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1 Introduction

1.1 Classical Sobolev embeddings

Let B C R™ be a ball. The classical Sobolev embedding theorem [17] states that the
Sobolev space W'P?(B), 1 < p < n, consisting of functions v € LP(B) having weak
(distributional) partial derivatives in L?(B), is continuously embedded in L*" (B),
where p* = np/(n—p). Moreover, there is a constant C' depending only on dimension
n such that the Sobolev-Poincaré inequality

HU_UBHLP*(B) < Cl|Vulllze(s), (1)

where up = fpudr = ﬁfudx, holds for each v € W'P(B). If p > n, then
u € WIP(B) has a representative, which is Hélder continuous with exponent 1—n/p:

sup [u(x) = u(y)| < Cle =y ™|V ulll2(5). 2)
x,y

This result originates from the work of Morrey [14]. In the critical case p = n,
the space W'?(B) is continuously embedded in the Orlicz space exp L™ (B), where
n’ =n/(n—1), and u € WH"(B) satisfies the Trudinger inequality

”u_uBHeXpL”/(B) S Cleuan(B)’ (3)

where || - ||, 7 (p) is the Luxemburg norm generated by the Young function ®(t) =

exp(t") — 1. The Trudinger inequality (3) was independently obtained by Yudovich
[20], Pokhozhaev [15] and Trudinger [18].

1.2 Sobolev spaces and Poincaré inequalities in metric spaces

Recently there have been attempts to generalize the theory of Sobolev spaces to
the setting of a metric space equipped with a measure. Motivation for such a
generalization comes from several examples. These include the study of the Carnot-
Caratheodory metric generated by a family of vector fields, theory of quasiconformal
mappings on Loewner spaces, analysis on topological manifolds, potential theory on
infinite graphs and analysis on fractals, see [9] and the references therein.

One of the possible definitions of a Sobolev space on a metric measure space is
based on upper gradients. A Borel function g : X — [0, 00] is an upper gradient of
a function u : X — R, if for all rectifiable curves v : [0,1] — X,

u(2(0) = a2 ()] < [ g @)

whenever both u(y(0)) and u(y(l)) are finite, and fvgds = oo otherwise. The
concept of an upper gradient was introduced by Heinonen and Koskela in [11]. The



(Newton-)Sobolev space N1?(X), consisting of functions v € LP(X) having an upper
gradient g € LP(X), was introduced and studied by Shanmugalingam [16].

To obtain a reasonable theory one has to make some assumptions on the un-
derlying space X = (X,d,u). The basic assumptions are that the measure pu is
doubling, and that the space X supports a p-Poincaré inequality for some p > 1.
The doubling property of the measure means that there exists a constant Cy such
that

p(2B) < Cap(B), (5)

whenever B is a ball. It is easy to see that the doubling property is equivalent to
the existence of constants s and C, such that

o > () ®

holds, whenever © € B(xg,79) and r < r5. The space X supports a p-Poincaré
inequality, if there exist constants C'p and 7 > 1 such that

1/p
} = sl de < Cor (][ & du) (7)
B B

whenever B = B(z,r) C X is a ball, u € Li.,.(X) and g is an upper gradient of w.

The doubling spaces supporting the 1-Poincaré inequality (and so the p-Poincaré
inequality for every p > 1) include Riemannian manifolds with nonnegative Ricci
curvature, ()-regular orientable topological manifolds satisfying the local linear con-
tractability condition, Carnot groups and more general Carnot-Carathéodory spaces
associated with a system of vector fields satisfying Hérmander’s condition, as well
as more exotic spaces constructed by Bourdon and Pajot, Laakso, and Hanson and
Heinonen, see [9] and the references therein. There exist also spaces that support
the p-Poincare inequality for fixed p > 1 but not for any smaller exponent. In such
spaces the usual representation theorems in terms of Riesz potentials may not be
available.

Under the assumption that p is doubling and that X supports the p-Poincaré
inequality, versions of inequalities (1), (2) and (3) hold for functions in N'?. This is
a consequence of a more general result, due to Hajtasz and Koskela [8, 9], concerning
the self-improving properties of (7) for a general pair (u, g): Assume that p satisfies
(6), B C X is a ball, § > 0, and that a pair (u,g), where u € L{. (X) and 0 < g €
L" (X) satisfies the p-Poincaré inequality (7) for every ball B’ such that 7B’ C B =
(1 +6)7B. There exists a constant C' = C(Cs, s,Cp,7,d) such that the following
holds.

1) If p < s, then

! (u({fc u(w) = up| > t})””s < Cre ( ][

t>0 M(B) B

1/p
& du) Cw®



where p, = SSTPP. Consequently, for ¢ < ps, we have

1/q 1/p
(][ lu — uB|qd,u> < (C'rg (][ g’ du) , 9)
B 'B

where C” depends on C' and ¢. In general, (7) does not yield (9) with ¢ = p;.
However, if a pair (u,g) has the truncation property, which means that for
every b € R, 0 < t; < t3 < 0o and ¢ € {—1,1}, the pair (vff,gx{tl@gm}),
where v = (u — b) and v;> = min{max{0,v — ¢;},t> — ¢}, satisfies the p-
Poincaré inequality, then we have (9) with ¢ = ps,.

2) If p=s, then

|u — UB||£‘1’(B) < Crgllg| Ls(B) (10)

where [ - || g#(p) is the normalized Luxemburg norm generated by the function
O (t) = expt — 1. Moreover, if X is connected and s > 1, then (10) holds with
O(t) = exp(t*) — 1, where s’ = .

3) If p > s, then u has a locally Holder continuous representative, for which

|ucr>—wwy>|s<frzpd@xy>lSﬁ’(f‘gpdu)lm )

B

for z,y € B.

1.3 Generalized Poincaré inequalities

Franchi, Pérez and Wheeden |5, 6] and MacManus and Pérez [12, 13| studied the
self-improving properties of inequalities of type

# = unldie < fulla(r ), (12)
B

where ||ull, > 0, 7 > 1 and a : {B C X : Bisaball} — [0,00) is a functional
that satisfies certain discrete summability conditions. In [12] MacManus and Pérez
showed that if 6 > 0 is fixed, and the functional a satisfies condition

S a(B) u(By) < ¢ a(B) u(B), (13)

whenever the balls B; are disjoint and contained in the ball B, then the Poincaré-
type inequality (12) improves to

x CNu(z) —up 1r .
smm(M{eB u() '>A”) < Ollallulea(B),  (4)

A>0 M(B)



where ||a|| is the minimum of the constants ¢ so that (13) holds and B = (14 6)7B.
In [13], they proved that if X is connected, r > 1, and a satisfies the stronger

condition
> a(B)" < ca(B), (15)

whenever the balls B; are disjoint and contained in the ball B, then
lu — upll o) < Ca(B), (16)

where ®(t) = exp(t"') — 1 and v’ = L
To see that the results of MacManus and Pérez generalize those of Hajtasz and

Koskela, simply note that if p satisfies (6), then the functional

a(B) =rp (]{3 gp) l/p,

where 0 < g € L? (X), satisfies condition (13) with r = sp/(s — p), if p < s, and

loc

condition (15) with r = s, if p = s.

1.4 Self-improving properties of Orlicz-Poincaré inequalities
in connected spaces

A function @ : [0, 00) — [0, 00] is called a Young function if it has the form

vt = [ o)ds,

where ¢ : [0,00) — [0,00] is increasing, left-continuous function, which is neither
identically zero nor identically infinite on (0,00). The purpose of this thesis is
to study the self-improving properties of the following ®-Poincaré inequality, in-
troduced recently in [19] in connection with the study of the Orlicz-Sobolev space
N1?(X) consisting of functions u € L?(X) having an upper gradient g € L?(X).

Definition 1.1 Let ® be a Young function. A pair (u,g) of measurable functions,
u € L, (X) and g > 0, satisfies the ®-Poincaré inequality (in an open set U), if
there are constants Cp and T such that

][ lu — ug|du < Cprpd™* (][ P (g) du) (17)
B B
for every ball B C X (such that TB C U).

Notice that, in R™, a pair (u, |[Vul) of a weakly differentiable function and the length
of its weak gradient satisfies the 1-Poincaré inequality, and so, by Jensen’s inequality,
the ®-Poincaré inequality for every Young function .



An optimal embedding theorem for the Orlicz-Sobolev space W% (R") was re-
cently proved by Cianchi |1, 2|, see also [3]. Our first and main goal is to extend
this result to the metric setting.

Before stating (a version of) Cianchi’s result and its generalization we have to
introduce some notation. Let s > 1. For a Young function ¢ satisfying

!

/01 (%)H dt <oo and /OOO (%) = (18)

define
b, =Po W, (19)
where )
- ¢ 1 1/s
Y. (r)= /(—) dt . 20
r) ( e ) (20)
If
o0 t S/—l
—_— 21
[ (a@) @< 1)
define

w(t) = (1071 (t"))", (22)

where ©~! is the left-continuous inverse of the function given by
0

and ® is the conjugate of ®.

We will state Cianchi’s result only for balls, but it actually holds for much more
general domains: Let s > 2, let B C R® be a ball, and let u be a weakly differentiable
function such that |Vu| € L*(B). Then there is a constant C' depending only on s
such that

1) If (18) holds, then
|lu — UBHL%(B) < CH’vu’HL‘I’(B)'

Moreover, L*<(B) is the smallest Orlicz space into which W'*(B) can be
continuously embedded.

2) If (21) holds, then u has a continuous representative for which
u(z) — u(y)| < CllIVulll Lo mws (lr =y ™),
for z,y € B.

The main result of this thesis is the following.



Theorem 1.2 ([A]) Assume that X is connected, p satisfies (6) with 1 < s < oo,
BcC X isabal 6 >0, B=(1+6)7B, g€ L*(B), and that a pair (4,q), where

A~

@ =u/llgll e and g = g/llgll s p), satisfies the ®-Poincaré inequality in B.
1) If (18) holds, then
= usll e sy < Crn(B) gl o s (24)

where Oy is defined by (19)-(20). Moreover, if the pair (4, §) has the truncation
property, then

lu — uslles iy < Cran(B)™|lgllos) (25)

2) If (21) holds, then, for Lebesgue points x,y € B of u,
u(z) —u(y)| < Crpp(B)"*(lgll pagpyws  (rpu(B) " d(z,y) ™), (26)
where w; is defined by (22)-(23).
Here, C = C(Cs,s,Cp,T,0).
As a consequence, we obtain an optimal embedding theorem for the space N%®(X).

Corollary 1.3 Assume that (X, d, 1) is a doubling metric measure space that sup-
ports the ®-Poincaré inequality and satisfies (6) with s > 1. Let B be a ball, § > 0
and B = (1+9)7B.

1) If @ satisfies (18), then NL:I’(B) C L*:(B), where the embedding is continuous.
Moreover, each u € NY®(B) and every upper gradient g of u satisfy (25).

2) If ® satisfies (21), then NY*(B) € C(B). Moreover, each u € N¥*(B) and
every upper gradient g of u satisfy (26).

Apart from the case X = R", Theorem 1.2 and Corollary 1.3 seem to be new
even if the ®-Poincaré inequality in the assumptions is replaced by the 1-Poincaré
inequality.

The following example gives concrete expressions for the "Sobolev conjugate” ®,.

Example 1.4 Let ® be equivalent to the function t? log? t near infinity, where either
p=1landqg>0orp>1andqecR. Then ®, is equivalent near infinity to

#2/61) (log )0/ if 1< p< s
exp(t*/(+-1-0) p=sqg<s=1
(et ) fp=s =51

10



1.5 Self-improving properties of Orlicz-Poincaré inequalities
in the general case

It is essential in Theorem 1.2 that the underlying space X is connected. In |B| we
investigate the general case. Instead of assuming that ® is a Young function, we
assume the following:

(®-1) @ :[0,00) — [0,00) is an increasing bijection.
(®-2) The function ¢ +— tﬁ% is increasing.

Notice that (®-2) allows ® to increase essentially more slowly than any Young func-
tion. The results concerning such ® are new also for connected spaces.

