

trix. A major difference between the K-Means and TS-SOM algorithms is smoothing

used by TS-SOM. It leads to underestimation of variance but on the other hand it

is able to improve the mean square error of an estimator (mean estimator in the

example) sometimes considerably. A better performance, when considering simulta-

neously the mean square errors of the first two moment estimators, may be reached

for the TS-SOM methods if neighborhood smoothing is used when computing mean

and variance estimators. Further, a rough connection between the characteristics of

clustering and imputation performance was observed. For all the cell methods with

mean strategy, except the joint TS-SOM methods, underestimation of bias of the

second moment is proportional to residual variance of Y (related to an element in

the within-cells scatter matrix). A probabilistic classifier of incomplete observations

makes things more complicated for joint (Y, X) clustering with TS-SOM.



Chapter 7

Evaluation of imputation using

simulated data sets

There are three ways to evaluate imputation methodology: theoretical studies, sim-

ulations, and real-world experiments. As we can see from the previous chapters,

theoretical studies are often difficult to interpret in practical terms. Real-world

experiments, on the other hand, may not tell us why some method is better than

another. The role of simulations is to fill this cap.

Good simulations can show direct relations between certain variations in data

and variations in the performance of the studied methodology. Ideally, simulated

experiments can be linked to theoretical properties of the methods, and thus simu-

lations could be the results of theoretical analyses. We have seen this kind of studies

for individual methods already in Chapter 4. In the current chapter we extend sim-

ulations to cover all the methods simultaneously. The purpose is to see what the

differences between the methods are.

Our carefully designed simulation experiments are introduced to evaluate a

total of 24 combinations of methods and imputation strategies, as shown in Table

7.1. The three simulation cases are:

1) The role of MAR type of missingness, where data is varied from simple MCAR

to strongly MAR.

2) Imputation of NMAR multimodal data, where f(Y mis|X) is varied from single

to strongly multimodal distribution.

3a) The effect of dimensionality, which is studied for a simple classification problem

with increasing number of covariates.

3b) Computational performance of the methods as a function of data size and

dimension.

The methods are used more or less as described in Chapters 4, 5, and 6. The

role of baseline methods is to give an insight to ”easily” achieveable imputation

performance. Thus we should do better. The nearest neighbor method is used with

one neighbor only (k = 1). For kernel regression, a symmetric Gaussian kernel is
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used, with bandwidth λ, which is varied as a function of sample size as proposed by

Mack in [72].

Abbreviation Method
B,M Baseline with mean imputation strategy.
B,R Baseline with random strategy.
B,D Baseline with donor strategy.
L,M Linear regression with mean imputation strategy.
L,R Linear regression with random strategy.
N,M k-nearest neighbour with mean imputation strategy

(k = 1 always in this chapter).
K,M Kernel regression with mean imputation strategy.
K,R Kernel regression with random strategy.
T,M TS-SOM covariate X clustering with mean strategy.
T,R TS-SOM covariate X clustering with random strategy.
T,D TS-SOM covariate X clustering with donor strategy.
T,Ms TS-SOM covariate X clustering with mean strategy and smoothing.
T,Rs TS-SOM covariate X clustering with random strategy and smoothing.
C,M K-Means covariate X clustering with mean strategy.
C,R K-Means covariate X clustering with random strategy.
C,D K-Means covariate X clustering with donor strategy.
TJ,M TS-SOM joint (Y,X) clustering with mean strategy.
TJ,R TS-SOM joint (Y,X) clustering with random strategy.
TJ,D TS-SOM joint (Y,X) clustering with donor strategy.
TJ,Ms TS-SOM joint (Y,X) clustering with mean strategy and smoothing.
TJ,Rs TS-SOM joint (Y,X) clustering with random strategy and smoothing.
CJ,M K-Means joint (Y,X) clustering with mean strategy.
CJ,R K-Means joint (Y,X) clustering with random strategy.
CJ,D K-Means joint (Y,X) clustering with donor strategy.

Table 7.1: Abbreviations for compared methods.

Simulations are done under random repetitions, where a random sample is taken

from a specified data generator, and then all the methods are applied to impute the

missing part of data. This process is repeated until the desired measures of imputa-

tion performance are stable enough. Thus we try to eliminate the role of simulation

variation by giving empirical variants of expectation of simulated imputation mea-

sures. The measures used in the simulation cases 1, 2, and 3a are described briefly

next.

First, two moments of mean estimator are estimated in Case 1. The estimates

are

Bias[µ̂comp] ≈ 1

nsim

nsim∑
sim=1

ˆBias
[
[µcomp]sim

]

Var[µ̂comp] ≈ 1

nsim − 1

nsim∑
sim=1

(
[µcomp]sim − µcomp

)2

,



144

where ˆBias[[µcomp]sim] = [µcomp]sim−µ∗, [µcomp]sim is the value of µ̂comp in the sim:th

repetition, µcomp = 1
nsim−1

∑nsim

sim=1[µ
comp]sim, sim denotes one simulation run and

nsim is the number of repetitions. As one can imagine most of the repetitions are

required to estimate imputation variances of higher moments.

In Case 2 we estimate conditional and marginal biases of the first two moment

estimators. In addition, marginal and conditional Kolmogorov-Smirnov distances

are estimated. The quantities are computed as

Bias[µ̂mis|x = 3.5] ≈ 1

nsim

nsim∑
sim=1

ˆBias
[
[µimp|x = 3.5]sim

]

Bias[τ̂mis|x = 3.5] ≈ 1

nsim

nsim∑
sim=1

ˆBias
[
[τ imp|x = 3.5]sim

]

Bias[µ̂mis] ≈ 1

nsim

nsim∑
sim=1

ˆBias
[
[µimp]sim

]

Bias[τ̂mis] ≈ 1

nsim

nsim∑
sim=1

ˆBias
[
[τ imp]sim

]
,

in which [µimp|x = 3.5] and [τ imp|x = 3.5] are mean and variance estimates computed

from imputations done at x = 3.5. Kolmogorov-Smirnov distances are estimated as

KSc = E
[

sup
y
|FY mis|x(y|x = 3.5)− F̂Y imp|X(y|x = 3.5)|

∣∣∣n
]
≈ 1

nsim

nsim∑
sim=1

[ksc]sim

=
1

nsim

nsim∑
sim=1

max
y∈R

∣∣∣∣FY mis|x(y|x = 3.5)− 1

nmis

nmis∑
j=1

I([ycomp
j ]sim ≤ y|x = 3.5)

︸ ︷︷ ︸
estimate of F

Y imp(y)|x=3.5

∣∣∣∣

KS = E
[

sup
y
|FY mis(y)− F̂Y imp(y)|

∣∣∣n
]
≈ 1

nsim

nsim∑
sim=1

[ks]sim

=
1

nsim

nsim∑
sim=1

max
y∈R

∣∣∣∣FY mis(y)− 1

nmis

nmis∑
j=1

I([ycomp
j ]sim ≤ y)

︸ ︷︷ ︸
estimate of F

Y imp (y)

∣∣∣∣

KS2 = E
[

sup
y
|FY mis|x(y|x ∈ ∆x)− F̂Y imp|X(y|x ∈ ∆x)

∣∣∣n
]
≈ 1

nsim

nsim∑
sim=1

[ksc]sim

=
1

nsim

nsim∑
sim=1

max
y∈R

∣∣∣∣FY mis|x(y|x ∈ ∆x)− 1

nmis

nmis∑
j=1

I([ycomp
j ]sim ≤ y|x ∈ ∆x)

︸ ︷︷ ︸
estimate of F

Y imp(y|x∈∆x)

∣∣∣∣,

where ∆x is the interval of imputation positions. Note that distributions FY mis(y),

FY mis|x=3.5(y), and FY mis|x∈∆x
(y) are also estimated (with a fixed sample), what is

described in the Case 3a.
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In Case 3a we estimate the integrated mean squared error

MISE(Ŷ imp) = EZEX [(Ŷ imp
|x,z − Y mis

|x,z )2|z],

where z is a parameter which is described in the case. The MISE is decomposed

to expected squared bias and variance terms (and expected variability of target, an

irreducible term, which is omitted here)

Bias2[Ŷ imp] = EZEX
[(
E[Ŷ imp|x, z]− E[Y mis|x, z]

)2|z
]

≈ 1

10

10∑

l=1

[
1

1600

1600∑
j=1

(
Ê[Ŷ imp|xj,l, zl]− E[Y mis|xj,l, zl]

)2

]

=
1

10

10∑

l=1

[
1

1600

1600∑
j=1

( 1

nsim

nsim∑
i=1

yimp
j,l,i − E[Y mis|xj,l, zl]

)2

]
,

where 1600 integration positions xj,l are drawn once for each parameter zl. Expected

variance is computed as

Var[Ŷ imp] = EZEX
[
Var[Ŷ imp|x, z]|z

]

≈ 1

10

10∑

l=1

[
1

1600

1600∑
j=1

[
V̂ar[Ŷ imp|xj,l, zl]

]]

=
1

10

10∑

l=1

[
1

1600

1600∑
j=1

[ 1

nsim − 1

nsim∑
i=1

(yimp
j,l,i − Ê[Ŷ imp|xj,l, zl])

2
]]

.

7.1 Case 1: the role of missing-data mechanism

The purpose of this study is to evaluate the effect of a missing-data mechanism,

missingness is varied from MCAR to MAR. We do this by increasing the difference

between E[Y ] and E[Y mis]. For simplicity, the results are evaluated in terms of the

first moment bias and variance for a given number of observations.

7.1.1 Data generator

Our data follows a simple model

Y = XI + ε, where ε ∼ N(0, 3), I ∼ Bernoulli(0.5)

and XI is generated from a different Normal distribution for missing and observed

parts, namely

XI =

{
Xobs ∼ N(0, 5), if I = 0

Xmis ∼ N(at, 5), if I = 1.

The mean at of missing data covariate Xmis is varied in ten experiments t = 1, . . . , 10

such that at = 2
9
(t − 1), giving at ∈ [0, 2]. Thus data varies from MCAR to MAR

such that in the final experiments the data is as seen in Figure 7.1.
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Figure 7.1: a) distributions of Xobs and Xmis at t = 10, b) random sample from

superpopulation at t = 10.

We shall take an iid random sample of n = 1000 observations. As a consequence

the number of missing observations is Nmis ∼ Bin(1000, 0.5), and Nobs = n− Nmis.

The methods are used in a rather standard way. The bandwidth for kernel

regression is set to λ = 2(Nobs)−1/5. TS-SOM with a one-dimensional latent lattice

topology and 32 cells is used, and the same number of cells is used in K-Means

clustering too.

7.1.2 Theoretical considerations

From Chapters 4, 5 and 6 we may try to predict what the outcome of these experi-

ments is. Clearly, our methods can be divided between predictive and nonpredictive

ones. Baseline methods that cannot utilize covariate X will do much worse than all

the other algorithms. In fact we may predict what the error is because

Bias[µ̂comp,B] = p∗(µ∗obs − µ∗mis).

Applying the numbers we get

Bias[µ̂comp,B] = 0.5
(
0− 2

9
(t− 1)

)
,

which implies that Bias[µ̂comp,B] moves from 0 to -1 as t = 1, . . . , 10. The variances

for baseline methods are

Var[µ̂comp,B,M ] ≈ τ ∗obs

(
1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)

Var[µ̂comp,B,R] ≈ Var[µ̂comp,B,M ] + τ ∗obs p
∗

n

Var[µ̂comp,B,D] ≈ Var[µ̂comp,B,M ] + τ ∗obs p
∗

n

(
1− 1

n(1− p∗)

)
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Applying numbers gives

Var[µ̂comp,B,M ] ≈ 8

(
1

1000(1− 0.5)
+

1000 ∗ 0.5(1− 0.5)

10003(1− 0.5)3

)
= 0.016

Var[µ̂comp,B,R] ≈ Var[µ̂comp,B,M ] + 8
0.5

1000
= 0.02

Var[µ̂comp,B,D] ≈ Var[µ̂comp,B,M ] + 8
0.5

1000

(
1− 1

1000(1− 0.5)

)
≈ 0.02.

For linear regression we have

Bias[µ̂comp,L] ≈ p∗(E[β̂obs
−0 |n]T X

∗mis
+ E[β̂obs

0 |n]− µ∗mis)

Now E[β̂
obs|n] ≈ β∗obs = (1 0)T . Further, µ∗mis = β∗mis

−0 X
∗mis

+ β∗mis
0 = X

∗mis
.

Applying numbers we get

Bias[µ̂comp,L] ≈ 0.5(X
∗mis −X

∗mis
) = 0,

which implies that linear regression is approximately unbiased for all experiments

t = 1, . . . , 10.

Approximate bias for kernel regression and 1-nearest neighbour regression is

given by Approximation 5.1. Note that the bias is a function of the density of Xobs

and conditional mean E[Y obs|x] = g∗obs(x) and their first or second order derivatives.

Thus a bit more work than earlier is required to solve the bias. To apply Approx-

imation 5.1 one needs to notice that the NMAR bias is zero and the bias due to

noise estimation is zero (donor strategy is not used). Computation of approximate

bias is simplified by ignoring the approximation term and applying the first order

Taylor approximation to the estimation bias term. Thus bias is computed as

Bias[µ̂comp,K/N |n] ≈ ENmis [
Nmis

n
C] + O(n−1) ≈ ENmis [

Nmis

n
C]

Taylor≈ ENmis [
Nmis

n
]ENmis [C] ≈ p∗ENmis [C] = 0.5ENmis [C].

Estimation bias term C for both of the methods depends on the following quantity

(g∗obsfXobs)′′(X
∗mis

)− g∗obs(X
∗mis

)f ′′Xobs(X
∗mis

) = 2f ′Xobs(X
∗mis

)

= 2f ′Xobs(
2

9
(t− 1)).

The expectation of C for kernel regression is approximately

E[C]
Taylor≈ 2f ′

Xobs(
2
9
(t− 1))

2fXobs(X
∗mis

)

∫
ξ2K(ξ)dξλ2

(
n(1− p∗)

)

=
f ′

Xobs(
2
9
(t− 1))

fXobs(2
9
(t− 1))

λ2
(
0.5n

)
=

f ′
Xobs(

2
9
(t− 1))

fXobs(2
9
(t− 1))

4
(
0.5n

)−2/5
.
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For 1-nearest neighbour the expectation of C is

E[C]
Taylor≈ 2f ′

Xobs(
2
9
(t− 1))

24f 3
Xobs(X

∗mis
)

(
1/E[Nobs]

)2

=
f ′

Xobs(
2
9
(t− 1))

12f 3
Xobs(

2
9
(t− 1))

(
1/(0.5n)

)2
=

f ′
Xobs(

2
9
(t− 1))

12 ∗ 5002f 3
Xobs(

2
9
(t− 1))

.

Now we need to compute f ′
Xobs(x),

f ′Xobs(x) =
∂

∂x

1√
2π ∗ 5

exp
(
− x2

2 ∗ 5

)

=
1√
10π

∂

∂x
exp

(
− x2

10

)
= − 2x

10
√

10π
exp(−x2

10
).

The approximate bias for 1-nearest neighbour is zero at t = 1. The bias moves

from −2.4 ∗ 10−7 to −4.7 ∗ 10−6 as t = 2, . . . , 10. Therefore the bias for the nearest

neigbour is expected to be almost zero. However, for kernel regression the situation

is different. Approximation to bias Bias[µ̂comp,K |n] is shown in Table 7.2. The

bias is linear for these values of at and roughly follows equation Bias[µ̂comp,K |n] =

−p∗ · 0.0666 · at = −0.0333at.

at 0 2/9 4/9 6/9 8/9 10/9 12/9 14/9 16/9 2

(t=1) (t=6) (t=10)

Bias[µ̂comp,K |n] 0.000 -0.007 -0.015 -0.022 -0.030 -0.037 -0.044 -0.052 -0.059 -0.067

(theoretical)

Table 7.2: Theoretical bias for kernel regression as a function of at = 2
9
(t− 1), t =

1, . . . , 10.

7.1.3 Simulation results for Case 1

In simulations we used nsim = 1000 repetitions. The results are shown in Figures 7.2

and 7.3. The main effect of the simulated experiments is quite expected; the baseline

methods do not preserve the first moment, as shown in Figure 7.2. There also seems

to be a small overestimation of µ̂comp with TS-SOM joint clustering (Y, X) methods,

namely TJ and TJs. As expected kernel regression methods underestimate the first

moment as our MAR parameter at is increased from zero. All the other methods

yield a bias that is close to zero.

Imputation variance Var[µ̂comp|n] is not dependent on the parameter at for

baseline methods as expected. The variances for baseline methods are as expected.

The variances for other methods are not strongly dependent on the parameter, but

there are large differences between the methods. The imputation variance of the

joint (Y,X) K-Means clustering is largest, which relates directly to the estimation

variance of 2-D mean vector (yi, xi) from data sets of size 0.5∗1000/32 ≈ 15 samples

(recall that on average 50% of samples are missing). For TS-SOM this variance is
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considerably smaller, because of neighbour smoothing (strength borrowing). As t

is increased it seems that variance grows for most of the imputation methods. For

nonparametric regression methods and cell methods this is probably due to the fact

that density of Xobs is decreasing at imputation positions. A partial reason for linear

regression is that pointwise prediction variance grows quadratically as a function of

covariate.

N,M
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Figure 7.2: Bias of µ̂comp as function of at.
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Figure 7.3: Variance of µ̂comp as function of at.
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7.2 Case 2: imputation of multimodal fY |X(y|x)

In this example we shall study imputation in a case where covariate X does not fully

explain the distribution of Y , but where missingness depends on Y itself. This is

an example of NMAR type of missingness. The study was conducted by generating

three gaussian components in (X,Y) space as depicted in Figure 7.4, such that the

conditional distribution at x = 3.5 fY |X(y|x = 3.5) is multimodal, because Gaussians

B and C are centered at the same X-position.
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Figure 7.4: The data set for Case 2 (at = 2). The squares denote training data, and

the draws from a missing distribution are shown as black dots.

In the experiments we study the imputation performance of the methods, in a

setup where the distance 2at between Gaussian B and C at x = 3.5 is increased,

and missingness takes place equally in components B and C. We shall use mainly

conditional measures of imputation performance at x = 3.5, such as conditional

Kolmogorov-Smirnov distance KSc(X = 3.5), Bias[µ̂imp|X = 3.5] and Bias[τ̂ imp|X =

3.5], but for the sake of completeness also marginal measures Bias[µ̂mis], Bias[τ̂mis],

and KS are computed.

All models are built using incomplete finite sample as explained above. After

training, the same data is used for the evaluation of measures related to statistical

moments. However, the study of conditional measures at X = 3.5 is done separately

by generating a sufficiently large test sample of observations at X = 3.5.

All the methods are used as usual. For TS-SOM a 1D latent structure is used

with 32 cells. The same number of cells is used for K-Means. In the case of joint
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(Y,X) clustering, a ring topology where the ends of 1D SOM-lattice are connected to

form a ”ring” of cells is used for TS-SOM. This seems to get organised better than

a 1D-lattice. For kernel regression the bandwidth is selected to be λ = 2(N obs)−1/5.

7.2.1 Data generator and setup of the experiment

The generator of data can be written as a Gaussian mixture

fX,Y = πA ·N(µA,ΣA) + πB ·N(µB,ΣB) + πC ·N(µC ,ΣC),

where priors are πA = 10
28

, πB = 9
28

, πC = 9
28

. The locations of Gaussian are at

µA = (−3, 0)T ,µB = (3.5, at), and µC = (3.5,−at)

and their shapes are defined by

ΣA = ΣB = ΣC = diag(1.5, 0.03).

MCAR missingness is applied with equal probability 7/9 to components B and C

only, as depicted in Figure 7.4. Thus the marginal densities of the covariate are

fXobs(xobs) =
5

7
N(−3, 1.5) +

2

7
N(3.5, 1.5), and

fXmis(xmis) = N(3.5, 1.5).

The densities are illustrated in Figure 7.5.

In the experiments iid samples of n = 1000 observations are taken. As a

consequence the number of missing observations is Nmis ∼ Bin(1000, 0.5) and Nobs =

n− Nmis.
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Figure 7.5: Marginal densities fX(x) for missing and observed datas.
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7.2.2 Theoretical predictions of KSc at X = 3.5

Here we try to predict the outcome of simulation runs using theoretical insight that

were developed in the previous chapters. Yet, We do not follow the previous results

directly, but rather we use them as a guideline for a more detailed analysis under the

current case. This analysis includes Kolmogorov-Smirnov measures (K-S), which

we believe are the best descriptors of imputation performance under multimodal

missingness.

The Kolmogorov-Smirnov measures for fY |X(y|x = 3.5)

Here we shall study the conditional measure

KSc = E
[

sup
y
|FY mis|x(y|x = 3.5)− F̂Y imp|X(y|x = 3.5)|

∣∣∣n
]
.

When n → ∞ it is relatively easy to see that there are 10 types of behaviours

among the combinations of imputation methods and strategies that are studied in

this thesis. The behaviours are labelled A1-A3, B1-B5, C1-C2 and they can be

characterized as in Table 7.3. They are illustrated in Figure 7.6.

A1 A2 A3

B1 B2 B3

B4 B5 C1

C2

Figure 7.6: An illustration of the behaviour of ten different types of imputation

models for Case 2. The dashed ellipses denote the 90% confidence regions for the

Gaussian components A-C, and the dots illustrate realizations of imputations. Dis-

tributions fY imp|x=3.5(y) have also been drawn.
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Class Methods Description

A1 N,M Flexible model that goes through one observation

at x = 3.5.

A2 CJ,M Stiff model that goes through either mode of

component B or C at x = 3.5.

A3 CJ,R Same as A2 but added noise in the realization of

CJ,D imputations.

B1 B,M Stiff model that goes through the center of data

L,M (between two modes).

K,M

(C,M),(T,Ms),(T,M)

B2 B,R Same as B1 but added noise of Y obs in the

L,R realization of imputation

K,R (mean + noise without covariate information).

B3 T,Rs Same as B1 and B2 but added noise is

T,R estimated at X = 3.5

C,R (mean + noise at X = 3.5).

B4 B,D Random donor without covariate information

(yields three modes).

B5 C,D Conditionalized random donor at X = 3.5.

T,D

C1 TJ,Ms Multimodal algorithm that randomly selects

TJ,M either mode for the realization of imputation.

C2 TJ,D Methods can, in principle, model any

TJ,R conditional distribution fY mis|X(y|x) provided

TJ,Rs distributions fY mis|X and fY obs|X are same.

Table 7.3: Characteristical differences between methods in the multimodal case.

With the above idealizations we can assume that imputed data at x = 3.5

follows distribution

Y imp =





Y obs(j|x = 3.5), if class A1

µ̂i, if class A2

Y obs(j|x = 3.5) + ε̂I , if class A3

µ̂obs, if class B1

µ̂obs
|x=3.5 + ε̂, if class B2

µ̂obs
|x=3.5 + ε̂|x=3.5, if class B3

µ̂ + ε̂D, if class B4

µ̂ + ε̂D
|x=3.5, if class B5

µ̂I , if class C1

µ̂I + ε̂I , if class C2,

(7.1)

where
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Y obs(j|x = 3.5) denotes some observation close to x = 3.5. Thus this model

follows randomly selected observation.

µ̂i is the mean of mode (B or C) that is closest to x = 3.5.

ε̂I is randomness that is selected from either the component B or C. Thus

ε̂I = N(0, 0.03).

µ̂obs is the mean of observed data: µ̂obs = 1
nobs

∑
j Y obs

j .

µ̂obs
|x=3.5 is the mean at x = 3.5.

ε̂ is randomness that is drawn from a zero mean Gaussian distribution with

variance τ̂ obs = 1
nobs−1

∑
j(Y

obs
j − µ̂obs)2.

ε̂D is randomness that is drawn from residuals {Y obs
j − µ̂obs}j.

ε̂D
|x=3.5 is randomness that is drawn from residuals {Y obs

j − µ̂obs}j for which

{Xobs
j } are close to x = 3.5.

µ̂I is the mean of mode (B or C) which is selected randomly.

Using Equation (7.1) it is possible to compute the expected predictions of the K-S

measure at X = 3.5. For some groups this is quite easy. For example we may

assume that

KSc ≈




0.75, for group A1,A2

0.5, for groups B1,A3

0, for group C2/B5.

In group A2 predictions are in either mode (B or C). If they are in mode B then

the cumulative probability for Y mis|x = 3.5 is 0.75 ”epsilon” below mode B, and 0

for predictions. In case that predictions are in mode C cumulative probability of

Y mis|x = 3.5 is 0.25, whereas for predictions it is 1.00. In either case the KSc value

is 0.75. If the variance within modes B and C is ignored then A1 behaves as A2.

Of course this does not hold, but the approximation is still somewhat justifiable the

because variance within modes B and C is small relative to the variance between the

two modes (randomly selected closest observation is close to either of the modes).

The methods in group B1 yield predictions that are at the center of data (be-

tween the two modes). Thus the supremum of absolute differences between condi-

tional cumulative distribution functions is reached at this position because fY mis|x=3.5

is symmetric. The supremum value, KSc, is 1.0-0.5=0.5 .

In group A3 all predictions are in either component (B or C). Thus ”component

prior is doubled”. Therefore supremum value is reached at the center of data due

to the symmetry of fY mis|x=3.5. If all predictions are in component B then the

cumulative mass of predictions between the modes is zero, whereas it is 0.50 for

missing values. On the other hand, if the predictions are in component C then mass

is 1.0 for predictions and 0.50 for missing values. In either case the supremum value

is |1.0− 0.5| = 0.5.

Imputation distribution is exactly the same as the distribution of missing values

at x = 3.5 in groups C2 and B5. Therefore supremum value is reached in infinitely

many positions, and it equals zero in all the positions.



155

Further when at = 0 we may expect that KSc is 0.5 for group C1. The reason for

this is that C1 behaves as group B1 (modes B and C are same). When modes B and C

are ”well separated” then the supremum value is reached at two positions. Namely at

modes B and C. The absolute mass differences in these modes are |0.25−0.50| = 0.25

and |0.75− 0.50| = 0.25. Thus the value of KSc is 0.25.

For the rest of the groups, including group C1, the estimate is achieved using

numerical integration. The outcome of these predictions is illustrated in Figure 7.7.
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Figure 7.7: Theoretically predicted conditional Kolmogorov-Smirnov statistic as

function of 2at.

7.2.3 Simulation results at x = 3.5

We used nsim = 200 repetitions in the simulations. Imputations were done 500

times at point x = 3.5 for each repetition. In the computation of the Kolmogorov-

Smirnov distance the cumulative distribution function (cdf) of Y mis|x = 3.5 was

approximated by the empirical cdf, which was constructed by drawing a sample of

size 2500 from f(Y mis|x = 3.5) once for each value of at.

The main difference between theoretical predictions and the simulated results is

caused by an estimation error when using a finite sample of n observations. We can

expect that this must be dominant in nonparametric methods like kernel regression

and for some of the cell methods.

In addition two biases computed at x = 3.5 via simulations are

Bias[µ̂imp|x = 3.5] = E[µ̂imp|x = 3.5]− E[Y mis|x = 3.5]

and

Bias[τ̂ imp|x = 3.5] = E[τ̂ imp|x = 3.5]− Var[Y mis|x = 3.5].

From a theoretical insight we may assume that Bias[µ̂imp|x = 3.5] is close to zero,

while Bias[τ̂ imp|x = 3.5] is close to zero only for the methods in classes B3, B5, C1,
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and C2. Note that C1 performs well, because the within modes (components B and

C) variance of Y mis at x = 3.5 is neglible (0.03) relative to the variance between

the modes. These classes contain methods which are able to yield an approximately

unbiased variance estimate at point x = 3.5. Conditional variance estimate (if any)

for the other methods is worse than in the four mentioned classes.

The results of conditional simulations are summarized in Figures 7.8-7.11. The

numerical values for KSc can be found from Table 7.4. For the sake of clarity the

results of the KSc measures are divided into two Figures 7.8 and 7.9. As we can see,

the results correspond quite well to our predictions in Figure 7.7.

B,D
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 0.20

 0.40

t
 0.00  0.44  0.89  1.33  1.78  2.22  2.67  3.11  3.56  4.00

KSc

2a

(B,M) (L,M) (K,M)

(B,R) (L,R) (K,R)

Figure 7.8: Simulated conditional K-S as func-

tion of 2at for baseline and regression methods.

The dashed lines are included for an easier com-

parison with Figure 7.9.

The most notable differences to our predictions are found in classes C1 and C2.

Methods in class C1 (TJ,M and TJ,Ms) yield a KSc value of close to 0.4, whereas we

predicted the value to be 0.25. The reasons for this difference may be i) estimation

errors due to finite sample size, and ii) the assumed imputation distribution differs

from the actual one. In imputation, four best matching cells are searched at x = 3.5.

If these four cells are not uniformly spread to components B and C (two cells in both

components) then ”prior bias” may occur. Recall that in data generator components

B and C are equally probable at x = 3.5. Methods in class C2 and B5 yield KSc

values of 0.15-0.20 that are clearly higher than the expected value that is 0. A partial

reason for this may be found in estimation errors due to small sample size, as for

class C1. Further, ”prior bias” which was mentioned earlier is a possible reason for

class C2 (which contains methods TJ,R, TJ,D and TJ,Rs).
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Figure 7.9: Simulated conditional K-S as func-

tion of 2at for cell methods.

The two biases Bias[µ̂imp|x = 3.5] and Bias[τ̂ imp|x = 3.5] are shown in Figures

7.10 and 7.11.

Again the results are quite expected. The methods in categories B3, B5, C1

and C2 can estimate the variance of data quite well, while the methods in other
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Figure 7.10: Conditional bias of

µ̂imp|X = 3.5 wrt. E[Y mis|X = 3.5].
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Figure 7.11: Conditional bias of

τ̂ imp|X = 3.5 wrt. Var[Y mis|X = 3.5].

classes are considerably worse.

7.2.4 Preservation of marginals

As earlier, nsim = 200 repetitions were used in the simulations. In the computation

of the Kolmogorov-Smirnov distance the cumulative distribution function (cdf) of

Y mis was approximated by empirical cdf, which was constructed by drawing a sample

of size 2500 from f(Y mis) once for each at.

As we know from our basic decompositions in Chapter 3 the marginal dis-

tribution of Y imp can be achieved via several ways. We can have for example a
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perfect model with optimal simulated randomness or a flexible (noisy) model with

zero added noise. We may therefore assume that some models that behave badly at

some conditional point x, can actually yield good results on a marginal level. This

is especially true for very flexible models like 1-nearest neighbour imputation.

The results of the marginal measures for KS are shown in Figures 7.12 and

7.13. The numerical results are shown in table 7.4.
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Figure 7.12: Simulated K-S as function of 2at for baseline and

regression methods.
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Figure 7.13: Simulated K-S as function of 2at for cell methods.
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KS KS KS KSc KSc KSc
(2at = 0) (2at = 20/9) (2at = 4) (2at = 0) (2at = 20/9) (2at = 4)

Method
B,M 0.51 0.52 0.50 0.51 0.50 0.51
B,R 0.05 0.41 0.44 0.05 0.40 0.44
B,D 0.05 0.38 0.37 0.05 0.37 0.37
L,M 0.51 0.52 0.50 0.52 0.50 0.51
L,R 0.05 0.41 0.44 0.05 0.41 0.44
N,M 0.09 0.10 0.10 0.75 0.73 0.75
K,M 0.45 0.52 0.50 0.53 0.50 0.51
K,R 0.06 0.42 0.44 0.06 0.42 0.45
T,M 0.37 0.52 0.50 0.58 0.51 0.51
T,R 0.06 0.27 0.30 0.13 0.31 0.34
T,D 0.08 0.08 0.08 0.23 0.22 0.23
T,Ms 0.43 0.52 0.50 0.55 0.50 0.51
T,Rs 0.08 0.28 0.32 0.09 0.29 0.33
C,M 0.39 0.52 0.50 0.57 0.50 0.51
C,R 0.06 0.27 0.30 0.12 0.30 0.33
C,D 0.08 0.09 0.08 0.20 0.19 0.19
TJ,M 0.19 0.19 0.19 0.36 0.34 0.33
TJ,R 0.07 0.07 0.07 0.13 0.16 0.15
TJ,D 0.08 0.09 0.08 0.17 0.20 0.18
TJ,Ms 0.22 0.22 0.22 0.38 0.36 0.35
TJ,Rs 0.07 0.08 0.08 0.13 0.15 0.14
CJ,M 0.32 0.31 0.33 0.65 0.75 0.75
CJ,R 0.06 0.15 0.17 0.22 0.51 0.51
CJ,D 0.08 0.16 0.17 0.30 0.54 0.54

Table 7.4: Marginal (KS) and conditional (KSc) Kolmogorov-Smirnov statistics for

2at ∈ {0, 20/9, 4}. The best results for each statistic are underlined, see Section

3.6.3 for details.

As predicted, the main difference in values of conditional and marginal K-

S statistics is achieved for 1-nearest neighbour (N,M) and joint cell based on K-

Means with the mean imputation strategy. The nearest neighbour method preserves

marginal distribution well. The reason for this is that now predictions are done in

various X positions, and given data both upper and lower mode distributions are

roughly preserved.

Figures 7.14-7.15 depict biases of estimators for the first two moments of marginal

distribution of Y . One can notice that estimators µ̂comp are roughly unbiased for

all imputation methods. As in the conditional case some of the second moment

estimators are clearly biased.
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Figure 7.15: Marginal bias of τ̂ comp wrt.

Var[Y ].

The methods from groups A3, B1, B2, and B4 are expected to perform poorly

when considering marginal bias statistic Bias[τ̂ comp]. The reason is that the variance

of Y mis is underestimated. In group B1 imputation variance is zero. Underes-

timation of the variance of Y mis occurs also in groups A3, B2 and B4. As in the

conditional biases case two quadratic curves corresponding to biased estimators may

be seen in Figure 7.15.

7.2.5 About the role of conditionalization

We use nsim = 200 repetitions in our simulation. Further, the impact of condi-

tionalisation is evaluated using 500 points, the distribution of which is described

later.

The differences between the conditional results at x = 3.5 and marginal (in-

tegral) results over the full support of X bring out a question about the role of

conditionalization. We like to know what happens to measures when conditionaliz-

ing a full marginal to one point at x = 3.5. To test this we simulate a multimodal

case with 2at = 4 (the largest separation between modes B and C) as a function of

conditionalization level as described below.

The idea is to draw a picture that illustrates how conditionalization affects the

Kolmogorov-Smirnov measure over all methods. For this purpose we define a new

type of measure as

KS2 = E
[

sup
y

∣∣FY mis|x(y|3.5−αt ≤ x ≤ 3.5+αt)−F̂Y imp(y|3.5−αt ≤ x ≤ 3.5+αt)
∣∣
∣∣∣n

]
,

where the range of X (imputation positions) is defined to be x ∈ [3.5−αt, 3.5+αt].

Imputation positions are uniformly distributed in this range, whereas distribution

of data is as earlier. In our experiments we define

αt =

{
1.24/2t−1 when t = 1, . . . , 9

0 when t = 10.

In other words, when t = 1 KS2 equals to the marginal Kolmogorov-Smirnov

measure and when t = 10 KS2 is the same as the conditional KS measure at x = 3.5.
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Note that marginalisation is done with respect to uniform distribution (whereas it

was done with respect to gaussian distribution earlier). By increasing t from 1 to

10 we move gradually from marginal K-S to conditional one.

The results are shown in Figure 7.16. As we can see, some methods are very

sensitive to the level of conditionalisation. Especially sensitive are the most flexible

models N,M and CJ,M. Also CJ,D and CJ,R are sensitive to conditionalisation.

This is quite expected because as the range of imputation positions gets smaller it is

likely that a given data set and model imputations using joint (Y, X) clustering with

K-Means are done in either component B or C. For 1-nearest neighbour distribution

of imputed values becomes more discrete as the range of imputation positions is

decreased. Eventually distribution collapses to one point (Y value of the observation

nearest to the position x = 3.5).

It is also apparent that those methods that perform well on conditional measures

also perform well on marginal measures, but the opposite is not true. Thus we

may conclude that conditional measures are better for the evaluation of overall

performance, and that joint (Y, X) clustering with TS-SOM seems to be optimal

for this case.

N,M

B,D

 0.08

 0.59

 0.76

 0.42

 1  2  3  4  5  6  7  8  9  10
t

T,DTJ,M
JK,D
JK,R

KS2

(TJ,D) (C,D)

(B,R) (L,R) (K,R)

(B,M) (L,M)
K,M

(T,Rs) (T,R)
C,R

TJ,Ms

(TJ,Ms) (TJ,M) (T,Rs)
(T,R) (C,R)

(TJ,Rs) (TJ,R)

CJ,D
(CJ,R) (B,M) (L,M) (K,M)
(T,Ms) (T,M) (C,M)

CJ,M

Figure 7.16: The role of increasing conditionalisation from marginal KS to condi-

tional KSc at 3.5
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7.3 Case 3: classification with multivariate X

Until now we have studied cases with one response variable Y and one covariate

X. This supports easy interpretations and allows some theoretical analyses to be

coupled with the work. But in the real-world, data is seldom as easy as it is in

our simulations. As a step towards more practical studies in Chapters 8 and 9,

we shall now consider a case with an increasing dimension of the covariate. This

complicates the problem considerably. Therefore we shall limit the study to a simple

linear classification problem under MCAR missingness. Thus we know that linear

regression should be the best method for the task.

Because we want to test the imputation performance of our methods, we com-

plicate the problem slightly by adding Gaussian noise to class information Y|x, which

otherwise is coded using two crips values: one and zero. Thus our optimal classi-

fier returns correct class in x ∈ Rp space and adds just the right type of noise to

predicted class identifier Ŷ .

7.3.1 Data generator

Our problem is to predict noisy class information Y using a multivariate Gaussian

covariate x ∈ Rp. The classes of Y are defined by a threshold equation

Y = H(zT X) + ε,

where H(a) is the Heaviside step function

H(zT X) =

{
1 if zT X > 0

0 otherwise

and the noise follows Gaussian distribution

ε ∼ N(0, 0.07).

We further assume that all Xi, i = 1, . . . , p are identical Xi ∼ N(0, 1) implying that

X ∼ N
(
[0, . . . , 0]T , diag(1, . . . , 1)

)
. Density of Xi is illustrated in Figure 7.17.

The parameter vector z defines a half-space where E[Y |x]=1, while on the other

half E[Y |x] = 0. As all inputs are identically distributed Xi ∼ N(0, 1), the class

boundary goes through the origin of the p-dimensional Gaussian covariate space X.

In the direction z the problem becomes essentially one-dimensional, as depicted in

Figure 7.18.

For a given data set the direction vector z is fixed, but in our repeated simula-

tions z is taken randomly for each experiment from fX(x). By this we try to ensure

that no direction z is ”accidentially” favoured by some of the imputation methods.

For 2+1-dimensional case example data is depicted in Figure 7.19. Two-dimensional

projections are included for clarity.
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Figure 7.17: Distribution of Xi.

This is also the distribution of Zi.
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a random sample of Y as function

of projection u = xTz.
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Figure 7.19: Two randomly selected data sets, and their 2D projections, with two-

dimensional Gaussian covariate X. For simplicity, only training observations are

shown. Black dots denote class y=1, wheras class y=0 is marked by cubes/squares.

In the experiments the dimension p of the covariate x ∈ Rp is varied from 1 to

11, while the number of observations n is kept constant n = 600. The missingness
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is selected with Bernoulli probability 1
2
, implying that Nmis ∼ Bin(600, 0.5) and

Nobs = n− Nmis.

The evaluation of imputation performance is done in terms of integrated mean

squared error

MISE(Ŷ imp) = EZE[(Ŷ imp
|x,z − Y mis

|x,z )2|z],
which can further be written in terms of bias and variance (and expected variability

of target, irreducible term, which is constant 0.07 and is omitted here)

Bias2[Ŷ imp] = EZE
[(
E[Ŷ imp|x, z]−H(xTz)

)2|z
]
, and

Var[Ŷ imp] = EZE
[
Var[Ŷ imp|x, z]|z

]
.

All the methods are used in a rather straightforward way; we try to predict Y mis

using observed covariate xmis. For some methods special tuning is required: for

kernel regression the bandwidth was selected as λ = 2(Nmis)−1/(4+p), for TS-SOM a

two-dimensional latent neighborhood was used with 64 cells, and 32 cells were used

with K-Means clustering.

7.3.2 Theoretical insight

Due to the simplicity of the problem we can do some obvious predictions about the

performance of the imputation methods. This is summarized in the following list

Baseline methods are strongly biased, making an expected squared bias

Bias2[Ŷ imp,B] = EZ
[
(
1

2
)2

]
= 0.25.

The variance is not affected by the dimension of X and therefore it is close to

zero. Formally

Var[Ŷ imp,B] = Var[µ̂obs]
Taylor≈ τ ∗obs

n(1− p∗)
= 0.32/300 = 0.001.

and

Var[Ŷ imp,B,S] = Var[Ŷ imp,B] + E[τ̂ obs] ≈ 0.321,

where strategy S ∈ { R, D }.
Linear regression is expected to lead a considerably lower expected squared bias

than the baseline methods. Prediction variance grows quadratically as the

distance from zero point is increased.

Cell methods are the most sensitive for increasing X-dimension, because they try

to spread cells over all data. Thus with fixed n and increasing dimension data

more spread ensues. On average, there will be a larger X-space, for each cell,

which leads to a larger estimation variance.
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7.3.3 Simulation results

In simulation we do 10 draws of direction vector Z for each dimension of covariate

X. Given direction z, 25 repetitions of data samplings and imputations are done in

1600 x positions. These positions are drawn once for each z and the dimension of

X. Thus over the repetitions the positions are fixed. The final results are computed

by averaging the results for 10 directions of Z.

The results are depicted in Figures 7.20-7.22 for expected squared bias, vari-

ance, and mean squared error. Irreducible error, which is constant 0.07 for all the

methods, is excluded from the expected mean squared error curves. A minor simu-

lation inaccuracy is visible in the squared bias results for random strategies. As an

example, the results for baseline mean and random strategies should be same. This

is caused by the higher variability of bias estimate for random strategies. Simulation

inaccuracy is not major issue here, because it is low, roughly 0.01 squared bias units.
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Figure 7.20: Expected squared bias as function of the

dimension of X.
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mension of X. Irreducible error, which is 0.07 for all methods, is
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The following conclusions can be made from the results of the simulations:

Baseline methods perform the worst with respect to expectation of squared bias.

Further, the baseline with random or donor strategy yields the highest variance

at least up to dimensions 8-9 of X. Squared bias is roughly 0.25 for all the

baseline methods. Further, the mean imputation strategy yields an approxi-

mately expected variance of 0.001, whereas the random and donor strategies

yield a variance of 0.32. Thus, theoretical results are verified.

Linear regression methods yield a low variance and squared bias. Further, both of

the quantities are not affected, at least significantly, by the dimension of X.

Nearest neighbour is able to yield the lowest squared bias which grows as the di-

mension is increased. However, the method is penalized by its high variability.

Expected variance also increases as a function of the dimension of covariate.

Cell methods yield a smaller squared bias than linear regression methods at least

up to dimension 4 of X. Joint (Y, X) clustering cell methods are able to do

this to dimensions 7-8 of X. Among cell methods, variance grows the lowest

for the covariate TS-SOM method with smoothing.

The results for methods other than baseline and linear regression are impacted by

the dimension of covariate.
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7.4 A study of computational properties under

Case 3

Here we shall study the computational time complexity of imputation methods. The

effect of sample size, dimension of covariate X, and the amount of missingness on

computational times are analysed. We measure the average model training time,

imputation time, and total time. For simplicity, we repeat the experiments of Case

3 with some exceptions. Parametrizations for imputation methods are the same,

except that now 64 cells are used with K-Means based methods. The processor

used in these simulations is Intel Pentium 4 Prescott, which runs at 3.0 GHz, with

512 megabytes of DDR RAM (with a frequency of 200 MHz and in a dual-channel

mode). The operating system is Linux.

Three simulation studies were done to investigate the effects. In the first study

the sample size is increased from 600 to 6100, while the dimension of X and the

missingness probability are kept fixed. In the second study the dimension of X is

increased from 1 to 25, while the sample size and missingness probability are fixed.

In the third study the missingness probability is increased from 5% to 85%, and the

sample size and the dimension of X are fixed.

7.4.1 Impact of the increase of sample size

In the experiment sample size is linearly increased from 600 to 6100 in 11 steps.

The dimension of X is fixed to 11, and the missingness probability is 50%. In the

simulation we use nsim = 15 repetitions. The curves for imputation model training,

imputation, and total time are depicted in Figures 7.23-7.25. For clarity, the meth-

ods for which the imputation time results are between the results for baseline and

kernel regression methods have not been marked.

From the results we can see that the training time is the highest for the joint

(Y,X) clustering methods based on TS-SOM and for kernel regression with random

imputation strategy (for which the estimation of residual variance is slow). Imputa-

tion model training time is zero for 1-nearest neighbour and kernel regression with

mean imputation strategy (N,M and K,M). Imputation is slowest for non-parametric

regression methods. Further, the corresponding curves are nonlinear and they grow

fast.

The total computational cost curves are roughly linear for all the methods

except for the nearest neighbour and kernel regression methods. Total computational

cost is highest for the joint Y, X clustering cell methods for sample size less than

3100. The shape of the cost curves is linear for the cell methods. The nonparametric

kernel and nearest neighbour regression methods have nonlinear cost curves. From

the results one sees that from sample size 3600 onwards the cost for nearest neighbour

is higher than for the fastest Y, X cell methods (TS-SOM cell method with mean

or random strategy and smoothing).
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onds.

N,M

 2.09

 2.79

 0.00

 1.39

 0.70

IMPUTATION_TIME(n)

n
 600  2100  3600  5100  6100

(K,M) (K,R)

(B,M) (B,R) (B,D) (L,M) (L,R)  

Rest of the methods

Figure 7.24: Imputation time (seconds).
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Figure 7.25: Total time (seconds).

7.4.2 Impact of increase of dimension of covariate

In this example the dimension of X is linearly increased from 1 to 25 in 8 steps.

Sample size is fixed to 1100, and missingness probability is 50%. The number of

repetitions is nsim = 15 in this simulation. Figures 7.26-7.28 depict computational

times as a function of the dimension of X. The baseline methods have the lowest

total computational times, and applying linear methods is the second fastest. From

Figure 7.28 one can notice that the total times for the Y, X TS-SOM cell methods

are the highest. This is due to the slowness of model training. The increase for

cell methods is only linear with respect to the dimension of X. Further, note that

the joint Y, X clustering TS-SOM cell methods utilize all available observed data,

whereas the other methods utilize only complete observations. Therefore the TS-

SOM joint cell methods use twice as much covariate data as do other methods on

expectation.
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Figure 7.26: Training time as function of

the dimension of X. Time is measured
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7.4.3 Impact of increase of missingness probability

Here the missingness probability is linearly increased from 5% to 85% in 16 steps.

The dimension of X is fixed to 11 and sample size is 1100. Fifteen, nsim = 15,

repetitions are used in this simulation. It is expected that the training time decreases

as the missingness probability is increased (because the size of training data is

smaller on average). However, joint (Y, X) clustering with TS-SOM is an exception

to this, as an incomplete training data algorithm is used. For all TJ methods the

training time is expected to grow as the missingness probability is increased. Figures

7.29-7.31 depict computational time curves as a function of missingness probability.
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Figure 7.31: Total time (seconds).

The following observations are made from the results:

TJ methods: total computational costs for the joint Y, X clustering cell methods

based on the TS-SOM algorithm grow linearly as the missingness probability
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is increased. The reason for the increase is that the corresponding training al-

gorithm is costlier for incomplete observations than for complete observations.

Other cell methods: all other than the TJ cell methods get faster as missingness

probability is increased. The reason for this is that the training data set,

which is a fully observed part of the whole data, gets smaller on expectation,

while training of models becomes faster.

Kernel regression with random strategy: estimation of residual variance becomes faster

as missingness probability is increased, because the size of training data is on

average smaller.

Finally, we would like to mention the following notes concerning all the three

previous experiments:

Nearest neighbour: our implementation of k-nearest neighbour could be optimized

for the value of k=1. Therefore the imputation times could be reduced close

to the times for kernel regression method K,M.

K-Means clustering: no repetitions of model training, to prevent bad local solutions,

is done. Thus in practical applications, with a data set of similar dimensions,

the training times are larger by some factor (say 10-25 for example).

Non-smoothed joint (Y, X) clustering TS-SOM cell methods: could be made as fast

as the smoothed TJ methods.

7.5 Summary

In this Chapter we have studied distributional and unit level properties of imputation

methods, as well as the impact of the dimension of covariates to imputation results.

Finally, the methods were evaluated with respect to computational properties also.

Next we summarize our findings.

It was shown that at a distributional level many methods are able to preserve

the first moment under transition from MCAR to MAR mechanism. In case of

multimodal distribution and NMAR mechanism some of the methods were able

to preserve marginal distribution, but only a few of them were able to preserve

conditional distribution. Of a particular note are the joint Y, X clustering methods

based on TS-SOM, which were able to deliver a good performance in the multimodal

case and in the preservation of conditional distribution.

At a unit level linear regression, kernel regression, and cell methods with mean

imputation strategy performed quite well. Nearest neighbour regression was penal-

ized by its high variance. The methods with random and donor strategies were,

as expected, inferior in most of our experiments. Linear regression showed best

robustness against the increase of data dimensionality with a low expected mean

squared error. This is expected as our data model is well approximated by linear

regression. The nearest neighbour method is able to produce quite good results at



172

distributional and unit level studies. However, multimodal conditional distribution

is not well preserved.

Computational properties included training time, imputation time, and total

time. Training times increase roughly linearly for the joint (Y, X) clustering cell

methods, and for the covariate cell methods based on K-Means, as a function of

data dimensions. The nearest neighbour and kernel regression methods showed

rapid increase of imputation and total computational times as a function of sample

size. High computational requirements may render the nearest neighbour or kernel

regression methods to be unusable in practice. The use of cell methods is to be pre-

ferred with large data sets. Nonparametric regression methods may be modified for

faster performance using a some kind of discretization, i.e., binned kernel regression

(see for example [41]). One may except this modification to increase squared bias

at least.



Chapter 8

Simplified case study: UK survey

of small and medium-sized

enterprises

This chapter describes a case study that is similar but not exactly the same as the

annual business survey (ABI)1 that was used in the Euredit project [11]. The mo-

tivation of the current study is to test our refined methodology using well-known

data, and to overcome some shortcomings of the previous study. The main differ-

ences between the current case and the Euredit experiments are the following:

• We have a well-defined MAR type missingness generator, while the missingness

in EurEdit project was due to MCAR.

• We compute ”expected” results using repeated samples from some data gen-

erator, while only one sample was imputed in Euredit. Thus we can avoid

”accidentially” good or bad results.

• We now have more experience about the studied survey and imputation. Dur-

ing Euredit we were still novices with the problem, which contributed to many

of our shortcomings in the use of our technology.

• The current study is not as ”objective” as Euredit, because we do know what

the true values are. But, of course, we try to be as objective as we can, and

no knowledge about the true values is used to ”boost” the performance of the

proposed methodology.

• In this experiment, only a small ”clean” subset of data is used, while in Eu-

redit the data was in a ”real-world” format including special values and other

nuisances. An experiment that is more close to a real-world case will be given

in Chapter 9.

1See www.statistics.gov.uk/abi/ for general information on UK ABI data sets, referenced
02.05.2007



174

The data set in this case is based on United Kingdom Survey of Small and

Medium-sized Enterprises’ Finances 2004, produced by Fraser2, sponsored by Bank

of England, and supplied by the UK Data Archive. The data are copyright of Bank

of England and University of Warwick. Here the first edition of data set [26], which

is dated 1st February 2004, is used. The following statement is required for the use

of this data set:

The original data creators, depositors or copyright holders, the funders of the

Data Collections and the UK Data Archive bear no responsibility for further analysis

or interpretation done in this thesis.

Log transformed turnover for ending accounting year is a variable of interest.

Multiple covariates are used for predicting turnover. A description of the variables

used is given a bit later. As explained later, a subset of data is used in the experi-

ments as a clean ”true data set”. In the experiments we repeat samples from ”true”

data and generate missingness using a MAR type mechanism. For each incomplete

sample the missing values are imputed and the result is evaluated using evaluation

statistics. The process is repeated as long as it takes to eliminate biases due to the

setup of the experiment.

8.1 Description of the dataset

There are 699 variables and 2500 observations in the dataset. Most of the variables

are answers to survey questions. Different questions were asked from different kinds

of enterprises (i.e., start-ups versus non start-ups), and many observations are in-

complete. Due to the nature of our experiment we shall not impute ”naturally”

missing values. Instead we pick a complete subset of data and apply our own miss-

ingness generator to it. In this example we shall also omit all special values such as

”don’t know” and ”not asked”. In addition, zero values are omitted. See Appendix

A8.2 for details on the construction of the subset. As a result we are left with a

very small clean data set of 678 observations and eight variables, including sampling

weights.

The variables of our data are summarized in Table 8.1. Missingness is applied

to variable O2 (turnover) and six other variables are used as covariates. The covari-

ates include information about turnover, number of employees and age of business,

balance sheet, and accounts.

2University of Warwick. Warwick Business School. Centre for Small and Medium-sized Enter-
prises
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Variable Description

Income and profits

O2 Turnover for ending year (variable of interest) [in

pounds].

Screening for eligibility

S4 SIZE Number of employees [from 2 to 240].

AGE Age of business, derived as 2004-S11 for non-

special values, where S11 is the year when business

was established.

Balance sheet information

P1 Total amount of assets held [in pounds].

P2 Total amount of liabilities owned [in pounds].

Use of current accounts

E3D Approximate amount of money in current business

or personal account at present.

E5 Total monthly or quarterly bank charges on the

account [charges for banking services eg including

writing or paying in cheques, making BACS

(Bankers Automated Clearing System) payments but

not interest or charges for any loans or overdrafts].

Sampling information

PWEIGHT Probability weights [approximate range is from 1.15

to 6288.81].

Table 8.1: List of the variables used and their descriptions.

