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1 Introduction

1.1 Classical Sobolev embeddings

Let B ⊂ Rn be a ball. The classical Sobolev embedding theorem [17] states that the
Sobolev space W 1,p(B), 1 ≤ p < n, consisting of functions u ∈ Lp(B) having weak
(distributional) partial derivatives in Lp(B), is continuously embedded in Lp∗(B),
where p∗ = np/(n−p). Moreover, there is a constant C depending only on dimension
n such that the Sobolev-Poincaré inequality

‖u− uB‖Lp∗ (B) ≤ C‖|∇u|‖Lp(B), (1)

where uB = −
∫
B

u dx = 1
|B|

∫
u dx, holds for each u ∈ W 1,p(B). If p > n, then

u ∈ W 1,p(B) has a representative, which is Hölder continuous with exponent 1−n/p:

sup
x,y∈B

|u(x)− u(y)| ≤ C|x− y|1−n/p‖|∇u|‖Lp(B). (2)

This result originates from the work of Morrey [14]. In the critical case p = n,
the space W 1,p(B) is continuously embedded in the Orlicz space exp Ln′(B), where
n′ = n/(n− 1), and u ∈ W 1,n(B) satis�es the Trudinger inequality

‖u− uB‖expLn′ (B) ≤ C‖|∇u|‖Ln(B), (3)

where ‖ · ‖expLn′ (B) is the Luxemburg norm generated by the Young function Φ(t) =

exp(tn
′
)− 1. The Trudinger inequality (3) was independently obtained by Yudovich

[20], Pokhozhaev [15] and Trudinger [18].

1.2 Sobolev spaces and Poincaré inequalities in metric spaces

Recently there have been attempts to generalize the theory of Sobolev spaces to
the setting of a metric space equipped with a measure. Motivation for such a
generalization comes from several examples. These include the study of the Carnot-
Caratheodory metric generated by a family of vector �elds, theory of quasiconformal
mappings on Loewner spaces, analysis on topological manifolds, potential theory on
in�nite graphs and analysis on fractals, see [9] and the references therein.

One of the possible de�nitions of a Sobolev space on a metric measure space is
based on upper gradients. A Borel function g : X → [0,∞] is an upper gradient of
a function u : X → R, if for all recti�able curves γ : [0, l] → X,

|u(γ(0))− u(γ(l))| ≤
∫
γ

g ds (4)

whenever both u(γ(0)) and u(γ(l)) are �nite, and
∫
γ
g ds = ∞ otherwise. The

concept of an upper gradient was introduced by Heinonen and Koskela in [11]. The
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(Newton-)Sobolev space N1,p(X), consisting of functions u ∈ Lp(X) having an upper
gradient g ∈ Lp(X), was introduced and studied by Shanmugalingam [16].

To obtain a reasonable theory one has to make some assumptions on the un-
derlying space X = (X, d, µ). The basic assumptions are that the measure µ is
doubling, and that the space X supports a p-Poincaré inequality for some p ≥ 1.
The doubling property of the measure means that there exists a constant Cd such
that

µ(2B) ≤ Cdµ(B), (5)

whenever B is a ball. It is easy to see that the doubling property is equivalent to
the existence of constants s and Cs such that

µ(B(x, r))

µ(B(x0, r0))
≥ C−1

s

(
r

r0

)s
(6)

holds, whenever x ∈ B(x0, r0) and r ≤ r0. The space X supports a p-Poincaré
inequality, if there exist constants CP and τ ≥ 1 such that

−
∫
B

|u− uB| dµ ≤ CP r

(
−
∫
τB

gp dµ

)1/p

(7)

whenever B = B(x, r) ⊂ X is a ball, u ∈ L1
loc(X) and g is an upper gradient of u.

The doubling spaces supporting the 1-Poincaré inequality (and so the p-Poincaré
inequality for every p ≥ 1) include Riemannian manifolds with nonnegative Ricci
curvature, Q-regular orientable topological manifolds satisfying the local linear con-
tractability condition, Carnot groups and more general Carnot-Carathéodory spaces
associated with a system of vector �elds satisfying Hörmander's condition, as well
as more exotic spaces constructed by Bourdon and Pajot, Laakso, and Hanson and
Heinonen, see [9] and the references therein. There exist also spaces that support
the p-Poincare inequality for �xed p > 1 but not for any smaller exponent. In such
spaces the usual representation theorems in terms of Riesz potentials may not be
available.

Under the assumption that µ is doubling and that X supports the p-Poincaré
inequality, versions of inequalities (1), (2) and (3) hold for functions in N1,p. This is
a consequence of a more general result, due to Hajªasz and Koskela [8, 9], concerning
the self-improving properties of (7) for a general pair (u, g): Assume that µ satis�es
(6), B ⊂ X is a ball, δ > 0, and that a pair (u, g), where u ∈ L1

loc(X) and 0 ≤ g ∈
Lp

loc(X) satis�es the p-Poincaré inequality (7) for every ball B′ such that τB′ ⊂ B̂ =
(1 + δ)τB. There exists a constant C = C(Cs, s, CP , τ, δ) such that the following
holds.

1) If p < s, then

sup
t>0

t

(
µ({x : |u(x)− uB| > t}

µ(B)

)1/ps

≤ CrB

(
−
∫
B̂

gp dµ

)1/p

, (8)
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where ps = sp
s−p . Consequently, for q < ps, we have(

−
∫
B

|u− uB|q dµ

)1/q

≤ C ′rB

(
−
∫
τ ′B

gp dµ

)1/p

, (9)

where C ′ depends on C and q. In general, (7) does not yield (9) with q = ps.
However, if a pair (u, g) has the truncation property, which means that for
every b ∈ R, 0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair (vt2t1 , gχ{t1<v≤t2}),
where v = ε(u − b) and vt2t1 = min{max{0, v − t1}, t2 − t1}, satis�es the p-
Poincaré inequality, then we have (9) with q = ps.

2) If p = s, then
‖u− uB‖−LΦ(B) ≤ CrB‖g‖−Ls(B̂), (10)

where ‖ · ‖−LΦ(B) is the normalized Luxemburg norm generated by the function
Φ(t) = exp t− 1. Moreover, if X is connected and s > 1, then (10) holds with
Φ(t) = exp(ts

′
)− 1, where s′ = s

s−1
.

3) If p > s, then u has a locally Hölder continuous representative, for which

|u(x)− u(y)| ≤ Cr
s/p
B d(x, y)1−s/p

(
−
∫
B̂

gp dµ

)1/p

(11)

for x, y ∈ B.

1.3 Generalized Poincaré inequalities

Franchi, Pérez and Wheeden [5, 6] and MacManus and Pérez [12, 13] studied the
self-improving properties of inequalities of type

−
∫
B

|u− uB| dµ ≤ ‖u‖aa(τB), (12)

where ‖u‖a > 0, τ ≥ 1 and a : {B ⊂ X : B is a ball} → [0,∞) is a functional
that satis�es certain discrete summability conditions. In [12] MacManus and Pérez
showed that if δ > 0 is �xed, and the functional a satis�es condition∑

a(Bi)
rµ(Bi) ≤ cra(B)rµ(B), (13)

whenever the balls Bi are disjoint and contained in the ball B, then the Poincaré-
type inequality (12) improves to

sup
λ>0

λ

(
µ({x ∈ B : |u(x)− uB| > λ})

µ(B)

)1/r

≤ C‖a‖‖u‖aa(B̂), (14)
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where ‖a‖ is the minimum of the constants c so that (13) holds and B̂ = (1+ δ)τB.
In [13], they proved that if X is connected, r > 1, and a satis�es the stronger
condition ∑

a(Bi)
r ≤ cra(B)r, (15)

whenever the balls Bi are disjoint and contained in the ball B, then

‖u− uB‖−LΦ(B) ≤ Ca(B̂), (16)

where Φ(t) = exp(tr
′
)− 1 and r′ = r

r−1
.

To see that the results of MacManus and Pérez generalize those of Hajªasz and
Koskela, simply note that if µ satis�es (6), then the functional

a(B) = rB

(
−
∫
B

gp
)1/p

,

where 0 ≤ g ∈ Lp
loc(X), satis�es condition (13) with r = sp/(s − p), if p < s, and

condition (15) with r = s, if p = s.

1.4 Self-improving properties of Orlicz-Poincaré inequalities
in connected spaces

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =

∫ t

0

φ(s) ds,

where φ : [0,∞) → [0,∞] is increasing, left-continuous function, which is neither
identically zero nor identically in�nite on (0,∞). The purpose of this thesis is
to study the self-improving properties of the following Φ-Poincaré inequality, in-
troduced recently in [19] in connection with the study of the Orlicz-Sobolev space
N1,Φ(X) consisting of functions u ∈ LΦ(X) having an upper gradient g ∈ LΦ(X).

De�nition 1.1 Let Φ be a Young function. A pair (u, g) of measurable functions,
u ∈ L1

loc
(X) and g ≥ 0, satis�es the Φ-Poincaré inequality (in an open set U), if

there are constants CP and τ such that

−
∫
B

|u− uB| dµ ≤ CP rBΦ−1

(
−
∫
τB

Φ (g) dµ

)
(17)

for every ball B ⊂ X (such that τB ⊂ U).

Notice that, in Rn, a pair (u, |∇u|) of a weakly di�erentiable function and the length
of its weak gradient satis�es the 1-Poincaré inequality, and so, by Jensen's inequality,
the Φ-Poincaré inequality for every Young function Φ.
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An optimal embedding theorem for the Orlicz-Sobolev space W 1,Φ(Rn) was re-
cently proved by Cianchi [1, 2], see also [3]. Our �rst and main goal is to extend
this result to the metric setting.

Before stating (a version of) Cianchi's result and its generalization we have to
introduce some notation. Let s > 1. For a Young function Φ satisfying∫ 1

0

(
t

Φ(t)

)s′−1

dt < ∞ and

∫ ∞

0

(
t

Φ(t)

)s′−1

dt = ∞, (18)

de�ne
Φs = Φ ◦Ψ−1

s , (19)

where

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

. (20)

If ∫ ∞( t

Φ(t)

)s′−1

dt < ∞, (21)

de�ne
ωs(t) = (tΘ−1(ts

′
))s

′
, (22)

where Θ−1 is the left-continuous inverse of the function given by

Θ(r) = s′
∫ ∞

r

Φ̂(t)

t1+s′
dt (23)

and Φ̂ is the conjugate of Φ.
We will state Cianchi's result only for balls, but it actually holds for much more

general domains: Let s ≥ 2, let B ⊂ Rs be a ball, and let u be a weakly di�erentiable
function such that |∇u| ∈ LΦ(B). Then there is a constant C depending only on s
such that

1) If (18) holds, then

‖u− uB‖LΦs (B) ≤ C‖|∇u|‖LΦ(B).

Moreover, LΦs(B) is the smallest Orlicz space into which W 1,Φ(B) can be
continuously embedded.

2) If (21) holds, then u has a continuous representative for which

|u(x)− u(y)| ≤ C‖|∇u|‖LΦ(B)ω
−1
s (|x− y|−s),

for x, y ∈ B.

The main result of this thesis is the following.
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Theorem 1.2 ([A]) Assume that X is connected, µ satis�es (6) with 1 < s < ∞,
B ⊂ X is a ball, δ > 0, B̂ = (1 + δ)τB, g ∈ LΦ(B̂), and that a pair (û, ĝ), where
û = u/‖g‖LΦ(B̂) and ĝ = g/‖g‖LΦ(B̂), satis�es the Φ-Poincaré inequality in B̂.

1) If (18) holds, then

‖u− uB‖LΦs
w (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (24)

where Φs is de�ned by (19)-(20). Moreover, if the pair (û, ĝ) has the truncation
property, then

‖u− uB‖LΦs (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂). (25)

2) If (21) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (rsBµ(B)−1d(x, y)−s), (26)

where ωs is de�ned by (22)-(23).

Here, C = C(Cs, s, CP , τ, δ).

As a consequence, we obtain an optimal embedding theorem for the space N1,Φ(X).

Corollary 1.3 Assume that (X, d, µ) is a doubling metric measure space that sup-
ports the Φ-Poincaré inequality and satis�es (6) with s > 1. Let B be a ball, δ > 0
and B̂ = (1 + δ)τB.

1) If Φ satis�es (18), then N1,Φ(B̂) ⊂ LΦs(B), where the embedding is continuous.
Moreover, each u ∈ N1,Φ(B̂) and every upper gradient g of u satisfy (25).

2) If Φ satis�es (21), then N1,Φ(B̂) ⊂ C(B). Moreover, each u ∈ N1,Φ(B̂) and
every upper gradient g of u satisfy (26).

Apart from the case X = Rn, Theorem 1.2 and Corollary 1.3 seem to be new
even if the Φ-Poincaré inequality in the assumptions is replaced by the 1-Poincaré
inequality.

The following example gives concrete expressions for the �Sobolev conjugate� Φs.

Example 1.4 Let Φ be equivalent to the function tp logq t near in�nity, where either
p = 1 and q ≥ 0 or p > 1 and q ∈ R. Then Φs is equivalent near in�nity to

tsp/(s−p)(log t)sq/(s−p) if 1 ≤ p < s

exp(ts/(s−1−q)) if p = s, q < s− 1

exp(exp(ts/(s−1))) if p = s, q = s− 1.
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1.5 Self-improving properties of Orlicz-Poincaré inequalities
in the general case

It is essential in Theorem 1.2 that the underlying space X is connected. In [B] we
investigate the general case. Instead of assuming that Φ is a Young function, we
assume the following:

(Φ-1) Φ : [0,∞) → [0,∞) is an increasing bijection.

(Φ-2) The function t 7→ Φ(t)

ts/(s+1) is increasing.

Notice that (Φ-2) allows Φ to increase essentially more slowly than any Young func-
tion. The results concerning such Φ are new also for connected spaces.

Theorem 1.5 ([B]) Assume that Φ satis�es (Φ-1) and (Φ-2), µ satis�es (6) with
0 < s < ∞, B ⊂ X is a ball, δ > 0, τ ≥ 1, B̂ = (1 + δ)τB, and that a pair (û, ĝ),
where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré inequality in B̂.

1) If ∫ 1

0

Φ−1(t)

t1+1/s
dt < ∞ and

∫ ∞

0

Φ−1(t)

t1+1/s
dt = ∞, (27)

then
‖u− uB‖LΦ̃s

w (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (28)

where

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)

t1+1/s
dt. (29)

Moreover, if the pair (û, ĝ) has the truncation property, then

‖u− uB‖LΦ̃s (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂). (30)

2) If ∫ ∞ Φ−1(t)

t1+1/s
dt < ∞, (31)

then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω̃s(µ(B)−1rsBd(x, y)−s),

where

ω̃s(r) =

∫ ∞

r

Φ−1(t)

t1+1/s
dt. (32)

Here, C = C(Cs, s, CP , τ, δ).

