
Topics in Harmonic Analysis

Themis Mitsis

Department of Mathematics, University of Crete, Greece





This set of notes was intended to supplement a graduate course in Harmonic
Analysis that was planned to be given during my stay at the University of
Jyväskylä as a Marie Curie fellow. For technical reasons, the course was never
taught, so I am grateful to Pertti Mattila for the opportunity to publish these
notes.

Most of the material is based on my personal notes from a series of lectures
given by Tom Wolff at UW-Madison back in 1996. Anyone familiar with his
mathematical preferences will recognize his style.

Wolff’s expository article [23] and his own lecture notes [25] from a Caltech
course (edited by Izabella Laba) are closely related to the subject matter of
this work.
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List of notation

B(a, R) : The disc {x ∈ R
n : |x − a| < R}.

suppf : The support of the function (or distribution) f .

f̂ : The Fourier transform of f , f̂(ξ) =
∫

e−2πix·ξf(x)dx.

f̌ : The inverse Fourier transform of f , f̌(x) =
∫

e2πix·ξf(ξ)dξ.
µ̂ : The Fourier transform of the measure µ, µ̂(ξ) =

∫
e−2πix·ξdµ(x).

µ̌ : By definition, µ̌(ξ) =
∫

e2πix·ξdµ(x).
Dαf : ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

f , where α is a multi-index, i.e., α = (α1, . . . , αn), with

αj being natural numbers.
|α| : The length of the multi-index α, |α| =

∑n
j=1 αj.

φt : φt(x) = t−nφ(t−1x), unless otherwise indicated.
S : The Schwartz space.

|E| : Lebesgue measure (in the ambient Euclidean space), or cardinality of
E, depending on the context.

dim E : The lower Minkowski dimension of E.
∇f : The gradient of f , ∇f = ( ∂f

∂x1
, · · · , ∂f

∂xn
).

osc
D

f : The oscillation of f on D, osc
D

f = supx,y∈D |f(x) − f(y)|.
Sn−1 : The unit sphere {x ∈ R

n : |x| = 1}.
dσ : Surface measure.

dLk : k-dimensional Lebesgue measure.
C, C1, . . . : Capital letters denote various constants whose values may change from

line to line.
� : x � y means “x ≤ Cy, where C is a constant”.
� : x � y means (x � y & y � x).

�(z), 
(z) : The real and imaginary part of z ∈ C.
χE : The characteristic function of E.
E : Expectation.
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CHAPTER 1

Some applications of Khinchin’s inequality

In this chapter we will present, in the context of harmonic analysis, two
typical applications of the following classical probabilistic inequality.

Proposition 1.1 (Khinchin’s inequality). Let εj be independent random
variables taking the values 1 and −1 with probability 1/2 each. Then for any
p ∈ (0,∞) and complex numbers {aj}N

j=1 we have

E

(∣∣∣ N∑
j=1

εjaj

∣∣∣p) �
( N∑

j=1

|aj|2
)p/2

,

with bounds independent of N .

The proof of Khinchin’s inequailty may be found in most books on elemen-
tary probabilty. What is important is that the bounds are independent of N ,
and that the right hand side depends only on {|aj|} and does not involve any
cancelations.

Our first application concerns the most basic inequality for the Lp Fourier
transform, namely the Hausdorff-Young theorem. Unlike the Plancherel the-
orem, Hausdorff-Young is not reversible. This fact may be proved in many
ways. Let us prove it using Khinchin’s inequality.

Proposition 1.2. (1 ≤ p < 2). For any ε > 0 there is a function f ∈ S
with

‖f̂‖p′ < ε‖f‖p.

Proof. Let φ be a fixed Schwartz function with compact support. Let
{xj}N

j=1 be a sequence of points in R
n such that the functions φj(x) := φ(x−xj)

have disjoint supports. Then it is obvious that for any choice of εj ∈ {±1}
(j = 1, . . . N) we have∥∥∥ N∑

j=1

εjφj

∥∥∥p

p
=

N∑
j=1

‖φj‖p
p = N‖φ‖p

p,

and so, ∥∥∥ N∑
j=1

εjφj

∥∥∥
p

= N1/p‖φ‖p.

Moreover
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E

(∥∥∥ N∑
j=1

εjφ̂j

∥∥∥p′

p′

)
=

∫
E

(∣∣∣ N∑
j=1

εjφ̂j(ξ)
∣∣∣p′)dξ

=

∫
E

(
|φ̂(ξ)|p′

∣∣∣ N∑
j=1

εje
2πixj ·ξ

∣∣∣p′)dξ

� Np′/2

∫
|φ̂(ξ)|p′dξ,

where the last line follows by Khinchin’s inequality with aj = e2πixj ·ξ. There-
fore ∥∥∥ N∑

j=1

εjφ̂j

∥∥∥
p′
≤ C0N

1/2‖φ̂‖p′ ,

for some choice of {εj}. Since p < 2 we can choose N0 so that

C0N
1/2
0 ‖φ̂‖p′ < εN

1/p
0 ‖φ‖p.

The result now follows on letting

f =

N0∑
j=1

εjφj.

�

Our second application is the basic result in Littlewood-Paley theory.
Let φ be a smooth function such that φ = 0 on B(0, 1) and φ = 1 outside

B(0, 2), and let ψj(x) = φ(2−jx) − φ(2−j+1x). Then ψj is supported in the
annulus {x : 2j−1 ≤ |x| ≤ 2j+1} and

∞∑
j=−∞

ψj(x) = 1, for all x �= 0.

For f ∈ S, let Sjf = (ψj f̂ )̌ . Then, the Littlewood-Paley square function is
defined by

Sf =

( ∞∑
j=−∞

|Sjf |2
)1/2

.

Proposition 1.3 (Littlewood-Paley). For any f ∈ S and 1 < p < ∞, one
has

‖Sf‖p � ‖f‖p.

For the proof, we need the following result (see [20] for a more sophisticated
version).
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Lemma 1.1 (Mikhlin multiplier theorem). Let m : R
n \ {0} → C satisfy

|Dγm(ξ)| � |ξ|−γ, for all ξ �= 0 and all multi-indices of length |γ| ≤ n + 2.
Then

‖(mf̂ )̌ ‖p � ‖f‖p

for any f ∈ S and 1 < p < ∞.

Proof. Note that (mf̂ )̌ = m̌ ∗ f and that the decay condition on m
implies that, away from the origin, the distribution m̌ agrees with a function.
So, if we let

mj(ξ) = ψj(ξ)m(ξ),

and

KN =
N∑

j=−N

m̌j,

it is enough to show that the kernels KN are Calderón-Zygmund uniformly in
N . Namely, they satisfy

(i) |KN(x)| � |x|−n

(ii) |∇KN(x)| � |x|−n−1

(iii) ‖KN ∗ f‖2 � ‖f‖2

with bounds independent of N .
To prove (i), note that

‖Dγmj‖1 � 2j(n−|γ|)

and therefore

‖xγm̌j‖∞ � 2j(n−|γ|).

It follows that

|m̌j(x)| � 2j(n−k)|x|−k for any 0 ≤ k ≤ n + 2.

Using this with k = 0 and k = n + 2, we conclude that

|KN(x)| ≤
∑

j

|m̌j(x)| ≤
∑

2j≤|x|−1

|m̌j(x)| +
∑

2j>|x|−1

|m̌j(x)|

�
∑

2j≤|x|−1

2jn +
∑

2j>|x|−1

2jn(2j|x|)−(n+2) � |x|−n.

The proof of (ii) is similar and (iii) follows by Plancherel. �

To prove Proposition 1.3, let

mN(ξ) =
N∑

j=−N

εjψj(ξ)
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and note that mN satisfies the condition of Lemma 1.1 uniformly in N and
uniformly in the realization of the random variables {εj}. Therefore, by the
continuous version of Khinchin’s inequality,∫

|(Sf)(x)|pdx � lim sup
N→∞

E

[ ∫ ∣∣∣ N∑
j=−N

εj(Sjf)(x)
∣∣∣pdx

]
� ‖f‖p

p.

To prove the lower bound, we use duality. Note that ψjψk = 0 if |j − k| > 1,
so by Parseval, Cauchy-Schwarz and Hölder,∫

fḡ =

∫ ∑
{j,k:|j−k|≤1}

SjfSkḡ � ‖Sf‖p‖Sḡ‖p′ � ‖Sf‖p‖g‖p′

for all g ∈ S. Therefore, ‖f‖p � ‖Sf‖p.
Note that Proposition 1.3 holds for arbitrary f ∈ Lp (in which case we

have to interpret Sjf as ψ̌j ∗ f) by a standard limiting argument.
We will present other applications of Khinchin’s inequality in Chapter 5

and Chapter 6.
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CHAPTER 2

Stationary phase

Consider the oscillatory integral

I(φ, a; λ) =

∫ ∞

−∞
eiλφ(x)a(x)dx,

where φ is a smooth function (the phase), and a is a smooth integrable function
(the amplitude). Our objective is to study the behavior of I for large values
of λ. In order to do that, we have to calculate its asymptotic expansion.

If φ(x) = −2πx, then I is the Fourier transform of a, and integration by
parts gives

|I(−2πx, a; λ)| = C
|I(−2πx, a(k); λ)|

|λ|k ≤ C
‖a(k)‖1

|λ|k ,

for any k, provided that a has integrable derivatives up to order k. This
shows that I is rapidly decreasing as λ → ∞ and therefore the question of
determining its asymptotic expansion is, in a sense, trivial.

If φ is nonlinear with nonvanishing first derivative then by a change of
variables, we get again a Fourier integral. So, the nontrivial case arises when
the phase has critical points. We will restrict ourselves to phases with nonde-
generate critical points. First, we estimate the so-called Fresnel integral:

I(x2, a; λ) =

∫
eiλx2

a(x)dx.

Proposition 2.1. Suppose a is a smooth function with compact support.
Then for any k ∈ N, we have

I(x2, a; λ) =

√
πi

λ

k−1∑
j=0

a(2j)(0)

j!

(
i

4λ

)j

+
Rk(λ)

(2λ)k
,

where the remainder satisfies the uniform estimate

|Rk(λ)| ≤ ‖a(2k)‖1.

Proof. Notice that

I(x2, a; λ) = lim
ε→0+

∫
e(−ε+iλ)x2

a(x)dx.