The variables of the original data are preprocessed for our purposes as follows.

In the original data there is variable S11 that contains information about the age

of the business. We have changed it into a more direct form AGE=2004-S11. Then

variables O2 (turnover), S4 SIZE, AGE, P1, P2, E3D and E5 are log transformed

using formula

x′ = ln(x),

where ln(·) denotes natural logarithm.

Relationships between the log-transformed variables are seen from a scatter

matrix which is depicted in Figure 8.1. From the scatter plot matrix one can notice

that turnover and sampling weights are negatively correlated. The scatter plot also

reveals that turnover for the ending year (O2) and number of employees (S4 SIZE)

are highly linearly dependent. There are also dependencies between turnover and

other covariates.

Log-transformed turnover with a Gaussian fit is shown in Figure 8.2, indicating

that the log-transformed turnover is close to Gaussian distributed. The distribution

of sampling weights is visualized in Figure 8.3. As we can see, the number of small

enterprises is underpresented in the sample. In this experiment sampling weights are
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used in the computation of evaluation statistics so that the computed imputation

biases and variances can be interpreted in terms of real-world importance. The

use of sampling weights in imputation methodology depends on the method. In

our experience, the best practice is to use sampling weights with baseline methods,

while methods that utilize covariates often do better without weighting. More details

about this are given in Section 8.2.
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8.1.1 Data generator and simulation technique

Our data generator is based on a previously constructed finite population and on

synthetic missingness. Nonresponse mechanism of population units is defined as

Pr(”Nonresponse for O2”|S4 SIZE = x) =
1√
x
,

where variable S4 SIZE is in the original scale. This is a missing at random (MAR)

mechanism. Figure 8.4 depicts the curve for a probability that turnover (O2) is

missing as the function of the number of employees (S4 SIZE). The distribution of

the number of employees is shown in Figure 8.5. The reason for the use of MAR

mechanism is that it is more realistic than MCAR. In business inquiries it is quite

typical that smaller enterprises are likely to answer less often than larger enterprises,

due to lack of resources.
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Simple random sampling of size n = 600 without replacements is used as the

simulation technique. This reflects sampling variability. A sampling fraction is ap-

proximately 0.88. Probability weights are not used when drawing a sample. How-

ever, weights are included in each drawn sample. A simulation technique with the

above defined nonresponse probability function yields an expected missingness per-

centage of approximately 25% in random samples.

The use of sampling without replacements is the only possibility, because we

do not want copies of true values in the simulation sample for which missingness is

generated afterwards. However, we must be aware of possible problems due to the

small size of our original data.

8.1.2 Analysis of incomplete sample data

In this section an incomplete random sample from our data generator is studied simi-

larly as we would do with any real-world data. Analyses are done for log transformed

variables so that the assumptions of imputation models hold better. First, correla-

tion coefficients are estimated to reveal linear dependencies. Dependencies within
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the sme (small or medium) enterprises group and the large enterprises group are

also briefly analysed. This is followed by the visualizations using the self-organizing

map.

Correlation coefficients between turnover and covariates are computed from the

complete part of the random sample. We divide the enterprises rather arbitrarily

into two classes: enterprises with turnover (O2) less or equal to 4.7 million pounds

belong to the small and medium (sme) class, while the rest of enterprises belong to

the large enterprise class. In the example sample the complete part includes 445

enterprises of which 344 belong to the sme class and 101 to the large enterprise class.

Estimated correlations between response and covariates are depicted in Table 8.2.

Sampling weights have not been used. The correlation coefficients reveal that espe-

cially for small and medium enterprises there seems to be a somewhat strong positive

correlation between turnover and number of employees (S4 SIZE) and turnover and

liabilities (P2). There are also quite strong linear dependencies between turnover

and other covariates excluding age of enterprise. For larger enterprises these corre-

lations are weaker.

ln S4 SIZE ln AGE ln P1 ln P2 ln E3D ln E5

ln O2 0.75 0.12 0.65 0.72 0.52 0.56

ln O2|O2 ≤ 4.7 ∗ 106 0.70 0.13 0.50 0.64 0.46 0.51

ln O2|O2 > 4.7 ∗ 106 0.19 0.13 0.42 0.19 0.27 0.00

Table 8.2: Estimated correlations between log-transformed turnover (O2) and co-

variates.

Data modelling using a two-dimensional self-organizing map (SOM) is done

with 64 cells. A model is visualized in data space, and data local statistics are vi-

sualized in latent space. Figure 8.6 depicts a 2-D SOM in a data space of log trans-

formed and min-max [0,1] equalized turnover (O2), number of employees (S4 SIZE),

and assets (P1). The same model is shown in Figure 8.7 in a 2-D latent space, in

which local averages of the three log-transformed variables are shown as bars. From

the two figures linear dependency between number of employees and turnover is

visible. One can also conclude that SOM is able to model dependencies between

variables.
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S4 SIZE, assets P1) in 2-D latent space.

8.2 Imputation procedures

A total of 24 combinations of imputation methods and strategies were used in this

case, including the cell methods that were introduced in the previous chapters. As

mentioned above, all the variables were log-transformed. Then the ranges of the

variables were equalized using min-max rule

x′ =
x− xmin

xmax − xmin

,

where maximum and minimum values are computed from the complete part of data.

As an exception for joint (Y, X) clustering with TS-SOM the values are computed

from all the available values of variable. Other equalizations, such as variance based

equalization, were also tested but min-max gave the best performance.

After preprocessing, imputation methods and strategies were used to create

completed data. As usual there were some methodology specific settings, which are

described below:

i) Sampling weights are used only with baseline methods. Thus the weighted base-

line imputation procedures are as follows

Mean strategy: weighted prediction is

Y imp,B,M = µ̂obs,w =
1

S

∑

j:Xj∈Dtrain

WjY
obs
j ,

where S =
∑

j|Xj∈Dtrain Wj and Wj is the j:th sampling weight3.

3Weight equals the inverse of inclusion probability.
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Random strategy: imputation distribution is

Y imp,B,R ∼ N(µ̂obs,w, τ̂ obs,w),

where the weighted variance estimator is

τ̂ obs,w =
N obs

(N obs − 1)S

∑

j:Xj∈Dtrain

Wj(Y
obs
j − µ̂obs,w)2.

Donor strategy: Y imp,B,D is drawn from observed data values {Y obs
j }Nobs

j=1 with

replacements and using weights {Wj}Nobs

j=1 .

ii) Nearest neighbour is used with smoothing parameter k = 1.

iii) Kernel regression utilizes a spherical Gaussian kernel with a single smoothing

parameter. The bandwidth that was used is loosely based on the optimal-

ity criteria for a random design, which is introduced for example in Mack’s

paper[72]. However, the estimation of true optimal bandwidth is somewhat

complicated as it depends on the values of covariates and requires density esti-

mation, among other things. To simplify things, the assumption made here is

that smoothing is constant over all prediction positions (for a given number of

observations and covariates). Formally, let covariate vector be X. Smoothing

bandwidth is now 0.2∗Nobs−1/λ
where Nobs is the number of complete observa-

tions and λ = 1/(dim(X)+4). The bandwidth ’scale’ value of 0.2 was chosen,

because it seemed to work quite well. Some other values were tested too, but

the chosen alternative gave the best results.

iv) K-Means clustering is done with 32 cells.

v) Two-dimensional TS-SOM with lattice topology and 64 cells is used. Smoothing

parameter h = 0.5 is used with covariate cell methods based on TS-SOM to

form smoothed predictions of Y .

After imputation some simple post-processing operations were done to ensure

that all the values are ”realistic”. Namely, the imputed values were thresholded to

be less than or equal to ln(500 ∗ 106) in logaritmic scale, which for example removes

outliers caused by simulated randomness from the Gaussian model.

8.3 Evaluation statistics

For evaluation purposes the data set is divided between ”large” and ”sme” (small

and medium) sized enterprises, as was done in the data analysis. Company with

turnover Y orig
j (before log-transform) obeys

enterprise =

{
”large” if turnover > 4.7 million pounds

”sme” if turnover ≤ 4.7 million pounds.

Using this division we shall evaluate the imputation performance for three classes:
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a) all data.

b) sme, which corresponds roughly to 90.7% of unweighted observations and

89.8% of weighted missing values.

c) large enterprises.

After some consideration, it was decided that all evaluation results will be given

in a sampling weight corrected form under logaritmic scale. This is not the only

possibility, but it is, we believe, the most illustrative way of presenting the results.

Let Wj denote the sampling weight for observation j. The computed measures

of performance for the class of all enterprises are Kolmogorov-Smirnov distance,

MSE, and biases of µ̂imp and τ̂ imp as follows

KS = E
[

sup
y
|F̂Y mis(y)− F̂Y imp(y)|

∣∣n
]
, (8.1)

MSE = E
[

1

Sw

∑

j:Yj∈Dmis
Y

Wj(Yj − Y comp
j )2

∣∣n
]
,

Bias[µ̂imp|n] = E[µ̂imp − µ̂mis|n],

Bias[τ̂ imp|n] = E[τ̂ imp − τ̂mis|n],

where Y is log-transformed turnover variable, Sw =
∑

j:Yj∈Dmis
Y

Wj, Yj is the j:th

missing (random) observation, Y comp
j is the j:th imputed (random) observation, and

F̂ is an empirical cumulative distribution function.

In addition we shall compute the biases of imputed values at five quantiles of

the distribution of Y as follows

Bias[ξ̂imp
q |n] = E[ξ̂imp

q − ξ̂mis
q |n] for q ∈ {0.05, 0.25, 0.50, 0.75, 0.95},

where ξ̂imp
q and ξ̂mis

q are sample q-quantiles which are computed from Nmis missing

and imputed data values.

The quantities for which evaluation statistics (8.1) is computed are weighted

imputation results as follows

F̂Y imp(y) =
1

Sw

∑

j:Xj∈Dmis

WjI(Y comp
j ≤ y), (8.2)

µ̂imp =
1

Sw

∑

j:Xj∈Dmis

WjY
comp
j , and

τ̂ imp =
Nmis

(Nmis − 1)Sw

∑

j:Xj∈Dmis

Wj(Y
comp
j − µ̂imp)2,

where I(·) denotes indicator function. Quantities which are based on missing data

are defined similarly except that Y comp
j is replaced by Yj in the three formulas in

(8.2).
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The statistics for ”sme” and ”large” enterprises are the same as above, expect

that the values are computed over conditionalized data:

KSs = E
[

sup
y

∣∣F̂Y mis|Y mis≤ln(4.7∗106)(y)− F̂Y imp|Y mis≤ln(4.7∗106)(y)
∣∣ |n

]
,

KSl = E
[

sup
y

∣∣F̂Y mis|Y mis>ln(4.7∗106)(y)− F̂Y imp|Y mis>ln(4.7∗106)(y)
∣∣ |n

]
,

MSEs = E
[

1

#{j : Yj ≤ ln(4.7 ∗ 106)}
∑

j:Yj≤ln(4.7∗106)

Wj(Yj − Y comp
j )2 |n

]
, and

MSEl = E
[

1

#{j : Yj > ln(4.7 ∗ 106)}
∑

j:Yj>ln(4.7∗106)

Wj(Yj − Y comp
j )2 |n

]
,

where #(A) is the cardinality of set A. Thus we have three versions for KS and

MSE: all data, sme data, and large enterprise data.

Before describing the results a decomposition of mean squared error estimator

is given. This decomposition provides us with a good way to compare between unit

level performance of the methods.

Let m̂se =
∑

j:Xj∈Dmis W j

(
Yj − Y comp

j

)2

and µ̂mis = 1
Sw

∑
j:Xj∈Dmis W jYj.

Expectation of m̂se may be decomposed as (see Appendix A8.1 for details)

E[m̂se] = E[
∑

j:Yj∈Dmis
y

W j(Yj − µ̂mis)2 ]

︸ ︷︷ ︸
A: weighted variance of missing Ymis

j

(8.3)

+ E[
∑

j:Xj∈Dmis

W j(Y
comp
j − µ̂imp)2]

︸ ︷︷ ︸
B: weighted variance of imputed values

− 2E[
∑

j:Yj∈Dmis
y

W j(Yj − µ̂mis)(Y comp
j − µ̂imp)]

︸ ︷︷ ︸
C: −2∗weighted covariance between missing and imputed

+ (E[(µ̂mis − µ̂imp)2]︸ ︷︷ ︸
D: global estimation squared bias

,

where W j = Wj/Sw. Expectation of squared global bias estimator (term D) may

be further decomposed as:

E
[
(µ̂mis − µ̂imp)2

]
= (E[µ̂mis]− E[µ̂mis])2

︸ ︷︷ ︸
d1: expected squared bias

(8.4)

+ Var[µ̂mis]︸ ︷︷ ︸
d1: variance of µ̂mis

+ Var[µ̂imp]︸ ︷︷ ︸
d2: sample variance of µ̂imp

− 2E
[
(µ̂mis − E[µ̂mis])(µ̂imp − E[µ̂imp])

]

︸ ︷︷ ︸
d4: −2∗covariance between µ̂mis and µ̂imp

.



183

8.4 Evaluation of results

The evaluation of imputation performance is a somewhat subjective task. From a

single viewpoint one method may be better than another, but when several evalua-

tion measures are used simultaneously, it can be difficult to pick one clear winner.

In our setup of the general problem, where the future use of imputed data

is unknown, the best we can do is to try to preserve many evaluation measures

simultaneously. In simple terms we like to simultaneously preserve distributional

measures and minimize errors in unit level imputations. To understand which of the

methods is best in this, the following evaluations are made

i) Preservation of moments in terms of Bias[µ̂imp] and Bias[τ̂ imp].

ii) Preservation of five quantiles.

iii) Qualitative analysis of the preservation of distribution for selected methods.

iv) A detailed study of unit level errors in terms of MSE.

v) A comparison between distributional Kolmogorov-Smirnov measures vs. unit

level MSE performance.

The number of repetitions is 10000 except in the evaluation iii) in which the analysis

is based on a single repetition only.

As mentioned earlier, all these evaluations are done in log scale. Log scale is

used due to a problem with conversion to normal scale. Translation of results from

log-space to the original scale is not trivial as one might think, because ”truthful”

conversion from log scale to a normal scale must handle random noise terms in

a sensible way. To demonstrate the problem let Z = exp(Y ) be turnover in the

original space and Y be the logarithmic one. First the two moments of Y mis are

denoted as µ∗mis and τ ∗mis, and we assume that Y mis follows Gaussian distribution.

A basic result from statistics (see p.257 of [67]) states that Zmis = exp(Y mis) follows

log-normal distribution with the expectation:

E[Zmis] = exp(µ∗mis + τ ∗mis/2).

Provided that moment estimation is ignored, then the distribution of Y imp is roughly

N(µ∗obs, τ ∗obs) when the baseline method is used with the random strategy, where

µ∗obs and τ ∗obs are the first two moments of Y obs. Expectation of the mean estimator

for the imputed values in the original scale is then computed as

E[µ̂imp,B,R
z |nmis, n] =

1

nmis

n∑

j=nobs+1

E[exp(Y comp
j )|nmis, n] ≈ exp(µ∗obs + τ ∗obs/2)

⇒ E[µ̂imp,B,R
z |n] ≈ exp(µ∗obs + τ ∗obs/2).

Therefore the approximate biases for the two baseline methods are

Bias[µ̂imp,B,M
z |n] ≈ exp(µ∗obs)− exp(µ∗mis + τ ∗mis/2)︸ ︷︷ ︸

E[Zmis]

, and

Bias[µ̂imp,B,R
z |n] ≈ exp(µ∗obs + τ ∗obs/2)− exp(µ∗mis + τ ∗mis/2).
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From the above bias results one can notice that the first two moments of Y imp (log-

transformed turnover) affect the bias of the first moment estimator in the original

space.

8.4.1 Preservation of moments

It is quite well known that in log scale many enterprise variables like the turnover

can be well explained using linear models. We may therefore expect that a linear

model should preserve the two first moments of turnover rather well. To evaluate

this together with other models, we shall study both Bias[µ̂imp] and Bias[τ̂ imp].

To make interpretations easier, we include also relative performances in terms

of percentages as follows. The error percentage for µ̂imp is computed as

Err%(µ̂imp) = E
[∣∣ µ̂imp − µ̂mis

µ̂mis

∣∣ ∗ 100%|n
]
, and

Err%(τ̂ imp) = E
[∣∣ τ̂ imp − τ̂mis

τ̂mis

∣∣ ∗ 100%|n
]
.

The results are summarized in Table 8.3. As we can see from the table the first

moment µ∗mis is best preserved by linear regression, nearest neighbour imputation,

joint TS-SOM clustering with smoothing and by joint cell K-means clustering, but

basically all covariate methods perform equally. As we can see, joint TS-SOM tends

to underestimate µ∗mis while all the other methods overestimate it. This can be

explained by the tendency of TS-SOM to move all clusters close to each other,

which leads to underestimation of large values (large turnover is downward biased).

Note also the differences between Bias[µ̂imp] and Err%(µ̂imp). This is explained by

fact that error percentage is an expectation of the ratio of two random quantities.

Therefore for finite sample size n the variances of random quantities are mixed in

the result.

As expected the preservation of the second moment is more difficult. At their

best, methods can reach about 24% relative errors for the preservation of τ ∗mis.

In most cases the best performances are due to the simulated random imputation

strategy, which fails only with the standard X clustering under smoothing. All the

methods tend to underestimate the variance.
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µ∗mis ≈ 12.48 τ∗mis ≈ 2.24

Method Bias[µ̂imp] Err%(µ̂imp) Bias[τ̂ imp] Err%(τ̂ imp)
B,M 0.697(0.002) 5.611(0.019) -2.235(0.003) 100.000(0.000)
B,R 0.698(0.003) 5.629(0.023) -0.181(0.006) 24.441(0.184)
B,D 0.697(0.003) 5.624(0.024) -0.182(0.007) 25.792(0.206)
L,M 0.040(0.001) 0.904(0.007) -1.236(0.003) 54.430(0.078)
L,R 0.039(0.002) 1.137(0.009) -0.524(0.004) 24.457(0.131)
N,M 0.033(0.002) 1.087(0.008) -0.446(0.005) 25.371(0.147)
K,M 0.168(0.001) 1.477(0.009) -1.270(0.004) 55.813(0.108)
K,R 0.167(0.002) 1.550(0.010) -0.861(0.004) 37.446(0.144)
T,M 0.048(0.002) 1.100(0.008) -1.116(0.004) 48.700(0.132)
T,R 0.046(0.002) 1.332(0.010) -0.248(0.006) 24.538(0.181)
T,D 0.048(0.002) 1.315(0.010) -0.366(0.006) 25.983(0.171)
T,Ms 0.158(0.002) 1.486(0.010) -1.427(0.004) 62.934(0.090)
T,Rs 0.158(0.003) 2.032(0.015) 1.375(0.009) 67.987(0.497)
C,M 0.104(0.002) 1.261(0.009) -1.173(0.004) 51.208(0.130)
C,R 0.104(0.002) 1.476(0.011) -0.275(0.006) 23.893(0.166)
C,D 0.103(0.002) 1.474(0.011) -0.356(0.006) 25.731(0.172)
TJ,M -0.078(0.002) 1.254(0.010) -0.584(0.005) 29.454(0.158)
TJ,R -0.077(0.002) 1.363(0.011) -0.143(0.007) 24.842(0.198)
TJ,D -0.077(0.002) 1.337(0.010) -0.256(0.006) 25.100(0.179)
TJ,Ms -0.041(0.002) 1.130(0.009) -0.924(0.005) 40.517(0.153)
TJ,Rs -0.039(0.002) 1.232(0.009) -0.558(0.005) 28.479(0.157)
CJ,M 0.012(0.002) 1.088(0.008) -0.892(0.005) 39.770(0.155)
CJ,R 0.012(0.002) 1.262(0.010) -0.251(0.006) 24.553(0.183)
CJ,D 0.011(0.002) 1.261(0.010) -0.303(0.006) 25.955(0.184)

Table 8.3: First two moments of missing turnover and biases of estimators µ̂imp and

τ̂ imp. Standard deviations of simulation estimates are shown in parentheses. See

Section 3.6.3 for details.

8.4.2 Preservation of quantiles

Five quantiles were computed from both the original data and the imputed data set

as follows:

ξ̂mis
q = F̂−1

Y mis(q), q = (0.05, 0.25, 0.5, 0.75, 0.95)

ξ̂imp
q = F̂−1

Y imp(q),

where F̂−1
Y mis(q) gives point yq in which F̂Y mis(yq) = q, and similarly for imputed

values.

The bias in quantities ξ̂imp
q is simply Bias[ξ̂imp

q |n] = E[ξ̂imp
q − ξ̂mis

q |n]. These

results are given in Table 8.4.

As expected, the largest biases can be found from quantiles q = 0.05 and q =

0.95. A deeper study of the results reveals that in other quantiles the cell methods

dominate in this measure of performance. Out of 27 best results 22 are obtained

by cell imputation. It is also notable that joint clustering using TS-SOM seems to
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be the best alternative, especially when the simulated random strategy is used. For

small enterprises (q = 0.05) the best alternative seems to be nearest neighbour, but

also linear regression with random strategy works quite well. The same comment

applies also to the largest enterprises (quantile q = 0.95). Therefore for this type

of data one can recommend the joint (Y, X) clustering TS-SOM methods for mass

imputation of small and medium enterprises.

q = 0.05 q = 0.25 q = 0.50 q = 0.75 q = 0.95
ξ∗mis
q ≈ 10.54 12.01 13.12 14.22 15.87

Method Bias(ξ̂imp
0.05) Bias(ξ̂imp

0.25) Bias(ξ̂imp
0.50) Bias(ξ̂imp

0.75) Bias(ξ̂imp
0.95)

B,M 2.633(0.004) 1.167(0.004) 0.053(0.003) -1.042(0.004) -2.693(0.004)
B,R 0.275(0.004) 0.193(0.003) 0.054(0.002) -0.065(0.003) -0.342(0.004)
B,D 0.293(0.005) 0.331(0.004) 0.051(0.002) -0.207(0.003) -0.307(0.004)
L,M 0.603(0.003) 0.208(0.002) 0.011(0.001) -0.151(0.002) -0.344(0.003)
L,R 0.147(0.003) 0.080(0.002) 0.016(0.002) 0.032(0.002) 0.008(0.003)
N,M 0.024(0.006) 0.136(0.003) -0.013(0.001) -0.080(0.002) -0.040(0.003)
K,M 0.766(0.004) 0.303(0.002) 0.145(0.001) -0.233(0.002) -0.401(0.003)
K,R 0.449(0.004) 0.248(0.002) 0.091(0.001) -0.045(0.002) -0.198(0.003)
T,M 0.641(0.005) 0.066(0.003) 0.093(0.002) -0.141(0.002) -0.285(0.003)
T,R 0.003(0.005) 0.095(0.003) 0.065(0.002) 0.065(0.002) 0.070(0.003)
T,D 0.117(0.005) 0.167(0.003) 0.047(0.002) 0.017(0.002) -0.001(0.003)
T,Ms 1.029(0.005) 0.220(0.003) 0.123(0.002) -0.155(0.002) -0.417(0.003)
T,Rs -0.622(0.005) -0.164(0.003) 0.121(0.002) 0.471(0.003) 0.863(0.005)
C,M 0.767(0.005) 0.122(0.004) 0.146(0.002) -0.175(0.002) -0.320(0.003)
C,R 0.082(0.005) 0.116(0.003) 0.096(0.002) 0.108(0.002) 0.073(0.003)
C,D 0.147(0.005) 0.225(0.003) 0.079(0.002) 0.040(0.002) 0.025(0.003)
TJ,M 0.024(0.006) 0.037(0.003) 0.046(0.002) -0.075(0.002) -0.181(0.003)
TJ,R -0.138(0.006) -0.002(0.003) -0.002(0.002) 0.021(0.002) 0.037(0.003)
TJ,D -0.047(0.006) 0.024(0.003) -0.010(0.002) -0.009(0.002) -0.015(0.003)
TJ,Ms 0.322(0.005) 0.039(0.003) 0.064(0.002) -0.110(0.002) -0.296(0.003)
TJ,Rs 0.113(0.005) 0.026(0.002) -0.001(0.002) -0.006(0.002) -0.070(0.003)
CJ,M 0.421(0.006) 0.034(0.004) 0.073(0.002) -0.155(0.002) -0.188(0.003)
CJ,R -0.087(0.006) 0.067(0.003) 0.039(0.002) 0.029(0.002) 0.043(0.003)
CJ,D 0.017(0.006) 0.126(0.003) 0.024(0.002) -0.010(0.002) -0.005(0.003)

Table 8.4: Quantiles and biases in quantiles (ξ∗mis
q ) for imputation methods. Stan-

dard simulation deviations of error estimates are shown in parentheses.

8.4.3 Qualitative analysis of the preservation of distribution

In addition to quantitative (numerical) results it is always a good idea to do some

qualitative studies as well. In this case we shall investigate three different approaches

using data visualization:

a) B,R baseline with simulated randomness,

b) L,M linear regression with mean strategy, and

c) TJ,Rs joint (Y,X) TS-SOM clustering with simulated randomness.
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The results of imputation are depicted in log scale using three types of plots

• Graphical confusion (density) tables,

• Density plots, and

• QQ-plots.

In all the plots we try to compare the distribution of imputed values against the

distribution of true values of missing data.

In confusion plots (Figure 8.8, Figure 8.10, and Figure 8.12) the joint distribu-

tion between Y mis and Y imp is visualized using a contour display. Ideally the plot is

concentrated close to the diagonal line, which indicates that Y imp is close to Y mis.

17.31

7.17
7.17 17.31

Ymis

Yimp

Figure 8.8: Confusion table (pdf) be-

tween Y imp,B,R and Y mis.
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Figure 8.9: Density f(Y imp,B,R) versus

f(Y mis).
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Figure 8.10: Confusion table (pdf) be-

tween Y imp,L,M and Y mis.
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Figure 8.11: Density f(Y imp,L,M) ver-

sus f(Y mis).
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Figure 8.12: Confusion table (pdf) be-

tween Y imp,TJ,Rs
and Y mis.
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Figure 8.13: Density f(Y imp,TJ,Rs
) ver-

sus f(Y mis).

In Figures 8.9, 8.11, and 8.13 the corresponding marginal distributions of con-

fusion plots are shown. From the plots one can conclude that baseline B,R behaves

much worse than the two other methods. It seems that the linear method is slightly

better on a unit level as its confusion plot seems more diagonalized than that of

TS-SOM, but on the level of marginal distributions TS-SOM seems to be a little

better.

The conclusions are verified easily using QQ plots as shown in Figure 8.14.

12.24 17.3114.77 9.70 7.17
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Q(Yimp)

Q(Ymis)

Q(Yimp)
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Figure 8.14: A) QQ plot for B,R method, B) QQ for L,M method, and C) QQ for

TJ,R method.

It seems that the linear method and the baseline have larger deviations from

diagonal than the TS-SOM. A notable difference between the baseline and other

methods is that the baseline does best on small and big enterprises, while TS-SOM

is best for the central part of the distribution.
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8.4.4 Preservation of weighted unit level MSE

For the analysis of unit level performance we recall, from Section 8.3, the decompo-

sition of expected (integrated) MSE

E[m̂se] = E[
∑

j:Xj∈Dmis

W j(Y
imp
j − Y true

j )2] = A + B + C + d1 + d2 + d3 + d4︸ ︷︷ ︸
D

,

where

A = E[
∑

j

W j(Y
mis
j − µ̂mis)2], weighted variance of missing Ymis

j

B = E[
∑

j

W j(Y
imp
j − µ̂imp)2], weighted variance of imputed values

C = −2E
[
Ĉov[Y imp, Y mis]

]
, weighted covariance between missing and imputed values

D = E[(µ̂mis − µ̂imp)2], global estimation bias,

where

d1 = (E[µ̂mis]− E[µ̂imp])2, expected bias

d2 = Var[µ̂imp], variance of µ̂imp

d3 = Var[µ̂mis], sample variance of µ̂mis

d4 = −2Cov[µ̂imp, µ̂mis], covariance between µ̂imp and µ̂mis.

Terms A = Var[Y mis
j ] and d2 = Var[µ̂mis] are caused by our data generator and

have values A ≈ 2.22, d2 ≈ 0.021. All the other terms are affected by the chosen

methodology and thus they tell us about the differences of the methods in terms

of unit level prediction accuracy. In general terms, we do expect that the chosen

method is able to explain at least a part of Var[Y mis
j ]. Therefore we can expect

MSE values that are less than 2.22.

The imputation results are summarized in Table 8.5. Most of the approaches

can, indeed, reduce MSE from 2.22, and the best value is close to 1. In general

terms, all nonparametric regression methods, covariate clustering cell methods with

mean strategy, and joint clustering cell methods with mean strategy do quite well.

The prediction ability is reflected by term C = −2Cov[Y imp, Y mis], but for clarity

we have also computed the correlation coefficient between the imputed and missing

values as follows:

Correlation =

{ −0.5 ∗ C/
√

A ∗B, if C > 0,

0, if C = 0.

The worst performance of T,Rs is most likely due to overestimation of simulated

random noise, which contributes to term B = Var[Y imp]. As we can expect, mean

imputation always outperforms strategies where randomness is added to predicted

values.
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d1 d3 d4

Method MSE B C D Correlation Global bias2 Var[µ̂imp] −2Cov[µ̂mis, µ̂imp]

B,M 2.757(0.004) 0.000(0.000) 0.000(0.000) 0.537(0.003) 0.000(0.000) 0.486 0.009 0.019

B,R 4.828(0.008) 2.041(0.004) -0.005(0.005) 0.572(0.004) 0.001(0.001) 0.487 0.045 0.019

B,D 4.830(0.008) 2.039(0.005) -0.002(0.005) 0.572(0.004) 0.001(0.001) 0.485 0.046 0.020

L,M 1.024(0.002) 0.993(0.001) -2.209(0.003) 0.019(0.000) 0.745(0.000) 0.002 0.011 -0.015

L,R 1.747(0.003) 1.700(0.003) -2.205(0.004) 0.031(0.000) 0.569(0.001) 0.002 0.023 -0.015

N,M 1.473(0.003) 1.777(0.004) -2.554(0.005) 0.029(0.000) 0.646(0.001) 0.001 0.025 -0.018

K,M 1.019(0.002) 0.958(0.002) -2.207(0.003) 0.047(0.001) 0.761(0.000) 0.028 0.012 -0.014

K,R 1.431(0.003) 1.365(0.003) -2.208(0.004) 0.054(0.001) 0.637(0.001) 0.028 0.019 -0.015

T,M 1.234(0.003) 1.112(0.002) -2.128(0.003) 0.029(0.000) 0.682(0.001) 0.002 0.017 -0.012

T,R 2.107(0.005) 1.974(0.005) -2.130(0.005) 0.043(0.001) 0.513(0.001) 0.002 0.032 -0.012

T,D 1.989(0.005) 1.857(0.005) -2.131(0.005) 0.042(0.001) 0.531(0.001) 0.002 0.030 -0.012

T,Ms 1.213(0.003) 0.803(0.001) -1.861(0.003) 0.049(0.001) 0.701(0.001) 0.025 0.012 -0.009

T,Rs 4.042(0.008) 3.586(0.008) -1.863(0.007) 0.098(0.001) 0.332(0.001) 0.025 0.061 -0.009

C,M 1.269(0.003) 1.055(0.002) -2.044(0.003) 0.037(0.000) 0.672(0.001) 0.011 0.016 -0.011

C,R 2.173(0.004) 1.948(0.004) -2.047(0.005) 0.052(0.001) 0.496(0.001) 0.011 0.031 -0.011

C,D 2.100(0.005) 1.866(0.004) -2.039(0.005) 0.052(0.001) 0.506(0.001) 0.011 0.030 -0.010

TJ,M 1.509(0.004) 1.641(0.004) -2.391(0.004) 0.039(0.001) 0.632(0.001) 0.006 0.027 -0.015

TJ,R 1.950(0.005) 2.079(0.005) -2.396(0.005) 0.047(0.001) 0.564(0.001) 0.006 0.034 -0.015

TJ,D 1.836(0.004) 1.966(0.005) -2.395(0.005) 0.045(0.001) 0.579(0.001) 0.006 0.032 -0.015

TJ,Ms 1.265(0.003) 1.302(0.003) -2.290(0.004) 0.032(0.000) 0.679(0.001) 0.002 0.023 -0.014

TJ,Rs 1.631(0.003) 1.666(0.004) -2.294(0.005) 0.038(0.001) 0.601(0.001) 0.002 0.029 -0.014

CJ,M 1.342(0.003) 1.335(0.003) -2.242(0.004) 0.029(0.000) 0.658(0.001) 0.000 0.021 -0.014

CJ,R 1.989(0.004) 1.972(0.005) -2.242(0.005) 0.040(0.001) 0.541(0.001) 0.000 0.032 -0.014

CJ,D 1.939(0.005) 1.920(0.005) -2.240(0.005) 0.039(0.001) 0.549(0.001) 0.000 0.031 -0.014

Table 8.5: Decomposition terms for mean squared error. Remark that: A ≈
2.22(0.003), d2 = Var[µ̂mis] ≈ 0.021, and D = d1 + d2 + d3 + d4.

8.4.5 Comparison between distribution level and unit level

performance

The previous sections have given a mixed picture about the performances of dif-

ferent methods. Some methods demonstrate good performance on a distribution

level while others do better on a unit level. This is quite expected as there is a

well-demonstrated trade-off between the two performance measures. Especially, it

becomes clear that random imputation strategies favor distributional measures while

mean strategies provide a better unit level accurancy.

The choice of the ”best” method is obviously a multicriteria decision (or opti-

mization) problem [98], where the optimality before decision making is defined by

a set of Pareto optimal solutions (see [48] for a good introduction). In the current

example we try to approximate the Pareto optimal set in terms of mean squared er-

ror (MSE) and Kolmogorov-Smirnov distance (KS). The optimal methods are those

that are on the Pareto front in two dimension MSE vs. KS plot, as given in Figure

8.15.

From Figure 8.15 we can observe that our estimate for the Pareto optimal set

of methods consists of four methods

K,M - kernel regression with mean strategy
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L,M - linear regression with mean strategy

N,M - 1-nearest neighbour imputation

TJ,D - joint (Y, X) clustering using TS-SOM with donor strategy.

The first two of the methods should be used if the objective is to minimize unit level

errors. The last two do better on distribution level. We also note that methods

(TJ,Rs), (L,R), (TJ,R), (T,D), (CJ,D) and (CJ,R) are quite close to the Pareto

front, which makes them good alternatives as well.

Numerical values for all the results are given in Table 8.6, and include separate

results for sme and large enterprises.

T,D

T,Ms

T,R

TJ,R
TJ,D

TJ,M

N,M

K,M

L,M

T,M

L,R

CJ,M

K,R

CJ,D

TJ,Rs

C,M

TJ,Ms
C,D

C,R

 0.10
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MSE

Estimated Pareto
front
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Figure 8.15: Mean squared error versus expected Kolmogorov-Smirnov statistic plot.

The results for the baseline methods and the T,Rs method are available in Table

8.6.
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Method KS KSs KSl MSE MSEs MSEl

B,M 0.561 0.587 1.000(0.0000) 2.757 2.582 7.689(0.012)

B,R 0.145 0.174 0.962(0.0007) 4.828 4.657 9.693(0.049)

B,D 0.163 0.186 0.956(0.0008) 4.830 4.657 9.731(0.051)

L,M 0.136 0.144 0.720(0.0016) 1.024 0.947 2.804(0.011)

L,R 0.114 0.126 0.702(0.0017) 1.747 1.670 3.527(0.022)

N,M 0.116 0.124 0.679(0.0018) 1.473 1.423 2.780(0.017)

K,M 0.160 0.172 0.751(0.0015) 1.019 0.934 2.930(0.012)

K,R 0.132 0.143 0.725(0.0017) 1.431 1.345 3.357(0.019)

T,M 0.165 0.179 0.726(0.0016) 1.233 1.151 3.046(0.015)

T,R 0.119 0.135 0.712(0.0017) 2.107 2.036 3.670(0.023)

T,D 0.120 0.133 0.713(0.0017) 1.989 1.917 3.559(0.023)

T,Ms 0.196 0.215 0.758(0.0015) 1.213 1.133 2.982(0.013)

T,Rs 0.152 0.189 0.707(0.0017) 4.042 3.967 5.704(0.045)

C,M 0.189 0.205 0.740(0.0016) 1.269 1.181 3.175(0.015)

C,R 0.124 0.141 0.710(0.0017) 2.173 2.096 3.832(0.024)

C,D 0.125 0.140 0.713(0.0017) 2.100 2.020 3.822(0.025)

TJ,M 0.132 0.141 0.722(0.0016) 1.509 1.423 3.315(0.021)

TJ,R 0.115 0.127 0.708(0.0017) 1.950 1.863 3.782(0.028)

TJ,D 0.113 0.125 0.708(0.0017) 1.836 1.749 3.697(0.026)

TJ,Ms 0.138 0.147 0.737(0.0016) 1.265 1.176 3.191(0.018)

TJ,Rs 0.117 0.127 0.719(0.0017) 1.631 1.544 3.531(0.022)

CJ,M 0.170 0.183 0.711(0.0017) 1.342 1.254 3.240(0.018)

CJ,R 0.117 0.130 0.697(0.0017) 1.989 1.907 3.732(0.024)

CJ,D 0.117 0.129 0.701(0.0017) 1.939 1.857 3.694(0.024)

Table 8.6: Kolmogorov-Smirnov and mean squared error results. Standard devia-

tions are below 0.0007 for KS and KSs and below 0.009 for MSE and MSEs and thus

have been removed to compress the table. The best results for each error measure

have been marked using a bold font.

Using the division between sme and large enterprises, the Pareto optimal fronts

are as depicted in Figures 8.16 and 8.17. Note that the baseline methods have been

excluded from the figures as ”outliers”.

An investigation of Figure 8.16 reveals that for sme enterprises our estimate for

the Pareto optimal front consists of three methods (K,M), (L,M), and (N,M). Fur-

ther methods (TJ,Rs), (L,R), (TJ,D), and (TJ,R) are close to the front. Ordering

of the results is very similar to that of in the plot for all enterprises. Large enter-

prises are preserved worst, as shown in Figure 8.17. Nearest neighbour imputation

performs best, and it forms the Pareto front estimate. However, its distributional

level performance is still bad. Linear regression with mean strategy is close to the

front. There is a linear tradeoff between K-S and MSE measures among the other

methods (between mean and random or donor strategies).
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Figure 8.16: Pareto-optimal front for

sme class of enterprises with turnover

≤ 4.7 million pounds.
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Figure 8.17: Pareto-optimal front for

for large enterprises with turnover >

4.7 million pounds.

8.5 Summary

In this chapter we demonstrated how different imputation methods perform in the

imputation of turnover for enterprises under MAR missingness. Three different

classes were evaluated: all data, small and medium enterprises, and large enterprises.

When simultaneous preservation of both unit level and distributional level for all

data was considered, four methods came out as winners: kernel regression with mean

strategy, linear regression with mean strategy, 1-nearest neighbour imputation, and

joint (Y, X) clustering using TS-SOM with donor strategy. The first two of these

are good for preserving unit level. Distributional level is better preserved by the

latter two methods.

Preservation of small and medium (sme) enterprises class is done best by kernel

regression with mean strategy, linear regression with mean strategy, and 1-nearest

neighbour. Linear regression with random strategy, and TS-SOM joint clustering

with donor strategy or random (smoothed) strategy are also close to the estimated

Pareto front.

Distribution level and unit level of large enterprises are not well preserved.

Nearest neighbour imputation performs best, however, its performance is bad at

distribution level. Information in covariates seems not to be adequate to predict

large enterprises well.

To conclude, the proposed joint (Y, X) clustering cell methods based on TS-

SOM perform well in mass imputation of small and medium sized enterprises. The

smallest and the largest enterprises are best preserved by 1-nearest neighbour and

linear regression.



Chapter 9

Case study: Labour Force survey

The purpose of this chapter is to give a realistic example for the evaluation of impu-

tation methods. This study uses Quarterly Labour Force Survey Household Dataset

(LFH), April - June, 2006, produced by the Office for National Statistics (ONS)1,

sponsored by ONS and Northern Ireland2, and supplied by the UK Data Archive.

The data are Crown copyright. The first edition of the data [76], which is dated

16th October 2006, is used in the experiments. The following statement is required

for the use of this data set:

The original data creators, depositors or copyright holders, the funders of the

Data Collections and the UK Data Archive bear no responsibility for further analysis

or interpretation done in this thesis.

The data is similar, but not the same as the SARS (UK Census 1991, Sample of

Anonymised Records) data set that was used in the EurEdit project. Our previous

experiments with this kind of data were not promising, but we suspect that this was

due to the immaturity of our methodology and our inexperience in imputation. In

the current study we hope to get a deeper understanding about the strength and

weaknesses of cell methods for this kind of data.

By deeper evaluation we mean more careful setting of experiments and more

detailed evaluation of the results and causes behind them. In comparison to Euredit

this is done as follows

• We limit our study to two variables AGE of a person (in years) and SEX,

which is a categorial variable.

• We have carefully designed a MAR type missingness mechanism.

• Results are computed over several repetitions including data sampling and

missingness generation.

Like in the previous chapter, our evaluation is not completely objective because

the missingness generator is known to us. Yet, we try to be as objective as we can.

1Social and Vital Statistics Division
2Department of Enterprise, Trade and Investment
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Compared to the previous chapter, the current dataset is not simplified, which

implies that we must be able to handle special values and other nuisances in data.

As before we shall compare the relative performances of imputation meth-

ods using both distributional and unit level measures. For variable AGE we use

Kolmogorov-Smirnov (KS) measures and mean squared error (MSE) type of unit

level measures. Two measures for categorial imputations are introduced for variable

SEX. In addition several special studies are made as explained below:

• We shall investigate conditional performance on quantiles of the imputation

of AGE variable under five categories defined by MARSTA (person’s marital

status).

• As in the previous chapter we use QQ plots and confusion plots to get a better

insight on the imputation performance of AGE variable.

• A special study of the role of model flexibility and imputation strategy is done

using SEX variable.

• Imputation performance of the categorial SEX variable are also reported in

terms of the operating characteristics of the classifier.

• Experiments with the SEX variable are computed with different sample sizes

in order to evaluate the relative efficiences of different methods.

9.1 Description of data

This is a hierarchical dataset with observations on household, family and individual

levels. There are a total 124106 observations and 774 variables, including many

categorial and multiresponse variables. We have omitted all derived variables, and

coded both categorial and multiresponse variables as new indicator variables. In

addition some special values like -8 (no answer) or -9 (not applicable) are coded

with new indicator (class) variable. In the case of continuous variables, the special

value is also marked as missing, and its handling depends on the imputation model

as explained later. See Appendix A9.6 for a list of variables which are treated in

the experiments as continuous.

Details of the data preparation including some discussion about practical prob-

lems of the data are given in Appendix A9. The result of the preparation gives us

a total of 5628 variables, where there are 5588 indicator variables (of which 61 are

indicators for special values of continuous variables), 40 continuous variables, and

one sampling weight (HHWT03) that refers to proportional sampling of households.

The sampling weight varies between 225-750 and it is distributed as shown in Figure

9.1, indicating that a typical observation corresponds roughly to 500 households in

the real world. More details of the dataset can be found from the documentation of

the dataset which is available from the UK Data Archive internet site3.

3www.data-archive.ac.uk/findingData/snDescription.asp?sn=5500 (referenced 10.05.2007)
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Figure 9.1: Density of household weights (variable HHWT03).

9.1.1 Data generator and missingness

Except of the variable selections for the imputation of AGE and one experiment with

the SEX variable, we have used a random sample of n = 4000 observations in the

tests. The sample is drawn without replacements under the specified incompleteness

mechanism, and typically 500 sample-imputation repetions are taken in the AGE

experiment and 110 in the SEX experiment to estimate the expected evaluation

measures reliable. Sampling weights were ignored while sampling, but they were

included in the sample for the computation of the weighted evaluation results.

The imputation experiments for the AGE and SEX variables were done sepa-

rately using a different missingness generator, but in both cases about 39%-40% of

observations were marked as missing on average.

In the case of the AGE variable, missingness was generated using an unweighted

MARSTA (marital status) variable. Let Y =AGE and X=MARSTA. Then the

missingness can be described as shown in Table 9.1. Note that these missingness

values have been selected for the purpose of methodological testing. In the real

world such high missigness might not be realistic for this particular dataset.

As we can see, the missingness probabilities differ for the values of marital

status X, implying that this is a MAR type of missingness. When the sampling

weights are applied, the distributions of observed and missing parts of the AGE

variables are as shown in Figure 9.2.
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Description of x Pr(x) Pr(”Y is missing”|x)

1 (single) 0.44193 0.55

2 (married and living with) 0.41702 0.2

3 (civil partnership) 0.02066 0.4

4 (married and separated) 0.06135 0.5

5 (divorced) 0.05857 0.75

6 (widowed) 0.00042 0.6

7 (civil partnership and separated) 0.00005 0.45

Table 9.1: Missingness generator of Y =AGE with respect to covariate X=MARSTA.
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Figure 9.2: Distributions of weighted observed (solid line) and missing (dashed line)

age.

In the experiments with the SEX variable, missingness is generated using the job

status variable (FTPTWK) and the state benefits variable (BENFTS) as explained

in Appendix A9.4. The application of missingness was selected such that the prior

probabilities of SEX classes differ clearly from incomplete cases. This is clearly seen

in Table 9.2 that shows the unweighted probabilities of the two classes of SEX for

complete and incomplete cases.

The use of MAR type of missingness for both the AGE and SEX variables was

chosen because we want to evaluate the role of predictions by different models. For

example, a simple random donor imputation follows the distribution of observed

data, which in our case differs from the distribution of missing ones. Thus a better

model must be able to predict the missing data in terms of covariates.
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9.2 About imputation models

Evaluation of many imputation methods with real-world data is a challenging task.

Different methods require different setups and one should try to use the best setup

for each of the methods. To summarize, we must select for each of the methods

i) the best way of presenting the selected variables. This is done with prepro-

cessing.

ii) the best variables, because different methods can utilize different kinds of

imputation.

iii) the best parametrizations for smoothing, number of clusters, etc.

iv) settings related to special values and missing data.

v) postprocessing of results, because different methods may have different mech-

anisms in how they present the results.

Clearly this is an overwhelming task, but we can only try to do our best. A

semiautomatic variable selection method was used to find the best set of variables

for each of the methods. Some manual work was also done to find the most effective

ways of preprocessing and coding of variables. Finally special experiments were

conducted to investigate the role of parametrizations.

9.2.1 Coding and preprocessing

Coding of variables and preprocessing must be done before using any of the methods.

Thus it is done also before variable selection and the setting of model parameters.

We first describe the coding of categorial variables and special values, because coding

has to be done before the preprocessing phase (it introduces the missing data values

in continuous covariates).

The role of coding is to present data in a form that is most suitable for the

methods. While real (or integer) valued variables require only preprocessing (as

described later), the situation is not the same for categorial and multiresponse vari-

ables. In addition, special values of certain variables are coded separately. The

following codings were used in the experiments:

i) Dummy coding of categorial and multiresponse variables, where class variable

C ⊂ {c1, . . . , cm},

MALE FEMALE

Pr(SEX|observed) 0.41 0.59

Pr(SEX|missing) 0.60 0.40

Table 9.2: Unweighted probability of the two classes of SEX for complete and in-

complete cases.



199

where C contains more than one element only when C is a multiresponse

variable. This is replaced with dummy indicator vector

x′ =




x1

...

xm


 , where xi =

{
1, if ci ∈ C

0, otherwise,

ii) Coding of special values is straightforward for categorial variables as they are

handled as ”ordinary” classes, by coding them as dummy indicators. For

continuous variables special values are coded as dummy indicators. This is

followed by replacing the special values in a continuous variable with missing

data values.

The codings have been applied as described in Table 9.3.

AGE experiments

Continuous variables : dummy coding of the following special values:

- values -8/-9 for all continuous variables

- values 96/97 for EDAGE variable

- value 99 for variables TOTUS1, USUHR, POTHR, UOTHR, TOTUS2,

TOTAC1, ACTHR, ACTPOT, ACTUOT, TOTAC2, and OVHRS.

Categorial variables : dummy coding.

SEX experiments

Coding as in AGE experiments with the exception that variable SEX is

coded as one variable (with values -1=MALE, 1=FEMALE).

Table 9.3: Codings for AGE and SEX experiments.

In our experiments the following preprocessing operations were used:

min-max equalization to hypercube [a, b]p, thus the components of x are equalized

as

x̃i = (b− a) ∗ xi −min(xi)

max(xi)−min(xi)
+ a, where i = 1, . . . , p

where minimum and maximum are computed either from the complete part

of data or from all the available observations of xi (this is described later).

centering mean is subtracted as follows

x̃ = x− x

normalization scales the length of data vectors in such a way that they are on the

surface of a unit hyper-sphere,

x̃ = x/||x||. (9.1)

Normalization is straightforward for complete observations. However, the fol-

lowing phases are done for incomplete observations
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1. replace all missing data values by zero values, forming observation xzero

2. normalize observation xzero using Equation (9.1).

3. if the original observation had a missing data value in the target (which is

either AGE or SEX depending on the experiment) then replace the zero

value of the target in the preprocessed x̃zero by the missing data value.

The preprocessing phases differ in AGE and SEX experiments. Further, differ-

ent preprocessings are applied for different methods in the AGE experiments.

In AGE experiments, preprocessing, which is done after coding of variables,

depends on the imputation method. The preprocessing groups are: linear regression

methods (L,M and L,R), joint (Y, X) clustering using TS-SOM, and other methods.

Table 9.4 lists the preprocessings applied for these groups.

Method group Preprocessing phases

Linear regression Categorial variables : none

Continuous variables :

1. min-max equalization to [0, 1] (a = 0, b = 1) using

complete data statistics.

2. centering using observed data statistics.

Joint (Y, X) clustering Categorial variables : none

using TS-SOM Continuous variables :

min-max equalization to [0, 1] by computing min-max

statistics from all available observations.

Other methods Categorial variables : none

Continuous variables :

min-max equalization to [0, 1] using complete data

statistics.

Table 9.4: Preprocessing phases for AGE experiments.

In the experiments for the SEX variable only one chain of preprocessing is used.

Table 9.5 contains the preprocessings for the SEX experiments.
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Preprocessing phases

1. Categorial variables and special value indicators :

replacement of values 0 and 1 of dummy indicators with values -1 and 1.

2. Continuous variables :

min-max equalization to [−1, 1] by computing min-max statistics from all

available observations.

3. All observations : normalization.

Table 9.5: Preprocessing phases for SEX experiments.

9.2.2 Variable selection, when imputing AGE variable

We made an attempt to use automatic variable selection to find the best predictive

models for the AGE variable. This was not as easy as one might think. Since the

goal was to find the best models under the best parameter setting we had a dilemma

regarding whether to optimize first the selection of variables, their codings, or model

parameters. In addition, we needed to decide what criteria to use to measure the

”optimality” of variables. To overcome these difficulties the following simplified

forward selection procedure was used.

1. Fix parametrization of model as described in Section 9.2.4 (with the excep-

tion that the K-Means methods use only 32 cells) and fix data coding and

preprocessing as described in Section 9.2.1 for the AGE experiments.

2. Set the maximum number of covariates imax and clear covariate set ΩX = ∅.
3. Loop through all the variables (excluding AGE and the sampling weights

HHWT03) which are not in the set ΩX and for each of these variables do:

3.1 Set l = 0 and set the maximum number of repetitions lmax to 3 if the

imputation model is non-identifiable (cell methods) or if the imputation

strategy is random or donor, otherwise set lmax = 1.

3.2 Train the model from a test data set.

3.3 Impute the missing data values in both the training set and the test set

using the covariates in ΩX and the current covariate.

3.4 Compute the error criteria (over imputed data values) for the training

data set and the test data set, store the results to Errtrain
l and Errtest

l .

3.5 Increase l by 1 if l < lmax GOTO 3.2

3.6 Compute the averaged values of error criteria:

Errtrain =
1

lmax

lmax∑
i=1

Errtrain
i , Errtest =

1

lmax

lmax∑
i=1

Errtest
i .
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4. Add variable producing minimum averaged training data set error criteria to

ΩX . Note that the definition of minimum depends on the error criteria as

described below.

5. If #(ΩX) < imax GOTO 3.

6. Select a covariate set for which the averaged test data set error criteria is

minimum.

The simplified variable selection procedure was run with 523 original variables

and 2000 observations of which 1000 belonged to the training data set and 1000

to the test data set. Note that both the training and the test data sets contain

missing data values in AGE. Further, the data sets were generated by drawing a

simple random sample of size 2000 without replacements from 124106 observations

by splitting the data set into half. Therefore there are no duplicate observations in

the training and the test data sets.

The procedure was run twice for each imputation method. The first run was

made a using single objective: minimization of Kolmogorov-Smirnov (K-S) error

criteria with 20 iterations. A minimum in Phases 4 and 6 is defined by the lowest

value of the corresponding K-S error criteria. In the second run a combined K-S

and mean squared error (MSE) rank error criteria was used with 10 iterations. Thus

the K-S criteria was computed as in the first run, and in addition the mean squared

error criteria was computed. In Phase 4 the rank values for K-S and MSE results

were computed by sorting the error criterias from the lowest values to the highest

values. A minimum was defined by a variable set for which the sum of the KS rank

and the MSE rank was the lowest, this applied also to Phase 6.

Variable selection proved to be computationally expensive, as it took approxi-

mately one week (when measured in terms of total computing time used by two

AMD Athlon 2400+ MP processors/2GB RAM, AMD Athlon64 3000+ proces-

sor/2GB RAM and Intel Pentium 4 Prescott 3 GHz processor/512MB RAM) to

find ”optimal” sets for each of the models.

Unfortunately, the results of our forward selection were not fully satisfactory.

This may be partially due to small sample size and too few imputation repetitions

(parameter lmax). We realized that for some methods the chosen variables were

better, while for some methods the simplified procedure picked inferior predictors.