If Φ is �close� to the function t 7→ ts, the conclusion of Theorem 1.5 is weaker
than that of Theorem 1.2.
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Example 1.6 Let Φ be equivalent near in�nity to the function ts logq t. Then the
function Φs is equivalent near in�nity to{

exp(ts/(s−1−q)) if q < s− 1

exp(exp(ts/(s−1))) if q = s− 1,

and the function Φ̃s is equivalent near in�nity to{
exp(ts/(s−q)) if q < s

exp(exp(t)) if q = s.

On the other hand, if Φ is a Young function such that the function t 7→ Φ(t)/tp

is either decreasing for some p < s, or increasing for some p > s, then Theorem 1.5
is equivalent to Theorem 1.2 ([B, Theorem 1.5]).

1.6 Self-improving properties of generalized Orlicz-Poincaré
inequalities

In both [A] and [B], we also prove some abstract self-improving results which can
be formulated in terms of spaces AΦ,s

τ (Ω) de�ned as follows.

De�nition 1.7 Let Ω be an open set, Φ a Young function, τ ≥ 1 and 0 < s ≤ ∞.
Denote

Bτ (Ω) = {{Bi} : balls τBi are disjoint and contained in Ω}

and

‖u‖AΦ,s
τ (Ω) = sup

B∈Bτ (Ω)

‖
∑
B∈B

(
µ(B)−1/s−

∫
B

|u− uB| dµ

)
χB‖LΦ(Ω).

Then AΦ,s
τ (U) consists of all locally integrable functions u for which the number

‖u‖AΦ,s
τ (U) is �nite.

Theorem 1.8 below was proved in [A]. Similar results in the general setting were
obtained in [B]. Notice that here the number 1 < s < ∞ is any number and need
not have anything to do with (6).

Theorem 1.8 Let X be connected, µ doubling, Φ a Young function, B ⊂ X a ball,
1 < s < ∞, τ ≥ 1 and δ > 0. Denote B̂ = (1 + δ)τB.

1) If (18) holds, then
‖u− uB‖LΦs

w (B) ≤ C‖u‖AΦ,s
τ (B̂), (33)

where Φs is de�ned by (19)-(20).
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2) If (21) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖AΦ,s
τ (B̂)ω

−1
s (µ(Bxy)

−1), (34)

where Bxy = B(x, 2d(x, y)), and ωs is de�ned by (22)-(23).

Here, C = C(Cd, τ, δ).

It is easy to see that the �rst part of Theorem 1.2 is a consequence of inequality
(33). Also, when Φ(t) = ts, (33) easily implies the generalized Trudinger inequality
(16) of MacManus and Peréz.

1.7 Characterizations of Orlicz-Sobolev spaces in terms of
(generalized) Orlicz-Poincaré inequalities

The results from [A] and [B] discussed above deal with improved regularity of func-
tions that satisfy a Φ-Poincare inequality. In the euclidean setting, Orlicz-Sobolev
functions satisfy such inequalities. It is then natural to ask if functions that satisfy
such an inequality have a nice generalized gradient. The main result of [C] is the
following.

Theorem 1.9 Assume that Φ is a doubling Young function, µ is doubling, Ω ⊂ X
is open, u, g ∈ LΦ(Ω), and that the pair (û, ĝ), where û = u/‖g‖LΦ(Ω) and ĝ =
g/‖g‖LΦ(Ω), satis�es the Φ-Poincaré inequality in Ω. Then a representative of u has
a Φ-weak upper gradient gu such that ‖gu‖LΦ(Ω) ≤ C(Cd, CP , τ)‖g‖LΦ(Ω).

In the case Φ(t) = tp, p ≥ 1, the result was essentially proven in [4], see [7].
It follows from Theorem 1.9 that, for an open set Ω ⊂ Rn, the Orlicz-Sobolev

space W 1,Φ(Ω) can be characterized in terms of the Φ-Poincaré inequality: u ∈
LΦ(Ω) belongs to W 1,Φ(Ω) if and only if there exists g ∈ LΦ(Ω) such that the pair
(u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es the Φ-Poincaré inequality in Ω.

If both Φ and its conjugate Φ̂ are doubling, the assumptions of Theorem 1.9 can
be relaxed. In order to conclude that a representative of u ∈ LΦ(Ω) is in N1,Φ(Ω),
it su�ces to assume that the number

‖u‖A1,Φ
τ (Ω) = sup

B∈Bτ (Ω)

‖
∑
B∈B

(
r−1
B −
∫
B

|u− uB| dµ
)
χB‖LΦ(Ω), (35)

where
Bτ (Ω) =

{
{Bi} : balls τBi are disjoint and contained in Ω

}
,

is �nite. Notice that ‖u‖A1,Φ
τ (Ω) ≤ λ if and only if there is a functional ν : {B ⊂ Ω :

B is a ball} → [0,∞) such that ∑
i

ν(Bi) ≤ 1, (36)
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whenever the balls Bi ∈ B are disjoint, and that the generalized Φ-Poincaré inequal-
ity

−
∫
B

|u− uB| dµ ≤ λrBΦ−1

(
ν(τB)

µ(B)

)
(37)

holds whenever τB ⊂ Ω.
The spaces A1,Φ

τ (Ω) = {u ∈ L1
loc(Ω) : ‖u‖A1,Φ

τ (Ω) < ∞}, for Φ(t) = tp, were

studied in [10]. Theorem 1.10 below is a generalization of [10, Theorem 1.1].

Theorem 1.10 ([C]) Assume that both Φ and Φ̂ are doubling, µ is doubling, and
that Ω ⊂ X is an open set. Then a representative of u ∈ A1,Φ

τ (Ω) ∩ LΦ(Ω) has a
Φ-weak upper gradient g with ‖g‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ

τ (Ω).
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connected metric measure spaces

Toni Heikkinen
∗

Abstract

We study the self-improving properties of (generalized) Φ-Poincaré inequal-
ities in connected metric spaces equipped with a doubling measure. Our results
are optimal and generalize some of the results of Cianchi [1, 2], Hajªasz and
Koskela [5, 6], and MacManus and Pérez [12].

Mathematics Subject Classi�cation (2000): 46E35

1 Introduction and main results

Let X = (X, d, µ) be a metric measure space with µ a Borel regular outer mea-
sure satisfying 0 < µ(U) < ∞, whenever U is nonempty, open and bounded.
Suppose further that µ is doubling, that is, there exists a constant Cd such
that

µ(2B) ≤ Cdµ(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cs such that

µ(B(x, r))
µ(B(x0, r0))

≥ C−1
s

(
r

r0

)s
(2)

holds, whenever x ∈ B(x0, r0) and r ≤ r0.
A pair (u, g) of measurable functions, g ≥ 0, satis�es the p-Poincaré in-

equality, if there exist constants CP and τ ≥ 1 such that

−
∫
B
|u− uB| dµ ≤ CP rB

(
−
∫
τB
gp dµ

)1/p

(3)

for every ball B = B(x, r) ⊂ X. Hajªasz and Koskela [5, 6] proved the
following self-improving properties of (3): Assume that µ satis�es (2), and
that a pair (u, g), where g ∈ Lploc(X) satis�es the p-Poincaré inequality (3).

Let δ > 0 and B̂ = (1 + δ)τB. There exists a constant C = C(Cs, s, CP , τ, δ)
such that the following holds.

∗The author was supported by Vilho, Yrjö and Kalle Väisälä Foundation
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1) If p < s, then

sup
t>0

t

(
µ({x : |u(x)− uB| > t}

µ(B)

)1/ps

≤ CrB

(
−
∫
B̂
gp dµ

)1/p

, (4)

where ps = sp
s−p . Consequently, for q < ps, we have(
−
∫
B
|u− uB|q dµ

)1/q

≤ C ′rB

(
−
∫
τ ′B

gp dµ

)1/p

, (5)

where C ′ depends on C and q. In general, (3) does not yield (5) with
q = ps. However, if a pair (u, g) has the truncation property, which
means that for every b ∈ R, 0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair
(vt2t1 , gχ{t1<v≤t2}), where v = ε(u− b) and vt2t1 = min{max{0, v− t1}, t2−
t1}, satis�es the p-Poincaré inequality, then we have (5) with q = ps.

2) If p = s > 1 and X is connected, then

‖u− uB‖−LΦ(B) ≤ CrB‖g‖−Ls(B̂), (6)

where ‖ · ‖−LΦ(B) is the normalized Luxemburg norm generated by the

function Φ(t) = exp(ts
′
)− 1 (see Section 2) and s′ = s

s−1 .

3) If p > s, then u has a locally Hölder continuous representative, for which

|u(x)− u(y)| ≤ Cr
s/p
B d(x, y)1−s/p

(
−
∫
B̂
gp dµ

)1/p

(7)

for x, y ∈ B.
Franchi, Pérez and Wheeden [4] and MacManus and Pérez [11, 12] studied

the self-improving properties of inequalities of type

−
∫
B
|u− uB| dµ ≤ ‖u‖aa(τB), (8)

where ‖u‖a > 0, τ ≥ 1 and a : {B ⊂ X : B is a ball} → [0,∞) is a functional
that satis�es certain discrete summability conditions. In [11] MacManus and
Pérez showed that if δ > 0 is �xed, and the functional a satis�es condition∑

a(Bi)rµ(Bi) ≤ cra(B)rµ(B), (9)

whenever the balls Bi are disjoint and contained in the ball B, then the
Poincaré-type inequality (8) improves to

sup
λ>0

λ

(
µ({x ∈ B : |u(x)− uB| > λ})

µ(B)

)1/r

≤ C‖a‖‖u‖aa(B̂), (10)

where ‖a‖ is the minimum of the constants c so that (9) holds and B̂ =
(1 + δ)τB. In [12], they proved that if X is connected, r > 1, and a satis�es
the stronger condition ∑

a(Bi)r ≤ cra(B)r, (11)
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whenever the balls Bi are disjoint and contained in the ball B, then

‖u− uB‖−LΦ(B) ≤ Ca(B̂), (12)

where Φ(t) = exp(tr
′
)− 1 and r′ = r

r−1 .
To see that the results of MacManus and Pérez generalize those of Hajªasz

and Koskela, simply note that if µ satis�es (2), then the functional

a(B) = rB

(
−
∫
B
gp dµ

)1/p

,

where 0 ≤ g ∈ Lploc(X), satis�es condition (9) with r = sp/(s − p), if p < s,
and condition (11) with r = s, if p = s.

In this paper we are interested in the self-improving properties of the fol-
lowing Φ-Poincaré inequality, introduced recently in [14]. For the de�nition
and properties of Young functions and Orlicz spaces, see Section 2.

De�nition 1.1 Let Φ be a Young function. A pair (u, g) of measurable func-
tions, u ∈ L1

loc
(X) and g ≥ 0, satis�es the Φ-Poincaré inequality (in an open

set U), if there are constants CP and τ such that

−
∫
B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫
τB

Φ (g) dµ
)

(13)

for every ball B ⊂ X (such that τB ⊂ U).

Assuming that the underlying space is connected, we obtain results which
are sharp in the sense that they reproduce a version of Cianchi's optimal
embedding theorem for Orlicz-Sobolev spaces on Rn [1, 2]. Notice that a
pair (u, |∇u|) of a weakly di�erentiable function and the length of its weak
gradient satis�es the 1-Poincaré inequality, and so, by Jensen's inequality, the
Φ-Poincaré inequality for every Young function Φ.

Let s > 1. For a Young function Φ satisfying∫ 1

0

(
t

Φ(t)

)s′−1

dt <∞ and

∫ ∞

0

(
t

Φ(t)

)s′−1

dt = ∞, (14)

de�ne
Φs = Φ ◦Ψ−1

s , (15)

where

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

. (16)

If ∫ ∞( t

Φ(t)

)s′−1

dt <∞, (17)

de�ne
ωs(t) = (tΘ−1(ts

′
))s

′
, (18)
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where Θ−1 is the left-continuous inverse of the function given by

Θ(r) = s′
∫ ∞

r

Φ̂(t)
t1+s′

dt (19)

and Φ̂ is the conjugate of Φ. We wish to point out that, under (14), functions
Φ,Ψs and Φs are bijections. Notice also that one can modify any Young
function Φ near zero so that the condition∫ 1

0

(
t

Φ̃(t)

)s′−1

dt <∞

is satis�ed for the modi�ed function Φ̃ and that LΦ̃
loc(X) = LΦ

loc(X).
We will state Cianchi's result only for balls, but it actually holds for much

more general domains (see [1, 2, 3]): Let s ≥ 2, let B ⊂ Rs be a ball, and let
u be a weakly di�erentiable function such that |∇u| ∈ LΦ(B). Then there is a
constant C depending only on s such that

1) If (14) holds, then

‖u− uB‖LΦs (B) ≤ C‖|∇u|‖LΦ(B).

Moreover, LΦs(B) is the smallest Orlicz space into which W 1,Φ(B) can
be continuously embedded.

2) If (17) holds, then u has a continuous representative for which

|u(x)− u(y)| ≤ C‖|∇u|‖LΦ(B)ω
−1
s (|x− y|−s),

for x, y ∈ B.
Theorems 1.2 and 1.4 below generalize the result of Cianchi.

Theorem 1.2 Assume that X is connected, µ satis�es (2) with 1 < s < ∞,
B ⊂ X is a ball, δ > 0, B̂ = (1 + δ)τB, g ∈ LΦ(B̂), and that a pair (û, ĝ),
where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré inequality

in B̂.

1) If (14) holds, then

‖u− uB‖LΦs
w (B)

≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (20)

where Φs is de�ned by (15)-(16).

2) If (17) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (rsBµ(B)−1d(x, y)−s), (21)

where ωs is de�ned by (18)-(19).

Here, C = C(Cs, s, CP , τ, δ).
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If the Φ-Poincaré inequality is stable under truncations, the weak estimate
(20) turns into a strong one.

De�nition 1.3 A pair (u, g) has the truncation property, if for every b ∈ R,
0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair (vt2t1 , gχ{t1<v≤t2}), where v =
ε(u− b) and

vt2t1 = min{max{0, v − t1}, t2 − t1},

satis�es the Φ-Poincaré inequality (with �xed constants).

A weakly di�erentiable function u on Rn satis�es |∇vt2t1 | = |∇u|χ{t1<v≤t2},
which implies that the pair (u, |∇u|) has the truncation property.

Theorem 1.4 Suppose that the assumptions of Theorem 1.2 are in force, (14)
holds, and that the pair (û, ĝ) has the truncation property. Then

‖u− uB‖LΦs (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (22)

where Φs is de�ned by (15)-(16) and C = C(Cs, s, CP , τ, δ).

The following example gives concrete expressions for the �Sobolev conju-
gate� Φs.

Example 1.5 Let Φ be equivalent to the function tp logq t near in�nity, where
either p = 1 and q ≥ 0 or p > 1 and q ∈ R. Then Φs is equivalent near in�nity
to 

tsp/(s−p)(log t)sq/(s−p) if 1 ≤ p < s

exp(ts/(s−1−q)) if p = s, q < s− 1
exp(exp(ts/(s−1))) if p = s, q = s− 1.

In a general metric space we cannot talk about partial derivatives, but the
concept of an upper gradient has turned out to be a useful substitute for the
length of a gradient.