Theorem 1.5 ([B]) Assume that ® satisfies (®-1) and (®-2), p satisfies (6) with
0<s<oo, BCXisaball 6 >0,7>1, B=(1+0)rB, and that a pair (i, ),

a 1 a 1 . . .. . .
where U = ||g||Lq,(B)u and g = ||g||Lq,(B)g, satisfies the ®-Poincaré inequality in B.
1) If
1 51 0o F—1
o (#) o ()
/O t1+—1/8 dt < o and /0 t1+1/5 dt = o0, (27)
then
lu = sl 5. g < Cron(B)*llgll o), (28)
where -1(1)
- oLt
-1 .
O (r) —/0 s dt. (29)

Moreover, if the pair (4, g) has the truncation property, then

||U—UB||L<1>S(B) < CTBH(B)_1/8||9||L<I>(B)~ (30)

2) If

/OO o7 (1) dt < o0, (31)

t1+1/s

then, for Lebesgue points x,y € B of u,

lu(z) —u(y)| < Crau(B) 2|9l po )5 (u(B) ' rpd(z, y) ™),

By(r) = / h q;_+—1(/? d. (32)

where

Here, C = C(Cs,s,Cp,T,0).

If ® is "close” to the function t — t*, the conclusion of Theorem 1.5 is weaker
than that of Theorem 1.2.

11



Example 1.6 Let ® be equivalent near infinity to the function t*log?t. Then the
function @ is equivalent near infinity to

exp(t*/(57179) ifg<s—1
exp(exp(t¥/=1)) ifg=1s5—1,

and the function @, is equivalent near infinity to

exp(t/C=D) ifg<s
exp(exp(t)) ifg=s.

On the other hand, if ® is a Young function such that the function ¢ — ®(¢)/t?
is either decreasing for some p < s, or increasing for some p > s, then Theorem 1.5
is equivalent to Theorem 1.2 (|B, Theorem 1.5]).

1.6 Self-improving properties of generalized Orlicz-Poincaré
inequalities

In both [A] and |B|, we also prove some abstract self-improving results which can
be formulated in terms of spaces A**(Q) defined as follows.

Definition 1.7 Let Q) be an open set, ® a Young function, 7 > 1 and 0 < s < o0.

Denote
B-(2) = {{B;} : balls TB; are disjoint and contained in Q}

bl = s 15 (nB)f o= vl ) s

I
BEB-(Q) Lo

and

Then A®#(U) consists of all locally integrable functions u for which the number
[ull 2.5 0y 15 fimite.

Theorem 1.8 below was proved in [A]. Similar results in the general setting were
obtained in [B]. Notice that here the number 1 < s < 0o is any number and need
not have anything to do with (6).

Theorem 1.8 Lel X be connected, p doubling, ® a Young function, B C X a ball,
l<s<oo,7>1andd>0. Denote B=(1+0)7B.

1) If (18) holds, then
[ = upllas 5y < Cllull g2 ) (33)

where @, is defined by (19)-(20).

12



2) If (21) holds, then, for Lebesgue points x,y € B of u,
u(z) —u(y)] < Cllull yoo gy (1(Bay) ), (34)
where By, = B(x,2d(x,y)), and ws is defined by (22)-(23).

Here, C = C(Cy,T,0).

It is easy to see that the first part of Theorem 1.2 is a consequence of inequality
(33). Also, when ®(t) = t°, (33) easily implies the generalized Trudinger inequality
(16) of MacManus and Peréz.

1.7 Characterizations of Orlicz-Sobolev spaces in terms of
(generalized) Orlicz-Poincaré inequalities

The results from [A]| and [B] discussed above deal with improved regularity of func-
tions that satisfy a ®-Poincare inequality. In the euclidean setting, Orlicz-Sobolev
functions satisfy such inequalities. It is then natural to ask if functions that satisfy
such an inequality have a nice generalized gradient. The main result of [C| is the
following.

Theorem 1.9 Assume that ® is a doubling Young function, p is doubling, Q2 C X
is open, u,g € L*(Q), and that the pair (4, ), where & = u/||g|lze@) and § =
9/llgll e, satisfies the ®-Poincaré inequality in Q. Then a representative of u has
a ®-weak upper gradient g, such that ||g,||Le) < C(Cq, Cp,7)||g|| 2

In the case ®(t) =7, p > 1, the result was essentially proven in [4], see [7].

It follows from Theorem 1.9 that, for an open set 2 C R", the Orlicz-Sobolev
space W1®(Q) can be characterized in terms of the ®-Poincaré inequality: u €
L?(Q) belongs to W1®(Q) if and only if there exists g € L*(2) such that the pair
(w/||gllze > 9/ 9]l L2 (o)) satisfies the ®-Poincaré inequality in €.

If both ® and its conjugate d are doubling, the assumptions of Theorem 1.9 can
be relaxed. In order to conclude that a representative of u € L®(Q) is in NM®(Q),
it suffices to assume that the number

Jull gy = 50 1 (5 fu = sl di)xalocon, )
BeB.(Q)  Fop B

where

B-(Q) = {{B;} : balls 7B; are disjoint and contained in Q},

is finite. Notice that [[u| y1e ) < A if and only if there is a functional v : {B C Q:
B is a ball} — [0, 00) such that

> uB) <1, (36)

%

13



whenever the balls B; € B are disjoint, and that the generalized ®-Poincaré inequal-
ity
, (v(TB)
u—ugldy < Arg® ! (—) 37
]{9‘ | p(B) (81)
holds whenever 7B C (.
The spaces AL?(Q) = {u € LL.(Q) : [ul| gro gy < oo}, for O(t) = t7, were

studied in [10]. Theorem 1.10 below is a generalization of [10, Theorem 1.1].

Theorem 1.10 ([C]) Assume that both ® and & are doubling, p is doubling, and
that Q C X is an open set. Then a representative of u € A-®(Q) N LP(Q) has a
S-weak upper gradient g with ||g|| o) < C(Cy, T)HuHAi*‘I’(Q)'
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Sharp self-improving properties of
generalized Orlicz-Poincaré inequalities in
connected metric measure spaces

Toni Heikkinen®

Abstract

We study the self-improving properties of (generalized) ®-Poincaré inequal-
ities in connected metric spaces equipped with a doubling measure. Our results
are optimal and generalize some of the results of Cianchi [1, 2|, Hajtasz and
Koskela [5, 6], and MacManus and Pérez [12].

Mathematics Subject Classification (2000): 46E35

1 Introduction and main results

Let X = (X,d, u) be a metric measure space with  a Borel regular outer mea-
sure satisfying 0 < u(U) < oo, whenever U is nonempty, open and bounded.
Suppose further that u is doubling, that is, there exists a constant C; such
that

n(2B) < Cau(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cy such that

p(B(z,7)) afr\
#(3(930»7“0))205 (7“0) @)

holds, whenever = € B(zg,ro) and r < rg.
A pair (u,g) of measurable functions, g > 0, satisfies the p-Poincaré in-
equality, if there exist constants Cp and 7 > 1 such that

1/p
][ lu—up|du < Cprp <][ g d,u) (3)
B B

for every ball B = B(z,r) C X. Hajtasz and Koskela [5, 6] proved the
following self-improving properties of (3): Assume that p satisfies (2), and
that a pair (u,g), where g € L} (X) satisfies the p-Poincaré inequality (3).
Let § > 0 and B = (1 + 0)7B. There exists a constant C' = C(Cy, s,Cp, T, )
such that the following holds.

*The author was supported by Vilho, Yrjo and Kalle Viisiald Foundation



1) If p< s, then

ape (M) T <o (f

B
where ps; = p Consequently, for ¢ < ps, we have

1/q 1/p
(J[ lu — UB\qdu) <C'rp (][ q° du) ; (5)
B T'B

where C’ depends on C and ¢. In general, (3) does not yield (5) with
g = ps. However, if a pair (u,g) has the truncation property, which
means that for every b € R, 0 < t; < t3 < oo and € € {—1, 1}, the pair
(Uff>9X{t1<v§t2})a where v = e(u —b) and vff = min{max{0,v —t1},ts —
t1}, satisfies the p-Poincaré inequality, then we have (5) with ¢ = ps.

1/p
gpdu) . (4)

2) If p=s>1and X is connected, then

lu = usll g sy < Crolgll 1o a)- (6)
where || - || zo(p) is the normalized Luxemburg norm generated by the
function ®(t) = exp(t*) — 1 (see Section 2) and s’ = *5.

3) If p > s, then u has a locally Holder continuous representative, for which

1/p
ute) — uly)| < Crftata ) (f o dn) 7)
B
for z,y € B.

Franchi, Pérez and Wheeden [4] and MacManus and Pérez [11, 12] studied
the self-improving properties of inequalities of type

flu—umduéHumaﬁB% (s)
B

where ||u|lq >0, 7>1and a:{B C X : Bisa ball} — [0,00) is a functional
that satisfies certain discrete summability conditions. In [11] MacManus and
Pérez showed that if § > 0 is fixed, and the functional a satisfies condition

> a(B) u(Bi) < ¢a(B) u(B), (9)

whenever the balls B; are disjoint and contained in the ball B, then the
Poincaré-type inequality (8) improves to

p({z € B : u(z) — up| > \)\ ' -
igx( “ ) < Cllalullaa(B),  (10)

where ||a|| is the minimum of the constants ¢ so that (9) holds and B =
(14 6)7B. In [12], they proved that if X is connected, » > 1, and a satisfies
the stronger condition

> a(B)" < a(BY, (11)
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whenever the balls B; are disjoint and contained in the ball B, then
lu—usllze(5) < Ca(B), (12)
where ®(t) = exp(t") — 1 and ' = -L+.
To see that the results of MacManus and Pérez generalize those of Hajtasz
and Koskela, simply note that if p satisfies (2), then the functional

a(B) =rp <]{9 9" du)l/p,

where 0 < g € L} (X), satisfies condition (9) with » = sp/(s — p), if p < s,
and condition (11) with r = s, if p = s.

In this paper we are interested in the self-improving properties of the fol-
lowing ®-Poincaré inequality, introduced recently in [14]. For the definition

and properties of Young functions and Orlicz spaces, see Section 2.

Definition 1.1 Let ® be a Young function. A pair (u,g) of measurable func-
tions, uw € L} (X) and g > 0, satisfies the ®-Poincaré inequality (in an open
set U ), if there are constants Cp and T such that

][ lu —up|dy < Cprp®~! <][ ® (g) du) (13)
B B
for every ball B C X (such that TB C U).

Assuming that the underlying space is connected, we obtain results which
are sharp in the sense that they reproduce a version of Cianchi’s optimal
embedding theorem for Orlicz-Sobolev spaces on R™ [1, 2]. Notice that a
pair (u,|Vu|) of a weakly differentiable function and the length of its weak
gradient satisfies the 1-Poincaré inequality, and so, by Jensen’s inequality, the
®-Poincaré inequality for every Young function ®.

Let s > 1. For a Young function ® satisfying

/01 <q)’(ft))8/_1 dt < oo and /OOO <(I>7(5t))8/_1 dt=o0,  (14)

define
D, =Do W, (15)
where ,
r " s—1 1/s
Ue(r) = — dt . 16
) </o (4(s) ) 16)
If
o0 t S/—l
—_— 1
[ (o) @< )
define

ws(t) = (t071(t)), (18)
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where ©~! is the left-continuous inverse of the function given by

o) = ¢ /OO LU (19)

t1+s

and ® is the conjugate of ®. We wish to point out that, under (14), functions
®, U, and P, are bijections. Notice also that one can modify any Young
function ® near zero so that the condition

/01 ((;(;))Sll dt < oo

is satisfied for the modified function ® and that L%C(X) LY (X).

We will state Cianchi’s result only for balls, but it actually holds for much
more general domains (see |1, 2, 3|): Let s > 2, let B C R® be a ball, and let
u be a weakly differentiable function such that |Vu| € L®(B). Then there is a
constant C depending only on s such that

1) If (14) holds, then
v —upllLes By < Cll|VulllLe(p
Moreover, L% (B) is the smallest Orlicz space into which WH®(B) can

be continuously embedded.

2) If (17) holds, then u has a continuous representative for which

Ju(z) = u(y)| < CllIVulll o mws (Jz = y[7*),

for x,y € B.

Theorems 1.2 and 1.4 below generalize the result of Cianchi.

Theorem 1.2 Assume that X is connected, u satz’sﬁes (2) with 1 < s < o0,
BcCc X isa ball >0, B= (1+5)TB g € L®(B), and that a pair (4, 7),
where @ = ||gll 4 g and § = |lgll

in B.
1) If (14) holds, then

satisfies the ®-Poincaré inequality

L%(B) By

lu —usll o ) < Crom(B) ™[l a5, (20)

where @ is defined by (15)-(16).
2) If (17) holds, then, for Lebesgue points x,y € B of u,

lu(z) = u(y)] < Crpp(B)™* gl o pyws (riu(B) " d(z.y) %), (21)

where ws is defined by (18)-(19).
Here, C = C(Cs,s,Cp,T,0).
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If the ®-Poincaré inequality is stable under truncations, the weak estimate
(20) turns into a strong one.

