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Abstract 
 
In this Thesis we modified a recently introduced model for fiber suspensions to be 
applicable to wet fiber networks so as to analyze by computer simulations their 
structural and rheological properties. These properties were compared, under tensile 
loading in particular, to those of wet and dry paper. The model used operated at the 
fiber level, where the dynamics of fiber motion were determined by fiber stiffness and 
fiber-fiber interactions such as friction and adhesive forces. Water surface tension, 
inter-fiber contact area, and moisture content all contributed to the latter force.  
 
The tensile strength of wet fiber networks could be described in terms of a very 
simple function of adhesion-force magnitude, number of inter-fiber contacts, friction 
coefficient, and network grammage. Relaxation of the tensile force as simulated for 
model networks was found to compare well with experimental results for wet paper, 
and the force was found to decrease proportional to logarithmic time. Relaxation rate 
in the model networks and in wet paper was found to be higher than in dry paper for 
which previous results are available.  
 
In the simulations the permanent deformation that appeared after relaxation was, 
however, clearly higher than what was measured in wet paper. We suggest that this 
difference arises because, in the model networks, all the contact points between fibers 
were frictional, while in real wet paper there may also appear some chemical bonding 
between fibers.  
 
Results of analytical models and computer simulations for the number of fiber-fiber 
contacts in compressed and stretched fiber networks were compared. When the 
majority of fibers lay parallel to the xy plane, the analytical and numerical predictions 
for the number of contacts were in good agreement both for compressed and stretched 
networks. However, in flocculated and stretched networks the strain was mainly 
concentrated between flocs that remained largely intact during straining. The non-
uniform strain in this case means that mean-field approach does not work for wet 
flocculated networks.  
 
Simulation of tri-axial deformation of model networks showed that the lateral 
network-contraction ratio (Poisson ratio) was nearly constant for very small strains as 
expected for a linear regime. There after it increased with increasing applied strain 
and sample length. For very large strains it leveled off to a constant value depending 
on the sample length. Simulations also captured the experimentally observed behavior 
for paper thickness during straining: The thickness of the network decreased or 
increased during stretching depending on fiber stiffness.  
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Chapter 1 
 

1 Introduction 
 
One of the most interesting research topics in material science is to understand how 
macroscopic properties of solids depend on the properties of their constituents and 
interactions between them. In fully ordered materials the structure is well defined and 
physical quantities are understood, but in disordered systems the situation is different 
depending on the degree of disorder. In several industrial applications controlling the 
magnitude of disorder is essential. An excellent example is the papermaking process 
which determines the structure and mechanical properties of paper.  
 
The rheology of wet paper webs is technologically very important but poorly 
understood. In the papermaking process, the wet paper web is transported (“drawn”) 
from the wire section through the press section and then to the dryer section. The 
purpose of these unit processes is to remove water from the web. Early in the process 
where the water content is large, the mechanical strength of the web is small. The low 
strength is one of the factors that limit the production speed of the paper machine. 
Reinforcement pulp is often needed to assure sufficient strength of the wet web. The 
use of reinforcement pulp increases raw material costs and the use of wood raw 
material in the papermaking process. 
 
The mechanical and rheological properties of wet webs are surprisingly poorly 
understood despite their high relevance. Some experimental studies have been 
reported, but research has been limited in part by the lack of a suitable theoretical 
framework that could be used to interpret experimental results (Lyne and Gallay 
1954a-1954c, Jantunen 1985 and Kurki et al. 2004). The mechanical rigidity or 
cohesion of the wet web can be attributed to water menisci that pull fibers into 
contact. Macroscopic deformations take place when fibers slide past one another. 
These deformations are strongly rate-dependent. It is unclear how rate-dependent 
phenomena should be incorporated into existing mean-field models, where the 
response of the network is expressed in terms of a single “average” fiber (Page 1993, 
Seth 1995 and Shallhorn 2002). 
 
Recent development of computers has enabled one to probe the structure and 
mechanical properties of three-dimensional fiber networks also by simulations 
(Heyden 2000; Schmid et al. 2000; Switzer 2002; Switzer and Klingenberg 2003; 
Switzer et al. 2004; Lindström 2008). Switzer et al. (2002 and 2004) employed fiber 
level simulations to investigate the relationships between fiber properties (length, 
shape and flexibility) and interactions (friction) and the mechanical properties of wet 
webs. This study illustrated that it is not necessary to employ a mean-field approach 
to investigate wet webs, and that rate-dependent phenomena can be addressed in a 
straightforward manner via simulations. However, the authors did not consider the 
attractive force between fibers in wet webs generated by surface tension (Campbell 
forces (Campbell 1959)), and employed coefficients of friction that were admittedly 
unrealistically large.  
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In this Thesis, we extend the simulation method employed by Switzer et al. to 
investigate the mechanical and structural properties of wet webs. In Chapter 3 the 
computer simulation model and methods used are reviewed, but they are covered only 
briefly since they are described in more detail in publications and elsewhere (I, II, 
Schmid et al. 2000; Switzer 2002; Switzer et al. 2004). In particular, we include an 
attractive force between fibers in contact to represent the Campbell (surface tension) 
forces. We confirm that tensile strength of wet fiber networks can be expressed as a 
simple function of the adhesion force, number of inter-fiber contacts, coefficient of 
friction, and network grammage. The observed behavior is interpreted in terms of 
changes in the network structure during deformation.  
 
Several authors (Corte and Kallmes 1962; Komori and Makishima 1977; Dodson and 
Deng 1994; Mäkinen 2001; Sampson 2001; He et al. 2003) have tried to see how far 
one can get with analytic structural models without considering the details of the 
forming process. The first successful structural models were presented already by 
Corte and Kallmes (1962) and by Komori and Makishima (1977). Their models were 
based on statistical analysis predicting the number of fiber crossings in a given 
volume for straight and rigid fibers.  
 

We also use the simulation model of Switzer et al. (2004) for pressing and stretching a 
three-dimensional fiber network. The prediction of the number of inter-fiber contacts 
is of utmost importance, and it will be one of the main goals in this Thesis. We 
monitor the number of inter-fiber contacts during pressing and stretching and compare 
the simulation results to various analytic models. In addition, the fiber orientation and 
fiber curvature are evaluated during the simulation. It turns out that our simulations 
are most useful for flocculated and stretched sheets, where the simplifications of 
analytical model are not valid any longer. The orientation change due to stretching 
turns out to be too small to explain the deviation between analytic and simulation 
results. Instead, we find significant changes in the effective sheet area during 
stretching that affect the number of inter-fiber contacts. 
 
When paper is strained in one direction, it deforms in perpendicular directions as well. 
This behavior is known as the Poisson effect (Stenberg and Fellers 2002). Göttsching 
and Baumgarten (1976) studied extensively triaxial deformation of dry paper under 
in-plane tensile load. Their experimental results show that the in-plane Poisson’s ratio 
does not depend on the applied strain and Poisson’s ratio in the thickness direction 
depends on the beating level. Seth and Page (1983), Habeger (1985) and 
Ramasubramanian and Perkins (1988) used micromechanical models to study the 
nonlinear behavior of fiber networks under tensile load. An excellent review of the 
topic can be found in the work of Heyden (2000), and Chapter 2 discusses the earlier 
work in the field of fiber network modeling. Chapter 2 covers mainly modeling efforts 
of dry networks when mean-field models are valid. For wet networks this approach 
cannot work since fibers are almost infinitely rigid compared to bonds. This means 
that fibers do not behave as fiber network on average. 
 