De�nition 1.6 ([10]) A Borel function g : X → [0,∞] is an upper gradient
of a function u : X → R, if for all recti�able curves γ : [0, l] → X,

|u(γ(0))− u(γ(l))| ≤
∫
γ
g ds (23)

whenever both u(γ(0)) and u(γ(l)) are �nite, and
∫
γ g ds = ∞ otherwise.

More generally, g is a Φ-weak upper gradient of u, if the family of recti�able
curves for which (23) does not hold has zero Φ-modulus (see Section 2). The
Orlicz-Sobolev space N1,Φ(X) consisting of functions u ∈ LΦ(X) having a
Φ-weak upper gradient g ∈ LΦ(X) was recently studied by Tuominen [14].
We say that X supports the Φ-Poincaré inequality, if the Φ-Poincaré inequal-
ity holds for all locally integrable functions and their upper gradients. If X
supports the Φ-Poincaré inequality, then any pair (u, g) of a locally integrable
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function and its Φ-weak upper gradient g ∈ LΦ(X) has the truncation prop-
erty (Lemma 2.4). Thus, we obtain an optimal embedding theorem for the
space N1,Φ(X).

Theorem 1.7 Assume that (X, d, µ) is a doubling metric measure space that
supports the Φ-Poincaré inequality and satis�es (2) with s > 1. Let B be a
ball, δ > 0 and B̂ = (1 + δ)τB.

1) If Φ satis�es (14), then N1,Φ(B̂) ⊂ LΦs(B), where Φs is de�ned by (15)-
(16). Moreover, for every u ∈ N1,Φ(B̂) and for every Φ-weak upper
gradient g of u, we have

‖u− uB‖LΦs (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂).

2) If Φ satis�es (17), then every u ∈ N1,Φ(B̂) has a locally uniformly con-
tinuous representative. Moreover, for every Φ-weak upper gradient g of
u, we have

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (rsBµ(B)−1d(x, y)−s),

for x, y ∈ B, where ωs is de�ned by (18)-(19).

Here, C = C(Cs, s, CP , τ, δ).

Apart from the case X = Rn, theorems 1.2, 1.4 and 1.7 seem to be new even if
the Φ-Poincaré inequality in the assumptions is replaced by the 1-Poincaré in-
equality. The spaces supporting the 1-Poincaré inequality include Riemannian
manifolds with nonnegative Ricci curvature, Q-regular orientable topological
manifolds satisfying the local linear contractability condition, Carnot groups
and more general Carnot-Carathéodory spaces associated with a system of
vector �elds satisfying Hörmander's condition, as well as more exotic spaces
constructed by Bourdon and Pajot, Laakso, and Hanson and Heinonen, see [6]
and the references therein.

Our next result is an embedding theorem for the space AΦ,s
τ (U) de�ned as

follows.

De�nition 1.8 Let U be an open set, Φ a Young function, τ ≥ 1 and 0 <
s ≤ ∞. Denote

Bτ (U) = {{Bi} : balls τBi are disjoint and contained in U}

and

‖u‖
AΦ,s

τ (U)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
µ(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖LΦ(U ;µ).

Then AΦ,s
τ (U) consists of all locally integrable functions u for which the number

‖u‖
AΦ,s

τ (U)
is �nite.
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Notice that below 1 < s < ∞ is any number and need not have anything
to do with (2).

Theorem 1.9 Let X be connected, µ doubling, Φ a Young function, B ⊂ X
a ball, 1 < s <∞, τ ≥ 1 and δ > 0. Denote B̂ = (1 + δ)τB.

1) If (14) holds, then

‖u− uB‖LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
, (24)

where Φs is de�ned by (15)-(16).

2) If (17) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1
s (µ(Bxy)−1), (25)

where Bxy = B(x, 2d(x, y)), and ωs is de�ned by (18)-(19).

Here, C = C(Cd, τ, δ).

It is easy to see that the �rst part of Theorem 1.2 is a consequence of
inequality (24). In Section 4 we will show that it also implies the generalized
Trudinger inequality (12) of MacManus and Peréz.

The results in this paper deal with connected spaces. The setting of a
disconnected space will be investigated in the forthcoming paper [8].

2 Preliminaries

2.1 Metric measure spaces

Throughout this paper X = (X, d, µ) is a metric space equipped with a
measure µ. By a measure we mean Borel regular outer measure satisfying
0 < µ(U) <∞ whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x, r)
and B(x, r). Sometimes we denote the radius of a ball B by rB. For a positive
number λ, we de�ne λB(x, r) := B(x, λr).

Recall from the introduction that the doubling property of a measure im-
plies a lower decay estimate (2) for the measure of a ball. In connected spaces
we can estimate the measure of a ball also from above.

Lemma 2.1 Let X be connected and µ doubling. Then there are constants
α > 0 and C ≥ 1 depending only on Cd such that

µ(B(x, r))
µ(B(x0, r0))

≤ C

(
r

r0

)α
, (26)

whenever x ∈ B(x0, r0) and r ≤ r0.

For a proof, see for example [12].
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2.2 Young functions and Orlicz spaces

In this subsection we give a brief review of Young functions and Orlicz spaces.
A more detailed treatment of the subject can be found for example in [13].

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is increasing, left-continuous function, which is
neither identically zero nor identically in�nite on (0,∞). A Young function is
convex and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (27)

for 0 < ε ≤ 1 and 0 ≤ t <∞.
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
Let Φ be a Young function. The Orlicz space LΦ(X) is the set of all

measurable functions u for which there exists λ > 0 such that∫
X

Φ
(
|u(x)|
λ

)
dµ(x) <∞.

The Luxemburg norm of u ∈ LΦ(X) is

‖u‖LΦ(X) = ‖u‖LΦ(X;µ) = inf{λ > 0 :
∫
X

Φ
(
|u(x)|
λ

)
dµ(x) ≤ 1}.

If ‖u‖LΦ(X) 6= 0, we have that

∫
X

Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

The following generalized Hölder inequality holds for Luxemburg norms:∫
X
u(x)v(x) dµ(x) ≤ 2‖u‖LΦ(X)‖v‖LΦ̂(X)

.
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The weak Orlicz space LΦ
w(X) is de�ned to be the set of all those measur-

able functions for which the weak Luxemburg norm

‖u‖LΦ
w(X) = inf{λ > 0 : sup

t>0
Φ(t)µ({x ∈ X :

|u(x)|
λ

> t}) ≤ 1}

is �nite. If ‖u‖LΦ
w(X) 6= 0, it follows that

sup
t>0

Φ(t)µ({x ∈ X :
|u(x)|

‖u‖LΦ
w(X)

> t}) ≤ 1.

The normalized (weak) Luxemburg norm, that is, the (weak) Luxemburg norm
taken with respect to measure µ(X)−1µ, will be denoted by ‖ · ‖−LΦ(X) (‖ ·
‖−LΦ

w(X)).
A function Φ dominates a function Ψ globally (resp. near in�nity), if there

is a constant C such that
Ψ(t) ≤ Φ(Ct)

for all t ≥ 0 (resp. for t larger than some t0).
Functions Φ and Ψ are equivalent globally (near in�nity), if each dominates

the other globally (near in�nity).
If µ(X) <∞ and Φ dominates Ψ near in�nity, we have that

‖u‖−LΨ(X) ≤ C(Φ,Ψ)‖u‖−LΦ(X). (28)

2.3 Φ-weak upper gradients

Let Φ be a Young function. The Φ-modulus of a curve family Γ is

ModΦ(Γ) = inf
{
‖g‖LΦ(X) :

∫
γ
g ds ≥ 1 for all γ ∈ Γ

}
.

If X supports the Φ-Poincaré inequality, then (13) holds for functions and
their Φ-weak upper gradients. This is an immediate consequence of the fol-
lowing lemma ([14], Lemma 4.3).

Lemma 2.2 Let Φ be a Young function and let g ∈ LΦ(X) be a Φ-weak upper
gradient of a function u. Then there is a decreasing sequence (gi) of upper
gradients of u such that gi → g in LΦ(X).

An important property of Φ-weak upper gradients is the following ([14],Lemma
4.11).

Lemma 2.3 Let Φ be a Young function. Assume that u ∈ ACCΦ(X) and
that the functions v and w have Φ-weak upper gradients gv, gw ∈ LΦ(X). If E
is a Borel set such that u|E = v and u|X\E = w, then the function

g = gvχE + gwχX\E

is a Φ-weak upper gradient of u.
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Here �u ∈ ACCΦ(X)� means that the family Γ of recti�able curves for which
u ◦ γ is not absolutely continuous on [0, l(γ)] has zero Φ-modulus.

It follows from the lemma above that if g ∈ LΦ(X) is a Φ-weak upper gra-
dient of a measurable function v, then gχ{t1<v≤t2} is a Φ-weak upper gradient

of the function vt2t1 = min{max{0, v−t1}, t2−t1}. Thus, we have the following.

Lemma 2.4 If X supports the Φ-Poincaré inequality, then every pair (u, g)
of a locally integrable function and its Φ-weak upper gradient g ∈ LΦ(X) has
the truncation property.

3 Proofs of main theorems

The proof of Theorem 1.9 requires several lemmas. In the �rst three lemmas
equivalent representations of conditions (14) and (17) and of functions Φs and
ωs are given. The proofs of lemmas 3.1 and 3.2 can be found in [3], and the
proof of 3.3 in [1].

Lemma 3.1 Let Φ be a Young function. We have∫
0

Φ̂(t)
t1+s′

dt <∞ if and only if

∫
0

(
t

Φ(t)

)s′−1

dt <∞ (29)

and ∫ ∞ Φ̂(t)
t1+s′

dt <∞ if and only if

∫ ∞( t

Φ(t)

)s′−1

dt <∞. (30)

Moreover, the function Φs is globally equivalent to the function Ds given by

Ds(t) = (tJ−1(ts
′
))s

′
(31)

for t ≥ 0, where J−1 is the left-continuous inverse of the function given by

J(r) = s′
∫ r

0

Φ̂(t)
t1+s′

dt. (32)

Lemma 3.2 Let Φ be a Young function. Then ‖r−1/s′‖
LΦ̂(t,∞)

<∞ for every

t > 0, if and only if ∫
0

Φ̂(t)
t1+s′

dt <∞. (33)

Moreover,
‖r−1/s′‖

LΦ̂(t,∞)
= D−1

s (1/t) (34)

for t > 0, where D−1
s is the right-continuous inverse of Ds.

(35)
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Lemma 3.3 Let Φ be a Young function. Then ‖r−1/s′‖
LΦ̂(0,t)

<∞ for every

t > 0, if and only if ∫ ∞ Φ̂(t)
t1+s′

dt <∞. (36)

Moreover,
‖r−1/s′‖

LΦ̂(0,t)
= ω−1

s (1/t) (37)

for t > 0, where ω−1
s is the right-continuous inverse of ωs.

It is easy to see that, for C ≥ 1,

D−1
s (Ct) ≤ CD−1

s (t) (38)

and
ω−1
s (C−1t) ≤ Cω−1

s (t). (39)

Lemma 3.4 Let Φ be a Young function. Then

Φ(r)−1/sr ≤ Φ−1
s (Φ(r))

for r ≥ 0.

Proof . Since Φ is convex, the function t 7→ t/Φ(t) is decreasing. Hence

Φ−1
s (Φ(r)) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

≥

(
r

(
r

Φ(r)

)s′−1
)1/s′

= Φ(r)−1/sr.

2

The next lemma is the part of the proofs of theorems 1.9 and 1.2, where
the connectedness of the space comes into play.

Lemma 3.5 Assume that X is connected, µ doubling, τ ≥ 1 and δ > 0. Let
B be a ball, x ∈ B and 0 < r < δrB. Then there is a sequence {B0, . . . , Bk}
of balls contained in (1 + δ)B such that µ(B0) is comparable to µ(B), µ(Bk)
is comparable to µ(B(x, r)), {B1, . . . , Bk} ∈ Bτ (B̂),

2µ(Bi+1) ≤ µ(Bi) ≤ Cµ(Bi+1), (40)

for 1 ≤ i < k, and

|uB(x,r) − uB0 | ≤ C

k∑
i=1

−
∫
Bi

|u− uBi | dµ, (41)

where C = C(Cd, τ, δ).

Proof . Fix x ∈ B and 0 < r < δrB. Let Cj be a cover of Aj = B(x, 2−jδrB)\
B(x, 2−j−1δrB) by balls of radius (20τ)−12−jδrB centered at Aj such that
the balls 1

2D, D ∈ Cj , are disjoint. It follows easily from the doubling
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property of µ that #Cj ≤ C. Since X is connected, there must be a se-
quence {B′

0, . . . , B
′
k−1} ⊂ ∪mj=1Cj so that B′

0 ∈ C1, B
′
i ∩ B′

i+1 6= ∅ for all i,
B′
k−1 ⊂ B(x, r) and µ(B′

k−1) is comparable to µ(B(x, r)). Denote B0 = B′
0,

Bk = B′
k = B(x, r) and Bi := 5B′

i for 1 ≤ i < k. Then B′
i ⊂ Bi+1, and so

|uB′i − uB′i+1
| ≤ |uB′i − uBi+1 |+ |uBi+1 − uB′i+1

| ≤ C−
∫
Bi+1

|u− uBi+1 | dµ.

Thus

|uB(x,r) − uB0 | ≤
k−1∑
i=0

|uB′i − uB′i+1
| ≤ C

k∑
i=1

−
∫
Bi

|u− uBi | dµ.

We will show that {Bi} has a subsequence that belongs to Bτ (B̂) and satis�es
(40) and (41). For 1 ≤ j ≤ m, choose Dj ∈ {Bi} centered at Aj such that

−
∫
Dj

|u− uDj | dµ = max
{
−
∫
Bi

|u− uBi | dµ : xBi ∈ Aj
}
,

where xBi denotes the center of Bi. Then

|uB(x,r) − uB0 | ≤ C

m∑
j=1

−
∫
Dj

|u− uDj | dµ.

If |i− j| ≥ 2, then τDi ∩ τDj = ∅.
By (2) and (26) there are constants α > 0 and β > 0 depending on Cd

such that

C−12−βn ≤ µ(Dj+n)
µ(Dj)

≤ C2−αn (42)

for j, n ≥ 1. Let n ≥ 2 be such that C2−αn ≤ 2−1. For p + (i − 1)n ≤ m,
denote Bp

i = Dp+(i−1)n . Then the sequence {Bp
1 , B

p
2 . . . } satis�es (40) and

belongs to Bτ (B̂). By choosing 1 ≤ p < n such that∑
i

−
∫
Bp

i

|u− uBp
i
| dµ = max

1≤q<n

∑
i

−
∫
Bq

i

|u− uBq
i
| dµ,

we obtain

|u(x)− uB0 | ≤ C
∑
i

−
∫
Bp

i

|u− uBp
i
| dµ.

