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Abstract

Carbon structures have a big role in nanoscience today because of their rich and
promising electrical, mechanical and optical properties. However, advancing these
properties requires understanding the underlying structure and its behavior. In addi-
tion to ideal systems, defects are frequently unavoidable in experiments; hence their
e�ects, along with their possibilities to enrich the functionalities of carbon nanostruc-
tures, should be investigated.

This thesis concentrates on computational studies of various defects in graphene and
carbon nanotubes. It combines investigations of changes in Raman-active modes of
single-walled carbon nanotubes due to vacancies and bending, reconstructions for
graphene edges, and adsorption and di�usion mechanism of single gold atoms in
graphene. Most of the results can be understood in terms of simple physical prin-
ciples and relations to experiments are discussed in detail.

E�ects of carbon atom vacancies on Raman-active phonons are understood via their
symmetry properties and structural weakening. However, the e�ect of tube bending
on Raman-active modes is complicated to understand. Bending proved to be compu-
tationally challenging, but our so-called wedge boundary conditions o�ered a way to
practical modeling. Wedge boundary conditions are free from constraints and �nite-
size e�ects, and really make bending the only disturbance in the system. This kind of
approach will be useful for other physical problems as well.

In this thesis we found a new ground state for graphene edges � a new edge be-
yond armchair and zigzag. We show that this speci�c reconstruction of zigzag self-
passivates the edge against molecular hydrogen adsorption and increases the rigidity
of the graphene edge. We discuss about the possibilities to identify the edge struc-
ture from scanning tunneling microscope (STM) images, Raman-active modes and
vibrational properties relating the di�erences to physical properties.

This thesis also shows that gold atoms are thermally stable in-plane with graphene
opening possibilities to tune the properties of carbon nanostructures. Our results
con�rm that, in addition to imaging, transmission electron microscope (TEM) has a
great potential as a preparation tool for samples of carbon nanomaterials containing
metals. Because contacts may dominate behaviour in nanosize systems, understanding
the metal-carbon interface through defects like vacancies is important. With the help
of TEM-beam there can be a way to selectively make direct contacts with metals and
carbon nanostructures at any point of the lattice, not only at the edges.
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1 Introduction

1.1 Step inside nanoscience

Dreams make breakthroughs; stop dreaming and you will stop. A researcher of nano-
science has nanosize dreams, in which self-guiding nanorobots carry medicine inside
human body to areas, where the blades of the surgeons are too big and clumsy to reach.
Nanorobots have started labeling already minor changes in human body, eliminating
cancer cells before they proceed to be fatal. Quantum computer has become every day
life and is not anymore an old fashioned dream. Nanoelectronic components are freely
scalable in size down to nano and can be easily integrated with macrosize devices.
Nano, spelled as a word has the same e�ect on people's minds as kilo when buying
apples from the store. Wait a minute � am I still dreaming?

Word �nano� describes the length scale, word �science� separates reality from the
dreams. A chain of eight carbon atoms is nanometer long and to describe nanoscale
system individual atoms have to be counted. Atoms consist of nuclei and electrons,
which can be described sensibly only by using quantum mechanics � the method for
most of the nanoscience studies. Almost every study about the properties of small
compounds of atoms can be considered to be part of nanoscience.

Is there, after all, any good reason to call research of small compounds of atoms with
a common name � nanoscience? Well, is there a good reason to call research of nuclei
of atoms as nuclear physics? Furthermore, why don't we call physics just science?
Specifying the research of small compounds under a common name, nanoscience, is
the �rst try to gather researchers doing similar things; the �rst try to get them work
together.

Nanoscience has an ambitious goal � to combine the three di�erent �elds biology,
chemistry and physics. It tries to advance knowledge from all of them and starts
looking at the scienti�c problems from various angles at the same time, not only
concentrating on components of living organisms, reactions between molecules or dy-
namics of the atoms. Here, to �nd the common and understandable scienti�c language
is one of the �rst and at the same time biggest obstacles. In achieving such a �cti-
tious dream as self-guiding nanorobots for example, to gather knowledge of biology,
chemistry and physics together becomes one of the greatest abilities.

1



2 Introduction

Why won't we just forget nano � we know already too much about macroworld.
Do we? Everything builds up from small, so understanding the world in nanoscale
helps us to understand the world in macroscale. Since the rules of the macroworld
are not all valid in the nanoworld, all the phenomena can not be generalized. One
common example is gold, whose behavior is much more reactive as a small nanosize
clusters than as a bulk material. This example emphasizes that small can make a
di�erence and that investigation of phenomena on the nanoscale is needed. Even
though you cannot see nanoscale objects with your own eyes, it does not mean that
they would not be important. Nanoscience can help in �nding solutions for example
for the overloading energy consumption of the world. Maximizing the functionality
of di�erent materials like solar cells through nanomaterial design does not sound too
utopistic dream anymore. It may not solve all the problems, but every step forward
helps. Maybe the breakthroughs will come from those �elds, that we have not yet
looked at.

Is basic research just for mad men's curiosity? Making devices and applications is
hard from material whose properties are unknown. The engineer becomes a magician,
drawing devices out of a hat. One can of course try, and try another time, but after
ten trials and an awful headache, it is good to think through why the invention did
not work. Here the basic research steps into the picture, creating the fundamental
limits and opening new insights for new device inventions.

Nanoscience is still rather at the stage of �nding general understanding than at the
stage of developing devices. There are still ongoing attempts to achieve better res-
olution in experimental imaging methods, to prepare the samples selectively and to
overcome the accuracy and e�ciency barriers in computer simulations of realistic sys-
tem sizes. Solving these problems are steps we still have to take before understanding
thoroughly phenomena in the nanoscale systems � not steps taken during invention
of well functioning nanodevices.

1.2 Carbon nanostructures

The stage of research of the carbon nanomaterials may be closer to real applications
than the stage of research of any other nanomaterial � at least hopes are high.
Carbon nanostructures are mostly well known and also have been made and imaged
successfully. The concern has turned from understanding pure structures to defects,
which have also been investigated in various ways already. The �rst steps to control
defects experimentally have been taken.

Carbon is one of the most prominent elements in nature, vital for biology and life.
Discoveries of modern carbon nanomaterials in 80's and 90's have in�uenced widely
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the interest in nanoscience: fullerenes found by Kroto et. al. in 1985 [1] and carbon
nanotubes found by Iijima in 1991 [2]. Today they create the sharpest front-edge of the
�eld, together with graphene. Without advantageous properties, a discovery itself does
not initiate long-lasting interest. Carbon as an element allows �exible bonding giving
possibility to build a wide range of di�erent materials; hence leading to rich physical
properties. Here, the modern carbon nanomaterials make de�nitely no exception.

Although macroscopic carbon structures of amorphous carbon, graphite and diamond
have been known for a long time [3], graphene has stepped out in spotlights truly
within recent years. The breakthrough progress was made in experimental processing
and imaging methods to reach limit of single atomic layer [4�9]. Graphene can be
considered as a structural basis for most of the other carbon nanomaterials [10]. Going
into details of structures shown in �gure 1.1, graphene itself consists of a hexagonal
honeycomb lattice with sp2 hybridization. Stacking several layers on top of each other
makes graphene graphite, in which di�erent layers are bound together with weak van
der Waals forces. Carbon nanotubes can be considered as a cylinder rolled out of a
rectangular piece of graphene. Rolling direction de�nes the type of the tube giving
zigzag, armchair and achiral tubes, among which there can be both semiconductive
and metallic structures. Fullerenes are spherical molecules that can be wrapped-out
from graphene, but in addition to hexagons, at least pentagons have to be added to
create a sensible curvature and spherical shape. Diamond has its own crystal structure,
in which each carbon is covalently bond to four neighboring carbon atoms giving sp3

hybridized atoms. Compared to graphite, diamond has no such weakly interacting
layered structure. Modern carbon nanomaterials give the full range in dimensions; 0D
fullerenes, 1D nanotubes and graphene nanoribbons, 2D graphene, and 3D graphite
and diamond. Dimension gives its own �avour for properties like the electron density
of states, with examples shown in �gure 1.2.

From these modern carbon nanomaterials, carbon nanotubes and graphene are the
most promising for applications, because of the promising structural, mechanical, elec-
trical, and optical properties [10�14]. Wide range of applications like nanoelectronic
components, nanoelectromechanical devices, hydrogen and energy storage material,
sensors, and high-strength composites [15�17] take advantage of these properties. As
an example, hydrogen storage applications advances binding properties, nanoelectro-
nics semiconductive and metallic characteristics, and mechanical devices high strength
of hexagonal network, especially in carbon nanotubes.
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Figure 1.1: Carbon nanostructures: (8,0) zigzag, (6,3) chiral and (5,5) armchair nanotubes, C60
fullerene, a single graphene sheet, and graphite showing the ABAB . . . packing.
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1.3 Defects in carbon nanostructures

1.3.1 Ad-atoms and vacancies

Flexible bonding properties of carbon give various di�erent possibilities to even enrich
the properties of carbon nanotubes and graphene with di�erent defects and ad-atoms;
also combinations of di�erent type of carbon nanomaterials are possible [18]. For ex-
ample, deposition of metal atoms or molecules, or incorporation of nitrogen or boron
in the structures can be used to tune chemical activity and structural behavior. In
general, metal atoms have fundamental relevance in catalysis, batteries, and nano-
electronics [19�22].

Deposited atoms can be thought of as point defects, just like vacancies. Vacancies are
holes, which make the structure weaker. Di�erences between the defect and the lattice
atoms a�ect the binding strength together with the possible presence of vacancies.
Namely, ad-atoms can be found to be non-covalently bonded on top of the structures,
outside the lattice, or covalently bonded inside the lattice. Comparing the mass and
the number of valence electrons between the elements reveals whether they are made
for each other, i.e. whether there is an elephant or just another species of ant inside
the anthill. Carbon nanostructure is here the anthill and nitrogen and boron would
be another ant species and a metal atom like gold more like the elephant.

Vacancies are needed in formation of junctions between carbon nanotubes and there-
fore correct preparation can improve the sti�ness of composite materials. Although not
in all cases preferred, the existence of defects in samples is often unavoidable, because
of the growth, the preparation, and the imaging methods. Research on the �eld so far
has given explanations about electronic properties of defects and junctions [23�27],
defect stability [25, 26, 28], defect identi�cation [25, 29, 30], local vibrational density
of states [31], and defect di�usion [32].

1.3.2 Bending of carbon nanotubes

In practice, because carbon nanotubes (CNTs) are long, they can bend. Bending
within elastic limits can be categorized as a continuous defect that maintains the
structure. Bending is observed in isolated CNTs between electrodes [33], or in �pa-
per� [34], �forests� [35], rings [36], and composite systems [37] made out of CNTs.
Nanotube serpentines [38] are newly found structures, which are processed on the spe-
ci�c stepped substrates like quartz. Nanotube serpentines are an example of systems
where a defect can open ways for new applications. Same kind of wiggly structures are
familiar from many well-known macroscopic devices like heating or cooling elements,
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antennas, and radiators.

It appears that bending is ubiquitous in experiments�and challenging to study theo-
retically. For example most of the previous theoretical Raman studies are for straight
tubes, because modeling of bent systems has been computationally too expensive [11].
Modeling of bending with classical methods is straightforward and has been used to
study force moments and strains [39], structural deformations like buckling [40�43]
and other large-scale mechanical properties that result from rather high curvature [44].

1.3.3 Edges of carbon nanostructures

Edges play crucial role in chemical reactivity [45], electronic structure [46] and vib-
rations [47]. The edge chemistry is important for example in the catalyzed growth
of carbon nanotubes [48, 49], to which carbon-metal interface is also related. The
electronic properties of graphene, as well as carbon nanotube armchair and zigzag
edges, have been studied extensively [46, 50], often in connection with the nanotube
growth [48, 51], or the so-called electronic �edge states� [45, 52, 53].

Because of the lower coordination, atoms on the edges are exposed to reconstructions
more than atoms inside the material. This e�ect is akin to melting, which also usually
starts from the surface or around a defect. Edge reconstructions have already been
studied, but usually it has meant edge roughness [52, 54] or dramatic folding of the
edge into a loop [55]. E�ects of di�erent edge structures of graphene nanoribbons have
been reported on functionality of nanoelectronic devices like transistors [56, 57], but
including only di�erent compositions of zigzag and armchair edges. Big vacancies also
have edges which can deform through reconstructions [58]. Though, in the case of
small few-atom vacancies, the edges can not be contrasted to actual long free edges
of graphene or to open nanotube ends, in which reconstructions plays role during the
closure [59]. Usually in research of graphene, zigzag and armchair have got the entire
attention as the two basic edges; it has been the �rst natural intuition based on the
underlying hexagonal lattice.