Now write∫
e(−ε+iλ)x2

a(x)dx =

∫
eµx2

a(x)dx =

∫
eµx2

a(0)dx +

∫
eµx2

xb(x)dx,
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where

µ = −ε + iλ,

and

b(x) =
a(x) − a(0)

x
.

The first term is ∫
eµx2

dx =

√
π

ε − iλ
.

Integrating by parts the second term we get∫
eµx2

xb(x)dx = − 1

2µ

∫
eµx2

a1(x)dx,

where a1 = b′. Passing to the limit as ε → 0 and repeatedly applying the
above procedure, we get

I(x2, a; λ) =

√
πi

λ

(
a(0) +

a1(0)

−2iλ
+ · · · + ak−1(0)

(−2iλ)k−1

)
+

I(x2, ak; λ)

(−2iλ)k
,

where

aj(0) =
a(2j)(0)

2jj!
.

The result follows since

|I(x2, ak; λ)| ≤ ‖ak‖1 ≤ ‖a(2k)‖1.

�
Now, suppose that the phase φ has finitely many critical points xp in

supp(a). Choose a smooth partition of unity∑
hα = 1

in supp(a) such that for each α, supp(hα) contains exactly one critical point.
Suppose that xp ∈ supp(hα). Then, by the Morse Lemma, we have

I(φ, hα; λ) = eiλφ(xp)I(±x2, bp; λ),

where bp is a suitable smooth function with compact support, and

± = sgnφ′′(xp).

Proposition 2.1 then implies

I(φ, a; λ) =

√
π

λ

∑
p

e±
πi
4

+iλφ(xp)(a(xp) + · · · + λ−kRk(λ)).

Next, we turn to the higher dimensional case. Namely, we want to study
the asymptotic behavior of the integral

I(φ, a; λ) =

∫
Rn

e2πiλφ(x)a(x)dx.
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Assume first that the phase is a quadratic form, i.e.

φ(x) = β(x) =
1

2

∑
ij

βijxixj.

Furthermore, suppose that β is nonsingular, i.e. det[βij] �= 0, and let

β∗(D) =
1

2

∑
ij

∂2

∂xi∂xj

be the dual differential operator, where [βij] = [βjk]−1. Then we have the
following.

Proposition 2.2. If β is a nonsingular quadratic form, and a is a smooth
function with compact support, then for any k ∈ N, the following equation
holds.∫

Rn

e2πiλβ(x)a(x)dx =
e

πσ(β)i
4√

λn|detHessβ|

k−1∑
j=0

β∗(D)ja(0)

j!

(
i

λ

)j

+
Rk(λ)

λk
,

where σ(β) is the signature of β, Hessβ the Hessian matrix of β, and the
remainder satisfies the uniform estimate

|Rk(λ)| ≤ ‖(β∗(D))ka‖1.

Proof. Proposition 2.1 is the special case when n = 1. In the general
case, take a linear transformation x = A(y) such that

β(x) =
1

2
(y2

1 + · · · + y2
p − y2

p+1 − · · · − y2
n)

where 2p = σ(β) + n. By Taylor’s Theorem

a(y) =
2k−1∑
|α|=0

Dαa(0)

α!
yα + Sk(y).

Then

I(2πβ(y) + εiy2; λ) =
2k−1∑
|α|=0

Dαa(0)

α!

∫
e(2πiβ(y)−εy2)λyαdy(2.1)

+

∫
e(2πiβ(y)−εy2)λSk(y)dy.

By Fubini’s Theorem∫
e(2πiβ(y)−εy2)λyαdy =

n∏
j=1

∫
e(±2iy2

j−εy2
j )λy

αj

j dyj,
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therefore, Proposition 2.1 applies. We can put the sum in (2.1) in the form
(P (D)a)(0), where

P (D) =
n∏

j=1

exp(
πσ(βj)i

4
)√

λ|detHessβj|
exp

(
iβ∗

j (∂/∂yj)

λ

)
k

,

with

βj = ±1

2
y2

j .

Next, we calculate ∏
exp

(
πσ(βj)i

4

)
= exp

(
πσ(β)i

4

)
,

∏
λ|detHessβj| = λn|detHessβ|,∏

exp

(
iβ∗

j (∂/∂yj)

λ

)
= exp

(
iβ∗(D)

λ

)
.

Finally,
|detHessyβ| = |detA|2|detHessxβ| = |detA|2.

To conclude the proof, we estimate the remainder as in Proposition 2.1. �
If x0 is a nondegenerate critical point of φ, we choose smooth local coordi-

nates in a neighborhood of x0 such that φ is a quadratic form in that coordinate
system. Then we apply Proposition 2.2.

A good reference for the material in this chapter is [13].

16



CHAPTER 3

The uncertainty principle

In harmonic analysis, by the term uncertainty principle, we refer to the
(rather vague) fact that a function and its Fourier transform cannot be both
concentrated on small sets.

The simplest manifestation of this phenomenon is the fact that the Fourier
transform of a compactly supported function cannot have compact support,
unless the function is identically equal to zero.

Another way to understand the situation is the following.

Proposition 3.1 (Bernstein’s inequality). Suppose f ∈ Lp , 1 ≤ p ≤ ∞
and that suppf̂ ⊂ B(0, R). Then

|Dαf‖p � R|α|‖f‖p,

where the implicit constant depends only on the dimension n.

Proof. If p = 2 this follows from Plancherel’s Theorem.

‖Dαf‖2 = ‖(Dαf )̂ ‖2 = ‖(2πiξ)αf̂ ‖2 � R|α|‖f̂ ‖2 = R|α|‖f‖2.

In the general case, fix a function φ ∈ S with

φ̂(ξ) = 1 ∀ξ ∈ D(0, 1).

Then

(φR−1 )̂ f̂ = f̂ ,

and therefore

φR−1 ∗ f = f.

Now, suppose |α| = 1. Then

Dαf = DαφR−1 ∗ f = R(Dαφ)R−1 ∗ f.

So, by Minkowski’s inequality

‖Dαf‖p ≤ R‖(Dαφ)R−1‖1‖f‖p = CR‖f‖p.

The general case follows by induction on |α|. �

Corollary 3.1. Suppose that suppf̂ ⊂ B(0, R). Then

osc
B

f � ‖f‖∞

for all discs B of radius R−1; here the implicit constant depends on n only.
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Proof. By the Mean Value Theorem and Bernstein’s inequality we have

osc
B

f � R−1‖∇f‖∞ � R−1R‖f‖∞ = ‖f‖∞.

�
So, if f̂ is supported on a disc of radius R, then f is “essentially constant”

on scale R−1.
In higher dimensional harmonic analysis, it is often the case that the sup-

port of f̂ is not contained in a disc, but in a set of high eccentricity. This case
can be understood by starting from a disc and studying the behavior of the
Fourier transform under linear maps.

If {ej} is a basis for R
n and {aj} are positive numbers, then the ellipsoid

with axes {ej} and widths {aj} is the set

E =
{

ξ ∈ R
n :

∑
j

(〈ξ, ej〉
aj

)2

≤ 1
}

.

Its dual ellipsoid is the set

E∗ =
{

x ∈ R
n :

∑
j

(
aj〈x, aj〉

)2

≤ 1
}

,

A basic fact from linear algebra is that there is always a linear transformation
T such that

T (B(0, 1)) = E∗,

(T ∗)−1(B(0, 1)) = E,

where T ∗ is the transpose of T . Therefore, if f is function with suppf̂ ⊂ E,
then

supp((f ◦ T )̂ ) = supp(f̂ ◦ (T ∗)−1) ⊂ B(0, 1),

and since f ◦ T must be “essentially constant” on translates of B(0, 1) we
conclude that f is “essentially constant” on translates of E∗. For example, by
Corollary 3.1, we have

Corollary 3.2. If suppf̂ ⊂ E, then

osc
E∗+a

f � ‖f‖∞,

for all a ∈ R
n.

This can also be applied when E is the “rectangle”

{ξ : |〈ξ, ej〉| ≤ aj}
and E∗ is the “dual rectangle”

{x : |〈x, ej〉| ≤ a−1
j },

since these rectangles are comparable to ellipsoids in the same way cubes are
comparable to balls.

There are many other, and much deeper, forms of the uncertainty principle.
We refer the reader to the monograph [12] for an extensive account.
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CHAPTER 4

The restriction problem

This chapter is concerned with the following fundamental question which
is still largely open.

When can one meaningfully restrict the Fourier transform of an Lp function
to the surface of the unit sphere?

More quantitatively,

For what values of q is there an estimate

‖(fdσ)̌ ‖q � ‖f‖∞
for all f ∈ L∞(Sn−1)?

To find the best possible q, one can take f to be a constant function. Then
(fdσ)̌ may be evaluated using the technique of stationary phase (see [20],
[13]). The result is as follows.

Proposition 4.1.

(dσ)̌ (x) = �
(
A(x)e2πi(|x|−(n−1)/8)

)
, for large |x|,

where

C−1|x|−(n−1)/2 ≤ |A(x)| ≤ C|x|−(n−1)/2,

|DαA(x)| ≤ Cα|x|−(n−1)/2−|α|.

In particular, (dσ)̌ ∈ Lq precisely when q > 2n/(n − 1). The restriction
conjecture of Stein is the statement that

(fdσ)̌ ∈ Lq, for all f ∈ L∞(Sn−1), q >
2n

n − 1
.

To begin with, let’s try to estimate the L2 norm of (fdσ)̌ on large finite discs.
To motivate the calculation, note that

‖(dσ)̌ ‖L2(B(0,R)) � R1/2, for large R,

by Proposition 4.1.

Proposition 4.2. If f ∈ L∞(Sn−1), then

‖(fdσ)̌ ‖L2(B(a,R)) � R1/2‖f‖∞.
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Proof. We can assume a = 0; otherwise we replace f by

fa(ξ) = e2πia·ξf(ξ),

which has the same L∞ norm as f and satisfies

(fadσ)̌ (x) = (fdσ)̌ (x + a).

Let φ be a Schwartz function with the following properties.

φ ≥ 1 on B(0, 1) and suppφ̂ ⊂ B(0, 1).

Let
φR(x) = φ(x/R).

Then
‖(fdσ)̌ ‖L2(B(0,R)) ≤ ‖φR(fdσ)̌ ‖2 = ‖(φR)̂ ∗ (fdσ)‖2.

Now
(φR)̂ (ξ) = Rnφ̂(Rξ),

and therefore

|(φR)̂ ∗ (fdσ)(ξ)| = Rn
∣∣∣ ∫

φ̂(ξ − Rη)f(η)dσ(η)
∣∣∣ � Rn‖f‖∞σ(B(ξ, R−1)).