The proof is complete. 2

We need one more lemma, a weak-type estimate for a sharp fractional
maximal function de�ned by

M#
s,B0

u(x) = sup
x∈B⊂B0

µ(B)−1/s−
∫
B
|u− uB| dµ, (43)

for a ball B0 ⊂ X, u ∈ L1(B0) and 0 < s ≤ ∞.
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Lemma 3.6 Let Φ be a Young function. Then

‖M#
s,Bu‖LΦ

w(B) ≤ C(Cd, τ)‖u‖AΦ,s
τ (τB)

.

Proof . Wemay assume that ‖u‖
AΦ,s

τ (τB)
= 1. Let x ∈ B such thatM#

s,Bu(x) >

λ. By the de�nition of M#
s,Bu, there is a ball Bx ⊂ B containing x such that

µ(Bx)−1/s−
∫
Bx

|u− uBx | dµ > λ.

So,

µ(Bx) ≤ Φ(λ)−1Φ
(
µ(Bx)−1/s−

∫
Bx

|u− uBx | dµ
)
µ(Bx). (44)

By the standard 5r-covering lemma ([9, Theorem 1.16]), we can cover the set

{x ∈ B : M#
s,B(x) > λ}

by balls 5τBi such that the balls τBi are disjoint and that each Bi is contained
in B and satis�es (44). Using the doubling property of µ, estimate (44),
inequality (27), and the fact that {Bi} ∈ Bτ (τB), we obtain

µ({x ∈ B : M#
s,Bu(x) > λ}) ≤

∑
i

µ(5τBi) ≤ C(Cd, τ)
∑
i

µ(Bi)

≤ C(Cd, τ)Φ (λ)−1
∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ)

)−1∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ)

)−1

.

The claim follows by the de�nition of ‖ · ‖LΦ
w
. 2

Proof of Theorem 1.9. 1) Denote B′ = (1 + δ)B. It su�ces to show
that the pointwise inequality

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ−1
s

(
Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

))
(45)

holds for Lebesgue points x ∈ B. Indeed, if (45) holds, then

µ

(
x ∈ B :

|u(x)− uB|
C‖u‖

AΦ,s
τ (B̂)

> t

)
≤ µ

(
x ∈ B : Φ−1

s ◦ Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
> t

)

≤ µ

(
x ∈ B :

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

> Φ−1 ◦ Φs (t)

)
≤ Φs (t)−1 .
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Fix a Lebesgue point x ∈ B of u and 0 < r ≤ δrB. Let {B0, . . . Bk} be the
chain from Lemma 3.5 corresponding to x and r. Since the balls Bi, i ≥ 1,
are disjoint, we have that

k∑
i=1

−
∫
Bi

|u− uBi | dµ = ‖
k∑
i=1

−
∫
Bi

|u− uBi | dµ
χBi

µ(Bi)
‖L1(X)

and

k∑
i=1

−
∫
Bi

|u−uBi | dµ
χBi

µ(Bi)
=

k∑
i=1

µ(Bi)−1/s−
∫
Bi

|u−uBi | dµχBi ·
k∑
i=1

µ(Bi)−1/s′χBi .

Hence, by the Hölder inequality,

k∑
i=1

−
∫
Bi

|u− uBi | dµ

≤ 2‖
k∑
i=1

µ(Bi)−1/s−
∫
Bi

|u− uBi | dµχBi‖LΦ(X) · ‖
k∑
i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)

≤ 2‖u‖
AΦ,s

τ (B̂)
· ‖

k∑
i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
.

By the de�nition of Luxemburg norm

‖
k∑
i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
= inf{λ > 0 :

k∑
i=1

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤ 1}.

For each i, we have that

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤ 2

∫ µ(Bi)

µ(Bi)

2

Φ̂

(
t−1/s′

λ

)
dt

≤
∫ µ(Bi)

µ(Bi)

2

Φ̂

(
2t−1/s′

λ

)
dt,

where the �rst inequality follows from the fact that the function

t 7→ Φ̂(t−1/s′/λ)

is decreasing, and the second from (27). Since

µ(Bi+1) ≤
µ(Bi)

2
,

we obtain

k∑
i=1

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤

∫ µ(B1)

µ(Bk)

2

Φ̂

(
2t−1/s′

λ

)
dt,
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which implies that

‖
k∑
i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
≤ inf{λ > 0 :

∫ µ(B1)

µ(Bk)

2

Φ̂

(
2t−1/s′

λ

)
dt ≤ 1}

= 2‖t−1/s′‖
LΦ̂(

µ(Bk)

2
,µ(B1))

.

Thus

k∑
i=1

−
∫
Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(
µ(Bk)

2
,µ(B1))

. (46)

By similar reasoning,

|uB0 − uB| ≤ |uB0 − uB′ |+ |uB′ − uB| ≤ C−
∫
B′
|u− uB′ | dµ

≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(
µ(B′)

2
,µ(B′))

.
(47)

It follows from estimates (46) and (47) that

|uB(x,r) − uB| ≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(C−1µ(B(x,r)),Cµ(B))
. (48)

Hence, by lemmas 3.1 and 3.2, and by (38),

|uB(x,r) − uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ−1
s (µ(B(x, r))−1). (49)

Next, we will estimate |u(x)− uB(x,r)| in terms of maximal function (43). For
i ≥ 0, denote Bi = B(x, 2−ir). By the Lebesgue di�erentiation theorem ([9,
Theorem 1.8]), uBi → u(x), as i→∞. Thus, by (1) and (26),

|u(x)− uB(x,r)| ≤
∑
i≥0

|uBi − uBi+1 |

≤ C
∑
i≥0

−
∫
Bi

|u− uBi | dµ

≤ C
∑
i≥0

µ(Bi)1/sM
#
s,B′u(x)

≤ Cµ(B(x, r))1/sM#
s,B′u(x).

So, by Lemma 3.6,

|u(x)− uB(x,r)| ≤ C‖u‖
AΦ,s

τ (B̂)
µ(B(x, r))1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

. (50)

Combining the above estimates, we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)

(
Φ−1
s (µ(Br)−1) + µ(Br)1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
,
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where Br = B(x, r). If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
≥ µ(BδrB )−1, we can choose r ≤

δrB such that

µ(Br)−1 ≤ Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
≤ Cµ(Br)−1.

Then

µ(Br)1/s
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

≤ CΦ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)−1/s
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

≤ CΦ−1
s

(
Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

))
,

(51)

where the last inequality comes from Lemma 3.4. Thus, we obtain (45).
If

Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
< µ(BδrB )−1,

it su�ces to combine estimate (50), where r = δrB, with the estimate

|uBδrB
− uB| ≤ C−

∫
B′
|u− uB′ | dµ

≤ Cµ(B′)1/sM#
s,B′u(x)

≤ C‖u‖
AΦ,s

τ (B̂)
µ(BδrB )1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

and argue as in (51).
2) Letting r tend to zero in (48) and using Lemma 3.3 and (39), we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1
s (µ(B)−1). (52)

Let x, y ∈ B be Lebesgue points of u. Denote Bxy = B(x, 2d(x, y)). If
d(x, y) > 1

3δrB, then µ(B) ≤ Cµ(Bxy). So

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ C‖u‖

AΦ,s
τ (B̂)

ω−1
s (µ(B)−1)

≤ C‖u‖
AΦ,s

τ (B̂)
ω−1
s (µ(Bxy)−1).

If d(x, y) ≤ 1
3δrB, then (52), applied to the ball Bxy, yields

|u(x)− u(y)| ≤ |u(x)− uBxy |+ |u(y)− uBxy |
≤ C‖u‖

AΦ,s
τ (B̂xy)

ω−1
s (µ(Bxy)−1).
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Since we may assume that δ < 1/2, it follows that B̂xy ⊂ B̂. Hence

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1
s (µ(Bxy)−1).

2

Proof of Theorem 1.2. 1) By Theorem 1.9, it su�ces to show that

‖u‖
AΦ,s

τ (B̂)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂). (53)

We may assume that ‖g‖LΦ(B̂) = 1. Let D be a ball such that τD ⊂ B̂. Then,

by (13) and (2),

−
∫
D
|u− uD| dµ ≤ CprDΦ−1

(
−
∫
τD

Φ(g) dµ
)

≤ CrBµ(B)−1/sµ(D)1/sΦ−1

(
−
∫
τD

Φ(g) dµ
)
.

Hence, for D ∈ Bτ (B̂),

∑
D∈D

Φ

(
µ(D)−1/s−

∫
D |u− uD| dµ

CrBµ(B)−1/s

)
µ(D) ≤

∑
D∈D

∫
τD

Φ(g) dµ ≤
∫
B̂

Φ(g) dµ ≤ 1,

which implies that

‖
∑
D∈D

(
µ(D)−1/s−

∫
D
|u− uD| dµ

)
χD‖LΦ(B̂) ≤ CrBµ(B)−1/s.

By taking supremum over Bτ (B̂), we obtain (53).
2) We may assume that δ < 1/2. Let D be a ball centered at B so that

D̂ = (1 + δ)τD ⊂ B̂. Fix a Lebesgue point x ∈ D, 0 < r < δrD and let {Bi}
be the chain from Lemma 3.5 corresponding to D, x and r. Clearly, the chain
can be chosen so that rBi+1 ≤

rBi
2 . Since the balls Bi, i ≥ 1, are disjoint, we

have that

k∑
i=1

−
∫
Bi

|u− uBi | dµ = ‖
k∑
i=1

µ(Bi)−1−
∫
Bi

|u− uBi | dµχBi‖L1(X)

and

k∑
i=1

µ(Bi)−1−
∫
Bi

|u−uBi | dµχBi =
k∑
i=1

r−1
i −
∫
Bi

|u−uBi | dµχBi ·
k∑
i=1

riµ(Bi)−1χBi .

So, by the Hölder inequality,

k∑
i=1

−
∫
Bi

|u− uBi | dµ

≤ 2‖
k∑
i=1

r−1
i −
∫
Bi

|u− uBi | dµχBi‖LΦ(X) · ‖
k∑
i=1

riµ(Bi)−1χBi‖LΦ̂(X)
.
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Since the pair ‖g‖−1

LΦ(B̂)
(u, g) satis�es the Φ-Poincaré inequality in B̂ and

{Bi} ∈ Bτ (D̂) ⊂ Bτ (B̂), we have that

‖
k∑
i=1

r−1
i −
∫
Bi

|u− uBi | dµχBi‖LΦ(X) ≤ C‖g‖LΦ(B̂).

By the de�nition of Luxemburg norm

‖
k∑
i=1

riµ(Bi)−1χBi‖LΦ̂(X)
= inf{λ > 0 :

k∑
i=1

Φ̂
(
riµ(Bi)−1

λ

)
µ(Bi) ≤ 1}.

By (2),
µ(Bi)−1 ≤ (CBri)−s,

where CB = Cr−1
B µ(B)1/s. Since the function t 7→ Φ̂(at)/t is increasing, for

every a > 0, we have

Φ̂
(
riµ(Bi)−1

λ

)
µ(Bi) ≤ Φ̂

(
ri(CBri)−s

λ

)
(CBri)s = Φ̂

(
t
−1/s′

i

CBλ

)
ti,

where ti = (CBri)s. It follows that

‖
k∑
i=1

riµ(Bi)−1χBi‖LΦ̂(X)
≤ C−1

B inf{λ > 0 :
k∑
i=1

Φ̂

(
t
−1/s′

i

λ

)
ti ≤ 1}

≤ 2C−1
B inf{λ > 0 :

∫ t1

0
Φ̂

(
t−1/s′

λ

)
≤ 1}

= 2C−1
B ‖t−1/s′‖

LΦ̂(0,t1)

≤ CrBµ(B)−1/sω−1
s (µ(B)−1rsBr

−s
D ),

where the last inequality comes from Lemma 3.3 and from (39). Thus

|u(x)− uB0 | = lim
r→0

|uB(x,r) − uB0 |

≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rsBr

−s
D ).

By similar reasoning,

|uB0 − uD| ≤ |uD′ − uB0 |+ |uB0 − uD′ | ≤ C−
∫
D′
|u− uD′ | dµ

≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rsBr

−s
D ).

So,

|u(x)− uD| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rsBr

−s
D ). (54)
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Let x, y ∈ B be Lebesgue points of u. If d(x, y) > 1
3δrB, then (54) with D = B

yields

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω

−1
s (µ(B)−1rsBd(x, y)

−s).

If d(x, y) ≤ 1
3δrB, then D̂ ⊂ B̂, for the ball D = B(x, 2d(x, y)), and so by (54)

and (39),

|u(x)− u(y)| ≤ |u(x)− uD|+ |u(y)− uD|
≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω

−1
s (µ(B)−1rsBd(x, y)

−s).

2

Remark 3.7 As shown above, the �rst part of Theorem 1.2 is a consequence
of Theorem 1.9. More generally, suppose that (2) holds, and that a function u
satis�es an inequality of type

−
∫
D
|u− uD| dµ ≤ ‖u‖νrαDΦ−1

(
ν(τD)
µ(τD)

)
, (55)

where α > 0, and ν : {B : B is a ball } → [0,∞) satis�es
∑
ν(Bi) ≤ 1,

whenever the balls Bi are disjoint and contained in B̂. Then, an argument
similar to the proof of (53), shows that

‖u‖
A

Φ,s/α
τ (B̂)

≤ CrαBµ(B)−α/s‖u‖ν . (56)

Thus, if (14) holds, with s/α in place of s, Theorem 1.9 yields

‖u− uB‖
L

Φs/α
w (B)

≤ CrαBµ(B)−α/s‖u‖ν .

The properties of functions satisfying inequalities of type (55) with Φ(t) = tp

were studied in [7].

Remark 3.8 Suppose that (2) and (14) hold, and that a pair (u, g), where
0 <

∫
B̂ Φ(g) dµ < ∞, satis�es the Φ-Poincaré inequality in B̂. Then, for the

measure µ̂ =
(∫
B̂ Φ(g) dµ

)−1
µ, we have that ‖g‖LΦ(B̂;µ̂) = 1. Since (2) and

(13) trivially hold for µ̂ with the same constants as they hold for µ, Theorem
1.2, for the measure µ̂, yields

‖u− uB‖LΦs
w (B;µ̂)

≤ CrBµ̂(B)−1/s,

which is equivalent to

sup
t>0

Φs

(
t

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ
)−1/s

)
µ({|u− uB| > t}) ≤

∫
B̂

Φ(g) dµ,

(57)
where {|u− uB| > t} = {x ∈ B : |u(x)− uB| > t}.
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Proof of Theorem 1.4. Suppose that (2) and (14) hold, and that a pair
(u, g), where 0 <

∫
B̂ Φ(g) dµ <∞, has the truncation property. Choose b such

that
µ({u ≥ b}) ≥ µ(B)/2 and µ({u ≤ b}) ≥ µ(B)/2.

Let v+ = max{u − b, 0} and v− = −min{u − b, 0}. We need the following
elementary lemma.

Lemma 3.9 Let ν be a �nite measure on Y . If w ≥ 0 is a ν-measurable
function such that ν({w = 0}) ≥ ν(Y )/2, then, for t > 0,

ν({w > t}) ≤ 2 inf
c∈R

ν({|w − c| > t/2}).