1.4 Structural detection and modeling

Since the properties of a nanomaterial depend on the precise atomic geometry, its
knowledge is crucial for focused preparation of experiments and for worthy theoretical
modeling. From the experimental point of view the nanoscale size makes the structural
characterization complicated. Furthermore, accurate theoretical calculations for rea-
sonable size nanoscale systems often need remarkable computational resources, which
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Figure 1.2: Characteristics of the electron density of states for materials in di�erent dimensions.
Taken from Ref. [14].

makes the interplay with experiments challenging.

From a theoretical point of view the invention of density-functional theory (DFT)
in the middle of 20th century [60], has solved many di�culties. DFT has become
one of the most powerful and common theoretical methods for nanoscience. Through
Hohenberg-Kohn theorem [61] the method reduces the many electron problem to
depend only on one key variable � electron density. Kohn-Sham method [62] models
the system with non-interacting electrons diminishing the many electron problem
e�ectively into a set of single particle problems. The critical, approximative part
of the method � the exchange-correlation functional � aims to describe all of the
essential interactions left out in derivation. Today there exist plenty of functionals
for di�erent purposes. With help of DFT scientists have had de�nitely sharper teeth
against chunk of physics problems than without it.

For detecting the structural properties experimentally, Raman spectroscopy is one of
the basic tools [11, 63�66]. In the Raman scattering process a laser �eld excites the elec-
trons that are further scattered by phonons � the �ngerprint of nuclear motion and
bond strengths. After phonon scattering, the rest of the excitations decay and emitted
light can be measured. Intensity and energy details of the characteristic bands in the
spectra will get rather small structural di�erences to emerge. Resonance in electron
transitions between the real states enhances the intensity as is schematically shown
in �gure 1.3; in 1D carbon nanotubes van Hove singularities have a dominating role.
One of the advantageous properties of carbon nanotubes is the characteristic inverse
diameter behavior of the low energy modes, radial breathing mode (RBM) in partic-
ular. With help of Kataura plot [14] presenting the excitation energies with respect
to tube diameter in �gure 1.3, chirality detection can be done based on experimental
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Figure 1.3: On the left: Schematic view of the scattering process and the resonant e�ect due to
transitions between real electron states shown in (b) compared to transitions between arti�cial states
in (a). GS is for ground and ES for excited state, and ωph is the frequency of the phonon. The height
of the peak shows the in�uence of the resonance on the Raman intensity. On the right: Kataura plot;
electron transition energies due to van Hove singularities with respect to diameter for semiconductive
(empty) and metallic (�lled) tubes. Di�erent arrays of the data points refer to di�erent kind of
electronic transitions. Taken from Ref. [14].

laser energies. Identifying chirality of an isolated tube would be one step closer to
selective sample preparation for applications.

To describe the resonance e�ects theoretically, the full scattering process must be
followed. Solving excited states correctly, estimating electron-phonon coupling [67, 68],
and carrying out all the possible transitions and phonons in the momentum space
complicates the calculations greatly. For ideal systems simpli�cations in formulation
and reductions in number of atoms and phonons can be done [69], but for non-ideal
defective systems this is questionable. Defects require to take into account more atoms
and also usually break the nice simpli�cations.

Raman spectroscopy is not the only tool for structural detection. Imaging methods like
transmission electron microscopy (TEM) [70, 71] and scanning tunneling microscopy
(STM) [53] aim to give a realistic image about the structure. In TEM-imaging electron
beam is used to bombard the sample and the beam scattered through is measured.
Di�erences in measured intensity of the beam gives information about the structure;
most of the electrons scattering back from the nuclei. Because of the high-energy elec-
tron beam displacing light elements, generation of defects with the TEM is possible.

In STM-imaging the electrons that tunnel between the sample and a conductive tip
are measured, and this gives the information about the di�erences in electron density
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of the system. In the points of space where electron density close to Fermi energy
is higher, the tip must be raised to maintain the constant current. However, these
imaging methods have disadvantages: single atom resolution is hard to reach and the
electron bombardment in TEM-imaging excites easily the motion of light elements
like carbon. Therefore the most important details might be hidden in bad resolution,
or the system may not remain in the true thermal equilibrium. But these are the
conditions for all of the other imaging methods too, whenever they try to reach the
atom resolution. Is it after all possible to reach atomic resolution without a�ecting and
interacting strongly with the structures? Separation of individual atoms requires to
go deep into the quantum mechanical and nanoscale phenomena, which are in general
complicated to control. If the same holds for imaging, separation of atoms will also
be complicated and will then need strong interaction with the sample.

The stage of TEM-imaging as an experimental method is sort of similar to the stage
of DFT in computational side, both having some di�culties and reliability problems,
but without them we would be far behind from development of today's nanoscience.
Still, at least I personally prefer to see something, if another choice is to be blind on
everything about the structures. Restrictions of the methods increase the importance
of the interplay between computational and experimental sciences to con�rm and
explain observations. In other words, although neither theory nor experiment would
be absolutely accurate, together they can give correct explanations.



10 Introduction



2 Theory & Methods

2.1 Density-functional theory

Density functional theory (DFT) was developed in the middle of 20th century and
is nowadays widely used method in computational nanoscale material science. It is a
quantum mechanical method and useful for many-electron problems. Extensions to
standard DFT, especially time-dependent DFT (TD-DFT) has solved some of the
problems in standard DFT.

Atomistic systems must be considered as many-body problems consisting of two kind
of species: nuclei and electrons. To describe the problem correctly, interactions be-
tween the species are needed to construct the Schrödinger equation. Because of the
mass di�erence between nuclei and electrons one very useful approximation can be
made � the Born-Oppenheimer (BO) approximation, which separates nuclear and
electronic parts of wavefunction. Because of the huge mass di�erence between nuclei
and electrons BO assumes, that the nuclei a�ect on electrons e�ectively through their
�xed positions. Under the BO-approximation many-body problem of both electrons
and nuclei diminishes in solving only the many-electron problem.

Density-functional theory is based on the Hohenberg-Kohn theorem [61] which states
that there is a unique mapping between the ground state electron density, the electron
wavefunction and the e�ective potential. Furthermore, every ground state observable
inherit the same unique connection to electron density through the ground state wave-
function. This theorem reduces the full many-electron problem to depend only on one
variable � electron density, that determines all the observables as well as the full
many-electron wavefunction.

At this point the many-electron problem is still too time-consuming and complicated
to handle. The Hellman-Feynman theorem indicates through the integration of equa-
tion (A.6) in Appendix A that the total energy of interacting many-electron system
can be always found using a one-electron theory. The Hellman-Feynman theorem also
allows to solve forces directly from the derivative of the Hamiltonian. The Kohn-Sham
method completes the standard DFT approach. It simpli�es the true interacting sys-
tem with a non-interacting model system that gives the same electron density as the
interacting system. With the help of the Hellman-Feynman theorem this is a reason-
able task to accomplish. The interactions not taken into account in the non-interacting

11
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model system are �tted to an extra energy term called exchange-correlation energy.
If the exchange-correlation energy is exact, also the Kohn-Sham method is exact.
The Kohn-Sham approach transforms the many-electron problem to a set of sep-
arate, coupled single-electron problems. The Kohn-Sham equations must be solved
self-consistently including de�nitions of electron density, Kohn-Sham potential and
single-particle Schrödinger equations.

The details of the formal derivation of the Kohn-Sham approach are described in
Appendix A. DFT needs approximations for the exchange-correlation functional and
a suitable basis set for single-electron wavefunctions. Although the contribution from
the exchange-correlation energy into the total energy is small, it plays a crucial role in
determining energy di�erences, like the adsorption energy. Usual choices for the basis
set are plane waves, atomic orbitals or Gaussian functions; the �rst one uses Bloch's
theorem to describe the electron wavefunctions in periodic potential of a lattice. The
second one describes the atomic orbitals and the third one treats the wavefunctions
with a set of Gaussian functions.

In addition to basis sets, there exists simpli�cations for decreasing the computational
load. Pseudo potentials simplify the inert core states of electrons with simple potential
and solves the problem only for relevant valence electron states. Solutions of the pseudo
potential method are pseudo wavefunctions, which di�er from real wavefunctions, but
give otherwise the same information about the measurable observables.

2.1.1 GPAW, DFT software

GPAW is an all-electron real-space grid code [72]. It scales well in massively parallel
computations, and is therefore an e�cient DFT-code. As the end of the name reveals,
the electronic wavefunctions are treated by projector-augmented waves (PAW) [73].
Projector-augmented waves method relies on linear transformations that relate more
practical pseudo-wavefunctions to true all-electron wavefunctions. In other words,
the linear transformation gives the transformation from pseudo wavefunctions to all-
electron wavefunctions.

PAW uses principles familiar from pure pseudo-potential methods, but does not re-
quire norm-conservation of the wavefunctions. Core-electron states are considered to
be �xed and the valence states are expanded into partial-waves inside speci�c augmen-
tation regions around each atom. Because of the cut-o�, smoothness at the boundary
of the augmentation regions has to be considered. Outside of the regions wavefunctions
are �tted to true all-electron wavefunctions, which indicates that the linear transfor-
mation acts only inside of the augmentation regions. Augmentation is realized as an
increase from smooth pseudo-wavefunctions to true all-electron wavefunctions when
the transformation is taken. Formal details of PAW can be found from Appendix C.
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For the exchange-correlation functional the current implementation of GPAW o�ers
all of the usual ones including local density (LDA) and generalized gradient approxi-
mations (GGA). In LDA the exchange-correlation contribution is evaluated using only
the value of the exchange-correlation functional at each point. Hence LDA does not
take into account the local curvature of the electron density. The local spin density
approximation (LSD) is a spin-dependent version of LDA.

GGA is one step further from LDA and takes into account small curvature e�ects
around each point in space. GGA functionals take into account density gradient de-
pendencies on the exchange-correlation energy. By expansion into the �rst-order, the
gradient expansion approximation (GEA) is established, while LDA describes the ze-
roth order expansion. GEA functional however violates some analytic conditions of
exchange hole e.g. being negative de�nite and normalizing to -1. These failures will
be corrected in GGA functionals by using cut o� procedures for exchange hole. After-
all, where LDA fails to describe systems with slowly varying electron densities, GGA
usually works more accurately also in these cases.

There are plenty of di�erent functionals for GGA, both empirically and theoretically
grounded. The problem with functionals, that are �tted to experimental parameters, is
the weak relation to basic physical principles. In addition, empirically built functionals
usually work only for those systems for which they are �tted. In theoretically grounded
GGA functionals, the limits from the background physics are usually better known.
One version of theoretically built GGA-functionals, relevant to this thesis, was made
by Perdew, Burke and Ernzerhof (PBE) [74], from which full details together with
LDA and general GGA-functionals is represented in Appendix B.

GPAW uses a double-grid method by Ono and Hirose [75], in which the main dis-
cretization is done in a coarse-grid and the �nal accuracy is achieved by interpolating
electron densities, wavefunctions and potentials to a denser grid.

2.2 Density-functional tight-binding method

The density-functional tight-binding (DFTB) method was developed in the 90's as a
computationally e�cient alternative to density-functional theory [76, 77], but with an
extended accuracy compared to classical methods. DFTB is suitable for systems that
have localized electrons, like covalently bonded hydrocarbons, but have been used
succesfully for gold [78]. As an example, compared to DFT calculation parallelized
over several processors, DFTB can compute the same system with a single processor
much faster. It is suitable for desktop computer use.

Even though DFTB is made much faster than DFT by tight-binding type energy pa-
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rameters, it is still a quantum-mechanical approach with quantum-mechanical insight
on problems, and is therefore suitable for many kind of use ranging from serious re-
search to testing, searching and educational purposes. Compared to DFT long and
demanding MD-simulations are not problematic to do with DFTB.

Theory of DFTB is based on conventional tight-binding approaches. DFTB uses a
minimum basis set and local wavefunctions. For periodic systems Bloch waves are
used. DFTB takes the electron density to be a sum of neutral atom electron density
and a small �uctuation. Based on electron density convention total energy in DFTB is
separated into three parts including band structure and repulsive energies, and charge
�uctuation-dependent Coulomb energy.

All DFTB energies can be constructed to be dependent on atom pairs and their
distances only, which further separates the energies to on-site and inter-site parts.
On-site and inter-site energies together with orbital overlaps will be �nally parame-
terized using DFT with LDA approach to a grid, from which energies are interpolated
during calculation. Repulsive energy parameterization can be �tted to chosen refer-
ence systems giving pair potentials for element pairs. Energy parameterizations are
characteristic for tight-binding approaches. Reading tabulated parameters is much
faster than solving the forces on every structure optimization or MD-simulation step,
as done in DFT.