Definition 1.3 A pair (u, g) has the truncation property, if for every b € R,
0 <t <ty < oo ande € {—1,1}, the pair (U§f7gX{t1<U§t2})7 where v =
e(u—b) and

vfgf = min{max{0,v — t1},to — t1 },

satisfies the ®-Poincaré inequality (with fized constants).

A weakly differentiable function u on R™ satisfies \vaf] = |Vulx{ <v<ts}
which implies that the pair (u,|Vu|) has the truncation property.

Theorem 1.4 Suppose that the assumptions of Theorem 1.2 are in force, (14)
holds, and that the pair (4, g) has the truncation property. Then

HU—UBHL%(B) < CTBN(B)il/S”gHL‘P(B)? (22)

where O, is defined by (15)-(16) and C' = C(Cs,s,Cp,T,9).

The following example gives concrete expressions for the "Sobolev conju-
gate” P,.

Example 1.5 Let ® be equivalent to the function tP log? t near infinity, where
eitherp=1andqg>0o0rp>1andqg € R. Then O is equivalent near infinity
to

tP/(5=P) (log t)%/(5—P)  if 1 < p < s

exp(ts/(5=1-9) ifp=s,qg<s—1

exp(exp(t*/¢D))  ifp=s,g=s—1

In a general metric space we cannot talk about partial derivatives, but the
concept of an upper gradient has turned out to be a useful substitute for the
length of a gradient.

Definition 1.6 ([10]) A Borel function g : X — [0,00] is an upper gradient
of a function u : X — R, if for all rectifiable curves v :[0,l] — X,

u(7(0)) — u(3(1)] < / gds (23)

.
whenever both u(v(0)) and u(y(l)) are finite, and fvgds = 00 otherwise.

More generally, g is a ®-weak upper gradient of u, if the family of rectifiable
curves for which (23) does not hold has zero ®-modulus (see Section 2). The
Orlicz-Sobolev space N®(X) consisting of functions v € L®(X) having a
®-weak upper gradient g € L®(X) was recently studied by Tuominen [14].
We say that X supports the ®-Poincaré inequality, if the ®-Poincaré inequal-
ity holds for all locally integrable functions and their upper gradients. If X
supports the ®-Poincaré inequality, then any pair (u, g) of a locally integrable
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function and its ®-weak upper gradient g € L®(X) has the truncation prop-
erty (Lemma 2.4). Thus, we obtain an optimal embedding theorem for the
space NL®(X).

Theorem 1.7 Assume that (X, d, 1) is a doubling metric measure space that
supports the ®-Poincaré inequality and satisfies (2) with s > 1. Let B be a
ball, 6 >0 and B = (1+0)7B.

1) If ® satisfies (14), then N-®(B) c L®:(B), where ®; is defined by (15)-
(16). Moreover, for every u € NY®(B) and for every ®-weak upper
gradient g of u, we have

lu = upllLo.5) < Crop(B) ™ llgll o p)-

2) If ® satisfies (17), then every u € Nl’q)(B) has a locally uniformly con-
tinuous representative. Moreover, for every ®-weak upper gradient g of
u, we have

lu(z) = u(y)] < Crpp(B)*|gll o pyws ' (rhu(B) d(z,y) ),

for x,y € B, where ws is defined by (18)-(19).
Here, C = C(Cs,s,Cp,T,0).

Apart from the case X = R", theorems 1.2, 1.4 and 1.7 seem to be new even if
the ®-Poincaré inequality in the assumptions is replaced by the 1-Poincaré in-
equality. The spaces supporting the 1-Poincaré inequality include Riemannian
manifolds with nonnegative Ricci curvature, @)-regular orientable topological
manifolds satisfying the local linear contractability condition, Carnot groups
and more general Carnot-Carathéodory spaces associated with a system of
vector fields satisfying Hormander’s condition, as well as more exotic spaces
constructed by Bourdon and Pajot, Laakso, and Hanson and Heinonen, see [6]
and the references therein.

Our next result is an embedding theorem for the space AY*(U) defined as
follows.

Definition 1.8 Let U be an open set, ® a Young function, 7 > 1 and 0 <
s < 0o. Denote

B (U) = {{Bi} : balls TB; are disjoint and contained in U}

and

lull gy = sup 1S (MB)—I/S]{B ju— up| dﬂ) vl oy

BeB-(U) g

Then A;{—)’S(U) consists of all locally integrable functions u for which the number
lull yo.s g7y is finite.



Notice that below 1 < s < o0 is any number and need not have anything
to do with (2).

Theorem 1.9 Let X be connected, p doubling, ® a Young function, B C X
aball, 1 <s<oo, 7>1and§ > 0. Denote B= (14 0)7B.
1) If (14) holds, then

= sl e ) < Cllull oo (24)

where O is defined by (15)-(16).
2) If (17) holds, then, for Lebesgue points x,y € B of u,

[u(z) = u(y)| < Cllull yos gyws ' (1(Bay) ™), (25)

where Byy = B(x,2d(x,y)), and ws is defined by (18)-(19).
Here, C = C(Cy,T,9).

It is easy to see that the first part of Theorem 1.2 is a consequence of
inequality (24). In Section 4 we will show that it also implies the generalized
Trudinger inequality (12) of MacManus and Peréz.

The results in this paper deal with connected spaces. The setting of a
disconnected space will be investigated in the forthcoming paper [8].

2 Preliminaries

2.1 Metric measure spaces

Throughout this paper X = (X,d,u) is a metric space equipped with a
measure p. By a measure we mean Borel regular outer measure satisfying
0 < u(U) < oo whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x,r)
and B(z,r). Sometimes we denote the radius of a ball B by rp. For a positive
number \, we define A\B(z,7) := B(z, \r).

Recall from the introduction that the doubling property of a measure im-
plies a lower decay estimate (2) for the measure of a ball. In connected spaces
we can estimate the measure of a ball also from above.

Lemma 2.1 Let X be connected and p doubling. Then there are constants
a >0 and C > 1 depending only on Cy such that

W(B(e.r) [\
MB@mmDSC<m)’ (26)

whenever x € B(xg,19) and r < 71g.

For a proof, see for example [12].
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2.2 Young functions and Orlicz spaces

In this subsection we give a brief review of Young functions and Orlicz spaces.
A more detailed treatment of the subject can be found for example in [13].
A function @ : [0,00) — [0, o] is called a Young function if it has the form

B(t) = /0 o(s) ds,

where ¢ : [0,00) — [0,00] is increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0,00). A Young function is
convex and, in particular, satisfies

B(et) < ed(1) (27)

for0<e<land 0 <t < o0.
The right-continuous generalized inverse of a Young function @ is

O L(t) = inf{s : B(s) > t}.
We have that
(d7H(1) <t < 27H(D(1)

for t > 0.
The conjugate of a Young function ® is the Young function defined by

O(t) = sup{ts — ®(s) : s > 0}

for t > 0.
Let ® be a Young function. The Orlicz space L?(X) is the set of all
measurable functions u for which there exists A > 0 such that

/X P <‘u(;)‘) du(x) < oo.

The Luxemburg norm of u € L®(X) is

: u(x
[ull Lo xy = llull Lo (x,,) = inf{A >0 / ) <’ (/\)’> du(x) < 1}.

X

If [ull o (x) # O, we have that

The following generalized Hoélder inequality holds for Luxemburg norms:

[ o) duta) < 2o ol o
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The weak Orlicz space LE(X) is defined to be the set of all those measur-
able functions for which the weak Luxemburg norm

lull Lo x) = inf{\ > 0:sup®(t)u({zr e X : |u(;:)| >t}) <1}
v t>0

is finite. If [[ul|z2 x) # 0, it follows that

supP(t)u({zx e X : _Ju@)] >t}) <1
>0 HUHLg(X)
The normalized (weak) Luxemburg norm, that is, the (weak) Luxemburg norm
taken with respect to measure pu(X) 'u, will be denoted by || - ey (I
e (x))-
A function ® dominates a function ¥ globally (resp. near infinity), if there
is a constant C' such that
U(t) < ®(Ct)
for all t > 0 (resp. for t larger than some %p).
Functions ® and ¥ are equivalent globally (near infinity), if each dominates
the other globally (near infinity).
If u(X) < oo and ® dominates ¥ near infinity, we have that

[ullgw () < C(@, W) |ull go(x)- (28)

2.3 ®-weak upper gradients

Let @ be a Young function. The ®-modulus of a curve family T" is
Modg(I') = inf {||9||L4>(X) : /gds >1forall y € F} .
2l

If X supports the ®-Poincaré inequality, then (13) holds for functions and
their ®-weak upper gradients. This is an immediate consequence of the fol-
lowing lemma (|14], Lemma 4.3).

Lemma 2.2 Let ® be a Young function and let g € L®(X) be a ®-weak upper
gradient of a function u. Then there is a decreasing sequence (g;) of upper
gradients of u such that g; — g in L*(X).

An important property of ®-weak upper gradients is the following ([14],Lemma
4.11).

Lemma 2.3 Let ® be a Young function. Assume that u € ACCq(X) and
that the functions v and w have ®-weak upper gradients g,, g, € L®(X). If E
is a Borel set such that u|p = v and u|x\g = w, then the function

9 = GuXE T GuXx\E

1s a P-weak upper gradient of u.



Here "u € ACC%(X)” means that the family I" of rectifiable curves for which
w o7y is not absolutely continuous on [0, [(+y)] has zero ®-modulus.

It follows from the lemma above that if g € L®(X) is a ®-weak upper gra-
dient of a measurable function v, then gx (¢, <y<s,} is @ ®-weak upper gradient

of the function vff = min{max{0,v—t;},t2—t1}. Thus, we have the following.

Lemma 2.4 If X supports the ®-Poincaré inequality, then every pair (u,g)
of a locally integrable function and its ®-weak upper gradient g € L®(X) has
the truncation property.

3 Proofs of main theorems

The proof of Theorem 1.9 requires several lemmas. In the first three lemmas
equivalent representations of conditions (14) and (17) and of functions ®, and
ws are given. The proofs of lemmas 3.1 and 3.2 can be found in [3], and the
proof of 3.3 in [1].

Lemma 3.1 Let ® be a Young function. We have

~ s —1
/01;1;‘(2 dt < oo if and only if /0 (@Et)) dt < oo (29)

and

0o & 0o s'—1
/ ;I;(fs), dt < oo if and only if / <<I>7(ft)> dt < 0. (30)

Moreover, the function ®g is globally equivalent to the function Ds given by
Dy(t) = (t1 71 ()" (31)
for t >0, where J=1 is the left-continuous inverse of the function given by

J(r) = ¢ /O ' fl’fj, dt. (32)

Lemma 3.2 Let ® be a Young function. Then HT*I/SIHL@(tm) < oo for every
t > 0, if and only if X
/Oifs), dt < oo. (33)
Moreover,
7 oy = D3 (18 (34)

fort >0, where D! is the right-continuous inverse of Ds.

(35)
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Lemma 3.3 Let ® be a Young function. Then Hr_l/slHL@)(O p <0 for every
t >0, if and only if

> b(t)
/ 0t < oo. (36)
Moreover,
I 1 o .y = w3 (170 (37)

fort >0, where w; ! is the right-continuous inverse of ws.
It is easy to see that, for C' > 1,
D7Y(Ct) < CDH(t) (38)

and
w;H(C7H) < Cw (1), (39)

S
Lemma 3.4 Let ® be a Young function. Then
®(r)"or < 271 (@(r))
forr > 0.

Proof. Since ® is convex, the function ¢ +— ¢t/®(t) is decreasing. Hence

5;(B(r)) = ( [ () dt) R ( (q)())l) e

O
The next lemma is the part of the proofs of theorems 1.9 and 1.2, where
the connectedness of the space comes into play.

Lemma 3.5 Assume that X is connected, p doubling, 7 > 1 and § > 0. Let
B be a ball, v € B and 0 < r < drp. Then there is a sequence {By,..., B}
of balls contained in (1 + §)B such that p(By) is comparable to p(B), p(By)
is comparable to w(B(x,r)), {Bi,..., By} € B-(B),

21(Bit1) < pu(Bi) < Cpu(Biga), (40)
for1<i<k, and
K
usen) ~us < CYf uus|dn (41)
=1 i

where C = C(Cy,T,9).