The latter quantity is � R‖f‖∞ for any ξ and is 0 if dist(ξ, Sn−1) > 1/R.
Accordingly,

‖(φR)̂ ∗ (fdσ)‖2 � R‖f‖∞|{ξ : dist(ξ, Sn−1) < 1/R}|1/2 � R1/2‖f‖∞.

�
With a slightly more careful argument one can obtain the same estimate when
f is just in L2, i.e.,

‖(fdσ)̌ ‖L2(B(a,R)) � R1/2‖f‖L2(Sn−1).

The Stein-Tomas theorem is a bound of the form

‖(fdσ)̌ ‖q ≤ C‖f‖L2(dσ)

with an optimal value of q (= 1(n+1)/(n−1)) which is larger than 2n/(n−1),
reflecting a difference between L2 and L∞ densities f . To understand this
distinction, consider a function which has small support, so that its L2 norm
will be much smaller than its L∞ norm. Indeed, consider the spherical cap

Cδ
e = {ξ ∈ Sn−1 : |ξ − e| < δ}.

The smallest convex set containing Cδ
e is essentially a rectangle with width δ2

in the e direction and δ in the perpendicular directions. Therefore, |(fdσ)̌ |
should be essentially constant on translates of the dual rectangle

τ δ
e (a) =

{
x ∈ R

n : |(x − a) · e| <
1

2
δ−2, |Pe⊥(x − a)| < δ−1

}
,

where
Pe⊥(x) = x − 〈x, e〉e

is the projection of x on the line passing through the origin orthogonal to e.
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Proposition 4.3 (Knapp counterexample). For any e ∈ Sn−1, a ∈ R
n,

and small positive δ, there is a function f : Sn−1 → C with

‖f‖∞ ≤ 1, suppf ⊂ Cδ
e and |(fdσ)̌ | � δn−1 on τ δ

e (a).

Proof. Let f(ξ) = e−2πiξ·a if ξ ∈ CC−1
0 δ

e and zero otherwise; here C0 is a
large positive constant depending on n only. If C0 is large enough, then we
have

|(ξ − e) · (x − a)| <
1

100
∀ξ ∈ CC−1

0 δ
e , x ∈ τ δ

e (a).

This is because

(ξ − e) · (x − a) = (ξ − e) · e(x − a) · e + Pe⊥(ξ − e) · Pe⊥(x − a),

with

|Pe⊥(ξ − e)| < C−1
0 δ, |Pe⊥(x − a)| < δ−1, |(ξ − e) · e| � (C−1

0 δ)2,

and
|(x − a) · e| � δ−2.

Accordingly, for x ∈ τ δ
e (a)

|(fdσ)̌ (x)| =
∣∣∣ ∫

CC−1
0 δ

e

e2πi(x−a)·ξdσ(ξ)
∣∣∣ =

∣∣∣ ∫
CC−1

0 δ
e

e2πi(x−a)·(ξ−e)dσ(ξ)
∣∣∣

≥
∫
CC−1

0 δ
e

�
(
e2πi(x−a)·(ξ−e)

)
dσ(ξ)

≥ cos

(
2π

100

)
σ

(
CC−1

0 δ
e

)
� δn−1.

�
With f as in Proposition 4.3, we have

‖f‖L2(dσ) � δ
n−1

2 and ‖(fdσ)̌ ‖q � δn−1−n+1
q ,

since the volume of τ δ
e (a) is approximately δ−(n+1). Therefore, a bound of the

form
‖(fdσ)̌ ‖q � ‖f‖L2(dσ)

can only hold if
n − 1

2
≤ n − 1 − n + 1

q
,

which means

q ≥ 2
n + 1

n − 1
.

Proposition 4.4 (Stein-Tomas theorem). If q ≥ 2(n + 1)/(n − 1) then

‖(fdσ)̌ ‖q � ‖f‖L2(dσ).

Sketch of the Proof. First show that the following three assertions
are equivalent for any given p < 2, where p′ = p/(p − 1).
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(1) ‖(fdσ)̌ ‖p′ ≤ C‖f‖L2(dσ) for all f ∈ L2(dσ)

(2) ‖f̂ ‖L2(dσ) ≤ C‖f‖p for all f ∈ S
(3) ‖σ̌ ∗ f‖p′ ≤ C2‖f‖p for all f ∈ S

To prove (3) (hence (1)), let φ ∈ S have compact support and satisfy

φ(x) = 1 ∀x ∈ B(0, 1).

Put
ψj(x) = φ(2−jx) − φ(2−(j−1)x).

Show that if f ∈ S, then

σ ∗ f = (φσ̌) ∗ f +
∑
j≥1

(ψjσ̌) ∗ f uniformly.

Now prove the estimates

‖(ψjσ̌) ∗ f‖∞ � 2−j n−1
2 ‖f‖1,

and
‖(ψjσ̌) ∗ f‖2 ≤ 2j‖f‖2.

Use these and Riesz-Thorin to obtain (3) in the case

p′ > 2(n + 1)/(n − 1).

To prove the endpoint estimate, show that∥∥∥∑
j

2(n−1
2

+it)j(ψjσ̌) ∗ f
∥∥∥
∞

� ‖f‖1,

∥∥∥∑
j

2(−1+it)j(ψjσ̌) ∗ f
∥∥∥

2
� ‖f‖2,

and then use complex interpolation. �
A different proof, based on estimates for Fourier integral operators, may

be found in [20].
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CHAPTER 5

Kakeya sets

A basic fact proved by Besicovitch in the 20’s is that for any n ≥ 2 there is
a compact set E ⊂ R

n with measure zero, which contains a unit line segment
in every direction, i.e.,

∀e ∈ Sn−1 ∃a ∈ R
n : a + te ∈ E ∀t ∈ [−1/2, 1/2].

Such sets are called Besicovitch or Kakeya sets.
There are many variants of this construction. We will present one of them

(due to T. Wolff) and then discuss some further properties of Besicovitch sets.

Lemma 5.1. Let N be a large integer. Then there is a family of lines {la},
where a runs over the set of NN numbers of the form

a =
N∑

j=1

aj

N j
, aj ∈ {0, . . . , N − 1},

such that the slope of la is a, and if we let lta be the unique y ∈ R such that
(t, y) ∈ la, then

(i) If a < b then l1a < l1b .
(ii) For each t ∈ [0, 1], the set {y ∈ R : |y − lta| ≤ N−N for some a}

has measure ≤ 4/N .

Proof. We define la by letting its y-intercept be

−
N∑

j=1

(j − 1)aj

N j+1
,

and check that (i) and (ii) hold. We have

lta = −
N∑

j=1

(j − 1)aj

N j+1
+ t

N∑
j=1

aj

N j
=

N∑
j=1

(Nt − j + 1)aj

N j+1
.

Proof of (i). If a > b, then let k be the smallest index with ak �= bk. Then
ak − bk ≥ 1, and aj − bj ≥ −(N − 1) for j > k. So

l1a − l1b =
(n − k + 1)(ak − bk)

Nk+1
+

∑
j>k

(N − j + 1)(aj − bj)

nj+1

≥ N − k + 1

Nk+1
− (N − 1)

∑
j>k

N − j + 1

N j+1
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≥ N − k + 1

Nk+1
− (N − k + 1)(N − 1)

∑
j>k

1

N j+1
> 0,

by the formula for the sum of a geometric series.

Proof of (ii). Given t ∈ [0, 1], choose an integer k such that (k − 1)/N ≤ t <
k/N . Suppose that aj = bj for j ≤ k − 1. Then

|lta − ltb| =
∣∣∣ ∑

j≥k

(Nt − j + 1)(aj − bj)

N j+1

∣∣∣ ≤ ∑
j≥k

(|k − j| + 1)|aj − bj|
N j+1

,

with the last inequality true since Nt − j + 1 ∈ [k − j, k − j + 1). So,

|lta − ltb| ≤
∑
j≥k

j − k + 1

N j
≤ 2N−k (if N is large).

There are Nk−1 choices for the sequence {aj}k−1
j=1 , so the set {lta} is contained

in the union of Nk−1 intervals of length 2N−k. Hence {y : |y − lta| ≤ N−N} is
contained in Nk−1 intervals of length 2N−N + 2N−k ≤ 4N−k, so has measure
≤ 4/N . �

Now consider (for fixed a) the set

Sδ
la = {(t, y) : 0 ≤ t ≤ 1, dist(y, lta) ≤ δ},

where δ = 1/2N−N . It evidently contains a line segment connecting x = 0 to
x = 1 with slope m, for every m with |m − a| ≤ N−N . If 0 ≤ m ≤ 1, then

|m − a| ≤ N−N for some a =
∑N

j=1
aj

Nj . Now let

E =
⋃
a

Sδ
la .

We will use the notation Et = {y : (t, y) ∈ E}. The following is now obvious.

Corollary 5.1. There is a set EN with the following two properties.
(i) EN contains a line segment connecting x = 0 to x = 1 with slope m,

for every m ∈ [0, 1].
(ii) |Et

N | ≤ 4/N for every t ∈ [0, 1] (in particular, |EN | ≤ 4/N).

Remark. The preceding construction may be understood geometrically in
terms of a variant on the Perron tree (cf [10]). Namely, start with a triangle.
Cut it in N pieces by subdividing the vertical edge in N equal segments. Leave
the top triangle alone and slide the others upward until the x = 0 intercepts
coincide. Next, take each of the resulting triangles and subdivide it in N
triangles as above. Thus, we have N families of N “small” triangles. Within
each family, leave the top triangle alone and slide the others upward until the
x = 1/N intercepts coincide. Subdivide each of the N2 resulting triangles
obtaining N2 families of N “smaller” triangles. Within each family, leave the
top triangle alone and slide the others upward until the x = 2/N intercepts
coincide. Now repeat the process at abscissas 3/N, 4/N, . . . .
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Proposition 5.1. Besicovitch sets exist in R
n, for any n ≥ 2.

Proof. To construct a Besicovitch set in R
2, it suffices to construct a

compact set with measure zero containing a line segment connecting x = 0 to
x = 1 with slope m for every m ∈ [0, 1]. This is done by passing to the limit as
N → ∞ in Corollary 5.1. However, one has to be careful about convergence.

Lemma 5.2. Suppose F is a compact set with property (i) of Corollary 5.1
and that δ > 0, ε > 0. Then there is another compact set F̃ with property (i),
such that F̃ ⊂ {z : dist(z, F ) < δ} and |F̃ | < ε.