To de�ne charges that are caused by density �uctuations, DFTB uses the so-called
Mulliken analysis. Because of charge �uctuations, DFTB approach must be solved self-
consistently. Kohn-Sham equations in DFTB approach include Schrödinger equations
in algebraic form, and de�nitions of the charge and the Hamiltonian. For further
details behind DFTB method, see Appendix D.

2.3 Various densities of states and simulated STM-

images

Electron density of states (DOS) gives information about the electronic structure.
DOS can be drawn from the electron eigenstates applying either Dirac delta function
or then Gaussian or Lorenz distribution function at the eigenenergies, i.e. [79]

DOS(ε) =
∑

a

δσ(ε− εa) , (2.1)

where σ denotes broadening if distribution functions are used. Local density of states
is position dependent DOS

LDOS(r, ε) =
∑

a

faδ
σ(ε− εa)|Ψa(r)|2 , (2.2)
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where fa is the occupation of the eigenstate Ψa.

Integration of LDOS over certain energy range
∫ ε1

ε0
dε gives pure position-dependent

LDOS, which tells how much states there are in the chosen energy range from ε0 to ε1.
This is the approach that is used in theoretical scanning tunneling microscopy image
calculations [80], and is based on early studies of Terso� and Hamann [81, 82]. To have
a complete theoretical STM-image either constant current or constant height STM
method must be imitated. Constant height STM is straightforward, because changes
in the integrated LDOS pro�le can be followed at constant height from the sample.
For theoretical constant current STM certain isosurface of the integrated LDOS is
chosen and the changes in height of that isosurface are collected. Current de�nes the
relevant value for the isosurface. In practice the electron states that are visible in
STM-images, are the outer-most states. Those states interact with the tip and de�ne
the main di�erences in the experimental images, that at the theoretical approach leads
to integration of occupied states over an energy range close to Fermi level.

From equation (2.2) it is possible to estimate LDOS for certain atom group; only
states that belong to de�nite atoms are considered. Then for atom I of the group of
atoms R the LDOS can be written

LDOSR(ε) =
∑
I∈R

LDOS(I, ε) =
∑
I∈R

∑
a

faδ
σ(ε− εa)qI,a , (2.3)

where qI,a is the charge of atom I contributed by the eigenstate a. Separation of the
charge contribution into individual atoms is built into the both methods used in this
thesis, DFT and DFTB. So equation (2.3) describes the integrated LDOS of equation
(2.2) over the chosen atomic regions ΩI .

The projected density of states separates the contribution from di�erent angular mo-
mentum states into DOS. PDOS can be de�ned similarly to LDOS for group R of
atoms, but the di�erence is the �xed angular momentum l of the electron states

PDOSR(l, ε) =
∑
I∈R

PDOS(I, l, ε) =
∑
I∈R

∑
a

faδ
σ(ε− εa)q

l
I,a , (2.4)

where ql
I is the charge of atom I contributed from the states with angular momentum

l. If the group R includes all the atoms, equation (2.4) gives PDOS for the whole
system; however, it is often desireable to look at a certain group of atoms or individual
atoms.

2.4 Symmetries of graphene and carbon nanotubes

Before going to symmetries of graphene and carbon nanotubes, basic de�nitions of
group theory are brie�y introduced. The symmetry group G of a system must ful�ll
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the criteria of a mathematical group [83]. G = {a, b, c, . . .} is a group, if there is a
mapping ◦ : G×G → G so that the following three properties are valid; (1) mapping
of any a, b, c ∈ G obeys associativity (a ◦ b) ◦ c = a ◦ (b ◦ c), (2) there exists an identity
element e so that for any a ∈ G a ◦ e = a, and (3) there exists an inverse element
a−1 ∈ G for all a ∈ G so that a ◦ a−1 = 1. Subgroup is a set of elements that ful�lls
the group criteria, but is part of the some other larger group.

Elements of the group can be divided into di�erent conjugacy classes. Elements a, b ∈
G are conjugate for each other, if there is an element g ∈ G so that gag−1 = b.
Set of the elements, that are conjugates with each other, are called a conjugacy class.
Representation ϕ of a group G is a linear mapping ϕ(a) : G×V → V ;V → ϕ(a,V) that
describes how a vector V in vectorspace V changes under action of the group element
a. Sub-representation is a reduced mapping ϕ̃ into a reduced vector space Ṽ full�lling
still the requirements of a representation. From all of the possible representations, the
irreducible ones are those that have no other sub-representations than the identity
and themselves [83].

Characters χ describe the trace of representation matrix of the symmetry group.
Character table is the usual way to list the properties of a symmetry group. It consists
of irreducible representations in rows and conjugacy classes in columns, furthermore
it includes only the irreducible characters. Elements from the same conjugacy class
act the same way; they produce same characters for the same representation.

Symmetry element a acting on N-dimensional vector V (e.g. consisting of basis of
N phonons, for example) gives a N × N -dimensional matrix A, which describes the
representation and de�nes the character

aV = AV ≡


a11 · · · a1N

· · ·
· · ·
· · ·

aN1 · · · aNN




v1

·
·
·

vN

 ; χ = Tr(A) . (2.5)

For one dimensional irreducible representations, matrix A is just 1 × 1 -matrix and
the character is under any action always ±1. Connecting this to an physical exam-
ple of phonons, 1D-phonon V = v1 under action of any symmetry operation gives
always either exactly the same phonon mode +1 · v1 or that with vectors pointing
opposite direction −1 · v1. With multiple-dimensional irreducible representations also
the dimension of vectors must coincide with the dimension of the representation.

Figure 2.1 shows the graphene plane with geometrical information needed to construct
a carbon nanotube out of it. Hexagonal lattice determines the symmetries of graphene
and the rolling direction the symmetries of carbon nanotubes. Graphene has symmetry
point group of D6h = D6 ⊗ Ci [84]. All the symmetry elements of the point group
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Figure 2.1: Formation of carbon nanotube out of graphene. Square denotes the piece of graphene
that will be rolled into tube by connecting B to B′ and O to A. Lattice vectors a1 and a2 de�nes
the chiral indices (n,m) through the chiral vector Ch = na1 +ma2, T is the unit cell vector in tube
direction. Chiral angle θ can be de�ned with chiral indices. Taken from Ref. [86].

D6h can be constructed from rotations (C6, C2), re�ections (σh) and inversion (i);
rotations and re�ections constructing a dihedral subgroup D6 while inversion i and
identity e symmetry subgroup Ci = {e, i}.

Cutting graphene into a nanoribbon reduces the number of symmetry operators. The
highest possible symmetry requires cutting both edges symmetrically into armchair
or zigzag nanoribbons. The order of the main rotation axis decreases from C6 to C2

and the point group of the highest symmetry armchair and zigzag nanoribbons falls
down to D2h [85]. Translation group must be considered to construct the symmetry
line group TD2h of an in�nite ribbon.

Structural symmetries of single-walled carbon nanotubes can be divided into three
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di�erent line groups with respect to chirality indices (n,m) [87]

TDnh, achiral tubes with even n,

TDnd, achiral tubes with odd n, and

TDN , chiral tubes, (2.6)

where T refers to translational symmetry group of the tube with respect to the length
of the unit cell. Like for graphene, Dnh and Dnd are point groups both based on the
dihedral point group Dn, but with additional σh or inversion symmetries, respectively.
Instead of the main rotation axis perpendicular to graphene plane, achiral, zigzag and
armchair carbon nanotubes have the main rotation axis along the tube axis; secondary
C2 rotation axis in the radial direction.

Symmetry group of one unit cell of chiral tubes can be formed from the Abelian
subgroup CN , for which symmetry operations are translations by vector R on tube
surface and C2 rotations with axes perpendicular to the nanotube axis. Index N
equals the number of symmetry operations R needed to go full circle around the tube.
This translation symmetry vector R on tube surface is de�ned to have the minimum
rotation of the tube [86]. Figure 2.2 visualizes the symmetry operations existing in
chiral and achiral tubes.

A shortened and reduced character table of the line group TDnh for achiral tubes
is shown in table 2.1. Main features of the character table coincide with TDnd and
TDN groups as well, remembering the di�erences in point group elements. Similarities
between all of the groups TDnh, TDnh, and TDN are the rotational dependencies with
respect to tube direction and the dependencies of the translations in tube direction.
In the next section the relations of the irreducible representations to phonon modes
will be introduced.

2.5 Phonons

Phonons describe the small-amplitude motion of nuclei in an atomic system. In con-
ventional DFT and DFTB approaches the Born-Oppenheimer approximation �xes the
nuclei and phonons must be solved separately from the curvature of the total energy
around a �xed local energy minimum positions of nuclei. The �rst approximation is
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Figure 2.2: Symmetries in the SWCNTs. First two �gures on the left show the chiral tube (4,2)
with characteristic Abelian subgroup symmetry vector R and rotational symmetry axis C ′

2 radially
through the tube. Another radial rotation axis is labeled usually by C ′′

2 , and if presented, would
point through a center of hexagon. In addition there can exist in chiral tubes a pure rotation axis
parallel to tube, in this case Cd with d = 2. T denotes the unit cell vector for chiral tube (4,2) in
tube direction and at the same time corresponds to translational group symmetry vector. Third and
fourth �gures show the achiral tube (3,3) with horizontal σh and vertical σν re�ection planes, and
the main rotation axis Cd with d = 3 in this case. For achiral tubes (n,0) and (n,n) with even n there
exist two di�erent kinds of vertical re�ection planes σν intersecting hexagon and σν′ coinciding with
carbon bonds. Taken from Ref. [86].
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to perform a harmonic expansion of potential energy due to atomic displacements xi

V =V0 +
∑

i

=0︷ ︸︸ ︷(
∂V

∂xi

)
0

xi +
1

2

∑
i,j

(
∂2V

∂xi∂xj

)
0

xixj + . . .

≈V0 +
1

2

∑
i,j

(
∂2V

∂xi∂xj

)
0︸ ︷︷ ︸

=Hij

xixj , (2.7)

where H is the symmetric Hessian matrix with elements describing the second order
derivatives of the total energy with respect to atomic coordinates xi and xj. Phonon
modes are solved from the equation of motion i.e. Euler-Lagrange equation, which is
easy to derive from the Lagrange function L writing [90]

L = T − V =
1

2

∑
i

miẋ
2
i −

1

2

∑
i,j

Hijxixj . (2.8)

The Euler-Lagrange equation with respect to nuclei displacements x1, x2, ..., xN is then

d

dt

∂L
∂ẋi

− ∂L
∂xi

= 0 ⇒
∑

j

(Hjixj + δijmiẍi) = 0 . (2.9)

Atomic displacements xi can be described due to Cartesian coordinate i ∈ {x, y, z}
with ansatz xi = vi exp[i(−ωt+ δ)]; vi denoting amplitude, δ possible phase di�erence
and ω frequency. Generalization of the expression for 3N-dimensional vectors including
all of the nuclei leads to the �nal form of the equation of motion

Hvµ = ω2
µMvµ , (2.10)

where H is the 3N×3N Hessian matrix de�ned in equation (2.7), M is a 3N×3N
diagonal mass matrix, and ωµ is the eigenfrequency and vµ 3N-dimensional eigenvector
for phonon µ.

2.5.1 Raman-active modes

Phonons are vector space components assigned to atoms, classi�able into irreducible
representations of the symmetry group of the system. Raman-active modes transform
quadratically with respect to Cartesian coordinates e.g. xx, yy, zz, xy, xz, yz and
must induce a change in the polarizability of the system. These conditions yield the
general non-zero transition moment integral condition,

∫
ΨiαΨf 6= 0, where α is the

polarizability tensor, Ψi initial ground state and Ψf �nal excited state [91].
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In single-walled carbon nanotubes Raman-active modes belong to irreducible repre-
sentations (0)A

+
0 , (0)E

−
1 and (0)E

+
2 in the line group notation of A1g, E1g, and E2g in the

molecular notation. From now on, lower-left corner indices related to wave vector in
tube direction are neglected referring to k = 0 case. From these representations, A is
one- and E two-dimensional, and consistently E symmetric phonon modes include two
degenerate individual normal modes. Superscripts + and − describe the symmetry of
the mode with respect to horizontal re�ection, − for eigenvectors changing direction
and + for unchanged direction under re�ection [89, 92]. For chiral tubes there is no
horizontal re�ection and therefore superscripts are left out. In single-walled carbon
nanotubes Raman-active modes can be divided into three di�erent decompositions,
based on symmetry groups [86, 93]

Γzigzag =2A+
0 + 3E−

1 + 3E+
2

Γarmchair =2A+
0 + 2E−

1 + 4E+
2

Γchiral =3A0 + 5E1 + 6E2 . (2.11)

Chiral tubes are less symmetric, which increases the number of Raman-active modes
with respect to zigzag and armchair tubes. Low energy modes have 1/diameter de-
pendence, from which the most intensive is the radial breathing mode (RBM) A+

0

(A1g). Other important Γ-point modes are the three (for chiral tubes six) high-energy
modes responsible for G-band; one from each Raman-active symmetry. Due to reso-
nant e�ects and 1/diameter-dependence, these modes are more useful for structural
detection than others. Figures 2.3 and 2.4 show the Raman-active modes for armchair
and zigzag tubes, from which the most important are labeled with RBM and G-band.
Raman-active modes of the chiral tubes are a combination of the both of the modes
in �gures 2.3 and 2.4.