Proof. Fixz € Band 0 < r < drp. Let C; be a cover of A; = B(z,2776rg)\
B(z,2797rg) by balls of radius (207)712778rp centered at A; such that
the balls %D, D € Cj, are disjoint. It follows easily from the doubling
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property of p that #C; < C. Since X is connected, there must be a se-
quence {By,...,B;_;} C UJL,C; so that By € Ci, BN Bj,y # 0 for all 4,
B, C B(z,r) and u(Bj,_,) is comparable to u(B(z,7)). Denote By = B,
By = B}, = B(z,r) and B; := 5B for 1 <i < k. Then B] C Bj;1, and so

lup — uB£+1\ < lupr —up, |+ lup;, — uBzg+1| < C]{3 |u —up,,,|dp.
i+1

Thus

k-1 k
I IED IR Ee) By TR )
i=0 i—1Y Bi

We will show that {B;} has a subsequence that belongs to B, (B) and satisfies
(40) and (41). For 1 < j < m, choose D; € {B;} centered at A; such that

][ \u—upj|d,u:max{][ |u—up,|du: xp, € Aj},
D; B;

J

where xp, denotes the center of B;. Then

m
’uB(l‘,T‘) - uB()‘ < CZf "LL - UDJ’CZ/,L
j=17Di

If |i — j| > 2, then 7D; N 7D; = 0.
By (2) and (26) there are constants o > 0 and § > 0 depending on Cy
such that

—log—fn ~ N(Dj—f—n) < —an
Crly g Bl < 02 (42)

for j,n > 1. Let n > 2 be such that C27°" < 27!, For p+ (i — 1)n < m,
denote B} = Dy (;_1), - Then the sequence {BY, Bj ...} satisfies (40) and
belongs to B, (B). By choosing 1 < p < n such that

St ugldn = e S f =gl dg
2 1 (3 7

we obtain

lu(z) —up,| < CZ][ lu—upr|dp.
i /By

The proof is complete. O
We need one more lemma, a weak-type estimate for a sharp fractional
maximal function defined by

Migua) = swp u(B) S u - usldu, (43)
’ r€BCBy B

for a ball By C X, u € L*(Bp) and 0 < s < o0.
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Lemma 3.6 Let ® be a Young function. Then

IMFpullg ) < CCa)llul oy

Proof. We may assume that HUHA;‘?'S(TB) = 1. Let # € B such that MfBu(x) >

A. By the definition of MfBu, there is a ball B, C B containing x such that

p(Ba) oL >
So,
p(Be) < OB (0B, (B (44)
By the standard 5r-covering lemma (|9, Theorem 1.16]), we can cover the set
{z€B: MIy(z) > A}

by balls 57 B; such that the balls 7B; are disjoint and that each B; is contained
in B and satisfies (44). Using the doubling property of u, estimate (44),
inequality (27), and the fact that {B;} € B-(7B), we obtain

u({x € B: MIzu(z) > \}) <ZM5TB <C(Cyr ZM

< C(Cd,f)cb()\)*lz:@ 1/3][ |u — up, \du) (B:)
<o <C(C);,T)> B Z (I)(H(Bi)l/s]{g |u — up,| dﬂ) w(B;)

<o)

The claim follows by the definition of || - || za. O
Proof of Theorem 1.9. 1) Denote B’ = (1 + §)B. It suffices to show
that the pointwise inequality

-1 MfB,U<1‘)
[u(w) = up| < Clull yo. 5 ®; (45)
M, B/U||L<I’ (B

holds for Lebesgue points 2 € B. Indeed, if (45) holds, then

_ M7 u(x
H<x€B:|u(x)um>t>§u<x€B:@sl ( *B (=) )>t>
C”“HAfvS(m | M B/“HLCP (B")

M#,uyj
SM(mGB v i (7) ><1>—1o<1>s(t))
)

B/“HL‘P B
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Fix a Lebesgue point € B of uw and 0 < r < drp. Let {By,... Bx} be the
chain from Lemma 3.5 corresponding to z and r. Since the balls B;, i > 1,
are disjoint, we have that

Z][ |u—uB|du—HZ][ ] B 11

and

k

Z][ |lu— uB|d,u XB Z 1/8][ \u—up,| duxs, ZM 1/S/XBr

=1

Hence, by the Holder inequality,

k
Sof uund
i=17Bi
k k
<2 ZM(Bi)l/S][ lu —up,| duxsllLex) - |l ZM(E‘V”S xBill o (x)
=1 i =1

< 2”“”,44’5 HZN s XB«;HLé(X)

By the definition of Luxemburg norm

k

, 1/s
I ZH(Bz‘)_l/S XBiHL‘i’( =inf{A>0: Z(I) <)) wu(B;) < 1}.

i=1

For each ¢, we have that

where the first inequality follows from the fact that the function
ts &Y /N)
is decreasing, and the second from (27). Since

1(B;)
5

k ) 1/s u(B1) | ot—1/¢'
Z pu(Bi) < / P e K

2

p(Biy1) <

we obtain
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which implies that

k _1/5 /L(Bl) R 2t—1/$/
I E/L(Bi) XB; HL<I> <inf{A >0: /u(Bk) o 3 dt <1}
1= 2

Tl

o _
Lo (M5 (By))

Thus

k
_ VAT
St umldi < Cllul gy 17 o sy (40
By similar reasoning,

lup, —up| < |up, —up/| + |lup —up| < C][ |u —up|du
B/

(47)
< Ol ) 187 st
It follows from estimates (46) and (47) that
By = uBl < Clull g ) 1 o crpmmn.cney (49)
Hence, by lemmas 3.1 and 3.2, and by (38),
[uB(zr) — uB| < CH“HA?*S(B)@?(M(B(%7"))71)- (49)

Next, we will estimate |u(z) — up(s,,)| in terms of maximal function (43). For
i > 0, denote B; = B(x,27%r). By the Lebesgue differentiation theorem (|9,
Theorem 1.8]), up, — u(z), as i — oco. Thus, by (1) and (26),

]u(:v) - uB(a:,r)’ < Z |U’Bi - uBi+1‘

1>0
<CZ][ |lu —up,|dp
>0
<CZM l/sM# u(x)
>0

< Cu(Ba,r) "My u(x).
So, by Lemma 3.6,
M#B,u(a;)

[0(2) = (e )| < Cllll gy B, ) . (50)
M, B/U”L<I> (B

Combining the above estimates, we obtain

. M7y u(w)
rmm—umgcwwﬁwm<¢ﬁwuﬂ D)+ (B ),
M B/UHL<I> (B')



MjfB/U(m)

where B, = B(z,r). If ® <”M

orp such that

) > p(Bsrz) "1, we can choose r <

#
SyBlu”Lg(B/)

M7 g u(x)

o o (250 <y

MjfB’“”L%(B’)

Then

# # —1/s #
N(Br)l/s MS,B’U’(m) < C® <|| MS7B,U(:1}) ) ” MS,B’u(x)

|37 gl g ) Mgl (s MEpullig) ()

< 0Pt <<1> ( MfB/“@) ))
HMZEB/UHL%’;(B’)

where the last inequality comes from Lemma 3.4. Thus, we obtain (45).

It ,
M7 u(x)
©Q|$B )<mmmr%

MfB/UHLg(B/)

it suffices to combine estimate (50), where r = drp, with the estimate

|UB5TB —up| < C][ |lu —upr|du
B/
< Cu(B)'* M pu(x)
M#B,u(x)

S,

< Cllull g5 gy 1(Bor)'*
- HMfB/uHLﬁ(B’)

and argue as in (51).
2) Letting r tend to zero in (48) and using Lemma 3.3 and (39), we obtain

Ju(e) — up| < Cllull s w5 (1(B) ™). (52)

Let z,y € B be Lebesgue points of u. Denote By, = B(z,2d(x,y)). If
d(z,y) > $0rp, then pu(B) < Cu(Byy). So

lu(z) — u(y)| < [u(z) —up| + |u(y) — us|
< C”UHAfﬁS(g)W;l(N(B)il)
< CH“”AfS(B)w;l(M(Bxy)_1)~

If d(z,y) < %57"3, then (52), applied to the ball By, yields

[u(e) — u(v)| < u(x) — up,,| + u(y) — us,,|
< Ollull oy ((Bry) ).
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Since we may assume that 6 < 1/2, it follows that Bxy C B. Hence

u(@) = uy)] < Cllul yoo gy (1(Bay) ™).

Proof of Theorem 1.2. 1) By Theorem 1.9, it suffices to show that
lull yo.s 3y < Cra(B)™*|gll o 5. (53)

We may assume that Hg”L‘i’(B) = 1. Let D be a ball such that 7D C B. Then,
by (13) and (2),

][ lu —up|du < Cprp®? <][ D(g) du)
D D

< Crpp(B) o p(D) /0! <]{ o (g) du) :

D

Hence, for D € B(B),

p(D)" o f ) [u = up| dp
Z @ ( CT’B,Uf[()B)_l/S )

DeD

Z/ du</¢>(g)du§1,

DeD

which implies that

IS (o) o f = unldn) xolaq < Croue) .

DeD

By taking supremum over B, (B), we obtain (53).

2) We may assume that 6 < 1/2. Let D be a ball centered at B so that
D = (14 6)7D C B. Fix a Lebesgue point = € D, 0 < r < drp and let {B;}
be the chain from Lemma 3.5 corresponding to D, x and r. Clearly, the chain
can be chosen so that rp, , < 7"2&. Since the balls B;, i > 1, are disjoint, we
have that

k k
Z][ \u—usirdu—uzuwnlf ju — up,| dxm, 2 x)
i=1" Bi i=1 Bi

and

k

> u(B) ][ lu—ug,|duxs, fZT ]{3 lu—ug,|duxs, Znu )"'xB;-
=1 =1 =1

So, by the Hélder inequality,

k
S tu s du
i=1"Bi

k k
<2| 27“51]{9 lu —up,| duxs,lLex) - |l ZTiM(Bz’)AXBiHLé(X)
=1 i =1
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-1
L®

{B;} € B,(D) c B.(B), we have that

Since the pair ||g . (u,g) satisfies the ®-Poincaré inequality in B and
(B)

k
13- o= s din o) < Clalogy
=1 i

By the definition of Luxemburg norm
k k 1
_ . - (1rip(B;
I3 raB) oy = inf 3> 0: 3 (P50 ) s < 1y
i=1 i=1

By (2),
' u(Bi)~h < (Cpry)~,

where O = Cry'u(B)Y/5. Since the function ¢ ®(at)/t is increasing, for
every a > 0, we have

- (rip(B) ! - (ri(Cpry)~* s _ & i
Bk S 7 N\ < By S — i ,
) < 3 M(BZ) <o 3 (CBTZ) ) Cmn ti,

where t; = (Cpr;)®. It follows that

k k -1/s
_ 1. [t
”ZT‘Z/L(BZ) 1XBi”L<i>(X) SCBllnf{)\>Oiz® ( b\ )tigl}
i=1 i=1

t1 . t_l/S,
§2CBlinf{)\>0:/ ¢ | — <1}
0

= 2051 Htil/s/ ||L(i>(07t1)
< Crpp(B) ™ w (w(B) ),

where the last inequality comes from Lemma 3.3 and from (39). Thus
lu(z) — up,| = lim |UB(z,r) — UB|
< Crpu(B) ||l o s (W(B) ' rgrp).
By similar reasoning,
lup, —up| < |upr —up,| + |up, —up/| < C]{)/ |u —up/|du
< Crpp(B) gl ya s (0(B) ).
So,

u(@) — up| < Crpu(B)™*|lgll o gyws  (1(B)rgrp?). (54)



Let x,y € B be Lebesgue points of u. If d(x,y) > %57“3, then (54) with D = B
yields
u(z) — u(y)| < lu(z) —up| +[u(y) — us|
< Crpu(B) ™ lgl o gy (u(B) M rpd(a,y) ™).
If d(z,y) < +6rp, then D c B, for the ball D = B(z, 2d(z,y)), and so by (54)
and (39),
u(z) —u(y)| < |u(z) —up| + |u(y) — up]
< Crpu(B) gl oy (1(B) (e, y)~").
O

Remark 3.7 As shown above, the first part of Theorem 1.2 is a consequence
of Theorem 1.9. More generally, suppose that (2) holds, and that a function u
satisfies an inequality of type

ju—upldps < Julrpet (LT21) (53)
]{) <M(7'D)

where o« > 0, and v : {B : Bisa ball } — [0,00) satisfies Y v(B;) < 1,
whenever the balls B; are disjoint and contained in B. Then, an argument
similar to the proof of (53), shows that

lull g ) < Crmn(B)ull, (56)

Thus, if (14) holds, with s/« in place of s, Theorem 1.9 yields
o=l o1y < CrEH(B)

The properties of functions satisfying inequalities of type (55) with ®(t) = tP
were studied in [7].