Proof. Note that the sets EN in Corollary 5.1 are contained in Q
def
=

[0, 1] × [−1, 1]. If l is a segment connecting x = 0 to x = 1 with slope m and
y-intercept b then the affine map

Aδ
l (x, y) = (x, δy + b + mx)

takes Q onto Sδ
l , and maps segments with slope µ to segments with slope

m + δµ. Accordingly, Aδ
l (EN) is a subset of Sδ

l which contains segments with
all slopes between m and m + δ, and |Aδ

l (EN)| ≤ 4δ/N . Now choose segments
lj ⊂ F with

slope(lj) = jδ, j = 0, . . . , [1/δ].

Let

F̃ =

[1/δ]⋃
j=0

Aδ
lj
(EN),

where N is sufficiently large. Then F̃ ⊂ {z : dist(z, F ) < δ} and F̃ contains
segments with all slopes between 0 and 1. Moreover

|F̃ | ≤ [1/δ]
4δ

N
≤ 4

N
< ε,

provided N has been chosen > 4/ε. �

To finish the proof of the proposition when n = 2, we recursively choose a
sequence of sets {Fj}∞j=1 and numbers δj → 0 such that

(i) Fj has property (i) of Corollary 5.1, ∀j ≥ 1.
(ii) {z : dist(z, Fj) ≤ δj} ⊂ {z : dist(z, Fj−1) ≤ δj−1}, ∀j ≥ 2.
(iii) |{z : dist(z, Fj) ≤ δj}| < 2−j, ∀j ≥ 2.

Namely, we can take F1 to be EN of Corollary 5.1 for any large enough N , and
any sufficiently small number for δ1. If Fj and δj have been chosen, then we
choose Fj+1 by Lemma 5.2 with F = Fj, δ = δj and ε = 2−(j+1). If we then
choose δj+1 sufficiently small we will have (i)-(iii) for j + 1. Now let

F =
⋂
j

{z : dist(z, Fj) ≤ δj}.
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Then F is compact with measure zero, and a simple compactness argument
shows that F has property (i) of Corollary 5.1. This completes the proof of
the proposition when n = 2. For n > 2, it suffices to consider E × D, where
E is a Besicovitch set in R

2, and D is a closed disc of radius 1 in R
n−2. �

We now give another application of Lemma 5.1, which is needed for the
disc multiplier counterexample argument.

Proposition 5.2. Let δ = 1/100N−N . Then there is a collection of
1/(100δ) rectangles Ta with dimensions 1 × δ, so that

(i) |
⋃

a Ta| ≤ 4/N .

(ii) Let T̃a be the rectangle obtained by translating Ta along its axis by C0

units C0 ≥ 2. Then the rectangles T̃a are pairwise disjoint.

Proof. Let la be one of the segments in Lemma 5.1. Form the rectangle
Ta as follows: Ta has length 1, width δ, axis along la and its furthest left vertex
is on the y-axis. One can check that Ta is contained in the set{

(x, y) : 0 ≤ x ≤ 1 and |y − lxa | <
1

100
N−N

}
,

and furthermore T̃a is contained in{
(x, y) : x ≥

√
2 and |y − lxa | <

1

100
N−N

}
.

Property (i) now follows from (ii) of Lemma 5.1. For (ii), suppose toward a
contradiction that a > b and T̃a ∩ T̃b �= ∅. Fix (x, y) ∈ T̃a ∩ T̃b. Then x >

√
2

and

|lxa − lxb | ≤ |lxa − y| + |y − lxb | <
1

50
N−N .

On the other hand

lxa − lxb = (lxa − l1a) − (lxb − l1b ) + (l1a − l1b ).

The last term is positive by (i) of Lemma 5.1, so

lxa − lxb ≥ N−N(
√

2 − 1).

This is a contradiction since
√

2 − 1 > 1/50. �
There is a basic open question about Besicovitch sets, which can be stated

vaguely as “How small can they really be?”. In order to state a more precise
question, we need a notion of “size”, or fractal dimension. One can work
with the Hausdorff dimension, but to avoid technical complications, we use
instead the “lower Minkowski dimension” (see [17] for several different notions
of dimension) defined as follows: If E ⊂ R

n is compact then

dim E = sup{α : ∃Ca with |Eδ| ≥ C−1
α δn−α ∀δ ∈ (0, 1]},

where Eδ is by definition {z : dist(z, E) < δ}. Thus, dim E measures the rate
at which |Eδ| → 0, as δ → 0. If E has positive measure then dim E = n, if E
is a point then dim E = 0, if E is the Cantor set then dim E = log 2/ log 3.
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Kakeya problem. If E ⊂ R
n is a Besicovitch set, then does it follow that

the dimension of E is n?

If n = 2, then the answer is yes. This is due to R.O. Davies, see [10]. For
general n, we refer the reader to [21], [3], [14] and [15].

In order to discuss this further, we need some notation. Since there is no
distinction between segments pointing in the e and −e direction, we let

P
n−1 = Sn−1/{±1},

i.e., Sn−1 with e and −e identified, and define a distance on P
n−1 by

θ(e, f) = cos−1(|e − f |) ∈ [0, π/2],

thus, θ(e, f) is the unoriented angle subtended by e and f . For e ∈ P
n−1,

a ∈ R
n, we let

T δ
e (a) =

{
x ∈ R

n : |(x − a) · e| <
1

2
and |Pe⊥(x − a)| < δ

}
.

We will need the following purely geometrical fact, whose proof is left to
the reader.

Lemma 5.3. Assume that e, f ∈ P
n−1 and a, b ∈ R

n, then
(i) |T δ

e (a) ∩ T δ
f (b)| ≤ Cδn/(θ(e, f) + δ).

(ii) diam(T δ
e (a) ∩ T δ

f (b)) ≤ Cδ/(θ(e, f) + δ).

So, T δ
e (a) ∩ T δ

f (b) is contained in a rectangle of dimensions

Cδ × · · · × Cδ × Cδ

θ(e, f)
.

Note that the bounds are independent of a and b. We also define a δ-separated
set in P

n−1 to be a set {ej} such that θ(ej, ek) ≥ δ for all j �= k. A maximal
δ-separated set is a set which is δ-separated and is not contained in any larger
δ-separated subset. If {ej}M

j=1 is a maximal δ-separated subset, then M �
δ−(n−1). This may be seen by volume counting, since the discs {e ∈ P

n−1 :
θ(e, ej) < δ/2} are disjoint (by δ-separateness), and the discs {e ∈ P

n−1 :
θ(e, ej) < δ} cover P

n−1 (by maximality).
We will now prove a partial result on the Kakeya problem.

Proposition 5.3. If E ⊂ R
n is a Besicovitch set, then dim E ≥ (n+1)/2.

Proof. The proof we give is due to Bourgain, see [2]. It is not the shortest
possible, but it is the most illuminating. Note to begin with, that Eδ must
contain the δ-neighborhood of a unit line segment in the e direction for every
e. Thus

(5.1) ∀e ∈ P
n−1 ∃a ∈ R

n : T δ
e (a) ⊂ Eδ.

Fix a maximal C0δ-separated subset {ej}M
j=1, M � δ−(n−1) and let Tj be the

tube T δ
ej

(aj) given by (5.1). Here C0 is a large constant. Let N be a large
integer to be chosen later and consider two possibilities.
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(i) There is no point x ∈ R
n such that x belongs to more than N Tj’s.

(ii) There is at least one point b ∈ R
n which belongs to at least N Tj’s.

In case (i) we have

|Eδ| ≥
∣∣∣ ⋃

j

Tj

∣∣∣ ≥ 1

N

∑
j

|Tj| �
1

N
δ−(n−1)δn−1 =

1

N
.

In case (ii), fix a point b belonging to N Tj’s. We can assume that these are
T1, . . . , TN . Consider the “outer halves” of the tubes, i.e., the sets

T̃j =
{

x ∈ R
n : |x − b| ≥ 1

4

}
∩ Tj, j = 1, . . . , N.

It is clear that |T̃j| � |Tj| � δn−1. On the other hand, the sets T̃j are pairwise
disjoint, provided C0 has been chosen large enough. This follows because, by
Lemma 5.3, we have

diam(Tj ∩ Tk) ≤
C

C0

<
1

4
, (if C0 is large)

and b ∈ Tj ∩ Tk, |x − b| ≥ 1/4 ∀x ∈ T̃j ∪ T̃k. Therefore

|Eδ| ≥
∣∣∣ ⋃

j

T̃j

∣∣∣ =
∑

j

|T̃j| � Nδn−1.

We conclude that

|Eδ| � min
{ 1

N
, Nδn−1

}
in all cases. Taking N = [δ−(n−1)/2], this means that

|Eδ| � δ(n−1)/2, for all δ,

which is equivalent to dim E ≥ (n + 1)/2. �
Note that Proposition 5.3 does not give the right bound when n = 2, since

it is known that then dim E = 2.

Proposition 5.4. If E ⊂ R
2 is a Besicovitch set, then dim E = 2.

Proof. The idea of this proof is based on an argument due to Córdoba
[7], although he did not state the result this way. Fix δ > 0, let {ej}M

j=1 be a

maximal δ-separated set of directions in P
1, and let Tj = T δ

ej
(aj) be a 1 × δ

rectangle with axis in the ej direction which is contained in Eδ. Note that
if δ < σ < π/2, then for each j, the set {k : θ(ej, ek) ≤ σ} has cardinality
≤ Cσ/δ. Therefore

1 �
M∑

j=1

|Tj| =
∥∥∥ M∑

j=1

χTj

∥∥∥
1
≤

∥∥∥ M∑
j=1

χTj

∥∥∥
2
|Eδ|1/2(5.2)

=

( ∑
j,k

|Tj ∩ Tk|
)1/2

|Eδ|1/2 �
(

Mδ +
∑
j �=k

|Tj ∩ Tk|
)1/2

|Eδ|1/2.
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Fix j and consider
∑

k:k �=j |Tj ∩ Tk|. By Lemma 5.3,

|Tj ∩ Tk| ≤ Cδ2/θ(ej, ek).

Hence∑
k:k �=j

|Tj ∩ Tk| ≤
∑

0≤m≤log(1/δ)

card({k : θ(ej, ek) ∈ [δ2m, δ2m+1]}) δ2

δ2m

≤ C
∑

0≤m≤log(1/δ)

2m δ2

δ2m
� δ log

1

δ
.