Therefore the final selection of variables was done in part manually. The variable sets

were evaluated (with sample of size n = 4000) using the K-S and MSE evaluation

criteria for imputation. Then the following steps were taken to create the final sets

for the imputation experiment

i) A set for a method with random or donor strategy yielding bad imputations

was, if possible, replaced by a set for the corresponding method with mean

strategy, and vice versa.

ii) A better set from the two variable selection runs (KS criteria vs rank criteria)

was chosen manually based on the evaluation results.
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iii) The final sets for nearest neighbour imputation and joint (Y, X) clustering

using TS-SOM with smoothing performed badly. Therefore these final sets

were created manually by merging the best set for linear regression with mean

strategy (L,M) and the best set of kernel regression with random strategy

(K,R). Further, variable HNPEN (number of people in a household who are

of pensionable age) was added to the constructed sets.

The final selection of variables for each of the methods is given in Tables 9.6

and 9.7. See Appendix A9.5 for the descriptions of variables. From the selected

variable sets one can notice that special value -9 (not applicable/NA) indicators are

used by some methods. Therefore one may expect that the distributions of age for

the observations with NA value in a variable and observations with non-NA value

in the same variable are different. As an example, variables containing information

on health problems and qualifications are used by some methods.

Variable Methods #USE

LMLRNMKMKRTMTRTDTMs TRs CMCRCDTJMTJRTJDTJMs TJRs CJMCJRCJD

ACTWKDY2 4 - - - - - - - - - - - - - - + - - - - - - 1

ACTWKDY2 7 - - - - - + + - - - - - - - - - - - - - - 2

ATTEND -9 - - - - - - - - - - - - - + - - - - - - - 1

CCTC5 -9 - - - - - - - - - - - - - - - - - - + + + 3

CMBDEG01 16 - - - - - - - - - - - - - - + - - - - - - 1

CMBDEG01 8 - - - - - - - - - - - - - - + - - - - - - 1

CMBDEG05 -9 - - - - - + + - - - - - - - - - - - - - - 2

CMBMAIN 10 - - - - - + + - - - - - - - - - - - - - - 2

CMBMAIN 7 - - - - - - - - + - - - - - - - - - - - - 1

CRY01 59 - - - - - + + - - - - - - - - - - - - - - 2

EDAGE - - - - - + + - + - + - - - - - - - - - - 4

ENROLL -9 - - + - + - - - - - - - - - - - + + - - - 4

EVERWK -9 + - + - - - - - - - - - - - - - + + - - - 4

EVERWK 1 - - - - - - - - - + - - - - - - - - - - - 1

FAMLY031 -9 - - - - - - - - - - - - - - - - - - + + + 3

FUTUR13 2 - - - - - - - - - - - - + - - - - - - - - 1

GCSEFUL1 -9 - - - + - - - - - - - - - - - - - - - - - 1

HEAL02 1 - - - - - - - - - - - - - - - - - - + + + 3

HEAL03 2 - - - - - - - - - - - - + - - - - - - - - 1

HEAL04 10 - - - - - + + - - - - - - - - - - - - - - 2

HEALPB01 3 - - - - - - - - - - - - - - - + - - - - - 1

HEALYR 2 - + - - - - - - - - - - - - - - - - - - - 1

HLDCMP6 2 - - - - - - - - - - - - - - + - - - - - - 1

HLDCMP6 7 - - - - - - - - + - - - - - - - - - - - - 1

HLDCMP6 9 - - - - - - - - - + - - - - - - - - - - - 1

HNFTIME - - - - - - - - - - - - - - - - - - + + + 3

HNPEN + - + - - - - - - + + + - + - - + + - - - 8

HNWKAGE - - + - - + + - + - - - - + - + + + - - - 8

HNWOTH05 -9 - - - - - - - - - - - - - + - - - - - - - 1

HOME -9 - - - - - - - - - - - + - - - + - - - - - 2

HOME 4 - + - - - - - - - - - - - - - - - - - - - 1

HSNGNI -9 - - - - - - - - + - - - - - - - - - - - - 1

ICOD92 331 - - - - - - - - - - - - - - + - - - - - - 1

ICOD92 382 - - - - - + + - - - - - - - - - - - - - - 2

ICOD92 423 - - - - - + + - - - - - - - - - - - - - - 2

JBAWAY 2 - - - + - - - - - - - - - - - - - - - - - 1

JSADUR 8 - - - - - - - - - - - - - - + - - - - - - 1

LEFTYR -9 - + - - - - - - - - - - - - - + - - - - - 2

LEVQUAL6 1 - - - - - - - - - - - - - - - - - - + + + 3

LIMITA -9 - - - - - - - - - - - - - - + - - - - - - 1

LIMITA 1 - - - - - - - - - - - - + - - - - - - - - 1

LIVWTH -9 - - - + - - - + - - + - - - - - - - - - - 3

LIVWTH 1 - + - - - - - - - - - - - - - - - - - - - 1

LKTIMB 3 - - - - - + + - - - - - - - - - - - - - - 2

LLORD 6 - - - - - - - - - - - - - - + - - - - - - 1

LNGLIM 1 - - - - - - - - - - - - + - - - - - - - - 1

LOOK4 2 - - - + - - - - - - - - - - - - - - - - - 1

LOOKM2 6 - - - - - + + - - - - - - - - - - - - - - 2

M3CRYO 52 - - - - - - - - + - - - - - - - - - - - - 1

MAINDRV -9 - - - - - - - - - - - - - - + - - - - - - 1

Table 9.6: Variables used by the imputation methods (continues on the next page).

Column #USE is a count for how many times each variable is used.
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Variable Methods #USE

LMLRNMKMKRTMTRTDTMs TRs CMCRCDTJMTJRTJDTJMs TJRs CJMCJRCJD

MAINDRV2 5 - - - - - - - - - - - - - - + - - - - - - 1

MANAGLR -9 - - - - - - - + - - - - - - - - - - - - - 1

MANAGLR 1 - - - - - + + - - - - - - - - - - - - - - 2

MARCHK 1 + - + - - - - - - - - - - - - - + + - - - 4

MARSTA 1 + + + + + - - - - - - - + - + - + + + + + 12

METHAL02 2 - - - - - - - - - - - - + - - - - - - - - 1

METHMP04 7 - - - - - - - - - + - - - - - - - - - - - 1

NATO 84 - - - - - - - - - - - - - - + - - - - - - 1

NOLWM -9 - + - - - - - - - - - - - - - - - - - - - 1

NOLWM 3 - - - - - - - + - - - - - - - - - - - - - 1

NUMAS 1 - - - - - - - - - - - - - + - - - - - - - 1

NVQSVQ -9 - - - - - - - - - - - - - - - - - - + + + 3

NVQUN -9 - - - - - - - - - - - - - + - - - - - - - 1

OYCIRC -9 - - - - - - - - - - - + - - - - - - - - - 1

OYCIRC 10 - - - - - - - + - - - - - - - - - - - - - 1

OYCRY 1 - - - - - + + - - - - - - - - - - - - - - 2

OYSOLO 1 - - - - - - - - - + - - - - - - - - - - - 1

QGCSE41 1 - - - - - + + - - - - + - - - - - - - - - 3

QGNVQ -9 - - - - - - - - - - - - + - - - - - - - - 1

QUALCH53 -9 - - - - - - - - - - - - - - - - - - + + + 3

QUALS601 16 - - - - - - - + - - - - - - - - - - - - - 1

QUALS602 18 - - - - - - - - - - - - - + - - - - - - - 1

QUALS602 21 - - - - - - - + - - - - - - - - - - - - - 1

QUALS603 17 - - - - - - - - + + - - - - - - - - - - - 2

QUALS604 8 - - - - - - - - - - - - - - + - - - - - - 1

QULHI4 -8 - - - - - - - - - - - + - - - - - - - - - 1

RELBUS 2 - - + - + - - - - - - - - - - - + + - - - 4

RELH06 0 - + - - - - - - - - - - - - + - - - - - - 2

RELH06 3 - - - - - - - - - - - - - + + - - - - - - 2

RELHRP6 3 + - + + + + + + + + + + + - - + + + - - - 15

RELIG 1 + - + - - - - - - - - - - - - - + + - - - 4

RESTME 6 + - + + + + + - + + - - - - - + + + - - - 11

SCHM04 66 - - - + - - - - - - - - - - - - - - - - - 1

SECJOB 2 - - - - - - - - - - - - - - - + - - - - - 1

SEX 1 - - - - - - - - - - - - - - - - - - + + + 3

SNGDEG 10040303 - - - - - + + - - - - - - - - - - - - - - 2

SNGDEG 18010100 - - - - - - - - - + - - - - - - - - - - - 1

SNGDEG 6010201 - - - - - - - - - - - - - - + - - - - - - 1

SNGDEG 6040200 - - - - - - - + - - - - - + - - - - - - - 2

SNGDEG 7020402 - - - - - - - - - - - - - - + - - - - - - 1

STAT 1 - - - - - - - - - - - - - - - - - - + + + 3

SUBCOD1 21,1 - - - - - + + - - - - - - - - - - - - - - 2

TEACH41 -9 - - - - - - - - - - - - - - - - - - + + + 3

TECLEC4 -9 - - - - - - - - - - - - - - + - - - - - - 1

TEN1 2 - - - + - - - - - - - - - - - - - - - - - 1

TOTUS1 - - - - - - - - - - - - - - + - - - - - - 1

TPBEN31 -9 + - + - - - - - - - - - - - - - + + - - - 4

TPBEN31 4 - - - - - - - + - - - - - - - - - - - - - 1

TPBEN32 3 - - - - - - - - - - - - - - - - - - + + + 3

TRSITE 9 - - - - - + + - - - - - - - - - - - - - - 2

TYPVCL3 1 - - - - - - - - - - - - - - + - - - - - - 1

UNDABL 2 - - - - - - - - - - - - + - - - - - - - - 1

UNDEMP -9 - - - - - - - - - - - - - + - - - - - - - 1

USEVCL 2 + - + - - - - - - - - - - - - - + + - - - 4

XR01 -9 - - - - - + + - - - - - - - - - - - + + + 5

XR01 3 - - - - - - - - - - - - - - - + - - - - - 1

XR02 -9 + - + - - - - - - - - - - - - - + + - - - 4

Table 9.7: Variables used by imputation methods.

9.2.3 Variable selection for the imputation of SEX variable

After the complex and rather disappointing results of automatic variable selection,

much simpler procedure was used to select covariates to predict the categorial SEX

variable. Now the same variables were used for all methods.

The selection was done by taking 16 variables that had the best Pearson cor-

relation with SEX=MALE, and the obtained variables are listed in Table 9.8. It

should be noted that this might be an inadequate way to do variable selection, but

it was used because of its simplicity.

There are some immediate concerns about this variable selection. First, it

does not eliminate collinearity between the covariates, and it favours linear models.
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Therefore, some other studies were done to look for suitable variables. Clustering

of variables was tried with the TS-SOM and K-Means algorithms with a different

number of cells. This can be done by transposing a data set and clustering it.

Then the clusters in which MALE and FEMALE indicators were classified were

inspected. From the constructed clusterings the ones yielding a suitable number

of covariates in the MALE and FEMALE clusters were tried with some of the

cell imputation methods. However, the imputation results turned out to be bad

typically both at unit and at distribution level. Secondly, the indicator variables for

categorial classes or special values, with the highest mutual information between the

SEX=MALE indicator, were searched. This study verified that the indicators among

the 16 selected variables have a fairly high amount of mutual information with the

indicator for the MALE class. This may indicate that the relationship between ’best

available information’ and the MALE class is reasonably linear. Better results may

be obtained by doing proper variable selections for each imputation method.

Variable Description

RELH06 1 Relationship to the head of household [Head of household]

RELH06 0 Relationship to the head of household [Spouse]

XR00 1 Relationship to person 0 [Spouse]

USUHR Usual hours worked excluding overtime

TOTUS1 Total usual hours worked excluding lunch breaks

(no overtime)

TOTUS2 Usual hours worked including overtime

TOTAC1 Total actual hours worked (no overtime)

XR00 -9 Relationship to person 0 [Not applicable]

RELHRP6 1 Relationship to household reference person [Spouse]

ACTHR Actual hours worked excluding overtime

TOTAC2 Actual hours worked including paid and unpaid overtime

TPBEN31 6 Type of 1. benefit claimed [Child benefit]

TPBEN31 -9 Type of 1. benefit claimed [Not applicable]

DAYSPZ Number of different days per week worked

FTPTWK 2 Whether full or part time in main job [Part-time]

BENFTS 1 Whether claiming any State Benefits/Tax credits [Yes]

Table 9.8: Variables that were used to impute SEX.

9.2.4 Parametrization of models

The selection of optimal training parameters for each of the methods is quite chal-

lenging. The main tasks are to

• select the level of smoothing for the nonparametric regression methods.

• select the number of clusters for the TS-SOM and K-Means methods.
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Some of the settings were specific to experiments and are described later. The more

generic settings that where shared by most of the experiments were as follows:

Simple methods (B,M), (B,R), and (B,D) utilize sampling weights. Recall the

weighted imputation procedures from Section 8.2. Note that other imputation

methods do not use sampling weights.

Nearest neighbour imputation uses smoothing parameter k = 1.

Kernel regression methods use smoothing λ = (Nobs)−1/(4+dim(X)), where dim(X)

is the number of covariates.

Cell methods use nc = 64 cells.

TS-SOM cell methods use 2-D lattice topology.

9.2.5 Handling missing data in the training phase

Coding of special values imposes missing data values in covariates. For the SEX

experiments this is not a ”problem”, because the normalization phase in preprocess-

ing produces a data set which has no missing data values in covariates. However,

with the AGE experiments some modifications to model trainings are required. The

following modifications are done:

Linear regression: after the coding and preprocessing phases the missing data

values in covariates are replaced by zero values.

Nonparametric regression: distances are computed using jointly observed parts

of observations. Further, scaling of distance is done to compensate the reduced

number of covariates. The formula for computing squared distance between

two (possibly incomplete) observations with indexes i and j is

sd(i, j) =
dim(z)

dim(zobs
i,j )

∗ sdcomp(i, j), (9.2)

where dim(zobs
i,j ) is the number of variables which are observed for both zi

and zj and sdcomp(i, j) is the sum of squared differences over jointly observed

variables. As a special case, if there are no jointly observed variables, then

sd(i, j) is set to a very large value.

K-Means cell methods: positions of centroids are computed using all observed

data values for each variable. Classification of observation to a cell is done by

computing the distance between the observed components of observation and

the centroid using Equation (9.2).

Standard clustering using TS-SOM: the incomplete data training algorithm is

used by the standard X clustering TS-SOM methods to build a clustering
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model. However, an incomplete observation is deterministically classified to

the closest cell. The distance between an observation and the centroid is

computed using the jointly observed part of the incomplete observation and

the cell centroid, by Equation (9.2). This is a less sophisticated strategy than

the one used in joint (Y, X) clustering using TS-SOM methods. However, the

imputation results seem still to be quite good.

9.2.6 Postprocessing of results

Some postprocessing phases were required in the AGE and SEX experiments. The

phases were applied to all methods (for some of the methods they do nothing).

The original AGE variable is in range [0,99] years and it is integer valued.

However, imputed values may not be in the range. Further, they may be floating

point values due to Gaussian noise terms used by the random strategies. Therefore

the following postprocessing phases were done in the AGE experiments:

1. Truncating imputed values to range [0,99].

2. Rounding the truncated values down to the closest integer value.

In the SEX experiments the target is coded as a single variable (MALE coded

with the value -1 and FEMALE with the value 1). However, most of the imputation

methods yield values which are floating point values, and possibly even out of range

[-1,1] due to random Gaussian noise. Therefore the imputed values of SEX were

postprocessed as follows:

CLASS =

{
MALE if Y imp < 0

FEMALE otherwise.

9.3 Evaluation of the imputation results of the

AGE variable

As stated before, the evaluation of imputation results is quite challenging. The order

of performance between the methods depends on the evaluation criteria. Therefore

we shall investigate the results from several viewpoints. The first set of results is

computed for the (almost) real valued AGE variable. The second, set, which eval-

uates the imputation performance of the categorial SEX variable, will be described

in Chapter 9.4.

As described earlier, a lot of work was done with the AGE variable to find the

best possible covariables for the different imputation methods. The parameters for

the methods were set as described in Section 9.2.4 with the exception that methods

TJ,Ms and TJ,Rs use 256 cells. The variety in approaches complicates the evaluation

also, making it difficult to point out the exact reason for why one method performs

better than another. Thus the results should be understood as ”what one obtains”

when using the methods.
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There are six classes of results, which will be presented in the following sections.

The classes are

i) Preservation of moments of AGE.

ii) Preservation of quantiles.

iii) Preservation of conditionalized quantiles.

iv) Qualitative analysis of the preservation of distribution.

v) Preservation of the unit level MSE measure.

vi) Comparative evaluation between the distributional KS measure and MSE.

9.3.1 Preservation of moments of the AGE variable

As usual we shall evaluate the biases of the first two moments µ̂imp and τ̂ imp. These

are computed using weighted estimators

µ̂imp =
1

Sw

∑

j:Xj∈Dmis

WjY
comp
j , and

τ̂ imp =
Nmis

(Nmis − 1)Sw

∑

j:Xj∈Dmis

Wj(Y
comp
j − µ̂imp)2,

where Sw =
∑

j:Yj∈Dmis
Y

Wj. And the biases are as usual

Bias[µ̂imp] = E[µ̂imp − µ̂mis|n], and

Bias[τ̂ imp] = E[τ̂ imp − τ̂mis|n],

where the missing data moments are defined as imputed data moments but the

imputed values are replaced by missing values. In addition, another relative measure,

Err% is computed to assist in the evaluation of results. These are defined as

Err%(µ̂imp) = E
[∣∣ µ̂imp − µ̂mis

µ̂mis

∣∣ ∗ 100%|n
]
, and

Err%(τ̂ imp) = E
[∣∣ τ̂ imp − τ̂mis

τ̂mis

∣∣ ∗ 100%|n
]
.

The actual results are, as described earlier, mean values over 500 repetitions of the

sampling and imputation cycle. The results are summarized in Table 9.9.

From the results one can conclude that certain nonparametric methods yield

best performances. The baseline methods fail quite badly, which is due to the MAR

type missingness mechanism. The preservation of the first moment is the best with

standard TS-SOM under simulated random strategy. However, when the second

moment τ̂ imp is included in the evaluation, the best method seems to be nearest

neighbour.

It seems apparent that all the methods underestimate the second moment

(variance of AGE), and all the regression methods underestimate the first moment
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(mean). This might explain why the ”noisiest” model, nearest neighbour, is the best

one for the second moment.

An overall impression about the imputation strategies is that simulated ran-

domness (R) and donor (D) should be used to optimize the second moment of AGE.

µ∗mis ≈ 35.29 τ∗mis ≈ 585.80

Method Bias[µ̂imp] Err%(µ̂imp) Bias[τ̂ imp] Err%(τ̂ imp)
B,M 5.75(0.03) 16.3(0.11) -585.80(0.74) 100.0(0.0)
B,R 5.94(0.04) 16.9(0.12) -148.02(0.99) 25.2(0.15)
B,D 6.16(0.04) 17.5(0.13) -125.42(1.08) 21.3(0.17)
L,M -1.00(0.02) 2.8(0.04) -121.23(0.62) 20.7(0.10)
L,R -0.68(0.02) 2.0(0.05) -48.54(0.83) 8.3(0.14)
N,M -0.30(0.03) 1.7(0.05) -8.71(1.55) 4.9(0.16)
K,M -0.58(0.01) 1.6(0.03) -130.31(0.49) 22.2(0.07)
K,R -0.75(0.02) 2.1(0.04) -71.57(0.59) 12.2(0.09)
T,M -0.16(0.02) 1.0(0.03) -127.24(0.76) 21.7(0.12)
T,R -0.05(0.02) 1.1(0.04) -40.06(0.84) 6.9(0.13)
T,D 0.29(0.02) 1.2(0.04) -34.85(0.64) 5.9(0.11)
T,Ms 0.66(0.06) 2.6(0.15) -202.57(2.32) 34.5(0.39)
T,Rs 0.10(0.02) 1.1(0.04) -48.34(0.89) 8.2(0.15)
C,M -1.11(0.02) 3.2(0.07) -175.16(1.15) 29.9(0.19)
C,R 0.26(0.02) 1.2(0.04) -55.97(0.82) 9.5(0.13)
C,D -0.60(0.02) 1.9(0.05) -42.55(0.77) 7.2(0.13)
TJ,M 0.22(0.04) 2.2(0.07) -79.19(1.23) 13.5(0.21)
TJ,R -0.57(0.04) 2.3(0.07) -37.79(1.27) 6.7(0.19)
TJ,D 0.20(0.05) 2.4(0.08) -42.50(1.36) 7.5(0.21)
TJ,Ms -0.69(0.03) 2.4(0.07) -91.14(1.01) 15.5(0.17)
TJ,Rs -0.74(0.03) 2.4(0.07) -50.10(1.00) 8.5(0.17)
CJ,M -0.88(0.04) 3.0(0.09) -122.05(2.07) 20.8(0.34)
CJ,R -0.68(0.05) 2.9(0.10) -35.91(2.12) 8.2(0.26)
CJ,D -0.34(0.05) 2.4(0.08) -25.15(1.95) 6.7(0.24)

Table 9.9: Biases of first two moments of imputed age. Standard deviations of

estimates are shown in parentheses. See Section 3.6.3 for details.

9.3.2 Preservation of quantiles of the AGE variable

The preservation of the quantiles of the AGE variable gives us our first indication

of the distributional performance of the various imputation methods. Also, when

compared to moments, quantiles are more robust against outliers. We may, for

example, compare the biases of the first moment µ̂imp and median ξ̂imp
0.5 , as well as

the biases of the second moment τ̂ imp and quantiles ξ̂imp
0.25 and ξ̂mis

0.25. The weighted

quantiles are defined as

ξ̂mis
q = F̂−1

Y mis(q)

ξ̂imp
q = F̂−1

Y imp(q), q = 0.05, 0.25, 0.50, 0.75, 0.95,
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where

F̂Y imp(y) =
1

Sw

∑

j:Xj∈Dmis

WjI(Y comp
j ≤ y),

where I(·) denotes an indicator function, and F̂Y mis(y) is computed by replacing

imputed values by missing values. Biases are defined as Bias[ξ̂imp
q |n] = E[ξ̂imp

q −
ξ̂mis
q |n].

The results of these biases are summarized in Table 9.10. As with moments, the

baseline methods perform quite badly due to MAR missingess. As before, nearest

neighbour seems to perform quite well. It also seems that cell methods with donor

strategy are always among the best methods, as is the standard TS-SOM with

simulated randomness.

A notable difference between the results of the preservation of moments and the

current analysis of quantiles is that in the bias of quantiles there are as large differ-

ences as there were between the first and second moments. This reflects, of course,

the sensitivity of second order measures, when compared to ”robust” quantiles.

q = 0.05 q = 0.25 q = 0.50 q = 0.75 q = 0.95

ξ∗mis
q ≈ 2.72 14.27 31.22 54.15 79.61

Method Bias(ξ̂imp
0.05) Bias(ξ̂imp

0.25) Bias(ξ̂imp
0.50) Bias(ξ̂imp

0.75) Bias(ξ̂imp
0.95)

B,M 38.32(0.03) 26.77(0.04) 9.82(0.06) -13.11(0.06) -38.57(0.05)

B,R 3.03(0.06) 12.15(0.05) 9.84(0.06) 1.49(0.06) -3.25(0.07)

B,D 2.51(0.05) 11.14(0.06) 10.93(0.07) 3.49(0.07) -3.38(0.06)

L,M 2.60(0.03) -2.26(0.04) -0.18(0.06) -4.77(0.05) -7.48(0.05)

L,R -2.13(0.04) 1.50(0.04) -0.02(0.05) -1.98(0.05) -3.20(0.06)

N,M 0.30(0.10) -0.62(0.05) -0.42(0.10) -1.03(0.10) -0.67(0.17)

K,M 4.42(0.03) -2.28(0.06) 2.03(0.05) -5.42(0.05) -7.69(0.04)

K,R -2.40(0.03) 0.84(0.03) 1.71(0.04) -3.44(0.04) -4.53(0.05)

T,M 3.50(0.04) 0.90(0.06) 6.95(0.08) -2.87(0.10) -6.58(0.06)

T,R -0.85(0.04) 0.03(0.04) 2.10(0.05) -0.90(0.05) -3.94(0.05)

T,D 0.11(0.04) 0.37(0.03) 1.69(0.06) -0.40(0.05) -2.44(0.05)

T,Ms 6.60(0.13) 2.50(0.19) 7.67(0.07) -4.54(0.08) -9.28(0.14)

T,Rs -0.57(0.04) 0.04(0.04) 3.29(0.05) -1.51(0.05) -3.83(0.06)

C,M 4.73(0.03) -3.66(0.23) 4.73(0.08) -9.47(0.10) -11.00(0.14)

C,R -0.40(0.04) -0.07(0.05) 3.48(0.05) -1.46(0.05) -4.27(0.06)

C,D -0.03(0.04) -0.22(0.04) -0.03(0.06) -0.81(0.06) -3.71(0.06)

TJ,M -0.39(0.05) -0.21(0.09) 2.62(0.12) -3.12(0.14) -3.98(0.15)

TJ,R -0.65(0.05) -0.27(0.06) 0.95(0.07) -1.34(0.07) -4.1(0.08)

TJ,D 0.15(0.04) 0.09(0.04) 2.56(0.10) 0.11(0.10) -3.96(0.09)

TJ,Ms 1.40(0.05) 0.49(0.10) 0.77(0.09) -5.20(0.07) -2.79(0.07)

TJ,Rs 0.65(0.04) -0.54(0.06) 0.42(0.07) -3.21(0.06) -2.42(0.06)

CJ,M 3.51(0.09) -1.05(0.14) 1.15(0.07) -5.58(0.08) -6.26(0.22)

CJ,R -0.41(0.05) -0.57(0.07) 1.13(0.06) -2.19(0.08) -3.06(0.17)

CJ,D 0.06(0.06) -0.16(0.06) 0.07(0.07) -0.52(0.08) -2.72(0.15)

Table 9.10: Quantiles (ξ∗mis
q ) and biases Bias(ξ̂imp

0.05) for the AGE variable. Standard

deviations of error estimates are shown in parentheses.
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9.3.3 Preservation of conditionalized quantiles of the AGE

variable

The preservation of quantiles was computed over the marginal distribution of the

imputed AGE variable. This gives a very limited viewpoint of the performance of

the different methods. As we have seen many times in this thesis, there are two ways

to preserve marginal distributions, one using a ”correct” model and ”correct” level

of simulated randomn noise; and the other using flexible models, where the residual

noise is mixed with the model.

Now we are interested in seeing whether this marginal performance on quantiles

extends to joint distribution of AGE and other variables. As an example of this we

use a 7-category variable MARSTA (marital status) that takes the values

MARSTA =





1 (single) 44.193% of observations

2 (married and living with) 41.702%

3 (civil partnership) 2.066%

4 (married and separated) 6.135%

5 (divorced) 5.857%

6 (widowed) 0.042%

7 (civil partnership and separated) 0.005%

Using again the five quantiles (0.05, 0.25, 0.50, 0.75, 0.95), we are now interested

in finding out how the distribution of AGE behaves when conditionalized with the

five first MARSTA classes. The ”true” behaviour is visualized in Figure 9.3.

AGE

MARSTA

 99.0

 74.3

 49.5

 24.8

 0.0  1  2  3  4  5  6  7

Figure 9.3: Visualization of weighted

f(AGE|MARSTA) using box plots.

The focus is on the first five classes, which have 99% of all mass. Figures 9.4-

9.9 illustrate the box plots of 0.05, 0.25, 0.50 (median), 0.75, and 0.95-quantiles

for AGEimp|MARSTA = x where x = 1, . . . , 5. The quantiles of AGEmis|MARSTA

have been plotted (dashed line) for comparison.
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Figure 9.4: Preservation of

f(AGEmis|MARSTA) for B,R

method.
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Figure 9.5: Preservation of

f(AGEmis|MARSTA) for L,M

method.

95%

75%

1

25%

5%

50%

542 3

AGE

MARSTA

 99.0

 0.0

 74.3

 49.5

 24.8

Figure 9.6: Preservation of

f(AGEmis|MARSTA) for TJ,Rs

method.
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Figure 9.7: Preservation of

f(AGEmis|MARSTA) for N,M

method.
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Figure 9.8: Preservation of

f(AGEmis|MARSTA) for T,D

method.
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Figure 9.9: Preservation of

f(AGEmis|MARSTA) for CJ,D

method.
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The results indicate more clearly how some of the methods are able to preserve

joint distributions while some are not.

From the results we can see that the results of baseline B,R are independent

of covariates. Linear regression preserves the median quite well but fails on 5%

and 95% quantiles. The nearest neighbour imputation, the joint (Y, X) clustering

version of TS-SOM with random strategy TJ,Rs and K-Means with donor strategy

give the visually best results. The standard clustering TS-SOM method with donor

strategy experiences problems for MARSTA values 3, 4, and 5. Namely, it results

in underestimation of many conditional quantiles.

9.3.4 Qualitative analysis of the preservation of distribution

of the AGE variable

We continue by doing an even deeper analysis of the chosen three methods: baseline

(B,R), linear regression (L,M), and joint (Y, X) TS-SOM clustering (TJ,Rs). The

results are given in a form of confusion plots, density plots and QQ plots. Sampling

weights have been applied in the estimation of the plots. As before, we try to

compare the distribution of missing and imputed values.

The confusion plots in Figures 9.10, 9.12, and 9.14 reveal that the correlation

between imputed and missing values for the baseline method is zero. This is expected

as covariate information is not used. According to these plots, the performance for

the linear regression method and the TS-SOM method is approximately the same.
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Figure 9.10: Confusion plot (pdf)

between AGEimp,B,R and AGEmis.
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Figure 9.11: Density f(AGEimp,B,R)

versus f(AGEmis).
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Figure 9.12: Confusion plot (pdf)

between AGEimp,L,M and AGEmis.
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Figure 9.13: Density f(AGEimp,L,M)

versus f(AGEmis).
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Figure 9.14: Confusion plot (pdf)

between AGEimp,TJ,Rs

and AGEmis.
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Figure 9.15: Density

f(AGEimp,TJ,Rs

) versus f(AGEmis).

A finer analysis of distribution preservation is easier via kernel density plots

depicted in Figures 9.11, 9.13, and 9.15. From the density estimate for the baseline

method it is obvious that distribution f(AGEmis) is not well preserved. Namely,

the Gaussian assumption is wrong and the moments of imputation distribution are

severely biased: expectation is too high and variance is underestimated. Linear re-

gression with mean strategy recovers the underlying distribution considerably better

than the baseline method. Linear regression with mean strategy as well as the joint

(Y, X) clustering version of TS-SOM with random strategy seem to perform equally

well.

Figure 9.16 depicts QQ plots for the three methods. From the first plot one can

conclude that the small quartiles for the imputed values of the baseline method are

too high (deviation below diagonal line). This is obvious because the expectations of

AGEobs are higher than AGEmis. The plot for linear regression with mean strategy

seems to reveal that at least the right tail of AGEmis is not well preserved. One

reason for this may be that noise is not modelled, in other words, the variance
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is underestimated. The plot for joint (Y, X) clustering with the TS-SOM method

seems to be close to the diagonal line. This means that distribution is well preserved.
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Figure 9.16: A: QQ plot for B,R method, B: QQ for L,M method, C: QQ for TJ,Rs

method.

9.3.5 Preservation of weighted unit level MSE of the AGE

variable

Recall from Section 8.4.4 the definition of expected MSE

E[m̂se] = E[
∑

j:Xj∈Dmis

W j(Y
imp
j − Y true

j )2] = A + B + C + d1 + d2 + d3 + d4︸ ︷︷ ︸
D

,

where

A = E[
∑

j

W j(Y
mis
j − µ̂mis)2], weighted variance of missing Ymis

j

B = E[
∑

j

W j(Y
imp
j − µ̂imp)2], weighted variance of imputed values

C = −2E
[
Ĉov[Y imp, Y mis]

]
, weighted covariance between missing and imputed values

D = E[(µ̂mis − µ̂imp)2], global estimation bias,

where

d1 = (E[µ̂mis]− E[µ̂imp])2, expected bias

d2 = Var[µ̂imp], variance of µ̂imp

d3 = Var[µ̂mis], sample variance of µ̂mis

d4 = −2Cov[µ̂imp, µ̂mis], covariance between µ̂imp and µ̂mis.

Correlation is also computed as follows

Correlation =

{ −0.5 ∗ C/
√

A ∗B, if C > 0,

0, if C = 0.
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The results are summarized in Table 9.11. Note that the expectation of weighted

variance estimator for missing values (term A) is the same for all methods, thus it

is omitted from the table. Its value is A = 585.4(0.7). Further, variance of mean

estimator for the missing values is also the same for all methods, and its value is

Var[µ̂mis] = 0.36.

The main results can be summarized as follows:

• the contribution of the squared global bias term to the mean squared error is

neglible (except for baseline methods - however, for them its impact is about

5%)

• the methods with random or donor strategies correlate less between imputed

and missing values than the methods with mean strategy,

• the variance of µ̂imp is bigger than the variance of µ̂mis for most methods.

d1 d3 d4

Method MSE B C D Correlation Global bias2 Var[µ̂imp] −2Cov[µ̂mis, µ̂imp]

B,M 619.0(0.7) 0.0(0.0) 0.0(0.0) 33.6(0.4) 0.000(0.0000) 33.01 0.24 -0.02

B,R 1061.2(1.6) 437.5(0.7) 2.3(1.1) 36.0(0.5) -0.002(0.0011) 35.25 0.40 -0.02

B,D 1082.2(1.6) 460.1(0.8) -2.2(1.1) 38.9(0.5) 0.002(0.0011) 37.98 0.49 0.05

L,M 81.1(0.2) 464.3(0.7) -969.7(1.3) 1.1(0.03) 0.930(0.0002) 1.00 0.33 -0.57

L,R 251.3(0.5) 536.9(0.8) -871.8(1.4) 0.7(0.03) 0.777(0.0005) 0.46 0.39 -0.52

N,M 87.3(0.4) 576.7(1.6) -1075.5(2.0) 0.5(0.03) 0.926(0.0003) 0.09 0.71 -0.62

K,M 63.3(0.1) 455.2(0.6) -977.8(1.2) 0.4(0.02) 0.947(0.0001) 0.33 0.31 -0.59

K,R 141.2(0.3) 513.9(0.7) -958.9(1.3) 0.7(0.03) 0.874(0.0003) 0.57 0.33 -0.56

T,M 122.2(0.5) 458.3(0.7) -921.7(1.4) 0.2(0.01) 0.890(0.0004) 0.02 0.37 -0.57

T,R 214.8(0.8) 545.4(0.8) -916.3(1.5) 0.2(0.01) 0.811(0.0007) 0.00 0.41 -0.53

T,D 186.6(0.7) 550.6(0.7) -949.7(1.6) 0.3(0.01) 0.836(0.0007) 0.08 0.36 -0.55

T,Ms 154.7(2.1) 383.0(2.3) -816.0(3.8) 2.2(0.37) 0.862(0.0022) 0.43 1.97 -0.53

T,Rs 208.4(0.6) 537.1(0.9) -914.4(1.6) 0.3(0.03) 0.815(0.0006) 0.01 0.42 -0.54

C,M 116.9(0.6) 410.4(1.1) -880.5(1.8) 1.5(0.06) 0.898(0.0005) 1.24 0.46 -0.54

C,R 203.1(0.8) 529.5(0.8) -912.1(1.6) 0.3(0.02) 0.819(0.0008) 0.07 0.39 -0.55

C,D 221.7(1.0) 542.9(0.7) -907.3(1.6) 0.6(0.03) 0.805(0.0009) 0.36 0.47 -0.57

TJ,M 190.0(1.1) 506.3(1.3) -902.7(2.1) 0.9(0.07) 0.829(0.0011) 0.05 1.03 -0.52

TJ,R 324.3(1.1) 547.7(1.2) -809.8(2.0) 1.0(0.06) 0.715(0.0011) 0.32 0.77 -0.47

TJ,D 247.7(0.9) 543.0(1.4) -881.8(2.0) 1.1(0.08) 0.782(0.0008) 0.04 1.25 -0.53

TJ,Ms 87.8(0.6) 494.4(1.1) -993.0(1.8) 1.0(0.05) 0.923(0.0006) 0.47 0.71 -0.57

TJ,Rs 126.9(0.5) 535.4(1.1) -995.0(1.8) 1.0(0.06) 0.889(0.0005) 0.54 0.67 -0.58

CJ,M 156.4(1.2) 463.5(2.1) -894.2(2.6) 1.7(0.09) 0.859(0.0011) 0.78 0.99 -0.47

CJ,R 246.5(1.5) 549.6(2.1) -890.1(2.8) 1.6(0.11) 0.785(0.0013) 0.46 1.31 -0.54

CJ,D 248.3(1.3) 560.3(2.0) -898.6(2.6) 1.1(0.08) 0.785(0.0012) 0.11 1.30 -0.64

Table 9.11: Decomposition terms for mean squared error. Remark that: A =

585.4(0.7), d2 = Var[µ̂mis] = 0.36.

The four lowest MSE results have been marked in the table. The methods that

these results correspond to are: kernel regression with mean strategy, linear regres-

sion with mean strategy, 1-nearest neighbour, and TS-SOM joint (Y, X) clustering

with mean strategy and smoothing. All these methods yield a high correlation be-

tween missing and imputed values. There are some differences in the global bias

which is lowest for the nearest neighbour method. The main difference between

these methods is in the variability of imputations (term B). Linear regression and
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kernel regression yield a somewhat low variability among the imputed values. The

variance of the missing values is approximately 584.4 and these two methods yield

the variances 464.3 and 455.2. However, 1-nearest neighbour almost captures the

true variability of the missing values. It yields a variance of 576.7. But this much of

variance has been penalized in the mean squared error quantity. The joint (Y, X)

clustering with TS-SOM method is between these methods: yielding a variance of

535.4.

9.3.6 Comparison between the distributional KS measure

and unit level MSE of the AGE variable

The final question about the imputation performance of the AGE variable concerns

the tradeoff between the distributional and unit level performances. The MSE is

computed as in the previous example in Section 9.3.5. To evaluate the distributional

performance we use two variants of the Kolmogorov-Smirnov measure

a) The standard Kolmogorov-Smirnov measure

KS = E
[
sup

y
|F̂Y imp(y)− F̂Y mis(y)|

∣∣n
]
, and

b) Integrated absolute error Kolmogorov-Smirnov which is defined as (this mea-

sure is KSα for α = 1 in [10])

KS(L1) = E
[

1

T2Nmis − T0

2Nmis∑
j=1

(Tj − Tj−1)
∣∣F̂Y mis(Tj)− F̂Y imp(Tj)

∣∣ |n
]
,

where Y denotes age variable, F̂ is the empirical weighted cumulative dis-

tribution function of age, {T1, T2, . . . , T2Nmis} is a sorted (from minimum to

maximum) set of imputed and missing values, and T0 is the biggest integer

less or equal to T1.

The results are given in Table 9.12, as well as in Plots 9.17 and 9.18. As

before, the best methods are those that are close to the Pareto-optimal front. The

results are more or less unaffected by the way how Kolmogorov-Smirnov measure is

computed. In both Figures, 9.17 and 9.18, the best methods for under multivariate

decision problem are

K,M kernel regression with mean strategy, which minimizes MSE

N,M nearest neighbour imputation

TJ,Rs Joint (Y, X) clustering with TS-SOM under simulated random noise

T,D standard X-clustering TS-SOM with donor strategy, and

C,D standard K-Means clustering with donor strategy which minimizes the Kolmogorov-

Smirnov measure.
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In addition, methods (TJ,Ms), (T,R), (L,R), and (CJ,D) are close to the Pareto

front.

The obvious conclusion is that nonparametric regression methods perform best

if one tries to minimize unit level errors. For distributional performance it seems

that cell methods are the best ones.

Method KS KS(L1) MSE

B,M 0.61(0.0006) 0.23(0.0003) 619.0(0.7)

B,R 0.20(0.0007) 0.07(0.0003) 1061.2(1.6)

B,D 0.19(0.0009) 0.07(0.0004) 1082.2(1.6)

L,M 0.08(0.0004) 0.03(0.0001) 81.1(0.2)

L,R 0.04(0.0003) 0.02(0.0001) 251.3(0.5)

N,M 0.06(0.0007) 0.02(0.0002) 87.3(0.4)

K,M 0.12(0.0004) 0.04(0.0001) 63.3(0.1)

K,R 0.05(0.0003) 0.02(0.0001) 141.2(0.3)

T,M 0.11(0.0005) 0.04(0.0002) 122.2(0.5)

T,R 0.04(0.0003) 0.02(0.0001) 214.8(0.8)

T,D 0.03(0.0004) 0.01(0.0001) 186.6(0.7)

T,Ms 0.17(0.0022) 0.06(0.0006) 154.7(2.1)

T,Rs 0.05(0.0005) 0.02(0.0002) 208.4(0.6)

C,M 0.14(0.0006) 0.05(0.0002) 116.9(0.6)

C,R 0.05(0.0005) 0.02(0.0002) 203.1(0.8)

C,D 0.03(0.0003) 0.01(0.0001) 221.7(1.0)

TJ,M 0.10(0.0010) 0.03(0.0002) 190.0(1.1)

TJ,R 0.04(0.0006) 0.02(0.0002) 324.3(1.1)

TJ,D 0.05(0.0010) 0.02(0.0003) 247.7(0.9)

TJ,Ms 0.08(0.0007) 0.03(0.0002) 87.8(0.6)

TJ,Rs 0.05(0.0006) 0.02(0.0002) 126.9(0.5)

CJ,M 0.11(0.0008) 0.04(0.0003) 156.4(1.2)

CJ,R 0.05(0.0008) 0.02(0.0003) 246.5(1.5)

CJ,D 0.05(0.0008) 0.01(0.0002) 248.3(1.3)

Table 9.12: Kolmogorov-Smirnov and mean squared error results. Standard devia-

tions of estimates are shown in parentheses.
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Figure 9.17: Mean squared error vs.

Kolmogorov-Smirnov maximum statistic

plot. Results for baseline methods are

available in Table 9.12.
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Figure 9.18: Mean squared error vs.

Kolmogorov-Smirnov absolute statistic

plot.

9.4 Evaluation of imputed SEX variable

In our final evaluation we shall investigate how well the different methods perform

in the imputation of the categorial SEX variable. Since the missingness is directly

explained by two covariates (FTPTWK and BENFTS) as explained earlier, the

problem is solvable using a linear classifier. Therefore our interest is to see how

efficient the other methods, especially cell imputation, are in this case. Typically,

one would use more appropriate method, such as logistic regression, to impute a

categorical variable. However, the results indicate that linear regression does well

at unit level.

The evaluation consists of three different types of analyses

1) Evaluation of classification performance in terms of operating characteristics.

2) A comparison between unit level vs. distribution level measures.

3) A short review of computational time complexities of the methods.

In addition, a deeper study about the role of certain model parameters is studied

in conjunction with the comparison between unit level and distribution level perfor-

mances. In the study we try to understand the role of simulated noise and model

flexibility. In addition the efficiency of different methods is studied in terms of a

data set size n.

The parameters for the imputation methods were set as described in Section

9.2.4 with the exceptions that the TS-SOM joint (Y, X) clustering methods TJ* use

1024 cells in studies 1) and 2), and some parameters are different in the additional

study of the efficiency as described later.
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9.4.1 Classification performance of the SEX variable

In this study we investigate how well different methods can predict the correct class

of variable SEX. For simplicity let Y ∈ {M, F} be the SEX variable, where M

denotes MALE and F denotes FEMALE. Then the task can be written in terms of

soft classifier g(x) ∈ R and thresholding parameter θ ∈ R as follows

Ŷ imp
j =

{
M if g(xj) + ε < θ

F otherwise,

where xj is the covariate vector for the jth observation. In the actual implementation,

values are coded such that M= −1 and F= 1, which implies that Ŷ imp
j ∈ {−1, 1}.

The classification performance can now be written in terms of posterior prob-

abilities using a threshold θ as follows

Pr(Ŷ imp = M|Y mis, θ) = 1− Pr(Ŷ imp = F|Y mis, θ).

The operating characteristics curve [20, 45] is computed in terms of the threshold θ

and it explains how sensible the classifier is in terms of

v1(θ) = Pr(Ŷ imp = M|Y mis = M, θ) vs.

v2(θ) = Pr(Ŷ imp = M|Y mis = F, θ).

The result is then drawn in terms of curve (v1(θ), v2(θ)|θ), θ : −∞→∞ as depicted

in Figure 9.19. Another example is given, for example, in reference [22].

theta x

Pr(M|M)

Pr(M|F) v2(theta)

v1(theta)

theta=−infinity

theta=infinity 

AREA UNDER 
OPERATING
CURVE (AUC) 

OC−curve 

theta 

Figure 9.19: The idea behind operating characteristic curves.

It is obvious that the bigger the ”area under OC-curve” (AUC) is, the better the

classification performance is on a wide range of threshold values. Thus the results
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can be summarized using term AUC, which we compute using simple numerical

integration over the observed values of the OC-curve.

Four examples of OC-curves are shown in Figures 9.20-9.23 for baseline mean,

linear regression, standard X-clustering TS-SOM, and joint (Y, X) clustering TS-

SOM. A box in the OC-curves depicts the value θ = 0.
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Figure 9.20: OC curve for baseline/mean

strategy.
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Figure 9.21: OC curve for linear regres-

sion/mean strategy.
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Figure 9.22: OC curve for TS-SOM stan-

dard X-clustering/mean strategy (non-

smoothed)
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Figure 9.23: OC curve for TS-SOM joint

(Y, X) clustering/mean strategy (non-

smoothed)

Clearly, for small values θ the classification performance of linear regression

is the best, and it explains the highest AUC values. However, given θ = 0, the

differences between the methods are not as visible.

Since the actual implementation of imputation requires fixed θ, we have cho-

sen θ = 0 to compute the confusion matrices for all the methods. Thus we have

computed the quantities

Pr(Ŷ imp = M|Y mis = M, θ = 0), Pr(Ŷ imp = F|Y mis = M, θ = 0)

Pr(Ŷ imp = M|Y mis = F, θ = 0), Pr(Ŷ imp = F|Y mis = F, θ = 0).

The results are summarized for all of the methods in Table 9.13.
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The worst performer is the baseline method with mean strategy. Namely, it

predicts all missing persons to be females (which is a mode class in the observed

data). The best performer for male class is linear regression. This is expected as

covariates with a higher linear dependency to male class are being used. The non-

parametric regression methods and some cell methods perform also well for the male

class predicting approximately 80%-90% of missing males correctly as male. For the

female class, linear regression performs significantly worse than some other meth-

ods: it is able to predict only 55% of missing femals as female. Possible nonlinear

dependencies between female class and some of the covariates may explain the bad

performance of linear regression. The nonparametric regression methods and almost

all the cell methods are able to predict 70% of missing females correctly.

The expected area under the operating characteristic curves is also summarized

in Table 9.13. A good imputation method should have few misclassifications and

thus a high expected area under the curve. Linear regression yields the highest area

under curve for the male class. However, two standard X-clustering cell methods

yield also a high area. The best joint (Y, X) clustering methods (TJ*,Ms and

TJ*,Rs without incomplete training) yield an area of 0,74. One can notice that

random or donor strategies yield lower areas than the corresponding method with

mean strategy, however this is not the case for joint (Y, X) clustering methods. For

the joint (Y, X) clustering methods, random or donor strategy yield at least as good

a performance as mean strategy, often a bit better.

Method Pr(M|M) Pr(F|M) Pr(M|F) Pr(F|F) AUC

B,M 0.00(0.000) 1.00(0.000) 0.00(0.000) 1.00(0.000) 0.500(0.000)

B,R 0.42(0.002) 0.58(0.002) 0.42(0.002) 0.58(0.002) 0.499(0.002)

B,D 0.41(0.002) 0.59(0.002) 0.41(0.002) 0.59(0.002) 0.500(0.001)

L,M 0.95(0.003) 0.05(0.003) 0.45(0.005) 0.55(0.005) 0.857(0.001)

L,R 0.55(0.002) 0.45(0.002) 0.46(0.002) 0.54(0.002) 0.563(0.001)

N,M 0.77(0.007) 0.23(0.007) 0.31(0.006) 0.69(0.006) 0.711(0.002)

K,M 0.79(0.010) 0.21(0.010) 0.29(0.012) 0.71(0.012) 0.832(0.001)

K,R 0.53(0.002) 0.47(0.002) 0.42(0.002) 0.58(0.002) 0.574(0.002)

T,M 0.88(0.006) 0.12(0.006) 0.37(0.009) 0.63(0.009) 0.849(0.002)

T,R 0.71(0.004) 0.29(0.004) 0.31(0.003) 0.69(0.003) 0.743(0.002)

T,D 0.72(0.004) 0.28(0.004) 0.31(0.003) 0.69(0.003) 0.699(0.002)

T,Ms 0.89(0.006) 0.11(0.006) 0.39(0.010) 0.61(0.010) 0.846(0.002)

T,Rs 0.63(0.004) 0.37(0.004) 0.31(0.002) 0.69(0.002) 0.700(0.002)

C,M 0.90(0.008) 0.10(0.008) 0.40(0.012) 0.60(0.012) 0.850(0.001)

C,R 0.64(0.005) 0.36(0.005) 0.31(0.002) 0.69(0.002) 0.710(0.002)

C,D 0.66(0.005) 0.34(0.005) 0.31(0.002) 0.69(0.002) 0.650(0.002)

TJ,M 0.72(0.018) 0.28(0.018) 0.32(0.006) 0.68(0.006) 0.640(0.008)

TJ,R 0.70(0.018) 0.30(0.018) 0.31(0.006) 0.69(0.006) 0.664(0.008)

TJ,D 0.71(0.018) 0.29(0.018) 0.32(0.007) 0.68(0.007) 0.680(0.008)

TJ,Ms 0.73(0.016) 0.27(0.016) 0.32(0.006) 0.68(0.006) 0.683(0.008)

TJ,Rs 0.73(0.016) 0.27(0.016) 0.32(0.005) 0.68(0.005) 0.703(0.006)

TJ*,Ms 0.81(0.009) 0.19(0.009) 0.33(0.009) 0.67(0.009) 0.735(0.005)

TJ*,Rs 0.81(0.008) 0.19(0.008) 0.33(0.009) 0.67(0.009) 0.737(0.004)

CJ,M 0.73(0.014) 0.27(0.014) 0.32(0.010) 0.68(0.010) 0.645(0.006)

CJ,R 0.68(0.017) 0.32(0.017) 0.30(0.011) 0.70(0.011) 0.675(0.006)

CJ,D 0.71(0.015) 0.29(0.015) 0.30(0.011) 0.70(0.011) 0.685(0.006)

Table 9.13: Conditional probabilities and areas under operating characteristic

curves. Standard deviations of estimates are shown in parenthesis.
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9.4.2 Comparison between unit level and distributional level

imputation performances of the SEX variable

There are several alternatives to evaluate the distributional and unit level perfor-

mance of categorial variables. In this context we have chosen new measures DIST

and MR as defined next.

Distributional measure DIST is chosen as

DIST = E
[ ∑

y∈{M,F}
Pr(Y mis = y)|Pr(Y imp = y)− Pr(Y mis = y)|

∣∣n
]
,

which takes its maximum when there is the biggest difference between the proportion

of imputed Y imp and missing values Y mis for males and females. The differences are

weighted by class priors, which makes this somewhat similar to the Kullback-Leibler

distance.

The unit level error is simply the weighted unit level error

MR = E
[ 1∑

j∈Ωmis Wj

WjI(Y mis
j 6= Y imp

j )|n
]
,

where Ωmis is the index-set of missing values and I(lexp) is the indicator function

for logical expression lexp. As before, we are using the sampling weights.

The results are summarized in Table 9.14 and Figure 9.24.

Method DIST MR

B,M 0.610(0.001) 0.610(0.001)

B,R 0.186(0.002) 0.516(0.001)

B,D 0.200(0.002) 0.519(0.001)

L,M 0.145(0.004) 0.209(0.001)

L,R 0.097(0.002) 0.454(0.001)

N,M 0.056(0.004) 0.262(0.002)

K,M 0.105(0.004) 0.245(0.002)

K,R 0.125(0.002) 0.454(0.001)

T,M 0.089(0.005) 0.219(0.001)

T,R 0.058(0.003) 0.299(0.002)

T,D 0.051(0.003) 0.294(0.002)

T,Ms 0.099(0.006) 0.221(0.001)

T,Rs 0.105(0.003) 0.350(0.003)

C,M 0.124(0.006) 0.218(0.001)

C,R 0.100(0.003) 0.341(0.003)

C,D 0.087(0.003) 0.332(0.003)

TJ,M 0.097(0.010) 0.298(0.009)

TJ,R 0.105(0.010) 0.308(0.010)

TJ,D 0.104(0.010) 0.304(0.009)

TJ,Ms 0.083(0.009) 0.289(0.008)

TJ,Rs 0.082(0.009) 0.289(0.008)

TJ*,Ms 0.070(0.005) 0.245(0.004)

TJ*,Rs 0.071(0.004) 0.244(0.003)

CJ,M 0.096(0.008) 0.288(0.007)

CJ,R 0.125(0.010) 0.308(0.008)

CJ,D 0.104(0.008) 0.291(0.007)

Table 9.14: Distribution level and unit level results. The best five (or six) results

have been marked using a bold font.
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The baseline methods perform the worst at both unit level and distribution

level, what is as expected when covariate information is not used.

The best unit level predictions are given by linear regression with mean strategy

and the standard X-clustering cell methods with smoothed or with non-smoothed

mean strategy. A good performance for linear regression is expected, because vari-

ables with the highest linear dependency to male class were selected as covariates.

The nonparametric regression methods with mean strategy perform also well. Joint

(Y, X) clustering with TS-SOM methods TJ*,Ms and TJ*,Rs perform better than

nearest neighbour at unit level. Random or donor strategy increases the unit level

error compared to mean strategy, as expected. On the other hand, inclusion of

noise to predictions reduces the distributional level error in some cases. One may

suspect noise distribution to be misspecified for those methods in which added noise

increases the distributional level error.