Remark 3.8 Suppose that (2) and (14) hold, and that a pair (u,g), where
0 < [3®(g)dp < oo, satisfies the ®-Poincaré inequality in B. Then, for the
measure fi = ([5®(g) du)fl i, we have that HgHLé(B;p) = 1. Since (2) and
(13) trivially hold for i with the same constants as they hold for p, Theorem
1.2, for the measure fi, yields

lu—ullps: p.a < Crpfu(B)~'/*,

)

which is equivalent to

¢ —1/s
e, (CMB)/ ([ 2wan) ) p({lu = sl > 1) < [ ®(g)an

(57)
where {|lu —up| >t} ={x € B: |u(zx) —up| > t}.
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Proof of Theorem 1.4. Suppose that (2) and (14) hold, and that a pair
(u, g), where 0 < fB g) du < 00, has the truncation property. Choose b such
that

n({u>b}) = p(B)/2 and p({u < b)) > pu(B)/2.

Let v4 = max{u — b,0} and v— = —min{u — b,0}. We need the following
elementary lemma.

Lemma 3.9 Let v be a finite measure on Y. If w > 0 is a v-measurable
function such that v({w = 0}) > v(Y)/2, then, fort >0,

v({w>t}) < 222{{1/({@ —c| >t/2}).

Proof. If |c| <t/2, then {w >t} C {Jw — ¢| > t/2}. Otherwise, {w =0} C
{lw —¢| > t/2}, and so

v({w >t}) <v(Y) <2v({w =0}) <2v({|lw —c| > t/2}).
Let v denote either vy or v—. For k € Z, denote vy = ’U%:_l and g =
gX{Qk—1<U§2k}. Then
p({v > 2" < pu(for > 2°7%}) <2u({lop — (on)| > 257%)) (58)

for k € Z. Let C = 25Cy, where Cj is the constant from inequality (57). Using
(58) and (57) for the pair (v, gx) we obtain

;o (i (o))
< e ® (e (o) ) o

kez
ok+1 —1/s

<5 (cu/ ([, ot0m) )m{v > 24)
2k—3 “1/s )

< ;Zq)s (W (/B <I>(gk)du) ) u({Jor — (o) 5| > 25731

< )d

%/ (gr) dp
< /B@(g) dp.

Thus

ggﬂg/jgés (c*r‘:(z;)b’l/s </B ®(g) du) _1/S> dp < /B@(g) dp. (59)
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This, for the pair HgH;(B) (u, g) in place of (u,g), yields

' _ —1/s .

inf [t — Bl ) < Cr(B) Nl s
Since |lu — up||pe(ay < 2infper ||u — bl o (4) for any set A of finite measure,
the proof is complete. O

4 Strong inequalities without truncation

In this section we will show how the weak estimate (24) implies strong ones.
We begin with an easy lemma.

Lemma 4.1 Let u(X) < oo, and let & and ¥ be Young functions such that

/1 B & < . (60)

Then L2(X) C LY(X) and there is a constant C = C (¥, ®) such that

ull go(xy < Cllull Lo x)- (61)

Proof. Assume [[ul| e x) = 1. Denoting i = w(X) ™1, we obtain

[ wtai= [Tt e X jul > i
X 0

< W(1) +/1 V()a({r € X : |u| > t})dt

<w(1)+ /oo VW gy o
1

which implies (61) with C' = max{C’,1}. O
For a measure v on X, denote

lull oy = 30 1S (w8 Yof, = usldo) xsluno:

BeB:(U) pep

For a ball B C X, denote up = u(B) ' pu.

Theorem 4.2 Suppose that the assumptions of Theorem 1.9 are in force, (14)
holds, and that ¥ is a Young function satisfying

/1 (1) dt < oo. (62)

lu — unll o) < Cllull gos s - (63)

Then
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where C = C(Cy, s,7,0,®,W). Moreover, if p satisfies (2), g € L®(B), and a
pair HgH;i(B) (u,g) satisfies the ®-Poincaré inequality in B, then

lu— uslle(s) < Crallgll o ) (64)
where C' = C(Cs,s,Cp, 1,0, D, V).
Proof. Theorem 1.9, applied to the measure pug = u(B) ™', yields

lu—usll g2e 5y < Cllull g2 (-
So, by Lemma 4.1,

= usll o) < Cllull oo,
Since
I zeByus) < Ol ez
it follows that
lell gz (yemy < Clellaz By
Inequality (64) follows from inequalities (63) and (53). O

Notice that if @4 increases quickly enough, condition (62) is satisfied with
U(t) = Ps(t/2), and we have

lu = upllges ) < Cllull yo.05,, - (65)

In particular, this is the case when ® is equivalent to ¢t — t® near infinity.
Suppose now that (8) holds with a functional a satisfying (11), and that
® is equivalent to t — t° near infinity. Then

ol = 0 1S () Ju = usl i) ol oz

BeB.(B) BeB

<0 s |1 (g o Juwnldi) xle o

BeB-(B) BeB

s\ 1/s
<C sup <][ Iu—uB\du> )
BeB.(B) (Z B

BeB

1/s
< Cllullqg  sup (Z CL(TB)S>

BeB.(B) \BeB
< C|ullqa(B),

where the first inequality comes from (28). Thus (65) implies the generalized
Trudinger inequality (12).
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Self-improving properties of generalized
Orlicz-Poincaré inequalities in metric
measure spaces

Toni Heikkinen®

Abstract

The sharp self-improving properties of generalized ®-Poincaré inequalities
in connected metric measure spaces were recently obtained in [6]. In this paper
we investigate the general setting. We also include the case where ® increases
essentially more slowly than the function ¢ — ¢. Our results generalize some
results of Hajlasz and Koskela [4, 5] and MacManus and Pérez [§].

Mathematics Subject Classification (2000): 46E35

1 Introduction and main results

Let X = (X,d,u) be a metric measure space with p a Borel regular outer
measure satisfying 0 < u(U) < oo, whenever U is nonempty, open and bounded.
Suppose further that p is doubling, that is, there exists a constant Cy such that

1(2B) < Cap(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cs such that

p(B(z,7)) af(r\
#(B(l‘o»?“o))zcs (7“0)

holds, whenever x € B(zg,79) and r < ry.

(2)

Definition 1.1 ([10]) Let ® : [0,00) — [0,00) be an increasing bijection. A
pair (u,g) of measurable functions, uw € L} (X) and g > 0, satisfies the ®-

loc
Poincaré inequality (in an open set U), if there are constants Cp and T such

that
][ lu —up|dy < Cprp®~! <][ @ (g) du) (3)
B B

for every ball B C X (such that TB C U).

*The author was supported by Vilho, Yrjo and Kalle Viisiald Foundation



The following sharp self-improving result for the ®-Poincaré inequality was re-
cently proved in [6].

Theorem A Assume that © is a Young function, X is connected, 1 satisfies
(2) with 1 < s < oo, BC X is a ball, 6 > 0, T>1 B = (1+6)7B, and that

a pair (4, §), where 4 = \|gHLq>(B)u and § = HgH )9 satisfies the ®-Poincaré
inequality in B.
1) It
1 t s'—1 &) ¢ s'—1
— dt <oo and / () dt = o0, (4)
/0 (‘P(t)> o \®()
then
= sl 2 gy < Cron(B) gl 5)
where
= DoV ! (6)

D,
o\ e
( dt> G
[ () oo

then, for Lebesgue points x,y € B of u,

and s =s/(s—1).
2) If

lu(z) = u(y)] < Crpp(B)*|lgll o gyws(u(B) 'rid(e,9)™*),  (9)

where
wi () = (e (")) (10)
and ©~1 is the left-continuous inverse of the function given by
< (1)
o
O(r)=s /T e dt. (11)

Here, C = C(Cs,s,Cp,T,9).
Let U C X be open, 0 < s < oo and 7 > 1. Denote

B, (U) = {{B;} : balls 7B; are disjoint and contained in U},

full oy = 50 HZ( B u=unlan) xaloen

€B:(U) pep

and
AT(U) = {u € LNU) : [lull go.s 1) < 00}



It is easy to see that H“HA‘D’S(U) < ), if and only if there is a functional v : {B C
U: Bisaball } — [0,00) such that

> u(B) <1, (12)

whenever the balls B; are disjoint, and that

U —u 1/sq—1 v(TB)
£ b= sl d < (3 (u@ﬂ)’ (13)

whenever 7B C U. The self-improving properties of abstract Poincaré-type
inequalities similar to (13), for ®(¢) = tP, were studied by Franchi, Pérez and
Wheeden |2, 3], and MacManus and Pérez [8, 9].

If p satisfies (2) and a pair (a, §), where @ = HgHqu)(B)u and § = HgHZé(B)g,
satisfies the ®-Poincaré inequality in a ball B, then

lull .o ) < Cran(B) " llglo(s). (14)

Thus, the first case of Theorem A is a consequence of the following embedding
theorem for the space AF™(U).

Theorem B [6, Theorem 1.9] Let X be connected, p doubling, ® a Young
function, BC X a ball, 1 < s <oo, 7>1and > 0. Denote B= (1+0)7B.

1) If (4) holds, then
= usl e gy < Clull oo

where @y is defined by (6)-(7).
2) If (8) holds, then, for Lebesque points x,y € B of u,

u(z) = u(y)] < Cllull yo. gyws(1(Bzy) ™),

where Byy = B(x,2d(x,y)), and wy is defined by (10)-(11).
Here, C = C(Cy,T,0).

It is essential in the above theorems that the underlying space X is con-
nected. In this paper we investigate the general case. Instead of assuming that
® is a Young function, we assume the following:

(®-1) @ :[0,00) — [0,00) is an increasing bijection.
(®-2) The function ¢ +— tﬁ% is increasing.

Notice that (®-2) allows @ to increase essentially more slowly than any Young
function. The results concerning such @ are new also for connected spaces.

Our first result is a counterpart of Theorem A in the general setting. It
extends the results of Hajlasz and Koskela [4, 5.



Theorem 1.2 Assume that © satisfies (®-1) and (®-2), p satisfies (2) with
0<s<oo, BCXisabdldé>0 72>1 B = (1+0)rB, and that a

pair (4, §), where 4 = ||g||qu>(B)u and § = H9HZ<11>(3)9> satisfies the ®-Poincaré

mequality in B.

1) If
0 = 911
/0 ESYR dt <oco and /0 ESYR dt = oo, (15)
then
o= usl 5. 5y < Crmn(B) gl oy, (16)
where 1( )
~ "ot
71 _
2) If
oo (I)_l(t)
/ F1+1/s dt < oo, (18)

then, for Lebesgue points x,y € B of u,

u(@) — u(y)| < Crau(B)*|gll Lo @ (1(B) rid(,y) ™),

oo F—1
(Ds(r):/ mdt. (19)

where

Here, C = C(Cs,s,Cp,T,9).

If the ®-Poincaré inequality is stable under truncations, the weak estimate
(5) turns into a strong one. We say that a pair (u, g) has the truncation property,
if for every b € R, 0 < t; <ty < o0 and € € {—1,1}, the pair (vff,gx{t1<0§t2}),
where v = g(u — b) and
vzf = min{max{0,v — t; },ta — t1},

satisfies the ®-Poincaré inequality (with fixed constants).

Theorem 1.3 Suppose that the assumptions of Theorem 1.2 are in force, (15)
holds, and that the pair (i, ) has the truncation property. Then

lu — usl . ) < Cran(B) ™ lgl oz, (20)

where @ is defined by (6)-(7) and C = C(Cs, s,Cp,T,9).

How good is Theorem 1.2 compared to Theorem A? If @ is "close” to the
function ¢ — t*, then @, increases essentially more slowly than ®;.
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Example 1.4 Let ® be equivalent near infinity to the function t°log?t. Then
the function @4 is equivalent near infinity to

exp(ts/(s=1-9)) ifg<s—1
exp(exp(t*/=1)) if g =51,

and the function ® is equivalent near infinity to

exp(t¥/(=D) if g < s

exp(exp(t)) i g =s.
If ® is a Young function such that the function ¢ — ®(¢)/tP is either de-
creasing for some p < s, or increasing for some p > s, then Theorem 1.2 gives

the same result as Theorem A. In these cases the Sobolev conjugate ®4 and the
function ws can be represented in a very simple form.