(5.2) now implies that

1 �
(

Mδ + Mδ log
1

δ

)1/2

|Eδ|1/2 �
(

log
1

δ

)1/2

|Eδ|1/2.

Hence

|Eδ| ≥ (C log(1/δ))−1.

Since (log(1/δ))−1 goes to zero slower than any power of δ, this implies that
dim E = 2. �
Remark. The same proof works in any dimension, but gives the bound
dim E ≥ 2, which is rather disappointing if n > 2.

It is a remarkable fact that the restriction conjecture implies the Kakeya
conjecture. This is due to Bourgain, although a related construction was done
earlier in [4]. Both constructions are variants on the argument in [11].

Proposition 5.5. If the restriction conjecture is true, then Besicovitch
sets have dimension n.

Proof. Let E be a Besicovitch set. Fix δ; then Eδ contains a tube T δ
e (ae)

for every e ∈ P
n−1. Let {ej}M

j=1 be a maximal C0-separated subset of P
n−1,

and also regard {ej}M
j=1 as a set on the sphere Sn−1 by choosing (arbitrarily)

one of the two possible directions. Then, in the notation of Chapter 4, the
spherical caps Cδ

ej
are disjoint, provided C0 is large enough. Also, let τj be the

tube obtained by dilating T δ
ej

(aej
) by a factor of δ−2. Then, in the notation of

Chapter 4, τj = τ δ
ej

(δ−2aej
). By the Knapp counterexample, there are functions

fj : Sn−1 → C such that

suppfj ⊂ Cδ
ej

, ‖fj‖∞ ≤ 1,

and

(5.3) |(fjdσ)̌ (x)| ≥ C−1δn−1, ∀x ∈ τj.

Now suppose {εj}M
j=1 are ±1’s. Then

∥∥∥ M∑
j=1

εjfj

∥∥∥
L∞(Sn−1)

≤ 1,
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so, by the restriction conjecture

(5.4)
∥∥∥ M∑

j=1

εj(fjdσ)̌
∥∥∥

q
≤ Cq, ∀q >

2n

n − 1
.

On the other hand

E

(∥∥∥ M∑
j=1

εj(fjdσ)̌
∥∥∥q

q

)
=

∫
E

(∣∣∣ M∑
j=1

εj(fjdσ)̌ (x)
∣∣∣q)dx

(by Khinchin) �
∫ ( M∑

j=1

|(fjdσ) (̌x)|2
)q/2

dx

(by (5.3)) � δ(n−1)q

∫ ∣∣∣ ∑
χτj

(x)
∣∣∣q/2

dx

(x "→ δ2x) = δ(n−1)q−2n

∫ ∣∣∣ ∑
χTj

(x)
∣∣∣q/2

dx,

where we have set Tj = T δ
ej

(aej
). Combining this with (5.4) we conclude that∥∥∥∑

χTj

∥∥∥
q/2

≤ δ4n/q−2(n−1), ∀q >
2n

n − 1
.

On the other hand

1 �
M∑

j=1

|Tj| =
∥∥∥∑

χTj

∥∥∥
1
≤

∥∥∥∑
χTj

∥∥∥
q/2

|Eδ|1−2/q ≤ Cqδ
4n/q−2(n−1)|Eδ|1−2/q,

which means
|Eδ| � δ2n−2q/(q−2)

or
dim E ≥ 2q/(q − 2) − n.

As q ↘ 2n/(n − 1), the number 2q/(q − 2) − n → n, so this finishes the
proof. �
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Problems

1. If you know what Hausdorff dimension is, then show that

Hausdorff dimension of E ≤ dim E

for all compact sets E, and that strict inequality can hold.

2. (a) Suppose 0 < λ ≤ 1, E ⊂ R
n and the following holds: for any e ∈ P

n−1,
there is a tube T δ

e (a) such that |E ∩ T δ
e (a)| ≥ λ|T δ

e (a)|. By generalizing the
argument in Proposition 5.3, show that then |E| ≥ C−1δ(n−1)/2λ(n+1)/2.
(b) A further generalization is possible. Suppose o < λ ≤ 1, E ⊂ R

n, Ω ⊂ P
n−1

and for each e ∈ Ω there is a tube T δ
e (a) such that |E ∩ T δ

e (a)| ≥ λ|T δ
e (a)|.

Then |E| ≥ C−1(δn−1|Ω|)1/2λ(n+1)/2.

3. Let f : R
n → R. The Kakeya maximal function f ∗

δ : P
n−1 → R, is defined

by

f ∗
δ (e)

def
= sup

a

1

|T δ
e (a)|

∫
T δ

e (a)

|f |.

There is another formulation of the Kakeya problem in terms of this maximal
function, namely, that the estimate

(5.5) ∀ε ∃Cε : ‖f ∗
δ ‖Lp(Pn−1) ≤ Cεδ

−ε‖f‖p, where p = n,

should hold.
(a) Show that this estimate, if true, would imply that Besicovitch sets have
dimension n.
(b) Show that the estimate (5.5) cannot hold if p < n (hint: let f be the
characteristic function of a disc of radius δ).
(c) Using the preceding problem, one can prove the following estimate for f ∗

δ .

‖f ∗
δ ‖q ≤ Cδ−(n/p−1)‖f‖p,

if q = (n− 1)p′ and p < (n+1)/2 (hint: interpolate between a restricted weak
type L(n+1)/2 → Ln+1 estimate and an L1 → L∞ estimate).
(d) Using the proof of Proposition 5.4, it is possible to verify the conjecture
(5.5) when n = 2.

4. Let f : R
n → R. The X-ray transform of f is defined by

Xf(e, y) =

∫
le

f(x + y)dL1(x), e ∈ Sn−1, y ∈ l⊥e ,

where le is the line through the origin in the e direction, and l⊥e is the orthogonal
complement of le. Christ [5] and Drury [9] proved the following estimate.

(5.6) ‖Xf‖Ln+1 � ‖f‖n+1
2

,

where

‖Xf‖n+1
Ln+1 =

∫
Sn−1

∫
l⊥e

|Xf(e, y)|n+1dLn−1(y)dσ(e).

Show that (5.6) implies Proposition 5.3.
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CHAPTER 6

Fefferman’s counterexample

An Lp multiplier is a function m such that

‖(mf̂ )̌ ‖p ≤ C‖f‖p ∀f ∈ S,

and its Lp multiplier norm ‖m‖Mp is the smallest possible C in the above
inequality. When p = 2, it is clear by the Plancherel theorem that any bounded
function is an Lp multiplier, with ‖m‖Mp ≤ ‖m‖∞ (in fact, equality holds).

The characteristic function of the interval [−1, 1] is an Lp multiplier. This
follows from the boundedness of the Hilbert transform. Therefore, it seems
natural to conjecture that, in any dimension, the characteristic function of
the unit disc should be an Lp multiplier as well. It is a striking fact that the
conjecture turns out to be false. The counterexample is due to C. Fefferman
[11].

Proposition 6.1. If p �= 2 and n ≥ 2, then the characteristic function of
the unit disc is not an Lp multiplier.

This is based on the the existence of Besicovitch sets, more precisely on
Proposition 5.2. One represents the operator as a convolution operator (χf̂ )̌ =
χ̌∗f , where χ = χB(0,1), and then uses the “sliding” argument plus asymptotics
for χ̌, i.e., the following.

Lemma 6.1. When |x| is large,

χ̌(x) = 2 cos(2π(|x| + (n + 1)/8))|x|−(n+1)/2 + B(x),

where |B(x)| ≤ C|x|−(n+3)/2.

Proof. See [13]. �
The Knapp counterexample is replaced by the following.

Lemma 6.2. Suppose (in R
2), τ = τ δ

e (a) (notation as in Chapter 5) for
some a, and let

τ̃ = τ δ
e (a + C0δ

−2e)

be the tube obtained by translating τ along its axis by distance C0δ
−2 where C0

is a large constant. Then there is a Schwartz function g with

suppg ⊂ τ̃ and ‖g‖∞ ≤ 1,

such that

|χ̌ ∗ g(x)| ≥ C−1 for all x ∈ τ.
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Proof. We assume for simplicity that e = (1, 0), a + C0δ
−2e = 0, and we

fix a Schwartz function ψ supported in τ̃ with the following properties.

‖ψ‖∞ ≤ 1,

∫
ψ ≥ C−1δ−3 and

∥∥∥∥ dψ

dx1

∥∥∥∥
∞

≤ Cδ2.

Such a function may be obtained as follows: Start with any nonnegative
Schwartz function φ supported in the unit square [−1/2, 1/2] × [−1/2, 1/2]
and consider the function ψ(x) = φ(δ2x1, δx2). The estimates follow from the
chain rule and change of variables formula. Now let

g(y) = e2πi(y1+(n+1)/8)ψ(y).

We must check that |χ̌ ∗ g| is bounded below on τ . We have

(6.1) χ̌ ∗ g(x) =

∫
τ̃

e−2πi(|x−y|+(n+1)/8)|x − y|−3/2g(y)dy

+

∫
τ̃

e2πi(|x−y|+(n+1)/8)|x − y|−3/2g(y)dy +

∫
τ̃

B(x − y)g(y)dy

We claim that the last two terms are small and the first term is large. In fact,
if x ∈ τ and y ∈ τ̃ then |x − y| ≥ δ2, so |B(x − y)| � δ5, hence the last term
is � δ5|τ̃ | � δ2. Next, consider the first term. It is

(6.2)

∫
τ̃

e2πi(y1−|x−y|)|x − y|−3/2ψ(y)dy

If x ∈ τ , y ∈ τ̃ , then y1 > x1 + (C0 − 1)δ−2, |y2| < δ−1, |x2| < δ−1. So

|x − y| =
√

(y1 − x1)2 + (y2 − x2)2 = (y1 − x1)

√
1 +

(y2 − x2)2

(y1 − x1)2

= y1 − x1 + E,

where

|E| ≤ 1

2

(y2 − x2)
2

y1 − x1

< 2(C0 − 1)−1.