In this Thesis, we also apply simulation methods to deformation of wet fiber networks 
in the lateral and in the thickness directions during straining. Another main focus is to 
determine triaxial deformations when the network is stretched beyond the elastic 
region. Such deformations are of interest for several practical reasons. First, changes 
in network thickness during stretching affect network porosity and thus the quality of 
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paper. On the other hand, the lateral network contraction alters the stress field of a wet 
web and thus contributes to the runnability of a paper machine. 
 
According to our simulations, the lateral Poisson’s ratio depends not only on the 
applied strain but also on the length of the specimen. The resulting stress fields may 
be similar to those in short-span tensile tests. The gap length affects the simulated 
stress-strain curves qualitatively in the same way as seen in the experiments by 
Batchelor and Westerlind (2003). Moreover, the network deformations turn out to be 
sensitive to fiber stiffness. Usually the network thickness decreases during stretching 
but for very stiff fibers, the network slightly expands in the thickness direction as 
proposed by earlier experiments for wet papers (Baum et al. 1984). In addition to 
deformations, we revisit the theory of tensile strength for wet paper webs. The 
validity of our failure criterion is studied for varied network geometry and sample 
size. 
 
Rate-dependent viscous behavior such as stress relaxation and creep characterizes the 
rheological behavior of paper (Niskanen 1998). Already in the 1950’s and the 1960’s 
several authors showed that the strength of wet webs starts to develop at very low 
solids contents. Lyne and Gallay (1954a-1954c), Page and Tydeman (1965) and 
Robertson (1963) illustrated experimentally the importance of surface tension forces 
and interfiber bonding to the strength development of wet sheets.  Lyne and Gallay 
(1954a) measured wet web strengths at solids contents as low as 8 %. They defined an 
infliction point at solids content of 20-25 % where interfiber bonding replaces surface 
tension forces as a major factor contributing to the wet strength. They were also 
among the first to measure rheological properties of wet webs, namely loading and 
de-loading curves for solids contents below 20 % (1954c). Page and Tydeman (1965) 
and Robertson showed that interfiber bonding occurs at solids contents of 45-50 %. 
Page and Tydeman provided sets of visual evidence and Robertson investigated 
extensively physical properties of wet webs as water was progressively removed. 
 

Drying paper under load while preventing shrinkage has a great effect on the 
mechanical properties of paper, e.g. elastic modulus, strain, tensile strength and 
dimensional stability (Htun and de Ruvo 1977, Salmén et al. 1987). Similar effects are 
also reported with single fibers (Kallmes and Perez 1965, Duncker et al. 1965).  
 
In stress relaxation experiments, a paper sample is strained to a predefined strain. 
There after the strain is kept constant, and stress decreases as a function of time. 
Stress relaxation is of great importance in a wound paper roll, or when handling 
deformable paper webs (Makela 2007), e.g., in the open draws of a paper machine 
dryer section or in a printing machine (Niskanen 1998). In a wet (high moisture 
content) paper web tension relaxes rapidly and gives rise to a permanent elongation 
(Niskanen 1998).  
 

It was already shown by Craven (1962) that stress relaxes logarithmically in time,  
 

)log()( tRconstt  .                                          (1.1) 
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Here R is the relaxation rate which was shown by Johanson and Kubat (1964) to be 
related to difference of the initial () and equilibrium (∞, i.e., its asymptotic value in 
a relaxation experiment) stresses, 
  

)( 0  kR                      (1.2) 

 

with k a constant. Only very few studies can be found in the literature on stress 
relaxation in wet paper. After the work by Lyne and Gallay (1954c), Jantunen (1985) 
used laboratory-scale equipment to simulate dynamic behavior of wet webs. He 
investigated stress relaxation at various solids contents and prescribed strains, and 
showed that tensile force relaxes faster in wet than dry paper, and that increasing 
applied strain systematically increases the relaxation speed in wet paper. Very 
recently Kouko et al. (2007) performed stress-relaxation experiments on wet paper at 
varying strain rate and short relaxation times, and tried to link results of laboratory-
scale experiments to paper-machine runnability. In another recent work Makela 
(2007) developed an accurate method for characterization of viscous properties of 
paper. Effects of straining level, moisture ratio and restrained drying on the stress 
relaxation of paper were determined. A stress-relaxation modulus (tensile force scaled 
by the elastic strain) was used to compare the behaviors of paper samples of varying 
moisture ratio and drying restraint. The investigated paper samples were concluded to 
display linear viscoelasticity. 
 
Relaxation processes in a wet paper web can also be simulated numerically. We report 
here simulated relaxation results for random networks of non-bonded fibers, and 
compare them with those of laboratory-scale relaxation experiments on wet paper. In 
addition, we observe breaks of fiber-fiber contacts in these simulations.  
 
In Chapter 4 we present our simulation results for the mechanical properties of wet 
webs. Comparison with experiments on tensile strength and tensile-force relaxation 
are shown. We then discuss the simulated structure and deformations of wet fiber 
networks, and compare these results with analytical solutions and earlier experiments. 
Finally, in Chapter 6, we draw conclusions and discuss the results of this thesis.   
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Chapter 2 
 

2 Earlier work on fiber-network modeling 
 
The classical paper by Cox (1952) was the first to discuss the mechanical properties 
of fiber networks by theoretical analysis. In his model long, straight fibers carried 
only axial load with no interaction between them, and the fibers extended across the 
whole network (Fig. 1). The fibers of the network were oriented according to a 
distribution function. He assumed that fibers were bonded to some background 
medium, and that the strain field was homogeneous throughout the network. In the 
case of isotropic fiber orientation, the elastic modulus of the network is then given by 
 

f
f

s EE



3

1
mod  .                              (2.1) 

 
Here fE is the elastic modulus of the fiber, s  the network density, and f  the fiber 

density. The ratio of lateral network strain y to the applied strain x for isotropic 
orientation, namely the Poisson ratio, becomes xy = 1/3.   
 

 
Figure 1. A Cox-model network 
 
For dry sheets of long, straight and well-bonded fibers, experimental results support 
this finding for the elastic modulus of the network (Page et al. 1979; Page and Seth 
1980). In reality, network modulus is smaller than Eq. (2.1) implies such that (Page et 
al. 1979; Page and Seth 1980) 
 

)1(
3

1 21
mod ff

f

s pEEE 



.                             (2.2) 

Parameter p is a function of fiber geometry, shear force, and relative bonded area 
(RBA) due to limitations in load transfer between the fibers of finite length and defects 
in the fibers. 
 
Later, Seth and Page (1983) and Habeger (1985) extended the analysis of Cox from 
the elastic to nonlinear region by assuming that the fibers were entirely responsible 
for the inelastic behavior of the network. Habeger (1985) showed that the lateral 
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Poisson ratio decreases with increasing applied strain when a network is strained 
beyond the elastic region. 
 
In their work, Ramasubramanian and Perkins (1988) used a more complex 
micromechanical model and incorporated the inelastic behavior of fibers and bonds to 
describe the nonlinear behavior of fiber networks under tensile load. This 
micromechanical model includes three levels of magnification: a microelement 
consisting of a portion of two crossing fibers with an interfiber bond, a mesoelement 
consisting of a straight fiber and a portion of fibers that cross it, and a macroelement 
described by a large number of mesoelements with orientation and length 
distributions. On the macroelement level, they assumed a homogeneous strain field, 
and that fibers experience axial tensile or compressive loads.  
 