Theorem 1.5 (1) Suppose that ® satisfies (®-1) and (®-2) and that the func-
tion t — ®(t)/tP is decreasing for some p < s. Then @y is globally equiva-
lent to the function ®% whose inverse is given by

(@1) 7 () = &),

S

If @ is a Young function, then also @ is globally equivalent to ®%.

(2) If ® is a Young function such that ®(t)/tP is increasing for some p > s,
then both ws and s are comparable the function w? given by

wi(r) = & (),

S

Let us now turn to the results concerning the embeddings of spaces A (U).
We begin with the case s = co. Theorem 1.6 below extends (the non-weighted
version of) the result of MacManus and Pérez [8].

Theorem 1.6 Assume that i is doubling, s = oo, ® is doubling and satisfies
(®-1) and (P-2), BC X is a ball, > 1 and 6 > 0. Then

= usllzg (o) < Cllul goe s
where B = (14 6)7B and C = C(Cy,T,6, ).
Since, by Lemma 3.3,
ol e g < Nl ey (21)
we have the following.

Theorem 1.7 Assume that p is doubling, ® satisfies (®-1) and (®-2), (15)
holds and that ®©g is doubling. Let B C X a ball, 7> 1 and 6 > 0. Then

ot = sl . ) < Cllull go s, (22)

L2 (B)

where B = (14 6)7B and C = C(Cy,T,0,s, ).
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Under the extra assumption that singletons have zero measure, (22) holds
also for non-doubling ®,.

Theorem 1.8 Assume that p is doubling, u({z}) =0 for x € X, 0 < s < o0,
and that @ satisfies (©-1) and (®-2). Let B C X be a ball, 7 > 1 and § > 0.
Denote B = (1+0)7B.

1) If (15) holds, then

o — sl 5. ) < Cllul oo,

i (B)
where ®, is defined by (17).
2) If (18) holds, then, for Lebesque points x,y € B of u,

Jue) — ()] < Cllull e gy @a(1(Bey) ),

where Byy = B(x,2d(x,y)) and Oy is defined by (19).
Here, C' = C(Cy,T,9,s).

2 Preliminaries

Throughout this paper X = (X, d, i) is a metric space equipped with a measure
p. By a measure we mean a Borel regular outer measure satisfying 0 < p(U) <
oo whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(z,r)
and B(z,7). Sometimes we denote the radius of a ball B by rg. For a positive
number \ we define A\B(z,r) := B(x, Ar).

Let ® : [0,00) — [0,00) be an increasing bijection. Denote by L*(X) the
set of all measurable functions w for which there exists A > 0 such that

[ (M) ) <

For u € L?(X), define

) ('“&”“’”) du(z) < 1.

If @ is convex, the functional [ - | e x) is a norm on L?(X).
If [|ul| Lo (x) # 0, we have that

/@ _u@)l du(x) < 1.
X HUHL‘I’(X)

Denote by L®(X) the set of all measurable functions for which the number

[ull Lo x) = inf{A >0 : sup ®(t)u({z € X : ]u():\n)] >t}) <1}
>0

[ull Lo (x) = inf{A >0 /
X
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is finite. If [|ul| Lo x) # 0, it follows that

supP(t)u({zx € X : _Ju@)l

>t}) <1
t>0 ||UHL$(X)

A function ® : [0,00) — [0, 00] is called a Young function if it has the form

w(t) = [ of)ds,

where ¢ : [0, 00) — [0, 00] is increasing, left-continuous function, which is neither
identically zero nor identically infinite on (0,00). A Young function is convex
and, in particular, satisfies

D(et) < ed(t) (23)

for0<e<land 0<t< oo.
The right-continuous generalized inverse of a Young function @ is

O L(t) = inf{s : B(s) > t}.

We have that
B(D1(1) <t < 7H(D(H))

for t > 0.
The conjugate of a Young function ® is the Young function defined by

O(t) = sup{ts — ®(s) : s > 0}

for ¢t > 0.
We have that X
t <o ) d () < 2t (24)

for t > 0.
A function ® dominates a function ¥ globally (resp. near infinity), if there
is a constant C' such that
U(t) < ®(Ct)

for all t > 0 (resp. for ¢ larger than some ty).

Functions ® and ¥ are equivalent globally (near infinity), if each dominates
the other globally (near infinity).

If ® dominates ¥ near infinity and ® and ¥ are not equivalent near infinity,
then ¥ increases essentially more slowly that ®.

® is doubling, if there is a constant C such that

B(2t) < CB(2)

for all ¢.
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3 Proofs

Lemma 3.1 Suppose that ® satisfies (-1) and (®-2). Then, for 0 < e < 1
and t > 0,

B(et) < ¥/ CHDD(1), (25)
b, (et) < ey (1), (26)

and
(1) Yogy(b), (27)

Proof. We have

(I)(Et) s/(s+1 (I)(t) s/(s+1 s/(s+1
D(et) = W(et) /(s+1) < m(gt) [(s+1) — g8/t (¢).

By (®-2), the function ®~*(¢)/t!*1/* is decreasing. Hence
e lr §—1 r —1/.—1
=1, O (t) _ O (e 1)
T—1.\ _ _ -1
o () = /0 H1+1/s dt =e /0 (e—1t)1+1/s dt

T q)fl(t) ~
—1 _ 151
<e /0 PESYE dt = o (r),

which is equivalent to (26). Since ®~! is increasing, we have

oy (er) = /OO ) 4y 5/00 G )

t1+1/s (5t)1+1/s
a
Let U C X be open and let v € L}(U). The maximal function of v is
Myv(x) = sup ][ |v| dps.
reEBCU
It is well known that there is a constant C' = C(Cy) such that
Myl @y < Cllvllipwy- (28)
Proof of Theorem 1.2. We may assume that Hg”L‘i’(B) =1
1) It suffices to show that the pointwise inequality
ju() = up| < Crpp(B)~ /&1 (Mg®(g)() ), (29)

holds for Lebesgue points z € B of u. Indeed, if (29) holds, then by (28),
< [[Mge(g

o ()
"\ Crpu(B)™Y5 ) |11 gy

and the claim follows by (26).

Mo ) < C 1@ < C:




Fix a Lebesgue point z of u. For i > 1, let B; = B(z,27%/%5). By the
Lebesgue differentiation theorem, lim; . up, = u(z). So

o0 oo
o)~ um | <3 fun, ~ um | <O f u-und
i=1 i=17Bi
By denoting By = (1 + 9)B,
fup = win| < fug — s + g~ um| < € Ju= us,|dn
By
Thus
o
lu(xz) —up| < CZ][ |u —up,| du.
i=0" Bi
By (3) and (2),
F - unldu < Crou(s) )
B;
< Or® H((Cpri)™%),

where Cp = r5'uu(B)Y/*. Hence, by denoting t; = (Cpr;) ™,

k k
Z]i lu —up,|du < CCZ' Z t;l/sé_l(ti)
1=0 i =0

k
_ a2
= Crpp(B) l/sztitm(/s)-
=0 i

2

-1
Since the function ¢ — %l(/ts) is decreasing, we have that

—1/+. ti @71
£ 2 (msz/ 0 4
1
2

tilJrl/s 4 t1+1/s

for ¢ > 0. So, by summing and noting that ¢; < %ti+1, we obtain

K b (¢
Z][ lu —up,|du < CTB,u(B)l/S/ 1+1(/s) dt. (30)
=0 Bi 3o 1
Thus
k ~
S f lu—unldn < Crap(B) a7 () (31)
=0 i

The remaining part of the series will be estimated in terms of M ®(g):

g]éi lu —up,|du < Cgmfbl <MB<I>(g)(x))

< Cno ™! (Mg0(g) ()

= Crpu(B) Vst p! (MBCD(g)(m)).

(32)
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By combining (31) and (32), we obtain
fu(@) — up| < Crpu(B)™* (871 (1) + 607! (Mpd(g)(@)) ) . (33)

Since, by (®-2), the function ®~1(¢)/t!T1/% is decreasing, we have that

. T o(t) ()
1 _ _ 1/s 1
d1(r) _/0 Ry dt >r Ersyriak 1571, (34)

If Mz®(g)(x) > to, we choose k such that
ty < Mp®(g)(x) < Cty.

Then, by (33) and (34), we obtain (29). If Mz®(g)(z) < to, it suffices to use
(32), with k = 0, and (34).

2) We may assume that § < 1/2. Let D be a ball centered at B so that
D = (14 0)7D C B. Fix a Lebesgue point 2 € D of u. Let By = (1+6)D and
B; = B(x,27%/%8) for i > 1. By the same argument that led to (30), we have
that

o 9] (I)fl(t)
> ][ lu —up,|dp < C’?"BM(B)_I/S/ s At
=07 Bi C-1u(B)tryrpt £ s

Thus
[u(z) — up| < Crau(B)Y*5,(C~ u(B) ). (35)
Let z,y € B be Lebesgue points of u. If d(z,y) > %(57"3, then (35), with D = B,
yields
u(z) — u(y)| < u(z) — up| + u(y) — up|
< Crpp(B)*0,(C u(B)rgd(w, y) ).

Ifd(z,y) < %(5?"3, then D C B, for the ball D = B(z, 2d(z,y)), and so, by (35),
() = u(y)| < |u(z) —up| + |u(y) — upl
< Crpu(B)™*0,(C7 u(B)  rjd(z,y) ™).
Thus, the claim follows by (27). O

The proof of Theorem 1.3 is completely analogous to the proof of Theorem
1.4 in [6]. We will not repeat the details.

Proof of Theorem 1.5 (1) By (34),

d71(r) > r Ve (r).

S

If t — ®(t)/t? is decreasing, then t — ®~(t)/t'/? is increasing. Hence, if p < s,

. T o(t) SN [T /e 17N (r)
1 _ 1 1/s—1 _ 1
O (r)—/o T/ dt < Y /0 V== lar = (1/p — 1/s) v
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Thus ®, and @7 are globally equivalent. Let ® be a Young function. Then the
function t — t/®(t) is decreasing and so

r AN s\ -1 1/s'
\I's(r)=</0 <cI>(t)> dt) z<r(¢(r)> ) — o(r) Vo

On the other hand, if ¢t — ®(t)/t? is decreasing, with p < s, then

1/s'

wao= ([ (aip) o) = an ([ 9)°

P
B P/ s—lr% %_ s—1\ -+ r
CB(r)l/s \s—p \s—p (r)t/s

Since @1 = ¥, 0 &~ we have that

1 s—1
,,'-1/5 S@S (T)S (Sp) Tl/s

(2) Let p > s and let ®(t)/t? be increasing. Then ®~(¢)/t'/? is decreasing
and so

~ < ol(t) O7(r) [ 1/po1/sa 07 N(r)
ws(r)—/ /s dtﬁrl/p/r tP=Vs=Lar = (1/s — 1/p) 7

On the other hand,

S e A

ti+1/s = r(2r)1+1/s - rl/s

It was shown in [1] that

1) = 17 oy (30
Since 1r
/0 B Ny dt > e ),
it follows that
ws(r) > Tl/slfﬁ_l(r)_l.
Hence, by (24),

ws(r) > é_l(r)r_l/s.

N | =

Assume that ®(t)/tP is increasing. Let ¢ > t/. By using (24), the fact that
d~1(t)/tV/P is decreasing, and (24) again, we obtain

A 1/p X a1 5 1/p
B(t) < & (b()t < 2H(E()) (i((f))> r<2% (;‘fff))) "




which implies that
T 5 (+
<I>(?) < 2p/<I>(t/)
P t'p

If p> s, then p’ < s'. So,
/(]I/T(i)(tl/s/ I\)dt < 27 w /Owtpf/s/ gt
= Cr 1ot/ /)
<rte(Crt ),
where the last inequality comes from (23) and C' = 2P'(1 — p//s')~!. Hence, by

(36) and (24), )
ws(r) < C’?“l/‘(’JCI)_l(?")_1 < Cq)_l(r)r_l/s.

O
For a ball By C X, u € L*(By) and 0 < s < oo, define
Mg, u(z) = sup M(B)_l/s][ [u— up| dp. (37)
rx€BCBg B

Lemma 3.2 Let ® satisfy (P-1) and (9-2). Then
1M pull g sy < Cllull o0, .
where C = C(Cy, 1, 3).