Accordingly,∣∣∣∣
∫

τ̃

e2πi(x1−E)|x − y|−3/2ψ(y)dy

∣∣∣∣ �
∫

τ̃

|x − y|−3/2ψ(y)dy,

provided C0 is large enough, so that cos(2(C0 − 1)−1) ≥ 1/2. Since∫
τ̃

|x − y|−3/2ψ(y)dy � δ−3

∫
ψ(y)dy � 1,

we conclude that the first term in (6.1) is ≥ C−1 in absolute value. The second
term is

(6.3)

∫
τ̃

e2πi(y1+|x−y|)|x − y|−3/2ψ(y)dy.
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Note that
∂

∂y1

(|x − y| + y1) =
y1 − x1

|y − x| + 1 ≥ 1,

when y ∈ τ̃ , x ∈ τ . Hence, if we integrate by parts with respect to y1 we
obtain

(6.3) =
1

2πi

∫
τ̃

∂

∂y1

e2πi(|x−y|+y1)

(
1 +

y1 − x1

|y − x|

)−1

|x − y|−3/2ψ(y)dy1dy2

= − 1

2πi

∫
τ̃

e2πi(|x−y|+y1) ∂

∂y1

[(
1 +

y1 − x1

|y − x|

)−1

|x − y|−3/2ψ(y)

]
dy1dy2.

One can check that∣∣∣∣∣ d

dy1

[(
1 +

y1 − x1

|y − x|

)−1

|x − y|−3/2ψ(y)

]∣∣∣∣∣ ≤ Cδ5,

when x ∈ τ , y ∈ τ̃ . We conclude that |(6.3)| ≤ Cδ5|τ̃ | ≤ Cδ2. Hence (6.1)
is a sum of three terms, one of which is ≥ constant, and the other two are
≤ Cδ2. It follows that |χ̌ ∗ g| is bounded below by a constant on τ , provided
δ is small. �

Proof of Proposition 6.1 (p > 2, n = 2). Let δ = 1/100N−N , where
N is large. By Proposition 5.2 and a dilation by a factor of δ−2, we can find
� 1/δ rectangles τj with dimensions δ−2 × δ−1, so that {τ̃} are disjoint and
|
⋃

j τj| � δ−4/N . Choose a funtion gj corresponding to τj by Lemma 6.2, and

consider
∑

εjgj where each εj is ±1. Then, for any choice of εj’s, we have

(6.4)
∥∥∥∑

j

εjgj

∥∥∥p

p
=

∑
j

‖gj‖p
p ≤

1

δ
δ−3 = δ−4.

On the other hand, (χf̂ )̌ = χ̌ ∗ f , and

E

(∥∥∥∑
j

εjχ̌ ∗ gj

∥∥∥p

p

)
=

∫
E

(∣∣∣ ∑
j

εjχ̌ ∗ gj(x)
∣∣∣p)dx

(by Khinchin) �
∫ ( ∑

j

|χ̌ ∗ gj(x)|2
)p/2

dx

�
∫ ∣∣∣ ∑

j

χτj
(x)

∣∣∣p/2

dx.

By Hölder’s inequality, we have

δ−4 �
∑

j

|τj| =
∥∥∥∑

j

χτj

∥∥∥
1
≤

∣∣∣ ⋃
j

τj

∣∣∣1−2/p∥∥∥∑
j

χτj

∥∥∥
p/2

,

and therefore ∥∥∥∑
j

χτj

∥∥∥p/2

p/2
≥ δ−4Np/2−1.
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So, for some choice of {εj},∥∥∥χ̌ ∗
∑

j

εjgj

∥∥∥p

p
� δ−4Np/2−1.

Together with (6.4), this implies ‖χ‖Mp � N1−2/p, and since p > 2, this can be
made arbitrarily large by choosing N appropriately. The proof is complete. �
Remark. The characteristic function of a regular polygon in the plane is
an Lp multiplier. Its norm, however, tends to infinity (logarithmically) as the
number of the sides of the polygon goes to infinity. This was shown by Córdoba
[8] using a Kakeya-type argument.
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CHAPTER 7

Some topics from combinatorial geometry

In this chapter we consider a discrete problem which should clearly be
related to the Kakeya problem.

Definition. A line l is said to be incident to a point p if p lies on l.

Given points {pj}k
j=1 and lines {li}n

i=1, how many pairs (i, j) can there be
such that li is incident to pj?

Theorem 7.1 (Szemerédi-Trotter). In R
2, the number of incidences be-

tween k points and n lines is ≤ C((kn)2/3 + k + n).

We will give a proof from [6]. First we discuss a certain partial result.

Lemma 7.1. Assume (aij) is an n × m (0, 1)-matrix and that (aij) has no
2 × 2 submatrix consisting of 1’s. Then (aij) contains at most C(mn1/2 + n)
1’s altogether (The assumption means that there do not exist i1, i2, j1, j2 such
that ai1j1 = ai2j1 = ai1j2 = ai2j2 = 1).

Proof. Let

I = |{(i, j) : aij = 1}|, (total number of 1’s),

and

mi = |{j : aij = 1}|, (number of 1’s in the i-th row).

Let

J = {(i, j, k) : j �= k and aij = aik = 1}.
We will count J in two different ways:

|J | =
∑

i

mi(mi − 1) ≥
∑

i:mi≥2

1

2
m2

i ,

since for fixed i, there are mi(mi − 1) choices for j �= k with aij = aik = 1. On
the other hand, if j and k have been chosen, there can be at most one choice
for i, otherwise we would violate the assumption. Therefore

|J | ≤ m(m − 1).

Hence ∑
i:mi≥2

m2
i ≤ 2m2,
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and then

I =
∑

i:mi≤1

mi +
∑

i:mi≥2

mi ≤ n + n1/2

( ∑
i:mi≥2

m2
i

)1/2

≤ n + (2n)1/2m.

�
Remark. If instead of “no 2×2 submatrix”, we assume “no s×s submatrix”,
then the bound is I ≤ Cs(mn2−1/s + n) and is proved the same way, except
that one now defines

Js = {(i, j1, . . . , js) : j1, . . . , js are distinct and aij1 = · · · = aijs = 1},
and uses Hölder’s inequality instead of Cauchy-Schwarz at the last step. We
will need the case s = 3 later on.

Corollary 7.1. The number of incidences between k points and n lines
in the plane is ≤ C(kn1/2 + n). In particular, If k = n this gives I ≤ Cn3/2,
whereas Szemerédi-Trotter gives I ≤ Cn4/3.

Proof. Two lines intersect in at most one point, so if we form a (0,1)-
matrix via

aij =

{
1, if pj ∈ li
0, otherwise

then (aij) has no 2 × 2-submatrix of 1’s. Therefore, by Lemma 7.1, it has
� kn1/2 + n 1’s altogether. �

In [6], this type of bound is called a Canham threshold. Lemma 7.1 is sharp
(when n ≥ m; if n ≤ m one does better by reversing the roles of n and m).
Here is an example when n = m (the same example works in general). To
describe it, we need the following number theoretic result.

Lemma 7.2. Let n = p2, where p is an odd prime. Then there is a subset
Λ ⊂ {0, . . . , n − 1} such that

(i) |Λ| = n1/2.
(ii) The numbers λ + µ with λ, µ ∈ Λ and λ ≤ µ are all distinct.

Proof. Let [m]p be the remainder on dividing m by p. Define λk =

kp + [k2]p, 0 ≤ k ≤ p− 1, and Λ = {λk}p−1
k=0. Then property (i) is obvious. For

(ii) suppose that λi + λj = λk + λl. Taking mod p, we see that

i2 + j2 = k2 + l2 mod p,

hence i + j = k + l. Then

i2 − k2 = l2 − j2 mod p,

i − k = l − j mod p.

So, by dividing mod p, we get

i + k = l + j mod p (unless i = k).
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Then
i − k = l − j mod p,

i + k = l + j mod p,

so
i = l mod p,

and therefore i = l. �
Now, let n = p2 and Λ = {λk}p−1

k=0 be the set given by Lemma 7.2. Define
{aij}n

i,j=1 via

aij =

{
1, if i − j ∈ Λ

0, if i − j /∈ Λ

Then, (aij) has no 2×2 submatrix of 1’s: suppose that i1−j1 = λ1, i1−j2 = λ2,
i2 − j2 = λ3, i2 − j2 = λ4, with i1 �= i2 and j1 �= j2. Then λ1 + λ4 = λ2 + λ3

contradicting the distinct sums property of Λ. On the other hand, suppose we
fix i with i ≤ p2. Then aii+λ for any λ ∈ Λ. So the i-th row of the matrix (aij)
has p 1’s and there are at least p3 1’s altogether, with p3 = n3/2.

One therefore needs a different type of argument to prove Szemerédi-
Trotter. This will be the cell decomposition technique from [6]. First, some
terminology.

• A line arrangement is a family of non vertical lines l1, . . . , lr in R
2.

• A vertex of the arrangement is a point where two or more lines inter-
sect.

• A cell is a polygon in R
2 (possibly unbounded) with no more than

four sides. We take a cell to be an open set.
• A triangulation of a line arrangement is a decomposition of the com-

ponents of R
2 \ {l1, . . . , lr} into cells together with their boundaries.

It is clear that, in general, it will require at least r2 cells to triangulate an
arrangement of r lines, since the r lines may split R

2 into r2 regions. For
example, consider r/2 lines parallel to each of two given lines. Evidently, there
are (r/2 + 1)2 complementary components.

Lemma 7.3. It is possible to triangulate a line arrangement using � r2

cells. This can be done by an algorithm

{l1, . . . , lr} −→ &({l1, . . . , lr})
where &({l1, . . . , lr}) is the set of cells forming a triangulation. Furthermore,
this algorithm has the following property: each cell of &({l1, . . . , lr}) is also a
cell of &({lj1 , . . . , lj4}) for some 4-element subset {lj1 , . . . , lj4} ⊂ {l1, . . . , lr}.