Eventually, a closed-form expression for the work done on the mesoelement WMESO is 
provided for specified strain x with a set of possible lateral contraction ratios xy, and 
then the total work done on the macroelement is calculated for each choice of lateral 
contraction ratio by numerical integration of  
 

    





0

2

2





 dLdLgfWDW MESOoTOTAL .                (2.3) 

Here Do is the number of mesoelements per unit area, and f() and g(L) represent the 
orientation and fiber length distributions, respectively. The correct value of the lateral 
contraction ratio is obtained by requiring that the total work is minimized 
( 0 xyTOTALW  ), and substituting it to the equation describing the sheet strain in 

the direction of the fiber, 
 

  22 sincos xyxs  .                  (2.4) 

                  
Finally, the stress-strain relation is obtained by 
 

x

TOTAL
x

W







 .                   (2.5) 

 
In addition to work presented in Ramasubramanian and Perkins (1988), 
Ramasubramanian (1987) provides more detailed information of the micromechanical 
model and the computer simulation procedure discussed here. Their model contains 
interesting features found in wet webs such as low bonding with an elastic-plastic 
behavior and minimal fiber damage during loading. However, the power of these 
kinds of models is limited due to a large number of parameters needed, many of 
which are not possible to measure. In addition, the stochastic nature of fiber networks 
is ignored as noted by Niskanen (1998).   
    
Recent development of computers has enabled one to probe the structure and 
mechanical properties of three-dimensional fiber networks also by simulations. 
Heyden (2000) was among the first to do so by modeling mechanical properties of 
cellulose fluff. She also used two-dimensional networks. In her model, a basic 
building block is an isotropic linearly elastic fiber, which is divided into beam 
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elements between bonds. The fiber is modeled as a Bernoulli beam of circle-arc shape 
(Fig. 2), and it is assumed to fail in a brittle manner. 
 

 

Figure 2. Definition of curl index c and curvature  for a fiber of length lf 
according to Heyden (2000). Figure taken from her Doctoral Thesis.  
 
A fiber-fiber bond is modeled using either coupled or uncoupled springs which 
distribute normal and shear stresses between contacting fibers. The bonds show 
nonlinear stick-slip behavior, and when a slip criterion is fulfilled, the stiffness and 
strength of the bond are reduced by predefined factors. Finally, the three-dimensional 
structure of cellulose fibers is constructed by placing fibers independently of each 
other in a volume V (Fig. 3). The orientation of each fiber is decided according to a 
predefined orientation distribution. In addition, a fiber-fiber contact is assumed to 
occur with a probability of s when the distance between two fiber center lines is 
shorter than an arbitrary interaction distance, e.  
  

 

Figure 3. Example of 3D network geometry. Figure taken from the Doctoral 
Thesis of Heyden (2000).  
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Heyden used the finite-element method to obtain the stress-strain behavior of the 
network. Simulations showed effects of fiber and bond stiffness, network density, 
fiber curl, fiber orientation distribution and fiber length on the network stiffness. 
Fracture simulations showed the importance of bond ductility in 2D networks, 
increasing ductility resulting in a stronger and more ductile network. Based on these 
results, it seems that this model is suitable for studying the mechanical response of 
dry sheets as noted by Switzer et al. (2004). In addition, Heyden (2000) provides an 
excellent and detailed review of the earlier fiber network modeling.  
 
Åström et al. (2000a) improved the Cox model by considering fiber segments as the 
basic building blocks since the stresses, in a fiber network, are transferred at the fiber-
to-fiber crossings, and took into account the known segment-length distribution of 
randomly deposited fibers. They assumed that fiber segments deform only in the 
energetically most favorable modes (bending, stretching and shearing) depending on 
their orientation and length, and used the displacement field of the Cox model to 
eventually obtain the stiffness of a two-dimensional network. They compared this 
modified effective-medium model with simulation results and experimental findings, 
and found fairly good agreement between simulations and the model, and that the 
stiffness of the modified network model was consistent with experiments. 
 
Åström et al. (2000b) investigated the in-plane stiffness of fiber mats by analytical 
and numerical models. They extended the two-dimensional simulation model and the 
effective-medium model of the in-plane stiffness of 2D mats (Åström et al. 2000a) to 
three-dimensional fiber networks. In 3D, linear elastic fibers with a cross-sectional 
area w2 were deposited vertically on a plane at random positions with random in-plane 
angles. Fibers were bent at contact points by a bending angle . Finally, the fiber 
network was formed by linear segments between different types of nodes, and at 
contact nodes (crossings of fibers) two fibers were rigidly bonded. Then the resulting 
network was strained, and its stiffness was determined. 
 
For small bending angles (= 0.01-0.05, the simulated stiffness of the 3D mat was 
equal to the simulated stiffness of its 2D projection for various network densities q 
and fiber widths w. In addition, the 3D analytical estimation obtained for in-plane 
stiffness captured extremely well the simulated result for small bending angles (= 
0.03-0.11). For large bending angles (> 0.1), the analytical prediction of the in-plane 
stiffness initially increased with increasing bending angle due to better bonding, but 
started to decrease when a large enough out-of-plane deformation was reached. This 
behavior was related to the fact that the bending stiffness of fibers was clearly lower 
than their axial stiffness, since the in-plane fibers resist most the in-plane stretching.  
 
Later, Åström et al. (2003) showed that the effective-medium estimate for mats of 
randomly sedimented elastic fibers connects the network stiffness to the fiber stiffness 
and the fiber geometry, and to the number density of contacts. They demonstrated that 
the number density of contacts and the fiber geometry also determine the network 
porosity. More recently, Lindström (2008) developed a particle-level model of fiber 
suspension flows for the forming section of the paper machine. His model included 
fibers of various shapes and finite stiffness. The model fibers interacted via normal, 
frictional and lubrication forces, and a two-way coupling between the fibers and a 
surrounding fluid medium was taken into account. His simulations captured essential 
features of the forming effects on structural parameters of paper. 
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Chapter 3 
 

3 Simulation method 
 
The computer simulation model and the methods used in this Thesis are described in 
more detail in publications (I, II) and elsewhere (Schmid et al. 2000; Switzer 2002; 
Switzer et al. 2004). Here we will thus present only the basics and essential features 
of the model.  
 
Flexible fibers are modeled as joined rigid cylinders with hemispherical end-caps 
immersed in a Newtonian liquid as illustrated in Fig. 4. The fiber length is L = 2lNseg, 
where Nseg is the number of fiber segments and 2l is the segment length. Isolated 
fibers are not typically straight at equilibrium, but can display a variety of different 
shapes. Equilibrium angles  eqeq  ,  between the axial directions of successive 
cylinders were used to characterize the fiber shape. When both angles are zero, the 
fiber is perfectly straight, and when 0,0  eqeq   the fiber is U-shaped. When both 
angles are nonzero, the fiber is a helix. The equilibrium angles used in most of our 
simulations were 0.0,1.0  eqeq   corresponding to nearly straight fibers.  
 

 

Figure 4. A model fiber composed of Nseg = 5 rigid segments. The segment 
length is 2l and the fiber diameter is 2a. 
 

Particle and fluid inertia are neglected. The fluid is needed to make equations easily 
solvable. Otherwise, the role of the fluid remains small. The motion of each fiber 
segment is governed by Newton's equations of motion, 
 

01  
j

ijii
h

i FXXF


,                                                         (3.1) 

    
j

ijiiiii
h

i TXXplYYT 011


.                                                               (3.2) 

In the first equation, h
iF


is the hydrodynamic drag of the segment, iX


’s are the forces 

at the joints at the two ends of segments, which keep its length constant, and 
j

ijF


 

represents the forces caused by interaction of the segment with other fibers. In the 

second equation, h
iT


 is the hydrodynamic torque of the segment, iY


’s are the sums of 

the bending and twisting torques, b
iY


and t
iY


, at the joints, ip


is the orientation vector 

of the segment, and 
j

ijT


describes the torque introduced by interaction with other 

fibers. Moreover, 
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eq
iib

b
i kY  


 , eq
iit

t
i kY  


,                    (3.3)                               

where kb and kt are the bending and twisting spring constants, and   and   the 
bending and twisting angles of the segment, respectively. 
 