An example of experimental Raman spectrum is shown in �gure 2.5 showing the
assignments for di�erent characteristic bands. RBM-band and G-band initiate from
�rst-order scattering at Γ-point. D-band is also called the defect-band and includes
scattering of electrons due to defects, which makes it therefore second-order scattering
away from Γ-point. Overtone bands like G'-band (overtone of D-band) are due to
second-order scattering with two phonons and the energy is correspondingly the sum
of the energies of the involved phonons. The di�erent scattering processes are discussed
in the following section.

Numerically Raman-active modes can be identi�ed using well-known dependencies
under symmetry element action according to character table 2.1. In numerical pro-
cedure, as a �rst assumption, all of the phonon eigenmodes are one-dimensional. By
acting with symmetry operations like rotations on the system and phonon eigenvec-
tors, the speci�c characters can be solved through equation 2.5. If the character does
not obey the one dimensional behavior i.e. if χ 6= ±1, the 1D-assumption is corrected.
Next, the phonon is considered as the �rst one of the degenerate two-dimensional
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G-bandG-band

G-band

RBM

Figure 2.3: Raman-active modes of armchair tubes. Experimentally essential modes are labeled,
responsible for RBM or G-band. Atoms in di�erent level in tube direction are separated with �lled
and empty circles. Arrows describe the eigenvectors in circumferential and radial direction, and circles
with dot and cross eigenvectors in tube direction upwards and downwards, respectively. From the
degenerated 2D modes only one is shown. All the modes are uniform in tube direction characteristic
for Γ-point modes. Taken from Ref. [89].
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G-bandG-band

G-band

RBM

Figure 2.4: Raman-active modes of zigzag tubes. The conventions of �gure 2.3 are used, except now
the direction of the eigenvectors for the atoms on top of each other may alternate. Symbols outside
the tube circumference denote the eigenvectors for uppermost atoms and symbols inside the tube
circumference denote eigenvectors for atoms below them. Taken from Ref. [89].

phonon mode. To construct the full basis for the 2D-phonon with both degenerate
eigenmodes, the phonons next in energy are tried, which works usually well because
of the equilibrium conditions. The same procedure is gone through for 2D-assumption
as for 1D-assumption; calculation of the characters for speci�c symmetry operations
through equation 2.5 is repeated. Going through all of the modes separates the desired
symmetries A+

0 , E−
1 , and E+

2 .

Although graphene has the same symmetry group as some of the achiral tubes, de-
composition gives only two Raman-active E2g symmetric Γ-point modes [84, 94]. The
modes include one low-energy mode and one high-energy mode responsible of G-
band in graphene. Reduction in the number of Raman-active modes compared to
SWCNTs can be understood with lower dimensionality and simple hexagonal lattice,
which makes the graphene e�ectively more symmetric. Because of the simple two-
dimensional structure, the vibrational mode decomposition in Γ-point is already very
di�erent from carbon nanotubes including only 12 modes, from which nine are optical
with Γopt = 2E2g + E1g + 2B2g + A2u [84].

For graphene nanoribbons, the number of Raman-active modes is increased com-
pared to graphene, because the number of symmetries is decreased. In the highest
possible symmetry point group of graphene nanoribbons, D2h, there can only ex-
ist 1D irreducible representations and thus 1D-phonons. Raman-active modes belong



2.5 Phonons 25

Figure 2.5: Experimental, resonant Raman spectrum of metallic and semiconducting, isolated single-
wall carbon nanotube representing all the relevant bands, among others RBM- and G-band. Taken
from Ref. [11].
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to irreducible representations Ag and Bg due to group theory. Instead of in�nite 2D-
structure, graphene nanoribbons are in�nite only in one dimension, which makes them
more comparable to SWCNTs. Because of the �nite structure, for example breathing
modes of the ribbon width can exist as RBM in SWCNTs. Also the edge makes the
system di�erent by breaking the uniform bonding properties, making edge-localized
modes possible.

2.6 Raman spectroscopy

Research of nanomaterials has its complications due to the small size. Raman spec-
troscopy is one of the basic tools for structural detection and can give information
about relatively small di�erences in samples through phonons. Experimental Raman
measurements includes resonant e�ects, which were discussed in the Introduction in
connection with the �gure 1.3. Resonant approach is therefore preferable starting
point also for accurate computations.

Raman scattering process consists of: (1) coupling of laser light with electrons, i.e.
excitation of electrons, (2) coupling of excited electrons with phonons, i.e. scattering
of electrons with the phonons, and (3) coupling of scattered electrons with photons,
i.e. emission of out coming photons [11]. After scattering, the out-coming photons are
measured, which gives information about the phonons that were excited and further
about the structural properties. Resonant enhancement exists when the incoming
or out-coming photon matches with an optical singularity of the system. In other
words, electronic transitions between real states give bigger intensity where van Hove
singularities give an impact in 1D-systems, like carbon nanotubes. Collection of the
possible scattering processes are shown in �gure 2.6, including �rst- and second-order
scattering.

Resonant calculations consider often ideal systems, which makes the problem simpler
in many ways, because the number of relevant phonons and the size of the system
can be diminished. Simpli�cations can also be used, for example the electron-phonon
coupling in carbon nanotube has been determined utilizing graphene. Defects make
everything more complicated; reasonable construction of defective systems requires
taking into account many atoms more than in ideal systems. Also another advantage
is lost as the analytical solutions of ideal systems may not be valid anymore. After
all, the relevant number and the shape of the phonons may not be the same.

A good starting point in investigations of Raman spectra of defective systems theo-
retically is to look the Raman-active modes and their changes due to defects. To have
a grasp of the Raman-active modes in defective systems, full resonant description is
not necessarily needed at �rst. Raman-active modes have the property of changing
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Figure 2.6: Schematic description of di�erent Raman scattering processes, �rst-order scattering
in (a), second-order scattering including one phonon in (b), and second-order scattering with two
phonons in (c). The �rst row describes the incident resonant condition, where excitation of electrons
is between real valence (lower lines) and conduction band (upper lines) states, but the scattering of
electrons back to initial state, due to the emission of out-coming photons, is from arti�cial state. The
second row describes the same but in the case of scattered resonance. Taken from Ref. [11].

the polarizability of the system, which gives one possibility to proceed, and this is the
approach used in this thesis. Details of resonant Raman calculations are left into the
Appendix E.

2.6.1 Non-resonant empirical bond-polarization method

Non-resonant bond-polarization theory uses static empirical polarizability parameters
for individual bonds to estimate the Raman intensity of di�erent modes. It does not
describe the full scattering process and resonant e�ects, but can be used to investigate
e�ects of di�erent defects for Raman-active modes at the Γ-point. Related to carbon
nanostructures, these modes are responsible of the RBM- and G-band for SWCNTs
and graphene. Although resonant calculation gives comparable spectra to experiments,
non-resonant calculations can still give the information about the changes in Raman-
active modes in the systems that are either computationally too expensive or not
su�ciently known to be calculated with resonant description.

The grounds of non-resonant bond-polarization theory are in static electronic po-
larizability description. It postulates that the full static electronic polarizability of
the system can be expressed as a sum of individual bond-polarizabilities. Another as-
sumption is the independency of the individual bond-polarizabilities on their chemical
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environment. For a given bond of an atom pair the polarizability can be written as
[95]

Πij =
1

3
(α1 + 2α2) δij + (α1 − α2)

(
RiRj

R2
− 1

3
δij

)
, (2.12)

where subscripts i and j denote Cartesian coordinates and R is the vector connecting
the two neighboring atoms. α1 + 2α2 describes the isotropic and α1 − α2 anisotropic
contribution, with α1 and α2 giving the polarizability parameters in parallel and
perpendicular directions to the bond. Mean static polarizability of the system can
be written as ᾱ = 1

3
(αxx + αyy + αzz), which is the sum of individual mean bond-

polarizabilities Π̄ = 1
3
(Πxx + Πyy + Πzz) = 1

3
(α1 + 2α2).

As was mentioned in section 2.5.1, Raman-active modes tend to the change polarizabi-
lity of the system. In the non-resonant bond-polarization method the change in pola-
rizability is determined as a sum of individual bond-polarizability changes with respect
to atomic displacements R̃; and are related to actual phonon eigenvectors vµ. Taking
the product of the phonon eigenvectors and the derivatives of bond-polarizability, the
change in total polarizability of the system due to phonon µ is [95]

P
′

µ,ij =
∑

l

[
∂Πl,ij

∂R̃l

]
0

vµ(l)

=−
∑

l

∑
b

((
α
′
1 + 2α

′
2

3

)
R0(l, b) · vµ(l)δij

+
(
α
′

1 − α
′

2

)(
R0i(l, b)R0j(l, b)−

1

3
δij

)
R0(l, b) · vµ(l)

+

(
α1 − α2

R0(l, b)

)(
R0i(l, b)vµ,j(l) + R0j(l, b)vµ,i(l)− 2R0iR0jR0(l, b) · vµ(l)

))
,

(2.13)

which includes the assumption that the bond-polarizabilities depend only on the bond
length. The �rst sum in equation (2.13) goes over atoms l and the second over the
bonds of atom l. R0(l, b) is the equilibrium bond vector and vµ(l) is the eigenvector at
the atom site l. Indices i and j denote Cartesian coordinates with respect to incident
and scattered light polarizations.

Three di�erent empirical polarization parameters are needed and the values used here,
α
′
1+2α

′
2 = 4.7 Å2, α

′
1−α

′
2 = 4.0 Å2 and α1−α2 = 0.04 Å3, are adapted from Ref. [96].

For carbon nanotubes and graphene, the estimation of the polarizability parameters
is rather easy, because all the bonds have the same bond order. In the original de-
scription for fullerenes, more parameters had to be taken into account as there exists
both single and double bonds. Parameters for fullerenes were determined based on
model molecules with similar bonding properties such as hydrocarbons like ethane



2.7 Nudged elastic band method 29

Table 2.2: Bond-polarizability parameters for di�erent carbon-related molecules [96].
α1 + 2α2 α1 − α2 α′

1 + 2α′
2 α′

1 − α′
2

Molecule Bond (Å
3
) (Å

3
) (Å

2
) (Å

2
)

CH4 C�H 1.944
C2H6 C�C 2.016 1.28 3.13 2.31
C2H4 C=C 4.890 1.65 6.50 2.60
C60 C�C 1.28 2.30 ± 0.01 2.30 ± 0.30

C=C 0.32 ± 0.09 7.55 ± 0.40 2.60 ± 0.36
C60 C�C 1.28 ± 0.20 1.28 ± 0.30 1.35 ± 0.20

C=C 0.00 ± 0.20 5.40 ± 0.70 4.50 ± 0.50
SWCNT C=C 0.04 4.7 4.0

and ethylene. Parameters for SWCNTs are determined using interpolation based on
parameters of the fullerenes. Interpolated parameters are adjusted to describe sensi-
bly the Raman spectra of randomly oriented SWCNT, for which relative intensities
will hold well with respect to changes in polarizabilities. In that sense, the static
bond-polarizability approach with uniform tube parameters works also as a good ap-
proximation for systems with minor defects. Only the lowest E+

2 mode is known to
be sensitive to polarizability parameter α1−α2, which is not responsible for the most
important experimental RBM- or G-bands. Table 2.2 lists the parameters for di�erent
carbon materials.