Proof. We may assume that H“”A?’S(TB) = 1. Let = € B such that MfBu(x) >

A. By the definition of MfBu, there is a ball B, C B containing = such that
p(Ba) oL du>
This implies that )
p(Be) < 00 (u(B) el d)u(B. 69

By the standard 5r-covering lemma ([7, Theorem 1.16]), we can cover the set
{reB: MfB(x) > A} by balls 57B; such that the balls 7B; are disjoint and
that each B; is contained in B and satisfies (38). Using the doubling property
of i, estimate (38), inequality (25), and the fact that {B;} € B,(7B), we obtain

p({z € B: M7 zu(z) > A}) <Z“ (57B;) < C(Cy, T Z“
< C(Cd,r)qn(A)*lzcb 1/3][ lu — up, ydu) (Bi)
-1
(o) ol i

® (c<of,7,s>>_l'

IN

IN
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The claim follows by the definition of || - || . O
Proof of Theorem 1.6. Fix a ball By C X. Denote B = (1 + 6)Bo,
B={B:xzp € Byand rg <érp,}, Bt = BU{B[},

Mpu(z) = sup ][|u|du and M;iu(:c): sup ][|u—uB\du.
r€EBEBJ B reBeBtJ/B

For A > 0, let Q) = {z : Mpu(x) > A} and ¥y = {z : Mlﬁru(aj) > A}. The
following good X inequality was proved by MacManus and Pérez in [8]: There
are constants Cy and eg such that for all A > 0 and 0 < e < g,

1(Qcpn) < Coep(2y) + Cop(Xcn). (39)
We will show that (39) implies
1Ml Lo (o) < ClIIME ull Lo (,)- (40)

We may assume that ||M§+u||L3(B) = 1. Then ®(t)u(X;) <1 for t > 0. Since
® is doubling, there is a constant C such that ®(CpA) < C1P(A) for A > 0. By

setting
g = min{so, (20001)_1}

in (39), we obtain

COA2) < 5PN (D) + CBEN (Do)

1
< Ssup @(A)p(y) +C
2 x>0

for A > 0. Hence

sup (M) () < C.
A>0

By (25), we obtain (40). Denote ugp = u — up,. By the Lebesgue differentiation

theorem
uo(z) < Mpup(x)

for almost every = € By. Hence
= wsy || e 5oy < Mol a5y < ClIME ol L2 (54)-
Since M;ﬁuo = Méﬂu < MZi,B(,)u, the claim follows from Lemma 3.2. O
Theorem 1.7 follows from Theorem 1.6 via the following lemma.

Lemma 3.3 Assume that U C X is open, ® satisfies (P-1) and (®-2) and that
(15) holds. Then

ol 50 gy < Tlg2

93



Proof. Since

o1 (t) =t e (8),
we have, in (13), that

o (S) < () (50
oo ().
This implies the claim. 0

Proof of Theorem 1.8. 1) It suffices to show that the pointwise inequality
- M, u(x)
_ B
lu(z) —up| < Cllul yo.5 ) Ps ! (Cb <s>> , (41)
o 1M gl )

where B’ = (14 §)B, holds for Lebesgue points z € B. Fix such a point  and
choose balls B;, ¢ > 1, centered at z, so that By C B’, and

1
"Bipa = sup{r > 02 p(B(z,r)) < Su(Bi)}
This is possible because lim,_o u(B(z,7)) = p({z}) = 0. By (1), we have that
2u(Bit1) < pu(B;) < Cpu(Big1) (42)

for all 4.
By the Lebesgue differentiation theorem, lim; .~ up, = u(z). So

o 0
o)~ um | <3 g~ um | O f u-und
i=1 i=1" Bi
By denoting By = B/,
‘uB—uBl|§|UB_UBO|+|UBO_uBl|SC |u_uBo|d,u'

Bo
Thus

uw) ~upl < €3 fu—updn
=0 Bi

For every ¢, we have

]{3 = | dp < [l go.s gy 1(Bi) @ ((Bi) ),

Hence
k k
Z][B [u = wp, | dp < ull gos 5y D w(Bi)/*S7 (u(By) ")
=0 i =0
k

S 27 ((B) )
:HU”Af»S(B);M( i) 1(,U«(Bil;_m.
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o~ 1(t)

1+1/s

L2 BT /MBW & (1)
(M(Bi)71)1+1/s - %,U,(Bi)*l t1+1/s

Since the function t — is decreasing, we have that

,LL(BZ) dt,

—_

for i > 0. So, by summing and noting that u(B;)~! < §,u(Bi+1)_1, we obtain

Z][ u—up,|dp < Clul] 4.5 B)/ tm/s ) at, (43)
Thus
k ~
Sl ldi < Cllul g gy ®: (e B) ). (4
=0 @

The remaining part of the series will be estimated in terms of the sharp fractional
maximal function (37). Using (42), we obtain

][ \u—uB\du<cZﬂ By YoMy u(a)
< Cu(Bk)l/SMjB,u(x).

So, by Lemma 3.2,

= M pu(x)
S di < Clul g gy(B'e P
i=k " Bi M, B/UHL@ (B
Combining the estimates (44) and (45), we obtain
u(z) — up| < Cllull yo.s ) | 25" ((Br) ™) + p(Br) :
M, B/UHL‘P (B

M*_,
If ¢ <#S’Bu(x)) > 1u(Bo)~!, we choose k such that

”MS’B/UHL?;(B/)

u(Br) ' <@ (H Mgl ) < Cu(By) ™!

B/“HL‘P (B")

Since, by (34), )
B(r) "o < &7 (@(r), (46)
we obtain (41).
M* yu(z) 1 -
Ifd | —522—— | < u(By)™', it suffices use (45) and (46).

HMS,B’UHLg(B’)

2) Letting k tend to infinity in (43), yields

uw) ~ sl €3~ fu—unldu < Clull oy @ (u(B) . (47
i=0" Bi
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Let z,y € B be Lebesgue points of u. Denote By, = B(x,2d(x,y)). If d(z,y) >
$0rg, then pu(B) < Cu(Byy). So, by (47) and (27),

u(z) —u(y)| < |u(z) —up| + |u(y) — us|
< CHUHA;‘I_”S(B)JJS(M(B)_I)
< CHUHA;{?’S(B)‘DS(/‘(Bxy)_l)'

If d(z,y) < %57“3, then (47), applied to the ball B,,, yields

lu(z) —u(y)| < u(z) — up,,| + u(y) — us,,|
< CHUHA?S(Bwy)@s(M(Bxy)il)'

Since we may assume that 0 < 1/2, it follows that Exy C B. Hence

u(e) — uy)] < Cllul yo.e gy @s((Bey) ™).
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Characterizations of Orlicz-Sobolev spaces
in terms of generalized Orlicz-Poincaré
inequalities

Toni Heikkinen®

Abstract

We show that the Orlicz-Sobolev space W1 ®(R") can be characterized in
terms of the (generalized) ®-Poincaré inequality. We also prove similar results in
the general metric space setting.

Mathematics Subject Classification (2000): 46E35

1 Introduction

Let ® be a Young function and let 2 C R™ be open. A pair (u, g) of measurable
functions, u € L (Q) and g > 0, satisfies the ®-Poincaré inequality in 2, if there

loc
are constants Cp > 1 and 7 > 1 such that

]{B|u—uBydu < Cprp®d~! <]{Bq>(g) du> (1)

for every ball B = B(x,rg) such that 7B C Q. Here, up = fgudy = ﬁ Jpu

and 7B = B(z,7rp). It is well known that u € VV&K}(Q) satisfies the 1-Poincaré
inequality

][ |lu —upldyp < CPTB][ |Vu|dp
B B

for every ball B C . Thus, by Jensen’s inequality, (1) holds with 7 = 1 and
g = |Vu|. Our first result says that also the converse holds: If u € L®(Q) and
there exists g € L®(Q) such that (1) holds (for the normalized pair), then u
belongs to the Sobolev class W% ().

Theorem 1.1 Suppose that ® is an N-function, Q C R" is open, u,g € L*(Q)
and that the pair (u/| gl ey, 9/l9llLe)) satisfies the ®-Poincaré inequality in
Q. Then u € WH?(Q) and [[Vulll o) < C(Cp,7,n)|l9lle(0)-

*The author was supported by Vilho, Yrjo and Kalle Viisidld Foundation
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For the definitions of Young and N-functions, see Section 2.1 below. Theorem
1.1 was proven by Hajtasz in [4] for ®(¢) = P, p > 1, and by Tuominen in [13]
for a doubling ® whose conjugate is also doubling.

Our second result is a counterpart of Theorem 1.1 in the general metric setting.
Let X = (X, d, u) be a metric measure space with p a Borel regular outer measure
satisfying 0 < u(U) < oo, whenever U is nonempty, open and bounded. Suppose
further that p is doubling, that is, there exists a constant Cy such that

1(2B) < Cap(B), (2)

whenever B is a ball.

Our substitute for the usual Sobolev class W% is based on upper gradients.
We call a Borel function g : X — [0, 00] an upper gradient of a function v : X —
R, if

ur(0)) ~ ur @) < [ gds Q
v
for all rectifiable curves v : [0,]] — X. The concept of an upper gradient was
introduced in [8]; also see [9]. Further, g as above is called a ®-weak upper
gradient if (3) holds for all curves 7 except for a family of ®-modulus zero, see
Section 2.2 below. The Sobolev space N1®(X) consists of all functions in L®(X)
that have a (®-weak) upper gradient that belongs to L®(X).

Theorem 1.2 Suppose that ® is a doubling Young function, Q0 C X is open,
u,g € L*(Y), and that the pair (u/llgllze s 9/9llLe)) satisfies the ®-Poincaré
wnequality in Q. Then a representative of u has a ®-weak upper gradient g, such
that || gull L2y < C(Ca, Cp, 79l Lo(0)-

In the case ®(¢) = tP, p > 1, the result was essentially proven in [3], see [5].

In many important settings, including Riemannian manifolds with nonnega-
tive Ricci curvature and Carnot-Carathéodory spaces associated with a system
of vector fields satisfying Hormander’s condition, the ®-Poincaré inequality holds
for pairs (u, g), where u € N»®(X) and ¢ is an upper gradient of u, see [6]. In
these settings Theorem 1.2 gives a characterization for Nb®(X).

If both ® and its conjugate are doubling, then the assumptions of Theorem
1.2 can be relaxed. In order to conclude that a representative of v € L®(Q) is in
N1®(Q), it suffices to assume that the number

= sup Z(TBIJ{;|UUBWH)XB||L¢(Q)7 (4)

[ull 412 I
() BeB(Q)  feg

where
B-(Q) = {{B;} : balls 7B; are disjoint and contained in Q},

is finite. Notice that ||u||A1,<1>(Q) < A if and only if there is a functional v : {B C
Q: Bis a ball} — [0,00) such that

> u(Bi) <1, (5)

i

60



whenever the balls B; are disjoint, and that the generalized ®-Poincaré inequality

][B lu—up|dp < Arg®! (”;(75)))

holds whenever 7B C (). In particular, if a pair (u/||gl|z2(q), 9/l9] 2 (q)) satisties
the ®-Poincaré inequality in €2, then

(6)

lull gy < Crllgll oy (7)

The spaces AF®(Q) = {u € LL(Q) : |ul At < 0o}, for ®(t) = 17, were
studied in [7]. Theorem 1.3 below is a generalization of |7, Theorem 1.1].

Theorem 1.3 Let Q) C X be an open set and let  be a doubling Young function
whose conjugate is doubling. Then a representative of u € A}-’q)(Q) N L%(Q) has
a ®-weak upper gradient g with ||g|| e q) < C’(C’d,T)HuHAL@(Q).

If the assumptions of Theorem 1.3 are in force and the space X supports the
®-Poincaré inequality (that is, (1) holds for pairs (u,g), where u € NV®(X) and
g is an upper gradient of u), then AY®(Q) N L®(Q) is isomorphic to NL®(Q) and
the norms || - || o) + | - HAl"P(Q) and || - [ y1.e(q) are equivalent.

2 Preliminaries

Throughout this paper C will denote a positive constant whose value is not nec-
essarily the same at each occurrence. By writing C' = C(\1,..., \,) we indicate
that the constant depends only on Ay, ..., \,.

2.1 Young functions and Orlicz spaces

In this subsection we recall the basic facts about Young functions and Orlicz
spaces. An exhaustive treatment of the subject is [11].
A function @ : [0,00) — [0, 0] is called a Young function if it has the form

o(t) /0 o(s) ds,

where ¢ : [0,00) — [0,00] is an increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0, 00).

If, in addition, ¢(0) =0, 0 < ¢(t) < oo for ¢t > 0 and lim;_, ¢(t) = oo, then
® is called an N-function.