Proof. We let {pk} be the set of vertices of the arrangement, and for each
k, we form the maximal segments m+

k and m−
k which extend vertically up and

down from pk and do not intersect any line lj. These segments together with
the lj’s subdivide R

2 into polygons. Each polygon has ≤ 4 sides. We leave the
proof to the reader, the idea is that each polygon has a “top” and a “bottom”.
Also, each polygon has at most two vertical sides, i.e., four sides in all.
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The last property in the statement of the Lemma is then clear, since in
order to find lj1 , . . . , lj4 to produce a cell Ω in the triangulation, we need only
choose the lines from the top and bottom of Ω and two other lines whose inter-
section with the top and bottom yields vertices whose corresponding segments
m±

k form the vertical sides. We have to show that &({l1, . . . , lr}) contains
� r2 cells. However, there are at most r2 vertices, hence at most 2r2 vertical
segments m±

k . Each can be part of the boundary of at most two cells, so there
are � 4r2 cells which have a vertical boundary line. How many cells can there
be which do not have a vertical boundary line? One can see that if Ω has no
vertical boundary line, then the boundary of Ω is contained in at most two
lines lj. Furthermore, for each pair of lines lj1 , lj2 there are at most two cells
whose boundary is contained in lj1 ∪ lj2 , and therefore the number of cells with
no vertical boundary line is at most twice the number of pairs of lines lj, i.e.,
2r2. This finishes the proof. �

If Ω ⊂ R
2 is an open set and l is a line, then we say that l enters Ω if

l ∩ Ω �= ∅.
Lemma 7.4. Let C = {l1, . . . , ln} be a set of n lines, and fix r < n. Then

it is possible to subdivide R
2 into � r2 cells in such a way that no more than

A(n log n)/r lines lj ∈ C enter each given cell. In fact, if we choose at random
r of the lines lj and apply Lemma 7.3, then with probability ≥ 3/4 (say) we
obtain a cell decomposition with these properties.

Proof. First of all, there are clearly at most Cn4 open sets Ω ⊂ R
2 which

can be a cell in the decomposition obtained by choosing four of the lines lj and
applying the algorithm of Lemma 7.3 (there are n4 choices of the four lines,
and for each such choice, there are a bounded number of cells).

By the last statement of Lemma 7.3, there are at most Cn4 open sets which
can be a cell in the decomposition obtained by choosing r of the lines lj and
applying the algorithm. For each such set Ω let P (Ω) be the probability that
Ω is actually a cell when the lines are chosen at random, and let n(Ω) be the
cardinality of the set of lines in C which enter Ω. Then we claim that

P (Ω) ≤
(

1 − n(Ω)

n

)r

,

and in fact this is clear, since in order for Ω to be a cell, it is necessary that
none of the n(Ω) lines which enter Ω belongs to the random sample. Therefore,
if ν is a fixed number, then

Prob(n(Ω) ≥ ν, for some Ω ∈ &({l1, . . . , lr})) ≤
∑

Ω:n(Ω)≥ν

P (Ω)

≤
∑

Ω:n(Ω)≥ν

(
1 − n(Ω)

n

)r

≤ Cn4
(
1 − ν

n

)r

,

which is small if ν = A(n log n)/r with A large. �
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Proof of the Szemerédi-Trotter theorem. We will assume k = n
and will prove only a slightly weaker statement: Let I be the number of
incidences between n lines {li}n

i=1 and n points {pj}n
j=1. Then

I ≤ Cn4/3(log n)1/3, (instead of I ≤ Cn4/3).

The assumption k = n is easily removed using the same argument. However,
to avoid losing a logarithmic factor, one needs a refinement of Lemma 7.4.

Let r = n1/3(log n)1/3 and apply Lemma 7.4. We may assume that none of
the points pj lies on the vertical cell boundaries-otherwise we change the defi-
nition of “vertical” slightly. Let {Ωk}R

k=1 be the resulting cell decomposition,
R ≤ Cr2, and put

I(Ωk) = cardinality({(li, pj) : pj ∈ li, and pj ∈ Ωk}).
Also, let li1 , . . . , lir be the lines in the random sample, and

I(lik) = cardinality({(li, pj) : pj ∈ li, and pj ∈ lik}).
Then it is clear that

I ≤
R∑

k=1

I(Ωk) +
r∑

k=1

I(lik).

Now by the “Canham threshold”, i.e., Corollary 7.1, we have

I(Ωk) � n
1/2
k mk + nk,

where
mk = # of points pj which belong to Ωk,

nk = # of lines li which enter Ωk.

Since nk ≤ A(n log n)/r, we conclude that

R∑
k=1

I(Ωk) �
R∑

k=1

(
n log n

r

)1/2

mk +
n log n

r
R

�
(

n log n

r

)1/2

n + nr log n.

Also, for each k we have
I(lik) ≤ n + (n − 1)

since, of course, lik is incident to ≤ n points pj, and any other line li is incident
to at most one point on lik . Therefore∑

k

I(lik) ≤ (2n − 1)r.

We conclude that

I �
(

n log n

r

)1/2

n + nr log n + nr � n4/3(log n)1/3,

by choice of r. �
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The following example of Erdös shows that the theorem is sharp. Fix n
and consider the n2 lines l connecting a point (0, k0), 1 ≤ k0 ≤ n to a point
(1, k1), 1 ≤ k1 ≤ n, here k0 and k1 are integers. The equations of the lines
are y = xk0 + (1 − x)k1, hence if x is a rational with denominator q, then
so is y. It follows that there are ≤ nq possibilities for y. Now fix a number
B. There are q integers between B and 2B and for each of these, there are
� B rationals with denominator q. Accordingly, there are B2 rationals with
denominator between B and 2B. Consider the set of � B3n points of the
form (p/q, y) and incident to at least one line l. Each line is incident to � B2

such points, since the line must contain a point with any given x coordinate.
Hence there are � B2n2 incidences between the lines l and the point p. Since
B2n2 = (B3nn2))2/3, we get the result.

Remarks. (1) In the situation of the Kakeya problem, the idea of the pre-
ceding construction can be used to show the following: For any 0 < α < 1,
there is a compact set E ⊂ R

2 with dim E ≤ 1/2(1 + 3α) such that for every
e ∈ Sn−1, there is line l in the e direction with dim(E ∩ l) ≥ α. It is an inter-
esting question whether the number 1/2(1 + 3α) is sharp, and if not, what is
the sharp number to replace it. Various partial results can be proved without
much difficulty, for example, dim E ≥ 1/2 and dim E ≥ 2α.
(2) There is a famous question called the “unit distance problem” which can
be stated in the following (equivalent) ways.

(*) How many incidences can there be between n points in the plane and
n circles of radius 1?

(**) Given n points pi in the plane, how many pairs (pi, pj) can there be
such that |pi − pj| = 1?

The proofs of the Szemerédi-Trotter theorem also apply to this problem
and give the bound Cn4/3. However, this bound is not known to be sharp. In
fact, Erdös conjectured Cεn

1+ε.
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CHAPTER 8

Besicovitch-Rado-Kinney sets

A BRK (Besicovitch-Rado-Kinney) set is a compact set in the plane with
measure zero, containing a circle of every radius between 1 and 2. Such sets
can be constructed , as was done by Besicovitch-Rado and by Kinney, by
modifying the construction of Besicovitch sets, and it is also possible to prove
they exist by using the existence of Besicovitch sets, see [10] and [17]. The
latter possibility may be understood in terms of the fact that lines are just
circles passing through a fixed point if one works on the sphere.

One can ask the same dimension question in this context. We will discuss
the following result from [22].

Proposition 8.1. Any BRK set has dimension 2.

This also has a maximal function formulation. Here we want to average
over δ-neighborhoods of circles, and the role played by the direction of a line
in the case of the Kakeya problem is now played by the radius of the circle.
Therefore, if f : R

2 → R and δ > 0, then we define Mδf : [1, 2] → R by

Mδf(r) = sup
x

1

|Cδ(x, r)|

∫
Cδ(x,r)

|f |,

where Cδ(x, r) = {y : r − δ/2 < |x − y| < r + δ/2}.
The existence of BRK sets shows that there can be no estimate of the form

‖Mδf‖Lp([1,2]) ≤ C‖f‖p

unless p = ∞. Therefore, we look for an estimate

(@)p ∀ε ∃Cε : ‖Mδf‖Lp([1,2]) ≤ Cεδ
−ε‖f‖p,

and (@)p for any p < ∞ will suffice to prove Proposition 8.1. To find the right
value for p, consider f = χRδ

, where Rδ is a rectangle with dimensions δ1/2×δ.
It is easy to see that for any r ∈ [1, 2] there is a point x such that Cδ(x, r)
contains a fixed portion of Rδ, i.e.,

|Cδ(x, r) ∩ Rδ| ≥ C−1|Rδ|.
Therefore

Mδf(r) � |Rδ|
|Cδ(x, r)| � δ1/2,

and if (@)p holds, then

δ1/2 � ‖Mδf‖p ≤ Cεδ
−ε|Rδ|1/p = Cεδ

−ε+3/(2p),

i.e., p ≥ 3.
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Proposition 8.2. (@)3 holds.

The idea of the proof is as follows. There is a related discrete problem
which can be understood using the techniques of [6] described in Chapter 7.
Then, one passes to the continuous problem by replacing circles with annuli
and keeping track of various error terms. We will mainly discuss the discrete
problem, since the actual proof of Proposition 8.2 is quite technical.

Let us say that two circles C(x, ρ) = {y : |x − y| = ρ} and C(x̃, ρ̃) are
internally tangent (written C(x, ρ) ‖ C(x̃, ρ̃)) if they are tangent and one is
contained in the bounded component of the complement of the other. Analyt-
ically, this means that |x − x̃| = |ρ − ρ̃|.

One can ask the following question: Given a set of n circles C = {C(xi, ρi)}n
i=1,

how many pairs C(xi, ρi) and C(xj, ρj) can there be so that C(xi, ρi) ‖ C(xj, ρj)
?

This question has the obvious answer n2, since one can consider the “shell”
configuration, where any two circles are tangent. In order to get a meaningful
question, one has to add an assumption which rules out this type of configu-
ration.

Tangency counting problem. With C = {C(xi, ρi)}n
i=1, assume that no

three circles C(xi, ρi) are tangent at a point. Then how many pairs C(xi, ρi)
and C(xj, ρj) can there be with C(xi, ρi) ‖ C(xj, ρj) ?

We do not know the answer but will prove the following which is what is
needed for Proposition 8.2.

Proposition 8.3. For any ε > 0, there is a bound of the form Cεn
3/2+ε

in the tangency counting problem.

The proof is closely related to [6]. Observe to begin with, that one can
think of a circle C(xi, ρi) in any of three ways:

• As a circle!
• As a point (xi, ρi) ∈ R

3.
• As a light cone Γ(xi, ρi) = {(x, ρ) : |x − xi| = |ρ − ρi|} ⊂ R

3.

Note that

C(xi, ρi) ‖ C(xj, ρj) ⇔ (xi, ρi) is incident to Γ(xj, ρj).

Therefore, our problem is an incidence problem between points and surfaces
in R

3, and we need the 3-dimensional version of the technique in [6], which is
in the same paper.

First, the Canham type bound, which is n5/3 in this case.