The total non-resonant �rst-order scattering Raman (Stokes) intensity for incident and
scattered light directions is a sum of single bond-polarizability derivatives, equation
(2.13), weighted by the factors depending on the mode energy [95]

Iij(ω) = C

3N∑
µ=1

〈n(ωµ)〉+ 1

ωµ

|P ′

µ,ij|2δ(ω − ωµ), (2.14)

where 〈n(ωµ)〉 = (exp(β~ωµ) − 1)−1 is the thermal occupation of mode µ, and the
dependence on incident and scattered light frequencies is embedded in the constant C.
For zero temperature thermal occupation is then zero. Instead of Dirac delta function
δ(ω − ωµ) also broadening with Lorentzian distribution can be used, similarly to
description in section 2.3 for electron density of states.

2.7 Nudged elastic band method

Molecular dynamics (MD) simulations are one possibility to investigate di�usion. Un-
certainty in MD-simulations � if anything happens in a reasonable timescale � em-
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Figure 2.7: An example of the conditions for initial guess (left) and the optimized minimum energy
path (right) drawn within the equipotential curves. In the middle of the path there is a saddle point,
and the initial and �nal states are �xed into local energy minima. Each sphere denotes one state of
the system on the path. Taken from Ref. [97].

phasize the use of direct di�usion barrier methods. The nudged elastic band method
(NEB) [97] can be used to �nd a minimum energy path (MEP) between given initial
and �nal states of the system, which is suitable for direct di�usion barrier calculations.

The state with the highest energy along the MEP gives the transition state and
de�nes the barrier for the transition process. Energy barrier can be connected to
actual transition rate through Arrhenius equation [98, 99]

νprocess = νtrial exp

(
−Eb

kBT

)
, (2.15)

where νprocess is rate for di�usion (or any other transition process), νtrial is the trial
rate, Eb is the energy barrier for the transition process, and T is the temperature. In
other words, Arrhenius equation describes the chemical reaction rate dependency on
temperature and activation energy, which is observed to behave in many occasions
exponentially. At high temperatures, the reaction rate is closer to the trial rate, while
at very low temperatures, only few of the trial attempts really leads to the transition.
Depending on the transition process, the trial rate can be estimated from the vibra-
tional frequencies in the system. Because di�usion and reconstruction processes are
usually local transitions, for which bond stretching vibrations are relevant, the trial
rate is approximated from the highest vibrational frequencies.

Coming back to the di�usion barrier estimation, the NEB process starts by optimizing
the initial and �nal structures, after which they will be �xed. The process continues by
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guessing the di�usion path with a discrete set of images, from which the �rst natural
choice is to take linear interpolation between the initial and �nal states. By adding
spring interactions between the images, the discrete states along the di�usion path
become connected, namely the elastic band. In addition to forces from the added spring
interactions in the parallel direction, the true forces are included in the perpendicular
direction to the elastic band.

The role of the two force components is the following: the spring force ensures equal
spacing between the images, while the true force will drive the path into the minimum
energy "valley" in the optimization process. Projection into parallel and perpendicular
forces to the elastic band can be then understood as "nudging". Vectors to the two
neighboring images de�ne the tangent of the band for every discrete image. Visuali-
zation of the NEB process is shown in �gure 2.7 with the initial guess on the left and
the optimized minimum energy path on the right, both on top of the equipotential
curves. From MEP, the energy barrier for di�usion can be estimated, which is de�ned
by the saddle point in the example of the �gure 2.7.

De�ning the tangent for each image is critical, because tangent de�nes also the direc-
tion of the elastic band and the forces. The NEB method relies on one intuitive fact:
optimization of the MEP is easiest to start from the high potential, near the saddle
point. The same idea is implied in the approximation used to de�ne the tangents: the
direction of the tangent is always more reliable to estimate to the neighboring image
higher in energy e.g. closer to the saddle point.

The tangent can be de�ned comparing potentials of the neighboring images. If the
potential curve between images i−1, i and i+1 is continuously increasing or decreasing,
the tangent can be written as

τi =

{
τ+
i ; Vi+1 > Vi > Vi−1

τ−i ; Vi+1 < Vi < Vi−1
, (2.16)

where τ+
i = Ri+1 − Ri and τ−i = Ri−1 − Ri. If there is a local energy minimum or

maximum between the images i−1 and i+1, e.g. Vi+1 < Vi > Vi−1 or Vi+1 > Vi < Vi−1,
the tangent is de�ned as a weighted combination of the τ+

i and τ−i

τi =

{
τ+
i ∆V max

i + τ−i ∆V min
i ; Vi+1 > Vi−1

τ+
i ∆V min

i + τ−i ∆V max
i ; Vi+1 < Vi−1

, (2.17)

where the weight is connected to the di�erences in the potentials ∆V max
i = max{|Vi+1−

Vi|, |Vi−1−Vi|} and ∆V min
i = min{|Vi+1−Vi|, |Vi−1−Vi|}. This gives always the maxi-

mum weight for the tangent that is de�ned using the neighboring image higher in
energy and closer to saddle point.

The unit vector τ̂i = τi/|τi| of the tangent in the equations (2.16) and (2.17) connects
the directions of the forces. The spring force parallel to tangent is simply

F spr
i |‖ = k (|Ri+1 −Ri| − |Ri −Ri−1|) τ̂i , (2.18)
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where k is the spring constant. The true force perpendicular to the tangent is given
by the gradient of the potential

∇V (Ri)|⊥ = ∇V (Ri)−∇V (Ri) · τ̂i . (2.19)

The total force for an image is the sum of forces in equations (2.18) and (2.19)

Fi = F spr
i |‖ − ∇V (Ri)|⊥ . (2.20)

To optimize the di�usion path, conventional structure optimization algorithms can be
used; in this thesis the FIRE-algorithm [100] has been used.



3 Results

3.1 Raman spectra of single-walled carbon nanotubes

with vacancies

To have an e�ect, the e�ective size of the defect must go hand in hand with the
length scale of the phenomenon producing the measured observable. To simplify this
with a non-physical example, if one is measuring the population of the whole world,
taking one human away does not a�ect the result. But on the contrary, if the number of
students in classroom, for instance, is measured, one missing person already makes the
di�erence. One fundamental property a�ecting the e�ective size is the compatibility
of the symmetries of the defects and the observable. Continuing with the classroom
example; the e�ect increases immediately, if the missing student should have given
the presentation of the day.

In article I these properties of defects are realized in a more physical example � Ra-
man spectra of single-walled carbon nanotubes with vacancies. Vacancies are one of
the easiest point-defects to construct and are therefore suitable to start with. Al-
though carbon nanomaterials are reported to anneal themselves [25], results give gen-
eral knowledge about the e�ects of point defects on phonon modes of SWCNTs, and
veri�es the sensibility of structural characterization.

Figure 3.1 shows the non-resonant Raman spectra for various di�erent vacancy con-
�gurations calculated with DFTB-method, Section 2.2, and phonon convention de-
scribed in 2.5. The size of the individual vacancy is small, which induces the biggest
changes into the high-energy phonon modes with short wavelengths. Vacancies make
the structural strength of the tube decrease, which lowers the energies of both the
longitudinal and the circumferential high-energy modes. In general, none of the ener-
gies of Raman-active modes increase considerably compared to original non-defective
tube mode energies.

Changes and behavior of the defective tube modes can be explained by the symmetries
of defects with respect to the symmetry of the phonon. If the symmetries of the defects
break considerably the symmetries of the original Raman-active modes, the Raman
spectrum is also changed, because the original Raman-active mode can not exist in the
same form in the defective tube. Unifying the symmetry breaking with the classroom

33
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example, vacancies can be thought to be the missing class student, that should give
their own important contribution to the presentation � for the motion in phonons.
Considering high-energy modes, diversity in the nodal structure of the E+

2 symmetric
mode makes it more stable under defects than E−

1 and A+
0 symmetric modes. As a

reminder, you can check the details of the modes from the section 2.5.1.

The size compatibility become visible on the lowest energy modes, which remain
untouched under considerably large defect concentrations compared to high-energy
modes due to their collective motion characteristics. Collective motion of the atoms
does not get disturbed by small local deformations, because the energy of the phonon
is related to motion of a big group of atoms. As the number of defects is increased
in the system, changes on the low energy modes are also more probable. Adjacent
point-defects merge e�ectively into a bigger point defect or defective section in the
tube and at the same time the e�ective size gets closer to the range of collective
motion. Symmetries play also role for multiple point-defect systems e.g. making the
strength of the tube circumferentially imbalanced throughout the tube length breaks
the symmetry of the radial breathing mode, which must go through severe changes.

The biggest overlap between the modes of the uniform and defective tube modes
gives information about the mode that most probably corresponds to the original
Raman-active mode. Based on the overlaps, measuring the similarity between the
phonon eigenmodes, the e�ective size of the defects seen by the original phonon can
be estimated. Comparison of the average amplitudes within distances from the de-
fect determines the e�ective size i.e. the limit, after which the original uniform tube
eigenvectors coincide with the defective tube eigenvectors of the phonons with the
biggest overlap. Beyond a certain distance the modes cannot be distinguished from
their amplitudes. To make this e�ective size estimation reasonable, the phases of two
distinct modes must be the same, which can be adjusted using symmetry operations
of the system.

The e�ective size of the vacancies is the biggest for the high-energy modes as expected,
and can be very close to zero for collective low energy modes. Figure 3.2 shows an
example of the e�ective size estimation for Raman-active high-energy mode E−

1 . At
the same time it represents one of the largest observed e�ective sizes for a single
vacancy. None of the e�ective sizes for the tube with a single vacancy exceeded 10 Å.
It is good to note that although the size estimation is approximative, it supports both
the symmetry and size e�ect interpretations.
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Figure 3.2: Averaged magnitude of the vibrations inside di�erent distances from vacancy for the
highest E−

1 symmetry corresponding modes in Fig. 3.1(b) type of one vacancy system (empty sym-
bols). Percentages denotes maximum overlap for both represented vacancy modes with respect to
original degenerate E−

1 mode in uniform tube (�lled symbols). Dotted line shows the radius inside
of which the vacancy considerably a�ects the motion of the atoms. Taken from paper I.
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3.2 E�ect of bending on Raman active vibration mo-

des of carbon nanotubes

Bending is a very common mechanical deformation. E�ects of bending on Raman-
active phonon modes in SWCNTs are investigated in article II. Changes in modes can
be understood by considering changes in bond strengths, being stronger in inner and
weaker in outer part of the bending. This problem does not get directly reduced into
behavior under pure compression or stretch, which would make the energy of all of the
modes either increase or decrease. Because bond strengths are not constant throughout
the tube, but change continuously along the circumference, di�erent modes behave
di�erently and both decreasing and increasing energies with respect to bending exist.

The �rst computational problem in investigation of bending is to introduce it in the
�rst place. In investigation of phonons, �xing atoms is not possible, because that
makes the e�ects of bending to be wiped out by the e�ects of �xed atoms them-
selves. Continuous periodic bending conditions are desired with totally freely moving
atoms. One nice option to bend a system without any constraints is to consider wedge
boundary conditions shown in �gure 3.3, which we developed in this work.

Periodic images are added by rotation and the shortest distance, considering also
periodic images, de�nes the vector between the atoms. In classical mechanics this is
already enough for a working scheme. In quantum mechanics choosing the direction
of the quantization axis causes extra problems. Requiring that the direction of the
quantization axis changes symmetrically under rotations due to the periodic wedge
boundaries, also quantum mechanical calculations are accurate for any system. For
DFT-method described in the Section 2.1 and Appendix A these boundary conditions
could be more di�cult to apply than for DFTB, that was chosen for all of our Raman
studies and introduced in the Section 2.2 and Appendix D.

For carbon nanotubes with relatively small bending angles the approximative ap-
proach is suitable, because of the structural sti�ness and complex bond interface at
the boundaries. Approximation divides the error that is made in an improper direc-
tion of quantization axis in periodic images between the two boundaries. Forces and
energies are not exact near the boundaries, but do not depend anymore on the bound-
ary on which they are calculated. In general, the error caused by quantization axis
is relatively small and does not a�ect the shape or the optimized length of the bent
tubes.