A Young function is convex and, in particular, satisfies

D(et) < ed(t) (8)

for0<e<land 0<t< 0.
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If ® is a Young function and p(X) < oo, then Jensen’s inequality

o (i{ udu) <f 2w (9)
holds for 0 < u € L}(X).

The right-continuous generalized inverse of a Young function @ is
dL(t) = inf{s : B(s) > t}.

We have that
Q(7H(t) <t < @7H(2(1)
for t > 0.
The conjugate of a Young function ® is the Young function defined by
d(t) = sup{ts — ®(s) : s > 0}

for ¢t > 0.
Let @ be a Young function. The Orlicz space L®(X) is the set of all measurable
functions w for which there exists A > 0 such that

A@<W@gdmﬂ<w.

The Luxemburg norm of u € L®(X) is

kuqu—mﬁk>0:/
X

@(Wf”>@4@§1}

If [Jull Lo (x) # 0, we have that

/<I> @) du(z) < 1.
X ||U||L<I>(X)

The following generalized Holder inequality holds for Luxemburg norms:
[ @@ dnte) < 2lullzoco ol o

Let E®(X) denote the closure of the space of bounded, boundedly supported
functions in L*(X).

Lemma 2.1 Let ® be an N -function.
(a) The dual of E*(X) is isomorphic to L®(X); For every F € (E®(X))*, there
exists v € L*(X) such that

mm:/w@.

Moreover,
ol oy < I < 2l
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(b) If Q C R™ is open, then C5°(Q) is dense in E*(Q).
A Young function @ is doubling, if there exists a constant C'e > 1 such that
d(2t) < Cp®(t)
for t > 0.

Lemma 2.2 Let ® be doubling a Young function.

1) The space Co(X) of bounded, boundedly supported continuous functions is
dense in L (X).

2) The modular convergence and the norm convergence are equivalent, that is,

1fi = fllLecx) — 0,

if and only if
[ @t = fydu—o.

Lemma 2.3 Suppose that ® is a doubling Young function and that {g;} C L®(X)
satisfies
sup [|gill Lo (x) < o0
(3

and

lim Su/<I> i) dp = 0.
(im sup | (9:) dp

Then there exists a subsequence (gi;) of (9i) and g € L®(X) such that gi; — 9
weakly in L*(X).

Lemma 2.3 easily follows from |11, p.144, Corollary 2|.
If both ® and ® are doubling, then L®(X) is reflexive, and so every bounded
sequence in L®(X) admits a weakly converging subsequence.

2.2 Sobolev spaces on metric measure spaces
The ®-modulus of a curve family I is
Modg(T) = inf{HgHL@(X) : /gds > 1 for all 7y € r}. (10)
v

The Sobolev space N1®(X), defined by Tuominen in [12], consists of the functions
u € L*(X) having a ®-weak upper gradient g € L®(X). The space NV®(X) is a
Banach space with the norm

[ullyrexy = llull Lo x) +inf lgll Lo x),

where the infimum is taken over ®-weak upper gradients g € L®(X) of w.
We need the following lemma from [12].
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Lemma 2.4 ([12], Theorem 4.17) Suppose that u; — u € L*(X) and g; —
g € L®(X) weakly in L*(X) and that g; is a ®-weak upper gradient of u;. Then
g 1s a ®-weak upper gradient of a representative of u.

If ® is doubling and Q C R™ is an open set, then N1®(Q) is isomorphic to
WH®(Q) [12, Theorem 6.19]. As usual, WH®(Q) is the space of functions u €
L*(Q) having weak partial derivatives in L®(2). A function du/dx; € LL () is
a weak partial derivative of u (w.r.t. x;) if

dp ou
uaxi - axfp

for all ¢ € CF° ().

2.3 Lipschitz functions

A function v : X — R is L-Lipschitz if |u(z) — u(y)| < Ld(z,y) for all x,y € X.
The lower and upper pointwise Lipschitz constants of a locally Lipschitz function
u are
L L
lipu(z) = liminf Lw,z,r) and Lipu(z) = limsup M,
r—0 r r—0 r
where
L(u,z,r) = sup |u(z)—u(y)l-
d(z,y)<r

The lower Lipschitz constant lip u, and hence also Lip u, is an upper gradient of
a locally Lipschitz function u (cf. [1]).

3 Proofs

Proof of Theorem 1.1 We may assume that [|g[| ey = 1. By Lemma 2.1, it
suffices to show that the functional % 1050 (R2) — R;

ou . . Op

al’i [SO] = uaxz
is bounded with respect to the norm || - [| ;4 and satisfies ||(%‘1H < C. Choose
0 < ¢ € C§°(B(0,1)) such that [ =1 and let ¢.(z) = e "p(z/e) for € > 0.
Then

8’[1, . 8 . 8 €

o, 1=~ iy (“*wf)agi = b (“* ai) >
By the Hélder inequality,

ou . e

oz [‘P]‘ <2 llrgrilglf U * 2l ||90HL&>(supp ©) "
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Since [ gf? = 0, we have that

(0 5 ) @) = (0= wm) 527 ) o).

Thus
81/15 —n—1 -1
ux 5~ (x) < Ce [u(y) = up(eldy < CP (g(y))dy | -
i B(xz,e) B(z,re)

Let K = supp ¢ and let € > 0 be such that K. = {z € R" : d(z, K) < Te} C Q.
Then, by Fubini’s theorem,

/ ® (C_l wr 9 (z) di”) < /][ ®(g(y)) dy dx
K Li K JB(z,T¢)
:/ ‘I)(g(y))/ |B(z,7e)| "L dx dy.
Kre B(y,7e)NK
< [ o)y
Kre
<1.
Thus 5
lim inf ||u * Ve <C,
=0 O%i || Lo (supp o)
which completes the proof. O

For the proofs of Theorem 1.2 and Theorem 1.3, which are based on approxi-
mation by discrete convolutions, we need a couple of lemmas. Lemma 3.1 follows
from a Whitney type covering result for doubling metric measure spaces, see [2,
Theorem III.1.3], [10, Lemma 2.9]. For the proof of Lemma 3.2, we refer to [10,
Lemma 2.16].

Lemma 3.1 Let 2 C X be open. Given € > 0, A > 1, there is a cover {B; =
B(x;, 1)} of Q with the following properties:

(1) ri <€ foralli,

(2) AB; C Q for all i,

(3) if AB; meets ABj, then r; < 2r;,

(4) each ball A\B; meets at most C = C(Cq, \) balls \B;.

A collection {B;} as above is called an (e, A)-covering of 2. Clearly, an (e, \)-cover
is an (&, \')-cover provided &’ > e and X < .

Lemma 3.2 Let Q2 C X be open, and let B = {B; = B(x;,7i)} be an (00, 2)-cover
of Q. Then there is a collection {p;} of functions Q@ — R such that

1) each p; is C(Cy)r; '-Lipschitz.
2) 0<; <1 foralli,
3) @i(x) =0 for x € X \ 2B; for all i,

65



4) Sipi(z) =1 for all z € Q.

A collection {p;} as above is called a partition of unity with respect to B.

Let B = {B;} be as in the lemma above, and let {¢;} be a partition of unity with
respect to B. For a locally integrable function u on 2, define

= ZUBisoi(fv)- (11)

The following lemma describes the most important properties of ug.

Lemma 3.3
1) The function ug is locally Lipschitz. Moreover, for each x € B;,

Lipup(z) < C(Cd)rl_gil][ |u — usp,| du.

2) Let ® be a doubling Young function and let u € L®(Q). If By is an (e, 2)-
cover of Q and e — 0 as k — oo, then ug, — u in L*(Q).

Proof. 1) Let z,y € B;, and let J = {j : 2B; N2B; # 0}. Then #J < C(Cy)
and B; C 5B; for each j € J. Using the properties of the functions ¢;, we have
that

jun(z) — us(y)| = [ (un, — un,) (9i(2) — ¢5(1)|
jeJ
< C(Cy)rp! d(x,y) ma [ug, — up|

< C(Corgl )} Ju- s du

i

and the first claim follows.
2) We begin by showing that, for every w € L*(Q),

lwsllze @) < C(Ca)llw| L) (12)

We may assume that [|wl[| ey = 1. By Jensen’s inequality ®(|wg|) < (®(jwl))s-
Hence, by the properties of the functions ¢;,

[ @usd < [ @uhydn < > [ @) g
<Z/ (), d,u<CdZ/ (Jw) d
= Cu [ @) 3 xo,de < C(Co) [ () d

< C(Cy).

Thus, by (8), we obtain (12).
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Let u € L®(Q) and € > 0. By Lemma 2.2 (1), there exists v € Co(f2) such
that |lu — vl ey < e. Then, by (12), we obtain

lus —vBllLe) = (v = V)8l Le@) < C(Ca)|lu —v|[Le@) < C(Cue,
and so

lus — ullLe ) < llus —vBllLe) + v — vllLe@) + v — ullLe(q)
<|lvg = v|lLe() + C(Ca)e.

Therefore it suffices to show that [|vg, — vl eq) — 0 as ex — 0. Now [vg, —v| <
2sup |v|, and for all  we have that

o, () —v(@)| < 3 ][ [o(y) —v(@)] duly ><c<cd>][ [o(y) — ()] du(y),

2B;>x B(m75€k)

which converges to 0 as € — 0 by the continuity of v. Thus, by the dominated
convergence theorem,

/Q<1>(|v3k — o) dp— 0,

and so, by Lemma 2.2 (2), |[vg, — v e(q) — 0. O
Proof of Theorem 1.3. Let u € AX®(Q) N L2(Q). For j € N, let Bj be a

(71, 57)-cover (and hence also a (71, 2)-cover) of . Then, by Lemma, 3.3 (2),
uj :=wup, — uin L®(Q). Let us show that

[ Lip ujl[ e (o) < C(Ca, 7)llull 410 (13)

@)
By Lemma 3.3 (1),

Lipu; < C(Cy) Z T’B][ lu —usg|du xB.
BeB;

It follows from Lemma 3.1 (4) that B; can be divided into k = C(Cy, ) sub-
families Bj 1,...,Bj so that each of the families 5718;; consists of disjoint balls.
Since the families 58,1, ...,58; ) belong to B,(£2), we have that

[ Lip ujflpo) < C C'd H Z "B ][ |U—U5B|d/iXBHL<I>
I=1 BeB;,
k
ce)d | > 7“3][ lu — upldpxs|| s
=1 Be&b5Bj,

< C(Cy, )lull 410 -

Since ® and & are doubling, L®(9) is reflexive. Thus the bounded sequence
(Lipuj) has a subsequence, also denoted by (Lipu;), that converges weakly to
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some g € L®(Q). By Lemma 2.4, g is a ®-weak upper gradient of a representative
of u. As a weak limit g satisfies

gl Loy < lin_l)gjlf I Lip ujl| L () < C(Carr)ull 10 g -

Proof of Theorem 1.2 We may assume that ||g][ e = 1. Define the
functions u; as in the proof of Theorem 1.3. By (13) and (7), we have that

|Lip ujl| Loy < C(Ca, Cp, 7).

Let us show that

lim sup/beipu- dp = 0. 14
Jim s [ @(Lipu)du (14)

By Lemma 3.3 (1) and by the ®-Poincaré inequality,

Lipu; < C(Cy) Z rB][ |lu — usg| duxs
BeB;

<ccnon 3 o (f

®(9) du) XB
BeB; 5B
Thus
(ENB
E BeB T 57B

Since Bj can be divided into k = C(Cy, 7) subfamilies B; 1, ..., Bj j so that each of
the families 5718;; consists of disjoint balls, it suffices to show that, for 1 <1 < k,

. HE N B) /
lim > =2 | B(g)dp=0.
w(E) ' HBTB) Jsep (o)

Fix € > 0. Then there exists > 0 such that [, ®(g9) < ¢ whenever u(A4) < 4.
Denote by B the family of those balls B in B;; for which

u(E N B)

< €.
u(5rB) ~°

Also, let B = B;; \ B. Now, if u(F) < &b, we have that u(Upepb7B) <
e 'u(E) < 6. Thus

ENnB
sz H((57.B)) /E)TB @(g) d/~L

BeB
ENB EﬂB
- S e e S [ e
BeB 1% 5B BeB! 57B

< 8/ ®(g) du+/ ®(g) dp
Q UBEB’STB



This completes the proof of (14).

By Lemma 2.3, a subsequence of (Lipu;) converges weakly to some g, €
L®(Q), which, by Lemma 2.4, is a ®-weak upper gradient of a representative of
u. Moreover, as a weak limit, g, satisfies

gullLo @) < lijfgg.}f | Lipuj| Loy < C(Ca,Cp, 7).
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