From the results one can notice that the baseline methods with random imputa-

tion or donor strategy perform better at unit level than the baseline mean strategy.

Typically one would not expect such behaviour. There is a simple explanation for

this. Distributions of observed and missing SEX are different: in the observed part

there are more females than males, and vice versa in the missing part. The baseline

mean strategy predicts all the missing persons as female (an ’optimal baseline’ unit

level strategy would predict all of them as males). The donor and random impu-

tation strategies predict more often male than the mean strategy does, and this

produces a better, but still poor, unit level result.

The best distribution level results are obtained by nearest neighbour and TS-

SOM standard X-clustering with either random strategy (without smoothing) or

with donor strategy. However, also the TS-SOM joint (Y, X) clustering methods

which use smoothing yield a quite good distribution performance.

When considering simultaneously preservation of unit and distribution level,

four methods pop up: nearest neighbour, the TS-SOM joint (Y, X)-clustering meth-

ods utilizing smoothing and using only complete observations in model training (ab-

breviations TJ*,Ms and TJ*,Rs), and standard X-clustering TS-SOM with donor

strategy.

Figure 9.24 confirms our conclusions. The best methods for multivariate deci-

sion problem are

L,M linear regression with mean strategy, which minimizes unit level error MR

T,M standard X-clustering TS-SOM with mean strategy (T,M)

(TJ*,Ms),(TJ*,Rs) joint (Y, X) clustering methods

N,M nearest neighbour, and

T,D donor version of X-clustering using TS-SOM, which minimizes distribution

level error DIST.

In addition methods (C,M), (K,M), (T,Ms), (T,R) are close to the Pareto front.
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Figure 9.24: Unit level result versus distribution level result. Results for joint (Y, X)

clustering with TS-SOM methods which do not utilize observations with missing

SEX are labeled by a star(*).

9.4.3 The roles of model flexibility and simulated random-

ness

Here we are interested to know how added simulated randomness changes the role

of the method from unit level imputation to distributional level imputation. In

addition, we shall investigate the role of model flexibility in the case of TS-SOM

methods. This is done by testing the model performance with different number of

clusters (cells).

In the case of simulated randomness the variation is done by changing the

variance σ2 in imputation using a soft clustering model, gmodel(xj), with a random

term ε as

Ŷ imp
j =

{
M if gmodel(xj) + ε < 0, ε ∼ N(0, σ2)

F, otherwise.

In the experiments we see what happens when σ2 : 0 →∞.

The results of linear regression vary as shown in Figure 9.25.
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Figure 9.25: Performance of linear regression in terms of different values of simulated

randomness σ. Notation ”s” denotes standard deviation of simulated randomness

(σ), and ”EST s” denotes standard deviation of imputation noise estimated by the

L,R method (σ̂).

Clearly, at σ = 0 the unit level measure MR is minimized. Then as σ is

increased to value 0.12, where the distributional measure DIST is minimized. Finally

as σ → ∞ the performance becomes worse on both terms of MR and DIST. Note

also that the estimated residual standard deviation was σ̂ = 0.93, indicating that

the optimal value of σ is 0.129 ∗ σ̂ for this example.

Similar experiment was done with kernel regression as well, as shown in Figure

9.26.
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 0.16

 0.06
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K,R (EST s=0.28)
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s=0.02

Figure 9.26: The role of simulated randomness in the results of kernel regression.

As we can see, the behaviour is rather similar to that of linear regression. Now



227

MR is optimum with σ = 0, DIST is optimal with σ = 0.02 and there is a local

”worst” result when σ = 0.12. The results can be compared against the estimate of

residual standard deviation σ̂ = 0.28.

With joint (Y, X)-clustering with TS-SOM also the complexity of the model

was varied from 4 to 4096 clusters, denoted by Ll = 2l, (L2=4,. . . ,L7=4096). The

results are visualized in Figures 9.27 and 9.28, where the former is using incomplete

data training and in the other the model is built using the fully observed part of

data.
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Figure 9.27: Results for TJ,Ms and

TJ,Rs cell methods with a varied num-

ber of cells (L2=4 cells, L3=16, L4=64,

L5=256, L6=1024, and L7=4096) and

noise level.
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Figure 9.28: Results for TJ*,Ms and

TJ*,Rs cell methods when observations

with missing SEX are excluded from

model training data.

In all cases the methods meet when σ → ∞ as the model becomes closer to

random imputation. Otherwise the MR measure is minimized (usually) when σ = 0.

The best results correspond to the TJ*,Rs model using 1024 clusters (L6) with added

randomness under variance σ = 0.02. Note that in the optimal case the estimated

residual variance was σ̂ = 0.15, indicating that the optimal value of σ is 0.133 ∗ σ̂

for this method and example.

9.4.4 The role of sample size in the imputation of the SEX

variable

In this example we test the performance of different methods in terms of sample

size. The aim is to compare relative efficiencies between the methods. Although the

cause behind the differences in the efficiency is not fully studied here, it should be

noted that there is a relation between our analytical results (approximations) and

empirical results of this example. Unit level error MR, which is used here, equals

to four times mean squared error (MSE). However, sampling weights complicate the

situation.
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As earlier, we use DIST and MR to measure distributional and unit level per-

formances, respectively. In the experiments the sample size is increased from 4 to

65536 observations. However, the results for the nonparametric regression methods

for sample sizes 32768 and 65536 have been omitted due to high computational

requirements. Also, when the number of observations increases, the complexity of

nonparametric models is allowed to grow. Thus, we try to maximize the role of data

in imputation performance, rather than minimize the variance of estimators. For

kernel regression this is done by decreasing the smoothing, and for the cell methods

the number of cells is increased.

The exact value of smoothing bandwidth for kernel regression is taken as

λ = 0.5 ∗ (Nobs)−1/20,

which is based on Mack’s recommendations [72]. However, note that approximately

half of the covariates are categorials (Mack’s formulas assume continuous covariates).

Smoothing was halved from the earlier study, because it seemed to produce better

results, especially at the smallest sample sizes.

Note that the imputation noise variances for the random imputation strategies

were not set to optimal levels with respect to distribution level performance (recall

the previous experiment). Instead we used an estimated amount of noise variance.

As a consequence, the performance of some methods at a distribution level might

be improved.

The number of cells for the clustering methods was selected after some experi-

mentation. The obtained ”best” performing cluster values are listed in Table 9.15.

There are three different categories of the methods

i) SOM, which refers to all ”normal” TS-SOM methods

ii) SOM*, which refers to new TJ* methods, where the incomplete part of data

was omitted during the training

iii) K-means that refers to K-Means based methods.

Sample size n Repetitions SOM cells SOM* cells K-Means cells

4 500 4 4 1

8 500 4 4 1

16 400 4 4 2

32 400 4 4 4

64 300 16 16 6

128 300 16 16 8

256 200 16 16 16

512 200 16 16 24

1024 200 64 64 32

2048 100 64 256 48

4096 100 64 1024 64

8192 50 256 1024 96

16384 25 256 1024 128

32768 25 1024 1024 192

65536 25 1024 1024 256

Table 9.15: Sample size, the number of repeated experiments and the number of

clusters used with the cell imputation methods.
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As usual, the experiments were repeated several times in order to obtain reliable

mean results. The number of repetitions was bigger when the sample size was small,

as shown in Table 9.15.

The results are shown in Figures 9.29 and 9.30, as well as in Tables 9.16 and

9.17. The two figures contain relative results which are defined as

∆(DIST) = DIST−DISTL,M

∆(MR) = MR−MRL,M ,

where linear regression with mean strategy has been used as the reference method.

The two tables contain absolute results. Three best (or multiple if two best is not

uniquely defined) results are marked for each sample size, and the best of them is

underlined. However, there are situations in which the results for multiple methods

differ only by 0.01 or 0.02 units, which amounts to an average or maximum stan-

dard deviation of the computed estimates. A full list of the estimates of standard

deviations of the computed estimates is not included to compress the tables.
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(L,R) (T,M) (TJ*,Ms)

T,D

T,R

delta(DIST)

Figure 9.29: Relative distributional level results as functions of the sample size. The

results for B,M have been omitted as ’outliers’. The results for the nonparametric

regression methods have been omitted for n = 32768 and 65536 due to high compu-

tational requirements. The labels for kernel regression methods have been omitted

for clarity. See Table 9.16 for all results.
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Figure 9.30: Relative unit level results as functions of the sample size. The results

for nonparametric regression methods have been omitted for n = 32768 and 65536

due to high computational requirements.

n 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Method

B,M 0.49 0.51 0.56 0.56 0.58 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61

B,R 0.47 0.38 0.32 0.24 0.20 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

B,D 0.49 0.41 0.32 0.26 0.22 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

L,M 0.44 0.38 0.33 0.24 0.17 0.12 0.10 0.09 0.11 0.12 0.14 0.16 0.16 0.16 0.16

L,R 0.49 0.35 0.29 0.20 0.14 0.11 0.10 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.10

N,M 0.43 0.37 0.30 0.26 0.19 0.18 0.12 0.10 0.08 0.05 0.06 0.05 0.04 - -

K,M 0.43 0.39 0.33 0.27 0.22 0.18 0.16 0.13 0.13 0.13 0.13 0.15 0.17 - -

K,R 0.44 0.36 0.29 0.20 0.16 0.13 0.13 0.11 0.11 0.11 0.11 0.11 0.11 - -

T,M 0.45 0.41 0.37 0.28 0.21 0.17 0.15 0.12 0.08 0.09 0.08 0.08 0.09 0.08 0.10

T,R 0.44 0.38 0.29 0.22 0.19 0.15 0.15 0.13 0.07 0.06 0.06 0.03 0.03 0.03 0.03

T,D 0.43 0.37 0.29 0.21 0.18 0.15 0.14 0.12 0.07 0.06 0.05 0.03 0.03 0.03 0.02

T,Ms 0.45 0.45 0.43 0.39 0.21 0.16 0.14 0.12 0.10 0.10 0.10 0.08 0.09 0.10 0.10

T,Rs 0.48 0.36 0.30 0.21 0.15 0.15 0.14 0.14 0.11 0.10 0.10 0.05 0.05 0.04 0.03

C,M 0.50 0.53 0.41 0.32 0.25 0.21 0.15 0.13 0.13 0.12 0.12 0.13 0.12 0.12 0.11

C,R 0.49 0.38 0.29 0.22 0.17 0.16 0.14 0.12 0.13 0.11 0.10 0.08 0.07 0.05 0.04

C,D 0.49 0.40 0.31 0.21 0.16 0.15 0.12 0.12 0.11 0.10 0.09 0.07 0.07 0.03 0.03

TJ,M 0.50 0.43 0.38 0.29 0.24 0.21 0.19 0.15 0.12 0.13 0.12 0.13 0.14 0.16 0.15

TJ,R 0.48 0.40 0.33 0.25 0.22 0.21 0.16 0.15 0.13 0.09 0.10 0.16 0.13 0.15 0.13

TJ,D 0.47 0.38 0.33 0.26 0.22 0.20 0.17 0.14 0.13 0.11 0.11 0.12 0.19 0.15 0.19

TJ,Ms 0.49 0.43 0.39 0.30 0.24 0.21 0.18 0.15 0.14 0.12 0.10 0.15 0.16 0.12 0.13

TJ,Rs 0.48 0.40 0.31 0.26 0.22 0.19 0.18 0.15 0.12 0.09 0.08 0.11 0.13 0.12 0.10

TJ*,Ms 0.55 0.44 0.36 0.30 0.18 0.17 0.13 0.12 0.13 0.08 0.07 0.05 0.11 0.08 0.10

TJ*,Rs 0.52 0.40 0.31 0.25 0.17 0.16 0.15 0.15 0.14 0.09 0.07 0.07 0.09 0.10 0.09

CJ,M 0.50 0.53 0.40 0.27 0.22 0.17 0.15 0.16 0.13 0.13 0.12 0.08 0.10 0.07 0.07

CJ,R 0.47 0.40 0.28 0.21 0.16 0.16 0.16 0.16 0.14 0.11 0.11 0.08 0.08 0.07 0.08

CJ,D 0.46 0.38 0.29 0.20 0.17 0.14 0.16 0.17 0.16 0.13 0.12 0.10 0.08 0.07 0.08

Deviation

Max 0.019 0.015 0.014 0.012 0.011 0.010 0.010 0.009 0.010 0.013 0.012 0.017 0.031 0.028 0.027

Avg 0.019 0.014 0.012 0.009 0.008 0.007 0.007 0.006 0.005 0.007 0.006 0.007 0.010 0.009 0.009

Table 9.16: Distribution level results (DIST) as functions of the sample size. The

maximum and average deviances of computed estimates are shown in bottom two

rows. The best three methods for each sample size are marked and the best of them

is underlined. The results for nonparametric regression methods have been omitted

for sample sizes 32768 and 65536 due to high computational requirements.
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n 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Method

B,M 0.49 0.51 0.56 0.56 0.58 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61

B,R 0.50 0.50 0.52 0.53 0.52 0.52 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

B,D 0.51 0.50 0.53 0.52 0.53 0.52 0.52 0.53 0.52 0.52 0.52 0.52 0.52 0.52 0.52

L,M 0.44 0.43 0.44 0.41 0.39 0.34 0.29 0.24 0.22 0.22 0.21 0.21 0.21 0.21 0.21

L,R 0.51 0.48 0.49 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.45 0.46 0.46 0.45

N,M 0.44 0.41 0.40 0.38 0.34 0.33 0.30 0.28 0.27 0.26 0.26 0.26 0.25 - -

K,M 0.44 0.42 0.41 0.36 0.31 0.30 0.26 0.24 0.23 0.22 0.22 0.22 0.21 - -

K,R 0.45 0.42 0.44 0.41 0.40 0.40 0.41 0.40 0.40 0.40 0.39 0.39 0.39 - -

T,M 0.46 0.44 0.44 0.38 0.36 0.32 0.29 0.26 0.24 0.23 0.22 0.21 0.21 0.21 0.20

T,R 0.45 0.43 0.44 0.43 0.39 0.38 0.39 0.38 0.31 0.30 0.30 0.27 0.27 0.27 0.26

T,D 0.44 0.43 0.42 0.40 0.39 0.38 0.37 0.36 0.30 0.30 0.29 0.27 0.27 0.26 0.26

T,Ms 0.46 0.47 0.48 0.45 0.33 0.30 0.27 0.25 0.23 0.23 0.22 0.21 0.21 0.20 0.20

T,Rs 0.52 0.49 0.50 0.48 0.44 0.42 0.40 0.39 0.36 0.35 0.34 0.29 0.29 0.29 0.27

C,M 0.50 0.53 0.45 0.41 0.35 0.32 0.27 0.25 0.23 0.23 0.22 0.21 0.21 0.21 0.20

C,R 0.52 0.51 0.48 0.42 0.40 0.38 0.37 0.36 0.36 0.35 0.34 0.32 0.31 0.29 0.28

C,D 0.51 0.51 0.45 0.42 0.38 0.38 0.36 0.36 0.35 0.34 0.33 0.31 0.31 0.28 0.28

TJ,M 0.51 0.50 0.55 0.53 0.41 0.40 0.39 0.36 0.32 0.33 0.32 0.32 0.33 0.35 0.36

TJ,R 0.49 0.50 0.53 0.52 0.41 0.41 0.38 0.37 0.33 0.30 0.31 0.35 0.30 0.33 0.32

TJ,D 0.49 0.51 0.55 0.51 0.40 0.40 0.38 0.36 0.33 0.31 0.31 0.30 0.36 0.34 0.37

TJ,Ms 0.50 0.52 0.54 0.52 0.41 0.41 0.39 0.36 0.33 0.31 0.30 0.30 0.31 0.29 0.31

TJ,Rs 0.51 0.51 0.51 0.52 0.40 0.39 0.39 0.37 0.32 0.30 0.29 0.30 0.32 0.29 0.27

TJ*,Ms 0.57 0.54 0.52 0.52 0.43 0.40 0.36 0.35 0.37 0.28 0.25 0.24 0.27 0.27 0.28

TJ*,Rs 0.54 0.52 0.52 0.51 0.44 0.42 0.40 0.40 0.37 0.30 0.25 0.25 0.26 0.27 0.27

CJ,M 0.50 0.53 0.45 0.38 0.34 0.31 0.31 0.33 0.31 0.32 0.29 0.27 0.26 0.25 0.26

CJ,R 0.48 0.52 0.47 0.40 0.36 0.38 0.36 0.35 0.34 0.31 0.30 0.28 0.27 0.26 0.26

CJ,D 0.48 0.49 0.44 0.38 0.37 0.35 0.37 0.35 0.34 0.31 0.30 0.28 0.29 0.26 0.25

Deviation

Max 0.019 0.015 0.014 0.011 0.011 0.009 0.009 0.008 0.008 0.011 0.010 0.015 0.023 0.022 0.020

Avg 0.019 0.015 0.012 0.009 0.008 0.006 0.006 0.004 0.004 0.005 0.004 0.005 0.007 0.006 0.006

Table 9.17: Unit level results (MR) as functions of the sample size. The maximum

and average deviances of computed estimates are shown in bottom two rows. The

best three methods for each sample size are marked and the best of them is un-

derlined. The results for nonparametric regression methods have been omitted for

sample sizes 32768 and 65536 due to high computational requirements.

At distribution level most of the methods yield results better than those of

the baseline methods from sample size 128 onwards. From sample size 8 to 256

linear regression with random strategy performs best. Nearest neighbour and the

two TS-SOM cell methods seem to provide better results than the linear regression

method from sample size 1024 onwards. A possible reason for this might be that

the imputation distribution (for imputation noise) is misspecified: the Gaussian

assumption may be incorrect.

At unit level all methods seem to yield better results than the baseline methods

from sample size 64 onwards. From sample size 512 onwards the five best methods

are: linear regression with mean strategy, the TS-SOM standard X-clustering cell

method with mean strategy and smoothing, the TS-SOM standard X-clustering cell

method with mean strategy without smoothing, the K-Means standard X-clustering

cell method with mean strategy, and kernel regression with mean strategy. The

nearest neighbour method performs also quite well. The two introduced joint (Y, X)

clustering TS-SOM cell methods (abbreviated as TJ*,Ms and TJ*,Rs) perform quite
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similar to 1-nearest neighbour from sample size 4096 to 16384. This is because the

number of cells has grown enough.

As a final conclusion we observe (these are best verified from result tables 9.16

and 9.17) that

i) Linear regression is likely to be the optimal method for this problem, which

is due to our setup of the experiment. Note that at distribution level linear

regression with random strategy is not among the best performing methods for

the largest sample sizes. This is likely due to misspecified noise distribution.

ii) As the sample increases, some standard X-clustering cell methods can reach

the same unit level performance as linear regression with mean strategy. At

distribution level many cell methods reach a better performance than linear

regression with random strategy.

9.4.5 Computational requirements

In the final set of experiments we examine the computational requirements of various

methods. To make the experiments comparable, the previous example with one

incomplete variable (SEX) with a fixed set of 16 covariates are used. As we are only

interested in computational times, there is no need to do repeated experiments.

Thus, results are computed only once with increasing sample size n from 4 to 65536

observations. Simulations are done using an AMD Athlon64 3000+ processor, which

is running at 1.8 GHz, with 2 gigabytes of RAM (DDR/400 MHz in dualchannel

mode), under the Linux operating system.

The results are presented in log-scale, in Graphs 9.31, 9.32, and 9.33 because

time requirements grow rapidly for nonparametric methods. The three graphs con-

tain the results from sample sizes 256 to 65536. For a comparison, total times in

the original scale, in seconds, are shown in Table 9.18 (for all sample sizes).
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Figure 9.31: Logarithmic (natural) training times as functions of sample size. The

Y-axis is seconds in logaritmic scale (natural base).
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Figure 9.32: Logarithmic imputation times as functions of sample size. The Y-axis

is seconds in logaritmic scale (natural base).
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Figure 9.33: Logarithmic total times as functions of sample size. The Y-axis loga-

rithmic values 1.6, 4.8 and 6.4 correspond to 4, 120 and 600 seconds. The maximum

value (method K,R) is approximately 7.56 which corresponds to 1920 seconds. The

Y-axis is seconds in logaritmic scale (natural base).
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n 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Method
B,M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B,R 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
B,D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.09 0.38 1.51 5.97
L,M 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.48 0.96 1.86
L,R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.13 0.48 0.97 1.91
N,M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.50 2.08 9.16 40.21 158.51 662.58
K,M 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.14 0.59 2.36 10.60 45.95 196.44 772.29
K,R 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.08 0.35 1.47 5.93 26.82 117.60 482.04 1928.57
T,M 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.12 0.16 0.27 0.86 1.33 4.77 7.98
T,R 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.03 0.13 0.18 0.31 0.83 1.53 4.86 7.85
T,D 0.01 0.01 0.00 0.01 0.02 0.02 0.03 0.04 0.11 0.14 0.25 0.94 1.49 4.63 8.52
T,Ms 0.01 0.01 0.01 0.00 0.03 0.02 0.03 0.03 0.14 0.20 0.28 1.06 1.57 5.11 7.74
T,Rs 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.03 0.14 0.20 0.28 0.93 1.56 5.26 8.67
C,M 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.05 0.07 0.21 0.74 2.14 4.09 12.54 36.66
C,R 0.01 0.00 0.00 0.02 0.01 0.02 0.02 0.05 0.09 0.21 0.58 1.55 3.49 10.19 32.21
C,D 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.08 0.16 0.70 1.32 3.73 13.11 31.97
TJ,M 0.01 0.01 0.01 0.01 0.02 0.03 0.05 0.10 0.42 0.92 1.48 6.60 13.59 49.87 92.54
TJ,R 0.01 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.43 0.90 1.47 6.86 13.43 47.52 92.29
TJ,D 0.02 0.01 0.01 0.01 0.02 0.04 0.07 0.09 0.45 0.87 1.67 6.92 13.40 50.49 97.87
TJ,Ms 0.01 0.00 0.00 0.01 0.01 0.02 0.04 0.08 0.40 0.75 1.75 6.47 12.84 46.80 104.03
TJ,Rs 0.01 0.01 0.01 0.00 0.01 0.02 0.05 0.07 0.41 0.67 1.74 6.64 13.73 47.67 97.83
TJ*,Ms 0.01 0.00 0.00 0.00 0.01 0.03 0.06 0.05 0.30 1.55 5.36 12.18 21.03 48.51 96.57
TJ*,Rs 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.06 0.27 1.54 5.16 12.77 22.96 44.99 92.02
CJ,M 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.04 0.09 0.27 0.65 1.97 4.26 11.03 29.84
CJ,R 0.01 0.00 0.00 0.01 0.00 0.02 0.03 0.04 0.11 0.22 0.51 1.84 4.30 14.17 43.20
CJ,D 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.09 0.22 0.50 1.61 4.25 12.62 45.98

Table 9.18: Total computational times in seconds as functions of the sample size.

From the total times one can notice that the nonparametric regression methods

are the slowest, as expected. Further, computational requirements grow fastest for

them (at least when considering imputation and total times). The second slowest

are the TS-SOM joint (Y, X) clustering methods. Then the K-Means cell methods,

the standard X-clustering TS-SOM cell methods, baseline random donor, linear

regression, and the rest of baseline methods follow. An unexpected result, the

slowness of the baseline random donor method, is due to inefficient implementation

of sampling with weights. With a better implementation the total time would likely

to be close to the times of the other two baseline methods.

Recall our note about the optimization of performance of k-nearest neighbour

for k = 1 from Section 7.4.3. In this study we have optimized our implementation of

k-nearest neighbour for k = 1. As a consequence, imputation times are roughly the

same as for the kernel regression method K,M. However, even with optimizations the
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1-nearest neighbour method is slow. Next, a brief analysis for 1-nearest neighbour

is given to illustrate why nonparametric regression methods are so slow. This is

followed by a more detailed discussion on training and imputation time results.

Let an incomplete data set have nmis ≈ p∗n missing values and nobs ≈ (1− p∗)n
observed data values. The number of operations required by the 1-nearest neighbour

method is:

T N,M = nmis︸ ︷︷ ︸
how many to impute

∗
(

nobs︸ ︷︷ ︸
distance computations

+ nobs︸ ︷︷ ︸
comparisons to search minimum distance

)

≈ p∗n ∗
(

(1− p∗)n + (1− p∗)n

)

= p∗(1− p∗)n2

︸ ︷︷ ︸
distance computations

+ p∗(1− p∗)n2

︸ ︷︷ ︸
comparisons to search minimum distances

,

where p∗ ≈ 0.39 in this study. From the above formula one can notice that the

number of operations equals the sample size squared. Methods requiring sample

size squared operations are slow.

Training of the model is the most expensive for kernel regression with simulated

random imputation. The reason is that estimation of residual variance is expensive,

as one has to form nobs smoothed predictions of observed Y values. The second

slowest methods are the TS-SOM joint (Y, X) clustering methods. However, one

must recall that they utilize approximately 64% more observations than do the other

methods: incomplete observations are used too. Further, the number of cells is con-

siderably larger for the TS-SOM methods than for the K-Means method which are

the third lowest with respect to training time. The standard X-clustering TS-SOM

cell methods are quite fast, but both the linear regression methods, the three base-

line methods, and the two nonparametric regression methods with mean strategy

are even faster. The nonparametric regression methods with mean strategy require

no training, because ’the observed data set is the model’.

In imputation the nonparametric methods are the slowest. The second slowest

are the TS-SOM cell methods, which are followed by the K-Means methods. As

earlier, the standard X-clustering TS-SOM cell methods are fast. The baseline

methods, excluding donor strategy, and the linear regression methods are the fastest

in imputation. As the sample size grows, the time consumed by the baseline random

donor method grows faster than one would except. However, as discussed earlier,

this is due to inefficient implementation of sampling with weights.

To summarize, one can conclude that the nonparametric regression methods

might be inusable if the sample size is too large. The computational times of all the

other methods are clearly faster than those of the nonparametric ones. The standard

X-clustering TS-SOM cell methods are especially fast when compared to the other

cell methods. In the study they were from 2.5 to 3 times faster than the correspond-

ing K-Means methods. However, recall that the number of cells for the TS-SOM
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methods was much larger. Therefore in a ’fair comparison’ (same number of cells)

the TS-SOM standard X-clustering cell methods are more than thrice as fast as the

corresponding K-Means methods. Finally, it is fair to remark that nonparametric

regression methods can be made faster. Discretization, binning, of data can be used

to reduce the computational burden of nonparametric methods. Training data for

nearest neighbour imputation may be replaced by K-Means centroids [40]. Further,

training data can be binned for kernel regression [41]. However, these improvements

are likely to yield an increase of biases in predictions.

9.5 Summary

In this chapter studies were conducted using a labour force data set. The imputation

target was either the almost continuous variable AGE or categorial SEX. Earlier in

this thesis we have not evaluated the imputation performance for categorial data

which is common in practice. Therefore the experiments for variable SEX give

valuable information.

In the AGE experiment, the nonparametric regression methods with mean strat-

egy, the TS-SOM joint (Y, X)-clustering method with mean strategy and smoothing,

and the standard X-clustering methods with donor strategy performed the best at

simultaneous preservation of unit level and distribution level. In the analysis of re-

sults for preservation of quantiles for age it was noticed that, typically, cell methods

with donor strategy and TS-SOM standard X-clustering with random strategy per-

form well. Most of the best results for the five analysed quantiles were achieved with

cell methods. Preservation of the relationship between a target and a covariate was

also evaluated by analysing imputation performance using conditional distribution

of age given marital status. It was noticed that the TS-SOM joint (Y, X)-clustering

cell method with random strategy and smoothing performs well. In addition, near-

est neighbour imputation and K-Means joint (Y, X) clustering with donor strategy

perform well too.

In the SEX experiment the best unit level predictions were derived by linear

regression with mean strategy and the standard X-clustering cell methods with

smoothed or non-smoothed mean strategy. Good performance for linear regression

was expected because the variables with the highest linear dependency to male class

were selected as covariates. The nonparametric regression methods with mean strat-

egy performed also well. Some of the TS-SOM joint (Y, X) clustering methods per-

formed better than nearest neighbour at unit level. The nearest neighbour method

and the TS-SOM standard X-clustering method with either random strategy (with-

out smoothing) or with donor strategy yielded the best distribution level results for

the largest sample sizes. Also the TS-SOM joint (Y, X) clustering methods us-

ing smoothing had a good performance at distribution level. Unit and distribution

level were simultaneously preserved best by the nearest neighbour imputation, the

two TS-SOM joint (Y, X)-clustering cell methods utilizing smoothing and using only

complete observations when training model, and the TS-SOM standard X-clustering
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method with donor strategy.

The impact of sample size on imputations was measured with the SEX experi-

ment. The nonparametric regression methods and some of the cell methods seemed

to improve the results up to some level as sample size is increased (recall that the

number of cells was also increased). This is good information as it means that one

can sort of trust with this kind of data that these methods are able to yield a good

performance for a suitably large sample size.

Computational time requirements were measured in the SEX experiment. It

was found that the nonparametric regression methods are the slowest. Their re-

quirements grow very fast, and may render them inusable in practice. All the other

methods, including the cell methods, run much faster. The standard X-clustering

TS-SOM cell methods were quite fast. One must note that the nonparametric re-

gression methods can be made faster by discretization of data as discussed earlier.

However, this may be penalized by increases in predictions biases.

To conclude, the results of this chapter empirically justify that the proposed

cell methods based on TS-SOM perform well with this kind of real-world data and

MAR missingness. The nearest neighbour method is a good competitor for the

proposed cell methods, provided sample size is not too large. Further, imputations

using classical linear regression may be good enough. However, if the target and

covariates are not linearly dependent and one is not able to linearize data (by suitable

nonlinear transformations) then the linear regression method may not perform well.



Chapter 10

Conclusions and Future Work

The objective of this thesis was to analyse and evaluate cell imputation methods.

This was done using both theoretical and empirical tools. For comparison, baseline,

linear regression, and nonparametric regression were also included in the evaluation.

The claim was that cell methods provide a practical, multipurpose alternative

to many imputation tasks. In addition, it was claimed that it is possible to build

error estimates for cell imputation methods. This thesis contains all the necessary

elements to prove these claims. Yet, due to time limitations the plug-in error es-

timate for cell imputation that was introduced in Chapter 6 was not used in the

empirical studies in Chapters 7, 8 and 9. This was because the final details of the

error estimates were completed after the empirical studies. In Chapters 4, 5 and 6 a

theoretical framework to evaluate imputation errors was given. The practicality of

error estimates was demonstrated in Algorithm 1 in page 122. The performance of

cell imputation was evaluated against other methods in Chapters 7, 8, and 9. The

results are clear: cell imputation provides a good alternative if one tries to preserve

the distributional properties of data sets.

Carefully designed simulation studies were conducted in Chapter 7. Simu-

lated studies allowed focusing on some specified phenomena (with real-world data

sets different things get mixed and the interpretation of the results may be com-

plicated). The first study showed that the proposed cell methods perform well

under MCAR and MAR mechanisms. Preservation of multimodal distribution was

analysed and evaluated in the second study. Approximate theoretical behaviour

of the Kolmogorov-Smirnov (KS) statistic for the compared imputation methods

were given. The numerical study results showed that the behaviour of KS for vari-

ous methods was close to the expected behaviour. Further, the proposed TS-SOM

based cell imputation was able to preserve multimodal marginal distribution and

conditional distribution at a specified point under NMAR missingness. In the last

study, the impact of data dimension to imputations was evaluated. Curse of di-

mensionality (in the form of increased imputation errors) appeared in most of the

methods including the cell methods. Finally the cell methods showed good computa-

tional complexities, especially for large sample sizes, compared to the nonparametric

regression methods, which can be considered to be the ’nearest’ competitors.

238
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Chapters 8 and 9 contained two empirical cases which demonstrated that the

proposed cell methods perform well with real-world data sets. In Chapter 8 im-

putation of turnover of enterprise was evaluated using a small and medium-sized

enterprises data set of the year 2004 from the UK. Further, a UK Labour Force data

set from the year 2006 was used to analyse imputation of age and sex of respondents

in Chapter 9. The proposed TS-SOM joint (Y, X) clustering method came up among

the best methods. The linear regression with added noise and 1-nearest neighbour

methods performed also well. However, for large data sets 1-nearest neighbour (or

kernel regression) has a high computational complexity that may render it inusable.

Further, if the linearity assumption does not hold, and one is not able to linearize

the data with suitable transformations then linear regression may not be usable.

Cell methods on the other hand are nonparametric by nature and have clearly bet-

ter computational properties than nonparametric regression methods. Therefore the

proposed cell methods are applicable in practice.

10.1 Ideas for Future Work

Considering the future, researchers have at least the following ways to improve the

work done in this thesis:

• make some of the formulas more accurate (for example Approximation 4.14

for variance Var[µ̂comp,L|n] of linear regression methods)

• simplify some analytical formulas (to make them more interpretable) (for ex-

ample Approximation 5.3 for variance Var[µ̂comp,K/N |n] of nonparametric re-

gression methods)

• test derived analytical results with real-world data sets. Especially more work

is needed to compare theoretical error estimates Var[µ̂comp,T |n] and

Var[µ̂comp,TJ |n] (Section 6.4.2, p.121) with real-world experiments.

Note that to present some of the formulas in a more accurate way may require

one to apply higher order Taylor approximations. This would make the formulas

even longer. Thus, simplification of those formulas may not be easy. Instead of

Taylor approximations one might use some other techniques, such as variance upper

bounds, which could yield accurate and simple (interpretable) results.
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Appendix for Chapter 1

In this appendix list of partners in the EurEdit project is given. In addition, list of

operators and symbols, and lists of tables and figures are included.

List of partners in the EurEdit project

Partners in the EurEdit project were (followed by abbreviation in paranthesis) were

• Statistics Denmark (DST),

• University of York, UK, (YORK),

• Royal Holloway and Bedford New College - University of London, (RHUL),

• Statistics Finland (STATFI),

• Office for National Statistics, UK (ONS)

• University of Jyväskylä (JYU),

• Statistics Netherlands (CBS),

• University of Southampton (SOTON),

• Swiss Federal Statistical Office (SFSO),

• Statistics Italy (ISTAT),

• The Numerical Algorithms Group Ltd (NAG), and

• Qantaris.

As supplemental information we give here references to some of methods and

techniques which were used by the partners. Multilayer perceptron network (MLP)

was used by Statistics Denmark and Statistics Italy, see [5] for details on MLP.

Implementation of imputation methods used by University of York were based on

correlation matrix memory (CMM) technique [16]. Statistics Finland used for ex-

ample regression based nearest neighbour imputation [58, 73]. Royal Holloway did

imputations using support vector machines [108].
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Operator and symbol list

Main operators and symbols which are used in this thesis are:

Operator/symbol Description

argmax Argument of the maximum.

sup Supremum.

lim Limit operator.

|| · ||22 Euclidean norm (L2).∫
Integral.

Pr(A) Probability of event A.

Bias[θ̂] Bias of θ̂.

Cov[X,Y ] Covariance between X and Y .

I(·) Indicator function.

I Identity matrix.

tr(·) Trace operator: sum of diagonal elements of a

given matrix.

vec(·) Vector operator: stacks columns of given matrix

above each other (from first column to last).

1 Vector of ones.

Bin(n, p∗) Binomial distribution with n trials and

probability p∗.
Multin(n; w1, . . . , wl) Multinomial distribution with n trials and

probabilities w1, . . . , wl

cat(w1, . . . , wl) Categorical distribution for random variable

with outcomes {1, . . . , l} and probabilities

w1, . . . , wl.

µ∗ Expectation of target Y .

µ̂ Estimator of µ∗.
µ Estimate of µ∗.
τ ∗ Variance of target Y .

X
∗

Expectation of covariate X = (X1, . . . , Xp−1)
T .

p− 1 Dimension of X.

Σ∗
X Variance of X.

g∗(x) Conditional expectation of Y given X = x.

v∗(x) Conditional variance of Y given X = x.

v∗ Expectation of v∗(X) over distribution of X.

n Sample size (fixed).

Nmis Number of missing data values (random variable).

p∗ Probability for missingness (in target Y ).

p∗x Probability for missingness (in target Y ) given X = x.

Nobs Number of observed data values (r.v.).

Yj j:th random observation of Y .

Xj j:th random observation of X.
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Operator/symbol Description

Rj j:th random response indicator.

β∗ Optimal (in least squares sense) linear regression

coefficients, β∗ = (β∗−0, β
∗
0)

T .

β∗−0 Slope terms.

β∗0 Intercept term.

λ Smoothing bandwidth (non-parametric regression)

λ(nobs) Emphasizes that smoothing bandwidth is varied

as a function of nobs.

k Number of neighbours to use (in nearest

neighbour imputation).

k(nobs) Emphasizes that number of neighbours is varied

as a function of nobs.

nc Number of cells (cell methods).

w{i} Cell centroids: w{i} = wY,{i} ∪wX,{i},
i = 1, . . . , nc where wY,{i} is Y part of centroids

and wX,{i} is the X part.

hi,l Smoothing parameter between cells i and l.

b(x′) Hard classifier, where notation x′ means that x′

may consists of either x and (y,x).

bε(x′) Probabilistic classifier.

gi(x
′) Soft classifier which maps input x′ to probability

(or weight) in range [0, 1] for cell i.

Ni Number of observations in cell i (r.v.).

Nobs
i Number of complete observations in cell i (r.v.).

Nmis
i Number of incomplete observations in cell i (r.v.).

Nmis Number of incomplete observations in cells (r.v.):

Nmis = (Nmis
1 , . . . , Nmis

nc
)T

πi Cell i prior.

pi Missingness probability in cell i.

qi Correct classification probability of classifier for

cell i.

E[q̂i] Expected classification success probability.

µ∗i Expectation of Y |i, where i is cell index

τ ∗i Variance of Y |i
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Appendix for Chapter 3

This appendix gives an overview of the basic statistical theory. Decompositions of

second moments (for analytical quantity and estimator) are given. Finally limits for

expectations of first moment estimator and second moment estimator are derived.

A3.1 Overview of the basic statistical theory

Analytical computations in this thesis utilize chain rules, some distributions, Taylor

approximation, and magnitude of orders. Thus we describe them here briefly.

A3.1.1 Chain rules

Chain rules are useful for decomposing complicated integrations in easier tasks. In

this thesis we utilize chain rules for expectation, variance, and covariance. Let X,

Y , Z, W , be random variables.

Expectation of Y may be derived using chain rule as

E[Y ] = E
[
E[Y |X]

]
,

where outer integration is with respect to distribution of X.

Variance of Y may be derived using chain rule as

Var[Y ] = E
[
Var[Y |X]

]
+ Var

[
E[Y |X]

]
,

where the outer integrations are with respect to distribution of X. This decompo-

sition is also useful as it allows one to interpret second moment of superpopulation.

Namely it is sum of expected variance of noise and variability of conditional mean

of Y given X (signal).

Covariance is defined as

Cov[X,Y ] = E[XY ]− E[X]E[Y ].

Chain rule for covariance is

Cov[X,Y ] = E
[
Cov[X,Y |Z]

]
+ Cov

[
E[X|Z],E[Y |Z]

]
,

where outer integrations are with respect to distribution of Z.
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Conditional covariance is defined as

Cov[X,Y |Z] = E
[
(X − E[X|Z])(Y − E[Y |Z])

]
.

Chain rule for conditional covariance is

Cov[X, Y |Z] = E
[
Cov[X, Y |Z,W ]

]
+ Cov

[
E[X|Z, W ],E[Y |Z, W ]

]
,

where outer integrations are with respect to conditional distribution of W given Z.

A3.1.2 Distributions

In this thesis we have a lot of use for random variables which are Bernoulli, bino-

mially, or multinomially distributed. We require statistical properties up to second

order (expectation, variance, and covariance). Next we briefly describe these mo-

ments.

Random variable I which has value 1 with probability p and value 0 with

probability q = 1− p is Bernoulli distributed and is denoted as X ∼ Bernoulli(p),

where

X =

{
1, with probability p

0, with probability q = 1− p

Basic result from statistics states that sum of n independently and identically dis-

tributed Bernoulli variables is binomially distributed with parameters n and p. For-

mally let Z = X1 +X2 + . . .+Xn, where Xj are iid sampled Bernoulli variables with

success probability p. Probability for Z = k in binomial distribution is
(
n
k

)
pkqn−k.

This can be generalized for multiple simultaneous outcomes X1, X2, . . . , Xl that

sum to n. In other words if n items are divided between l classes such that proba-

bilities for classes are p1, p2, . . . , pl the distribution is called multinomial

Z1, Z2, . . . , Zl ∼ Multin(n; p1, p2, . . . , pl).

With average success α = np and sufficiently large number of trials with relatively

small p binomial distribution becomes approximately Poisson distributed,

P (k) =
αk

k!
e−α

which again is approximately normal as n → ∞. Since we are mainly interested in

properties with small n, it is the binomial and multinomial distributions that are

most useful for us.

For the reader of this thesis the most important facts about multinomial dis-

tributions are that for 0 ≤ pi ≤ 1,
∑

pi = 1

Z1, Z2, . . . , Zl ∼ Multin(n; p1, p2, . . . , pl)

we know that,

E[Zi] = npi

Var[Zi] = npi(1− pi)

Cov[Zi, Zj] = −npipj (when i 6= j)
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First two above results follow from basic result that all marginal distributions Zi

are binomially distributed with n trials and probability parameter pi, formally Zi ∼
Bin(n, pi).

A3.1.3 Taylor approximation

One of the most important tools for us is the Taylor approximation. Continuous

and differentiable function g(x) may be approximated using Taylor series expansion.

Expansion around x0 is written as

g(x) = g(x0) +
1

1!
(x− x0)

T g′(x0) +
1

2!
(x− x0)

T g′′(x0)(x− x0) + Rn(x)

= g(x0) + (x− x0)
T g′(x0) +

1

2
(x− x0)

T g′′(x0)(x− x0) + Rn(x)

where g′ denotes first derivative and g′′ second, and Rn(x) is remainder (approxi-

mation error).

By using Taylor series expansion approximate expectation and variance of com-

plicated non-linear functions parametrized by random variables may be computed.

First two moments of (linear or non-linear) function of random variables is often

needed in analytical derivations in this thesis.

Lets assume that X is a random vector variable with mean X
∗

and variance

Σ∗
X . Second order Taylor approximation around expectation of X yields to:

E[g(X)] ≈ E[g(X
∗
) + (X −X

∗
)T g′(X

∗
) +

1

2
(X −X

∗
)T g′′(X

∗
)(X −X

∗
)]

= g(X
∗
) + E[(X −X

∗
)T ]g′(X

∗
) +

1

2
E[(X −X

∗
)T g′′(X

∗
)(X −X

∗
)]

= g(X
∗
) +

1

2
E[(X −X

∗
)T g′′(X

∗
)(X −X

∗
)]

= g(X
∗
) +

1

2
tr(E[(X −X

∗
)T g′′(X

∗
)(X −X

∗
)])

= g(X
∗
) +

1

2
tr(Σ∗

Xg′′(X
∗
)),

where g′ and g′′ denote first and second derivative of g.

In above derivation we have applied some supplemental results from mathemat-

ics (mainly from matrix algebra). First of all trace (tr) of scalar is scalar itself. Sec-

ondly trace is linear operator therefore trace of expectation equals to expectation of

trace. We have also applied cyclic property of trace. Namely, tr(ABC) = tr(CAB)

provided matrices ABC and CAB exist (are defined as is in above case).

First order Taylor approximation around expectation of X yields to:

Var[g(X)] ≈ Var[g(X
∗
) + (X −X

∗
)T g′(X

∗
)]

= Var[(X −X
∗
)T g′(X

∗
)] = g′(X

∗
)TVar[(X −X

∗
)]g′(X

∗
)

= g′(X
∗
)TVar[X]g′(X

∗
) = g′(X

∗
)TΣ∗

Xg′(X
∗
).

For more details on Taylor approximation see [92] for example.
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A3.1.4 Magnitude of orders

In this thesis we require two (deterministic) magnitude of order definitions which

are defined next.

If function h(n) is of order O
(
g(n)

)
then

∣∣∣ lim
n→∞

h(n)

g(n)

∣∣∣ < ∞.

If function h(n) is of order o(g(n)) then

lim
n→∞

h(n)

g(n)
= 0.

Magnitude of order notations are useful to clean up formulas for example formula
1

n−1
(encountered for example in some formulas for second moment estimators) is of

order O(n−1). Because

lim
n→∞

1
n−1

n−1
= lim

n→∞
n

n− 1
= lim

n→∞
(1 +

1

n− 1
) = 1.

A3.2 Decompositions for second moment

Here we give decompositions for τ̂ comp and τ ∗.

A3.2.1 Decomposition for τ̂ comp

Lemma: Decomposition for τ̂ comp.

τ̂ comp =
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2.

Proof:

τ̂ comp =
1

n− 1

n∑
j=1

(Y comp
j − µ̂comp)2

=
1

n− 1

Nobs∑
j=1

(
Y comp

j − µ̂comp
)2

+
1

n− 1

n∑

j=Nobs+1

(
Y comp

j − µ̂comp
)2

,
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in which first term can be written as

1

n− 1

n−Nmis∑
j=1

(
Y comp

j − µ̂comp
)2

=
1

n− 1

Nobs∑
j=1

(
Y comp

j − Nobs

n
µ̂obs − Nmis

n
µ̂imp

)2

=
1

n− 1

Nobs∑
j=1

(
Y comp

j − µ̂obs +
Nmis

n
(µ̂obs − µ̂imp)

)2

=
1

n− 1

Nobs∑
j=1

(
Y comp

j − µ̂obs
)2

+
2Nmis

n

n− 1

Nobs∑
j=1

(Y comp
j − µ̂obs)(µ̂obs − µ̂imp)

+
(Nmis

n
)2

n− 1

Nobs∑
j=1

(µ̂obs − µ̂imp)2

=
Nobs − 1

n− 1
τ̂ obs + (

Nmis

n
)2 Nobs

n− 1
(µ̂obs − µ̂imp)2,

and second term equals to

1

n− 1

n∑

j=Nobs+1

(
Y comp

j − µ̂comp
)2

=
1

n− 1

n∑

j=n−Nmis+1

(
Y comp

j − Nobs

n
µ̂obs − Nmis

n
µ̂imp

)2

=
1

n− 1

n∑

j=Nobs+1

(
Y comp

j − µ̂imp +
Nobs

n
(µ̂imp − µ̂obs)

)2

=
1

n− 1

n∑

j=Nobs+1

(
Y comp

j − µ̂imp
)2

+
2Nobs

n

n− 1

n∑

j=Nobs+1

(Y imp
j − µ̃imp)(µ̂imp − µ̂obs)

+
Nmis

n− 1
(
Nobs

n
)2(µ̂imp − µ̂obs)2

=
Nmis − 1

n− 1
τ̂ imp +

Nmis

n− 1
(
Nobs

n
)2(µ̂imp − µ̂obs)2.
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As a consequence sum of first and second term equals to:

1

n− 1

Nobs∑
j=1

(
Y comp

j − µ̂comp
)2

+
1

n− 1

n∑

j=Nobs+1

(
Y comp

j − µ̂comp
)2

=
Nobs − 1

n− 1
τ̂ obs + (

Nmis

n
)2 Nobs

n− 1
(µ̂obs − µ̂imp)2

+
Nmis − 1

n− 1
τ̂ imp +

Nmis

n− 1
(
Nobs

n
)2(µ̂imp − µ̂obs)2

=
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp + (µ̂obs − µ̂imp)2

(
(
Nmis

n
)2 Nobs

n− 1
+

Nmis

n− 1
(
Nobs

n
)2

)

=
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp

+(µ̂obs − µ̂imp)2
((Nmis)2(n− Nmis)

n2(n− 1)
+

Nmis(n2 − 2nNmis + (Nmis)2)

n2(n− 1)

)

=
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp + (µ̂obs − µ̂imp)2 n2Nmis − n(Nmis)2

n2(n− 1)

=
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp + (µ̂obs − µ̂imp)2 nNmis(n− Nmis)

n2(n− 1)

=
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2

A3.2.2 Decomposition for τ ∗

Lemma: Decomposition for second moment of Y .

τ ∗ = (1− p∗)τ ∗obs + p∗τ ∗mis + p∗(1− p∗)(µ∗mis − µ∗obs)2.

Proof:

τ ∗ = Var[Y ]

= E[Var[Y |R]] + Var[E[Y |R]]

= E[Var[Y |R]] + E[(E[Y |R]− E[Y ])2]

= E[Var[Y |R]] + E[(E[Y |R]− µ∗)2]

= Pr(R = 1)Var[Y |R = 1] + Pr(R = 0)Var[Y |R = 0]

+Pr(R = 1)(E[Y |R = 1]− µ∗)2 + Pr(R = 0)(E[Y |R = 0]− µ∗)2

= Pr(R = 1)τ ∗obs + Pr(R = 0)τ ∗mis

+Pr(R = 1)(µ∗obs − µ∗)2 + Pr(R = 0)(µ∗mis − µ∗)2

= (1− p∗)τ ∗obs + p∗τ ∗mis + (1− p∗)(µ∗obs − µ∗)2 + p∗(µ∗mis − µ∗)2

= (1− p∗)τ ∗obs + p∗τ ∗mis + p∗(1− p∗)(µ∗mis − µ∗obs)2
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A3.3 Limits for expectations of first moment esti-

mator and second moment estimator

Limit for expectation of µ̂comp is derived using first order Taylor approximation as

follows

lim
n→∞

E[µ̂comp|n] = limE[
1

n

(
Nobsµ̂obs + Nmisµ̂imp

︸ ︷︷ ︸
=A

)
|n]

Taylor
= limE

[
1

n

(
E[Nobs|n]E[µ̂obs|n] + E[Nmis|n]E[µ̂imp|n]

)
+ Rn

]

≈ lim

{
(1− p∗)µ∗obs

n + p∗µ∗imp
n + O(n−1) + E[Rn]

}

= (1− p∗)µ∗obs + p∗µ∗imp,

where Taylor approximation has been done for A around expectations of Nobs, µ̂obs,

Nmis, and µ̂imp. Further, order term O(n−1) is due to fact that Nmis is ensured

via technical assumptions to be such that all computed estimates do exist. To be

precise, it is required that Nmis ∈ [2, n − 2]. As a consequence it is assumed that

E[Nmis/n, |n, 2 ≤ Nmis ≤ n − 2] = p∗ + O(n−1). We have assumed that limit for

expectation of Taylor remainder Rn is zero.

Limit for τ̂ comp is computed using first order Taylor approximation as follows

lim
n→∞

E[τ̂ comp|n] = limE[
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|n]

Taylor
= limE

[
E[Nobs|n]− 1

n− 1
E[τ̂ obs|n] +

E[Nmis]− 1

n− 1
E[τ̂ imp|n]

+
E[Nmis]E[Nobs|n]

n(n− 1)
(E[µ̂obs|n]− E[µ̂imp|n])2 + Rn|n

]

= (1− p∗)τ ∗obs + p∗τ ∗imp + p∗(1− p∗)(µ∗imp − µ∗obs)2,

We have again assumed that limit for expectation of Taylor remainder Rn is zero.

Note that remainder Rn is different than the remainder for the mean estimator.

A3.4 Decompositions

Equation (3.1) is shown to hold under pattern-mixture model for missingness and

under selection model for missingness. Further, Equation (3.2) is shown to be a

consequence of it. The Bayes theorem (see [63] for details on the theorem) is applied.

A3.4.1 Decomposition of the joint distribution f(Y, X)

Let Y be variable with missingness, X a fully observed covariate and R response

indicator. Next it is shown that Equation (3.1),p.32 holds under pattern-mixture

model for missingness and under selection model for missingness.
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Pattern-mixture model for missingness

Under pattern-mixture model the joint distribution of (R, Y, X) is factored as

f(R, Y, X) = f(Y |R, X)f(R|X)f(X).

Now the joint distribution of Y, X is computed as

f(Y, X) =

∫
f(Y |R = r,X)f(R = r|X)f(X)dr

Bayes theorem
=

∫
f(Y |R = r,X)

f(R = r)f(X|R = r)

f(X)
f(X)dr

=

∫
f(Y |R = r,X)f(R = r)f(X|R = r)dr

=

∫
f(Y, X|R = r)f(R = r)dr

= f(Y, X|R = 1)f(R = 1) + f(Y, X|R = 0)f(R = 0)

= [1− f(R = 0)]f(Y, X|R = 1) + f(R = 0)f(Y, X|R = 0)

= (1− p∗)f(Y, X|R = 1) + p∗f(Y, X|R = 0)

= (1− p∗)fY obs,Xobs(Y, X) + p∗fY mis,Xmis(Y, X).

Therefore joint distribution f(Y, X) is mixture of observed population and missing

distributions.

Selection model for missingness

Under selection model the joint distribution of R, Y, X is factored as

f(R, Y, X) = f(R|Y, X)f(Y |X)f(X).

Now

f(Y, X) =

∫
f(R = r|Y, X)f(Y |X)f(X)dr

Bayes theorem
=

∫
f(R = r)f(Y, X|R = r)

f(Y, X)
f(Y |X)f(X)dr

=

∫
f(R = r)f(Y, X|R = r)dr

= (1− p∗)fY obs,Xobs(Y, X) + p∗fY mis,Xmis(Y, X).

As with the pattern-mixture model the joint distribution f(Y, X) is mixture of two

distributions.

A3.4.2 Decomposition of the conditional distribution f(Y |X)

Here it is shown that if Equation (3.1),p.32 (see Section A3.4.1) holds then Equation

(3.2),p.35 is consequence of it.
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Let Y be variable with missingness, X a fully observed covariate and R response

indicator. Decomposition (Equation 3.1) of the joint distribution of Y, X implies

that conditional distribution Y |X may be decomposed as

f(Y |X) = f(Y, X)/f(X)

Equation 3.1
=

f(Y, X|R = 1)f(R = 1)

f(X)
+

f(Y, X|R = 0)f(R = 0)

f(X)

= f(Y |X, R = 1)
f(X|R = 1)f(R = 1)

f(X)

+f(Y |X, R = 0)
f(X|R = 0)f(R = 0)

f(X)
Bayes theorem

= f(Y |X, R = 1)f(R = 1|X) + f(Y |X, R = 0)f(R = 0|X)

= f(Y |X, R = 1)[1− f(R = 0|X)] + f(Y |X, R = 0)f(R = 0|X)

= (1− p∗x)f(Y |X, R = 1) + p∗xf(Y |X, R = 0).