Bending breaks the symmetry along the circumference of the tube. In contradiction
to the symmetry breaking due to the vacancies described in section 3.1, this breaking
is continuous. Instead of the uniform interaction strength distribution, bond strength
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Figure 3.3: Schematic of the wedge boundary condition. Wave functions satisfy ψ(rB) =
ψ(R±φ(rB)), where rB is a point on either boundary (with one k-point along tube axis); opera-
tion R±φ(rj) rotates rj an angle ±φ around the wedge apex. We de�ne the vector rij from atom i
to atom j as equal to shortest of vectors (Rφ(rj) − ri), (R−φ(rj) − ri) or (rj − ri), where ri and
rj are atom positions within the simulation box. For some atom pairs rij crosses the boundary and
renders Newton's third law invalid. Taken from paper II.
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Figure 3.4: Change of the high-energy phonon mode for a periodic chain of atoms connected with
simple springs. Figures show two di�erent systems with either continuously changing (A) or uniform
spring constant distribution (B). Variation of the spring constant along the chain is shown in lower
�gure. Arrows above and below the chain denotes the phonon eigenvectors and colors in curves
di�erent phases. Distance of the �lled curve from the chain is comparable to the amplitude of the
actual phonon eigenvectors and guiding lines are drawn to highlight the node migration.
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Figure 3.5: Variation of bond lengths for (13,0) (left) and (6,6) (right) tubes as a function of bending
parameter Θ = D/2R, where D is tube diameter and R radius of the curvature measured from the
axis. Bonds are divided into mostly parallel (||) and mostly perpendicular (⊥) bonds with respect to
tube axis (in and out refer to the sides of torus). Inset shows the e�ective nearest neighbor spring
constant, calculated by scaling single graphene layer; the inset was used to map the bond length
scale (left-hand axis) into spring constant scale (right-hand axis). Bonds parallel to tube direction
will be changed continuously along the circumference of the tube from short in inner side to long in
outer side of the bending. Taken from paper II.



3.2 E�ect of bending on Raman active vibration modes of carbon

nanotubes 41

varies continuously along the circumference. Symmetry breaking a�ects the nodal
division of the phonon modes especially at high energies. Because of the collective
nature, the low-energy modes hardly change at all. Change in high-energy modes
can be visualized with a simple model of chain of atoms connected periodically with
springs. Figure 3.4 shows the migration of the nodes between the systems with uni-
form and continuously changing distribution of spring constants. Vibrating sections
closer to weak interactions get wider, while the nodes and antinodes with changing
amplitudes migrate towards stronger interactions. In addition, vibrations vanish to-
wards the weakest interactions, which makes the node area e�ectively bigger. The
relative variation in the spring constant is �tted to the actual change in bonds of the
bent nanotubes, modeling the e�ective interaction strength on di�erent side of the
bending. Actual interaction behavior for bonds in zigzag and armchair tubes is shown
in �gure 3.5.

Figure 3.6 visualizes changes in the high-energy modes of zigzag (13,0) and armchair
(6,6) tubes due to bending. Bending parameter is de�ned as Θ = D/2R, where D is
tube diameter and R radius of the curvature measured from the axis. The same kind
of changes are visible for the nanotube as for the simple chain described previously.
Due to bending, the nodes get denser and vibrating sections narrower in either inner
or outer part of the bending with changed amplitudes. Migrating nodes and antinodes
induce polarizability change for some speci�c new modes that become Raman-active,
at least in non-resonant picture, that was represented in section 2.6.1. One specialty
is the splitting of the degenerate modes to be visible in di�erent polarization pictures,
which is caused by the di�erences in nodal structure due to bending. Being orthogonal
to each other, one of the degenerate modes has nodes and the other antinodes at the
inner and outer part of the bending. Lengths of di�erent vibrational sections along
the circumference is the same in the degenerate mode with nodes in inner and outer
part of the bending, whereas the balance is disturbed in the other degenerate mode
with antinodes in inner and outer part of the bending.

Figure 3.7 represents the high-energy non-resonant Raman spectra for three di�erent
kind of tubes, zigzag, armchair and chiral showing the contribution from the G-band
modes. The changes in spectra show the newly appeared Raman-active modes as new
spectral peaks and the behavior of the peaks is directly related to changes in modes.
Roughly, the more the nodal division and antinodes resemble the originally Raman-
active modes, the more intensive the new Raman-active modes become. Change in the
mode energies depends on the side on which the vibrations concentrates as bending
increases. If the atoms vibrate mostly on the inner part where bonds get shorter, the
energy of the mode will increase. On the other hand, if the atoms vibrates mostly on
the outer part, where bonds get longer, the energy of the mode will decrease.

Change in the mode energy is dependent on the tube chirality and the type of the
mode. For example there is a linear increase of ∼ 25 cm−1/% for high-energy mode A+

0
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Figure 3.6: Qualitative view of the nodes and antinodes of selected vibration modes for (13,0)
and (6,6) tubes. Thick blue line represents an antinode, red an antinode with opposite phase and
vanishing line a node; the actual direction of the vibration amplitude is either circumferential or
along tube axis. Modes are for straight or bent tubes as indicated on the left. The symbols below
show the polarization pictures where the bent modes become most visible. Migration of the nodes
and antinodes to both inner and outer part of the bending is observed. The degenerate individual
modes from the same symmetry will be split under bending into di�erent polarization spectra. Taken
from paper II.
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in zigzag tube (13,0), as for armchair tube (6,6) the change is much less ∼ 10 cm−1/%.
The di�erence can be explained with a few insights: �rst, characteristics of the A+

0

high-energy mode changes from longitudinal to circumferential between zigzag and
armchair, and second, the chiralities of the tubes are di�erent. The latter de�nes
how the bonds are arranged along the tube direction, and further a�ects the average
interaction strength seen by the phonon. All of the chiral tube modes are restricted
mainly by these two conditions. Estimation of the mode behaviour accurately for
arbitrary chirality and mode is impossible based on only three di�erent tubes. The
behaviour of the A+

0 symmetric modes is the most predictable, and should fall in chiral
tubes into the range de�ned by the zigzag and armchair tubes.

Raman measurements for individual straight tubes is used to determine the chiral-
ity of the tube, as was mentioned in the Introduction. Even though bending is not
straightforward to apply, it could possibly o�er an additional way to con�rm the exact
chirality out of those few possibilities, because of the chirality-dependent behavior of
the high-energy modes under bending. Furthermore, there is no need to break the
tube and go beyond the critical buckling limit. Because of the reversible control, the
tubes can be used afterwards in applications. Even more useful are these observations
for studying nanotube serpentines, that might be the way in the future to assemble
nanotubes for new applications.

3.3 Self-passivating edge reconstructions of graphene

Zigzag and armchair have for long time been considered as the only two stable edges
of graphene. Article III predicts that in addition to the conventional edges, there is
a third energetically even more favorable edge. At the same time these results call
for a one new emphasis on graphene research. Article IV compares the vibrational
properties and Raman spectra of the new edge and of the zigzag and the armchair
edges.

Figure 3.8 shows the reconstructions for graphene edge, optimized with DFT and
GPAW (Section 2.1), which are investigated in article III. The most interesting re-
construction is the uppermost edge with alternating heptagons and pentagons. Edge
energies are shown in �gure 3.9, which reveals that the best edge energetically is the
reconstructed zigzag edge. It is even slightly lower in energy than the armchair edge.
Comparison of binding energy of the molecular hydrogen H2 to adsorption energy of
hydrogen atom on the edges shows that single hydrogen atom wants to remain at-
tached into H2 molecule rather than detach and adsorb on the reconstructed zigzag
edge. This makes the heptagon-pentagon edge reconstruction self-passivating. If there
is hydrogen adsorbed on the edge, zigzag and armchair are the lowest in energy. In
other words, to observe the reconstruction experimentally, very strict vacuum condi-
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Figure 3.8: The geometries of graphene edges: (a) reconstructed zigzag [zz(57)] (later known also
as reczag edge), (b) armchair (ac), (c) reconstructed armchair [ac(677)], (d) zigzag (zz), and (e)
pentagonal armchair [ac(56)]. The numbers in parenthesis denote the number of vertices in edge
polygons. Some bond lengths (in Å) and bond angles are shown on the right: The bond angles are
α = 143◦, β = 126◦, γ = 148◦, and δ = 147◦. All geometries are strictly in-plane. Taken from paper
III.



46 Results

Figure 3.9: The edge energies of carbon nanoribbons. Energies are plotted as a function of the
ribbon width for the edges in �gure 3.8. The edge energy for zz(57) geometry drops more than
0.3 eV/Å compared to zz and has in general the lowest edge energy. Although calculation was not spin-
polarized, the energy di�erence remains the approximately the same also with spin-polarization [101,
102]. This result infers that zigzag edge is metastable without hydrogen passivation. Taken from paper
III.

tions are required.

Di�erence between zigzag and reconstructed zigzag edge can be seen in the electronic
structure and STM image shown in �gure 3.10. Reconstruction shifts the dangling
bond bands away from the Fermi energy and triple-bonds � the signature of passi-
vation � are seen in theoretical STM-image as isolated bright islands on the edge.

Figure 3.11 shows the non-resonant Raman spectra of graphene ribbons with zigzag,
armchair and reconstructed zigzag edges calculated with DFTB, Section 2.2. The
spectral details � allowing the identi�cation of the reconstruction � are the edge-
localized modes and the triple-bond vibrations. The stretching modes of the triple-
bonds are well separable in energy to other modes, and exist only for reconstructed
zigzag and armchair ribbons. Breathing and G-band modes do not change in shape
or energy, because in them none of the atoms vibrate on the edge.

Reconstruction releases the tension caused by the dangling bonds on the zigzag edge,
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Figure 3.10: The electronic band structure of zigzag and zz(57) edges. (a) and (b) show the band
structure for 34 Å wide zigzag and zz(57) nanoribbons, respectively. Dashed line is the Fermi level.
The colored bands were identi�ed directly by visual inspection of the wave functions. (c) and (d)
show the height pro�les of simulated scanning tunneling microscope images in the constant current
mode of the respective edges (height variations > 2 Å), formed by integrating the electron density
from occupied bands within 0.1 eV of the Fermi energy. The degeneracies at the gamma point are
2 and 4 for the dangling bonds and the �at band, respectively. The reason for non-�at �at-band
of zigzag edge is in the spin-polarization that was not taken account. Reconstructed zigzag edge
is not spin-polarized in general. After all the main di�erences in both electronic structure and in
STM-image will remain the same. Signs about the passivation, due to the reconstruction, is realized
in the shift of dangling bond bands and in the bright nearly isolated triple-bond islands. Taken from
paper III.
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Figure 3.11: Raman spectra of zigzag, reconstructed zigzag, zz(57) (=zigzag57), and armchair
graphene nanoribbons (di�erent rows). Columns denote di�erent incident and scattered light pola-
rization spectra (uppermost symbols xx, xz and zz). Edge-localized modes are assigned with symbol
(L). Symbols (1) and (2) are the spectral peaks di�erent from zigzag and armchair ribbons. Raman
spectra are drawn using Lorenz distribution with full width at half maximum of 5 cm−1. Charac-
teristics that could be used to identify the reconstructed zigzag edge are the edge-localized modes
including triple-bond stretching on high energies. Taken from paper IV.
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Figure 3.12: On the left the total and on the right the edge-weighted vibrational density of states of
zigzag, reconstructed zigzag, zz(57) (=zigzag57), and armchair graphene nanoribbons. Contribution
of di�erent directions in vibrational states is shown in di�erent patterned areas. Vibrational density of
states is broadened with normal distribution with σ = 45 cm−1, chosen to illuminate general changes
in VDOS under reconstruction. VDOS of the reconstructed zigzag edge resembles the same width
armchair, rather than zigzag edge VDOS. Meaning of the edge is dominant for the �ne structure of
the VDOS pro�le. Taken from paper IV.
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but increases the rigidity of the reconstructed edge. Figure 3.12 shows the total and
edge-weighted vibrational density of states (VDOS) separated into di�erent directions.
VDOS pro�les were calculated with DFTB, Section 2.2. The ribbon with reconstructed
zigzag edge resembles the same width armchair, rather than zigzag edge vibrational
density of states. Characteristic triple-bonds can be seen in the high energies for both
reconstructed zigzag and armchair ribbons, di�erent from zigzag ribbon. In general
the increase in the energies of the vibrational states located on the edge is visible in
all directions, which con�rms the increased rigidity of the reconstructed zigzag edge
compared to the zigzag edge.

3.4 In-plane adsorption and di�usion of gold atoms

in graphene

Y.Gan et.al. reported in 2008 in-plane di�usion of metal atoms in axial direction of
multiwall carbon nanotubes, in-plane of graphene and along graphene edge [70]. The
observed di�usion of Au and Pt using transmission electron microscope, discussed
in the Introduction, were unexpectedly similar in all of the systems, with activation
energies of about 2.5 eV. Article V reports theoretical results for in-plane adsorption
of gold atoms in di�erent vacancies of graphene and estimates di�usion barriers and
possible mechanisms. Based on theoretical results and information given in the expe-
riment, our interpretation about the di�usion is that it is rather radiation-enhanced
than thermally activated.