Proof . If |c| ≤ t/2, then {w > t} ⊂ {|w − c| > t/2}. Otherwise, {w = 0} ⊂
{|w − c| > t/2}, and so

ν({w > t}) ≤ ν(Y ) ≤ 2ν({w = 0}) ≤ 2ν({|w − c| > t/2}).

2

Let v denote either v+ or v−. For k ∈ Z, denote vk = v2k

2k−1 and gk =
gχ{2k−1<v≤2k}. Then

µ({v > 2k}) ≤ µ({vk > 2k−2}) ≤ 2µ({|vk − (vk)B| > 2k−3}) (58)

for k ∈ Z. Let C = 25C0, where C0 is the constant from inequality (57). Using
(58) and (57) for the pair (vk, gk) we obtain∫

B
Φs

(
v

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ
)−1/s

)
dµ

≤
∑
k∈Z

∫
{2k<v≤2k+1}

Φs

(
v

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ
)−1/s

)
dµ

≤
∑
k∈Z

Φs

(
2k+1

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ
)−1/s

)
µ({v > 2k})

≤
∑
k∈Z

Φs

(
2k−3

C0rµ(B)−1/s

(∫
B̂

Φ(gk) dµ
)−1/s

)
µ({|vk − (vk)B| > 2k−3})

≤
∑
k∈Z

∫
B̂

Φ(gk) dµ

≤
∫
B̂

Φ(g) dµ.

Thus

inf
b∈R

∫
B

Φs

(
|u− b|

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ
)−1/s

)
dµ ≤

∫
B̂

Φ(g) dµ. (59)
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This, for the pair ‖g‖−1

LΦ(B̂)
(u, g) in place of (u, g), yields

inf
b∈R

‖u− b‖LΦs (B) ≤ Crµ(B)−1/s‖g‖LΦ(B̂).

Since ‖u − uB‖LΦ(A) ≤ 2 infb∈R ‖u − b‖LΦ(A) for any set A of �nite measure,
the proof is complete. 2

4 Strong inequalities without truncation

In this section we will show how the weak estimate (24) implies strong ones.
We begin with an easy lemma.

Lemma 4.1 Let µ(X) <∞, and let Φ and Ψ be Young functions such that∫ ∞

1

Ψ′(t)
Φ(t)

dt <∞. (60)

Then LΦ
w(X) ⊂ LΨ(X) and there is a constant C = C(Ψ,Φ) such that

‖u‖−LΨ(X) ≤ C‖u‖−LΦ
w(X). (61)

Proof . Assume ‖u‖LΦ
w(X) = 1. Denoting µ̃ = µ(X)−1µ, we obtain∫

X
Ψ(|u|) dµ̃ =

∫ ∞

0
Ψ′(t)µ̃({x ∈ X : |u| > t}) dt

≤ Ψ(1) +
∫ ∞

1
Ψ′(t)µ̃({x ∈ X : |u| > t}) dt

≤ Ψ(1) +
∫ ∞

1

Ψ′(t)
Φ(t)

dt =: C ′,

which implies (61) with C = max{C ′, 1}. 2

For a measure ν on X, denote

‖u‖
AΦ,s

τ (U ;ν)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
ν(B)−1/s−

∫
B
|u− uB| dν

)
χB‖LΦ(U ;ν).

For a ball B ⊂ X, denote µB = µ(B)−1µ.

Theorem 4.2 Suppose that the assumptions of Theorem 1.9 are in force, (14)
holds, and that Ψ is a Young function satisfying∫ ∞

1

Ψ′(t)
Φs(t)

dt <∞. (62)

Then
‖u− uB‖−LΨ(B) ≤ C‖u‖

AΦ,s
τ (B̂;µB̂)

, (63)
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where C = C(Cd, s, τ, δ,Φ,Ψ). Moreover, if µ satis�es (2), g ∈ LΦ(B̂), and a
pair ‖g‖−1

LΦ(B̂)
(u, g) satis�es the Φ-Poincaré inequality in B̂, then

‖u− uB‖−LΨ(B) ≤ CrB‖g‖−LΦ(B̂), (64)

where C = C(Cs, s, CP , τ, δ,Φ,Ψ).

Proof . Theorem 1.9, applied to the measure µB = µ(B)−1µ, yields

‖u− uB‖−LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂;µB)
.

So, by Lemma 4.1,

‖u− uB‖−LΨ(B) ≤ C‖u‖
AΦ,s

τ (B̂;µB)
.

Since
‖ · ‖LΦ(B̂;µB) ≤ C‖ · ‖LΦ(B̂;µB̂),

it follows that
‖u‖

AΦ,s
τ (B̂;µB)

≤ C‖u‖
AΦ,s

τ (B̂;µB̂)
.

Inequality (64) follows from inequalities (63) and (53). 2

Notice that if Φs increases quickly enough, condition (62) is satis�ed with
Ψ(t) = Φs(t/2), and we have

‖u− uB‖−LΦs (B) ≤ C‖u‖
AΦ,s

τ (B̂;µB̂)
. (65)

In particular, this is the case when Φ is equivalent to t 7→ ts near in�nity.
Suppose now that (8) holds with a functional a satisfying (11), and that

Φ is equivalent to t 7→ ts near in�nity. Then

‖u‖
AΦ,s

τ (B̂;µB̂)
= sup

B∈Bτ (B̂)

‖
∑
B∈B

(
µB̂(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖−LΦ(B̂)

≤ C sup
B∈Bτ (B̂)

‖
∑
B∈B

(
µB̂(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖−Ls(B̂)

≤ C sup
B∈Bτ (B̂)

(∑
B∈B

(
−
∫
B
|u− uB| dµ

)s)1/s

≤ C‖u‖a sup
B∈Bτ (B̂)

(∑
B∈B

a(τB)s
)1/s

≤ C ‖u‖aa(B̂),

where the �rst inequality comes from (28). Thus (65) implies the generalized
Trudinger inequality (12).
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Toni Heikkinen
∗

Abstract

The sharp self-improving properties of generalized Φ-Poincaré inequalities
in connected metric measure spaces were recently obtained in [6]. In this paper
we investigate the general setting. We also include the case where Φ increases
essentially more slowly than the function t 7→ t. Our results generalize some
results of Hajªasz and Koskela [4, 5] and MacManus and Pérez [8].

Mathematics Subject Classi�cation (2000): 46E35

1 Introduction and main results

Let X = (X, d, µ) be a metric measure space with µ a Borel regular outer
measure satisfying 0 < µ(U) <∞, whenever U is nonempty, open and bounded.
Suppose further that µ is doubling, that is, there exists a constant Cd such that

µ(2B) ≤ Cdµ(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cs such that

µ(B(x, r))
µ(B(x0, r0))

≥ C−1
s

(
r

r0

)s
(2)

holds, whenever x ∈ B(x0, r0) and r ≤ r0.

De�nition 1.1 ([10]) Let Φ : [0,∞) → [0,∞) be an increasing bijection. A
pair (u, g) of measurable functions, u ∈ L1

loc
(X) and g ≥ 0, satis�es the Φ-

Poincaré inequality (in an open set U), if there are constants CP and τ such
that

−
∫
B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫
τB

Φ (g) dµ
)

(3)

for every ball B ⊂ X (such that τB ⊂ U).

∗The author was supported by Vilho, Yrjö and Kalle Väisälä Foundation
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The following sharp self-improving result for the Φ-Poincaré inequality was re-
cently proved in [6].

Theorem A Assume that Φ is a Young function, X is connected, µ satis�es
(2) with 1 < s < ∞, B ⊂ X is a ball, δ > 0, τ ≥ 1, B̂ = (1 + δ)τB, and that
a pair (û, ĝ), where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré

inequality in B̂.

1) If ∫ 1

0

(
t

Φ(t)

)s′−1

dt <∞ and

∫ ∞

0

(
t

Φ(t)

)s′−1

dt = ∞, (4)

then
‖u− uB‖LΦs

w (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (5)

where
Φs = Φ ◦Ψ−1

s , (6)

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

(7)

and s′ = s/(s− 1).
2) If ∫ ∞( t

Φ(t)

)s′−1

dt <∞, (8)

then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ωs(µ(B)−1rsBd(x, y)
−s), (9)

where
ω−1
s (t) = (tΘ−1(ts

′
))s

′
(10)

and Θ−1 is the left-continuous inverse of the function given by

Θ(r) = s′
∫ ∞

r

Φ̂(t)
t1+s′

dt. (11)

Here, C = C(Cs, s, CP , τ, δ).

Let U ⊂ X be open, 0 < s ≤ ∞ and τ ≥ 1. Denote

Bτ (U) = {{Bi} : balls τBi are disjoint and contained in U},

‖u‖
AΦ,s

τ (U)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
µ(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖LΦ(X)

and
AΦ,s
τ (U) = {u ∈ L1(U) : ‖u‖

AΦ,s
τ (U)

<∞}.
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It is easy to see that ‖u‖
AΦ,s

τ (U)
≤ λ, if and only if there is a functional ν : {B ⊂

U : B is a ball } → [0,∞) such that∑
ν(Bi) ≤ 1, (12)

whenever the balls Bi are disjoint, and that

−
∫
B
|u− uB| dµ ≤ λµ(B)1/sΦ−1

(
ν(τB)
µ(B)

)
, (13)

whenever τB ⊂ U . The self-improving properties of abstract Poincaré-type
inequalities similar to (13), for Φ(t) = tp, were studied by Franchi, Pérez and
Wheeden [2, 3], and MacManus and Pérez [8, 9].

If µ satis�es (2) and a pair (û, ĝ), where û = ‖g‖−1
LΦ(B)

u and ĝ = ‖g‖−1
LΦ(B)

g,

satis�es the Φ-Poincaré inequality in a ball B, then

‖u‖
AΦ,s

τ (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B). (14)

Thus, the �rst case of Theorem A is a consequence of the following embedding
theorem for the space AΦ,s

τ (U).

Theorem B [6, Theorem 1.9] Let X be connected, µ doubling, Φ a Young
function, B ⊂ X a ball, 1 < s <∞, τ ≥ 1 and δ > 0. Denote B̂ = (1 + δ)τB.
1) If (4) holds, then

‖u− uB‖LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
,

where Φs is de�ned by (6)-(7).

2) If (8) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ωs(µ(Bxy)−1),

where Bxy = B(x, 2d(x, y)), and ωs is de�ned by (10)-(11).

Here, C = C(Cd, τ, δ).

It is essential in the above theorems that the underlying space X is con-
nected. In this paper we investigate the general case. Instead of assuming that
Φ is a Young function, we assume the following:

(Φ-1) Φ : [0,∞) → [0,∞) is an increasing bijection.

(Φ-2) The function t 7→ Φ(t)

ts/(s+1) is increasing.

Notice that (Φ-2) allows Φ to increase essentially more slowly than any Young
function. The results concerning such Φ are new also for connected spaces.

Our �rst result is a counterpart of Theorem A in the general setting. It
extends the results of Hajªasz and Koskela [4, 5].
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Theorem 1.2 Assume that Φ satis�es (Φ-1) and (Φ-2), µ satis�es (2) with
0 < s < ∞, B ⊂ X is a ball, δ > 0, τ ≥ 1, B̂ = (1 + δ)τB, and that a
pair (û, ĝ), where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré

inequality in B̂.

1) If ∫ 1

0

Φ−1(t)
t1+1/s

dt <∞ and

∫ ∞

0

Φ−1(t)
t1+1/s

dt = ∞, (15)

then
‖u− uB‖LΦ̃s

w (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (16)

where

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt. (17)

2) If ∫ ∞ Φ−1(t)
t1+1/s

dt <∞, (18)

then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω̃s(µ(B)−1rsBd(x, y)
−s),

where

ω̃s(r) =
∫ ∞

r

Φ−1(t)
t1+1/s

dt. (19)

Here, C = C(Cs, s, CP , τ, δ).

If the Φ-Poincaré inequality is stable under truncations, the weak estimate
(5) turns into a strong one. We say that a pair (u, g) has the truncation property,
if for every b ∈ R, 0 < t1 < t2 <∞ and ε ∈ {−1, 1}, the pair (vt2t1 , gχ{t1<v≤t2}),
where v = ε(u− b) and

vt2t1 = min{max{0, v − t1}, t2 − t1},

satis�es the Φ-Poincaré inequality (with �xed constants).

Theorem 1.3 Suppose that the assumptions of Theorem 1.2 are in force, (15)
holds, and that the pair (û, ĝ) has the truncation property. Then

‖u− uB‖LΦ̃s (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (20)

where Φs is de�ned by (6)-(7) and C = C(Cs, s, CP , τ, δ).

How good is Theorem 1.2 compared to Theorem A? If Φ is �close� to the
function t 7→ ts, then Φ̃s increases essentially more slowly than Φs.
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Example 1.4 Let Φ be equivalent near in�nity to the function ts logq t. Then
the function Φs is equivalent near in�nity to{

exp(ts/(s−1−q)) if q < s− 1
exp(exp(ts/(s−1))) if q = s− 1,

and the function Φ̃s is equivalent near in�nity to{
exp(ts/(s−q)) if q < s

exp(exp(t)) if q = s.

If Φ is a Young function such that the function t 7→ Φ(t)/tp is either de-
creasing for some p < s, or increasing for some p > s, then Theorem 1.2 gives
the same result as Theorem A. In these cases the Sobolev conjugate Φs and the
function ωs can be represented in a very simple form.

Theorem 1.5 (1) Suppose that Φ satis�es (Φ-1) and (Φ-2) and that the func-
tion t 7→ Φ(t)/tp is decreasing for some p < s. Then Φ̃s is globally equiva-
lent to the function Φ∗

s whose inverse is given by

(Φ∗
s)
−1(r) = Φ−1(r)r−1/s.

If Φ is a Young function, then also Φs is globally equivalent to Φ∗
s.

(2) If Φ is a Young function such that Φ(t)/tp is increasing for some p > s,
then both ωs and ω̃s are comparable the function ω∗s given by

ω∗s(r) = Φ−1(r)r−1/s.

Let us now turn to the results concerning the embeddings of spaces AΦ,s
τ (U).

We begin with the case s = ∞. Theorem 1.6 below extends (the non-weighted
version of) the result of MacManus and Pérez [8].

Theorem 1.6 Assume that µ is doubling, s = ∞, Φ is doubling and satis�es
(Φ-1) and (Φ-2), B ⊂ X is a ball, τ ≥ 1 and δ > 0. Then

‖u− uB‖LΦ
w(B) ≤ C‖u‖

AΦ,∞
τ (B̂)

,

where B̂ = (1 + δ)τB and C = C(Cd, τ, δ,Φ).

Since, by Lemma 3.3,

‖u‖
AΦ̃s,∞

τ (U)
≤ ‖u‖

AΦ,s
τ (U)

, (21)

we have the following.

Theorem 1.7 Assume that µ is doubling, Φ satis�es (Φ-1) and (Φ-2), (15)
holds and that Φ̃s is doubling. Let B ⊂ X a ball, τ ≥ 1 and δ > 0. Then

‖u− uB‖LΦ̃s
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
, (22)

where B̂ = (1 + δ)τB and C = C(Cd, τ, δ, s,Φ).
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Under the extra assumption that singletons have zero measure, (22) holds
also for non-doubling Φ̃s.