Lemma 8.1. Suppose that {C(xi, ρi)}n
i=1 and {C(yj, sj)}k

j=1 are collections
of circles and that no three C(xi, ρi)’s are tangent at a point. Then there are
� kn2/3 + n pairs (i, j) such that C(xi, ρi) ‖ C(yj, sj).
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Proof. The “Circles of Appolonius” says that if C(x1, ρ1), C(x2, ρ2) and
C(x3, ρ3) are not tangent at a point, then there are at most two circles which
are internally tangent to all three. In other words, the (0,1)-matrix

aij =

{
1, if C(xi, ρi) ‖ C(yj, sj)

0, otherwise

has no 3 × 3 submatrix of 1’s. Now use Lemma 7.1. �
Next, the cell decomposition. A cone arrangement is a family of r light

cones Γ(xi, ρi) ⊂ R
3. A cell is an open set Ω ⊂ R

3 whose bounadry is contained
in the union of ≤ 6 surfaces which are algebraic of degree ≤ 2. We want
to triangulate the cone arrangement, i.e., subdivide the components of R

3 \⋃
i Γ(xi, ρi) into cells, using as few cells as possible. At least r3 cells are needed,

since R
3 \

⋃
i Γ(xi, ρi) may have � r3 components.

Lemma 8.2. It is possible to triangulate a cone arrangement using � r3 log r
cells. In fact, there is an algorithm for doing this, and if {Γ(xi, ρi)}n

i=1 is a
family of light cones, r < n, and this algorithm is applied to a random sample
of r of the Γ(xi, ρi)’s, then with probability at least 3/4, at most A(n log n)/r
Γ(xi, ρi)’s enter any given cell.

Proof. This is similar to the proof of Lemma 7.4, see [6]. �
Proof of Proposition 8.3. Let r = n1/4 and {Γ(xjk

, ρjk
)}r

k=1 be a suit-
able random sample. As with the Szemerédi-Trotter theorem, we may assume
that each point (xi, ρi) lies either on one of the cones in the random sample,
or else in one of the cells from Lemma 8.2. We let

C∗ = {(xi, ρi) : (xi, ρi) ∈ Γ(xjk
, ρjk

), for some k},
Ck = {(xi, ρi) : (xi, ρi) ∈ Ωk}.

Claim. With probability at least 3/4, |C∗| ≤ C0rn
2/3.

Proof of the claim.

E(|C∗|) ≤
∑

j

Prob(j ∈ {j1, . . . , jr})|{C(xi, ρi) : C(xi, ρi) ‖ C(xj, ρj)}|

=
r

n

∑
j

|{C(xi, ρi) : C(xi, ρi) ‖ C(xj, ρj)}|

� r

n
n5/3,

by Lemma 8.1. �
Now, let us denote

I(C, C) = |{(i, j) : C(xi, ρi) ‖ C(xj, ρj}|,
and

I(C∗, C∗) = |{(i, j) : (xi, ρi), (xj, ρj) ∈ C∗ and C(xi, ρi) ‖ C(xj, ρj)}|.
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We claim that

(8.1) I(C, C) ≤ C1n
3/2 log2 n + I(C∗, C∗).

Namely, let
nk = # of Γ(xi, ρi) which enter Ωk,

mk = |Ck|,
Ik = |{(i, j) : (xi, ρi) ∈ Ck and C(xi, ρi) ‖ C(xj, ρj)}|.

Then

I(C, C) ≤
R∑

k=1

Ik + I(C∗, C∗)

�
R∑

k=1

mkn
2/3
k + nk + I(C∗, C∗)

�
(

n log n

r

)2/3 R∑
k=1

mk +
n log n

r
R + I(C∗, C∗)

� n3/2 log2 n + I(C∗, C∗),

by choice or r. This proves (8.1). Because of the claim above, we can use
induction to finish the proof. We will show that I(C, C) ≤ An3/2 log2 n for a
suitable constant A. If A is large, then this is obvious for small values of n.
Suppose it has been proved for n ≤ n0. We will prove it for n ≤ (n0/C0)

12/11,
where C0 is the constant in the claim (note that this number is > n0 + 1 if n0

is large, so this completes the induction). Since |C∗| ≤ C0n
11/12, the inductive

hypothesis implies

I(C∗, C∗) ≤ A|C∗|3/2 log2 |C∗| ≤ A(C0n
11/12)3/2 log2(C0n

11/12) ≤ n3/2,

if n0 is large. So, inequality (8.1) implies

I(C, C) ≤ C1n
3/2 log2 n + n3/2,

and now we are done, provided A has been chosen ≥ 2C1. �
Now, a brief, heuristic sketch of the proof of Proposition 8.1. Roughly

speaking, two annuli Cδ(x, ρ) and Cδ(x̃, ρ̃) can intersect either tangentially, in
which case

|Cδ(x, ρ) ∩ Cδ(x̃, ρ̃)| � δ3/2,

or transversely, where we have

|Cδ(x, ρ) ∩ Cδ(x̃, ρ̃)| � δ2,

the former case being “worse” since δ3/2 > δ2.
Now suppose that E is a BRK set. Let {pj}M

j=1, M � 1/δ, be a maximal
δ-separated subset of [1, 2], and for each j, choose an annulus Cδ(xj, ρj) ⊂ Eδ.
Let

m(x) =
∑

j

χCδ(xj ,ρj)(x),
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and define µ (“multiplicity”) to be the smallest integer such that for 1/2M
choices of j, we have

|Cδ(xj, ρj) ∩ {x : m(x) ≥ µ}| ≤ 1

2
|Cδ(xj, ρj)|.

Lemma 8.3. In order to prove Proposition 8.1, it suffices to prove that

∀ε ∃Cε : µ ≤ Cεδ
−ε.

Proof. Let
Ẽδ = {x ∈ Eδ : m(x) ≤ µ}.

Then
|Eδ| ≥ |Ẽδ| ≥ µ−1

∑
j

|Cδ(xj, ρj) ∩ Ẽδ| � µ−1Mδ � µ−1,

and the lemma follows. �
Now, we have

µ � µδM �
∑

j

∫
Cδ(xj ,ρj)

m(x)dx =
∑
i,j

|Cδ(xi, ρi) ∩ Cδ(xj, ρj)|.

Pretend that two circles must be either tangent, or sufficiently transverse,
and that the δ3/2 and δ2 numbers for the measure of the intersection can be
justified. Then∑

i,j

|Cδ(xi, ρi) ∩ Cδ(xj, ρj)| � I(C, C)δ3/2 + M2δ2,

where C = {C(xj, ρj)}M
j=1. If we further pretend that C satisfies the “no three

circles tangent at a point” condition, then we can apply Proposition 8.3 to
obtain ∑

i,j

|Cδ(xi, ρi) ∩ Cδ(xj, ρj)| � δ−(3/2+ε)δ3/2 + δ−2δ2 � δ−ε,

and the “proof” is complete.
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CHAPTER 9

Averages over circles

Let σ be linear Lebesgue measure on the unit circle in the plane. There is
a standard sharp estimate for the corresponding averaging operator. Namely

‖σ ∗ f‖3 � ‖f‖3/2.

Equivalently, if σδ is normalized planar measure on the annulus Cδ(0, 1), then

‖σδ ∗ f‖3 � ‖f‖3/2,

where the implicit constant is independent of δ.
This estimate may be proved using the Fourier transform and complex

interpolation (see [20]). We will show that counting arguments in the spirit
of Chapter 7 can be used to obtain the corresponding restricted weak-type
inequality.

Proposition 9.1. Let E be a subset of [0, 1] × [0, 1]. For λ > 0 define

F = {x : (χE ∗ σδ)(x) > λ}.
Then

|F | � λ−3|E|2.
Proof. The argument we present is from [19]. Divide [0, 1]× [0, 1] into a

family of squares Qj of sidelength δ and for each integer k let

Jk = {j : 2−kδ2 < |Qj ∩ E| ≤ 2−k+1δ2},

Ek =
⋃

j∈Jk

Qj ∩ E, Ẽk =
⋃

j∈Jk

Qj, Fk = {x : (χẼk
∗ σ3δ)(x) ≥ C−12kk−2λ}.

Then, for suitable C, we have

F ⊂
⋃
k

Fk.

Now, for fixed k, let {xi}M
i=1 and {yp}N

p=1 be maximal δ-separated sets in Fk

and Ẽk respectively, and put

λk = 2kk−2λ.

We can clearly assume that λk � δ. Also notice that

|Ẽk| � Nδ2.

Moreover, each xi satisfies

(9.1) |C4δ(xi, 1) ∩ E| � λkδ,
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since
Fk ⊂ {x : (χẼk

∗ σ4δ)(x) � λk}.
Now consider the following set of indices.

Q = {(i, p1, p2) : ||xi−yp1|−1| < δ, ||xi−yp2|−1| < δ, |yp1−yp2| > C−1λk−δ}.
We will count Q in two different ways. For given p1, p2, there are at most λ−1

k

annuli Cδ(xi, 1) passing through the points yp1 and yp2. Therefore

|Q| � N2λ−1
k .

On the other hand, for every p1 and every p2 there is at least one choice of i.
So, (9.1) implies

|Q| � M(λkδ
−1)2.

Consequently
M � λ−3

k δ2N2,

or, equivalently
|Fk| � λ−3

k |Ẽk|2.
Summing over k we obtain

|F | ≤
∑

k

|Fk| �
∑

k

λ−3
k |Ẽk|2 �

∑
k

λ−32−3kk622k|E|2 � λ−3|E|2.

This completes the proof. �
One can consider the corresponding maximal operator as well. Namely,

define
Mδf : R

2 → R

by

Mδf(x) = sup
1≤r≤2

∫
Cδ(x,r)

f(y)dy.

Then for all p > 2 we have

(9.2) ‖Mδf‖p � ‖f‖p.

This estimate was originally proved by Bourgain [1]. Schlag [18] used tech-
niques in the spirit of Chapter 8 to obtain a purely combinatorial proof.

Notice that (9.2) has the following geometric consequence, which was proved,
independently, by Marstrand [16]: Suppose that B ⊂ R

2 is a union of circles
of arbitrary radii, and let A be the set of their centers. Then

|A| > 0 ⇒ |B| > 0.

This can be shown by reducing to the case when B is compact and the radii
of the circles are in the interval [1, 2], and then letting f = χBδ

in (9.2). The
best possible result was proved in [24]:

dim(A) > 1 ⇒ |B| > 0.

This is sharp by a construction due to Talagrand, see [17].
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