Therefore conditional expectation g∗(X) = E[Y |X] is

g∗(X) = E[Y |X] =

∫
f(Y = y|X)dy

=

∫
[(1− p∗x)f(Y = y|X, R = 1) + p∗xf(Y = y|X, R = 0)]dy

= (1− p∗x)
∫

f(Y = y|X, R = 1)dy + p∗x

∫
f(Y = y|X, R = 0)]dy

= (1− p∗x)E[Y |X, R = 1] + p∗xE[Y |X, R = 0]

= (1− p∗x)g
∗obs(X) + p∗xg

∗mis(X).



Appendix for Chapter 4

In this appendix all justifications of approximations and consequences which were

introduced in Chapter 4 are given. At first assumptions which allow comparison of

results for different methods and prevent mathematical pathologies are described.

Note that these assumptions are used also with non-parametric regression methods

and cell imputation methods.

A4.1 Assumptions to prevent mathematical patholo-

gies

In analytical analysis some assumptions are needed to prevent mathematical patholo-

gies. Further, it is required that all results are comparable. The required assump-

tions are

1: there are at least two complete and incomplete observations in each data set,

2: ordinary least squares estimate of regression coefficients βobs exists always,

and

3: there are at least two incomplete and complete observations within each cell.

First assumption may have somewhat high impact on moments of Nmis and Nobs

(for small sample sizes). The assumption is actually related to truncation of distri-

bution. As an example, the number of missing data values Nmis may follow doubly

truncated binomial distribution under assumption 1. Theory for it is available for

example in [93].

Second assumption is less strong than the first one because typically probability

that ordinary least squares estimate does not exist is zero (covariates are assumed

to be continuous).

Finally, third assumption is best ensured by clustering algorithm because then

data sets or their classifications to cells need not to be discarded. However, numbers

of observations in cells are affected. To fulfill the third assumption observations are

clustered and then the clustering is adjusted. The adjustment requires that sample

size n is at least four times number of cells nc.
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A4.2 Baseline methods / moments

Theorem 4.1

The bias of µ̂comp,B for n observations is

Bias[µ̂comp,B|n] = p∗(µ∗obs − µ∗mis).

Proof: for mean imputation holds

µ̂comp,B,M =
1

n

(
Nobsµ̂obs + Nmisµ̂imp

)
=

1

n

(
Nobsµ̂obs +

Nmis∑
j=1

µ̂obs
)

= µ̂obs.

Therefore

E[µ̂comp,B,M |Q3] = µobs

E[µ̂comp,B,M |Q2] = µobs

E[µ̂comp,B,M |Q1] = µ∗obs.

Bias result at Q1 = {n} follows immediately:

Bias[µ̂comp,B,M |n] = µ∗obs − µ∗

= µ∗obs − ((1− p∗)µ∗obs + p∗µ∗mis)

= p∗(µ∗obs − µ∗mis).

For random imputation strategy mean estimator may be decomposed as follows

µ̂comp,B,R = µ̂comp,B,M +
1

n

n∑

j=Nobs+1

ε̂mis
j ,

where ε̂mis
j , j = Nobs +1, . . . , n is j:th imputation noise term. Expectation of imputa-

tion noise terms are zero, thus expectations of mean estimator are E[µ̂comp,B,R|Qi] =

E[µ̂comp,B,M |Qi], i = 1, 2, 3. Therefore bias result follows immediately, and it is equal

to bias for mean imputation.

As earlier, mean estimator may be written as

µ̂comp,B,D = µ̂comp,B,M +
1

n

n∑

j=Nmis+1

ε̂mis
j ,

where ε̂mis
j , j = Nobs + 1, . . . , n is j:th randomly drawn with replacements and equal

draw probabilities empirical residual which equals to observed Y value minus mean

of observed Y values. Next expectation of each ε̂mis
j given Q3 is derived.

Basic sampling theory result is applied: expectation of simple random sample

with replacement from population is mean of population (see for example Equation

2.10 in [53]). Here population is observed Y values which have been centered: {yobs
j −

µobs}nobs

j=1 . Mean of population is zero. Therefore E[ε̂mis
j |Q3] = 0, j = nobs + 1, . . . , n.

As a consequence E[µ̂comp,B,D|Qi] = E[µ̂comp,B,M |Qi], i = 1, 2, 3. Therefore bias

result is same as for other baseline strategies.
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Approximation 4.2

The variance Var[µ̂comp,B] with n observations is approximately

Var[µ̂comp,B] ≈ τ ∗obs

(
1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

︸ ︷︷ ︸
due sampling

+ C︸ ︷︷ ︸
due imputation strategy

)
,

where term C depends on imputation strategy ε̂S as follows:

C =





0 :S=M (for mean imputation strategy),
p∗
n

:S=R (for simulated random imputation), and
p∗
n

(
1− 1

n(1−p∗)

)
:S=D (for random donor).

Justification: as in bias case result for mean strategy is derived first, which

is followed by derivations for random and donor strategies.

Mean strategy: for mean strategy imputations are fixed at second and third con-

ditionalization levels, thus

Var[µ̂comp,B,M |Q3] = 0

Var[µ̂comp,B,M |Q2] = 0.

At first level mean of observed data values and number of missing data values

are random over repetitions of sample drawings. Therefore variance of µ̂comp

is non-zero. To derive the variance one needs to compute E[ 1
n−Nmis |Q1]. Exact

computation of the expectation is impossible because distribution of Nmis is

not known. However, second order Taylor approximation (see Appendix A3.1.3

for details) can be applied using first two moments of Nmis. This yields to

(conditionalizer Q1 is omitted for clarity):

Using Taylor approximation at E[Nobs] and Nobs = n− Nmis one gets

E
[ 1

Nobs

]
≈ E

[ 1

E[Nobs]
+

1

1!

( ∂

∂Nobs

1

Nobs

)
Nobs=E[Nobs]

(Nobs − E[Nobs])

+
1

2!

( ∂2

∂Nobs∂Nobs

1

Nobs

)
Nobs=E[Nobs]

(Nobs − E[Nobs])2
]

=
1

E[Nobs]
+

1

2

(
2(Nobs)−3

)
Nobs=E[Nobs]

Var[Nobs|n]

Nobs=n−Nmis

≈ 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)
,

where ∂
∂Nobs is ordinary derivative (not stochastic), and notation(

g(Nobs)
)
Nobs=E[Nobs]

means that function g(Nobs) is evaluated at position Nobs =
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E[Nobs]. Now variance is derived by applying chain rule of variance (see Ap-

pendix A3.1.1 for details) as

Var[µ̂comp,B,M |Q1] = Var[µ̂obs|Q1]

= E[Var[µ̂obs|Q1, N
mis = nmis]|Q1]

+Var[E[µ̂obs|Q1, N
mis = nmis]|Q1]

= E
[
τ ∗obs 1

n− Nmis |Q1

]
+ Var

[
µ∗obs

]

= τ ∗obsE
[ 1

n− Nmis |Q1

]

Taylor≈ τ ∗obs
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)
.

Random strategy: variance of the mean estimator for random imputation strat-

egy at Q3 is

Var
[
µ̂comp,B,R|Q3

]
= Var

[
µ̂comp,B,M +

1

n

n∑

j=nobs+1

ε̂mis
j |Q3

]

= Var
[1

n

n∑

j=nobs+1

ε̂mis
j |Q3

]
=

1

n2

n∑

j=nobs+1

Var
[
ε̂mis
j |Q3

]

=
1

n2

n∑

j=nobs+1

τ obs =
nmis

n2
τ obs.

At second conditionalization level randomness of Dtest has no impact on vari-

ability of µ̂comp because imputations do not utilize covariate information. There-

fore

Var[µ̂comp,B,R|Q2] =
nmis

n2
τ obs.

Result at first conditionalization level is derived using second order Taylor ap-

proximation and chain rule of variance. Required previously computed quan-
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tities are E[µ̂comp,B,R|Q2] and Var[µ̂comp,B,R|Q2]. Variance is computed as

Var[µ̂comp,B,R|Q1, N
mis = nmis] = Var

[
µ̂obs|Q1, N

mis = nmis
]

+E
[nmis

n2
τ̂ obs|Q1, N

mis = nmis
]

=
τ ∗obs

n− nmis
+

nmis

n2
τ ∗obs

= τ ∗obs(
1

n− nmis
+

nmis

n2
).

E[µ̂comp,B,R|Q1, N
mis = nmis] = µ∗obs.

⇒ Var[µ̂comp,B,R|Q1] = Var
[
µ∗obs|Q1

]

+τ ∗obsE
[ 1

n− Nmis +
Nmis

n2
|Q1

]

= τ ∗obsE
[ 1

n− Nmis +
Nmis

n2
|Q1

]

≈ τ ∗obs
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3
+

p∗

n

)
.

Donor strategy: for deriving variance of mean estimator one notes that

µ̂comp,B,D = µ̂obs +
nmis

n
ε̂
B,D

,

where ε̂
B,D

is mean of estimated noise terms. Now

Var[µ̂comp,B,D|Q3] = Var[µ̂obs +
nmis

n
ε̂
B,D|Q3]

= Var[
nmis

n
ε̂
B,D|Q3] =

(nmis)2

n2
Var[ε̂

B,D|Q3].

Another basic result from sampling theory to compute variance of mean of

estimated noise terms is applied next. Namely, variance of mean estimator for

simple random sample with replacement from population equals to population

variance divided by sample size (see Equation 2.10 in [53]). Thus one needs

to solve variance of our centered population, this is done as follows:

Var[Y C |Q3] =
n−nmis∑

j=1

(
yobs

j − µobs − E[Y C ]
)2

Pr(j)

=
n−nmis∑

j=1

(
yobs

j − µobs
)2 1

n− nmis

=
n− nmis − 1

n− nmis
τ obs = (1− 1

n− nmis
)τ obs,

where Y C denotes centered random variable and Pr(j) sampling probability

for population unit j. Now by applying sampling theory result (Equation 2.10
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in [53]) one gets

Var[µ̂comp,B,D|Q3] =
(nmis)2

n2
Var[ε̂

B,D|Q3]

=
(nmis)2

n2

1

nmis
(1− 1

n− nmis
)τ obs

=
nmis

n2
(1− 1

n− nmis
)τ obs.

Randomness of Dtest has no impact on variability of µ̂comp at second level thus

Var[µ̂comp,B,D|Q2] =
nmis

n2
(1− 1

n− nmis
)τ obs.

At first conditionalization level chain rule of variance and Taylor approxima-

tion are applied to derive variance. Required earlier results are Var[µ̂comp,B,D|Q2]

and E[µ̂comp,B,D|Q2]. Variance is derived as:

Var[µ̂comp,B,D|Q1]

= Var[E[µ̂comp,B,D|Q2]|Q1] + E[Var[µ̂comp,B,D|Q2]|Q1]

= Var[µ̂obs|Q1] + E[
Nmis

n2
(1− 1

n− Nmis )τ̂ obs|Q1]

2nd order Taylor≈ τ ∗obs
( 1

n(1− p∗)
+

(
n(1− p∗)

)−3Var[Nmis]
)

+E[
Nmis

n2
(1− 1

n− Nmis )τ̂ obs|Q1]

1st order Taylor≈ τ ∗obs
( 1

n(1− p∗)
+

(
n(1− p∗)

)−3Var[Nmis]
)

+
p∗

n

(
1− 1

n(1− p∗)

)

= τ ∗obs

(( 1

n(1− p∗)
+

(
n(1− p∗)

)−3Var[Nmis]
)

+
p∗

n

(
1− 1

n(1− p∗)

)
)

.

Approximation 4.3

The bias of τ̂ comp,B for n observations is approximately

Bias[τ̂ comp,B|n] ≈ p∗(τ ∗imp − τ ∗mis)− p∗(1− p∗)(µ∗mis − µ∗obs)2

+C + O(n−1),

where imputation variance τ ∗imp and sampling error C depend on imputation strat-

egy ε̂S. Imputation variance τ ∗imp and term C depend on imputation strategy ε̂S as

follows:

τ ∗imp =

{
0 :S=M (for mean imputation strategy), and

τ ∗obs :S=R and S=D (random and donor imputation).
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and sample error C is

C =





0 :S=M (for mean imputation strategy),
1−p∗

n
τ ∗obs :S=R (for simulated random imputation), and

n(1−p∗)−1
n2 τ ∗obs :S=D (for random donor).

Justification: derivation of results is based on decompositions of second

moment given in Appendix A3.2.

Mean: for mean strategy it holds that

E[τ̂ comp,B,M |Q3] = E[
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp

+
NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|Q3]

= E[
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
0 +

NmisNobs

n(n− 1)
(µ̂obs − µ̂obs)2|Q3]

= E[
Nobs − 1

n− 1
τ̂ obs|Q3] =

nobs − 1

n− 1
τ obs = (1− nmis

n− 1
)τ obs.

Imputation method does not use covariates, thus:

E[τ̂ comp,B,M |Q2] = (1− nmis

n− 1
)τ obs.

Bias results at Q2 and Q3 follow directly. At first level:

E[τ̂ comp,B,M |Q1] = E[(1− Nmis

n− 1
)τ̂ obs|Q1]

≈ (1− p∗)τ ∗obs + O(n−1)

⇒ Bias[τ̂ comp,B,M |Q1] ≈ (1− p∗)τ ∗obs − τ ∗ + O(n−1)

= (1− p∗)τ ∗obs − ((1− p∗)τ ∗obs + p∗τ ∗mis

+p∗(1− p∗)(µ∗mis − µ∗obs)2) + O(n−1)

= −p∗τ ∗mis − p∗(1− p∗)(µ∗mis − µ∗obs)2 + O(n−1).

Random: quantity τ̂ imp can be written as

τ̂ imp =
1

Nmis − 1

Nmis∑
j=1

(
ε̂mis
j − ε̂

mis
)2

,

where ε̂
mis

is the mean of imputation noise terms. At conditionalization level

three quantities ε̂mis
j are identically and independently distributed with expec-

tation zero and variance τ obs. Therefore expectation of τ̂ imp is τ obs. Now with

Q3 = {dtrain,dtest, g(x|θ)}

E[τ̂B,R|Q3] = E
[nobs − 1

n− 1
τ̂ obs +

nmis − 1

n− 1
τ̂ imp +

nmisnobs

n(n− 1)
(µ̂obs − µ̂imp)2|Q3

]

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
τ obs +

nobs

n(n− 1)
τ obs.
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Expectation and bias are same in second level as in third level because covariate

information is not used. First level expectation Q1 = {n} is now

E[τ̂B,R|Q1] = ENmis,Dtrain|n
[Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ obs

+
Nobs

n(n− 1)
τ̂ obs

]

≈ n− np∗ − 1

n− 1
τ ∗obs +

np∗ − 1

n− 1
τ ∗obs +

n− np∗

n(n− 1)
τ ∗obs

= (1− p∗)τ ∗obs + p∗τ ∗obs +
1− p∗

n
τ ∗obs + O(n−1)

⇒ Bias[τ̂ comp,B,R|Q1] ≈ p∗(τ ∗obs − τ ∗mis)− p∗(1− p∗)(µ∗mis − µ∗obs)2

+
1− p∗

n
τ ∗obs + O(n−1).

Donor: for deriving the bias for donor strategy one applies sampling theory results.

Namely, basic sampling theory result states that expectation of sample vari-

ance, which is τ̂ imp here, equals to population variance (for simple random

sampling with replacement, see for example page 17 of [53]). Our popula-

tion consists of centered Y values {yobs
j − µobs}nobs

j=1 . Variance of population is

(1− 1
nobs )τ

obs. Thus:

E[τ̂ imp|Q3] = (1− 1

nobs
)τ obs.

One needs also to solve

E[(µ̂obs − µ̂imp)2|Q3] = E

[(
µ̂obs − (µ̂obs +

1

nmis

n∑

j=nobs+1

ε̂B,D
j

)2

|Q3

]

= E

[(
− 1

nmis

n∑

j=nobs+1

ε̂B,D
j

)2

|Q3

]

= E

[( 1

nmis

n∑

j=nobs+1

ε̂B,D
j

)2

|Q3

]
.

Now E[( 1
nmis

∑n
j=nobs+1 ε̂B,D

j )2|Q3] = Var[µ̂imp|Q3]. Basic sampling theory re-

sult states that variance of sample mean equals to population variance divided

by sample size (for simple random sampling with replacement, see Equation

2.10 in [53]). Therefore,

Var[µ̂imp|Q3] =
1

nmis
(1− 1

nobs
)τ obs.
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As a consequence

E[τ̂ comp,B,D|Q3] = E[
nobs − 1

n− 1
τ̂ obs +

nmis − 1

n− 1
τ̂ imp

+
nmis(nobs)

n(n− 1)
(µ̂obs − µ̂imp)2|Q3]

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
(1− 1

nobs
)τ obs

+
nmisnobs

n(n− 1)

1

nmis
(1− 1

nobs
)τ obs

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
(1− 1

nobs
)τ obs

+
nobs

n(n− 1)
(1− 1

nobs
)τ obs

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
(1− 1

nobs
)τ obs +

nobs − 1

n(n− 1)
τ obs.

Expectation at second conditionalization level is equal to first level result, thus

E[τ̂ comp,B,D|Q2] =
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
(1− 1

nobs
)τ obs +

nobs − 1

n(n− 1)
τ obs.

Approximate expectation at first level is computed using result for second level

as

E[τ̂ comp,B,D|Q1] ≈ (1− p∗)τ ∗obs + p∗τ ∗obs + (
1− p∗

n
− 1

n2
)τ ∗obs

+O(n−1)

⇒ Bias[τ̂ comp,B,D|Q1] ≈ p∗(τ ∗obs − τ ∗mis)− p∗(1− p∗)(µ∗mis − µ∗obs)2

+(
1− p∗

n
− 1

n2
)τ ∗obs + O(n−1).

Consequence 4.4

Asymptotically one has (approximately) the following

lim
n→∞

Bias[µ̂comp,B|n] = p∗(µ∗obs − µ∗mis)

lim
n→∞

Var[µ̂comp,B|n] ≈ 0

lim
n→∞

Bias[τ̂ comp,B|n] ≈ p∗
[
(τ ∗imp − τ ∗obs)− (1− p∗)(µ∗mis − µ∗obs)2

]
,

where

τ ∗imp =

{
0 :S=M (for mean imputation strategy) and

τ ∗obs :S=R and S=D (random and donor imputation).

Justification: Results are trivial to derive as they follow immediately by

taking limits of results in theorem 4.1, approximation 4.2, and approximation 4.3.
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A4.3 Baseline methods / unit level

Approximation 4.9

Expectation of m̂se(Y comp,B) with n observations is approximately

E[m̂se(Y comp,B)|n] ≈ (µ∗obs − µ∗mis

︸ ︷︷ ︸
global bias

)2 + VarXmis [g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ τ ∗obs
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)

︸ ︷︷ ︸
expected sampling variance

+ Cτ ∗obs︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where constant C depends on imputation strategy S:

C =





0 :S=M (for mean imputation strategy),

1 :S=R (for simulated random imputation), and

1− 1
n(1−p∗) + Var[Nmis]

n3(1−p∗)3 :S=D (for random donor).

Justification: recall decomposition of mean squared error given in Equation

3.12 (Chapter 3). First term and first cross term in the equation are zero because

E[ĝ(Xmis)|xmis, nmis, n] = µ∗imp
n = µ∗obs. Last cross term is zero because µ̂obs and

ε̂xmis are conditionally independent given training data and expectation of noise is

zero. As a consequence

E[m̂se(Y comp,B)|n] = (µ∗obs − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ ENmis,Xmis|n

[
Var[µ̂obs|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ v∗mis︸ ︷︷ ︸
expected target noise

.

Expected variance of conditional mean estimate is computed as

Exmis|nmis,n

[
Var[µ̂obs|xmis, nmis, n]

]
=

τ ∗obs

nobs
.

Integration over distribution of response pattern Nmis is a bit complicated. Approx-

imate result can be derived using second order Taylor approximation:

ENmis,xmis|n
[
Var[µ̂obs|xmis, nmis, n

]
= ENmis|n

[τ ∗obs

nobs

]

≈ τ ∗obs
( 1

n(1− p∗)
+

Var[Nmis](
n(1− p∗)

)3

)
.

Next variances for each strategy are computed.
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Mean: because noise is not modelled it holds that v∗imp
n = 0.

Random: for random strategy

v∗imp
n = EXmis,Nmis|nVar[ε̂B,R|xmis, nmis, n]

= τ ∗obs.

Donor: for donor strategy it holds that

EXmis|nmis,nVar[ε̂B,D|xmis, nmis, n] ≈ EXmis|nmis,n

[
(1− 1

nobs
)τ ∗obs

]

= (1− 1

nobs
)τ ∗obs

⇒ ENmis,Xmis|nVar[ε̂B,D|xmis, nmis, n] ≈ τ ∗obs(1− 1

n(1− p∗)
− Var[Nmis](

n(1− p∗)
)3 ).

Approximation 4.10

Mean squared error mse(Y imp|xmis, nmis, n) can be approximated as:

mse(Y imp|xmis, nmis, n) ≈ (
µ∗obs − g∗mis(xmis)

)2

︸ ︷︷ ︸
squared bias

+
1

nobs
τ ∗obs

︸ ︷︷ ︸
sampling variance

+ Cτ ∗obs︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

.

where term C depends on imputation strategy S:

C =





0 :S=M (for mean imputation strategy),

1 :S=R (for simulated random imputation), and

1− 1
nobs :S=D (for random donor).

Justification: recall from Chapter 3 that

mse(Y imp|xmis, nmis, n) =
(
E[ĝ(xmis)|xmis, nmis, n]− g∗mis(xmis)︸ ︷︷ ︸

imputation bias at xmis

)2

+ Var[Y imp
|xmis,nmis,n

]
︸ ︷︷ ︸

imputation variance at xmis

+ Var[Y|xmis ]︸ ︷︷ ︸
v∗mis(xmis), target noise at xmis

.

Squared bias terms in mse(Y imp|xmis, nmis, n) are same for all baseline methods

because expected predictions are same. Squared bias term is

(
E[Y imp,B|xmis, nmis, n]− E[Y mis|xmis]

)2

=
(
µ∗obs − g∗mis(xmis)

)2

.

Prediction variances are derived as follows
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Mean:

Var[Y imp,B,M |xmis, nmis, n] = Var[µ̂obs|xmis, nmis, n]

=
τ ∗obs

nobs
.

Random: derivation of variance for random imputation strategies is a bit more

complicated. By writing Y imp,B,R = Y imp,B,M + ε̂B,R one gets following result

for simulated random strategy:

Var[Y imp,B,R|xmis, nmis, n] = Var[Y imp,B,M |xmis, nmis, n]

+Var[ε̂B,R|xmis, nmis, n]

+2Cov[Y imp,B,M , ε̂B,R|xmis, nmis, n],

where first term is already computed. Second and third terms are easy to derive

by applying chain rules of variance and covariance (suitable conditionalizer is

training data):

Var[ε̂B,R|xmis, nmis, n] = Var
[
E[ε̂B,R|xmis, nmis, n,dtrain]

]

+E
[
Var[ε̂B,R|xmis, nmis, n,Dtrain]

]

= VarDtr|nmis,n

[
0
]

+ EDtrain|nmis,n

[
τ̂ obs

]

= τ ∗obs.

where outer integrations in first two rows are with respect to distribution

Dtrain|nmis, n. For clarity of formulas, outer conditionalizers have been omitted

in first two rows (they are same as in inner integrations except training data

is excluded).

Derivation of covariance term is easy after noticing that Y imp,B,M and ε̂B,R are

conditionally independent given training data dtrain. By applying chain rule

of covariance one gets:

Cov[Y imp,B,M , ε̂B,R|xmis, nmis, n]

= E

[
Cov[Y imp,B,M , ε̂B,R|xmis, nmis, n,dtrain

]

+Cov

[
E[µ̂obs|xmis, nmis, n,Dtr],E[ε̂B,R|xmis, nmis, n,dtrain]

]

= E[0] + Cov

[
E[µ̂obs|xmis, nmis, n,dtrain], 0

]
= 0.

Again outer integrations in first two rows are with respect to distribution

Dtrain|nmis, n. Outer conditionalizers have been omitted, for clarity, as in

previous computation of variance term.
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Donor: finally, one derives variance term for random donor method. Expectation

of noise term given training data is zero. Variance result is derived using

basic result from sampling theory. Link to sampling theory is following: pro-

vided training data is given then finite population is set of observed Y values,

imputation of single Y value is equal to drawing a simple random sample,

with replacement, of size one from the finite population. One can apply here

classical result for variance of mean estimate which is computed from one ob-

servation. Result is available in multiple good sampling theory sources such

as [53, 113, 4]. Here reference to Knottnerus [53] is made. Knottnerus’ Equa-

tion (2.10) [53] states that the variance of mean estimate, in case of simple

random sampling, equals to finite population variance divided by sample size.

In our case variance of finite population is (see Section 2.1 in [53] for details)
1

nobs

∑nobs

j=1(yj − µobs)2 = nobs−1
nobs τ obs = (1− 1

nobs )τ
obs. This is also variance of in-

dividual random donor imputation because corresponding sample size is one,

thus:

Var[ε̂B,D|xmis, nmis, n,dtrain] = (1− 1

nobs
)τ obs.

Carrying computation as in random simulated strategy (R) one gets following

Var[ε̂B,D|xmis, nmis, n] = Var
[
E[ε̂B,D|xmis, nmis, n,dtrain]

]

+E
[
Var[ε̂B,D|xmis, nmis, n,dtrain]

]

= VarDtrain|nmis,n

[
0
]

+ EDtrain|nmis,n

[
(1− 1

nobs
)τ̂ obs

]

= (1− 1

nobs
)τ ∗obs.

Consequence 4.11

Limit of expectation of m̂se(Y comp,B) is approximately

lim
n→∞

E[m̂se(Y comp,B)|n] ≈ (µ∗obs − µ∗mis

︸ ︷︷ ︸
global bias

)2 + VarXmis [g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ Cτ ∗obs︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where constant C depends on imputation strategy S:

C =

{
0 :S=M (for mean imputation strategy), and

1 :S=R,S=D (for random strategies).
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Justification: result follows directly by taking limit of approximation 4.9:

lim
n→∞

E[m̂se(Y comp,B)|n] ≈ (µ∗obs − µ∗mis)2 + VarXmis [g∗mis(Xmis)]

+ lim
n→∞

τ ∗obs
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)

+ lim
n→∞

C ′τ ∗obs + v∗mis

= (µ∗obs − µ∗mis)2 + VarXmis [g∗mis(Xmis)]

+Cτ ∗obs + v∗mis,

where C ′ is C from approximation 4.9.

A4.4 Baseline methods / importance of higher or-

der term (example)

Approximation 4.2 for Var[µ̂comp,B,M |n] in Chapter 4 contains second order Taylor

approximation term τ ∗obs Var[Nmis]
n3(1−p∗)3 . The second order Taylor term is shown to be

important next. Consider example τ ∗ = 1, MCAR missingness, where number of

missing data values is roughly Nmis ∼ Bin(n, 0.5) (50% missingness). Let first order

Taylor approximation be A = τ ∗obs 1
n(1−p∗) , B be the second order approximation

term, and V = Var[µ̂comp,B,M |n]. Importance of second order Taylor approximation

term is evaluated by computing relative error ratios Err1 = E[V−A
V
|n] and Err2 =

E[V−(A+B)
V

|n]. Sign of Err1 and Err2 tells to which direction approximation needs

to be corrected.

Simulations of 5000 repetitions is done 50 times for each sample size n ∈
{5, 9, 21, 37, 69, 101} to compute expectation and deviation of error estimates. Re-

sults are (deviations of estimates are shown in paranthesis):
n 5 9 21 37 69 101

Err1 0.0419(0.0025) 0.0996(0.0030) 0.0501(0.0029) 0.0291(0.0024) 0.0175(0.0030) 0.0067(0.0025)

Err2 -0.1497(0.0030) -0.0005(0.0034) 0.0049(0.0031) 0.0028(0.0024) 0.0032(0.0030) -0.0031(0.0025)

From sample size 9 to 69 second order approximation is considerable better

than first order approximation. Therefore second order Taylor term is important.

For smallest sample sizes first order approximation underestimates variance.

Second order approximation overestimates variance for sample size 5, and absolute

error is higher than for first order approximation. However, typically it is better

to overestimate variance than underestimate (to not to get too narrow confidence

intervals).
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A4.5 Baseline methods / computations for simula-

tion example

Lemma A4.5.1:

Let a and c > 0 be real numbers, then

i)

∫ ∞

−∞
x3 ∗ exp(−(x− a)2/c)dx =

1

2
a
√

c(2a2 + 3c)
√

π

= K(a, c).

ii)

∫ ∞

−∞
x6 ∗ exp(−(x− a)2/c)dx =

1

8

√
c(8a6 + 60a4c + 90a2c2 + 15c3)

√
π

= K2(a, c).

Lemma A4.5.1 was derived using symbolical integration in Mathematica software.

Computer softwares are known to have bugs (programming errors). Therefore nu-

merical integration was used to empirically ”verify” validity of formulas (for set of

values a and c required in this study).

Corollary A4.5.2:

The first two moments of Y obs and Y mis are

E[Y obs] = −0.196

Var[Y obs] = 0.39074

E[Y mis] = 0.196

Var[Y mis] = 0.39074



284

Proof: First moment of Y obs is computed as

E[Y obs] = EXobs

[
E[Y obs|Xobs = x]

]
= EXobs

[
g(x)

]

= EXobs

[
1

500
x3

]
1

500

∫ ∞

−∞
x3fXobs(x)dx

=
1

500

∫ ∞

−∞
x3 1√

2π ∗ 15
exp

(
−

((
x− (−2)

)2
/(2 ∗ 15)

))
dx

=
1

500
√

2π ∗ 15

∫ ∞

−∞
x3 exp

(
−

((
x− (−2)

)2
/(2 ∗ 15)

))
dx

=
1

500
√

2π ∗ 15
K(−2, 2 ∗ 15)

Lemma A4.5.1 i)
=

1

500
√

2π ∗ 15

1

2
(−2)

√
30(2(−2)2 + 3 ∗ 30)

√
π

= − 1

500
√

30

√
30(2 ∗ 4 + 3 ∗ 30) = − 1

500
(8 + 90)

= − 98

500
= −0.196.

Now because K(a, c) = −K(−a, c) one gets that E[Y mis] = −(−0, 196) = 0.196.

Remember that

Var[Y obs] = VarXobs [E[Y |Xobs]] + EXobs [Var[Y obs|Xobs]]

= VarXobs [g(Xobs)] + 0.05

= EXobs [(g(Xobs))2]− EXobs [g(Xobs)]EXobs [g(Xobs)] + 0.15

= EXobs

[ 1

5002
(Xobs)6

]
− E[Y obs]E[Y obs] + 0.15.
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Now one just needs to compute the first term which is done as

EXobs

[ 1

5002
(Xobs)6

]

=
1

5002

∫ ∞

−∞
x6fXobs(x)dx

=
1

5002

∫ ∞

−∞
x6 1√

2π ∗ 15
exp

(
−

((
x− (−2)

)2
/(2 ∗ 15)

))
dx

=
1

5002
√

2π ∗ 15

∫ ∞

−∞
x6 exp

(
−

((
x− (−2)

)2
/(2 ∗ 15)

))
dx

=
1

5002
√

2π ∗ 15
K2(−2, 2 ∗ 15)

∗
=

1

5002
√

2π ∗ 15

1

8

√
30(8(−2)6 + 60(−2)4 ∗ 30 + 90(−2)2 ∗ 302 + 15 ∗ 303)

√
π

=
1

8 ∗ 5002
√

2π ∗ 15

√
30(8 ∗ 64 + 60 ∗ 16 ∗ 30 + 90 ∗ 4 ∗ 900 + 15 ∗ 27000)

√
π

=
1

8 ∗ 5002
√

30

√
30(8 ∗ 64 + 60 ∗ 16 ∗ 30 + 90 ∗ 4 ∗ 900 + 15 ∗ 27000)

=
1

2000000
758312

= 0.379156,

where at * lemma A4.5.1 ii) was applied.

Now one can compute variance of Y obs as

Var[Y obs] = 0.379156− (−0.196)2 + 0.15 = 0.49074 ≈ 0.49.

Now because K2(a, c) = K2(−a, c) and residual variances are same for missing and

observed Y values it immediately follows that Var[Y mis] = Var[Y obs].
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A4.6 Linear regression / moments

In this section justifications for results of moments for linear regression methods are

given.

Approximation 4.12

The approximation for the bias of µ̂comp,L for n observations is

Bias[µ̂comp,L|n] ≈ p∗(E[β̂
obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis)

where E[β̂
obs|n] is the expected regression coefficients over training data and

X
∗mis

= E[Xmis] is the expected covariate vector over missing data.

Justification: result is derived as follows:

E[µ̂comp,L,M |n, Nmis = nmis] = E

[
1

n

(
nobsµ̂obs + nmis(β̂obs

0 + (β̂
obs

−0)
T X

∗mis
)
)
|n, nmis

]

=
1

n

(
nobsµ∗obs + nmis(E[β̂obs

0 |n, nmis]

+E[β̂
obs

−0 |n, Nmis = nmis]T X
∗mis

)

)

⇒ E[µ̂comp,L,M |Q1] ≈ 1

n

(
E[Nobs|n]µ∗obs

+E[Nmis|n](E[β̂0|n] + E[β̂
obs

−0 |n]T X
∗mis

)

)

= (1− p∗)µ∗obs + p∗(E[β̂obs
0 |n] + E[β̂

obs

−0 |n]T X
∗mis

)

⇒ Bias[µ̂comp,L,M |Q1] ≈ (1− p∗)µ∗obs + p∗(E[β̂obs
0 |n] + E[β̂

obs

−0 |n]T X
∗mis

)

−
(
(1− p∗)µ∗obs + p∗µ∗mis

)

= p∗(E[β̂obs
0 |n] + E[β̂

obs

−0 |n]T X
∗mis − µ∗mis),

Expectation and bias for random imputation strategy are same as for mean impu-

tation because expectations of modelled noise terms are zero.

Approximation 4.13

The variance of first moment µ̂comp,L given Q2 is approximately

Var[µ̂comp,L|Q2] ≈ nmis

n2

(
(βobs

−0)
TΣ∗mis

X βobs
−0 + C

)
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where −0 subscript means that all other regression coefficients are picked except

intercept term, and

C =

{
0 :S=M (mean imputation), and

vobs,L,R :S=R (simulated random imputation).

Justification: approximation 4.13 is straightforward to derive:

Var[µ̂comp,L,M |Q2] = Var

[
1

n

(
nobsµ̂obs + 1T

nmisDmis
XX β̂

obs
)
|Q2

]

= Var
[1

n
1T

nmisDmis
XX β̂

obs|Q2

]
=

1

n2
1T

nmis(β
obs
−0)

TVar[Xmis|Q2]β
obs
−0

=
1

n2
1T

nmis(β
obs
−0)

TΣ∗mis
X βobs

−0 =
nmis

n2
(βobs

−0)
TΣ∗mis

X βobs
−0 .

Variance increases due to random imputation strategy. This increase is computed

by first noticing that

µ̂comp,L,R = µ̂comp,L,M +
1

n

∑

ε̂L,R
j ∈Dimp

ε̂,nmis

ε̂L,R
j .

Terms in decomposition for µ̂comp,L,R are conditionally independent given Q2, thus

variance for random imputation strategy computed as:

Var[µ̂comp,L,R|Q2] = Var[µ̂comp,L,R|Q2] + Var[
1

n

∑

ε̂L,R
j ∈Dimp

ε̂,nmis

ε̂L,R
j |Q2]

+2Cov[µ̂comp,L,M ,
1

n

∑

ε̂L,R
j ∈Dimp

ε̂,nmis

ε̂L,R
j |Q2]

=
nmis

n2
(βobs

−0)
TΣ∗mis

X βobs
−0 +

nmis

n2
vobs,L,R + 0

=
nmis

n2
((βobs

−0)
TΣ∗mis

X βobs
−0 + vobs,L,R).

Approximation 4.14

When variance of Y obs|xobs is constant v∗obs (homoscedastic situation) an approxi-

mation for the variance of first moment µ̂comp,L given n observations is

Var[µ̂comp,L|n] = E
Nmis,Dtrain

Nobs ,
ˆβ

obs

[
Var[µ̂comp,L|Q2]

]

+Var
Nmis,Dtrain

Nobs ,
ˆβ

obs

[
E[µ̂comp,L|Q2]

]

≈ T1 + T2 + C︸ ︷︷ ︸
variance due to noise modelling

+ O
(
n−1

)
︸ ︷︷ ︸

approximation error

,
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where T1 = E
Nmis,Dtrain

Nobs ,
ˆβ

obs [Var[µ̂comp,L,M |Q2]] thus

T1 =
v∗obs

n2

p∗

1− p∗
tr

((
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
Σ∗mis
X

)

︸ ︷︷ ︸
variance due to estimated coefficients

+
p∗

n
Var

[
E

Dtrain
Nobs ,

ˆβ
obs

|n
[β̂

obs

−0 ]
T Xmis

]

︸ ︷︷ ︸
variability of expected model

and T2 = Var
Nmis,Dtrain

Nobs ,
ˆβ

obs [E[µ̂comp,L|Q2]] hence

T2 =
1

n2

(
n(1− p∗)τ ∗obs + (µ∗obs)2Var[Nobs]

)

︸ ︷︷ ︸
sampling variance (due to µ̂obs and Nobs)

+
1

n
v∗obs (p∗)2

1− p∗
(X

∗mis
)T

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

X
∗mis

︸ ︷︷ ︸
imputation variance part 1

+
1

n2
Var[Nmis]

(
E[β̂

obs

−0 |n]T X
∗mis

)2

︸ ︷︷ ︸
imputation variance part 2

+
2

n2

[
np∗ + µ∗obsE[β̂

obs

−0 |n]T X
∗misVar[Nmis]

]

︸ ︷︷ ︸
cross term (covariance)

,

in which

C =





0

:S=M (mean),

p∗
n

(
v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 ]

)2
]

+O
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

))

:S=R (random)

Justification: first result is derived for mean strategy, which is followed by

random imputation strategy.

Mean strategy

Variances at Q3 and Q2 are straighforward to derive:

Var[µ̂comp,L,M |Q3] = Var[
1

n
(Nobsµ̂obs + 1T

nmisXXmisβ̂
obs

)|Q3] = 0.

Var[µ̂comp,L,M |Q2] = Var[
1

n
(Nobsµ̂obs + 1T

nmisXXmisβ̂
obs

)|Q2]

= Var[
1

n
1T

nmisXXmisβ̂
obs|Q2] =

1

n2
1T

nmis(β
obs
−0)

TΣ∗mis
X βobs

−0

=
1

n2
1T

nmis(β
obs
−0)

TΣ∗mis
X βobs

−0 =
nmis

n2
(βobs

−0)
TΣ∗mis

X βobs
−0 .
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Due to mathematical difficulty one approximates variance at first level using follow-

ing regression coefficients estimates in predictions:

β̂obs
0 = 0

β̂
obs

−0 =
(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y .

This approximation may underestimate variance because one parameter less is es-

timated. However, one compensates this by assuming that additional variance,

including cross terms between intercept and slope terms, is O(n−1). As a remark,

above slope terms are biased provided optimal intercept term is non-zero.

Variance given Q1 can be decomposed using chain rule as:

Var[µ̂comp,L,M |Q1] = E
Dtrain,

ˆβ
obs

,Nmis|n

[
Var[µ̂comp,L,M |Q2]

]

︸ ︷︷ ︸
first term

(1)

+Var
Dtrain,

ˆβ
obs

,Nmis|n

[
E[µ̂comp,L,M |Q2]

]

︸ ︷︷ ︸
second term

,

where

Var[µ̂comp,L,M |Q2] ≈ nmis

n2

(
(βobs

−0)
TΣ∗mis

X βobs
−0

)

E[µ̂comp,L,M |Q2] ≈ 1

n

(
nobsµobs + nmis(βobs

−0)
T X

∗mis
)
,

Here one assumes that variance for predictions using all regression coefficients can

be approximated using predictions using slope terms estimates without intercept

term.

One begins by computing the first term in Equation (1) conditionalized also by
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Nmis, after which integration over distribution of Nmis is done.

E
Dtrain,

ˆβ
obs

|nmis,n

[
nmis

n2

(
(β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

)]

=
nmis

n2
E

Dtrain,
ˆβ

obs

|nmis,n

[
tr

(
(β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

)]

=
nmis

n2
E

Dtrain,
ˆβ

obs

|nmis,n

[
tr

(
β̂

obs

−0(β̂
obs

−0)
TΣ∗mis

X

)]

=
nmis

n2
tr

(
E

Dtrain,
ˆβ

obs

|nmis,n

[
β̂

obs

−0(β̂
obs

−0)
TΣ∗mis

X

])

=
nmis

n2
tr

(
E

Dtrain,
ˆβ

obs

|nmis,n

[
β̂

obs

−0(β̂
obs

−0)
T
]
Σ∗mis
X

)

=
nmis

n2
tr

((
Var

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]

+E
Dtrain,

ˆβ
obs

|nmis,n
[β̂

obs

−0 ]
TE

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]

)
Σ∗mis
X

)

=
nmis

n2

{
tr

(
Var

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]Σ
∗mis
X

)

+tr

(
E

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]
TE

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]Σ
∗mis
X

)}

=
nmis

n2

{
tr

(
v∗obs

n− NmisEX|R,n

[( 1

n− Nmis (Dobs
X )TDobs

X

)−1]
Σ∗mis
X

)

+Var[E
Dtrain,

ˆβ
obs

|nmis,n
[β̂

obs

−0 ]
T Xmis]

}

≈ nmis

n2

{
v∗obs

n− Nmis tr

(
E[Xobs(Xobs)T ]−1Σ∗mis

X

)

+Var[E
Dtrain,

ˆβ
obs

|nmis,n
[β̂

obs

−0 ]
T Xmis]

}
,

where one uses same (large sample) approximation for EX|nmis,n

[(
1

n−Nmis (D
obs
X )TDobs

X

)−1]

as Hastie et al have done [36].
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Integration over distribution of Nmis is done as

ENmisE
Dtrain,

ˆβ
obs

|nmis,n

[
nmis

n2

(
(β̂

obs

−0)
TΣ∗mis

X β̂
obs

−0

)]
(2)

≈ ENmis|n

[
Nmis

n2

{
v∗obs

n− Nmis tr

(
E[Xobs(Xobs)T ]−1Σ∗mis

X

)

+Var[E
Dtrain,

ˆβ
obs

|nmis,n
[β̂

obs

−0 ]
T Xmis]

}]

= ENmis|n

[
Nmis

n2

v∗obs

n− Nmis

]
tr

(
E[Xobs(Xobs)T ]−1Σ∗mis

X

)

+ENmis|n

[
Nmis

n2
Var[E

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]
T Xmis]

]

≈ v∗obs

n2
ENmis|n

[
Nmis

n− Nmis

]
tr

(
E[Xobs(Xobs)T ]−1Σ∗mis

X

)

+ENmis|n

[
Nmis

n2
Var

[(
E

Dtrain,
ˆβ

obs

|n
[β̂

obs

−0 ]
T + O

(
(nobs)−1

))
Xmis

]]

≈ v∗obs

n2

np∗

n− np∗
tr

(
E[Xobs(Xobs)T ]−1Σ∗mis

X

)

+ENmis|n

[
Nmis

n2
Var[E

Dtrain,
ˆβ

obs

|n
[β̂

obs

−0 ]
T Xmis]

]

=
v∗obs

n2

p∗

1− p∗
tr

((
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
Σ∗mis
X

)

+
p∗

n
Var

[
E

Dtrain,
ˆβ

obs

|n
[β̂

obs

−0 ]
T Xmis

]
,

where first order Taylor approximation has been applied to compute ENmis|n

[
Nmis

n−Nmis

]
.

Impact due to coefficient approximation error O((Nobs)−1) is assumed to be neglibe,

and is thus ignored.
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Now one needs to solve the second term in Equation (1).

Var
Dtrain,

ˆβ
obs

,Nmis|n

[
1

n

(
Nobsµ̂obs + Nmis(β̂

obs

−0)
T X

∗mis
)
)]

(3)

=
1

n2

(
Var

Dtrain,
ˆβ

obs

,Nmis|n

[
Nobsµ̂obs

]

︸ ︷︷ ︸
first term

+Var
Dtrain,

ˆβ
obs

,Nmis|n

[
Nmis(β̂

obs

−0)
T X

∗mis
]

︸ ︷︷ ︸
second term

+ 2Cov
Dtrain,

ˆβ
obs

,Nmis|n

[
Nobsµ̂obs, Nmis(β̂

obs

−0)
T X

∗mis
]

︸ ︷︷ ︸
third term

)
.

The first term within paranthesis is computed, using chain rule (conditionalizing by

Nmis), as

Var
Dtrain,

ˆβ
obs

,Nmis|n

[
Nobsµ̂obs

]
= ENmis|n

[
Var

Dtrain,
ˆβ

obs

|nmis,n
[Nobsµ̂obs]

]
(4)

+VarNmis|n

[
E

Dtrain,
ˆβ

obs

|nmis,n
[Nobsµ̂obs]

]

≈ ENmis|n

[
(Nobs)2 τ ∗obs

Nobs

]
+ VarNmis|n

[
(Nobs)µ∗obs

]

≈ n(1− p∗)τ ∗obs + (µ∗obs)2Var[Nobs].

Chain rule is applied similarly to compute second term within paranthesis. This
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yields to:

Var
Dtrain,

ˆβ
obs

,Nmis|n

[
Nmis(β̂

obs

−0)
T X

∗mis
]

(5)

= ENmis|n

[
Var

Dtrain,
ˆβ

obs

|nmis,n
[Nmis(β̂

obs

−0)
T X

∗mis
]

]

+VarNmis|n

[
E

Dtrain,
ˆβ

obs

|nmis,n
[Nmis(β̂

obs

−0)
T X

∗mis
]

]

= ENmis|n(N
mis)2

[
Var

Dtrain,
ˆβ

obs

|nmis,n
[(β̂

obs

−0)
T X

∗mis
]

]

+VarNmis|n

[
NmisE

Dtrain,
ˆβ

obs

|nmis,n
[(β̂

obs

−0)
T X

∗mis
]

]

= ENmis|n(N
mis)2

[
(X

∗mis
)TVar

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]X
∗mis

]

+VarNmis|n

[
NmisE

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]
T X

∗mis

]

≈ ENmis|n(N
mis)2

[
(X

∗mis
)T v∗obs

n− NmisE[Xobs(Xobs)T ]−1X
∗mis

]

+VarNmis|n

[
Nmis

]
(
E

Dtrain,
ˆβ

obs

,Nmis|n
[β̂

obs

−0 ]
T X

∗mis)2

≈ v∗obs (np∗)2

n− np∗
(X

∗mis
)TE[Xobs(Xobs)T ]−1X

∗mis

+Var[Nmis]
(
E[β̂

obs

−0 |n]T X
∗mis)2

= v∗obs n(p∗)2

1− p∗
(X

∗mis
)T

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
X

∗mis

+Var[Nmis]
(
E[β̂

obs

−0 |n]T X
∗mis)2

,

where large sample approximation of Hastie et al [36] and first order Taylor expan-

sion (for E[ (Nmis)2

n−Nmis ]) have been applied.
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The covariance part in third term of Equation (3) is approximated as

Cov
Dtrain,

ˆβ
obs

,Nmis|n

[
Nobsµ̂obs, Nmis(β̂

obs

−0)
T X

∗mis
]

= ENmis|n

[
Cov

Dtrain,
ˆβ

obs

|nmis,n
[Nobsµ̂obs, Nmis(β̂

obs

−0)
T X

∗mis
]

]

+CovNmis|n

[
E

Dtrain,
ˆβ

obs

−0 |nmis,n
[Nobsµ̂obs],

E
Dtrain,

ˆβ
obs

|nmis,n
[Nmis(β̂

obs

−0)
T X

∗mis
]

]

= ENmis|n

[
NobsNmisCov

Dtrain,
ˆβ

obs

|nmis,n
[µ̂obs, (β̂

obs

−0)
T X

∗mis
]

]

+CovNmis|n

[
(Nobs)E

Dtrain,
ˆβ

obs

|nmis,n
[µ̂obs],

NmisE
Dtrain,

ˆβ
obs

|nmis,n
[(β̂

obs

−0)
T X

∗mis
]

]

= ENmis|n

[
NobsNmisCov

Dtrain,
ˆβ

obs

|nmis,n
[µ̂obs, (β̂

obs

−0)
T X

∗mis
]

]

+CovNmis|n

[
Nobsµ∗obs, NmisE

Dtrain,
ˆβ

obs

|nmis,n
[β̂

obs

−0 ]
T X

∗mis
]

≈ ENmis|n

[
NobsNmisCov

Dtrain,
ˆβ

obs

|nmis,n
[µ̂obs, (β̂

obs

−0)
T X

∗mis
]

]

+µ∗obsE[β̂
obs

−0 |n]T X
∗misCovNmis|n

[
(nobs), Nmis

]

= ENmis|n

[
NobsNmisCov

Dtrain,
ˆβ

obs

|nmis,n
[µ̂obs, (β̂

obs

−0)
T X

∗mis
]

]

+µ∗obsE[β̂
obs

−0 |n]T X
∗misVar[Nmis].

Further

Var
Dtrain,

ˆβ
obs

|nmis,n
[µ̂obs] = O

(
(nobs)−1

)

Var
Dtrain,

ˆβ
obs

|nmis,n
[(β̂

obs

−0)
T X

∗mis
] = O

(
(nobs)−1

)
.

Remembering that |Cov[µ̂obs, (β̂
obs

−0)
T X

∗mis|nmis, n]| ≤
√
Var[µ̂obs]Var[(β̂

obs

−0)
T X

∗mis
]

yields to:

|Cov[µ̂obs, (β̂
obs

−0)
T X

∗mis|nmis, n]| ≤
√

O
(
(nobs)−1

)
O

(
(nobs)−1

)
.
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Next it is assumed, without rigorous proof, that following rough (order) approxima-

tion holds:

Cov
Dtrain,

ˆβ
obs

|nmis,n
[µ̂obs, (β̂

obs

−0)
T X

∗mis
] ≈ O

(
(nobs)−1

)
.

Therefore

Cov
Dtrain,

ˆβ
obs

,Nmis|n

[
Nobsµ̂obs, Nmis(β̂

obs

−0)
T X

∗mis
]

(6)

≈ ENmis|n

[
(Nmis − (Nmis)2)O

(
(nobs)−1

)
]

+ µ∗obsE[β̂
obs

−0 |n]T X
∗misVar[Nmis]

≈ n2p∗ − n2(p∗)2

n− np∗
+ µ∗obsE[β̂

obs

−0 |n]T X
∗misVar[Nmis]

=
np∗(1− p∗)

1− p∗
+ µ∗obsE[β̂

obs

−0 |n]T X
∗misVar[Nmis]

= np∗ + µ∗obsE[β̂
obs

−0 |n]T X
∗misVar[Nmis],

where first order Taylor approximation has been applied to compute

ENmis|n

[
(Nmis − (Nmis)2)O

(
(Nobs)−1

)
]
.

Second term in Equation (1) is solved by plugging Equations (4), (5), (6) into

Equation (3). This yields:

Var
Dtrain,

ˆβ
obs

,Nmis|n

[
1

n

(
Nobsµ̂obs + Nmis(β̂

obs

−0)
T X

∗mis
)
)]

(7)

≈ 1

n2

(
n(1− p∗)τ ∗obs + (µ∗obs)2Var[Nobs]

+v∗obs n(p∗)2

1− p∗
(X

∗mis
)T

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1
X

∗mis

+Var[Nmis]
(
E[β̂

obs

−0 |n]T X
∗mis)2

+2(np∗ + µ∗obsE[β̂
obs

−0 |n]T X
∗misVar[Nmis])

)
.

Approximation for Var[µ̂comp,L,M |n] follows by summing results (2), (7), and

order term O(n−1) which is to compensate ignored variance from intercept term.
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Simulated random imputation

Var[µ̂comp,L,R|Q3] = Var[
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q3]

=
1

n2

n∑

j=nobs+1

Var[ε̂L,R
j |Q3]

=
1

n2

n∑

j=nobs+1

vobs,L,R =
nmis

n2
vobs,L,R.

Variance at second conditionalization level is

Var[µ̂comp,L,R|Q2] = Var[µ̂comp,L,R|Q2] + Var[
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q2]

+2Cov[µ̂comp,L,M ,
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q2]

=
nmis

n2
(βobs

−0)
TΣ∗mis

X βobs
−0 +

nmis

n2
vobs,L,R + 0

=
nmis

n2
((βobs

−0)
TΣ∗mis

X βobs
−0 + vobs,L,R).

Variance is derived at first conditionalization level next. Variance is decomposed

as follows

Var[µ̂comp,L,R|Q1] = Var[µ̂comp,L,M |Q1] + Var[
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q1]

+2Cov[µ̂comp,L,M ,
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q1],
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where first term is already known. Therefore, last two terms need to be solved. Now

Var[
1

n

n∑

j=nobs+1

ε̂mis
j |Q1, N

mis = nmis] = E[Var[
1

n

n∑

j=nobs+1

ε̂mis
j |Q2]|Q1, N

mis = nmis]

+Var[E[
1

n

n∑

j=nobs+1

ε̂mis
j |Q2]|Q1, N

mis = nmis]

= E[Var[
1

n

n∑

j=nobs+1

ε̂mis
j |Q2]|Q1, N

mis = nmis]

= E[
nmis

n2
v̂obs,L,R|Q1, N

mis = nmis]

=
nmis

n2
E[v̂obs,L,R|Q1, N

mis = nmis]

⇒ Var[
1

n

n∑

j=Nobs+1

ε̂mis
j |Q1] = E[Var[

1

n

n∑

j=Nobs+1

ε̂mis
j |Q1, N

mis = nmis]|Q1]

+Var[E[
1

n

n∑

j=Nobs+1

ε̂mis
j |Q1, N

mis = nmis]|Q1]

≈ E[
Nmis

n2
|Q1]E[v̂obs,L,R|Q1] ≈ np∗

n2
E[v̂obs,L,R|Q1]

=
p∗

n
E[v̂obs,L,R|Q1].