Theorem 1.8 Assume that µ is doubling, µ({x}) = 0 for x ∈ X, 0 < s < ∞,
and that Φ satis�es (Φ-1) and (Φ-2). Let B ⊂ X be a ball, τ ≥ 1 and δ > 0.
Denote B̂ = (1 + δ)τB.
1) If (15) holds, then

‖u− uB‖LΦ̃s
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
,

where Φ̃s is de�ned by (17).

2) If (18) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1),

where Bxy = B(x, 2d(x, y)) and ω̃s is de�ned by (19).

Here, C = C(Cd, τ, δ, s).

2 Preliminaries

Throughout this paper X = (X, d, µ) is a metric space equipped with a measure
µ. By a measure we mean a Borel regular outer measure satisfying 0 < µ(U) <
∞ whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x, r)
and B(x, r). Sometimes we denote the radius of a ball B by rB. For a positive
number λ we de�ne λB(x, r) := B(x, λr).

Let Φ : [0,∞) → [0,∞) be an increasing bijection. Denote by LΦ(X) the
set of all measurable functions u for which there exists λ > 0 such that∫

X
Φ
(
|u(x)|
λ

)
dµ(x) <∞.

For u ∈ LΦ(X), de�ne

‖u‖LΦ(X) = inf{λ > 0 :
∫
X

Φ
(
|u(x)|
λ

)
dµ(x) ≤ 1}.

If Φ is convex, the functional ‖ · ‖LΦ(X) is a norm on LΦ(X).
If ‖u‖LΦ(X) 6= 0, we have that∫

X
Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

Denote by LΦ
w(X) the set of all measurable functions for which the number

‖u‖LΦ
w(X) = inf{λ > 0 : sup

t>0
Φ(t)µ({x ∈ X :

|u(x)|
λ

> t}) ≤ 1}
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is �nite. If ‖u‖LΦ
w(X) 6= 0, it follows that

sup
t>0

Φ(t)µ({x ∈ X :
|u(x)|

‖u‖LΦ
w(X)

> t}) ≤ 1.

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is increasing, left-continuous function, which is neither
identically zero nor identically in�nite on (0,∞). A Young function is convex
and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (23)

for 0 < ε ≤ 1 and 0 ≤ t <∞.
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
We have that

t ≤ Φ−1(t)Φ̂−1(t) ≤ 2t (24)

for t ≥ 0.
A function Φ dominates a function Ψ globally (resp. near in�nity), if there

is a constant C such that
Ψ(t) ≤ Φ(Ct)

for all t ≥ 0 (resp. for t larger than some t0).
Functions Φ and Ψ are equivalent globally (near in�nity), if each dominates

the other globally (near in�nity).
If Φ dominates Ψ near in�nity and Φ and Ψ are not equivalent near in�nity,

then Ψ increases essentially more slowly that Φ.
Φ is doubling, if there is a constant C such that

Φ(2t) ≤ CΦ(t)

for all t.
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3 Proofs

Lemma 3.1 Suppose that Φ satis�es (Φ-1) and (Φ-2). Then, for 0 ≤ ε ≤ 1
and t ≥ 0,

Φ(εt) ≤ εs/(s+1)Φ(t), (25)

Φ̃s(εt) ≤ εΦ̃s(t), (26)

and
ω̃s(εt) ≤ ε−1/sω̃s(t), (27)

Proof . We have

Φ(εt) =
Φ(εt)

(εt)s/(s+1)
(εt)s/(s+1) ≤ Φ(t)

ts/(s+1)
(εt)s/(s+1) = εs/(s+1)Φ(t).

By (Φ-2), the function Φ−1(t)/t1+1/s is decreasing. Hence

Φ̃−1
s (ε−1r) =

∫ ε−1r

0

Φ−1(t)
t1+1/s

dt = ε−1

∫ r

0

Φ−1(ε−1t)
(ε−1t)1+1/s

dt

≤ ε−1

∫ r

0

Φ−1(t)
t1+1/s

dt = ε−1Φ̃−1
s (r),

which is equivalent to (26). Since Φ−1 is increasing, we have

ω̃s(εr) =
∫ ∞

εr

Φ−1(t)
t1+1/s

dt = ε

∫ ∞

r

Φ−1(εt)
(εt)1+1/s

dt ≤ ε−1/sω̃s(r).

2

Let U ⊂ X be open and let v ∈ L1(U). The maximal function of v is

MUv(x) = sup
x∈B⊂U

−
∫
B
|v| dµ.

It is well known that there is a constant C = C(Cd) such that

‖MUv‖L1
w(U) ≤ C‖v‖L1(U). (28)

Proof of Theorem 1.2. We may assume that ‖g‖LΦ(B̂) = 1.
1) It su�ces to show that the pointwise inequality

|u(x)− uB| ≤ CrBµ(B)−1/sΦ̃−1
s

(
MB̂Φ(g)(x)

)
, (29)

holds for Lebesgue points x ∈ B of u. Indeed, if (29) holds, then by (28),∥∥∥∥Φ̃s

(
|u− uB|

CrBµ(B)−1/s

)∥∥∥∥
L1

w(B)

≤
∥∥MB̂Φ(g)

∥∥
L1

w(B)
≤ C ‖Φ(g)‖L1(B̂) ≤ C,

and the claim follows by (26).
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Fix a Lebesgue point x of u. For i ≥ 1, let Bi = B(x, 2−i/sδ). By the
Lebesgue di�erentiation theorem, limi→∞ uBi = u(x). So

|u(x)− uB1 | ≤
∞∑
i=1

|uBi − uBi+1 | ≤ C
∞∑
i=1

−
∫
Bi

|u− uBi | dµ.

By denoting B0 = (1 + δ)B,

|uB − uB1 | ≤ |uB − uB0 |+ |uB0 − uB1 | ≤ C−
∫
B0

|u− uB0 | dµ.

Thus

|u(x)− uB| ≤ C
∞∑
i=0

−
∫
Bi

|u− uBi | dµ.

By (3) and (2),

−
∫
Bi

|u− uBi | dµ ≤ CriΦ−1(µ(Bi)−1)

≤ CriΦ−1((CBri)−s),

where CB = r−1
B µ(B)1/s. Hence, by denoting ti = (CBri)−s,

k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ CC−1
B

k∑
i=0

t
−1/s
i Φ−1(ti)

= CrBµ(B)−1/s
k∑
i=0

ti
Φ−1(ti)

t
1+1/s
i

.

Since the function t 7→ Φ−1(t)

t1+1/s is decreasing, we have that

ti
Φ−1(ti)

t
1+1/s
i

≤ 2
∫ ti

1
2
ti

Φ−1(t)
t1+1/s

dt,

for i ≥ 0. So, by summing and noting that ti ≤ 1
2 ti+1, we obtain

k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ CrBµ(B)−1/s

∫ tk

1
2
t0

Φ−1(t)
t1+1/s

dt. (30)

Thus
k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ CrBµ(B)−1/sΦ̃−1
s (tk). (31)

The remaining part of the series will be estimated in terms of MΦ(g):
∞∑
i=k

−
∫
Bi

|u− uBi | dµ ≤ C
∞∑
i=k

riΦ−1
(
MB̂Φ(g)(x)

)
≤ CrkΦ−1

(
MB̂Φ(g)(x)

)
= CrBµ(B)−1/st

−1/s
k Φ−1

(
MB̂Φ(g)(x)

)
.

(32)
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By combining (31) and (32), we obtain

|u(x)− uB| ≤ CrBµ(B)−1/s
(
Φ̃−1
s (tk) + t

−1/s
k Φ−1

(
MB̂Φ(g)(x)

))
. (33)

Since, by (Φ-2), the function Φ−1(t)/t1+1/s is decreasing, we have that

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt ≥ r
Φ−1(r)
r1+1/s

= r−1/sΦ−1(r). (34)

If MB̂Φ(g)(x) ≥ t0, we choose k such that

tk ≤MB̂Φ(g)(x) ≤ Ctk.

Then, by (33) and (34), we obtain (29). If MB̂Φ(g)(x) < t0, it su�ces to use
(32), with k = 0, and (34).

2) We may assume that δ < 1/2. Let D be a ball centered at B so that
D̂ = (1 + δ)τD ⊂ B̂. Fix a Lebesgue point x ∈ D of u. Let B0 = (1 + δ)D and
Bi = B(x, 2−i/sδ) for i ≥ 1. By the same argument that led to (30), we have
that

∞∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ CrBµ(B)−1/s

∫ ∞

C−1µ(B)−1rs
Br

−s
D

Φ−1(t)
t1+1/s

dt.

Thus
|u(x)− uD| ≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rsBr

−s
D ). (35)

Let x, y ∈ B be Lebesgue points of u. If d(x, y) > 1
3δrB, then (35), with D = B,

yields

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rsBd(x, y)

−s).

If d(x, y) ≤ 1
3δrB, then D̂ ⊂ B̂, for the ball D = B(x, 2d(x, y)), and so, by (35),

|u(x)− u(y)| ≤ |u(x)− uD|+ |u(y)− uD|
≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rsBd(x, y)

−s).

Thus, the claim follows by (27). 2

The proof of Theorem 1.3 is completely analogous to the proof of Theorem
1.4 in [6]. We will not repeat the details.

Proof of Theorem 1.5 (1) By (34),

Φ̃−1
s (r) ≥ r−1/sΦ−1(r).

If t 7→ Φ(t)/tp is decreasing, then t 7→ Φ−1(t)/t1/p is increasing. Hence, if p < s,

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt ≤ Φ−1(r)
r1/p

∫ r

0
t1/p−1/s−1 dt = (1/p− 1/s)−1 Φ−1(r)

r1/s
.
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Thus Φ̃s and Φ∗
s are globally equivalent. Let Φ be a Young function. Then the

function t 7→ t/Φ(t) is decreasing and so

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

≥

(
r

(
r

Φ(r)

)s′−1
)1/s′

= Φ(r)−1/sr.

On the other hand, if t 7→ Φ(t)/tp is decreasing, with p < s, then

Ψs(r) =

(∫ r

0

(
t

Φ(t)

) 1
s−1

dt

) s−1
s

≤ rp/s

Φ(r)1/s

(∫ r

0
t

s−p
s−1

−1dt

) s−1
s

=
rp/s

Φ(r)1/s

(
s− 1
s− p

r
s−p
s−1

) s−1
s

=
(
s− 1
s− p

) s−1
s r

Φ(r)1/s
.

Since Φ−1
s = Ψs ◦ Φ−1, we have that

Φ−1(r)
r1/s

≤ Φ−1
s (r) ≤

(
s− 1
s− p

) s−1
s Φ−1(r)

r1/s
.

(2) Let p > s and let Φ(t)/tp be increasing. Then Φ−1(t)/t1/p is decreasing
and so

ω̃s(r) =
∫ ∞

r

Φ−1(t)
t1+1/s

dt ≤ Φ−1(r)
r1/p

∫ ∞

r
t1/p−1/s−1 dt = (1/s− 1/p)−1 Φ−1(r)

r1/s
.

On the other hand,

ω̃s(r) ≥
∫ 2r

r

Φ−1(t)
t1+1/s

dt ≥ r
Φ−1(2r)
(2r)1+1/s

≥ 2−1−1/sΦ
−1(r)
r1/s

.

It was shown in [1] that

ωs(r) = ‖t−1/s′‖
LΦ̂((0,1/r))

. (36)

Since ∫ 1/r

0
Φ̂(t−1/s′/λ) dt ≥ r−1Φ̂(r1/s

′
/λ),

it follows that
ωs(r) ≥ r1/s

′
Φ̂−1(r)−1.

Hence, by (24),

ωs(r) ≥
1
2
Φ−1(r)r−1/s.

Assume that Φ(t)/tp is increasing. Let t > t′. By using (24), the fact that
Φ−1(t)/t1/p is decreasing, and (24) again, we obtain

Φ̂(t) ≤ Φ−1(Φ̂(t))t ≤ Φ−1(Φ̂(t′))

(
Φ̂(t)
Φ̂(t′)

)1/p

t ≤ 2
Φ̂(t′)
t′

(
Φ̂(t)
Φ̂(t′)

)1/p

t,

51



which implies that
Φ̂(t)
tp′

≤ 2p
′ Φ̂(t′)
t′p′

.

If p > s, then p′ < s′. So,∫ 1/r

0
Φ̂(t−1/s′/λ) dt ≤ 2p

′ Φ̂(r1/s
′
/λ)

rp′/s′

∫ 1/r

0
t−p

′/s′ dt

= Cr−1Φ̂(r1/s
′
/λ)

≤ r−1Φ̂(Cr1/s
′
/λ),

where the last inequality comes from (23) and C = 2p
′
(1− p′/s′)−1. Hence, by

(36) and (24),
ωs(r) ≤ Cr1/s

′
Φ̂−1(r)−1 ≤ CΦ−1(r)r−1/s.

2

For a ball B0 ⊂ X, u ∈ L1(B0) and 0 < s ≤ ∞, de�ne

M#
s,B0

u(x) = sup
x∈B⊂B0

µ(B)−1/s−
∫
B
|u− uB| dµ. (37)

Lemma 3.2 Let Φ satisfy (Φ-1) and (Φ-2). Then

‖M#
s,Bu‖LΦ

w(B) ≤ C‖u‖
AΦ,s

τ (τB)
,

where C = C(Cd, τ, s).

Proof . We may assume that ‖u‖
AΦ,s

τ (τB)
= 1. Let x ∈ B such thatM#

s,Bu(x) >

λ. By the de�nition of M#
s,Bu, there is a ball Bx ⊂ B containing x such that

µ(Bx)−1/s−
∫
Bx

|u− uBx | dµ > λ.

This implies that

µ(Bx) ≤ Φ(λ)−1Φ
(
µ(Bx)−1/s−

∫
Bx

|u− uBx | dµ
)
µ(Bx). (38)

By the standard 5r-covering lemma ([7, Theorem 1.16]), we can cover the set

{x ∈ B : M#
s,B(x) > λ} by balls 5τBi such that the balls τBi are disjoint and

that each Bi is contained in B and satis�es (38). Using the doubling property
of µ, estimate (38), inequality (25), and the fact that {Bi} ∈ Bτ (τB), we obtain

µ({x ∈ B : M#
s,Bu(x) > λ}) ≤

∑
i

µ(5τBi) ≤ C(Cd, τ)
∑
i

µ(Bi)

≤ C(Cd, τ)Φ (λ)−1
∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ, s)

)−1∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ, s)

)−1

.
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The claim follows by the de�nition of ‖ · ‖LΦ
w
. 2

Proof of Theorem 1.6. Fix a ball B0 ⊂ X. Denote B′
0 = (1 + δ)B0,

B = {B : xB ∈ B0 and rB ≤ δrB0}, B+ = B ∪ {B′
0},

MBu(x) = sup
x∈B∈B

−
∫
B
|u| dµ and M#

B+u(x) = sup
x∈B∈B+

−
∫
B
|u− uB| dµ.