Interaction forces between fibers are divided into two components, 


 eFeFF ijN

N
ijij ˆˆ


. The normal force N

ijF depends on the separation h between the 

surfaces of fibers i and j, and includes a short-range repulsive interaction (to prevent 
fibers from overlapping) and a longer-range attractive interaction. This force is 

modeled as  221 /)/(Re ahcahcN
ij AeF   , where R, c1, c2 and A are parameters that 

characterize the magnitude and range of the normal force. The parameters c1 = 20 and 
c2 = 35 were kept constant in the simulations, and the parameters R and A were varied 
simultaneously so that a minimum in  hF N

ij  was reached at equal separation h for all 

adhesion forces.  In fact, we define the adhesion force  0adF  as the absolute value 

of the minimum in  hF N
ij  as illustrated in Fig. 5. The adhesion force models the 

Campbell force caused by water bridges between fiber surfaces.  

 

Figure 5. Dimensionless normal force as a function of dimensionless surface 
separation h/a. Fad is the adhesion force between surfaces (maximum 
attraction). The scaling parameters of the force are explained in the next 
section. 
 

The other component, 
ijF  points along the fiber surface at the points of contact, and it 

is this component (or rather the motion induced by it) which is affected by friction. 
The friction between fibers in contact is simulated by requiring that there is no 
relative (tangential) motion at contact points unless the absolute value of the affecting 

force, 
ijF , exceeds the static friction limit, N

ijF with  the static friction coefficient. 

If N
ijij FF  at one or more contact points, the largest value of 

ijF  is removed, 
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and the tangential forces are recomputated. This procedure is repeated until 
N

ijij FF    at all contact points (Schmid 1999). At the contact points where 
ijF   

was removed, the fibers in contact are allowed to slide unimpeded except for the 
hydrodynamic drag (approximated as that for an isolated prolate spheroid). In the 
simulations the friction coefficient is  = 0.5. 
 

The fiber network, whose behavior under tensile loading was to be tested, was formed 
by a two-step process. First, an initial network was constructed by placing fibers 
randomly in a 3D simulation box with uniform center-of-mass distribution and fiber 
orientation (Fig. 6a). The typical simulation box has the length 2L in all directions. 
Thereafter this 3D structure was compressed into a planar structure that modeled 
paper. This compression was realized using a plate on top of the simulation box. This 
plate was let to fall in the negative z direction due to gravity. The bottom plate of the 
box was permeable only to the fluid. Periodic boundary conditions were used in the x 
and y directions. The fiber network was thus compressed into the desired planar shape 
with a plate spacing of 20a. (Figs. 6b and 6c).  
 

  
 

  

Figure 6.   a) Randomly generated structure of fibers b) compression the 
generated structure, and c) the resulting planar network that will be subjected 
to tensile loading. 
 
Once the desired planar structure is reached, the network is relaxed by integrating the 
equations of motion for fiber segments until all motion ceases. During relaxation the 
attractive forces are applied between fibers and the fiber motion slows down 
exponentially. Relaxation was taken to be completed when the mean square fiber-
segment velocity decreased below a predetermined threshold (0.001 2

pu ). Friction was 

ignored during compression and relaxation, but was enforced during tensile testing.  
 

Tensile testing of the fiber network was modeled by pulling at the fiber segments that 
intersected the faces at x = ±Lx/2 of the simulation box at a constant velocity ±up (as 
illustrated in Fig. 7). Figure 8 shows a fiber network used in tensile testing. The force 
applied to pulling the crossing fibers at the left and right ends of the simulation box 

also indicated in Fig. 8, p
iF


, is added to Eq. (3.1) and is treated as a constraint 

evaluated at each time step during the simulation. The corresponding torque 
p

iii Fpd


 is added to Eq. (3.2). Here id is the distance from the segment center to the 

location of the externally applied force. Once each force p
iF


 is known, the tensile 

force is determined as 

  
lface

p
jrface

p
i FFT



2

1
,                   (3.4) 
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y 
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x

y 

where rface and lface refer to fiber segments that cross the simulation box at the face x = 
+ Lx/2  and x = - Lx/2, respectively. 
 

          = 0.0                                             = 1.0 

Figure 7. Typical fiber network before and after tensile testing. Strain is 
relative change in sample length  = 2x/Lx. 
 
In order to reduce the number of parameters, we defined the following dimensionless 
forces and torques: 
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where ηo is the viscosity of the background fluid, 2l is the segment length, a is the 
fiber radius and au p / . A dimensionless bending constant *

bk arises naturally from 

Eqs. (3.3) and (3.5), 
 

  
 3

*

8 l

k
k

o

b
b  .                                                                                                        (3.6) 

 
The twisting constant is assumed to be directly proportional to the bending constant, 

**
bt kk = 0.67, which is equivalent to that of an elastic cylinder with a Poisson’s ratio 

of 0.5. In the following chapters, only dimensionless quantities are used, and the 
superscripted asterisks are omitted. 
 

Figure 8. An equilibrium fiber network ready for tensile or relaxation testing. 
The black lines indicate the borders of the simulation box. 

-up +up 
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Chapter 4 
 

4 Mechanical properties of wet fiber networks 
 
In this chapter we consider simulation results for stress-strain curves, tensile strength 
and relaxation of wet webs. Publications I and IV discuss these results in more detail. 

4.1 Stress-strain curve 
 
When a strip of paper or a fiber network is subjected to an external strain , a force 
response is recorded. Typical force-strain curves (at constant straining velocity) from 
simulations are presented in Fig. 9 (upper panel) Three strain recovery curves are also 
shown in this figure, i.e. the behavior of strain when the tensile force was brought 
back to zero at three different strain levels (x = 0.9 %, 5.0 %, and 9.0 %). In the 
figure the tensile force is scaled by the network grammage b, the number of contacts 
per fiber Nc, and the ratio of sample width to fiber length, Ly/L. Most of the 
deformation caused by straining is plastic, as strain recovery is quite small. For 
comparison we show in the lower panel of Fig. 9 two similar force-strain curves from 
laboratory scale experiments on wet paper in which samples were strained at a 
constant strain rate of 5.6 %/s to x = 0.9% and 3.5% strain Thereafter the samples 
were kept fixed for 6 seconds, and de-strained at constant velocity until the tensile 
force reached zero. In the figure, the measured tensile force at 3.5% strain was scaled 
to unity.  
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Figure 9. Scaled tensile force as a function of strain from simulations (upper 
panel, average of five independent runs) and experiments (lower panel). 
Experimental data are for fine paper with a grammage of 60 g/m2 and a solids 
content of 60%.  
 
It is evident from Fig. 9 that qualitatively the simulated and measured force-strain 
behaviors are very similar. The main difference is the much larger strain recovery in 
real wet paper. With the scaling used above for the simulated tensile force, 
fluctuations in this force do not appreciably show up. We show therefore in Fig. 10 
the result of another tensile straining simulation for a single network in which the 
force is scaled as shown in Eq. (3.5). Otherwise the forces in Figs. 9 and 10 are scaled 
in a similar manner. Force fluctuations are now apparent. They are caused by fiber 
contacts breaking and reforming as found experimentally by Switzer et al. (2004). At 
large strains when the network is broken into two separate parts, the tensile force is 
small but nonzero because of the hydrodynamic drag forces exerted on fibers. 
Because of the small size of the simulation box in comparison with paper samples 
typically used in experiments, force fluctuations are much more pronounced than in 
experiments on paper. Notice also that in the result of Fig. 10 tensile straining is 
continued beyond the breaking point. 
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Figure 10. Dimensionless tensile force as a function of strain. Adhesion force 
was Fad = 250 and fiber stiffness kb = 75.  
 