Figure 3.13 shows the formation energies for vacancies and Au-vacancy complexes
separately calculated with DFT, Section 2.1. The di�erence of these two energies gives
the adsorption energy for gold atoms into the given vacancy. The lowest formation
energy for Au-vacancy complex gives the optimal in-plane site for the gold atom,
which is the double vacancy. In other words, if the gold atom is assumed to be in-
plane position, it prefers the double vacancy; and without any additional disturbances
the gold atom will eventually remain in the double vacancy after getting there. The
adsorption energies range from 3 to 6 eV for most of the vacancies, which gives reason
to assume strong binding. Binding of the gold atom to neighboring carbon atoms is
not supported in a triangular four-atom vacancy, from which the gold atom is easy to
displace.

Analysis of projected density of states, described in Section 2.3, and wavefunctions
for the gold atom and neighboring carbon atoms in double vacancy con�rms strong
chemical binding. Figure 3.14 shows that both in-plane and out-of-plane orbitals bind
together in several ways. It is especially the binding of out-of-plane orbitals together
that restrict the gold atom to be in-plane position.
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Figure 3.13: Energies for carbon vacancies in graphene (empty squares), and formation energies for
Au in graphene vacancies (�lled squares; optimized local geometries shown in insets). The di�erence
between the two curves is the Au adsorption energy. Apart from the Au in single vacancy, all struc-
tures are planar. The lowest formation energy for Au-vacancy complex reveals the double vacancy
to be the optimal in-plane site for the Au atom. Taken from paper V.
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Figure 3.14: Density of states for s−, p− and d−orbitals of Au (above abscissa) and the four
neighboring C atoms (below abscissa). Insets show the wave functions, color standing for the phase,
for selected s−, p− and d−dominated contributions for Au. Charging of Au according to Bader
analysis is +0.5e. Orbitals bind together in various ways referring to strong bonding of Au atom in
double vacancy. Especially binding of out-of-plane orbitals restrict the out-of-plane motion of the
gold atom from above and below the graphene layer. Taken from paper V.
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If the in-plane di�usion is completely thermal, the optimal vacancy site must be
involved. Figure 3.15 shows the examples of the di�usion paths and energy barriers
for the gold atom in the double vacancy, which were calculated with DFT and NEB,
Sections 2.1 and 2.7. The lowest energy barriers are large (≥ 4 eV) compared to the
experimental activation energies (≈ 2.5 eV). Furthermore, the optimized di�usion
paths with the lowest barriers do not support in-plane di�usion, because either the
gold or the carbon atom has to be taken considerably out of the plane. The closest
in-plane is the path III in �gure 3.15, which has already a 7 eV energy barrier.

Di�usion barriers for the gold atom in the double vacancy complex do not match with
thermal activation. Lower in-plane di�usion barriers are possible, but only for bigger
vacancy sites. Figure 3.16 shows one example of di�usion path for triple vacancy with
even lower than 2 eV energy barrier. Di�usion in bigger than double vacancies would
be justi�ed due to TEM-imaging that constantly creates at least single vacancies
into the system and excites the motion of carbon atoms. Single-atom vacancies and
interstitial atoms di�use rapidly [32, 103, 104] and can instantly merge and anneal
existing vacancies.

In addition to big vacancies, the di�usion barrier for the gold atom in the single
vacancy can be much lower compared to the double vacancy [105]. Di�usion of the
Au in the single vacancy happens out-of-plane and does not in this respect coincide
with the experimental observations. As �gure 3.13 showed, formation energies of the
Au-vacancy complexes do not support the existence of single vacancies either; at
least, the existence of double vacancies can not be overruled. Out-of-plane positions
were not seen for any structure in experiment or in our MD-simulations. Inside the
multiwalled carbon nanotubes the out-of-plane motion is in general unlikely. If the in-
plane di�usion is possible in multiwalled carbon nanotubes, there should exist similar
mechanism also in graphene, which requires a consistent interpretation. After all,
the mass di�erence of gold and carbon atoms and the binding properties are against
thermally activated out-of-plane motion.

Reanalyzing the TEM-e�ect, di�usion and displacing rates coincide with each other,
which gives the most prominent explanation for the experiment to be radiation-
enhanced di�usion. This interpretation would explain the similarities between the
di�usion of di�erent metals in di�erent dimensions and in systems, because un-
der radiation the metal-carbon interface does not play such a crucial role. In the
radiation-enhanced interpretation, temperature creates the background conditions
and the TEM-beam makes the di�usion of gold atom possible by opening a di�usion
route in one way or another. Figure 3.17 shows one possibility for radiation-enhanced
di�usion process including a loop of merging of the vacancies, di�usion, and anneal-
ing. In radiation-enhanced interpretation the barrier for the direct di�usion of double
vacancy is also lower, because the motion of carbon atoms around the gold atom is
excited.
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I  4.0 eV  /  II  5.8 eV

III  7.0 eV

IV  7.5 eV

Figure 3.15: Di�usion mechanism paths and their transition state energies for Au in double vacancy.
Numbers help to visualize C atom identi�cation during Au jump; blue for C atoms that change
positions. Paths were optimized using nudged elastic band method with almost linearly interpolated
initial guess. Path I contains out-of-plane motion of Au, whereas path II contains out-of-plane motion
of C(1). The lowest energy barrier, given by path I, is much larger than the experimental observation.
Taken from paper V.
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Figure 3.16: An example of the di�usion path for Au in triple vacancy having even lower than
2 eV energy barrier. The di�usion path consists of three moving blue carbon atoms C(2)-C(4) (blue)
changing their initial positions shown on the left into �nal positions shown on the right, and �lling
the empty side of the triple vacancy.

3.1. 2.

Figure 3.17: One possible sketch for the radiation-enhanced di�usion mechanism. In part 1., the
single vacancy merges with the Au in double vacancy. In part 2., Au is in triple vacancy after merging
and can di�use easily. In �nal part 3., after the di�usion of Au in triple vacancy, the interstitial carbon
atom anneals the empty side. Because of the constant TEM-imaging, the loop can start again from
the beginning.
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4 Summary & Outlook

In science the interface of experiments and theory is a two-way road, where predictions
and con�rmations shake hands. If a prediction is acknowledged, it usually happens
after the con�rmation. Although it sounds sel�sh, the scienti�c goal of the researcher is
to be correct with his/her claims, and because of that, already believing to be correct
is thrilling. There is a narrow gap from a sel�sh to a healthy view on science, from
which the latter is purely guided by the joy from solving problems and understanding
the physics behind them.

We have contributed theoretical research in close relation to experiments from both
sides; predicting but also explaining experiments. Related to the papers of this thesis,
the most important prediction in my opinion was the metastability of the zigzag edge.
Reconstructed zigzag � now termed the reczag edge � was found to have even lower
edge-energy than armchair. The experimental proof was found very soon, within a year
from our prediction. Aberration-corrected TEM-images published in Science [71] with
outstanding resolution reported behavior of the hole in a single layer of the graphene.
Existence of the reczag edge is clear in those experimental images, as shown in �gure
4.1, but it was unfortunately overlooked in the original Science paper. There are
several frames in the supporting material video, that show rather long segments of
reczag edges, that sometimes last several seconds. Because of the TEM-conditions,
the lower edge energy cannot be con�rmed experimentally and specially not all of the
zigzag edges were reconstructed during the experiment.

Something can be still interpreted due to the experiment. When the carbon atoms
are displaced away from the edge, the underlying hexagonal lattice reveals only either
zigzag or armchair edges. In addition, the reczag edge as well as armchair edge need
two carbon atoms to repair themselves. It is also good to note, that compared to the
other local reconstructions and defects seen during the experiment, the reczag edges
are over all in majority. Things that could possibly a�ect the appearance di�erences
between zigzag and reczag edges during the measurement are charging of the edge
by TEM-beam and corners of the hole in the graphene layer. Corners in the hole
can release the tension present on zigzag edge making the it more stable. The size
of the vacancy a�ects the length of the edges, which at the same time decreases the
possibilities to reconstruct the edge.

E�ects of bending on Raman-active modes of carbon nanotubes have also received
interest among experimentalists. Carbon nanotubes can be assembled as serpentines

57
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B

C

A

Figure 4.1: Theoretically calculated structures of reconstructed zigzag (right) edge side by side with
zigzag edge (left) in (A). (B) and (C) show the experimental proof for existence of the reconstructed
zigzag edge. Bright areas at the edge can be identi�ed to triple bonds characteristic for both recon-
structed zigzag and armchair. The di�erence in edge pro�les of reconstructed zigzag and pure zigzag
is obvious. Taken from Ref. [71].
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Figure 4.2: Scanning electron microscope (SEM)-image of nanotube serpentine on miscut quartz
substrate. Parallel straight sections coincide with the step edges of the substrate (s-vector). Vector
u denotes the direction of the gas �ow, which guides the landing of the growing nanotube on the
substrate. Taken from Ref. [38].

on speci�c miscut substrates like quartz (vicinal α-SiO2) shown in �gure 4.2, and can
have strong local curvatures [38]. Measuring the Raman spectra along the nanotube
from the di�erent sections of serpentines, changes due to increase in bending can be
obtained. Raman measurements for this kind of systems have been already done and
reports are on the way. The results con�rm our predictions for di�erent G-band mode
behavior under bending [106].

On the other hand, explaining already existing experiment [70] was the main ambi-
tion of the article V reporting gold atom adsorption and di�usion in the graphene
plane. After the experiment in Ref. [71], which reported the dynamics of the hole
in graphene under TEM-conditions, we could put also our alternative interpreta-
tion about radiation-enhanced di�usion better into a perspective. Growth of the big
vacancy and excitation of the motion of carbon atoms are inevitable under TEM-
imaging. The experiment about the hole dynamics in Ref. [71] was for single layer
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graphene, while the experiment about metal atom di�usion in-plane of graphene in
Ref. [70] has two to three graphene layers. Although the lattice structure beyond
the edge seems to be quite stable in the experiment of Ref. [71], in multi-layer carbon
structures the generation of small vacancies with TEM is more probable than in single
layer structures. After all the acceleration voltage was much higher, around 300 kV in
the di�usion study in Ref. [70] compared to hole dynamics study in the Ref. [71] with
acceleration voltage around 80 kV. Both of these facts gives good reason to assume
excited motion of carbon atoms and existence of single and double of vacancies due
to TEM-beam during the metal atom di�usion study in Ref. [70].

There are always ways to do things better. Considering this thesis, resonant Raman
calculations would have improved the reliability and extension of the results e.g. giving
directly comparable intensities to experiments and information about the D-band. To
explain changes in the modes themselves, the same investigations should have still
been performed as in papers I, II and IV.

Can there be something more general to be understood based on the results? Or could
the observations be used to improve old or to invent something completely new? Those
are the questions, that should be asked after every research project. Strong binding
re�ects usually better conduction properties, if there is conduction at all. One rele-
vant problem related to strong binding of metal atoms in-plane of graphene would
be to investigate conduction and mechanical properties of a direct contact of metal
electrode and graphene through vacancies. These contacts could be furthermore com-
pared to contacts done by for example oxygen plasma treatment. If the direct contact
improves considerably conduction properties compared to the non-covalent graphene-
metal contacts or contacts through anchor molecules between them, their properties
and use in real applications should be investigated. At the same time understanding
how to control metal atoms in-plane of graphene would become crucial. Experimen-
tally this may not be too di�cult, because selective irradiation to form vacancies can
be already done and adsorption of metal atoms to these preconditioned vacancies is
already observed. Similarly it is true that metal atoms can clusterize around plasma
treated or pure vacancies in carbon nanostructures. This kind of study would in my
opinion give great insight for understanding metal-carbon nanostructure contacts in
general. Attachment of electrodes to any point of the layer through vacancies rather
than only to the edges would have plenty of advantages. In addition to contacts, sys-
tems with di�erent concentration of metal atoms in graphene could have also other
interesting properties.

The generalized boundary conditions of di�erent symmetries can be useful for further
research, not only for Raman study of carbon nanotubes. Wedge boundary conditions
allow investigation of all kind of properties with respect to bending based on quantum
mechanical description. To give some examples, di�usion of vacancies or ad-atoms in
graphene with respect to bending can be studied in detail, small portion of multi-
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walled carbon nanotubes with several layers can be constructed with small number
of atoms, and properties of wiggly nanotube structures like serpentines can be calcu-
lated as well; all without any additional constraints, only applying speci�c boundary
conditions. One can consider for example boron-nitride tubes and try to �nd out the
reasons behind the current increase under bending and separate them from e�ects
caused by contacts to electrodes. In this problem the �rst obvious observable to look
would be the electron density of states, that is directly given in DFTB.
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Appendix A:

From many-electron problem to

Kohn-Sham equations

The following description about DFT is gathered from several di�erent references,
that will be cited separately. The similar kind of overviews can be found from many
reviews about DFT, including Refs. [60, 107] that are used here. Before going to actual
basic principles of the density functional theory, let us formulate general many-electron
problem. The Hamiltonian consists of kinetic T̂ and potential part V̂ , latter including
Coulomb interaction between electrons, and interaction of electrons to nuclei and
external �elds [60]

Ĥ =T̂ + V̂ee + V̂ext

=
N∑

i=1

1

2
∇2

i +
∑
i6=j

1

|ri − rj|
−

N∑
i=1

M∑
m=1

Zm

|ri −Rm|
+ V�eld , (A.1)

where nucleus m has charge Zm in position Rm and electrons are located in ri. All
the equations in this chapter are written in atomic units.