For λ > 0, let Ωλ = {x : MBu(x) > λ} and Σλ = {x : M#
B+u(x) > λ}. The

following good λ inequality was proved by MacManus and Pérez in [8]: There
are constants C0 and ε0 such that for all λ > 0 and 0 < ε ≤ ε0,

µ(ΩC0λ) ≤ C0εµ(Ωλ) + C0µ(Σελ). (39)

We will show that (39) implies

‖MBu‖LΦ
w(B0) ≤ C‖M#

B+u‖LΦ
w(B0). (40)

We may assume that ‖M#
B+u‖LΦ

w(B) = 1. Then Φ(t)µ(Σt) ≤ 1 for t > 0. Since
Φ is doubling, there is a constant C1 such that Φ(C0λ) ≤ C1Φ(λ) for λ > 0. By
setting

ε = min{ε0, (2C0C1)−1}

in (39), we obtain

Φ(C0λ)µ(ΩC0λ) ≤
1
2
Φ(λ)µ(Ωλ) + CΦ(ελ)µ(Σελ)

≤ 1
2

sup
λ>0

Φ(λ)µ(Ωλ) + C

for λ > 0. Hence
sup
λ>0

Φ(λ)µ(Ωλ) ≤ C.

By (25), we obtain (40). Denote u0 = u− uB0 . By the Lebesgue di�erentiation
theorem

u0(x) ≤MBu0(x)

for almost every x ∈ B0. Hence

‖u− uB0‖LΦ
w(B0) ≤ ‖MBu0‖LΦ

w(B0) ≤ C‖M#
B+u0‖LΦ

w(B0).

Since M#
B+u0 = M#

B+u ≤M#
∞,B′0

u, the claim follows from Lemma 3.2. 2

Theorem 1.7 follows from Theorem 1.6 via the following lemma.

Lemma 3.3 Assume that U ⊂ X is open, Φ satis�es (Φ-1) and (Φ-2) and that
(15) holds. Then

‖u‖
AΦ̃s,∞

τ (U)
≤ ‖u‖

AΦ,s
τ (U)

.
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Proof . Since
Φ̃−1
s (t) ≥ t−1/sΦ−1(t),

we have, in (13), that

µ(B)1/sΦ−1

(
ν(τB)
µ(B)

)
= ν(τB)1/s

(
ν(τB)
µ(B)

)−1/s

Φ−1

(
ν(τB)
µ(B)

)
≤ Φ̃−1

s

(
ν(τB)
µ(B)

)
.

This implies the claim. 2

Proof of Theorem 1.8. 1) It su�ces to show that the pointwise inequality

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ̃−1
s

(
Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B)

))
, (41)

where B′ = (1 + δ)B, holds for Lebesgue points x ∈ B. Fix such a point x and
choose balls Bi, i ≥ 1, centered at x, so that B1 ⊂ B′, and

rBi+1 = sup{r > 0 : µ(B(x, r)) ≤ 1
2
µ(Bi)}.

This is possible because limr→0 µ(B(x, r)) = µ({x}) = 0. By (1), we have that

2µ(Bi+1) ≤ µ(Bi) ≤ Cµ(Bi+1) (42)

for all i.
By the Lebesgue di�erentiation theorem, limi→∞ uBi = u(x). So

|u(x)− uB1 | ≤
∞∑
i=1

|uBi − uBi+1 | ≤ C
∞∑
i=1

−
∫
Bi

|u− uBi | dµ.

By denoting B0 = B′,

|uB − uB1 | ≤ |uB − uB0 |+ |uB0 − uB1 | ≤ C−
∫
B0

|u− uB0 | dµ.

Thus

|u(x)− uB| ≤ C
∞∑
i=0

−
∫
Bi

|u− uBi | dµ.

For every i, we have

−
∫
Bi

|u− uBi | dµ ≤ ‖u‖
AΦ,s

τ (B̂)
µ(Bi)1/sΦ−1(µ(Bi)−1).

Hence

k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ ‖u‖
AΦ,s

τ (B̂)

k∑
i=0

µ(Bi)1/sΦ−1(µ(Bi)−1)

= ‖u‖
AΦ,s

τ (B̂)

k∑
i=0

µ(Bi)−1 Φ−1(µ(Bi)−1)
(µ(Bi)−1)1+1/s

.
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Since the function t 7→ Φ−1(t)

t1+1/s is decreasing, we have that

µ(Bi)−1 Φ−1(µ(Bi)−1)
(µ(Bi)−1)1+1/s

≤ 2
∫ µ(Bi)

−1

1
2
µ(Bi)−1

Φ−1(t)
t1+1/s

dt,

for i ≥ 0. So, by summing and noting that µ(Bi)−1 ≤ 1
2µ(Bi+1)−1, we obtain

k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)

∫ µ(Bk)−1

1
2
µ(B0)−1

Φ−1(t)
t1+1/s

dt. (43)

Thus
k∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
Φ̃−1
s (µ(Bk)−1). (44)

The remaining part of the series will be estimated in terms of the sharp fractional
maximal function (37). Using (42), we obtain

∞∑
i=k

−
∫
Bi

|u− uBi | dµ ≤ C
∞∑
i=k

µ(Bi)1/sM
#
s,B′u(x)

≤ Cµ(Bk)1/sM
#
s,B′u(x).

So, by Lemma 3.2,

∞∑
i=k

−
∫
Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
µ(Bk)1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

. (45)

Combining the estimates (44) and (45), we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)

(
Φ̃−1
s (µ(Bk)−1) + µ(Bk)1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
.

If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
≥ µ(B0)−1, we choose k such that

µ(Bk)−1 ≤ Φ

(
M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
≤ Cµ(Bk)−1.

Since, by (34),
Φ(r)−1/sr ≤ Φ̃−1

s (Φ(r)), (46)

we obtain (41).

If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
< µ(B0)−1, it su�ces use (45) and (46).

2) Letting k tend to in�nity in (43), yields

|u(x)− uB| ≤
∞∑
i=0

−
∫
Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(B)−1). (47)
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Let x, y ∈ B be Lebesgue points of u. Denote Bxy = B(x, 2d(x, y)). If d(x, y) >
1
3δrB, then µ(B) ≤ Cµ(Bxy). So, by (47) and (27),

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ C‖u‖

AΦ,s
τ (B̂)

ω̃s(µ(B)−1)

≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1).

If d(x, y) ≤ 1
3δrB, then (47), applied to the ball Bxy, yields

|u(x)− u(y)| ≤ |u(x)− uBxy |+ |u(y)− uBxy |
≤ C‖u‖

AΦ,s
τ (B̂xy)

ω̃s(µ(Bxy)−1).

Since we may assume that δ < 1/2, it follows that B̂xy ⊂ B̂. Hence

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1).

2
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Characterizations of Orlicz-Sobolev spaces

in terms of generalized Orlicz-Poincaré

inequalities

Toni Heikkinen
∗

Abstract

We show that the Orlicz-Sobolev space W 1,Φ(Rn) can be characterized in
terms of the (generalized) Φ-Poincaré inequality. We also prove similar results in
the general metric space setting.

Mathematics Subject Classi�cation (2000): 46E35

1 Introduction

Let Φ be a Young function and let Ω ⊂ Rn be open. A pair (u, g) of measurable
functions, u ∈ L1

loc(Ω) and g ≥ 0, satis�es the Φ-Poincaré inequality in Ω, if there
are constants CP ≥ 1 and τ ≥ 1 such that

−
∫
B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫
τB

Φ (g) dµ
)

(1)

for every ball B = B(x, rB) such that τB ⊂ Ω. Here, uB = −
∫
B u dµ = 1

µ(B)

∫
B u

and τB = B(x, τrB). It is well known that u ∈ W 1,1
loc (Ω) satis�es the 1-Poincaré

inequality

−
∫
B
|u− uB| dµ ≤ CP rB−

∫
B
|∇u| dµ

for every ball B ⊂ Ω. Thus, by Jensen's inequality, (1) holds with τ = 1 and
g = |∇u|. Our �rst result says that also the converse holds: If u ∈ LΦ(Ω) and
there exists g ∈ LΦ(Ω) such that (1) holds (for the normalized pair), then u
belongs to the Sobolev class W 1,Φ(Ω).

Theorem 1.1 Suppose that Φ is an N -function, Ω ⊂ Rn is open, u, g ∈ LΦ(Ω)
and that the pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es the Φ-Poincaré inequality in

Ω. Then u ∈W 1,Φ(Ω) and ‖|∇u|‖LΦ(Ω) ≤ C(CP , τ, n)‖g‖LΦ(Ω).

∗The author was supported by Vilho, Yrjö and Kalle Väisälä Foundation
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For the de�nitions of Young and N -functions, see Section 2.1 below. Theorem
1.1 was proven by Hajªasz in [4] for Φ(t) = tp, p ≥ 1, and by Tuominen in [13]
for a doubling Φ whose conjugate is also doubling.

Our second result is a counterpart of Theorem 1.1 in the general metric setting.
Let X = (X, d, µ) be a metric measure space with µ a Borel regular outer measure
satisfying 0 < µ(U) <∞, whenever U is nonempty, open and bounded. Suppose
further that µ is doubling, that is, there exists a constant Cd such that

µ(2B) ≤ Cdµ(B), (2)

whenever B is a ball.
Our substitute for the usual Sobolev class W 1,Φ is based on upper gradients.

We call a Borel function g : X → [0,∞] an upper gradient of a function u : X →
R, if

|u(γ(0))− u(γ(l))| ≤
∫
γ
g ds (3)

for all recti�able curves γ : [0, l] → X. The concept of an upper gradient was
introduced in [8]; also see [9]. Further, g as above is called a Φ-weak upper
gradient if (3) holds for all curves γ except for a family of Φ-modulus zero, see
Section 2.2 below. The Sobolev space N1,Φ(X) consists of all functions in LΦ(X)
that have a (Φ-weak) upper gradient that belongs to LΦ(X).

Theorem 1.2 Suppose that Φ is a doubling Young function, Ω ⊂ X is open,
u, g ∈ LΦ(Ω), and that the pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es the Φ-Poincaré
inequality in Ω. Then a representative of u has a Φ-weak upper gradient gu such
that ‖gu‖LΦ(Ω) ≤ C(Cd, CP , τ)‖g‖LΦ(Ω).

In the case Φ(t) = tp, p ≥ 1, the result was essentially proven in [3], see [5].
In many important settings, including Riemannian manifolds with nonnega-

tive Ricci curvature and Carnot-Carathéodory spaces associated with a system
of vector �elds satisfying Hörmander's condition, the Φ-Poincaré inequality holds
for pairs (u, g), where u ∈ N1,Φ(X) and g is an upper gradient of u, see [6]. In
these settings Theorem 1.2 gives a characterization for N1,Φ(X).

If both Φ and its conjugate are doubling, then the assumptions of Theorem
1.2 can be relaxed. In order to conclude that a representative of u ∈ LΦ(Ω) is in
N1,Φ(Ω), it su�ces to assume that the number

‖u‖A1,Φ
τ (Ω)

= sup
B∈Bτ (Ω)

‖
∑
B∈B

(
r−1
B −
∫
B
|u− uB| dµ

)
χB‖LΦ(Ω), (4)

where

Bτ (Ω) =
{
{Bi} : balls τBi are disjoint and contained in Ω

}
,

is �nite. Notice that ‖u‖A1,Φ
τ (Ω)

≤ λ if and only if there is a functional ν : {B ⊂
Ω : B is a ball} → [0,∞) such that∑

i

ν(Bi) ≤ 1, (5)
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whenever the balls Bi are disjoint, and that the generalized Φ-Poincaré inequality

−
∫
B
|u− uB| dµ ≤ λrBΦ−1

(
ν(τB)
µ(B)

)
(6)

holds whenever τB ⊂ Ω. In particular, if a pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es
the Φ-Poincaré inequality in Ω, then

‖u‖A1,Φ
τ (Ω)

≤ CP ‖g‖LΦ(Ω). (7)

The spaces A1,Φ
τ (Ω) = {u ∈ L1

loc(Ω) : ‖u‖A1,Φ
τ (Ω)

< ∞}, for Φ(t) = tp, were

studied in [7]. Theorem 1.3 below is a generalization of [7, Theorem 1.1].

Theorem 1.3 Let Ω ⊂ X be an open set and let Φ be a doubling Young function
whose conjugate is doubling. Then a representative of u ∈ A1,Φ

τ (Ω) ∩ LΦ(Ω) has
a Φ-weak upper gradient g with ‖g‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ

τ (Ω)
.

If the assumptions of Theorem 1.3 are in force and the space X supports the
Φ-Poincaré inequality (that is, (1) holds for pairs (u, g), where u ∈ N1,Φ(X) and
g is an upper gradient of u), then A1,Φ

τ (Ω)∩LΦ(Ω) is isomorphic to N1,Φ(Ω) and
the norms ‖ · ‖LΦ(Ω) + ‖ · ‖A1,Φ

τ (Ω)
and ‖ · ‖N1,Φ(Ω) are equivalent.

2 Preliminaries

Throughout this paper C will denote a positive constant whose value is not nec-
essarily the same at each occurrence. By writing C = C(λ1, . . . , λn) we indicate
that the constant depends only on λ1, . . . , λn.

2.1 Young functions and Orlicz spaces

In this subsection we recall the basic facts about Young functions and Orlicz
spaces. An exhaustive treatment of the subject is [11].

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is an increasing, left-continuous function, which is
neither identically zero nor identically in�nite on (0,∞).

If, in addition, φ(0) = 0, 0 < φ(t) <∞ for t > 0 and limt→∞ φ(t) = ∞, then
Φ is called an N -function.

A Young function is convex and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (8)

for 0 < ε ≤ 1 and 0 ≤ t <∞.
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If Φ is a Young function and µ(X) <∞, then Jensen's inequality

Φ
(
−
∫
X
u dµ

)
≤ −
∫
X

Φ(u) dµ (9)

holds for 0 ≤ u ∈ L1(X).
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
Let Φ be a Young function. The Orlicz space LΦ(X) is the set of all measurable

functions u for which there exists λ > 0 such that∫
X

Φ
(
|u(x)|
λ

)
dµ(x) <∞.

The Luxemburg norm of u ∈ LΦ(X) is

‖u‖LΦ(X) = inf{λ > 0 :
∫
X

Φ
(
|u(x)|
λ

)
dµ(x) ≤ 1}.

If ‖u‖LΦ(X) 6= 0, we have that∫
X

Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

The following generalized Hölder inequality holds for Luxemburg norms:∫
X
u(x)v(x) dµ(x) ≤ 2‖u‖LΦ(X)‖v‖LΦ̂(X)

.

Let EΦ(X) denote the closure of the space of bounded, boundedly supported
functions in LΦ(X).

Lemma 2.1 Let Φ be an N -function.

(a) The dual of EΦ(X) is isomorphic to LΦ̂(X); For every F ∈ (EΦ(X))∗, there
exists v ∈ LΦ̂(X) such that

F (u) =
∫
uv dµ.