4.2 Tensile strength 
 
In Fig. 11, the tensile strength obtained by simulations is plotted as a function 

of  /adcFbN . Here is the friction coefficient between fibers ( = 0.5 in the 

simulations), b is the network grammage (a mass of the fiber network per area), Nc is 

the number of contacts per fiber at maximum tensile force (tensile strength), Fad is the 

adhesion force and  is the fiber coarseness (a fiber mass per fiber length). The 

different symbols represent simulations for a variety of fiber stiffnesses, shapes, 

lengths, adhesion forces and sheet densities, yet the data fall onto a single curve. We 

note that although the fiber shape, aspect ratio, and stiffness do not appear explicitly 

in the equations, they do influence such parameters as b, Nc and .  
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Figure 11. Dimensionless tensile strength of simulated fiber networks as a 
function of □ varying fiber stiffness, ■ varying adhesion force, ▲ varying 
adhesion force with low network grammage, varying fiber shape, and 
varying fiber aspect ratio: 50 (□),70 (◊) and  90 ( ). 
 

Our simulations show that that the strength of wet fiber networks depends only on a 
single variable composed of a few network and fiber properties very much as 
suggested by Page (1993), such that 
 

 /max adc FbNT  .                                                                                                  (4.1) 

 

4.3 Relaxation of wet paper 
 
When tension is applied on a sheet of paper or a fiber network so that it is held at 
constant length its tension decreases with time (Craven 1962). This phenomenon is 
called stress relaxation. Stress relaxation results are shown in Fig. 12 for simulations 
as well as experiments. Simulated tensile force relaxation compares well with the 
experimentally observed relaxation for wet sheets of paper: in both cases tensile force 
decreases under relaxation rather linearly with logarithmic time. 
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Figure 12. Tensile force relaxation for simulations (three curves in the upper 
panel, strain increases from bottom to top) and experiments on wet paper 
(two curves, strain increases from bottom to top).  
 
As noticed above, strain recovery in simulations was clearly smaller than in 

experiments on real paper. In order to quantify this effect, we compared the simulated 

and measured strain recovery during relaxation. The results of this comparison are 

shown in Fig. 13. The experimental strain recovery is about four times bigger than the 

simulated one. There are a few possible reasons for this difference. Complete lack of 

bonding in the simulated networks is one possible reason, and the description used for 

the interaction between wet (non-bonded) fibers is another possibility. A more 

detailed analysis of this effect is however beyond the scope of this study. 
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Figure 13. Comparison of experimental and simulated strain recovery after 
relaxation at varying strain. 
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Chapter 5 
 

5 Structure and deformations of wet fiber networks 
 
In this Chapter simulation results for the structure and deformations of wet fiber 
networks are shown for equilibrium structures and during mechanical testing. We 
present results and estimates for the sheet thickness and number of contacts per fiber 
together with estimates for strain in the lateral and thickness direction during a tensile 
test. In addition, the effect of fiber stiffness on sheet thickness is described. 
Publications II and III discuss these results in more detail. 
 

5.1 Simulated structure 
 
For an isotropic and thin fiber network (network thickness h is not much larger than 
the fiber diameter d), the number of contacts per fiber can be estimated by (Corte and 
Kallmes 1962) 
 

2

2

)(

)32(2

dhA

dhLdN
N fthin

c 





.                       (5.1) 

 

Here Nf is the number of fibers in the network area A, and L is the fiber length. 
Equation (5.1) is derived using 2D network statistics in the case when 2D layers are 
stacked above one another. 
 
Our simulated networks can be regarded as thin structures, and we define the 
simulated sheet thickness h  to be the thickness that includes 80 % of the fibers. This 
estimate mimics an experimental thickness measurement on paper, where paper is 
pressed between two plates. The threshold value 80 % is obtained from experiments.  
Figure 14 shows a typical fiber network structure after compression and relaxation. 
The box illustrates the thickness determination. 
 

 
Figure 14. A side view of a fiber network for the adhesion force Fad = 250 and 
the fiber stiffness kb = 50. The sheet thickness h is defined by the box that 
includes 80% of the fibers. 
 
In Fig. 15 we show a simulated number of fiber contacts in equilibrium as a function 
of plate gap Ztop, and compare it to the analytical estimate Eq. (5.1). The plate gap is 
defined as the distance between the top and bottom plates during compression. They 
are removed before the relaxation phase. For large plate gaps (large network 
thicknesses), simulated structures have more inter-fiber contacts than the theoretical 
estimate, since randomly oriented fibers have more contacts in 3D than in the xy 
plane. For plate gaps in the range 0.2L – 0.6L = 20-60, the simulated number of inter-
fiber contacts is quite close to the estimate. Apparently, a majority of the fibers close 
to the top plate lie roughly in the xy plane. Moreover, the estimation method for sheet 
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thickness successfully excludes the fibers close to the bottom plate, whose 
orientations deviate significantly from the xy plane.  
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Figure 15. Comparison of the number of contacts per fiber Nc as obtained from 
simulations and from the theoretical estimate (Eq. (5.1)) as a function of plate 
gap Ztop. At Ztop = 20 = 0.2L = 10d compression is stopped, and the fiber 
network is ready for a tensile test. The results shown are averages over three 
random configurations, and the error bars indicate the standard deviation. The 
number of fibers is Nf = 256, the adhesion force is Fad = 25, and the fiber 
stiffness is kb = 50. 
 
In Fig. 16 we show the number of contacts in equilibrium for wet fiber networks with 
varying fiber stiffness (kb = 50 – 5000), adhesion force (Fad = 25 - 1000), and network 
grammage (Nf  = 64 - 256 corresponding to 8 - 32 g/m2 for normal fiber properties). 
This figure compares the estimated number of fiber contacts (Eq. (5.1)) to that of the 
simulations. Agreement between the analytical estimate and the simulations is quite 
good for both the lowest (Nf  = 64, h ≈ 4d) and highest grammage (Nf  = 256). For 
intermediate grammages, the analytical expression slightly underestimates the number 
of fiber contacts, but the overall correlation is good. In our basic network simulations 
(Nf  = 128), we varied also the fiber length L. The relatively low values of the 
analytical estimate for all L is perhaps a result of the fact that we used only one initial 
network. For low grammage, the simulated number of inter-fiber contacts is slightly 
smaller than the analytical prediction. This might be due to the number of fibers being 
too small or to the network thickness being underestimated. Anyway, these results 
indicate the importance of the three-dimensional nature of the network. 
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Figure 16. Comparison of the simulated and analytically estimated (Eq. (5.1)) 
numbers of contacts per fiber. Symbols are: (■) number of fibers Nf = 64 with 
varying adhesion force, (▲) number of fibers Nf = 128 with varying adhesion 
force and fiber stiffness, (□) number of fibers Nf = 192, (♦) number of fibers Nf 

= 256 (3 runs), fiber length L (aspect ratio rp) (▲) 50, (●) 70 and (◊) 90.  
 
Figure 17 shows the simulated number of inter-fiber contacts for stretched networks 
with varying fiber stiffness and adhesion force. For the basic network, the simulated 
number of fiber contacts is 15 – 20 % larger than the analytical estimate (Eq. 5.1), 
when the stretched area is used for A. The discrepancy between simulated and analytic 
values gets bigger for decreasing grammage: the simulated number of fiber contacts is 
clearly underestimated (by 35-60 %) by the analytical estimate. Moreover, during 
stretching the simulated Nc increased unexpectedly. There is at least one possible 
reason for the observed behavior. Figure 18 shows the web structure when the 
maximum tensile force is reached. The fibers do not spread out uniformly. Instead, 
they form flocs that contribute significantly to the number of contacts per fiber, and 
thus violate the validity of Eq. (5.1).  
 