Further

Cov[µ̂comp,L,R,
1

n

n∑

j=Nobs+1

ε̂L,R
j |Q1]

= E
Dtrain,

ˆβ
obs

,Nmis|n

[
Cov[µ̂comp,L,R,

1

n

n∑

j=Nobs+1

ε̂L,R
j |Q2]

]

+Cov
Dtrain,

ˆβ
obs

,Nmis|n

[
E[µ̂comp,L,R|Q2],E[

1

n

n∑

j=Nobs+1

ε̂L,R
j |Q2]

]

= E[0] + Cov[E[µ̂comp,L,R|Q2], 0] = 0.

As a consequence

Var[µ̂comp,L,R|Q1] ≈ Var[µ̂comp,L,M |Q1] +
p∗

n
E[v̂obs,L,R|Q1].

Using following approximation

E[v̂obs,L,R|Q1] = Var[ε̂L,R|n] ≈ v∗obs (8)

+EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)
,
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One gets

Var[µ̂comp,L,R|Q1] ≈ Var[µ̂comp,L,M |Q1]

+
p∗

n

(
v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs

−E[β̂obs
0 |n]

)2
]

+ O
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

))
.

Approximation 4.16

Bias of τ̂ comp,L for n observations can be approximated with

Bias[τ̂ comp,L|n] ≈ p∗
(
tr(Σ∗mis

X E[β̂
obs

−0(β̂
obs

−0)
T |Q1]) + C − τ ∗mis

)

︸ ︷︷ ︸
A

+ p∗(1− p∗)
[
(µ∗obs − E[β̂

obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 − (µ∗obs − µ∗mis)2
]

︸ ︷︷ ︸
B

+O(n−1),

where term A is due to difference between variance of imputed and missing Y values

and B is due model missmatch. Term A varies for imputation strategies namely

added imputation variance C is

C =





0

:S=M (mean imputation)

v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
(

1
n(1−p∗) + Var[Nmis]

n3(1−p∗)3

)

:S=R (random imputation)

Justification: in derivation of results for linear regression methods extended

variable Xmis,+ = [1 (Xmis)T ] is used. This equals to variable Xmis which has

been augmented by constant value one (in first component). Corresponding first

two moments are E[Xmis,+] = X
∗mis,+

and Var[Xmis,+] = Σ∗mis,+
X . Note that all

final results are given with normal notation. Result for mean strategy is derived at

first, what is followed by random strategy.
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Mean strategy

Expectation of variance estimator given Q3 is

E[τ̂ comp,L,M |Q3] =
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1
τ imp +

nmisnobs

n(n− 1)
(µobs − µimp)2

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1

1

nmis − 1
(XXmisβobs)THXXmisβobs

+
nmisnobs

n(n− 1)
(µobs − 1

nmis
1T

nmisXXmisβobs)2,

where H = Inmis − 1
nmis 1nmis1T

nmis . Therefore bias equals to

Bias[τ̂ comp,L,M |Q3] =
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1

1

nmis − 1
(XXmisβobs)THXXmisβobs

+
nmisnobs

n(n− 1)
(µobs − 1

nmis
1T

nmisXXmisβobs)2 − τ ∗.

At second conditionalization level Dmis
X is random, thus

E[τ̂ comp,L,M |Q2] = E[
Nobs − 1

n− 1
τ̂ obs +

nmis − 1

n− 1

1

nmis − 1
(XXmisβ̂

obs
)THXXmisβ̂

obs

+
NmisNobs

n(n− 1)
(µ̂obs − 1

Nmis1
TXXmisβ̂

obs
)2|Q2]

=
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1

1

nmis − 1
E[(XXmisβ̂

obs
)THXXmisβ̂

obs|Q2]

+
nmisnobs

n(n− 1)
E[(µ̂obs − 1

Nmis1
TXXmisβ̂

obs
)2|Q2]

= (1− 1

n− 1
)τ obs +

1

n− 1
E[(XXmisβ̂

obs
)THXXmisβ̂

obs|Q2]

+
nmisnobs

n(n− 1)
E[(µ̂obs − 1

Nmis1
TXXmisβ̂

obs
)2|Q2],

where

E[(XXmisβ̂
obs

)THXXmisβ̂
obs|Q2] = E[tr((XXmisβ̂

obs
)THXXmisβ̂

obs
)|Q2]

= E[tr(XXmisβ̂
obs

(XXmisβ̂
obs

)TH)|Q2]

= E[tr(HXXmisβ̂
obs

(XXmisβ̂
obs

)T )|Q2]

= tr(E[HXXmisβ̂
obs

(XXmisβ̂
obs

)T |Q2])

= tr(HE[XXmisβ̂
obs

(XXmisβ̂
obs

)T |Q2]).

E[XXmisβ̂
obs

(XXmisβ̂
obs

)T |Q2] =

(
((βobs)T X

∗mis,+
)21nmis1T

nmis

+(βobs)TVar[Xmis,+]βobsInmis

)
,
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thus

E[(XXmisβ̂
obs

)THXXmisβ̂
obs|Q2]

= tr(H(((βobs)T X
∗mis,+

)21nmis1T
nmis + (βobs)TVar[Xmis,+]βobsInmis))

= tr(H(((βobs)T X
∗mis,+

)21nmis1T
nmis)) + tr(H(βobs)TVar[Xmis,+]βobsInmis)

= tr(Inmis − 1

nmis
1nmis1T

nmis)(((β
obs)T X

mis,+
)21nmis1T

nmis))

+tr((Inmis − 1

nmis
1nmis1T

nmis)(β
obs)TVar[Xmis,+]βobsInmis)

= ((βobs)T X
∗mis,+

)2tr((Inmis − 1

nmis
1nmis1T

nmis)(1nmis1T
nmis))

+(βobs)TVar[Xmis,+]βobstr((Inmis − 1

nmis
1nmis1T

nmis)Inmis)

= ((βobs)T X
∗mis,+

)2tr((Inmis − 1

nmis
1nmis1T

nmis)1nmis1T
nmis)

+βTVar[Xmis,+]βobstr(Inmis − 1

nmis
1nmis1T

nmis)

= ((βobs)T X
∗mis,+

)2tr((Inmis − 1

nmis
1nmis1T

nmis)1nmis1T
nmis)

+(βobs)TVar[Xmis,+]βobs(nmis − 1)

= ((βobs)T X
∗mis,+

)2[tr(Inmis1nmis1T
nmis)− tr(

1

nmis
1nmis1T

nmis1nmis1T
nmis)]

+(βobs)TVar[Xmis,+]βobs(nmis − 1)

= ((βobs)T X
∗mis,+

)2[tr(1nmis1T
nmis)− 1

nmis
tr(1nmis1T

nmis1nmis1T
nmis)]

+(βobs)TVar[Xmis,+]βobs(nmis − 1)

= ((βobs)T X
∗mis,+

)2[nmis − 1

nmis
(nmis)2] + (βobs)TVar[Xmis,+]βobs(nmis − 1)

= (nmis − 1)(βobs)TVar[Xmis,+]βobs

= (nmis − 1)(βobs
−0)

TVar[Xmis]βobs
−0 ,

and

E[(µ̂obs − 1

Nmis1
T
NmisXXmisβ̂

obs
)2|Q2]

= E[(µ̂obs)2 − 2µ̂obs 1

Nmis1
T
NmisXXmisβ̂

obs
+ (

1

Nmis1
T
nmisXXmisβ̂

obs
)2|Q2]

= (µobs)2 − 2µobs 1

nmis
E[1T

NmisXXmisβ̂
obs|Q2] + E[

1

(Nmis)2
(1T

NmisXXmisβ̂
obs

)2|Q2]

= (µobs)2 − 2µobs 1

nmis
nmis(βobs)T X

∗mis,+
+ E[

1

(Nmis)2
(1T

NmisXXmisβ̂
obs

)2|Q2]

= (µobs)2 − 2µobs(βobs)T X
∗mis,+

+
1

(nmis)2
E[1T

NmisXXmisβ̂
obs

1T
NmisXXmisβ̂

obs|Q2]

Further



301

E[(µ̂obs − 1

Nmis1
T
NmisXXmisβ̂

obs
)2|Q2]

= (µobs)2 − 2µobs(βobs)T X
∗mis,+

+
1

(nmis)2
((nmis)2((βobs)T X

mis,+
)2

+nmis(βobs)TVar[Xmis,+]βobs)

= (µobs)2 − 2µobs(βobs)T X
∗mis,+

+ ((βobs)T X
mis,+

)2 +
1

nmis
(βobs)TVar[Xmis,+]βobs

= (µobs − (βobs)T X
∗mis,+

)2 +
1

nmis
(βobs)TVar[Xmis,+]βobs

= (µobs − (βobs
−0)

T X
∗mis − βobs

0 )2 +
1

nmis
(βobs

−0)
TVar[Xmis]βobs

−0 .

As a consequence

E[τ̂ comp,L,M |Q2] =
nobs − 1

n− 1
τ obs +

nmis − 1

n− 1

1

nmis − 1
(nmis − 1)βT

−0Var[Xmis]βobs
−0

+
nmisnobs

n(n− 1)

[
(µobs − (βobs

−0)
T X

∗mis − βobs
0 )2

+
1

nmis
(βobs

−0)
TVar[Xmis]βobs

−0

]

= (1− nmis

n− 1
)τ obs +

nmis − 1

n− 1
(βobs

−0)
TVar[Xmis]βobs

−0

+
nmisnobs

n(n− 1)

[
(µobs − (βobs

−0)
T X

∗mis − βobs
0 )2

+
1

nmis
(βobs

−0)
TVar[Xmis]βobs

−0

]
.

To conclude bias given Q2 is

Bias[τ̂ comp,L,M |Q2] = (1− nmis

n− 1
)τ obs +

nmis − 1

n− 1
(βobs

−0)
TVar[Xmis]βobs

−0

+
nmisnobs

n(n− 1)

[
(µobs − (βobs

−0)
T X

∗mis − βobs
0 )2

+
1

nmis
(βobs

−0)
TVar[Xmis]βobs

−0

]
− τ ∗.
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Expectation at first level is derived as

E

[
τ̂ comp,L,M |Q1

]

= E

[
(1− Nmis

n− 1
)τ̂ obs|Q1

]
+ E

[
Nmis − 1

n− 1
(β̂

obs

−0)
TVar[Xmis]β̂

obs

−0 |Q1

]

+E

[
NmisNobs

n(n− 1)
[(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2

+
1

Nmis (β̂
obs

−0)
TVar[Xmis]β̂

obs

−0 ]|Q1

]

Taylor≈ (1− np∗

n− 1
)τ ∗obs +

np∗ − 1

n− 1
tr(Var[Xmis]E[β̂

obs

−0(β̂
obs

−0)
T |Q1])

+E

[
NmisNobs

n(n− 1)

[
(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2

+
1

Nmis (β̂
obs

−0)
TVar[Xmis]β̂

obs

−0

]
|Q1

]

≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+E

[
NmisNobs

n2
(µ̂obs − (β̂

obs

−0)
T X

∗mis, − β̂obs
0 )2|Q1

]

+E

[
Nobs

n2
(β̂

obs

−0)
TVar[Xmis]β̂

obs

−0 |Q1

]
.
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Thus

E[τ̂ comp,L,M |Q1] ≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+E[
NmisNobs

n2
(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2|Q1]

+E[
Nobs

n2
|Q1]Var[Xmis]E[tr(β̂

obs

−0(β̂
obs

−0)
T )|Q1]

≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+E[
NmisNobs

n2
(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2|Q1]

+
n− np∗

n2
Var[Xmis]E[tr(β̂

obs

−0(β̂
obs

−0)
T )|Q1]

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+E[
NmisNobs

n2
(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2|Q1]

+
1− p∗

n
tr(Var[Xmis]E[β̂

obs

−0(β̂
obs

−0)
T |Q1])

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+E[
NmisNobs

n2
(µ̂obs − (β̂

obs

−0)
T X

∗mis − β̂obs
0 )2|Q1] + O(n−1)

Taylor≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+

[
E[Nmis|Q1]n− E[(Nmis)2|Q1]

n2

(E[µ̂obs|Q1]− E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2

]
+ O(n−1)

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+

[
E[Nmis|Q1]n− E[(Nmis)2|Q1]

n2

(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2

]
+ O(n−1),

where first order Taylor approximation has been used.
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Further

E[τ̂ comp,L,M |Q1] ≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+

[
np∗n− (Var[Nmis|Q1] + E[Nmis|Q1]

2)

n2

(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2

]
+ O(n−1)

≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+

[
np∗n− (Var[Nmis|Q1] + n2(p∗)2)

n2

(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 ]|Q1])

2

]
+ O(n−1)

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+

[
np∗n− n2(p∗)2

n2

(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2

]
+ O(n−1)

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+p∗(1− p∗)(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 + O(n−1).

As a consequence

Bias[τ̂ comp,L,M |Q1]

≈ (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+p∗(1− p∗)(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 + O(n−1)− τ ∗

= (1− p∗)τ ∗obs + p∗tr(Var[Xmis]E[β̂
obs

−0(β̂
obs

−0)
T |Q1])

+p∗(1− p∗)(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 + O(n−1)

−((1− p∗)τ ∗obs + p∗τ ∗mis + p∗(1− p∗)(µ∗obs − µ∗mis)2)

= p∗
(
tr(Σ∗mis

X E[β̂
obs

−0(β̂
obs

−0)
T |Q1])− τ ∗mis

)

+p∗(1− p∗)
[
(µ∗obs − E[β̂

obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 − (µ∗obs − µ∗mis)2
]

+O(n−1).

Random imputation strategy

Note that

τ̂L,R =
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp,L,R +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp,L,R)2,
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where

τ̂ imp,L,R

=
1

Nmis − 1

n∑

j=Nobs+1

(
(β̂

obs
)T Xmis,+

j + ε̂L,R
j − µ̂imp,L,M − 1

Nmis

n∑

k=Nobs+1

ε̂L,R
k

)2

=
1

Nmis − 1

n∑

j=Nobs+1

(
(β̂

obs
)T Xmis,+

j − µ̂imp,L,M + ε̂L,R
j − 1

Nmis

n∑

k=Nobs+1

ε̂L,R
k

)2

=
1

Nmis − 1

n∑

j=Nobs+1

((
(β̂

obs
)T Xmis,+

j − µ̂imp,L,M
)2

+2
(
(β̂

obs
)T Xmis,+

j − µ̂imp,L,M
)(

ε̂L,R
j − 1

Nmis

Nmis∑

k=1

ε̂L,R
k

)

+
(
ε̂L,R
j − 1

nmis

n∑

k=Nobs+1

ε̂L,R
k

)2
)

= τ̂ imp,L,M

+
1

Nmis − 1

n∑

j=Nobs+1

(
2
(
(β̂

obs
)T Xmis,+

j − µ̂imp,L,M
)

(
ε̂L,R
j − 1

Nmis

Nmis∑

k=Nobs+1

ε̂L,R
k

)
+

(
ε̂L,R
j − 1

Nmis

n∑

k=Nobs+1

ε̂L,R
k

)2
)

,

and

(µ̂obs − µ̂imp,L,R)2 = (µ̂obs − µ̂imp,L,M − 1

Nmis

n∑

j=Nobs+1

ε̂L,R
j )2

= (µ̂obs − µ̂imp,L,M)2 − 2(µ̂obs − µ̂imp,L,M)
1

Nmis

n∑

j=Nobs+1

ε̂L,R
j

+(
1

Nmis

n∑

j=Nobs+1

ε̂L,R
j )2.
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As a consequence

E[τ̂ imp,L,R|Q3]− E[τ̂ imp,L,M |Q3]

= E[
1

Nmis − 1

n∑

j=Nobs+1

(ε̂L,R
j − 1

Nmis

n∑

k=Nobs+1

ε̂L,R
k )2|Q3]

=
1

nmis − 1

n∑

j=nobs+1

E[(ε̂L,R
j − 1

nmis

n∑

k=nobs+1

ε̂L,R
k )2|Q3]

=
1

nmis − 1

n∑

j=nobs+1

(
E[(ε̂L,R

j )2|Q3]− 2E[ε̂L,R
j

1

nmis

n∑

k=nobs+1

ε̂L,R
k |Q3]

+E[(
1

nmis

n∑

k=nobs+1

ε̂L,R
k )2|Q3]

)

=
1

nmis − 1

n∑

j=nobs+1

(
vobs,L,R − 2

1

nmis

n∑

k=nobs+1

E[ε̂L,R
j ε̂L,R

k |Q3]

+
1

(nmis)2

n∑

k=nobs+1

n∑

l=nobs+1

E[ε̂L,R
k ε̂L,R

l |Q3]

)

=
1

nmis − 1

n∑

j=nobs+1

(vobs,L,R − 2
1

nmis
vobs,L +

1

(nmis)2
nmisvobs,L,R)

=
1

nmis − 1
(nmisvobs,L,R − 2vobs,L,R + vobs,L) =

1

nmis − 1
(nmis − 1)vobs,L,R

= vobs,L,R.

Further

E[(µ̂obs − µ̂imp,L,R)2|Q3] = E[(µ̂obs − µ̂imp,L,M)2|Q3]

−2E[(µ̂obs − µ̂imp,L,M)
1

Nmis

n∑

j=Nobs+1

ε̂L,R
j |Q3]

+E[(
1

Nmis

n∑

j=Nobs+1

ε̂L,R
j )2|Q3]

= E[(µ̂obs − µ̂imp,L,M)2|Q3] + E[(
1

Nmis

n∑

j=Nobs+1

ε̂L,R
j )2|Q3]

= E[(µ̂obs − µ̂imp,L,M)2|Q3]

+
1

(nmis)2

n∑

j=nobs+1

n∑

k=nobs+1

E[ε̂L,R
j ε̂L,R

k |Q3]

= E[(µ̂obs − µ̂imp,L,M)2|Q3] +
1

(nmis)2
nmisvobs,L,R

= E[(µ̂obs − µ̂imp,L,M)2|Q3] +
1

nmis
vobs,L,R.
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Therefore

E[τ̂ comp,L,R|Q3] = E[τ̂ comp,L,M |Q3] +
nmis − 1

n− 1
vobs,L,R +

nmisnobs

n(n− 1)

1

nmis
vobs,L,R

= E[τ̂ comp,L,M |Q3] +
nmis − 1

n− 1
vobs,L,R +

nobs

n(n− 1)
vobs,L,R

≈ E[τ̂ comp,L,M |Q3] +
nmis

n
vobs,L,R +

nobs

n2
vobs,L,R.

Expectation at second level is derived as

E[τ̂ comp,L,R|Q2] = E[τ̂ comp,L,M |Q2] +
nmis

n
vobs,L,R +

nobs

n2
vobs,L,R.

At first level expectation is computed as

E[τ̂ comp,L,R|Q1] = E[τ̂ comp,L,M |Q1] + E[
Nmis

n
v̂obs,L|Q1] + E[

Nobs

n2
v̂obs,L,R|Q1]

Taylor≈ E[τ̂ comp,L,M |Q1] +
np∗

n
E[v̂obs,L,R|n] +

n− np∗

n2
E[v̂obs,L,R|n]

= E[τ̂ comp,L,M |Q1] + p∗E[v̂obs,L,R|n]︸ ︷︷ ︸
imputation noise variance

+
(1− p∗)

n
E[v̂obs,L,R|n]

︸ ︷︷ ︸
additional estimation variance

,

where first order Taylor approximation has been applied.

As a consequence

Bias[τ̂L,R|Q1] ≈ Bias[τ̂ comp,L,M |Q1] + p∗E[v̂obs,L,R|n] + O(n−1)

= p∗
(
tr(Σ∗mis

X E[β̂
obs

−0(β̂
obs

−0)
T |Q1]) + E[v̂obs,L,R|n]− τ ∗mis

)

+p∗(1− p∗)[(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2

−(µ∗obs − µ∗mis)2] + O(n−1),

where E[v̂obs,L,R|n] is approximated as:

E[v̂obs,L,R|n] ≈
(

v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

))
.
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Consequence 4.17

Asymptotically one has the following approximation

lim
n→∞

Bias[τ̂ comp,L] ≈ p∗
(
(β∗obs

−0 )TΣ∗mis
X β∗obs

−0 + Cv∗obs,L,R − τ ∗mis
)

︸ ︷︷ ︸
A

+ p∗(1− p∗)

{[
µ∗obs − (β∗obs

−0 )T X
∗mis − (β∗obs

0 )
]2

− (µ∗obs − µ∗mis)2

}

︸ ︷︷ ︸
B

,

where

C =

{
0 :S=M (mean imputation), and

1 :S=R (simulated random imputation).

Term A is bias due to difference between variance of imputed and missing Y values.

Difference between mean of imputed and missing Y values is measured by bias term

B. Further, v∗obs,L,R = limn→∞ E[v̂obs,L,R] is the optimal noise variance parameter

over all possible training datas.

Justification: result is derived by taking limits of terms in approximation

4.16 as follows:

lim
n→∞

Bias[τ̂ comp,L|n] ≈ lim
n→∞

p∗
(
tr(Σ∗mis

X E[β̂
obs

−0(β̂
obs

−0)
T |Q1]) + C ′ − τ ∗mis

)

+ lim
n→∞

p∗(1− p∗)
[
(µ∗obs − E[β̂

obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 − (µ∗obs − µ∗mis)2
]

+ lim
n→∞

O(n−1)

= p∗
(

lim
n→∞

tr(Σ∗mis
X E[β̂

obs

−0(β̂
obs

−0)
T |Q1]) + lim

n→∞
C ′ − τ ∗mis

)

+p∗(1− p∗)
[

lim
n→∞

(µ∗obs − E[β̂
obs

−0 |Q1]
T X

∗mis − E[β̂obs
0 |Q1])

2 − (µ∗obs − µ∗mis)2
]

= p∗
(
(β∗obs

−0 )TΣ∗mis
X β∗obs

−0 + Cv∗obs,L,R − τ ∗mis
)

+ p∗(1− p∗)

{[
µ∗obs − (β∗obs

−0 )T X
∗mis − (β∗obs

0 )
]2

− (µ∗obs − µ∗mis)2

}
,

where term C ′ is C from approximation 4.16.
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A4.7 Linear regression / computations for simula-

tion example

Mathematica is used to compute following theoretical quantities. The biased slope

term β∗obs,biased
−0 is least squared (LS) optimal solution to minimization problem

min
β

∫ ∞

−∞
(β ∗ x− 1

500
x3)2fXobs(x)dx.

Optimal value for β is solved by computing zero point of derivative of the integral

with respect to β. Assuming that order of differentiation and integration can be

changed one gets

∂

∂β

∫ ∞

−∞
(β ∗ x− 1

500
x3)2fXobs(x)dx = 0

⇐⇒
∫ ∞

−∞

∂

∂β
(β ∗ x− 1

500
x3)2fXobs(x)dx = 0

⇐⇒
∫ ∞

−∞
2(β ∗ x− 1

500
x3) ∗ xfXobs(x)dx = 0

⇐⇒ β =

∫∞
−∞

1
500

x4fXobs(x)dx∫∞
−∞ x2fXobs(x)dx

Mathematica⇐⇒ β = 69639/475000.

Term C in approximation 4.14 is computed as

C = v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂obs
−0 |n]Xobs − E[β̂obs

0 ]
)2

]

≈ v∗obs + EXobs

[(
g∗obs

(
Xobs

)− β∗obs,biased
−0 Xobs

)2
]

= v∗obs +

∫ ∞

−∞

[( 1

500
x3 − β∗obs,biased

−0 x
)2

]

Mathematica
= 0.15 + 69639/475000,

thus to simplify computations optimal regression coefficients are replaced by zero

intercept term and ’optimal’ biased slope term β∗obs,biased
−0 .
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A4.8 Linear regression / unit level

Approximation 4.18

Provided variance of Y obs|xobs is constant v∗obs (homoscedastic situation) the expec-

tation of m̂se(Y comp,L) with n observations can be approximated as:

E[m̂se(Y comp,L)|n] ≈ E[β̂
obs

−0 |n]TΣ∗mis
X E[β̂

obs

−0 |n]︸ ︷︷ ︸
variability of approximative model

+
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis

)2

︸ ︷︷ ︸
global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]

)(
µ∗mis − g∗mis(X

∗mis
)
)

︸ ︷︷ ︸
cross term

+ v∗obs
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)
tr(A)

︸ ︷︷ ︸
expected variance of approximative model predictions

+ C︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

+ O
(
n−1

)
︸ ︷︷ ︸

approximation error

,

where A =

((
Σ∗mis
X + X

∗mis
(X

∗mis
)T

)(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1)
and term C

depends on imputation strategy S:

C =





0

:S=M mean imputation

v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)

:S=R random imputation



311

Justification: recall decomposition of mean squared error given in Equation

3.12 (Chapter 3):

E[m̂se(Y comp)|n] = VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

(9)

+ (µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

+ ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ ENmis,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
second cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

.

Variability of conditional mean estimate is computed by assuming that variance

due to intercept term is of order O(n−1), hence

VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]
≈ VarNmis,Xmis|n

[
E[β̂

obs

−0 |Nmis, n]Xmis

]

+O(n−1)

≈ E[β̂
obs

−0 |n]TΣ∗mis
X E[β̂

obs

−0 |n] + O(n−1).

Squared global bias is

(µ∗imp
n − µ∗mis)2 = (E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis)2.

Let t denote cross term (divided by two), now

t = ENmis,Xmis|n
[
E[ĝ(Xmis)|xmis, nmis, n]µ∗imp

n

]

−ENmis,Xmis|n
[
E[ĝ(Xmis)|xmis, nmis, n]g∗mis(Xmis)

]

−ENmis,Xmis|n
[
(µ∗imp

n )2
]

+ENmis,Xmis|n
[
µ∗imp

n g∗mis(Xmis)
]

= (µ∗imp
n )2

−ENmis,Xmis|n
[
(E[β̂

obs

−0 |nmis, n]T Xmis + E[β̂obs
0 |nmis, n])g∗mis(Xmis)

]

−(µ∗imp
n )2 + µ∗imp

n µ∗mis.
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Further, integration over Nmis and applying first order Taylor approximation gives

t = −EXmis|n
[
(E[β̂

obs

−0 |n]T Xmis + E[β̂obs
0 |n])g∗mis(Xmis)

]

+µ∗imp
n µ∗mis

Taylor≈ −
[
(E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n])g∗mis(X

∗mis
)
]

+(E[β̂
obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n])µ∗mis

=
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]

)(
µ∗mis − g∗mis(X

∗mis
)
)
.

In computation of expected variance of conditional mean estimate one assumes

that intercept term estimate is zero and slope terms are estimated as

β̂
obs

−0 =
(
(Dobs

X )TDobs
X

)−1

(Dobs
X )TDobs

Y .

Expected variance of conditional mean estimate is approximated as

EXmis|nmis,n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

≈ EXmis|nmis,n

[
(Xmis)TVar[β̂

obs

−0 |nmis, n]Xmis

]
+ O

(
(nobs)−1

)

= EXmis|nmis,n

[
tr

(
(Xmis)TVar[β̂

obs

−0 |nmis, n]Xmis

)]
+ O

(
(nobs)−1

)

= EXmis|nmis,n

[
tr

(
Xmis(Xmis)TVar[β̂

obs

−0 |nmis, n]

)]
+ O

(
(nobs)−1

)

= tr

(
EXmis|nmis,n

[
Xmis(Xmis)TVar[β̂

obs

−0 |nmis, n]

])
+ O

(
(nobs)−1

)

= tr

(
EXmis|nmis,n

[
Xmis(Xmis)T

]
Var[β̂

obs

−0 |nmis, n]

)
+ O

(
(nobs)−1

)

= tr

((
Var[Xmis] + X

∗mis
(X

∗mis
)T

)
Var[β̂

obs

−0 |nmis, n]

)
+ O

(
(nobs)−1

)

≈ tr

((
Var[Xmis] + X

∗mis
(X

∗mis
)T

)
v∗obs

nobs

(
Var[Xobs] + X

∗obs
(X

∗obs
)T

)−1)

+O
(
(nobs)−1

)

=
v∗obs

nobs
tr

((
Var[Xmis] + X

∗mis
(X

∗mis
)T

)(
Var[Xobs] + X

∗obs
(X

∗obs
)T

)−1)

+O
(
(nobs)−1

)
.
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Finally integration over Nmis using second order Taylor approximation yields to

ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

≈ v∗obs

(
1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)

tr

((
Σ∗mis
X + X

∗mis
(X

∗mis
)T

)(
Σ∗obs
X + X

obs
(X

∗obs
)T

)−1)

+O
(
n−1 + n−2

)
.

The second cross term in Equation (9) is zero. For mean strategy this is clear

because noise is not modelled. For random strategy reason is that conditional mean

estimate and imputation noise are conditionally independent given training data,

and expectation of imputation noise is zero.

Finally, expected imputation noise is computed in two integrals. Integration

over distribution of Xmis is trivial as:

EXmis [Var[ε̂L,R|xmis, nmis, n]] ≈ v∗obs

+EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]Xobs − E[β̂obs
0 |n]

)2
]

+O
(
(nobs)−1

)
.

Integration over distribution of response pattern is done as

Var[ε̂L,R|n] ≈ v∗obs + EXobs

[(
g∗obs

(
Xobs

)− (E[β̂
∗obs

−0 |n])T Xobs − E[β̂∗obs
0 |n]

)2
]

+O
( 1

n(1− p∗)
+
Var[Nmis]

n3(1− p∗)3

)
.

Approximation 4.19

Provided variance of Y obs|x is constant v∗obs for all x (homoscedastic situation) the

mean squared error mse(Y imp|xmis, nmis, n) can be approximated as:

mse(Y imp|xmis, nmis, n) ≈
(
E[β̂

obs

−0 |nmis, n]Txmis + E[β̂obs
0 |nmis, n]− g∗mis(xmis)

)2

︸ ︷︷ ︸
prediction bias

+ (xmis)T v∗obs

nobs

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

xmis

︸ ︷︷ ︸
sampling variance (slopes)

+ C︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

+ O
(
(nobs)−1

)
︸ ︷︷ ︸

approximation error

.



314

where constant C depends on imputation strategy S:

C =





0

:S=M (mean imputation),

v∗obs︸ ︷︷ ︸
expectation of variance of Yobs|Xobs

+EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

︸ ︷︷ ︸
expected squared bias

+ O
(
(nobs)−1

)
︸ ︷︷ ︸

sampling variance

:S=R (random imputation).

Justification: recall from Chapter 3 that

mse(Y imp|xmis, nmis, n) =
(
E[ĝ(xmis)|xmis, nmis, n]− g∗mis(xmis)︸ ︷︷ ︸

bias at xmis

)2

+ Var[Y imp
|xmis,nmis,n

]
︸ ︷︷ ︸

variance at xmis

+ Var[Y|xmis ]︸ ︷︷ ︸
v∗mis(xmis), target noise at xmis

.

Squared imputation bias is same for mean and random imputation strategies,

thus:

(E[Y imp,L|xmis, nmis, n]− E[Y mis|xmis]
)2

=
(
E[β̂

obs

−0 |nmis, n]Txmis + E[β̂obs
0 |nmis, n]

−g∗mis(xmis)
)2

.

Mean strategy

In computation of variance one replaces estimator β̂
obs

by following simplification:

β̂obs
0 = 0

β̂
obs

−0 = ((Dobs
X )TDobs

X )−1DT
XDobs

Y .

Above approximation may underestimate true variance of non-simplified β̂
obs

. There-

fore this is compensated by adding O
(
(nobs)−1

)
term. Thus

Var[Y imp,L,M |xmis, nmis, n] ≈ (xmis)TVar[β̂
obs

−0 |nmis, n]xmis (10)

+O
(
(nobs)−1

)
.

where variance of regression coefficients is computed by applying chain rule of vari-

ance. This is done by first fixing covariates of training data, then integration over
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their distribution. Thus:

Var[β̂
obs

−0 |nmis, n] = VarX|nmis,n

[
E

[
β̂

obs

−0 |X, nmis, n
]]

+EX|nmis,n

[
Var

[
β̂

obs

−0 |X, nmis, n
]]

= Var[E[β̂
obs

−0 |X, nmis, n] + EX|nmis,n

[
v∗obs

(
(Dobs

X )TDobs
X

)−1
]

≈ Var[β∗obs
−0 ] + EX|nmis,n

[
v∗obs

(
(Dobs

X )TDobs
X

)−1
]

= v∗obsEX|nmis,n

[(
(Dobs

X )TDobs
X

)−1
]
.

Next one applies same large sample approximation as Hastie et al. have done [36].

However, case here is little more complicated as expectation of Xobs is not zero.

One gets

Var[β̂
obs

−0 |nmis, n] ≈ v∗obsEX|nmis,n

[
1

nobs

( 1

nobs
(Dobs

X )TDobs
X

)−1
]

(11)

= v∗obs 1

nobs
EX|nmis,n

[( 1

nobs
(Dobs

X )TDobs
X

)−1
]

≈ v∗obs

nobs

(
Var[Xobs] + X

∗obs
(X

∗obs
)T

)−1

=
v∗obs

nobs

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

.

By plugging Equation (11) into Equation (10) one gets

Var[Y imp,L,M |xmis, nmis, n] ≈ (xmis)T v∗obs

nobs

(
Σ∗obs
X + X

∗obs
(X

∗obs
)T

)−1

xmis

+O
(
(nobs)−1

)
.

Random imputation strategy

Variance for linear regression with noise term is computed as

Var[Y imp,L,R|xmis, nmis, n] = Var[Y imp,L,M |xmis, nmis, n] (12)

+Var[ε̂L,R|xmis, nmis, n]

+2Cov[Y imp,L,M , ε̂L,R|xmis, nmis, n]

= Var[Y imp,L,M |xmis, nmis, n] + Var[ε̂L,R|xmis, nmis, n],
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Note that Y imp,L,M and ε̂L,R are conditionally independent given training data. Fur-

ther, expectation of ε̂L,R given training data is zero. As a consequence covariance

term in Equation (12) is zero (recall chain rule of covariance).

Variance of imputation noise is computed as

Var[ε̂L,R|xmis, nmis, n]

= EDtrain|nmis,n

[
Var

[
ε̂L,R|Dtrain,xmis, nmis, n

]]

+VarDtrain|nmis,n

[
E

[
ε̂L,R|Dtrain,xmis, nmis, n

]]

= EDtrain|nmis,n

[
Var

[
ε̂L,R|Dtrain, nmis, n

]]
= EDtrain|nmis,n[v̂

obs,L,R]

= EDtrain|nmis,n

[
1

nobs

nobs∑
j=1

(
Yj − (β̂

obs
)T X+

j

)2
]

=
1

nobs

nobs∑
j=1

EDtrain|nmis,n

[(
ε
(
Xj

)
+ g∗obs(Xj)− (β̂

obs
)T X+

j

)2
]

=
1

nobs

nobs∑
j=1

EX|nmis,n

[
EY|X,nmis,n

[(
ε
(
Xj

)
+ g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2
]]

=
1

nobs

nobs∑
j=1

EX|nmis,n

[
EY|X,nmis,n

[(
ε
(
Xj

)
+ g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2
]]

=
1

nobs

nobs∑
j=1

EX|nmis,n

[
EY|X,nmis,n

[
(ε

(
Xj

)2
+

(
g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2

+2ε
(
Xj

)(
g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)]
]

=
1

nobs

nobs∑
j=1

EX|nmis,n

[
Var[Y obs|Xj] + EY|X,nmis,n[

(
g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2
]

−2EY|X,nmis,n[ε
(
Xj

)
(β̂

obs
)T X+

j ]

]

=
1

nobs

nobs∑
j=1

[
v∗obs + EDtrain|nmis,n[

(
g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2
]

−2E ˆβ
obs

|nmis,n

[
E

Dtrain| ˆβ
obs

,nmis,n
[ε

(
Xj

)
(β̂

obs
)T X+

j ]

]]

= v∗obs +
1

nobs

nobs∑
j=1

[
EDtrain|nmis,n

[(
g∗obs

(
Xj

)− (β̂
obs

)T X+
j

)2
]]

,
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Without rigorous mathematical proof above quantity is assumed approximately to

be following:

Var[ε̂L,R|xmis, nmis, n]

≈ v∗obs︸ ︷︷ ︸
expectation of variance of Yobs|Xobs

+EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |nmis, n]T Xobs − E[β̂obs
0 |nmis, n]

)2
]

︸ ︷︷ ︸
expected squared bias

+ O
(
(nobs)−1

)
︸ ︷︷ ︸

sampling variance

≈ v∗obs + EXobs

[(
g∗obs

(
Xobs

)− E[β̂
obs

−0 |n]T Xobs − E[β̂obs
0 |n]

)2
]

+O
(
(nobs)−1

)
.

Consequence 4.21

Limit of expectation of m̂se(Y comp,L) can be approximated as:

lim
n→∞

E[m̂se(Y comp,L)|n] ≈ (β∗obs
−0 )TΣ∗mis

X β∗obs
−0︸ ︷︷ ︸

variability of limit of approximative model

+
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0 − µ∗mis

)2

︸ ︷︷ ︸
asymptotic global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0

)(
µ∗mis − g∗mis(X

∗mis
)
)

︸ ︷︷ ︸
cross term

+ C︸ ︷︷ ︸
optimal imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where term C depends on imputation strategy S:

C =





0 :S=M (mean imputation)

v∗obs,L,R :S=R (simulated random imputation),

in which v∗obs,L,R = limn→∞ E[v̂obs,L,R|n]. The expectation E[v̂obs,L,R|n] is decomposed

in approximation 4.16 (see term C for random strategy).
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Justification: applying approximation 4.18 and taking limit gives asymptot-

ical approximation (sample size is suppressed from limit to compress formulas):

lim
n→∞

E[m̂se(Y comp,L)|n] ≈ lim
n→∞

E[β̂
obs

−0 |n]TΣ∗mis
X E[β̂

obs

−0 |n]

+ lim
n→∞

(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]− µ∗mis

)2

+ Var[g∗mis(Xmis)]

+ lim
n→∞

2
(
E[β̂

obs

−0 |n]T X
∗mis

+ E[β̂obs
0 |n]

)(
µ∗mis − g∗mis(X

∗mis
)
)

+ lim
n→∞

v∗obs
(
n−1(1− p∗)−1 + Var[Nmis]n−3(1− p∗)−3

)
tr(A)

+ lim
n→∞

C ′ + lim
n→∞

v∗mis + lim
n→∞

O
(
n−1

)

where C’ is term C in approximation 4.18.

Remarking that i) limE[β̂
obs|n] = β∗obs, ii) variability of true model and ex-

pected target noise do not depend on sample size, and iii) expected variance of

approximative model predictions vanishes asymptotically one gets:

lim
n→∞

E[m̂se(Y comp,L)|n] ≈ (β∗obs
−0 )TΣ∗mis

X β∗obs
−0︸ ︷︷ ︸

variability of limit of approximative model

+
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0 − µ∗mis

)2

︸ ︷︷ ︸
asymptotic global bias

+ Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2
(
(β∗obs

−0 )T X
∗mis

+ β∗obs
0

)(
µ∗mis − g∗mis(X

∗mis
)
)

︸ ︷︷ ︸
limit of cross term

+ C︸ ︷︷ ︸
asymptotic imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

,

where term C depends on imputation strategy S:

C =





0 :S=M (mean imputation)

v∗obs,L,R :S=R (simulated random imputation),

in which v∗obs,L,R = limn→∞ E[v̂obs,L,R|n]. The expectation E[v̂obs,L,R|n] is decomposed

in proposition 4.16 (see term C for random strategy).



Appendix for Chapter 5

In this appendix all justifications of approximations and consequences which were

introduced in Chapter 5 are given.

A5.1 Justifications for nonparametric regression /

moments

Here results for moment estimators are derived.

Approximation 5.1

The bias of the first moment for kernel and k-nn can be approximated with

Bias[µ̂comp,K/N |n] ≈ p∗
(
EXmis [g∗obs(Xmis)− g∗mis(Xmis)]

)

︸ ︷︷ ︸
NMAR bias

+ ENmis

[
Nmis

n
C

]

︸ ︷︷ ︸
estimation bias wrt. g∗obs(xmis)

+ D︸ ︷︷ ︸
bias due to noise estimation

+ O(n−1)︸ ︷︷ ︸
approximation term

,

where terms C = EXmis

[
Bias[ĝobs,K/N(xmis)|nmis, n]

]
(expected conditional mean

estimation bias) and D vary according to kernel/k-nn and imputation strategy as

C =





(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

2f
Xobs(X

∗mis
)

∫
ξ2K(ξ)dξλ2(nobs)

+o
(
λ2(nobs)

)
+ O

(
(nobsλ(nobs))−1

)
(Kernel, p = 2)

(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

24f3
Xobs(X

∗mis
)

(
k(nobs)/nobs

)2

+o
(
(k(nobs)

nobs )2
)

+ O
(
(k(nobs))−1

)
(K− nn, p = 2)

Q(g∗obsf
Xobs )(X

∗mis
)−g∗obs(X

∗mis
)Q(f

Xobs)(X
∗mis

)

2f
Xobs(X

∗mis
)(vp−1f

Xobs(X
∗mis

))2/(p−1)
(k(nobs)

nobs )2/(p−1)

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O
(
(k(nobs))−1

)
(K− nn, p > 2),
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and

D =





0

:S=M/S=R (mean and random strategy)

p∗µ∗obs − ENmis

[
Nmis

n
1

Nobs

∑nobs

j=1 EDtrain|n,nmis

[
ĝobs,K/N

(
Xj

)]
]

:S=D (random donor)

where second derivative of function h(x) is denoted as h′′(x), and product of two

functions g(x) and f(x) is denoted as (gf)(x) = g(x)f(x),

Q(h)(x) =

p−1,p−1∑

i=1,l=1

∫

Rp−1

ξiξl
∂

∂xi

∂

∂xl

h(x)I(||ξ|| < 1) ∗ (1/vp−1)dξ, (13)

p− 1 is dimension of X, and vp−1 is volume of unit ball in X space which is Rp−1.

Justification: expectations of added noise terms are zero for random imputa-

tion strategies. Thus following holds for strategies S ∈ {M, R}:

E[µ̂comp,K/N |n] = E

[
1

n

(
Nobsµ̂obs + Nmisµ̂imp

)]

≈ (1− p∗)µ∗obs

+ ENmis

[
Nmis

n
EXmis

[
EDtrain|Xmis,Nmis

[ ∑

(Y ,X)j∈Dtrain

K
(
Xmis, Xj

)
Yj|Nmis

]

︸ ︷︷ ︸
g∗obs(xmis)+Bias[ĝobs,K/N (xmis)|nmis,n]

]]

+ O(n−1)

≈ (1− p∗)µ∗obs + p∗EXmis [g∗obs(Xmis)]

+ ENmis

[
Nmis

n
EXmis

[
Bias[ĝobs,K/N(xmis)|nmis, n]

]]
+ O(n−1),

where Bias[ĝobs,K/N(xmis)|nmis, n] is estimation bias with respect to g∗obs(xmis) at

point xmis. Bias result is immediately derivable as follows

Bias[µ̂comp,K/N,S|n] ≈ p∗EXmis [g∗obs(Xmis)− g∗mis(Xmis)]︸ ︷︷ ︸
NMAR bias

+ENmis

[
Nmis

n
EXmis

[
Bias[ĝobs,K/N(Xmis)|Xmis, nmis, n]

]]

︸ ︷︷ ︸
estimation bias

+ O(n−1)︸ ︷︷ ︸
technical term

,

For donor strategy additional bias due to noise terms has to be computed. Now

E[µ̂comp,K/N,D|n] = E[µ̂comp,K/N |n] +
1

n
E[

n∑

j=Nobs+1

ε̂
K/N,D
j ].
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where ε̂
K/N,D
j is random draw from finite population {yl − ĝK/N

(
xl

)}nobs

l=1 at condi-

tionalisation Q3. For applying sampling theory result one needs to compute E[Y c],

which is done as follows

E[Y c|Q3] =
1

nobs

nobs∑

l=1

[
yl − gK/N

(
xl

)]
.

Therefore for donor strategy one has

Bias[µ̂comp,K/N,D|n]

= Bias[µ̂comp,K/N |n] +
1

n
E[

n∑

j=Nobs+1

ε̂
K/N,D
j |n]

= Bias[µ̂comp,K/N |n] +
1

n
EDtrain,Dtest,Nmis,ĝ(x)|n

[
E[

n∑

j=Nobs+1

ε̂
K/N,D
j |Q3]

]

= Bias[µ̂comp,K/N |n] +
1

n
ENmis

[
EDtrain,ĝ(x)|n,nmis

[
Nmis 1

Nobs

Nobs∑

l=1

[
Yl − ĝK/N

(
X l

)]]
]

= Bias[µ̂comp,K/N |n] +
1

n
ENmis

[
Nmisµ∗obs − NmisEDtrain|n,nmis

[
1

Nobs

Nobs∑

l=1

ĝK/N
(
X l

)]
]

≈ Bias[µ̂comp,K/N |n] + p∗µ∗obs − ENmis

[
Nmis

n

1

Nobs

Nobs∑

l=1

EDtrain|n,nmis

[
ĝK/N

(
X l

)]
]

+O(n−1).

Consequence 5.2

Following bounds can be derived for kernel and nearest neighbour methods

lim
λ→∞

Bias[µ̂comp,K/N |n] = Bias[µ̂comp,B|n] ≈ p∗(µ∗mis − µ∗obs) + O(n−1)

lim
λ→0,n→∞

Bias[µ̂comp,K/N |n] = p∗EXmis [g∗obs(Xmis)− g∗mis(Xmis)].

Justification: when λ →∞ then µcomp,K/N → µcomp,B for any realization of

Dtrain, thus first limit result follows.

The second limit result follows by noticing that when sample size grows and

smoothing is decreased at suitable rate then estimation bias at any given point (per-

haps not in a zero measure set of points) converges towards zero. As a consequence

only NMAR bias, if there is such, remains and the limit result follows.
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Approximation 5.3

The variance of the first moment for kernel and k-nn can be approximated with

Var[µ̂comp,K/N |n] ≈ ENmis|n

[
(Nobs

n

)2Var[µ̂obs|nmis]︸ ︷︷ ︸
sampling variance

+ (
Nmis

n
)2

( 1

Nmis

(
EXmis|nmis,n

[
Var[ĝobs,K/N(Xmis)|Xmis, Nmis, n]︸ ︷︷ ︸

A

]

︸ ︷︷ ︸
variance due to conditional mean prediction

+ VarXmis|nmis,n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]︸ ︷︷ ︸

B

]

︸ ︷︷ ︸
variance due to conditional mean prediction

)

+ O
(
(Nobs)−

1
2

)
︸ ︷︷ ︸

due to correlated predictions

)
+ 2

NobsNmis

n2
O

(
(NmisNobs)−

1
2

)
︸ ︷︷ ︸

approximation for cross term (covariance)

]

+ VarNmis|n

[
(
1− Nmis

n

)
µ∗obs +

Nmis

n

(
EXmis [g∗obs(Xmis)]

︸ ︷︷ ︸
E[µ̂comp,K/N,M |nmis]

+EXmisBiasK/N [Xmis|nmis, n]
)

︸ ︷︷ ︸
E[µ̂comp,K/N,M |nmis]

]
+ C︸ ︷︷ ︸

imputation noise variance

,

where terms A, B, and C depend on estimation method (kernel or k-nn) and on

imputation strategy ε̂S as follows:

A =





Var[Y obs|Xobs=Xmis]
f

Xobs(Xmis)nobsλ(nobs)

∫
K2(ξ)dξ + o

(
1

nobsλ(nobs)

)
(Kernel, p = 2),

vp−1Var[Y obs|Xobs=Xmis]

k(nobs)
+ o((k(nobs))−1) (K− nn, p ≥ 2),

B =





(g∗obsf
Xobs)′′(Xmis)−g∗obs(Xmis)f ′′

Xobs(Xmis)

2f
Xobs (Xmis)

∫
ξ2K(ξ)dξλ2(nobs)

+o(λ2(nobs)) + O((nobsλ(nobs))−1) (Kernel, p = 2),

(g∗obsf
Xobs)′′(Xmis)−g∗obs(Xmis)f ′′

Xobs(Xmis)

24f3
Xobs(Xmis)

(k(nobs)/(nobs))2

+o((k(nobs)
nobs )2) + O((k(nobs))−1) (K− nn, p = 2),

Q(g∗obsf
Xobs)(Xmis)−g∗obs(Xmis)Q(f

Xobs)(Xmis)

2f
Xobs(Xmis)(vp−1f

Xobs(Xmis))2/(p−1)

(k(nobs)
nobs

)2/(p−1)

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O((k(nobs))−1) (K− nn, p > 2),



323

where Q(h)(x) is defined in Equation (13) and

C =





0

:S=M (mean imputation)

p∗v∗obs

n
+ 1

n2ENmis

[
NmisEXobs

[(
g∗obs(Xobs)− EDtrain|nmis [ĝobs,K/N

(
Xobs

)
]
)2

]]

:S=R,S=D (random and donor strategies)

Justification: variance at Q1 = {n} can be decomposed as

Var[µ̂comp,K/N,M |n] = ENmis|n
[
Var[µ̂comp,K/N |n, nmis]

]

+VarNmis|n
[
E[µ̂comp,K/N |n, nmis]

]
.

Now Var[µ̂comp,K/N,M |n, nmis] is computed as

Var[µ̂comp,K/N,M |n, nmis] = Var

[
1

n

(
nobsµ̂obs + nmisµ̂imp)

)]

≈ (
nobs

n
)2Var[µ̂obs|nmis] + (

nmis

n
)2Var[µ̂imp,K/N,M |nmis]

+2
nobsnmis

n2
O

(
(nmisnobs)−

1
2

)
,

where it is assumed that covariance term is approximately of order(
nmisnobs

)− 1
2 . Now Var[µ̂obs|nmis] = τ∗obs

nobs + O
(
(nobs)−1

)
, thus one needs to solve

Var[µ̂imp,K/N,M |nmis]. This is done as

Var[µ̂imp,K/N,M |nmis] = Var
[ 1

nmis

n∑

j=nobs+1

ĝobs,K/N
(
Xj

)|nmis
]

≈ 1

nmis
VarXmis|nmis [ĝobs,K/N(Xmis)|nmis] + O

(
(nobs)−

1
2

)
,

where it has been assumed that covariance terms are approximately of order

O((nobs)−
1
2 ).

Now

Var[ĝobs,K/N(Xmis)|nmis, n] = EXmis|nmis,n

[
Var[ĝobs,K/N(Xmis)|Xmis, Nmis, n]

]

+VarXmis|nmis,n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]

]
,

where Var[ĝobs,K/N(Xmis)|nmis, n] and BiasK/N [Xmis|nmis, n] terms are pointwise pre-

diction bias (with respect to g∗obs(xmis)) and variance. Terms are available from

mean squared error results for kernel and k-nn methods.
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Term E[µ̂comp,K/N |nmis, n] is computed as

E[µ̂comp,K/N |nmis, n] = (1− nmis

n
)E[µ̂obs|nmis, n] +

nmis

n
E[µ̂imp|nmis, n]

= (1− nmis

n
)µ∗obs +

nmis

n
E[µ̂imp|nmis, n] + O

(
(nobs)−1

)

= (1− nmis

n
)µ∗obs +

nmis

n
EXmis [ĝobs,K/N(Xmis)|nmis, n]

+O
(
(nobs)−1

)

= (1− nmis

n
)µ∗obs +

nmis

n

(
EXmis [g∗obs(Xmis)]

+BiasK/N [Xmis|nmis, n]
)

+ O
(
(nobs)−1

)
,

where BiasK/N [Xmis|nmis, n] is estimation bias with respect to g∗obs(Xmis) and it is

available from mean squared error results for kernel and k-nn.

Putting above results together yields to

Var[µ̂comp,K/N,M |n] = ENmis|n
[
Var[µ̂comp,K/N |n, nmis]

]
+ VarNmis|n

[
E[µ̂comp,K/N |n, nmis]

]

≈ ENmis|n
[
(
Nobs

n
)2Var[µ̂obs|nmis] + (

Nmis

n
)2Var[µ̂imp,K/N,M |nmis]

+2
NobsNmis

n2
O

(
NmisNobs)−

1
2

)]

+VarNmis|n

[
(1− Nmis

n
)µ∗obs

+
Nmis

n

(
EXmis [g∗obs(Xmis)] + BiasK/N [Xmis|nmis, n]

)]

≈ ENmis|n
[
(
Nobs

n
)2Var[µ̂obs|nmis]

+(
Nmis

n
)2(

1

Nmis (EXmis|nmis,n

[
Var[ĝobs,K/N(Xmis)|Xmis, Nmis, n]

]

+VarXmis|nmis,n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]

]
)

+O
(
(Nobs)−

1
2

)
)

+2
NobsNmis

n2
O

(
(NmisNobs)−

1
2

)]

+VarNmis|n

[
(1− Nmis

n
)µ∗obs +

Nmis

n

(
EXmis [g∗obs(Xmis)]

+BiasK/N [Xmis|nmis, n]
)]

.

For strategies S ∈ {R,D} variance of mean estimator increases, compared to

mean strategy, due to modelled noise terms. For random imputation strategy one
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has

Var[µ̂comp,K/N,R|n]

= Var[µ̂comp,K/N,M |n] + Var[
1

n

n∑

j=Nobs+1

ε̂
K/N,R
j ]

= Var[µ̂comp,K/N,M |n] + ENmis [Var[
1

n

n∑

j=nobs+1

ε̂
K/N,R
j |Nmis]]

= Var[µ̂comp,K/N,M |n] +
1

n2
ENmis [Nmisv̂obs,K/N,R]

≈ Var[µ̂comp,K/N,M |n] +
1

n2
ENmis

[
Nmis

(
v∗obs +

+EXobs

[(
g∗obs(Xobs)− E[ĝobs,K/N(Xobs)|Xobs, nmis, n]

)2
]

+ O
(
(Nobs)−1

)
)]

≈ Var[µ̂comp,K/N,M |n] +
p∗v∗obs

n
+

+
1

n2
ENmis

[
NmisEXobs

[(
g∗obs(Xobs)− E[ĝobs,K/N(Xobs)|Xobs, nmis, n]

)2
])]

+O(n−1),

where covariances between imputation noise terms are zero.