Moreover,
‖v‖

LΦ̂(X)
≤ ‖F‖ ≤ 2‖v‖

LΦ̂(X)
.
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(b) If Ω ⊂ Rn is open, then C∞0 (Ω) is dense in EΦ(Ω).

A Young function Φ is doubling, if there exists a constant CΦ ≥ 1 such that

Φ(2t) ≤ CΦΦ(t)

for t ≥ 0.

Lemma 2.2 Let Φ be doubling a Young function.

1) The space C0(X) of bounded, boundedly supported continuous functions is
dense in LΦ(X).

2) The modular convergence and the norm convergence are equivalent, that is,

‖fj − f‖LΦ(X) → 0,

if and only if ∫
X

Φ(|fj − f |) dµ→ 0.

Lemma 2.3 Suppose that Φ is a doubling Young function and that {gi} ⊂ LΦ(X)
satis�es

sup
i
‖gi‖LΦ(X) <∞

and

lim
µ(A)→0

sup
i

∫
A

Φ(gi) dµ = 0.

Then there exists a subsequence (gij ) of (gi) and g ∈ LΦ(X) such that gij → g
weakly in LΦ(X).

Lemma 2.3 easily follows from [11, p.144, Corollary 2].
If both Φ and Φ̂ are doubling, then LΦ(X) is re�exive, and so every bounded

sequence in LΦ(X) admits a weakly converging subsequence.

2.2 Sobolev spaces on metric measure spaces

The Φ-modulus of a curve family Γ is

ModΦ(Γ) = inf
{
‖g‖LΦ(X) :

∫
γ
g ds ≥ 1 for all γ ∈ Γ

}
. (10)

The Sobolev spaceN1,Φ(X), de�ned by Tuominen in [12], consists of the functions
u ∈ LΦ(X) having a Φ-weak upper gradient g ∈ LΦ(X). The space N1,Φ(X) is a
Banach space with the norm

‖u‖N1,Φ(X) = ‖u‖LΦ(X) + inf ‖g‖LΦ(X),

where the in�mum is taken over Φ-weak upper gradients g ∈ LΦ(X) of u.
We need the following lemma from [12].
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Lemma 2.4 ([12], Theorem 4.17) Suppose that ui → u ∈ LΦ(X) and gi →
g ∈ LΦ(X) weakly in LΦ(X) and that gi is a Φ-weak upper gradient of ui. Then
g is a Φ-weak upper gradient of a representative of u.

If Φ is doubling and Ω ⊂ Rn is an open set, then N1,Φ(Ω) is isomorphic to
W 1,Φ(Ω) [12, Theorem 6.19]. As usual, W 1,Φ(Ω) is the space of functions u ∈
LΦ(Ω) having weak partial derivatives in LΦ(Ω). A function ∂u/∂xi ∈ L1

loc(Ω) is
a weak partial derivative of u (w.r.t. xi) if∫

u
∂ϕ

∂xi
= −

∫
∂u

∂xi
ϕ

for all ϕ ∈ C∞0 (Ω).

2.3 Lipschitz functions

A function u : X → R is L-Lipschitz if |u(x)− u(y)| ≤ Ld(x, y) for all x, y ∈ X.
The lower and upper pointwise Lipschitz constants of a locally Lipschitz function
u are

lipu(x) = lim inf
r→0

L(u, x, r)
r

and Lipu(x) = lim sup
r→0

L(u, x, r)
r

,

where
L(u, x, r) = sup

d(x,y)≤r
|u(x)− u(y)|.

The lower Lipschitz constant lipu, and hence also Lipu, is an upper gradient of
a locally Lipschitz function u (cf. [1]).

3 Proofs

Proof of Theorem 1.1 We may assume that ‖g‖LΦ(Ω) = 1. By Lemma 2.1, it

su�ces to show that the functional ∂u
∂xi

: C∞0 (Ω) → R;

∂u

∂xi
[ϕ] := −

∫
u
∂ϕ

∂xi

is bounded with respect to the norm ‖ · ‖
LΦ̂(Ω)

and satis�es ‖ ∂u∂xi
‖ ≤ C. Choose

0 ≤ ψ ∈ C∞0 (B(0, 1)) such that
∫
ψ = 1 and let ψε(x) = ε−nψ(x/ε) for ε > 0.

Then
∂u

∂xi
[ϕ] = − lim

ε→0

∫
(u ∗ ψε)

∂ϕ

∂xi
= lim

ε→0

∫ (
u ∗ ∂ψε

∂xi

)
ϕ.

By the Hölder inequality,∣∣∣∣ ∂u∂xi [ϕ]
∣∣∣∣ ≤ 2 lim inf

ε→0

∥∥∥∥u ∗ ∂ψε∂xi

∥∥∥∥
LΦ(supp ϕ)

‖ϕ‖
LΦ̂(supp ϕ)

.
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Since
∫ ∂ψε

∂xi
= 0, we have that(

u ∗ ∂ψε
∂xi

)
(x) =

(
(u− uB(x,ε)) ∗

∂ψε
∂xi

)
(x).

Thus∣∣∣∣u ∗ ∂ψε∂xi

∣∣∣∣ (x) ≤ Cε−n−1

∫
B(x,ε)

|u(y)−uB(x,ε)| dy ≤ CΦ−1

(
−
∫
B(x,τε)

Φ(g(y)) dy

)
.

Let K = supp ϕ and let ε > 0 be such that Kτε = {x ∈ Rn : d(x,K) < τε} ⊂ Ω.
Then, by Fubini's theorem,∫

K
Φ
(
C−1

∣∣∣∣u ∗ ∂ψε∂xi

∣∣∣∣ (x) dx) ≤
∫
K
−
∫
B(x,τε)

Φ(g(y)) dy dx

=
∫
Kτε

Φ(g(y))
∫
B(y,τε)∩K

|B(x, τε)|−1 dx dy.

≤
∫
Kτε

Φ(g(y)) dy

≤ 1.

Thus

lim inf
ε→0

∥∥∥∥u ∗ ∂ψε∂xi

∥∥∥∥
LΦ(supp ϕ)

≤ C,

which completes the proof. 2

For the proofs of Theorem 1.2 and Theorem 1.3, which are based on approxi-
mation by discrete convolutions, we need a couple of lemmas. Lemma 3.1 follows
from a Whitney type covering result for doubling metric measure spaces, see [2,
Theorem III.1.3], [10, Lemma 2.9]. For the proof of Lemma 3.2, we refer to [10,
Lemma 2.16].

Lemma 3.1 Let Ω ⊂ X be open. Given ε > 0, λ ≥ 1, there is a cover {Bi =
B(xi, ri)} of Ω with the following properties:

(1) ri ≤ ε for all i,

(2) λBi ⊂ Ω for all i,

(3) if λBi meets λBj, then ri ≤ 2rj,
(4) each ball λBi meets at most C = C(Cd, λ) balls λBj.

A collection {Bi} as above is called an (ε, λ)-covering of Ω. Clearly, an (ε, λ)-cover
is an (ε′, λ′)-cover provided ε′ ≥ ε and λ′ ≤ λ.

Lemma 3.2 Let Ω ⊂ X be open, and let B = {Bi = B(xi, ri)} be an (∞, 2)-cover
of Ω. Then there is a collection {ϕi} of functions Ω → R such that

1) each ϕi is C(Cd)r−1
i -Lipschitz.

2) 0 ≤ ϕi ≤ 1 for all i,

3) ϕi(x) = 0 for x ∈ X \ 2Bi for all i,
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4)
∑

i ϕi(x) = 1 for all x ∈ Ω.
A collection {ϕi} as above is called a partition of unity with respect to B.

Let B = {Bi} be as in the lemma above, and let {ϕi} be a partition of unity with
respect to B. For a locally integrable function u on Ω, de�ne

uB(x) =
∑
i

uBiϕi(x). (11)

The following lemma describes the most important properties of uB.

Lemma 3.3

1) The function uB is locally Lipschitz. Moreover, for each x ∈ Bi,

LipuB(x) ≤ C(Cd)r−1
Bi
−
∫

5Bi

|u− u5Bi | dµ.

2) Let Φ be a doubling Young function and let u ∈ LΦ(Ω). If Bk is an (εk, 2)-
cover of Ω and εk → 0 as k →∞, then uBk

→ u in LΦ(Ω).

Proof . 1) Let x, y ∈ Bi, and let J = {j : 2Bj ∩ 2Bi 6= ∅}. Then #J ≤ C(Cd)
and Bj ⊂ 5Bi for each j ∈ J . Using the properties of the functions ϕi, we have
that

|uB(x)− uB(y)| =
∣∣∣∑
j∈J

(uBj − uBi)
(
ϕj(x)− ϕj(y)

)∣∣∣
≤ C(Cd)r−1

Bi
d(x, y) max

j∈J
|uBj − uBi |

≤ C(Cd)r−1
Bi

d(x, y)−
∫

5Bi

|u− u5Bi | dµ,

and the �rst claim follows.
2) We begin by showing that, for every w ∈ LΦ(Ω),

‖wB‖LΦ(Ω) ≤ C(Cd)‖w‖LΦ(Ω). (12)

We may assume that ‖w‖LΦ(Ω) = 1. By Jensen's inequality Φ(|wB|) ≤ (Φ(|w|))B.
Hence, by the properties of the functions ϕi,∫

Ω
Φ(|wB|) dµ ≤

∫
Ω
(Φ(|w|))B dµ ≤

∑
i

∫
Ω
(Φ(|w|))Biϕi dµ

≤
∑
i

∫
2Bi

Φ(|w|)Bi dµ ≤ Cd
∑
i

∫
Bi

Φ(|w|) dµ

= Cd

∫
Ω

Φ(|w|)
∑
i

χBi dµ ≤ C(Cd)
∫

Ω
Φ(|w|) dµ

≤ C(Cd).

Thus, by (8), we obtain (12).
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Let u ∈ LΦ(Ω) and ε > 0. By Lemma 2.2 (1), there exists v ∈ C0(Ω) such
that ‖u− v‖LΦ(Ω) < ε. Then, by (12), we obtain

‖uB − vB‖LΦ(Ω) = ‖(u− v)B‖LΦ(Ω) ≤ C(Cd)‖u− v‖LΦ(Ω) < C(Cd)ε,

and so

‖uB − u‖LΦ(Ω) ≤ ‖uB − vB‖LΦ(Ω) + ‖vB − v‖LΦ(Ω) + ‖v − u‖LΦ(Ω)

< ‖vB − v‖LΦ(Ω) + C(Cd)ε.

Therefore it su�ces to show that ‖vBk
− v‖LΦ(Ω) → 0 as εk → 0. Now |vBk

− v| ≤
2 sup |v|, and for all x we have that

|vBk
(x)−v(x)| ≤

∑
2Bi3x

−
∫
Bi

|v(y)−v(x)| dµ(y) ≤ C(Cd)−
∫
B(x,5εk)

|v(y)−v(x)| dµ(y),

which converges to 0 as εk → 0 by the continuity of v. Thus, by the dominated
convergence theorem, ∫

Ω
Φ(|vBk

− v|) dµ→ 0,

and so, by Lemma 2.2 (2), ‖vBk
− v‖LΦ(Ω) → 0. 2

Proof of Theorem 1.3. Let u ∈ A1,Φ
τ (Ω) ∩ LΦ(Ω). For j ∈ N, let Bj be a

(j−1, 5τ)-cover (and hence also a (j−1, 2)-cover) of Ω. Then, by Lemma 3.3 (2),
uj := uBj → u in LΦ(Ω). Let us show that

‖Lipuj‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

. (13)

By Lemma 3.3 (1),

Lipuj ≤ C(Cd)
∑
B∈Bj

r−1
B −
∫

5B
|u− u5B| dµχB.

It follows from Lemma 3.1 (4) that Bj can be divided into k = C(Cd, τ) sub-
families Bj,1, . . . ,Bj,k so that each of the families 5τBj,l consists of disjoint balls.
Since the families 5Bj,1, . . . , 5Bj,k belong to Bτ (Ω), we have that

‖Lipuj‖LΦ(Ω) ≤ C(Cd)
k∑
l=1

∥∥ ∑
B∈Bj,l

r−1
B −
∫

5B
|u− u5B| dµχB

∥∥
LΦ(Ω)

≤ C(Cd)
k∑
l=1

∥∥ ∑
B∈5Bj,l

r−1
B −
∫
B
|u− uB| dµχB

∥∥
LΦ(Ω)

≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

.

Since Φ and Φ̂ are doubling, LΦ(Ω) is re�exive. Thus the bounded sequence
(Lipuj) has a subsequence, also denoted by (Lipuj), that converges weakly to

67



some g ∈ LΦ(Ω). By Lemma 2.4, g is a Φ-weak upper gradient of a representative
of u. As a weak limit g satis�es

‖g‖LΦ(Ω) ≤ lim inf
j→∞

‖Lipuj‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

.

Proof of Theorem 1.2 We may assume that ‖g‖LΦ(Ω) = 1. De�ne the
functions uj as in the proof of Theorem 1.3. By (13) and (7), we have that

‖Lipuj‖LΦ(Ω) ≤ C(Cd, CP , τ).

Let us show that

lim
µ(E)→0

sup
j

∫
E

Φ(Lipuj) dµ = 0. (14)

By Lemma 3.3 (1) and by the Φ-Poincaré inequality,

Lipuj ≤ C(Cd)
∑
B∈Bj

r−1
B −
∫

5B
|u− u5B| dµχB

≤ C(Cd, CP )
∑
B∈Bj

Φ−1

(
−
∫

5τB
Φ(g) dµ

)
χB.

Thus ∫
E

Φ(Lipuj) dµ ≤ C(Cd, CP , CΦ)
∑
B∈Bj

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ.

Since Bj can be divided into k = C(Cd, τ) subfamilies Bj,1, . . . ,Bj,k so that each of
the families 5τBj,l consists of disjoint balls, it su�ces to show that, for 1 ≤ l ≤ k,

lim
µ(E)→0

∑
B∈Bj,l

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ = 0.

Fix ε > 0. Then there exists δ > 0 such that
∫
A Φ(g) < ε whenever µ(A) < δ.

Denote by B the family of those balls B in Bj,l for which

µ(E ∩B)
µ(5τB)

< ε.

Also, let B′ = Bj,l \ B. Now, if µ(E) < εδ, we have that µ(∪B∈B′5τB) ≤
ε−1µ(E) < δ. Thus∑

B∈Bj,l

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ

=
∑
B∈B

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ+
∑
B∈B′

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ

≤ ε

∫
Ω

Φ(g) dµ+
∫
∪B∈B′5τB

Φ(g) dµ

≤ 2ε.
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This completes the proof of (14).
By Lemma 2.3, a subsequence of (Lipuj) converges weakly to some gu ∈

LΦ(Ω), which, by Lemma 2.4, is a Φ-weak upper gradient of a representative of
u. Moreover, as a weak limit, gu satis�es

‖gu‖LΦ(Ω) ≤ lim inf
j→∞

‖Lipuj‖LΦ(Ω) ≤ C(Cd, CP , τ).

2
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