The above fiber clustering due to stretching can be analyzed in more detail by 
determining an effective sheet area Aeff occupied by fibers for both an unloaded and a 
deformed network at the maximal force. We define the effective sheet area as the part 
of the network where all pore areas are smaller than 2

sl  , where sl  = A/2NfL = 2L/Nf 

is the average distance between fiber crossings for a random two-dimensional 
isotropic fiber network (Komori and Makishima 1977). When comparing the effective 
areas of the unloaded and deformed networks, we find effeff AAmax = 0.83 for the 

network of Fig. 18. In particular, the effective area for the deformed network after 
stretching is only 17% of the total area. 
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Figure 17. Comparison of the simulated and analytically estimated (Eq. (5.1)) 
numbers of contacts per fiber Nc. The simulation result is for the structure that 
appears at the maximal force of the stress-strain curve. Low and basic refer to 
a network of low grammage and the basic network, respectively. Different 
points for a given network grammage correspond to networks with varying 
fiber stiffness (kb = 50 - 5000) or adhesion force (Fad = 25 - 1000).  
 
The above estimates can be compared with simulated numbers of contacts per 
fiber, Dsimu

cN 2_ , determined by projecting the network onto the xy plane. The ratio of 

contact numbers of unloaded to deformed networks is max_2_2_ Dsimu
c

Dsimu
c NN  = 0.85, 

which compares nicely with the ratio of the effective areas. Moreover, this analysis 
suggests that for very low grammage (8 g/m2) and flexible fibers (kb = 50), the 
number of contacts per fiber may even increase during straining due to the decreased 
effective sheet area. In addition, in Fig. 18 we also plot the number of simulated fiber-
fiber contacts, which increases by a factor of 1.6 during straining. 
 
 

 

Figure 18. Top view of a fiber network after loading to the maximum force, and 
a simulated number of contacts per fiber as a function of strain for a network 
of low grammage, an adhesion force of Fad = 1000, and a fiber stiffness of kb 
= 50. The effective sheet area Aeff is only 17% of the total area. The ratio of 
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the effective areas of deformed and unloaded networks is 83 %, and the ratio 
of the simulated fiber-fiber contacts projected onto the xy plane of the 
unloaded and deformed networks is 85 %. 
 

5.2 In-plane deformations 
 
For fiber networks with no periodic boundary conditions in the y direction, lateral 
contraction is determined as y = y/Lyo, where y = y+ + y- is the sum of the 
average lateral displacements of the fiber segments that initially intersect the planes at 
y = ±mL/2 (m= 6 in the simulations discussed here), Lyo is the initial network width, 
and Lx is the initial gap, c.f. Fig. 19. The Poisson ratio for the lateral contraction is 
defined as xyxy   . 

 

 

Figure 19. A typical fiber network with no periodic boundary conditions in the y 
direction at strains x = 0.0 and 0.5. Ly0 is the initial width, Lx is the gap length, 
and y is the sum of the average lateral displacements of the fiber segments 
that initially intersect the planes at y = ±mL/2. 
 

In Fig. 20a we show the transverse strain y as a function of strain x for various gap 
lengths Lx and the sample width Ly = 6L. We used only one initial fiber network for all 
other gap lengths except for Lx = 4L. For this largest gap length, we performed 
simulations on four additional replicate networks for comparison. In general, the 
lateral contraction increased systematically with increasing gap length as the 
deformations were less restricted by the boundary conditions at the gap ends. The data 
of Fig. 20a can be used to determine the Poisson ratio for the deformation in the 
lateral direction, xy, shown in Fig. 20b. This ratio increases with increasing applied 
strain, x, and reaches a constant value in the range xy = 0.05 – 0.16 before the 
network rupture. The increase of Poisson ratio is in contrast to earlier findings by 
Habeger (1985) for dry paper. On the other hand, the plateau corresponds to a slow 
rupture process of the network during which changes in the lateral Poisson ratio are 
very small. It is difficult to pinpoint an exact strain value for network failure as there 
are large force fluctuations near the maximum force. For this reason, the end points of 
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the curves vary a lot depending on the gap length. The model of Ramasubramanian 
and Perkins (1988) was more advanced, and they were able to incorporate the 
complex and inelastic behavior of bonds and fibers. They showed that the lateral 
contraction ratio decreases or increases with increasing applied strain when network is 
strained beyond the elastic region. However, for small enough strains the in-plane 
Poisson ratio is always constant as found experimentally by Göttsching and 
Baumgarten (1976) for dry paper. 
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Figure 20. a) Network contraction in the lateral direction (y) and b) the 
corresponding Poisson ratio (xy) as a function of strain x up to the point of 
maximum tensile force for the gaps Lx/L = 1.2, 1.5, 2.0, 3.0, and 4.0. The 
network width is Ly = 6L, adhesion force is Fad = 25, and fiber stiffness is kb = 
50. Grey solid curves show the average of five replicate networks for Lx/L = 
4.0 with a 95% confidence limit. In the case of only one simulated network, 
the error bars indicate the uncertainty in the estimated lateral contraction. 
 

a) 

b) 
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5.3 Deformations in the thickness direction 
 
The strain in the thickness direction is defined as z = (h-ho)/ho, where ho is the initial 
network (Fig. 14) thickness and h is the network thickness at strain x. The Poisson 
ratio for expansion in the thickness direction is defined as xz = -z/x. Contraction in 
the thickness direction is not restricted by the boundary conditions at the gap ends. 
Therefore, we do not expect network contraction in the thickness direction to depend 
at all on the gap length Lx. The thickness contraction data of Fig. 21a (black solid line) 
indeed appears to follow roughly the same quadratic curve for all gap lengths, 
 

xxz cc  2
2

1  ,                   (5.2) 

 
with the parameters c1 = -0.35 and c2 = 0.32.  A quadratic thickness reduction implies 
a linear behavior for the Poisson ratio xz in Fig. 21b (black solid line). Due to the 
very large deviations in xz at small elongations, it would be hard to argue based 
solely on Fig. 21b that xz slightly decreases with increasing elongation x. The 
original contraction data of Fig. 21a are needed to draw this conclusion.  
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Figure 21. a) Network contraction in the thickness direction (z) and b) the 
corresponding Poisson ratio (xz) as a function of strain x up to the point of 
maximum tensile force for the gaps Lx/L = 1.2, 1.5, 2.0, 3.0, and 4.0. The 
network width is Ly = 6L, adhesion force is Fad = 25, and fiber stiffness is kb = 
50. The grey solid curves show the average of five replicate networks for Lx/L 
= 4.0 with a 95% confidence limit. In Fig. a) the black curve shows the 
quadratic prediction for z and in Fig. b) it shows the linear prediction for xz. 
 

Deformations in the thickness direction increase with increasing adhesion force as 
shown in Fig. 22a. Equation (5.2) is plotted in Fig. 22a as a dashed line for the 
adhesion force Fad = 25, and as a solid line for the adhesion force Fad = 250 (c1 = -
1.18 and c2 = 0.63). Similar curves for the Poisson ratio in the thickness direction are 
shown in Fig. 22b. The effect of adhesion force on the Poisson ratio is significant. 
However, the general trends are very similar for both adhesion levels.  
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Figure 22. a) Network strain in the thickness direction (z) and b) the 
corresponding Poisson ratio (xz) as a function of strain x up to the point of 
maximum tensile force for the gaps Lx/L = 2.0 and 8.0. The network width is Ly 
= 2L, adhesion force is Fad = 250, and fiber stiffness is kb = 50. Results are 
averages of six replicate networks with 95% confidence. We also show a) a 
quadratic and b) a linear behavior for Fad = 250 (solid line), and compare it 
with a similar prediction (obtained from Fig. 21) for Fad = 25 (dashed line). 
Periodic boundary conditions in both the x and y directions were used in the 
simulations for the higher adhesion level. 
 