We assume that variance increase for donor strategy is approximately the same

as for random imputation strategy.

Consequence 5.4

lim
λ→∞

Var[µ̂comp,K/N |n] = Var[µ̂comp,B|n]

lim
n→∞

Var[µ̂comp,K/N |n] ≈ 0.

Justification: first result follows by noting that µcomp,K/N converges to

µcomp,B when λ → ∞ for any realization of Dtrain. Second result follows by notic-

ing that all decomposition terms in approximation 5.3 are decreasing functions of

sample size n.
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Approximation 5.5

Approximate bias can be written as

Bias[τ̂ comp,K/N |n] ≈ p∗(VarNmis,Xmis|n
[
E[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of expected conditional mean estimate

+ C︸ ︷︷ ︸
imputation noise variance

−τ ∗mis)

+ p∗(1− p∗)

[
(µ∗obs − E[Y imp,K/N |n])2 − (µ∗obs − µ∗mis)2

]

+ p∗ENmis,Xmis|n
[
Var[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected sampling variance

+ O(n−1)︸ ︷︷ ︸
sampling variance of µ̂imp and approximation error (finite sample vs asymptotic)

,

where term C is

C =





0

:S=M (mean imputation)

v∗obs + ENmis,Xobs

[(
g∗obs(Xobs)− E[ĝobs,K/N(Xobs)|Xmis, nmis, n]

)2
]

︸ ︷︷ ︸
expected squared bias

+O(n−1) :S=R,D (random strategies)

and E[Y imp|n] = ENmis,Xmis

[
E[ĝobs,K/N(Xmis)|Xmis, Nmis, n]

]
is

E[Y imp|n] ≈





EXmis [g∗obs(Xmis)] + ENmis,Xmis

[
BiasK/N [Xmis|nmis, n]

]

:S=M,R (mean and random)

EXmis [g∗obs(Xmis)] + ENmis,Xmis

[
BiasK/N [Xmis|nmis, n]

]

+µ∗obs − E[ 1
Nobs

∑Nobs

j=1 ĝobs,K/N
(
Xj

)
]

:S=D (random donor)

where Bias[Xmis|Nmis, n] is estimation bias with respect to g∗obs(Xmis).
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Justification: rough approximation for expectation at conditionalisation

Q1 = {n} is computed as

E[τ̂ comp,K/N |n] = E[
Nobs − 1

n− 1
τ̂ obs +

Nmis − 1

n− 1
τ̂ imp,K/N

+
NmisNobs

n(n− 1)
(µ̂obs − µ̂imp,K/N)2|n]

= (1− p∗)τ ∗obs + E[
Nmis − 1

n− 1
τ̂ imp,K/N |n]

+E[
NmisNobs

n(n− 1)
(µ̂obs − µ̂imp,K/N)2|n] + O(n−1)

Taylor≈ (1− p∗)τ ∗obs + p∗E[τ̂ imp,K/N |n]

+p∗(1− p∗)(µ∗obs − E[µ̂imp,K/N |n])2 + O(n−1),

where Taylor remainder has been assumed to be of order O(n−1). Remainder cannot

be smaller because estimation variance of µ̂imp is included in it.

Now it is further assumed that

E[τ̂ imp,K/N |n] ≈ Var[Y imp|n], and

E[µ̂imp,K/N |n] ≈ E[Y imp|n].

Variance of imputation is computed as

Var[Y imp|n] = ENmis,Xmis|n
[
Var[Y imp|Xmis, nmis, n]

]

+VarNmis,Xmis|n
[
E[Y imp|Xmis, nmis, n]

]

≈ ENmis,Xmis|n
[
Var[ĝobs(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected sampling variance

+ v∗obs︸ ︷︷ ︸
expected imputation noise variance

+ENmis,Xmis

[(
g∗obs(Xmis)− E[ĝobs,K/N(Xmis)|Xmis, nmis, n]

)2
]

︸ ︷︷ ︸
expected imputation noise variance (cont.)

+ O(n−1)︸ ︷︷ ︸
expected imputation noise variance (cont.)

+VarNmis,Xmis|n
[
E[ĝobs(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

.

Further, for mean and simulated random imputation strategies term E[Y imp,K/N |n]

equals to

E[Y imp,K/N |n] = ENmis,Xmis

[
E[ĝobs,K/N(Xobs)|Xobs, Nmis, n]

]

= EXmis [g∗obs(Xmis)] + ENmis,Xmis [BiasK/N [xmis|nmis, n]],
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where BiasK/N [xmis|nmis, n] is estimation bias with respect to g∗obs(xmis).

Approximate bias is

Bias[τ̂ comp,K/N |n] ≈ p∗(Var[Y imp|n]− τ ∗mis)

+p∗(1− p∗)

[
(µ∗obs − E[Y imp,K/N |n])2 − (µ∗obs − µ∗mis)2

]

+O(n−1).

Claimed result follows by isolating expected sampling variance term from Var[Y imp|n].

Consequence 5.6

Bounds for Bias[τ̂ comp,K/N |n] are:

lim
λ→∞

Bias[τ̂ comp,K/N |n] = Bias[τ̂ comp,B|n]

lim
λ→0,n→∞

Bias[τ̂ comp,K/N |n] ≈ p∗(Var[g∗obs(Xmis)] + C − τ ∗mis)

+p∗(1− p∗)[(µ∗obs − E[g∗obs(Xmis)]−D)2

−(µ∗obs − µ∗mis)2],

where terms C and D depend on imputation strategy ε̂S as follows:

C =





0

:S=M (mean),

v∗obs + limENmisEXobs

[(
g∗obs(Xobs)− EDtrain|nmis [ĝobs,K/N

(
Xobs

)
]
)2

]

:S=R,D (random),

and

D =





0 :S=M,R (for mean and random imputation),

µ∗obs − limENmis,Dtrain

[
1

Nobs

∑Nobs

j=1 ĝobs,K/N
(
xj

)]

:S=D (for random donor).

Justification: first limit result follows because imputations yimp
j converge

to µobs as λ → ∞ for any realization of Dtrain. Second limit follows because esti-

mation bias and sampling variance converge towards zero as sample size grows and

smoothing is decreased at suitable rate.
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A5.2 Justifications for nonparametric regression /

unit level

Unit level, mean squared error, results are computed here.

Approximation 5.12

Over distribution of training data set with nobs observations the mean squared error

at point x0 can be approximated as follows:

mseK/N(Y imp|x0, n
mis, n) ≈

(
g∗obs(x0)− g∗mis(x0)︸ ︷︷ ︸

NMAR bias

+ Bias[ĝobs,K/N(x0)|nmis, n]︸ ︷︷ ︸
A: estimation bias wrt. g∗obs(x0)

+ C︸ ︷︷ ︸
Bias due to noise modelling

)2

+ Var[ĝobs,K/N(x0)|nmis, n]︸ ︷︷ ︸
B: imputation model variance

+ D︸ ︷︷ ︸
imputation noise variance

+ v∗mis(x0)︸ ︷︷ ︸
target variance

.

where terms A-D depend on non-parametric estimate (kernel vs k-nn) and imputa-

tion strategy as follows

A =





(g∗obsf
Xobs)′′(x0)−g∗obs(x0)f ′′

Xobs(x0)

2f
Xobs(x0)

∫
ξ2K(ξ)dξλ2(nobs) (Kernel, p = 2),

+o(λ2(nobs)) + O
(
(nobsλ(nobs))−1

)

(g∗obsf
Xobs)′′(x0)−g∗obs(x0)f ′′

Xobs(x0)

24f3
Xobs(x0)

(
k(nobs)/nobs

)2
(K− nn, p = 2),

+o((k(nobs)
nobs )2) + O

(
(k(nobs))−1

)

Q(g∗obsf
Xobs )(x0)−g∗obs(x0)Q(f

Xobs)(x0)

2f
Xobs(x0)(vp−1f(x0))2/(p−1) (k(nobs)

nobs )2/(p−1) (K− nn, p > 2),

+o
(
(k(nobs)

nobs )2/(p−1)
)

+ O
(
(k(nobs))−1

)

B =





Var[Y obs|Xobs=x0]
f

Xobs(x0)nobsλ(nobs)

∫
K2(ξ)dξ + o

(
1

nobsλ(nobs)

)
(Kernel, p = 2),

vp−1Var[Y obs|Xobs=x0]

k(nobs)
+ o

(
(k(nobs))−1

)
(K− nn, p ≥ 2),

and

C =





0

:S=M,R (mean and simulated random),

µ∗obs − E
[

1
nobs

∑nobs

j=1 ĝobs,K/N(Xj)|nmis, n
]

+ O(n−1)

:S=D (random donor),
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and

D =





0

:S=M (mean),

v∗obs + EXobs

[
(g∗obs(Xobs)− EDtrain|nmis,n[ĝ

obs,K/N(Xobs|n, nmis])2

]

:S=R (simulated random),

v∗obs + EXobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K/N(Xobs|n, nmis])2

]

+EDtrain
nobs |nmis,n

[(
1

nobs

∑nobs

j=1

(
Yj − ĝobs,K/N

(
Xj

)))2
]

:S=D (random donor).

Justification:

Kernel regression

Kernel regression results for univariate covariate X are immediately derived by ap-

plying theorem 5.8 with sample size nobs as follows

mseK,M(Y imp|x0, n
mis, n) =

(
g∗obs(x0)− g∗mis(x0)

+
(g∗obsfXobs)′′(x0)− g∗obs(x0)f

′′
Xobs(x0)

2fXobs(x0)

∫
ξ2K(ξ)dξλ2(nobs)

+o(λ2(nobs)) + O((nobsλ(nobs))−1)
)2

+
Var[Y obs|Xobs = x0]

fXobs(x0)nobsλ(nobs)

∫
K2(ξ)dξ + o(

1

nobsλ(nobs)
)

+v∗mis(x0).

Imputation variance increases for random strategies. For simulated random impu-

tation one gets

mseK,R(Y imp|x0, n
mis, n) = mseK,R(Y imp|x0, n

mis, n) + Var[ε̂K,R|nmis, n]

+2Cov[ĝK(x0), ε̂
K,R(x0)|n, nmis]︸ ︷︷ ︸
=0

= mseK,R(x0|nmis, n) + E
[

1

nobs

nobs∑
j=1

(
Yj − ĝobs,K

(
Xj

))2
]

≈ mseK,R(x0|nmis, n) + v∗obs

+EXobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K(Xobs|n, nmis])2

]
.
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For random donor strategy both imputation bias and variance are more com-

plicated. Change in bias and variance are

Bias[Ŷ K,D
x0

|nmis, n] = Bias[ĝK
x0
|nmis, n] + E[ε̂K,D|nmis, n]

= Bias[ĝK
x0
|nmis, n] + E

[
1

nobs

nobs∑
j=1

(
Yj − ĝK

(
Xj

))|nmis, n

]

= Bias[ĝK
x0
|nmis, n] + µ∗obs − E

[
1

nobs

nobs∑
j=1

ĝK
(
Xj

)|nmis, n

]

+O
(
(nobs)−1

)

Var[Ŷ K,D
x0

|nmis, n] = Var[ĝK
x0
|nmis, n] + Var[ε̂K,D|nmis, n] + 2Cov[ĝK(x0), ε̂

K,D|nmis, n]

≈ Var[ĝK
x0
|nmis, n] + v∗obs

+EXobs

[
(g∗obs(Xobs)− EDtrain|nmis,n[ĝ

K(Xobs|nmis, n])2

]

+2Cov[ĝK(x0), ε̂
K,D|nmis, n],

where for computation of variance it has been assumed that expectation of modelled

noise terms is approximate zero (this is not assumed in the bias term). Remark that

the covariance term is not generally zero.

K-nearest neighbour

In case of univariate covariate X and by applying corollary 5.9 with sample size nobs

one gets

mseN,M(Y imp|x0, n
mis, n) =

(
g∗obs(x0)− g∗mis(x0)

+
(g∗obsfXobs)′′(x0)− g∗obs(x0)f

′′
Xobs(x0)

24f 3
Xobs(x0)

(
k(nobs)/nobs

)2

+o((
k(nobs)

nobs
)2) + O

(
k(nobs)−1

)
)2

+
vp−1v

∗obs(x0)

k(nobs)
+ o

(
k(nobs)−1

)
+ v∗mis(x0),

Additional terms for random strategies are same as in kernel regression except that

ĝK is replaced by ĝN .

For multivariate covariate X application of theorem 5.7 with sample size nobs
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yields to

mseN,M(Y imp|x0, n
mis, n) =

(
g∗obs(x0)− g∗mis(x0)

+
Q(g∗obsfXobs)(x0)− g∗obs(x0)Q(fXobs)(x0)

2fXobs(x0)(vp−1f(x0))2/(p−1)
(
k(nobs)

nobs
)2/(p−1)

+o
(
(
k(nobs)

nobs
)2/(p−1)

)
+ O

(
k(nobs)−1

)
)2

+
vp−1v

∗obs(x0)

k(nobs)
+ o

(
k(nobs)−1

)
+ v∗mis(x0),

Additional terms for random strategies are same as in kernel regression except that

ĝK is replaced by ĝN .

Approximation 5.13

Expectation of mean square error can be approximated as

E[m̂se(Y comp,K/N)|n] ≈ A︸ ︷︷ ︸
expected squared imputation bias

+ ENmis,Xmis|n

[
Var[ĝobs,K/N(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
B: expected variance of conditional mean estimate

+ v∗obs,K/N
n︸ ︷︷ ︸

C: expected imputation noise

+ ENmis,Xmis|n

[
2Cov[ĝobs,K/N(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
D: cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

+ O
(
n−1

)
︸ ︷︷ ︸

technical term

,

where terms are as follows

A = VarNmis,Xmis|n

[
g∗obs(Xmis) + BiasK/N [Xmis|nmis, n]

]

︸ ︷︷ ︸
variability of expected conditional mean estimate

+(EXmis

[
g∗obs(Xmis)

]
+ E − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝobs,K/N(Xmis)|xmis, nmis, n]− EXmis

[
g∗obs(Xmis)

]
− E

)

︸ ︷︷ ︸
cross term(

EXmis

[
g∗obs(Xmis)

]
+ E − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

,
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in which term E is

E =





[
Q(g∗obsf

Xobs)(X
∗mis

)−g∗obs(X
∗mis

)Q(f
Xobs)(X

∗mis
)

2f
Xobs (X

∗mis
)(vp−1f(Xmis))2/(p−1)

(E
[

k(Nobs)

]

n(1−p∗)

)2/(p−1)

+o
(
(E[k(Nobs)]

n(1−p∗) )2/(p−1)
)]

+ O
(
E[k(Nobs)]−1

)
(k− nn, p > 2),

[
(g∗obsf

Xobs )′′(X∗mis
)−g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

24f3
Xobs(X

∗mis
)

(
E[k(Nobs)]/n(1− p∗)

)2

+o
((E[k(Nobs)]

n(1−p∗)

)2
)

+ O
(
E[k(Nobs)]−1

)
]

(k− nn, p = 2),

(g∗obsf
Xobs)′′(X∗mis

)−g∗obs(X
∗mis

)f ′′
Xobs(X

∗mis
)

2f
Xobs(X

∗mis
)

∫
ξ2K(ξ)dξλ2

(
n(1− p∗)

)

+o
(
λ2

(
n(1− p∗)

))
+ O

((
n(1− p∗)λ(n(1− p∗))

)−1
)

(kernel, p = 2).

Terms B-D are following:

B =





vp−1

E[k(Nobs)]

(
v∗obs(X

∗mis
) + 1

2
tr

(
Hv∗obsVar[Xmis]

))
+ o

(
E[k(Nobs)]−1

)

(k− nn, p > 2),

2
E[k(Nobs)]

(
v∗obs(X

∗mis
) + 1

2

(
∂2

∂xmis∂xmis v
∗obs(xmis)

)
xmis=X

∗mis
Var[Xmis]

)

+o
(
E[k(Nobs)]−1

)
(k− nn, p = 2)

v∗obs(X
∗mis

)

f
Xobs (X

∗mis
)(n(1−p∗))λ(n(1−p∗))

∫
K2(ξ)dξ + o

(
1

(n(1−p∗))λ(n(1−p∗))

)

(kernel, p = 2),

where Hv∗obs is Hessian of Var[Y obs|X = x] and

C =





0 :S=M (mean),

v∗obs + ENmis,Xobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K/N(Xobs|n, nmis])2

]

:S=R,D (random)

and

D =

{
0 :S=M/S=R (mean and simulated random),

O(n−1) :S=D (random donor).

Justification: Result for kernel regression is justified at first, after which

results for nearest neighbour imputation (with univariate covariate and multivariate

covariate) are derived.
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Kernel regression

Recall decomposition for E[m̂se(Y comp)|n] from Equation (3.12). Approximation for

expected variance for conditional mean estimate (term B) is computed as follows:

ENmis,Xmis|n

[
Var[ĝK(Xmis)|xmis, nmis, n

]

= ENmis|n

[
EXmis

[
Var[Y obs|Xmis]

fXobs(Xmis)nobsλ(nobs)

∫
K2(ξ)dξ + o

( 1

nobsλ(nobs)

)]]

Taylor≈ ENmis|n

[
v∗obs(X

∗mis
)

fXobs(X
∗mis

)nobsλ(nobs)

∫
K2(ξ)dξ + o

( 1

nobsλ(nobs)

)]
+ O(n−1)

Taylor≈ v∗obs(X
∗mis

)

fXobs(X
∗mis

)(n(1− p∗))λ(n(1− p∗))

∫
K2(ξ)dξ

+o
( 1

(n(1− p∗))λ(n(1− p∗))

)
+ O(n−1),

where first order Taylor approximation has been applied twice. Therefore result is

quite rough at least for small sample size.

Expected imputation noise (term C) and cross term (D) are zero for mean impu-

tation strategy. Therefore one just needs to compute expected squared imputation

bias (term A). Thus variability of conditional mean estimate and global bias terms

have to be computed. Due to mathematical difficulty variability of conditional mean

estimate is written in implicit form as follows

VarNmis,Xmis|n

[
E[ĝobs,K(Xmis)|xmis, nmis, n]

]

= Var
[
g∗obs(Xmis) + Bias[Xmis|nmis, n]

]
.
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Global bias is solved by computing µ∗imp
n which is done as

µ∗K,imp
n = ENmis,Xmis|nE[ĝobs,K(Xmis)|nmis,xmis, n]

= ENmis|nEXmis

[
g∗obs(Xmis) + Bias[Xmis|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]
+ ENmis|nEXmis

[
Bias[Xmis|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]

+ENmis|n

[
EXmis

[(g∗obsfXobs)′′(Xmis)− g∗obs(Xmis)f ′′
Xobs(X

mis)

2fXobs(Xmis)

∫
ξ2K(ξ)dξλ2(Nobs) + o(λ2(Nobs)) + O((Nobsλ(Nobs))−1)

]]

Taylor≈ EXmis

[
g∗obs(Xmis)

]

+ENmis|n

[
(g∗obsfXobs)′′(X

∗mis
)− g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

2fXobs(X
∗mis

)
∫

ξ2K(ξ)dξλ2(Nobs) + o
(
λ2(Nobs)

)
+ O

((
Nobsλ(Nobs)

)−1
)]

Taylor≈ EXmis

[
g∗obs(Xmis)

]

+
(g∗obsfXobs)′′(X

∗mis
)− g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

2fXobs(X
∗mis

)∫
ξ2K(ξ)dξλ2

(
n(1− p∗)

)

+o
(
λ2

(
n(1− p∗)

))
+ O

((
n(1− p∗)λ

(
n(1− p∗)

))−1
)

,

where first order Taylor approximation has been applied twice.

Approximation for additional terms for random imputation strategy are given

next. For simulated random imputation expected noise variance is approximated as

v∗obs
n = ENmis,Xmis|n[Var[ε̂K,R

xmis|xmis, nmis, n]]

≈ v∗obs + ENmis,Nobs,Xobs

[
(g∗obs(Xobs)− EDtrain

nobs |nmis,n[ĝ
obs,K(Xobs|n, nmis])2

]
.

Donor strategy is assumed to behave similarly as random strategy.
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K-nearest neighbour (K-nn)

Recall decomposition for E[m̂se(Y comp)|n]. According to Equation (3.12)

E[m̂se(Y comp)|n] = ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− g∗mis(Xmis)

)2
]

︸ ︷︷ ︸
expected squared imputation bias=ESIB

+ ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ENmis,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

.

where v∗imp
n = ENmis,Xmis|n[Var[ε̂xmis|xmis, nmis, n]]. Expected squared imputation

bias, ESIB, may be decomposed as (see Equation 3.14)

ESIB = VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

+(µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

,

where µ∗imp
n = ENmis,Xmis|nE[ĝ(Xmis)|xmis, nmis, n].
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K-nn / multivariate covariate

Expected variance for conditional mean estimate is computed as

ENmis,Xmis|n

[
Var[ĝN(Xmis)|xmis, nmis, n

]

= ENmis,Xmis|n

[
vp−1Var[Y obs|Xobs = xmis]

k(Nobs)
+ o

(
k(Nobs)−1

)]

= ENmis,Xmis|n

[
vp−1Var[Y obs|Xobs = xmis]

k(Nobs)

]
+ o

(
k(Nobs)−1

)

=
vp−1

E[k(Nobs)]
EXmis

[
v∗obs(Xmis)

]
+ o

(
E[k(Nobs)]−1

)

Taylor≈ vp−1

E[k(Nobs)]

(
v∗obs(X

∗mis
) +

1

2
tr

(( ∂2

∂xmis∂xmis
v∗obs(xmis)

)
xmis=X

∗mis
Var[Xmis]

))

+o
(
E[k(Nobs)]−1

)

=
vp−1

E[k(Nobs)]

(
v∗obs(X

∗mis
) +

1

2
tr

(
Hv∗obsVar[Xmis]

))
+ o

(
E[k(Nobs)]−1

)
.

Expected imputation noise and cross term are zero for mean imputation strategy.

Therefore one just needs to compute expected squared imputation bias.

As earlier variability of conditional mean estimate is written in implicit form

as follows

VarNmis,Xmis|n

[
E[ĝN(Xmis)|xmis, nmis, n]

]

= VarNmis,Xmis|n

[
g∗obs(Xmis) + Bias[ĝN(Xmis)|nmis, n]

]
.
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Global bias is solved by computing µ∗imp
n which is done as

µ∗imp,N
n

= ENmis,Xmis|nE[ĝN(Xmis)|nmis,xmis, n]

= ENmis|nEXmisE[ĝN(Xmis)|nmis,xmis, n]

= ENmis|nEXmis

[
g∗obs(Xmis) + Bias[ĝN(Xmis)|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]
+ ENmis|nEXmis

[
Bias[ĝN(Xmis)|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]

+ENmis|nEXmis

[
Q(g∗obsfXobs)(Xmis)− g∗obs(Xmis)Q(fXobs)(Xmis)

2fXobs(Xmis)
(
vp−1f(Xmis)

)2/(p−1)

∗
(

k(Nobs)

Nobs

)2/(p−1)

+ o

((k(Nobs)

Nobs

)2/(p−1)
)

+ O
(
k(Nobs)−1

)
]

Taylor≈ g∗obs(X
∗mis

) +
1

2
tr(Hg∗obsΣ∗mis

X )

+ENmis|n
[Q(g∗obsfXobs)(X

∗mis
)− g∗obs(X

∗mis
)Q(fXobs)(X

∗mis
)

2fXobs(X
∗mis

)(vp−1f(X
∗mis

))2/(p−1)

∗
(k(Nobs)

Nobs

)2/(p−1)

+ o

((k(Nobs)

Nobs

)2/(p−1)
)

+ O
(
k(Nobs)−1

)
]

+ O(n−1)

Taylor≈ g∗obs(X
∗mis

) +
1

2
tr(Hg∗obsΣ∗mis

X )

+
[Q(g∗obsfXobs)(X

∗mis
)− g∗obs(X

∗mis
)Q(fXobs)(X

∗mis
)

2fXobs(X
∗mis

)(vp−1f(X
∗mis

))2/(p−1)

(E[k(Nobs)]

n(1− p∗)

)2/(p−1)

+o

((E[k(Nobs)]

n(1− p∗)

)2/(p−1)
)

+ O
(
E[k(Nobs)]−1

)
]

+ O(n−1),

where Hg∗obs is Hessian of g∗obs(xmis) evaluated at X
∗mis

. Remark that first order

Taylor approximation has been applied twice. Therefore result may be quite rough.

Additional terms for random strategies are derived next. For simulated random

imputation expected noise variance is approximated as

v∗imp
n ≈ v∗obs + ENmis,Xobs

[
(g∗obs(Xobs)− EDtrain|nmis,n[ĝ

N(Xobs|nmis, n])2

]
.

Further cross term is zero (expectation of noise terms are zero and conditional mean

estimate and noise term are conditionally independent given training data).

Expected noise term is assumed to be close to zero for random donor strategy.

Therefore additional terms due to noise modelling are roughly same as for simulated

random imputation strategy.
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K-nn / univariate covariate

Expected variance for conditional mean estimate is computed as:

ENmis,Xmis|n

[
Var[ĝN(Xmis)|xmis, nmis, n

]

= ENmis,Xmis|n

[
2v∗obs(xmis)

k(Nobs)
+ o

(
k(Nobs)−1

)]

≈ vp−1

k(n(1− p∗))

(
v∗obs(X

∗mis
) +

1

2

( ∂2

∂xmis∂xmis
v∗obs(xmis)

)
xmis=X

∗mis
Var[Xmis]

)
,

where p− 1 = 1.

Expected imputation noise variance (term C) and cross term (D) are zero for

mean strategy.

For expected squared bias one needs to compute variability of conditional mean

estimate and global bias. Variability of conditional mean estimate is written in

implicit form as

VarNmis,Xmis|n

[
E[ĝN(Xmis)|xmis, nmis, n]

]

= VarNmis,Xmis|n
[
g∗obs(Xmis) + Bias[ĝN(Xmis)|nmis, n]

]
.
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Further, global bias is solved by computing µ∗imp
n which is done as

µ∗imp,N
n

= ENmis,Xmis|nE[ĝN(Xmis)|nmis,xmis, n]

= ENmis|nEXmis

[
g∗obs(Xmis) + Bias[ĝN(Xmis)|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]
+ ENmis|nEXmis

[
Bias[ĝN(Xmis)|nmis, n]

]

= EXmis

[
g∗obs(Xmis)

]

+ENmis|n

[
EXmis

[
(g∗obsfXobs)′′(Xmis)− g∗obs(Xmis)f ′′

Xobs(X
mis)

24f 3
Xobs(Xmis)

(
k(Nobs)/(Nobs)

)2

+o
((k(Nobs)

Nobs

)2
)

+ O
(
k(Nobs)−1

)]
]

Taylor≈ EXmis

[
g∗obs(Xmis)

]

+ENmis|n

[
(g∗obsfXobs)′′(X

∗mis
)− g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

24f 3
Xobs(X

∗mis
)

(
k(Nobs)/Nobs

)2

+o

((k(Nobs)

Nobs

)2
)

+ O
(
k(Nobs)−1

)
]

Taylor≈ EXmis

[
g∗obs(Xmis)

]

+

[
(g∗obsfXobs)′′(X

∗mis
)− g∗obs(X

∗mis
)f ′′

Xobs(X
∗mis

)

24f 3
Xobs(X

∗mis
)

(E[k(Nobs)]/(n(1− p∗)))2

+o

((E[k(Nobs)]

n(1− p∗)

)2
)

+ O
(
E[k(Nobs)]−1

)
]
,

where first order Taylor approximation has been applied twice and impact of tech-

nical conditionalizers has been assumed to be neglible.

Additional terms for random strategies are derived next. For simulated random

imputation approximation for expected noise variance is

v∗imp
n ≈ v∗obs + ENmis,Xobs

[
(g∗obs(Xobs)− EDtrain|nmis,n[ĝ

N(Xobs|nmis, n])2

]
.

Further, cross term is zero (expectation of noise terms are zero and conditional mean

estimate and noise term are conditionally independent given training data).

Expected noise term is assumed to be close to zero for random donor strategy

as earlier. Therefore additional terms due to noise modelling are roughly same as

for simulated random imputation strategy.
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A5.3 MSE re-derivation for nonlinear simulation

example

To simplify numerical computation of terms for decomposition of mean squared

error E[m̂se(Y comp)|n] order of integration is changed and one integration level is

’reduced’ (by combining two integrations together).

First, recall that

mse(Ŷ |x0, n) = EŶ ,Y |x0,n[Ŷ
2
|x0
− 2Ŷ|x0Y|x + Y 2

|x0
]

=
(
E[ĝ(x0)|x0, n]− g∗mis(x0)︸ ︷︷ ︸

imputation bias at x0

)2

+ Var[Ŷ|x0,n]︸ ︷︷ ︸
imputation variance at x0

+ Var[Y|x0 ]︸ ︷︷ ︸
v∗mis(x0), target noise at x0

,

Further, imputation variance can be decomposed as

Var[Ŷ|x0,n] = Var[ĝ(x0) + ε̂x0|x0, n]

= Var[ĝ(x0)|x0, n]︸ ︷︷ ︸
variance of conditional mean estimate

+ Var[ε̂x0|x0, n]︸ ︷︷ ︸
imputation noise, v̂(x0)

+ 2Cov[ĝ(x0), ε̂x0|x0, n]︸ ︷︷ ︸
cross term

.

One should note that the cross term above is zero for k-nn and random imputation

strategy which is used in this example.
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Decomposition at population level can be written as

E[m̂se(Y comp)|n] = EXmis|n

[
mse(Xmis|n)

]

= EXmis|n

[(
E[ĝ(Xmis)|xmis, n]− g∗mis(Xmis)

)2
]

+EXmis|n

[
Var

[
Ŷ|xmis,n

]]
+ EXmis|n

[
v∗mis(Xmis)

]

= EXmis|n

[(
E[ĝ(Xmis)|xmis, n]− g∗mis(Xmis)

)2
]

+EXmis|n

[
Var[ĝ(Xmis)|xmis, n] + Var[ε̂xmis|xmis, n]

+2Cov[ĝ(Xmis), ε̂xmis|xmis, n]

]

+v∗mis

= EXmis|n

[(
E[ĝ(Xmis)|xmis, n]− g∗mis(Xmis)

)2
]

︸ ︷︷ ︸
expected squared imputation bias (ESIB)

+ EXmis|n

[
Var[ĝ(Xmis)|xmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+EXmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, n]

]

︸ ︷︷ ︸
cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

.

First of all, one should note that the cross term is zero in this example. Most

interesting terms are expected squared bias, expected variance of conditional mean

estimate, expected imputation noise variance and expected target variance.

A5.4 Verification of Mack’s conditions for ordinary

k-nn regression

Mack’s paper [72] contains bias and variance results for generalized k-nearest neigh-

bour regression. Ordinary k-nearest neighbour regression estimate may be written

using Mack’s generalized form by using weight function

w(v) =

{
1/vp, when ||v|| < 1,

0, otherwise,

where vp = πp/2/Γ((p + 2)/2) equals to volume of unit ball in Rp. Next weight

function requirements of Mack’s theorems 1 and 2 are verified.
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Theorem 1 requires following conditions for w(v):

1a)
∫

w(v)dv = 1, w(v) = 0 for ||v|| ≥ 1

1b)
∫ ||v||2|w(v)|dv < ∞

1c)
∫

vαw(v)dv = 0 for α = 1, . . . , p,

where vα denotes α:th component of v.

Now ∫
w(v)dv =

∫

||v||<1

1/vpdv = 1,

and by definition of w(v) it holds that w(v) = 0 for ||v|| ≥ 1. Therefore 1a) holds.

Further ∫
||v||2|w(v)|dv =

∫

||v||<1

||v||2(1/vp)dv

<

∫

||v||<1

12(1/vp)dv = (1/vp)

∫

||v||<1

dv = 1 < ∞,

Thus 1b) also holds. Finally
∫

vαw(v)dv =

∫

||v||<1

vα(1/vp)dv

= (1/vp)

∫

||v||<1

vαdv = 0.

Theorem 2 requires following additional condition for w(v):

2a)
∫ |vα||w(v)|dv < ∞.

Now ∫
|vα||w(v)|dv =

∫

||v||<1

|vα|(1/vp)dv

<

∫

||v||<1

|1|(1/vp)dv = (1/vp)

∫

||v||<1

1dv = 1 < ∞.

Therefore requirement 2a) is satisfied.

To summarize, all weight function requirements of Mack’s theorems 1 and 2 are

satisfied by ordinary k-nn weight function w(v). Now one can utilize Mack’s bias

and variance results. It is somewhat difficult to simplify bias result but variance

result may be simplified as follows:∫
w2(v)dv =

∫

||v||<1

(1/vp)
2dv

= (1/vp)
2

∫

||v||<1

1dv

= (1/vp)
2vp

= 1/vp.

Substituting above result into Mack’s Equation (12) (by replacing vp = c) gives

claimed variance.



Appendix for Chapter 6

In this appendix justifications of approximations and consequences which were in-

troduced in Chapter 6 are given.

A6.1 Cell methods / moments

Here results for moment estimators based on cell imputation are derived. The

following decomposition is used for mean estimator:

µ̂comp =
1

n
(Nobsµ̂obs + Nmisµ̂imp)

=
1

n
(Nobsµ̂obs +

nc∑
i=1

Nmis
i µ̂imp

i ).

Approximation 6.1

The bias of µ̂comp for n observations, with fixed training data, and fixed imputation

model may be approximated as

Bias[µ̂comp|Q2] ≈ 1

n
(
∑

i

E[Nmis
i |Q2]E[µ̂imp

i |Q2]− nmisµ∗mis)

︸ ︷︷ ︸
bias due to imputation method

+
1

n
(nobsµobs + nmisµ∗mis)− µ∗

︸ ︷︷ ︸
finite sample estimation error

,

where E[Nmis
i |Q2] = Pr

(
b(Xmis) = i|Q2

)
nmis and

E[µ̂imp
i |Q2] =





µobs
i : C/CJ/T/TJ(S = M/R/D)

E[µ̂s
i |Q2] ≈

P
l hi,l(n

obs
l +E[Nmis

l |Q2])µobs
lP

l hi,l(n
obs
l +E[Nmis

l |Q2])
: T/TJ(S = Ms/Rs),
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Justification: Bias is approximated using decomposition of µ̂comp and first

order Taylor approximation as

Bias[µ̂comp|Q2] = E[µ̂comp|Q2] +
nmis

n
µ∗mis − nmis

n
µ∗mis − µ∗

= E[
1

n
(Nobsµ̂obs +

nc∑
i=1

Nmis
i µ̂imp

i )|Q2] +
nmis

n
µ∗mis − nmis

n
µ∗mis − µ∗

=
1

n
(

nc∑
i=1

E[Nmis
i µ̂imp

i |Q2]− nmisµ∗mis)

+
1

n
(nobsµobs + nmisµ∗mis)− µ∗

Taylor≈ 1

n
(

nc∑
i=1

E[Nmis
i |Q2]E[µ̂imp

i |Q2]− nmisµ∗mis)

︸ ︷︷ ︸
bias due to imputation method

+
1

n
(nobsµobs + nmisµ∗mis)− µ∗

︸ ︷︷ ︸
finite sample estimation error

,

where term E[1
n
Nmisµ̂mis|Q2] = nmis

n
µ∗mis has been added and subtracted in order to

separate imputation and sample estimation errors from each other.

Now one needs to solve term E[µ̂imp
i |Q2], the expectation of mean of imputed

values within cell i.

For non-smoothed imputation method with any strategy (mean, random impu-

tation, or donor) the expectation equals to

E[µ̂imp
i |Q2] = µobs

i .

For mean strategy this is trivial as µ̂imp
i = µ̂obs

i . For random strategy

µ̂imp
i = µ̂obs

i +
1

Nobs
i

Nobs
i∑

j=1

ε̂j,i,

where ε̂j,i is j:th noise term in cell i. Note that expectation of modelled noise term

within any cell is zero. Therefore

E[µ̂imp,R
i |Q2] = µobs

i .

Further, for donor strategy expectation of prediction of missing data value in any

cell equals to mean of observed Y values within the cell. This result follows by

applying basic sampling theory result (’finite population’ is centered observations

within the cell).

For smoothed imputation method with mean or random strategy the expecta-

tion is computed using first order Taylor approximation as

E[µ̂imp
i |Q2] = E[µ̂s

i |Q2] = E[

∑nc

l=1 hi,lNlµ̂
obs

∑nc

l=1 hi,lNl

|Q2]

Taylor≈
∑nc

l=1 hi,lE[Nl|Q2]E[µ̂obs
l |Q2]∑nc

l=1 hi,lE[Nl|Q2]
=

∑nc

l=1 hi,l(n
obs
l + E[Nmis

l |Q2])µ
obs
l∑nc

l=1 hi,l(nobs
l + E[Nmis

l |Q2])
.
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Approximation 6.2

The bias of first moment µ̂comp given n observations can be approximated as

Bias[µ̂comp|n] ≈ p∗(
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− µ∗mis

︸ ︷︷ ︸
(weighted) difference between mean of imputed and missing Y values

)

+ O(n−1)︸ ︷︷ ︸
approximation error

,

where

E[µ̂imp
i |n] =





E[µ̂obs
i |n] = µ∗obs

i : C/CJ/T/TJ(S = M/R/D),

E[µ̂s
i |n] ≈

Pnc
l=1 hi,lE[Nl|n]µ∗obs

lPnc
l=1 hi,lE[Nl|n]

: T/TJ(S = Ms/Rs)

where µ∗obs
l is expectation of observed Y values in l:th cell and in which

E
[
Nl|n

]
= E

[
Nobs

l |n
]

+ E
[
Nmis

l |n
]

≈ n(1− p∗)Pr
(
b̂
(
(Y obs,Xobs)T

)
= l|n

)

︸ ︷︷ ︸
expected number of complete observations

+ np∗Pr
(
b̂(Xmis) = l|n

)

︸ ︷︷ ︸
expected number of incomplete observations

.

Justification: applying decomposition of µ̂comp, decomposition of µ∗, and

first order Taylor approximation yield to

Bias[µ̂comp|n] = E[
1

n
(Nobsµ̂obs +

nc∑
i=1

Nmis
i µ̂imp

i )|n]− µ∗

= E[
Nobs

n
µ̂obs]− (1− p∗)µ∗obs + E[

Nmis

n

nc∑
i=1

Nmis
i

Nmis µ̂
imp
i ]− p∗µ∗imp

Taylor≈ p∗
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− p∗µ∗imp + O(n−1)

= p∗(
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− µ∗imp) + O(n−1).

Approximation of expectation E[µ̂imp
i |n] is quite straightforward. For non-smoothed

imputation method with any strategy (mean, random imputation, or donor) the

expectation equals to

E[µ̂imp
i |n] = µ∗obs

i .
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This result follows directly from the fact that E[µ̂imp
i |Q2] = µobs

i for all three impu-

tation strategies. See justification for approximation 6.1 for details. For smoothed

imputation method with mean or random strategy the expectation is computed

using first order Taylor approximation as

E[µ̂imp
i |n] = E[µ̂s

i |n] = E[

∑nc

l=1 hi,lNlµ̂
obs

∑nc

l=1 hi,lNl

|n]

Taylor≈
∑nc

l=1 hi,lE[Nl|n]E[µ̂obs
l |n]∑nc

l=1 hi,lE[Nl|n]
=

∑nc

l=1 hi,lE[Nl|n]µ∗obs
l∑nc

l=1 hi,lE[Nl|n]
.

Approximation 6.3

The variance of µ̂comp for n observations, fixed training data, and fixed imputation

model can be approximated as

Var[µ̂comp|Q2] ≈ 1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

︸ ︷︷ ︸
due to randomness of number of missing Y values within cells

+
nmis

n2

nc∑
i=1

Pr
(
b(Xmis) = i|Q2

)
E[τ̂ imp

i |Q2]

︸ ︷︷ ︸
A: due to modelled noise

,

where E[µ̂imp|Q2] = (E[µ̂imp
1 |Q2], . . . ,E[µ̂imp

nc
|Q2])

T in which

E[µ̂imp
i |Q2] =





E[µ̂obs
i |Q2] = µobs

i : C/T/CJ/TJ(S = M/R/D) ,

E[µ̂s
i |Q2] ≈

P
l hi,l(n

obs
l +E[Nmis

l |Q2])µobs
lP

l hi,l(n
obs
l +E[Nmis

l |Q2])
: T/TJ(S = Ms/Rs) .

Term E[τ̂ imp
i |Q2] depends on cell method and on imputation strategy ε̂S as follows:

E[τ̂ imp
i |Q2] =





0 : S = M/Ms ,

E[τ̂ obs
i |Q2] = τ obs

i : C/CJ/T/TJ(S = R) ,

τ obs
i (1− 1

nobs
i

) : C/CJ/T/TJ(S = D) ,

E[τ̂T,Rs

i |Q2] = E[
Pnc

l=1 hi,lNlτ̂
obs
lPnc

l=1 hi,lNl
|Q2] : T(S = Rs) ,

≈
Pnc

l=1 hi,lE[Nl|Q2]τobs
lPnc

l=1 hi,lE[Nl|Q2]

E[τ̂TJ,Rs

i |Q2] = E[
Pnc

l=1 hi,lNlτ̂
w
lPnc

l=1 hi,lNl
|Q2] : TJ(S = Rs) ,

≈
Pnc

l=1 hi,lE[Nl|Q2]E[τ̂w
l |Q2]Pnc

l=1 hi,lE[Nl|Q2]

in which

τ̂ obs
i =

1

Nobs
i

Nobs
i∑

j=1

(Y obs
j,i − µ̂obs

i )2

E[τ̂w
l |Q2] = E[

1

Nobs
l

Nobs
l∑

j=1

(Y obs
j,l − µ̂s

l )
2|Q2] ≈ 1

nobs
l

nobs
l∑

j=1

(yobs
j,l − E[µ̂s

l |Q2])
2,
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where Y obs
j,i is the j:th random observation of Y obs in i:th cell and

E[µ̂s
i |Q2] ≈

∑nc

l=1 hi,l

(
nobs

l + E[Nmis
l |Q2]

)
µobs

∑
l hi,l

(
nobs

l + E[Nmis
l |Q2]

) .

Justification: let µ̂imp,M
i be mean estimator for imputations of mean strategy

(unsmoothed or smoothed) in cell i. Approximation of variance for random strategy

(unsmoothed or smoothed) is derived as

Var[µ̂comp,R|Q2]

= Var[
1

n
(Nobsµ̂obs +

nc∑
i=1

Nmis
i µ̂imp,M

i +
nc∑

i=1

Nmis
i∑

j=1

ε̂j,i)|Q2]

= Var[
1

n

nc∑
i=1

Nmis
i µ̂imp,M

i |Q2] + Var[
1

n

nc∑
i=1

Nmis
i∑

j=1

ε̂j,i|Q2]

≈ Var[
1

n

nc∑
i=1

Nmis
i E[µ̂imp,M

i |Q2]|Q2] + Var[
1

n

nc∑
i=1

Nmis
i∑

j=1

ε̂j,i|Q2]

=
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

+E[Var[
1

n

nc∑
i=1

Nmis
i∑

j=1

ε̂j,i|Q2, N
mis
1 , . . . , Nmis

nc
]|Q2]

+Var[E[
1

n

nc∑
i=1

Nmis
i∑

j=1

ε̂j,i|Q2, N
mis
1 , . . . , Nmis

nc
]|Q2]

︸ ︷︷ ︸
=0

=
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

+E[
1

n2

nc∑
i=1

Nmis
i∑

j=1

Var[ε̂j,i|Q2, N
mis
1 , . . . , Nmis

nc
]|Q2]

=
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2] +

1

n2

nc∑
i=1

E[Nmis
i τ̂ imp

i |Q2]

Taylor≈ 1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2] +

1

n2

nc∑
i=1

E[Nmis
i |Q2]E[τ̂ imp

i |Q2]

=
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

+
nmis

n2

nc∑
i=1

Pr
(
b(Xmis) = i|Q2

)
E[τ̂ imp

i |Q2].

Elements of E[µ̂imp|Q2] = (E[µ̂imp
1 |Q2], . . . ,E[µ̂imp

nc
|Q2])

T are already derived in jus-

tification for approximation 6.1.

For mean strategy (with or without smoothing) expectation E[τ̂ imp
i |Q2] is zero

because noise is modelled. For unsmoothed random strategy the expectation equals
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to E[τ̂ imp,R
i |Q2] = E[τ̂ obs

i |Q2] = τ obs
i . Basic result from sampling theory gives that for

donor strategy (simple random sampling with replacements) holds E[τ̂ imp,R
i |Q2] =

τ obs
i (1− 1

nobs
i

).

The expectation for standard X-clustering with smoothed random strategy is

derived using first order Taylor approximation as

E[τ̂ imp
i |Q2] = E[τ̂T,Rs

i |Q2]

= E[

∑nc

l=1 hi,lNlτ̂
obs
l∑nc

l=1 hi,lNl

|Q2]
Taylor≈

∑nc

l=1 hi,lE[Nl|Q2]τ
obs
l∑nc

l=1 hi,lE[Nl|Q2]
.

For joint (Y, X) clustering the smoothed random strategy yields to following expec-

tation

E[τ̂ imp
i |Q2] = E[τ̂TJ,Rs

i |Q2]

= E[

∑nc

l=1 hi,lNlτ̂
w
l∑nc

l=1 hi,lNl

|Q2]
Taylor≈

∑nc

l=1 hi,lE[Nl|Q2]E[τ̂w
l |Q2]∑nc

l=1 hi,lE[Nl|Q2]

=

∑nc

l=1 hi,lE[Nl|Q2]E[ 1
Nobs

l

∑Nobs
l

j=1 (Y obs
j,l − µ̂s

l )
2|Q2]∑nc

l=1 hi,lE[Nl|Q2]

Taylor≈
∑nc

l=1 hi,lE[Nl|Q2]
1

nobs
l

∑nobs
l

j=1(y
obs
j,l − E[µ̂s

l |Q2])
2

∑nc

l=1 hi,lE[Nl|Q2]
.

Approximation 6.4

The variance of first moment µ̂comp given n observations can be approximated as

Var[µ̂comp|n]

≈ E

[
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]

∣∣∣∣n
]

︸ ︷︷ ︸
due to randomness of test data and classification of incomplete observations

+ Var

[
1

n

(
Nobsµ̂obs + Nmis

nc∑
i=1

Pr(b(Xmis) = i|Q2)E[µ̂imp
i |Q2]

)∣∣∣∣n
]

︸ ︷︷ ︸
due to randomness of training data,imputation model, and number of missing Y values

+
p∗

n

nc∑
i=1

Pr(b̂(Xmis) = i|n)E[τ̂ imp
i |n]

︸ ︷︷ ︸
variance due to modelled noise

,

where E[µ̂imp|Q2] = (E[µ̂imp
1 |Q2], . . . ,E[µ̂imp

nc
|Q2])

T in which

E[µ̂imp
i |Q2] =





µ∗obs
i

: C/CJ/T/TJ(S = M/R/D),

E[µ̂s
i |Q2] ≈ 1

n

∑nc

i=1 Pr(b(Xmis) = i|Q2)
Pnc

l=1 hi,lE[Nl|Q2]µ̂obs
lPnc

l=1 hi,lE[Nl|Q2]

: T/TJ(S = Ms/Rs),
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and terms E[τ̂ imp
i |n] depend on cell method and on imputation strategy ε̂S as follows:

E[τ̂ imp
i |n] =





0 : S = M/Ms,

E[τ̂ obs
i |n] ≈ τ ∗obs

i : C/CJ/T/TJ(S = R),

≈ τ ∗obs
i

(
1− 1

n(1−p∗)Pr

(
b̂
(
Xobs

)
=i|n

)
)

: C/T(S = D),

≈ τ ∗obs
i

(
1− 1

n(1−p∗)Pr

(
b̂
(
(Y obs,Xobs)T

)
=i|n

)
)

: CJ/TJ(S = D),

E[τ̂T,Rs

i |n] ≈
Pnc

l=1 hi,lE[Nl|Q1]τ∗obs
lPnc

l=1 hi,lE[Nl|Q1]
: T(S = Rs), and

E[τ̂TJ,Rs

i |n] ≈
Pnc

l=1 hi,lE[Nl|Q1]E[τ̂l|Q1]Pnc
l=1 hi,lE[Nl|Q1]

: TJ(S = Rs).

in which

τ̂l =
1

Nobs
l

Nobs
l∑

j=1

(Y obs
j,l − µ̂s

l )
2,

where Y obs
j,l is j:th (random) observation of Y obs in l:th cell.

Justification: recall chain rule of variance which states that

Var[µ̂comp|n] = E[Var[µ̂comp|Q2]|n] + Var[E[µ̂comp|Q2]|n],

where the conditional variance in the first term has already been derived in the

justification for approximation 6.3. Thus

E[Var[µ̂comp|Q2]|n]
approximation 6.3≈ E[

1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]|n]

+E[
Nmis

n2

nc∑
i=1

Pr
(
b̂(Xmis) = i|Q2

)
E[τ̂ imp

i |Q2]|n]

Taylor≈ E[
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]|n]

+
p∗

n

nc∑
i=1

E[Pr
(
b̂(Xmis) = i|Q2

)
|n]E[E[τ̂ imp

i |Q2]|n]

= E[
1

n2
E[µ̂imp|Q2]

TVar
[
Nmis|Q2

]
E[µ̂imp|Q2]|n]

+
p∗

n

nc∑
i=1

Pr
(
b̂(Xmis) = i|n

)
E[τ̂ imp

i |n],

where E[τ̂ imp
i |n] is computed almost like E[τ̂ imp

i |Q2] in justification for 6.3. First

order Taylor approximation is applied to compute results for donor and smoothed

random strategies).

For mean (smoothed or unsmoothed) strategies the E[τ̂ imp
i |n] is zero as noise

is not modelled. For random strategy E[τ̂ imp,R
i |n] = E[τ̂ obs

i |n] ≈ τ ∗obs
i , whereas for

donor strategy

E[τ̂ imp,D
i |n] = E[E[τ̂ imp,D

i |Q2]|n] = E[τ̂ obs
i (1− 1

Nobs
i

)|n]

Taylor≈ τ ∗obs
i (1− 1

E[Nobs
i |n]

),
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where

E[Nobs
i |n] =





n(1− p∗)Pr
(
b̂(Xobs) = i|n

)
, : C/T

n(1− p∗)Pr
(
b̂
(
(Y obs,Xobs)T

)
= i|n

)
: CJ/TJ.

For smoothed random strategies first order Taylor approximation is applied.

Approximation for the expectation for standard X-clustering with smoothed ran-

dom strategy is

E[τ̂ imp
i |Q1] = E[τ̂T,Rs

i |Q1]

= E[

∑nc

l=1 hi,lNlτ̂
obs
l∑nc

l=1 hi,lNl

|Q1]
Taylor≈

∑nc

l=1 hi,lE[Nl|Q1]τ
∗obs
l∑nc

l=1 hi,lE[Nl|Q1]
.

Further, approximation for smoothed random strategy and joint (Y, X) clustering

is

E[τ̂ imp
i |Q1] = E[τ̂TJ,Rs

i |Q1]

= E[

∑nc

l=1 hi,lNlτ̂l∑nc

l=1 hi,lNl

|Q1]
Taylor≈

∑nc

l=1 hi,lE[Nl|Q1]E[τ̂l|Q1]∑nc

l=1 hi,lE[Nl|Q1]
.

The conditional expectation in the second term of the variance decomposition

is computed as

E[µ̂comp|Q2] = E[
1

n
(Nobsµ̂obs +

nc∑
i=1

Nmis
i µ̂imp

i )|Q2]

=
1

n
(nobsµobs +

nc∑
i=1

E[Nmis
i µ̂imp

i |Q2])

Taylor≈ 1

n
(nobsµobs +

nc∑
i=1

E[Nmis
i |Q2]E[µ̂imp

i |Q2])

≈ 1

n
(nobsµobs + nmis

nc∑
i=1

Pr(b(Xmis) = i|Q2)E[µ̂imp
i |Q2]).

A6.1.1 Subresult for justifying approximation 6.5

Before justifying approximation 6.5 a useful result is introduced.
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A useful decompositions of τ̂ imp for cell imputation methods is

τ̂ imp =
1

Nmis − 1

Nmis∑
j=1

(
Y imp

j − µ̂imp
)2

(14)

=
1

Nmis − 1

nc∑

l=1

Nmis
l∑

j=1

(
Y imp

j,l − µ̂imp
)2

=
1

Nmis − 1

nc∑

l=1

Nmis
l∑

j=1

(
Y imp

j,l − µ̂imp
l + µ̂imp

j − µ̂imp
)2

=
1

Nmis − 1

nc∑

l=1

Nmis
l∑

j=1

(
(Y imp

j,l − µ̂imp
l )2 + 2(Y imp

j,l − µ̂imp
l )(µ̂imp

l − µ̂imp)

+(µ̂imp
l − µ̂imp)2

)

=
1

Nmis − 1

nc∑

l=1

Nmis
l∑

j=1

(
(Y imp

j,l − µ̂imp
l )2 + (µ̂imp

j − µ̂imp)2
)

=
1

Nmis − 1

nc∑

l=1

(
(Nmis

l − 1)τ̂ imp
l + Nmis

l (µ̂imp
l − µ̂imp)2

)
.