Network strain in the thickness direction for varying fiber stiffness kb is shown in Fig. 
23. Göttsching and Baumgarten (1976) studied extensively triaxial deformations 
under tensile load in different paper grades. Assuming that increased beating increases 
fiber flexibility (decreases fiber stiffness), we were able to reproduce their findings.  
They found that for low beating, the network thickness may increase during stretching 
and can eventually exceed the original thickness close to the strain at break. This 
corresponds to our simulation result for stiff fibers (kb = 500.0), for which the network 
thickness slightly increases for some fiber networks during straining. Also Stenberg 
and Fellers (2002) found thickness to increase during in-plane tensile loading in some 
of their experiments, but at the same time they recognized that thickness may also 
decrease as our simulations indicate. In addition, thickness increase was also 
suggested by Öhrn (1965) for dry papers and by simulations (Åström et al. 2000b) for 
fiber networks of rigidly bonded fibers. Even though the above experimental results 
were for dry papers, an analogous behavior may be observed in wet papers (Baum et 
al. 1984). The rate of thickness decrease during stretching is faster for flexible 
(increased beating) than stiff fibers as shown in Fig. 23. However, experiments on 
oriented sheets confirm a systematic increase in the thickness (Göttsching and 
Baumgarten 1976; Baum et al. 1984; Stenberg and Fellers 2002). 

 

b) 
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Figure 23. Network strain in the thickness direction (z) as a function of strain 
x for the fiber stiffnesses kb = 0.5, 5.0, and 50.0 (on the left), and for the fiber 
stiffnesses kb = 50, 250, and 500.0 (on the right) during mechanical testing up 
to the point of average strain at break. Results are averages of three 
simulations. The error bars indicate the standard deviation. 
 
Snapshot side views of deformed networks are plotted in Fig. 24 for very flexible (kb 
= 0.5) and stiff fibers (kb = 500.0). These plots clearly confirm that a network of stiff 
fibers deforms much less during straining both in the straining and thickness 
directions than that of flexible fibers.  
 

  

  

Figure 24. Snapshot side views of fiber networks for a) the fiber stiffness kb = 
0.5 and no strain, b) the fiber stiffness kb = 0.5 and the strain at failure max = 
0.8, c) fiber stiffness kb = 500.0 and no strain, and d) fiber stiffness kb = 500.0 
and the strain at failure max = 0.08. In all cases the adhesion force was Fad = 
25.  
 

 

a) b) 

c) d)
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Chapter 6 
 

6 Conclusions 
 
Simulations of wet fiber networks can be used to predict tensile strength and stiffness. 
The tensile strength results are described surprisingly well by a simple model with the 
adhesion force, number of inter-fiber contacts, friction, and network grammage as the 
key parameters. The strength appears rather insensitive to network structure, sample 
size, and fiber stiffness for a given network grammage, density, adhesion force and 
friction.  
 
Simulated relaxation of tensile force in wet fiber networks compares well with 
experimental results for wet and dry paper, and the force decreases proportional to 
logarithmic time. Relaxation rate for simulated wet web and wet paper was faster than 
for dry paper whose properties are known from earlier experiments. Simulated 
networks displayed strain recovery under relaxation, which was much smaller than in 
experiments on real wet paper. Complete lack of bonding or the description used for 
the interaction between wet fibers in the simulation model could at least partially 
explain this difference.  To this end the nature of adhesion forces between wet fibers 
should be analyzed in more detail experimentally.  
 
Understanding the factors that affect the structure of fiber networks will increase our 
knowledge of their mechanical properties. One of the most important factors that 
describe the network structure is the number of inter-fiber contacts. We compared 
analytical estimates for this number (Corte and Kallmes 1962, Komori and 
Makishima 1977) to our computer simulations for compressed and stretched fiber 
networks. The analytical results were based on the fiber diameter, number of fibers in 
a given volume, and fiber length. They worked very well for closely isotropic fiber 
networks with high enough network density. Estimation of sheet thickness was 
hampered by surface roughness. 
 
Deviations from analytical estimates were observed in simulations for stretched 
flocculated sheets, where the effective sheet area related to strength can be much 
smaller than the total sheet area. This finding confirms that mean-field models cannot 
work for wet fiber networks with flocculated fibers since the flocs remained mainly 
intact during straining, and the network strain was concentrated between flocs. On the 
other hand, our theoretical analysis suggested that the effect of fiber orientation on the 
number of inter-fiber contacts is rather small for networks of practical interest. Also, 
no significant effect in stretched networks arose from simulations with 
inhomogeneous orientation distributions.  
 
Numerical studies showed that the lateral Poisson ratio depends on the applied strain 
as also shown by earlier micromechanical models. According to our simulations, 
boundary conditions at the gap edges become increasingly important when the gap is 
made shorter. In the thickness direction the fiber network usually contracted as found 
experimentally for isotropic sheets, but the magnitude of contraction depended on 
fiber stiffness. However, for very stiff fibers the network thickness may also increase 
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as proposed earlier for wet paper. In addition, experiments on oriented sheets display 
a systematic increase in the thickness. 
 
Effects of distributions of fiber properties should be studied further in order to better 
describe realistic wet paper. The biggest experimental challenges will be related to 
systematic variation of structural and fiber properties, together with their 
characterization, and to characterization of fiber-fiber interactions. New experimental 
techniques will probably be needed. 
 
Changes in network dimensions during straining are related to changes in the network 
porosity. In the simulations discussed here, porosity increased only slightly during 
stretching due to its large initial value (> 0.90). Simulations with more realistic 
network porosities (0.29 – 0.87 (Yamauchi et al. 1975; Yamauchi, Kibblewhite 
1988)) would probably result in larger changes in porosity during straining.  
 
The simulation model and methods along with the results presented here can be 
applied to materials that can be considered as networks of non-bonded elongated 
particles. In this work, elongated fibers were composed of rigid segments that 
deformed by bending and twisting only. This kind of behavior should be rather typical 
of slender elongated particles in particular. 
 
 



 40

Bibliography 
 
Batchelor, W.J, and Westerlind, B.S. (2003): Measurement of short span stress-

strain curves of paper, Nord. Pulp Pap. Res. J 18(1), 44. 

Baum, G.A., Pers, K., Shepard, D.R. and Ave’Lallemant, T.R. (1984): Wet 

straining of paper, Tappi J. 67(5), 100. 

Campbell, W.B. (1959): The Mechanism of Bonding, Tappi J. 42(12), 999. 

Corte, H. and Kallmes, O.J. (1962): Statistical Geometry of a Fibrous Network, ed. 

by Bolam, F., Formation and Structure of Paper, September 1961, Trans Fund. Res. 

Sym., Oxford, 1962, pp. 13-46.  

Cox, H.L. (1952): The elasticity and strength of paper and other fibrous materials. 

British Journal of Applied Physics, 72(3). 

Craven, B.D. (1962): Stress relaxation and Work Hardening in Paper, Appita 16(2), 

57. 

Dodson, C.T.J. and Deng, M. (1994): Paper: An Engineered Stochastic Structure. 

Tappi Press, Atlanta. 

Duncker, B., Hartler, N., and Samuelson, L.G. (1965): Effect of Drying on the 

Mechanical Properties of Pulp Fines,, Trans. IIIrd. Fund. Res Symp. Cambridge, pp 

529-537, FRC. 

Göttsching, L. and Baumgarten, H.L. (1976): Triaxial Deformation of Paper Under 

Tensile Load, ed. by Bolam, F., The Fundamental Properties of Paper Related to its 

Uses, London, pp 227-249. 

Habeger, C.C. (1985): An Addition to the Seth-Page Nonlinear Network Model for 

Paper, J. Pulp Paper Sci. 11(2), J51. 