Approximation 6.5

The bias of τ̂ comp for n observations may be approximated as

Bias[τ̂ comp|n] ≈ p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + B − τ ∗mis)

︸ ︷︷ ︸
difference between variance of imputed and missing Y values

+ p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)

︸ ︷︷ ︸
difference between mean of imputed and missing Y values

+ O(n−1)︸ ︷︷ ︸
approximation error

,

where term pmis
l = Pr

(
b̂(Xmis) = l|n

)
, and terms µ∗imp

l depend on cell method and

strategy as follows:

µ∗imp
l =

{
µ∗obs

l : T/TJ(S = M/R/D) ,

µ∗sl : T/TJ(S = Ms/Rs) ,
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and term B is due to noise modelling, and depends on cell method and on imputation

strategy ε̂S as follows:

B =





0 : S = M/Ms ,

∑nc

l=1 pmis
l E[τ̂ obs

l |n] : CJ/TJ/C/T(S = R) ,∑nc

l=1 pmis
l E[τ̂ obs

l |n](1− 1
E[Nobs

l |n]
) : CJ/TJ/C/T(S = D) ,

∑nc

l=1 pmis
l E[τ̂T,Rs

l |n] : T(S = Rs) , and∑nc

l=1 pmis
l E[τ̂TJ,Rs

l |n] : TJ(S = Rs) .

Justification: derivation of result is based on decompositions

E[τ̂ comp|n]

= E[(1− Nmis

n− 1
)τ̂ obs +

Nmis − 1

n− 1
τ̂ imp +

NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|n]− τ ∗,

and

τ ∗ = (1− p∗)τ ∗obs + p∗τ ∗mis + p∗(1− p∗)(µ∗obs − µ∗mis)2.

Expectations in decomposition of E[τ̂ comp|n] are computed using first order Taylor

approximation. Thus the bias is approximated as follows

Bias[τ̂ comp|n] = E[τ̂ comp|n]− τ ∗ (15)

= E[(1− Nmis

n− 1
)τ̂ obs|n]− (1− p∗)τ ∗obs

+E[
Nmis − 1

n− 1
τ̂ imp|n]− p∗τ ∗mis

+E[
NmisNobs

n(n− 1)
(µ̂obs − µ̂imp)2|n]− p∗(1− p∗)(µ∗obs − µ∗mis)2

Taylor≈ E[(1− Nmis

n− 1
)|n]E[τ̂ obs|n]− (1− p∗)τ ∗obs

+E[
Nmis − 1

n− 1
|n]E[τ̂ imp|n]− p∗τ ∗mis

+E[
Nmis

n
|n]E[

Nobs

n− 1
|n](E[µ̂obs|n]− E[µ̂imp|n])2

−p∗(1− p∗)(µ∗obs − µ∗mis)2

≈ (1− p∗)τ ∗obs − (1− p∗)τ ∗obs + p∗E[τ̂ imp|n]− p∗τ ∗mis

+p∗(1− p∗)(µ∗obs − E[µ̂imp|n])2 − p∗(1− p∗)(µ∗obs − µ∗mis)2

+O(n−1)

= p∗(E[τ̂ imp|n]− τ ∗mis)

+p∗(1− p∗)
(
(µ∗obs − E[µ̂imp|n])2 − (µ∗obs − µ∗mis)2

)

+O(n−1),
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where E[µ̂imp|n] is computed as

E[µ̂imp|n] = E[
1

Nmis

nc∑
i=1

Nmis
i µ̂imp

i |n] (16)

Taylor≈ 1

E[Nmis|n]

nc∑
i=1

E[Nmis
i |n]E[µ̂imp

i |n]

≈ 1

np∗

nc∑
i=1

np∗Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]

≈
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
µ∗imp

i + O(n−1)

=
nc∑

i=1

pmis
i µ∗imp

i + O(n−1),

where µ∗imp
i equals to µ∗obs

i for unsmoothed imputation methods and to µ∗si for

smoothed methods.

Expectation E[τ̂ imp|n] is computed by i) replacing Nmis
l − 1 by Nmis

l , using

Equation (14), and first order Taylor approximation as follows

E[τ̂ imp|n]
eq. (14)

= E
[

1

Nmis − 1

nc∑

l=1

(
(Nmis

l − 1)τ̂ imp
l + Nmis

l (µ̂imp
l − µ̂imp)2

)
|n

]
(17)

i)≈ E
[ nc∑

l=1

Nmis
l

Nmis

(
τ̂ imp
l + (µ̂imp

l − µ̂imp)2
)
|n

]

Taylor≈
nc∑

l=1

E[Nmis
l |n]

E[Nmis|n]

(
E[τ̂ imp

l |n] + (E[µ̂imp
l |n]− E[µ̂imp|n])2

)

≈
nc∑

l=1

np∗Pr
(
b̂(Xmis) = i|n

)

np∗

(
E[τ̂ imp

l |n] + (E[µ̂imp
l |n]− E[µ̂imp|n])2

)

=
nc∑

l=1

pmis
l

(
E[τ̂ imp

l |n] + (E[µ̂imp
l |n]− E[µ̂imp|n])2

)

=
nc∑

l=1

pmis
l (E[µ̂imp

l |n]− E[µ̂imp|n])2 +
nc∑

l=1

pmis
l E[τ̂ imp

l |n]

≈
nc∑

l=1

pmis
l (µ∗imp

l −
nc∑

i=1

pmis
i µ∗imp

i )2 +
nc∑

l=1

pmis
l E[τ̂ imp

l |n] + O(n−1).

By plugging Equations (16) and (17) into Equation (15) yields to

Bias[τ̂ comp|n] ≈ p∗(
nc∑

l=1

pmis
l (µ∗imp

l −
nc∑

i=1

pmis
i µ∗imp

i )2 +
nc∑

l=1

pmis
l E[τ̂ imp

l |n]− τ ∗mis)

+p∗(1− p∗)
(
(µ∗obs −

nc∑
i=1

pmis
i µ∗imp

i )2 − (µ∗obs − µ∗mis)2
)

+O(n−1),
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where
∑nc

l=1 pmis
l E[τ̂ imp

l |n] is left in implicit form as given in the approximation.

However, for donor strategy first order Taylor approximation is used to distinguish

the result from result for random strategy:

nc∑

l=1

pmis
l E[τ̂ imp,D

l |n] =
nc∑

l=1

pmis
l E

[
E[τ̂ imp,D

l |Q2]|n
]

=
nc∑

l=1

pmis
l E

[
τ̂ obs
l (1− 1

Nobs
l

)|n
]

Taylor≈
nc∑

l=1

pmis
l E

[
τ̂ obs
l |n

]
(1− 1

E[Nobs
l |n]

).

Consequence 6.6

Asymptotically one has the following approximations

i)

lim
n→∞

Bias[µ̂comp|n] ≈ p∗(
nc∑

i=1

pmis
i µ∗imp

i − µ∗mis)

lim
n→∞

Var[µ̂comp|n] ≈ 0,

where

µ∗imp
i =

{
µ∗obs

i : C/CJ/T/TJ(S = M/R/D) ,

µ∗si ≈
P

l hi,l(p
mis
l +pobs

l )µ∗obs
lP

l hi,l(p
mis
l +pobs

l )
: T/TJ(S = Ms/Rs) .

ii)

lim
n→∞

Bias[τ̂ comp|n]

≈ p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + C − τ ∗mis)

︸ ︷︷ ︸
difference between variance of imputed and missing Y values

+ p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)

︸ ︷︷ ︸
difference between mean of imputed and missing Y values

,

where

pmis
i = lim

n→∞
Pr

(
b̂(Xmis) = i|n

)
,

pobs
i = lim

n→∞
Pr

(
b̂
(
(Y obs,Xobs)T

)
= i|n

)
,
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and C in ii) is due to noise modelling and depends on cell method and on imputation

strategy ε̂S as follows:

C =





0 : (S = M/Ms) ,∑nc

l=1 pmis
l τ ∗obs

l : C/CJ/T/TJ(S = R/D) ,

∑nc

l=1 pmis
l limn→∞ E[τ̂T,Rs

l |n] : T(S = Rs) , and∑nc

l=1 pmis
l limn→∞ E[τ̂TJ,Rs

l |n] : TJ(S = Rs) .

Justification: i) approximative limit of bias of first moment estimator is

computed using approximation 6.2 as

lim
n→∞

Bias[µ̂comp|n] ≈ lim
n→∞

p∗(
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− µ∗mis)

+ lim
n→∞

O(n−1)

= lim
n→∞

p∗(
nc∑

i=1

Pr
(
b̂(Xmis) = i|n

)
E[µ̂imp

i |n]− µ∗mis)

≈ p∗(
nc∑

i=1

lim
n→∞

Pr
(
b̂(Xmis) = i|n

)
lim
n→∞

E[µ̂imp
i |n]− µ∗mis)

= p∗(
nc∑

i=1

pmis
i µ∗imp

i − µ∗mis).

Note that all terms in approximate variance for µ̂comp given n (approximation 6.4)

are of order O(n−1), thus

lim
n→∞

Var[µ̂comp|n] ≈ 0.

ii) approximate limit of bias of second moment estimator is computed using

approximation 6.5 as.

lim
n→∞

Bias[τ̂ comp|n] ≈ lim
n→∞

p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + B − τ ∗mis)

+ lim
n→∞

p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)

+ lim
n→∞

O(n−1)

= p∗(
nc∑

i=1

pmis
i (µ∗imp

i −
nc∑

l=1

pmis
l µ∗imp

l )2 + lim
n→∞

B − τ ∗mis)

+p∗(1− p∗)
(
(µ∗obs −

nc∑

l=1

pmis
l µ∗imp

l )2 − (µ∗obs − µ∗mis)2
)
.



357

Now C = lim B is

C =





0 : S = M/Ms ,

∑nc

l=1 pmis
l τ ∗obs

l : CJ/TJ/C/T(S = R/D) ,

∑nc

l=1 pmis
l limE[τ̂T,Rs

l |n] : T(S = Rs) , and∑nc

l=1 pmis
l limE[τ̂TJ,Rs

l |n] : TJ(S = Rs) .

Note that limit within cells for unsmoothed random and donor strategies are same.

A6.2 Cell methods / unit level

Unit level results for cell imputation are derived here.

Approximation 6.13

Mean squared error mse(Y imp|xmis, nmis, n) can be approximated as

mse(Y imp|xmis, nmis, n)

≈
(

nc∑
i=1

gi(x
mis|Q)µ∗imp

i,nobs − E[Y mis|xmis]

︸ ︷︷ ︸
bias

)2

+
nc∑

i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)TVar[vec(ŴX,{u})|dmis
X , nmis, n]

nc∑
i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)

︸ ︷︷ ︸
sampling variance due to estimation of classifier parameters

+
(
g1(x

mis|Q) . . . gnc(x
mis|Q)

)
Var[µ̂imp

{u} |dmis
X , nmis, n]

(
g1(x

mis|Q) . . . gnc(x
mis|Q)

)T

︸ ︷︷ ︸
sampling variance due to estimation of imputation model parameters

+
nc∑

i=1

gi(x
mis|Q)E[τ̂ imp

i (xmis)|nmis, n]

︸ ︷︷ ︸
imputation variance

+ v∗mis(xmis)︸ ︷︷ ︸
target variance

u = 1, . . . , nc,

expected prediction in i:th cell is

µ∗imp
i,nobs =





µ∗obs
i,nobs ≈ µ∗obs

i + O
(
(nobs)−1

)

: C/T/CJ/TJ(S = M/R/D),

µ∗s
i,nobs ≈

P
l hi,lE[Nl|nmis,n]µ∗obs

lP
l hi,lE[Nl|nmis,n]

+ O
(
(nobs)−1

)

: T/TJ(S = Ms/Rs),

Q = E[ŴX,{u}|dmis
X , nmis, n], quantity g′i(·) is derivative of gi(·) with respect to

vec(ŴX,{u}) which is evaluated at E[ŴX,{u}|dmis
X , nmis, n], and term
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t = E[τ̂ imp
i (xmis)|nmis, n] depends on imputation strategy S:

t =





0 : C/T/CJ(S = M)/

T(S = Ms),

≈ τ ∗obs
i : C/T/CJ(S = R),

≈ τ ∗obs
i (1− 1

E[Nobs
i |nmis,n]

) : C/T/CJ(S = D),

E[τ̂T,Rs

i |nmis, n] ≈
P

l hi,lE[Nl|nmis,n]E[τ̂s
l |nmis,n]P

l hi,lE[Nl|nmis,n]
: T(S = Rs),

E[(µ̂imp
i,nobs − Ŷ

imp

xmis)2|nmis, n] : TJ(S = M/Ms),

E[τ̂ obs
i |nmis, n] + E[(µ̂obs

i − Ŷ
imp

xmis)2|nmis, n] : TJ(S = R),

E[τ̂TJ,Rs

i |nmis, n] + E[(µ̂s
i − Ŷ

imp

xmis)2|nmis, n] : TJ(S = Rs),

in which quantities µ̂imp
i,nobs − Ŷ

imp

xmis are location shifts from mean prediction

Ŷ
imp

xmis =
∑nc

i=1 gi(x
mis|ŴX,{u})µ̂

imp
i,nobs to modes of multimodal imputation noise dis-

tribution.

Justification: at first, new notation is described. Vector of estimates of

means of missing Y values within cells is denoted as µimp
{u} = (µimp

1 , . . . , µimp
nc

)T .

Recall the following decomposition of mean squared error (which is given in

theorem 3.5, Chapter 3)

mse(Y imp|xmis, nmis, n) =
(
E[ĝ(xmis)|xmis, nmis, n]− g∗mis(xmis)︸ ︷︷ ︸

imputation bias at xmis

)2

+ Var[Y imp
|xmis,nmis,n]︸ ︷︷ ︸

imputation variance at xmis

+ Var[Y|xmis ]︸ ︷︷ ︸
v∗mis(xmis), target noise at xmis

.

To compute the first two terms (the last term is not affected by imputation

method) some approximations are applied. Following assumptions are used in

derivation of results:

• Predictions based on crisp classifiers (maximum posterior and randomized) are

approximated using soft classifier: estimator of Y mis at xmis given condition-

alisation Q3 is

Y imp|xmis,Q3 ≈
nc∑

i=1

gi(x
mis|wX,{u})µ

imp
i,nobs

︸ ︷︷ ︸
=Y

imp

xmis , mean prediction

+ ε̂(xmis)︸ ︷︷ ︸
imputation noise

, (18)

where u = 1, . . . , nc, and E[ε̂(xmis)|Q3] = 0 for any xmis. Note that in clas-

sification of incomplete observations only X part wX,{u} of centroids w{u} is

used.
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• Posterior probabilities gi(x
mis|wX,{u}), i = 1, . . . , nc are continuous and have

first derivative with respect to xmis and wX,{u}.

Results for mean squared error at point xmis are derived from Q3 conditionali-

sation by integrating over distribution of Dtrain
nobs , ŴX,{u},Dmis

Y,nmis|dmis
X,nmis .

Imputation bias term is computed using first order Taylor approximation as

E[ĝ(xmis)|dmis
X , nmis, n]− g∗mis(xmis)

= E[
nc∑

i=1

gi(x
mis|ŴX,{u})µ̂

imp
i,nobs |dmis

X , nmis, n]− E[Y mis|xmis]

Taylor≈
nc∑

i=1

gi(x
mis|E[ŴX,{u}|dmis

X , nmis, n])E[µ̂imp
i,nobs |xmis, nmis, n]− E[Y mis|xmis]

≈
nc∑

i=1

gi(x
mis|Q)µ∗imp

i,nobs − E[Y mis|xmis],

where Q = {E[ŴX,{u}|dmis
X , nmis, n]}.

Imputation variance is derived using chain rule and approximation (18) as

Var[Y imp
|xmis,nmis,n] = Var[E[Y imp|xmis,Q3]|xmis,dmis

X , nmis, n] (19)

+E[Var[Y imp|xmis,Q3]|xmis,dmis
X , nmis, n]

≈ Var[
nc∑

i=1

gi(x
mis|ŴX,{u})µ̂

imp
i,nobs|xmis,dmis

X , nmis, n]

+E[Var[ε̂(xmis)|xmis,Q3]|xmis,dmis
X , nmis, n],

where the first term in approximation is derived using first order Taylor approx-

imation. For this i) covariance between vec(ŴX,{u}) and µ̂imp
nobs is assumed to be

neglible. Let h(vec(ŴX,{u}), µ̂
imp
nobs) be a function which variance one is interested

of. Taylor approximation yields

Var[h(vec(ŴX,{u}), µ̂
imp
nobs)] (20)

Taylor≈ [
∂h(·)

∂vec(ŴX,{u}), µ̂
imp
nobs

]TVar[vec(ŴX,{u}), µ̂
imp
nobs ][

∂h(·)
∂vec(ŴX,{u}), µ̂

imp
nobs

]

i)≈ [
∂h(·)

∂vec(ŴX,{u})
]TVar[vec(ŴX,{u})][

∂h(·)
∂vec(ŴX,{u})

]

+[
∂h(·)
∂µ̂imp

nobs

]TVar[µ̂imp
nobs ][

∂h(·)
∂µ̂imp

nobs

],

where brackets denote here evaluation of random variables within brackets at their

expected value.

The first term in approximation given in Equation 19 is computed by applying
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approximation 20, what yields to

Var[
nc∑

i=1

gi(x
mis|ŴX,{u})µ̂

imp
i,nobs|xmis,dmis

X , nmis, n]

≈
nc∑

i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)TVar[vec(ŴX,{u})|dmis
X , nmis, n]

nc∑
i=1

µ∗imp
i,nobsg

′
i(x

mis|Q)

︸ ︷︷ ︸
sampling variance due to estimation of classifier parameters

+ g(xmis|Q)TVar[µ̂imp
{u} |dmis

X , nmis, n]g(xmis|Q)
︸ ︷︷ ︸

sampling variance due to estimation of imputation model parameters

, u = 1, . . . , nc

where g(xmis|Q) = (g1(x
mis|Q), . . . , gnc(x

mis|Q))T .

Impact of modelled noise (the second term in approximation 19 for imputation

variance) needs to be computed next. Variances of ε̂(xmis) at Q3 are

Var[ε̂(xmis)|Q3] =





0 : C/T/CJ(S = M)/

T(S = Ms),∑nc

i=1 gi(x
mis|wX,{u})τ obs

i : C/T/CJ(S = R) ,∑nc

i=1 gi(x
mis|wX,{u})τ

T,Rs

i : T(S = Rs) ,∑nc

i=1 gi(x
mis|wX,{u})τ obs

i (1− 1
nobs

i
) : C/T/CJ(S = D) ,

∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = M/Ms) ,∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = R) ,

+
∑nc

i=1 gi(x
mis|wX,{u})τ obs

i∑nc

i=1 gi(x
mis|wX,{u})(µ

imp
i − Y

imp

xmis)2 : TJ(S = Rs)

+
∑nc

i=1 gi(x
mis|wX,{u})τ

TJ,Rs

i ,

where gi(x
mis|wX,{u}) is estimate of posterior probability of i:th cell at Xmis = xmis.

Applying first order Taylor approximations yields to decomposition for imputation

variance:
∑nc

i=1 gi(x
mis|Q)E[τ̂ imp

i (xmis)|nmis, n] and formulas for E[τ̂ imp
i (xmis)|nmis, n].

As an example, for donor strategy first order Taylor approximation yields to

Var[ε̂D(xmis)|xmis, nmis, n] = E[Var[ε̂D(xmis)|Q3]|xmis, nmis, n]

= Var[E[ε̂D(xmis)|Q3]|xmis, nmis, n]︸ ︷︷ ︸
=0

=
nc∑

i=1

E[gi(x
mis|ŴX,{u})τ̂

obs
i (1− 1

Nobs
i

)|xmis, nmis, n]

Taylor≈
nc∑

i=1

gi(x
mis|Q)E[τ̂ obs

i |nmis, n](1− 1

E[Nobs
i |nmis, n]

)

≈
nc∑

i=1

gi(x
mis|Q)τ ∗obs

i (1− 1

E[Nobs
i |nmis, n]

),

where Q = {E[ŴX,{u}|dmis
X , nmis, n]}.
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Approximation 6.14

Expectation of m̂se(Y comp) with n observations can be approximated as

E[m̂se(Y comp)|n]

≈ VarNmis,Dmis
X |n

[
nc∑

i=1

gi(X
mis|E[ŴX,{u}|nmis, n])µ∗imp

i,Nobs

]

︸ ︷︷ ︸
variability of conditional mean estimate

+(µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2

+Var
[
E[Y mis|Xmis]

]
︸ ︷︷ ︸
variability of true model

+ 2ENmis,Dmis
X |n

[( nc∑
i=1

gi(X
mis|E[ŴX,{u}|nmis, n])µ∗imp

i,Nobs − µ∗imp
n

)

︸ ︷︷ ︸
cross term

∗
(

µ∗imp
n − E[Y mis|Xmis]

)]

︸ ︷︷ ︸
cross term (cont.)

+
nc∑

i=1

µ∗imp
i g′i(X

∗mis|Q)TVar[vec(ŴX,{u})|E[Dmis
X , Nmis|n]]

nc∑
i=1

µ∗imp
i g′i(X

∗mis|Q)

︸ ︷︷ ︸
expected sampling variance due to estimation of classifier parameters

+ g(X
∗mis|Q)TVar[µ̂imp

{u} |E[Dmis
X , Nmis|n]]g(X

∗mis|Q)
︸ ︷︷ ︸

expected sampling variance due to estimation of imputation model parameters

+
nc∑

i=1

gi(X
∗mis|Q)E[τ̂ imp

i (Xmis)|n]

︸ ︷︷ ︸
expected imputation variance

+ v∗mis︸ ︷︷ ︸
expected target variance

u = 1, . . . , nc,

where g(X
∗mis|Q) = (g1(X

∗mis|Q), . . . , gnc(X
∗mis|Q))T and

µ∗imp
n = E[µ̂imp|n] ≈

{ ∑nc

i=1 gi(X
∗mis|Q)µ∗obs

i : C/CJ/T/TJ(S = M/R/D),∑nc

i=1 gi(X
∗mis|Q)µ∗si : T/TJ(S = Ms/Rs),
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Q = {E[ŴX,{u}|E[Dmis
X ],E[Nmis], n]}, and constant E[τ̂ imp

i (Xmis)|n] depends on

imputation method and strategy S as follows:

E[τ̂ imp
i (Xmis)|n] =





0 : C/T/CJ(S = M)/ ,

T(S = Ms)

≈ τ ∗obs
i : C/T/CJ(S = R),

≈ τ ∗obs
i (1− 1

E[Nobs
i |n]

) : C/T/CJ(S = D),

E[τ̂T,Rs

i |n] : T(S = Rs),

E[(µ̂imp
i − Ŷ

imp

X
∗mis)2|n] : TJ(S = M/Ms) ,

E[τ̂ obs
i |n] + E[(µ̂obs

i − Ŷ
imp

X
∗mis)2|n] : TJ(S = R),

E[τ̂TJ,Rs

i |n] + E[(µ̂s
i − Ŷ

imp

X
∗mis)2|n] : TJ(S = Rs),

Justification: recall the following decomposition of mean squared error at

population level (which is given in theorem 3.6, Chapter 3)

E[m̂se(Y comp)|n] = VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
variability of conditional mean estimate

+ (µ∗imp
n − µ∗mis

︸ ︷︷ ︸
global bias

)2 + Var[g∗mis(Xmis)]︸ ︷︷ ︸
variability of true model

+ 2ENmis,Xmis|n

[(
E[ĝ(Xmis)|xmis, nmis, n]− µ∗imp

n

)(
µ∗imp

n − g∗mis(Xmis)

)]

︸ ︷︷ ︸
cross term

+ ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

︸ ︷︷ ︸
expected variance of conditional mean estimate

+ v∗imp
n︸ ︷︷ ︸

expected imputation noise

+ ENmis,Xmis|n

[
2Cov[ĝ(Xmis), ε̂xmis|xmis, nmis, n]

]

︸ ︷︷ ︸
second cross term

+ v∗mis︸ ︷︷ ︸
expected target noise

,

where variability of true model and expected target noise (variance) are not affected

by imputation method. Further, second cross term is assumed to be zero. This

holds strictly at least for all other methods than joint (Y, X) clustering TS-SOM

methods (which utilize covariates for missing Y values).

Variability of conditional mean estimate is derived as

VarNmis,Xmis|n

[
E[ĝ(Xmis)|xmis, nmis, n]

]

= VarNmis,Xmis|n

[
E[

nc∑
i=1

gi(X
mis|ŴX,{u})µ̂

imp

i,Nobs|xmis, nmis, n]

]

Taylor≈ VarNmis,Xmis|n

[
nc∑

i=1

gi(X
mis|E[ŴX,{u}|nmis, n])µ∗imp

i,Nobs

]
.
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Global bias requires computation of µ∗imp
n , which is approximated as

µ∗imp
n = E[µ̂imp|n] ≈

{ ∑nc

i=1 gi(X
∗mis|Q)µ∗obs

i : C/CJ/T/TJ(S = M/R/D),∑nc

i=1 gi(X
∗mis|Q)µ∗si : T/TJ(S = Ms/Rs).

Cross term in its implicit form follows by assigning approximation for expectation

E[ĝ(Xmis)|xmis, nmis, n] (computed earlier in derivation of variability of conditional

mean estimate).

Expected variance of conditional mean estimate is computed using approxima-

tion 6.13 and first order Taylor approximation, thus yielding to

ENmis,Xmis|n

[
Var[ĝ(Xmis)|xmis, nmis, n]

]

≈ ENmis,Xmis|n

[
sTVar[vec(ŴX,{u})|Dmis

X , Nmis, n]s

]

+ENmis,Xmis|n

[(
g1(X

mis|Z) . . . gnc(X
mis|Z)

)
Var[µ̂imp

{u} |Dmis
X , Nmis, n]

(
g1(X

mis|Q) . . . gnc(X
mis|Q)

)T
]

≈
nc∑

i=1

µ∗imp
i g′i(X

∗mis|Q)TVar[vec(ŴX,{u})|E[Dmis
X , Nmis|n]]

nc∑
i=1

µ∗imp
i g′i(X

∗mis|Q)

︸ ︷︷ ︸
expected sampling variance due to estimation of classifier parameters

+ g(X
∗mis|Q)TVar[µ̂imp

{u} |E[Dmis
X , Nmis|n]]g(X

∗mis|Q)
︸ ︷︷ ︸

expected sampling variance due to estimation of imputation model parameters

, u = 1, . . . , nc

where s =
∑nc

i=1 µ∗imp

i,Nobsg
′
i(X

mis|Z), in which Z is conditionalizer Q from approxima-

tion 6.13, Q = {E[ŴX,{u}|E[Dmis
X ],E[Nmis], n]}, and

g(X
∗mis|Q) = (g1(X

∗mis|Q), . . . , gnc(X
∗mis|Q))T .

Expected imputation noise (variance) is approximated as

v∗imp
n = E[Var[ε̂(Xmis)|n]

≈
nc∑

i=1

gi(X
∗mis|Q)E[τ̂ imp

i (Xmis)|n].
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A6.3 Second order moments for random number of

missing data values within joint (Y, X) cells

Here elements of covariance-variance matrix Var[Nmis|Q2] are computed, where

Nmis = (Nmis
1 , . . . , Nmis

nc
)T . Recall that number of missing data values within cell i

was specified as

Nmis
i =

nc∑
j=1

Nmis
j,i ,

where Nmis
j,i is number of observations belonging to cell j but which were classified

to cell i.

Multinomial distribution for Nmis|Q2 is given in Equation (6.12). In deriva-

tion of second order moments properties of multinomial distribution (variance and

covariance) come in handy. See Appendix A3.1.2 for details on multinomial distri-

bution.

Variance of number of incomplete observations in cell i is computed as

Var[Nmis
i |Q2] = Var[

nc∑
j=1

Nmis
j,i |Q2]

=
∑

j

Var[Nmis
j,i |Q2] +

∑
j

∑

l 6=j

Cov[Nmis
j,i , Nmis

l,i |Q2]

≈ nmis 1

z
πipiE[q̂i](1− 1

z
πipiE[q̂i])

+
∑

j 6=i

nmis 1

z
πipi(1− E[q̂i])(1− 1

z
πipi(1− E[q̂i]))

+
∑

j

∑

l 6=j

Cov[Nmis
j,i , Nmis

l,i |Q2]

≈ nmis 1

z
πipiE[q̂i](1− 1

z
πipiE[q̂i])

︸ ︷︷ ︸
variance due correct classifications

+ nmis(nc − 1)
1

z
πipi(1− E[q̂i])(1− 1

z
πipi(1− E[q̂i]))

︸ ︷︷ ︸
variance due misclassifications

+
∑

j

∑

l 6=j

Cov[Nmis
j,i , Nmis

l,i |Q2]

︸ ︷︷ ︸
covariance between correct classifications and misclassifications

,
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where the last covariance term is

∑
j

∑

l 6=j

Cov[Nmis
j,i , Nmis

l,i |Q2]

≈ −nmis
∑

l 6=j,j=i,l 6=i

1

z
πipiE[q̂i]

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between correct classifications to cell i and misclassifications from other cells

−nmis
∑

l 6=j,l=i,j 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z
πipiE[q̂i]

︸ ︷︷ ︸
covariance between misclassifications from other cells and correct classifications to cell i

−nmis
∑

l 6=j,j 6=i,l 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between misclassifications

,

where indexing of the first two sums can be simplified yielding to:

∑
j

∑

l 6=j

Cov[Nmis
j,i , Nmis

l,i |Q2]

≈ −nmis
∑

l 6=i

1

z
πipiE[q̂i]

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between correct classifications to cell i and misclassifications from other cells

−nmis
∑

j 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z
πipiE[q̂i]

︸ ︷︷ ︸
covariance between misclassifications from other cells and correct classifications to cell i

−nmis
∑

l 6=j,j 6=i,l 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z

1

nc − 1
πlpl(1− E[q̂l])

︸ ︷︷ ︸
covariance between misclassifications

.
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For i 6= l covariance term is computed as

Cov[Nmis
i , Nmis

l |Q2] = Cov[
∑

j

Nmis
j,i ,

∑
u

Nmis
u,l |Q2]

=
∑

j

∑
u

Cov[Nmis
j,i , Nmis

u,l |Q2]

=
∑

j 6=i

∑

u6=l

Cov[Nmis
j,i , Nmis

u,l |Q2]

+
∑

j 6=i

∑

u=l

Cov[Nmis
j,i , Nmis

u,l |Q2]

+
∑
j=i

∑

u6=l

Cov[Nmis
j,i , Nmis

u,l |Q2]

+
∑
j=i

∑

u=l

Cov[Nmis
j,i , Nmis

u,l |Q2]

≈ −nmis
∑

j 6=i

∑

u6=l

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z

1

nc − 1
πupu(1− E[q̂u])

−nmis
∑

j 6=i

1

z

1

nc − 1
πjpj(1− E[q̂j])

1

z
πlplE[q̂l]

−nmis
∑

u6=l

1

z
πipiE[q̂i]

1

z

1

nc − 1
πupu(1− E[q̂u])

−nmis 1

z

1

nc − 1
πipi(1− E[q̂i])

1

z

1

nc − 1
πlpl(1− E[q̂l]).



Appendix for Chapter 8

In this appendix decomposition of weighted mean squared error estimator is given.

In addition, it is described how data set used in Chapter 8 is constructed.

A8.1 Decomposition of weighted mean squared er-

ror estimator

Let weighted (by sampling weights) mean squared error estimator for Nmis imputed

observations be

m̂se =
n∑

j=Nobs+1

W j

(
Yj − Y comp

j

)2

,

where W j = 1Pn
j=Nobs+1

Wj
Wj.

A possible (reasonable) decomposition of WMSE for situation in which true

model is not known and there is no repetitions of imputations at some given covariate

positions is given next.

Let weighted means of missing and imputed data be

µ̂mis =
n∑

j=Nobs+1

W jYj

µ̂imp =
n∑

j=Nobs+1

W jY
comp
j .
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Now m̂se is decomposed as

m̂se =
n∑

j=Nobs+1

W j

(
Yj − Y comp

j

)2

=
n∑

j=Nobs+1

W j

(
Yj − µ̂mis + µ̂mis − Y comp

j

)2

=
n∑

j=Nobs+1

W j

[
(Yj − µ̂mis)2 + (µ̂mis − Y comp

j )2 + 2(Yj − µ̂mis)(µ̂mis − Y comp
j )

]

=
n∑

j=Nobs+1

W j(Yj − µ̂mis)2

︸ ︷︷ ︸
Weighted sample variance estimator for missing values

+
n∑

j=Nobs+1

W j(µ̂
mis − Y comp

j )2

+2
n∑

j=Nobs+1

W j(Yj − µ̂mis)(µ̂mis − Y comp
j )

=
n∑

j=Nobs+1

W j(Yj − µ̂mis)2 +
n∑

j=Nobs+1

W j(µ̂
mis − µ̂imp + µ̂imp − Y comp

j )2

+2
n∑

j=Nobs+1

W j(Yj − µ̂mis)(µ̂mis − Y comp
j )

=
n∑

j=Nobs+1

W j(Yj − µ̂mis)2 +
n∑

j=Nobs+1

W j(µ̂
mis − µ̂imp)2

︸ ︷︷ ︸
=(µ̂mis−µ̂imp)2

+
n∑

j=Nobs+1

W j(µ̂
imp − Y comp

j )2 + 2
n∑

j=Nobs+1

W j(µ̂
mis − µ̂imp)(µ̂imp − Y comp

j )

︸ ︷︷ ︸
=0

−2
n∑

j=Nobs+1

W j(Yj − µ̂mis)(Y comp
j − µ̂mis)
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where last sum term is decomposed for better interpretation as
n∑

j=Nobs+1

W j(Yj − µ̂mis)(Y comp
j − µ̂mis)

=
n∑

j=Nobs+1

W j(Yj − µ̂mis)(Y comp
j − µ̂imp + µ̂imp − µ̂mis)

=
n∑

j=Nobs+1

W j(Yj − µ̂mis)(Y comp
j − µ̂imp)

+(µ̂imp − µ̂mis)
n∑

j=Nobs+1

W j(Yj − µ̂mis)

︸ ︷︷ ︸
=0

.

Therefore terms in m̂se decomposition are

m̂se =
n∑

j=Nobs+1

W j(Yj − µ̂mis)2

︸ ︷︷ ︸
=A: weighted variance estimator for missing Y values

+
n∑

j=Nobs+1

W j(Y
comp
j − µ̂imp)2

︸ ︷︷ ︸
=B: weighted variance estimator for imputed Y values

−2
n∑

j=Nobs+1

W j(Yj − µ̂mis)(Y comp
j − µ̂imp)

︸ ︷︷ ︸
=C: weighted covariance estimator between missing Y and imputed Y

+( µ̂mis − µ̂imp

︸ ︷︷ ︸
=D: squared global bias estimator

)2.

When computing expectation of m̂se the squared global bias term (term D)

may be decomposed as

E
[
(µ̂mis − µ̂imp)2

]
= E

[
(E[µ̂mis]− E[µ̂imp] + µ̂mis − E[µ̂mis] + E[µ̂imp]− µ̂imp)2

]

= (E[µ̂mis]− E[µ̂mis])2 + E
[
(µ̂mis − E[µ̂mis] + E[µ̂imp]− µ̂imp)2

]

+ 2
(
E[µ̂mis]− E[µ̂imp]

)
E

[
µ̂mis − E[µ̂mis] + E[µ̂imp]− µ̂imp

]

︸ ︷︷ ︸
=0

= (E[µ̂mis]− E[µ̂mis])2

+E
[
(µ̂mis − E[µ̂mis])2 + (E[µ̂imp]− µ̂imp)2

+2(µ̂mis − E[µ̂mis])(E[µ̂imp]− µ̂imp)
]

= (E[µ̂mis]− E[µ̂mis])2 + Var[µ̂mis] + Var[µ̂imp]

−2E
[
(µ̂mis − E[µ̂mis])(µ̂imp − E[µ̂imp])

]

︸ ︷︷ ︸
Cov[µ̂mis,µ̂imp]

.



370

A8.2 Construction of data set

The data construction phases are:

1. Read variables O2, S4 SIZE, PWEIGHT, S11, P1, P2, E3D, E5 from tabulator

separated file uksmef2004.tab (1st edition, dated February 1st / 2006)

2. Pick observations for which turnover (O2) is not missing, variable S4 SIZE is

not equal to values -2, -1 or 1, and variables S11, P1, P2, E3D, E5 do not have

values -2, -1 or 0.



Appendix for Chapter 9

This appendix contains some details for Chapter 9. At first, issues with documen-

tation of data set which is used in the chapter are discussed about. Construction of

data set which is used in experiments is described, as is the missingness generator for

SEX variable. Brief descriptions of variables for age experiment are given. Finally,

variables which are treated as continuous in the experiments are listed.

A9.1 Issues with documentation of the data set

Documentation supplied with the Quaterly Labour Force Survey Household 2006

data set was partially out-dated. Namely, details on LFS variables and derived

variables were from year 2003. Fortunately, version of details of LFS variables for

year 2006 was available from National Statistics1. Even with documentation for

year 2006 there were some issues. Namely, variables WKAGG1664, LEVQUAL6

and ICOD92 were not documented. First of these variables was not used at all,

whereas the other two variables were used. Fortunately, LEVQUAL5 which is level of

highest qualification held (year 2005) is documented. Therefore author assumes that

LEVQUAL6 is level of highest qualification held for year 2006, and that its coding is

same as for LEVQUAL5. Variable ICOD92 is assumed to be industry of current or

last job. Its values map to Standard Industrial Classification of economic activities

1992 (SIC92) classes. Documentation did not include mappings from ICOD92 values

to SIC92 classes. However, such a mapping was available in internet2.

A9.2 Construction of data set

In data construction we remove system variables, derived variables, and variables

with zero variance (no information). Further variables WKAGG1664 (unknown

variable), DVHRPNUM (counter variable), IOUTCOME (contains AGE informa-

tion class), and FAMUNIT (counter variable) are removed. Main reason for removal

of variables is to remove duplicate information about variables AGE and SEX, and

to focus on information in answers to questionnaires. Undocumented variable WK-

AGG1664 is removed as it may contain information about AGE.

1www.statistics.gov.uk/downloads/theme labour/LFSUG Vol3.pdf (checked 06.03.2007)
2Do Google search using keyword uk97delessification.htm and use cached link to site:

www.lisproject.org/les/uk/uk97delessification.htm (checked 06.03.2007)



372

Data set for age experiment is constructed using the following phases:

1. Read tabulator separated file aj06hp.tab (1st edition, dated October 16th /

2006)

2. Convert SNGDEG variable from string format to integer valued as described

in A9.3

3. Remove system variables:

QUOTA, WEEK, W1YR, QRTR, WAVFND, HHLD, THISWV, REFDTE,

REFWKD, REFWKM, REFWKY, NUMHHLD, NURSE, HOUT,

PERSNO, RESPNO, RECNO, ADD, TYPINT, HALLRES, DOBM,

DOBY

4. Remove derived variables (year 2003 documentation):

FUSERIAL, HSERIAL, INECAC05, AOFL16, AOFL19, AOHL16, AOHL19,

AYFL19, AYHL19, CAIND, EXTFU, FDPCH15, FDPCH16, FDPCH19,

FDPCH2, FDPCH4, FDPCH9, FMDP, FMNDP, FMPLUS, HDPCH19,

HOHID, RELHFU, SMSXFU, TOTFU, TOTNUM, TOTXFU,

XFMDC, XFMNDC, AGEDFE, AGES, BACTHR, BUSHR, CLAIMS, CRYOX,

CURED, DISCURR, DURUN, DURUN2, EMPLEN, EMPMON, ETHCEN15,

ETHCEN6, FLED9D, FLEXW1, FLEXW2, FLEXW3, FLEXW4, FLEXW5,

FLEXW6, FLEXW7, FLEXW8, FLEXW9, FTPT, FTPTW, GB, GOR3,

GORONE, GOVTOF, GOVTOF2, GOVTOR, HRP, ILLFRI, ILLMON,

ILLOFF, ILLSAT, ILLSUN, ILLTHU, ILLTUE, ILLWED, INDD92L, INDD92M,

INDD92S, INDG92L, INDG92M, INDG92S, INDM92L, INDM92M, INDM92O,

INDM92S, INDS92L, INDS92M, INDS92S, INDSECT, LKWFWM, NATIDB,

NATIDE, NATIDI, NATIDO, NATIDS, NATIDW, NATOX, NSECM,

NSECMMJ, PAIDHRA, PAIDHRU, PRXREL, REDCLS, REDUND, REG3,

REGONE, SAMELAD, SC2KLMJ, SC2KLMN, SC2KMMJ, SC2KMMN,

SC2KOMJ, SC2KOMN, SC2KSMJ, SC2KSMN, SIC80L, SIC80M, SIC80O,

SOC2KAP, SOC2KL, SOC2KM, SOC2KO, SOC2KR, SOC2KS, STUCUR,

SUMHRS, TOTHRS, TTACHR, TTUSHR, TYEMPS, URESMC, WCHFR,

WCHMO, WCHSA, WCHSU, WCHTH, WCHTU, WCHWE, WKFRI, WK-

MON, WKSAT, WKSUN, WKTHU, WKTUE,

WKWED, WNLEFT, WNLEFT2, WRKAGE, XDISDDA

5. Remove additional derived variables (year 2006 documentation):

MARDY6, MARSEX6, HHTYPE6, HDPCH4, HDC515, HDPCH18,

HEACOMB, HEAHEAD, HEAWIFE, HNFTSTUD, HNOTSTUD, FUTYPE6,

ILODEFR, PUBLICR, MPNR02, RESTMR6, REDINDYR, REGWKR,

GORWKR, DIFFHR6, SECJMBR, MPNSR02, REGWK2R, GORWK2R,

MPNLR02, OYMPR02, HIQUAL5, HIQUAL5D, HITQUA5,
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6. Remove variables: WKAGG1664, DVHRPNUM, FAMUNIT, IOUTCOME

7. Remove variables with zero variance (no information):

XR13, XR14, XR15, PRIVCL7, PRIVCL8, REDMPN2, HOMED23, UNDY986,

UNDY987, UNDY988, UNDY989, NOLOWA06, NOLOWA07, NOLOWA08,

NOLOWA09, NOLOWA10, METHSE5, METHSE6, METHAL11, METHAL12,

METHAL13, METHAL14, QLSTY606, QLSTY607, QLSTY608, QLSTY609,

QLSTY610, QLSTY611, CMBDEG11, CMBDEG12, QGCSE44, QGCSE45,

GCSEFUL4, GCSEFUL5, SUBCOD8, SCQUL, GNVQUL5, RSAQUL,

HSTQUL, HEAL16, HEAL17, HEALPB08, HEALPB09, HEALPB10,

SKDSBN36, SKDSBN37, PENBEN34, FAMLY032, FAMLY033, TPBEN37,

TPBEN38, SUBNO8

8. Remove two observations having value -9 in variable AGE

A9.3 Coding of SNGDEG variable

Original values, excluding special values, for variable SNGDEG were given in fol-

lowing forms: V1, V1.V2, V1.V2.V3, and V1.V2.V3.V4, in which V1-V4 are two

digit positive numerical values, and V1 is most significant level and V4 is least sig-

nificant level. Due to technical reason (indicator variable coding routine could not

handle non-numeric values) the non-numeric answers were coded as integer values.

Coding to integer values is described next. All original values can be presented in

hierarchical form as V1.V2.V3.V4 as follows:

ORIGINAL VALUE TRANSFORMED VALUE V1.V2.V3.V4

X X.0.0.0

X.Y X.Y.0.0

X.Y.Z X.Y.Z.0

X.Y.Z.W X.Y.Z.W

Finally, SNGDEG is coded as:

VALUE = V 4 + V 3 ∗ 100 + V 2 ∗ 10000 + V 1 ∗ 1000000.

A9.4 Missingness generator for SEX experiment

Missingness of SEX depends on FTPTWK (whether full or part time in main job)

and BENFTS (whether claiming any State Benefits/Tax credits) variables.

Probability for nonresponse of SEX as function of FTPTWK and BENFTS is:

FTPTWK=FULL-TIME PART-TIME -8/-9

BENFTS= YES 0.7 0.05 0.05

NO 0.9 0.05 0.15

-8/-9 0.6 0.2 0.1
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Remark that -8 (no answer) and -9 (not applicable) are special values. Note that

missing-data mechanism is MCAR within (FTPTWK, BENFTS) cells. This is a

MAR mechanism because response probabilities vary within cells.

A9.5 Descriptions of Labour Force Survey House-

hold dataset 2006 variables for AGE experiment

Following five tables contain variables which were used in the AGE experiment.

Short descriptions of the variables are given. Note that these are coded variables,

which include individual categories and special values.
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Variable Description

AGE Age of respondent (variable of interest).

ACTWKDY2 4 Days scheduled to work [Thursday]

ACTWKDY2 7 Days scheduled to work [Sunday]

ATTEND -9 Whether still attending education course [Not applicable]

CCTC5 -9 Child care tax credit [Not applicable]

CMBDEG01 8 1. subject area of combined subject degree [Technology]

CMBDEG01 16 1. subject area of combined subject degree [Humanities]

CMBDEG05 -9 5. subject area of combined subject degree [Not applicable]

CMBMAIN 7 Main subject area studied in qualification [Engineering]

CMBMAIN 10 Main subject area studied in qualification [Social sciences]

CRY01 59 Country of birth [Other (than available options)]

EDAGE Age when completed full time education

ENROLL -9 Whether enrolled on education course [Not applicable]

EVERWK 1 Ever had a paid job or place on scheme [Yes]

EVERWK -9 Ever had a paid job or place on scheme [Not applicable]

FAMLY031 -9 Type of family related 1. benefit claimed [Not applicable]

FUTUR13 2 Job related training or education in the last 13 weeks [No]

GCSEFUL1 -9 Type of 1. GCSE or equivalent held above grade C/1

[Not applicable]

HEAL02 1 What 2. health problem does respondent have

[Problems or disabilities (including arthritis or rheumatism)

connected with ...arms or hands]

HEAL03 2 What 3. health problem does respondent have

[Problems or disabilities (including arthritis or rheumatism)

connected with ...legs or feet]

HEAL04 10 What 4. health problem does the respondent have

[Stomach, liver kidney or digestive problems]

HEALPB01 3 1. health problem/disability that affected respondent in the

past [Problems or disabilities (including arthritis or

rheumatism) connected with ...back or neck

HEALYR 2 Any other past health problems or disabilities that have

lasted longer than a year [No]

HHWT03 Household weight (sampling information)
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Variable Description

HLDCMP6 2 Composition of household

[1 female over pensionable age with no children]

HLDCMP6 7 Composition of household

[Cohabiting couple both under pensionable age with no

children]

HLDCMP6 9 Composition of household

[Cohabiting couple one or more over pensionable age with no

children]

HNFTIME Number of people in household who are working full-time

HNPEN Number of people in household who are of pensionable age

HNWKAGE Number of people in household who are of working age

HNWOTH05 -9 Number of people in household who are inactive for other

reasons but would like to work [Not applicable]

HOME 4 Whether working from home in main job

[Somewhere quite separate from home]

HOME -9 Whether working from home in main job

[Not applicable]

HSNGNI -9 Whether receiving rent or rate rebate (NI) [Not applicable]

ICOD92 331 Industry of last or current work

[Standard Industrial Classification (SIC92) code 60.23:

Other passenger land transport]

ICOD92 382 Industry of last or current work

[72.50: Repair of office, computer eqt]

ICOD92 423 Industry of last or current work

[85.12: Medical practise activities]

JBAWAY 2 Whether temporarily away from paid work [No]

JSADUR 8 Length of time claiming Job Seekers Allowance and/or

NI Credits [3 years but less than 4 years]

LEFTYR -9 Year left last job [Not applicable]

LEVQUAL6 1 Level of highest qualification held? [NVQ level 4 and above]

LIMITA 1 Whether health problem affects the amount of paid work

that can be done [Yes]

LIMITA -9 Whether health problem affects the amount of paid work

that can be done [Not applicable]

LIVWTH 1 Whether living together as couple [Yes]

LIVWTH -9 Whether living together as couple [Not applicable]

LKTIMB 3 How long looking for work [1 month but less than 3 months]



377

Variable Description

LLORD 6 Landlord of accommodation [Individual employer]

LNGLIM 1 Whether health problem lasting more than 12 months [Yes]

LOOK4 2 Whether looking for paid work in last four weeks [No]

LOOKM2 6 2. reason for looking for different job

[Respondent wants to work shorter hours than in present job]

M3CRYO 52 Country of residence 3 months ago [United States of America]

MAINDRV -9 Driver with most mileage [Not applicable]

MAINDRV2 5 Driver with 2. most mileage [Person 5].

MANAGLR 1 Managerial status last job (reported) [Manager]

MANAGLR -9 Managerial status last job (reported) [Not applicable]

MARCHK 1 Whether spouse is household member [Yes]

MARSTA 1 Marital status [Single, never married]

METHAL02 2 2. method of looking for work (no preference)

[Visit a Jobclub]

METHMP04 7 Method of looking for work (employees or Government scheme)

[Study situations vacant in newspapers or journals]

NATO 84 Nationality (other) [Portugal (inc. Azores & Madeira)]

NOLWM 3 Main reason not looking for work in last 4 weeks

[Looking after the family/home]

NOLWM -9 Main reason not looking for work in last 4 weeks

[Not applicable]

NUMAS 1 Number of A-S levels [1 A-S level]

NVQSVQ -9 Whether respondent has any full NVQs or SVQs

[Not applicable]

NVQUN -9 Whether respondent has any units towards NVQs or SVQs

[Not applicable]

OYCIRC -9 Circumstances twelve months ago [Not applicable]

OYCIRC 10 Circumstances twelve months ago [Retired from paid work]

OYCRY 1 Country of residence 12 months ago [UK]
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Variable Description

OYSOLO 1 On own or with employees 1 year ago

[Alone or with partner(s) but not employees]

QGCSE41 1 Type of GCSE or equivalent held below grade C/1

[GCSE s below grade C]

QGNVQ -9 Whether respondent has any GNVQs/GSVQs

[Not applicable]

QUALCH53 -9 Holds 3. educational/training qualification from

[Not applicable]

QUALS601 16 Type of 1. qualification already held

[AS-level/Vocational AS-level or equivalent]

QUALS602 18 Type of 2. qualification already held [Access to HE]

QUALS602 21 Type of 2. qualification already held

[GCSE/Vocational GCSE]

QUALS603 17 Type of 3. qualification already held

[Certificate of sixth year studies (CSYS) or equivalent]

QUALS604 8 Type of 4. qualification already held

[Nursing or other medical qualification not yet mentioned]

QULHI4 -8 What highest qualification current study towards

[No answer]

RELBUS 2 Whether doing unpaid work for relative’s business [No]

RELH06 0 Relationship to head of household [Head of household]

RELH06 3 Relationship to head of household [Child]

RELHRP6 3 Relationship to household reference person [Child]

RELIG 1 Religion [Christian]

RESTME 6 Length of time at this address [10 years or longer]

SCHM04 66 Government employment and training programme

[None of available options]

SECJOB 2 Whether had second job in reference week [No]

SEX 1 Sex of respondent [Male]

SNGDEG 10040303 Subject of single subject degree

[Social Policy / Education Policy]

SNGDEG 18010100 Subject of single subject degree

[Creative Arts & Design / Drawing]

SNGDEG 6010201 Subject of single subject degree

[Mathematical & Computer Sciences /

Mechanics (Mathematical)]
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Variable Description

SNGDEG 6040200 Subject of single subject degree

[Computer Science / Networks & Communications]

SNGDEG 7020402 Subject of single subject degree

[Civil Engineering / Engineering Surveying]

STAT 1 Employment status [Employee]

SUBCOD1 21,1 Area of 1. study [Arts / Fine Arts].

TEACH41 -9 Type of 1. teaching qualification already held

[Not applicable].

TECLEC4 -9 On scheme run by a TEC or LEC [Not applicable]

TEN1 2 Accommodation details

[Being bought with mortgage or loan]

TOTUS1 Total usual hours worked excluding lunch breaks

(no overtime)

TPBEN31 4 Type of 1. benefit claimed [State pension]

TPBEN31 -9 Type of 1. benefit claimed [Not applicable]

TPBEN32 3 Type of 2. benefit claimed

[Sickness or disability (excluding tax credits)]

TRSITE 9 Main place of education or training in work

[At home (OU, Open Tech, correspondence course)]

TYPVCL3 1 Type of 3. vehicle [Car]

UNDABL 2 Whether employer able to increase hours [No]

UNDEMP -9 Whether would like to work longer hours, at current basic

rate of pay, given the opportunity [Not applicable]

USEVCL 2 Own or use motor vehicle [No]

XR01 3 Relationship to person 1 [Natural son or daughter]

XR01 -9 Relationship to person 1 [Not applicable]

XR02 -9 Relationship to person 2 [Not applicable]
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A9.6 Variables which are treated as continuous

Following variables were treated as continuous (possible special values coded as in-

dicator variables) in experiments with the QLFS data set:

LEFTYR, CAMEYR, CONMPY, CONSEY, TOTUS1, USUHR, POTHR,

UOTHR, TOTUS2, TOTAC1, ACTHR, ACTPOT, ACTUOT, TOTAC2,

ACTHR2, UNDHRS, OVHRS, TRHR93, TRONJB, EDAGE, YERQAL2,

YERQAL3, TOTNUM, TOTFU, FMDP, FMNDP, FMPLUS, TOTXFU,

XFMDC, XFMNDC, NFAMHH, NPERSFM, NPERSHH, HDPCH19,

HDPCH4, HDC515, HDPCH18, HNWKAGE, HNPEN, HNDK, HNEMP,

HNUNEMP, HNINAC05, HNINACT, HNFTSTUD, HNOTSTUD, HNFTIME,

HNPTIME, HNIWSTU, HNIWSKD, HNIWDSC, HNIWFAM, HNWOTH05,

HNIWOTH, HNNOWK05, HNINOWK, FDPCH2, FDPCH4, FDPCH9,

FDPCH15, FDPCH16, FDPCH19, ONETEN, EMPMON, ILLOFF, SUMHRS,

DAYSPZ, HOLS, BNKHOLF, TOTWRK, TRNDAY, LEISHRS, EDHRS,

THRS, T4HRS, NUMILL