He, J., Batchelor, W.J. and Johnston, R.E. (2003): An Analytical Model for 

Number of Fibre-Fibre Contacts in Paper and Expressions for Relative Bonded Area 

(RBA), Preprint of 2003 Int. Paper Physics Conf, Victoria, BC, Canada, September 7-

11, 2003. 

Heyden, S. (2000): Network Modelling for the Evaluation of Mechanical Properties 

of Cellulose Fluff, Ph.D. Thesis, Lund University, Lund. 

Htun, M., and de Ruvo, A. (1977): Relation between drying stresses and internal 

stresses and the mechanical properties of paper, Trans. VIth Fund. Res. Symp. 

Oxford, pp 477–487, FRC. 

Jantunen, J. (1985): Visco-Elastic Properties of Wet Webs under Dynamic 

Conditions, Transactions of The 8th Fundamental Research Symposium held at 

Oxford, 1985, Mechanical Engineering Publications Ltd, London, pp. 133-162. 

Johanson, F, and Kubat, J. (1964): Measurements of Stress Relaxation in Paper, 

Svensk Papperstid 67(20), 822. 



 41

Kallmes, O.J., and Perez, M. (1965): Load/Elongation properties of fibres, Trans. 

IIIrd. Fund. Res Symp. Cambridge, pp 507-528, FRC. 

Komori, T. and Makishima, K. (1977): Number of Fiber-to-Fiber Contacts in 

General Fiber Assemblies, Textile Res. J. 47, 13.   

Kouko, J., Salminen, K., and Kurki, M. (2007): Laboratory scale measurement 

procedure for the runnability of a wet web on a paper machine, Part 2, Paperi ja Puu, 

89(7-8), 424.  

Kurki, M., Kekko, P., Kouko J. and Saari T. (2004): Laboratory scale 

measurement procedure of paper machine wet web runnability. Part 1, Paperi ja Puu 

86(4), 256. 

Lindström, S. B. (2008): Modelling and Simulation of Paper Structure Development, 

Ph.D. Thesis, Mid Sweden University, Sundsvall. 

Lyne, L.M. and Gallay, W. (1954a): Measurement of Wet Web Strength, Tappi J. 

37(12), 694. 

Lyne, L.M. and Gallay, W. (1954b): Studies in the Fundamentals of Wet Web 

Strength, Tappi J. 37(12), 698. 

Lyne, L.M. and Gallay, W. (1954c): Fiber Properties and Fiber-Water Relationships 

in Relation to the Strength and Rheology of Wet Webs, Tappi J. 37(12), 581. 

Makela, P. (2007): The Effect of Moisture Ratio and Drying Restraint on the Stress 

Relaxation of Paper In: Proceedings: 61st Appita Annual Conference and Exhibition, 

Gold Coast, Australia 6-9 April 2007; pages: 169-177. Carlton, Vic.: Appita Inc., 

2007. 

Mäkinen, J. (2001): The mechanical and geometrical properties of fibrous structures, 

Ph.D. Thesis, University of Jyväskylä, Jyväskylä, Finland. 

Niskanen, K. (1998):  Paper Physics. Papermaking Science and Technology, Book 

16. Finnish Paper Engineers' Association and TAPPI, Finland, 1998. 

Page, D.H., Seth, R.S. and De Grace, J.H. (1979): The elastic modulus of paper, 

Tappi J. 62(9), 99. 

Page, D.H.(1993) :A Quantative Theory of the Strength of Wet Webs, J. Pulp. Paper, 

Sci., 19(4), 175. 

Page, D.H., and Seth, R.S. (1980): The elastic modulus of paper, Tappi J. 63(6), 113 

and 63(10), 99. 

Page, D.H and Tydeman, P.A. (1965): Physical Processes Occurring during the 

Drying Phase, Trans. IIIrd. Fund. Res Symp. Cambridge, pp 371-396., FRC. 

Ramasubramanian, M.K. (1987): Computer Simulation of the Uni-axial Stress-

strain Behavior of Ribbon-like Fiber Nonwovens, Ph.D. Thesis, Syracuse University. 

Ramasubramanian, M.K. and Perkins, R.W. (1988): Computer Simulation of the 

Uniaxial Elastic-Plastic Behavior of Paper, J. of Engineering Materials and 

Technology 110, 117. 



 42

Robertson, A.A.  (1963): The Physical Properties of Wet Webs, Part 2. Fibre 

Properties and Wet Web Behaviour, 66(12), 477-497. 

Salmén, L., Boman, R., Fellers, C., and Htun, M. (1987): The implications of fiber 

and sheet structure for the hygroexpansivity of paper, Nordic Pulp and Paper 

Research Journal, 2(4), pp 127-131. 

Sampson, W.W. (2001): The Structural Characterisation of Fibre Networks in 

Papermaking Processes – A Review, ed. by Baker, C.F., The science of papermaking, 

Transactions, XIIth Fundamental Research Symposium, September 2001, Pulp and 

Paper Fundamental Research Society, Bury, pp. 1205-1288. 

Schmid, C.F., Switzer, L.H. and Klingenberg, D.J. (2000): Simulations of fiber 

flocculations: effects of fiber properties and interfiber friction, J. Rheol. 44(4), 781. 

Seth, R.S. and Page, D.H. (1983): The Stress-strain Curve of Paper, ed by J. 

Brander, The Role of Fundamental Research in Paper Making, Mechanical 

Engineering Publ., Ltd., London, 421.  

Seth, R.S. (1995): The effect of fiber length and coarseness on the tensile strength of 

wet webs: a statistical geometry explanation, Tappi J., 78(3), 99. 

Shallhorn, P.M. (2002): Effect of Moisture Content on Wet-Web Tensile Properties, 

J. Pulp. Paper, Sci., 28(11), 384. 

Stenberg, N. and Fellers, C. (2002): Out-of-plane Poisson’s ratios of paper and 

paperboard, Nord. Pulp Pap. Res. J 17(4), 387. 

Switzer III, L. H. (2002): Simulating Systems of Flexible Fibers, Ph.D. Thesis, 

University of Wisconsin-Madison, Madison, WI. 

Switzer, L.H. and Klingenberg, D.J. (2003): Simulations of fiber floc dispersion in 

linear flow fields, Nord. Pulp Pap. Res. J 18(2), 141. 

Switzer, L.H., Klingenberg, D.J. and Scott, C.T. (2004): Handsheet formation and 

mechanical testing via fiber-level simulations, Nord. Pulp Pap. Res. J 19(4), 434.  

Yamauchi, T., Murakami, K. and Imamura, R. (1975): The Porous Structure of 

Paper, Analytical Research on the Behavior of Mercury Penetration and Retraction, 

Jpn. Tappi 29(9), 492. 

Yamauchi, T. and Kibblewhite, R.P. (1988): Pore Structure of Paper Webs from 

Radiata Pine Thermomechanical Pulp, Appita J. 41(1), 37. 

Åström, J.A., Mäkinen, J.P., Alava, M.J., and Timonen, J. (2000a): Elasticity of 

Poissonian fiber networks, Phys. Rev. E 61, 61(5), 5550; Phys. Rev. E 62(4), 5862. 

Åström, J.A., Mäkinen, J.P., Hirvonen, H., and Timonen, J. (2000b): Stiffness of 

compressed fiber mats, J. Appl. Phys. 88(9), 5056. 

Åström, J.A., Latva-Kokko, M., Kähkönen, S., Mäkinen, J.P., and Timonen, J. 

(2003): The role of connectivity in the properties of sedimented materials, Granular 

Matter 5, 99. 

Öhrn, O.E. (1965): Thickness Variations of Paper on Stretching, Svensk Papperstidn. 

68(5), 141. 