Due to Born-Oppenheimer (BO) approximation electron and nuclear parts of wave-
function and Hamiltonian can be separated Ψtot = ΨelΨnuc. In other words, because
of the big mass di�erence, nuclei a�ect on electrons e�ectively through their �xed
positions. Under BO-approximation the time-independent Schrödinger equation for
electrons is

ĤΨj = εjΨj , (A.2)

where Ψj are the many-electron eigenfunctions and εj eigenenergy of the system.
Eigenenergies of the many-electron problem have the lowest limit, the ground state
energy ε0 ≤ εj = 〈Ψj|H|Ψj〉 ; ∀ j 6= 0, which is known as Rayleigh Ritz principle [108].

Because electrons are fermions the wavefunction must obey Pauli principle and be anti-
symmetric with respect to electron exchange rnσn → rmσm [107]. |Ψ(r1σ1, ..., rNσN)|2
describes the probability to �nd the electrons in their positions ri with spin σi and
integration of the square of the wavefunction over the all space must give one. Elec-
tron density can be constructed using the probability interpretation from the electron
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wavefunction

n(ri) = N

∫ ∫
...

∫
|Ψ(r1σ1, ..., rNσN)|2d3r1...d

3ri−1d
3ri+1d

3rN . (A.3)

At this point we enter the density functional theory, whose soul is the Hohenberg-Kohn
theorem: The ground state wavefunction of the system can be uniquely determined
by the ground state electron density [61]. Further, also the ground state potential is
uniquely determined by the ground state electron density. In other words, there is a
unique mapping between ground state electron density, wavefunction, and potential.
Every ground state observable inherits the same unique connection to electron density
through the ground state wavefunction.

Minimizing energy due to variational principle with respect to electron density gives
the ground state electron density n0 and ground state energy E[n0] [107]

δE[n]

δn(r)
= 0 ⇒ n0, E[n0] , (A.4)

where energies obey E[n0] ≤ E[n] ; n 6= n0. Using electron density in equation (A.3)
the total energy of the system can be written as a sum of the universal functional
F [n] = T [n] + Vee[n], same for all many-electron systems, and functional due to
external potential Vext[n]

E[n] = F [n] +Vext[n] = T [n] +Vee[n] +

∫
n(r)

(
−
∑
m

Zm

|ri −Rm|
+ V�eld

)
dr . (A.5)

The Kohn-Sham method [62] takes the kinetic and potential energies of a model
non-interacting system and shifts the missing information about the true interac-
tions into an extra term called exchange-correlation energy Exc. The model system of
non-interacting electrons gives the same ground state density as the true interacting
system, which follows from the Hellman-Feynman theorem [107]

dEλ

dλ
= 〈Ψλ|

∂Hλ

∂λ
|Ψλ〉 , (A.6)

where Hamiltonian Hλ depends on scaling parameter λ of Coulomb interactions be-
tween electrons. Integration of the equation (A.6) from non-interacting λ = 0 to in-
teracting λ = 1 gives the equality between the electron densities of the model and the
true systems. Hellman-Feynman theorem indicates that the total energy of interacting
many-electron system can be always found doing just one-electron theory.
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Due to the non-interacting approach in Kohn-Sham method, the ground state wave-
function Ψ(r1σ1, ..., rNσN) can be written as a simple Slater determinant

Ψ[n](r1σ1, ..., rNσN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1σ1) . . . φ1(rNσN)

. .

. .

. .
φN(r1σ1) . . . φN(rNσN)

∣∣∣∣∣∣∣∣∣∣
, (A.7)

where φ(riσi) are so-called Kohn-Sham orbitals. The total energy of Kohn-Sham sys-
tem is a sum of non-interacting kinetic and potential energy parts and exchange-
correlation term

E[n] = TS[n] + Vee[n] + Vext[n] + Exc[n] , (A.8)

where the external potential is represented in equation (A.5) and TS[n] is the kinetic
energy part of the non-interacting electrons

TS[n] =− 1

2

N∑
i=1

∫
d3rφ∗i (rσ)∇2

i φi(rσ)

Vee[n] =
1

2

∫ ∫
d3rd3r′

n(r)n(r′)

|r− r′|

Vext[n] =

∫
d3rvext(r)n(r) . (A.9)

The exchange-correlation energy functional is the di�erence between the exact energies
of the real interacting system and the energies of the non-interacting model system

Exc[n] = FHK [n]− Ts[n]− Vee[n]− Vext[n] , (A.10)

where FHK [n] is the exact energy from the Hohenberg-Kohn theorem only. The func-
tional derivative of the exchange-correlation energy with respect to electron density
determines the exchange-correlation potential. Because there is not exact exchange-
correlation functional, it must be approximated. This is the subject of Appendix B.

The Kohn-Sham Hamiltonian is exact if the exchange-correlation functional is exact.
The total Hamiltonian of the Kohn-Sham system can be written in terms of single
particle Hamiltonians hs

Ĥ =
N∑
i

hs(ri) =
N∑

i=1

(
−1

2
∇2

i + vs(ri)

)
, (A.11)

where vs includes the potential components of equation (A.1), but now in addition
also the exchange-correlation potential vs(r) = vee+vext+vxc. After these assumptions
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the problem diminishes to a set of single-particle Schrödinger equations, that can be
solved separately (

−1

2
∇2 + vs

)
φi(rσ) = εiφi(rσ) . (A.12)

Electron density of equation (A.3) can be written in the Kohn-Sham approach

n(r) =
∑

σ

N∑
i=1

|φi(rσ)|2 (A.13)

and the Kohn-Sham potential

vs(r) = vee + vext + vxc , (A.14)

which �nalizes the Kohn-Sham equations (A.12)-(A.14), that must be solved self-
consistently. Numerically, the procedure starts with an initial guess for electron density
n, which determines the Kohn-Sham potential vs, and further gives a new electron
density. The loop n → vs → n → . . . goes on up to self-consistency in electron density
and potential.

Forces for atoms can be solved from the total energy of the system, based on Hellman-
Feynman theorem in (A.6), by di�erentiating the Hamiltonian with respect to nuclei
positions. Forces are needed in the optimization of the ground state structure and
atomic motion in DFT-based molecular dynamics simulations. For the local energy
minimum structure all of the forces approach zero.
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From local density to generalized

gradient approximation

The next description is mainly based on the original paper of PBE, GGA-functional,
that can be found from Ref. [74]. The exchange-correlation energy is one of the critical
parts in the density functional theory to have right physics, although its contribution
to total energy is comparably small. Exchange-correlation potential can be solved
exactly only for the homogeneous electron gas; the local density approximation (LDA)
is the �rst step in approximations [60]. It approximates the electron density to be
constant around each position and de�nes the exchange-correlation functional using
an analytic solution for homogeneous electron gas

ELDA
xc [n] =

∫
d3rn(r)εxc(n) , (B.1)

where the exchange-correlation energy density εxc(n) = εx(n) + εc(n) can be de-
termined from the homogeneous electron gas exchange-correlation potential through
relation[108]

vLDA
xc [n(r)] =

dεxc

dn

∣∣∣∣
n=n(r)

= −
(

3

π
n(r)

)1/3

. (B.2)

LDA works well only for systems with slowly varying density pro�les and, naturally,
the more the system reminds the homogeneous electron gas, the better is LDA ap-
proximation. The local spin density approximation LSD [107, 109] is a version of LDA
where the spin is taken account.

For systems with stronger density variations corrections are needed. The next exten-
sion is to take into account gradient corrections to the density. Gradient corrections
can be derived formally by taking expansion on the density and its gradients. With
�rst order corrections gradient expansion approximation (GEA) functional is estab-
lished; more extended generalized gradient approximation (GGA) functionals includes
also higher order terms[60]. Compared to the LDA functional in equation (B.1) GGA
functional depends also on density gradient ∇n [74]

EGGA
xc [n] =

∫
d3rn(r)εxc(n,∇n) . (B.3)

67



68 Appendix B

The critical point is to determine a suitable form for εxc(n,∇n). One way is to write
it in terms of an enhancement factor Fxc and the homogeneous electron gas exchange-
correlation energy εunif

x

EGGA
xc [n] =

∫
d3rn(r)εunif

xc (n)Fxc(rs, ζ, s) , (B.4)

where Fxc depends on the Wigner-Seitz radius rs giving information about the electron
density, spin-polarization ζ, and dimensionless, renormalized density gradient s. This
interpretation is used in the PBE-formulation [74], that is presented next.

Fitting the exchange-correlation functional to produce exact experimental results is
one option, but has often limited physical grounds out of their �tting ranges. Perdew,
Burke and Ernzerhof reported in 1996 PBE version of GGA exchange-correlation
functional [74], which uses �tting parameters based on fundamental facts rather than
on empirical parameters.

Exchange and correlation parts in the exchange-correlation functional can be sepa-
rated Exc = Ex + Ec. The correlation functional in GGA has the form

EGGA
C [n↑, n↓] =

∫
d3rn[εunif

C (rs, ζ) + H(rs, ζ, t)] , (B.5)

where rs is the local Seitz radius (n = 3/4πr3
s = k3

F /3π2), ζ = (n↑−n↓)/n is the relative
spin polarization, and t = |∇n/2φksn| is dimensionless density gradient. φ(ζ) = [(1 +
ζ)2/3 +(1− ζ)2/3]/2 is a spin-scaling factor, and ks =

√
4kF /πa0 is the Thomas-Fermi

screening wavenumber (a0 = ~2/me2).

In the PBE functional the gradient contribution of H can be �tted to a couple of
physical restrictions. In the slowly varying density limit (t → 0) H is given by second
order gradient expansion, which satis�es the GGA expansion in general. Respectively,
in the rapidly varying density limit (t →∞) correlation should vanish and H should
then approach the uniform electron gas correlation −εunif

C . Under uniform scaling
n(r) → λ3n(λr) at the high-density limit λ → ∞ (yielding rs ∝ λ−1 → 0 and
t ∝ λ1/2 → ∞), the correlation energy must be constant. In addition, the logarith-
mic singularity existing at the high-density limit of εunif

C should be neglected in H,
that must therefore also be proportional to logarithmic function. As a result of these
requirements

H =

(
e2

a0

)
γφ3 ln

[
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
, (B.6)

where

A =
β

γ

[
exp

{
−εunif

C

(γφ3e2/a0)

}
− 1

]−1

. (B.7)

Parameters γ and β are adjusted based on the slowly and rapidly varying limit, and
high-density scaling limit.
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Figure B.1: Electron density gradient s dependence of the enhancement factor Fxc representing the
non-locality e�ects of the electron density within GGA PBE-functional in solid lines and compared to
another GGA functional PW91 with circles. ζ = 0 is for spin unpolarized and ζ = 1 for spin polarized
system. Increase in rs means increasing electron density and increase in s increase in electron density
gradient. Taken from Ref. [74].
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To complete the full exchange-correlation energy, the exchange part is also needed.
The GGA exchange energy is in general

EGGA
X =

∫
d3rnεunif

X (n)FX(s) , (B.8)

where εunif
X = −3e2kF /4π is the exchange energy of the uniform electron gas, and

s = |∇n|/2kF n = (rs/a0)
1/2φt/c is, in addition to t, another dimensionless density

gradient with c = (3π2/16)1/3.

The gradient correction function FX(s) for the exchange part can be formed also
based on some physical requirements. EX must scale like λ under uniform density
scaling described for the correlation part before equation (B.6). At the limit of a va-
nishing density gradient, EX must give the uniform electron gas exchange energy in-
sisting FX(0) = 1. The correct spin-scaling of the exact exchange energy, Ex[n↑, n↓] =
(Ex[2n↑] + Ex[2n↓]) /2 is desired. The excellent approximation of LSD for linear re-
sponse of spin-unpolarized uniform electron gas with small density variations s → 0
is satis�ed with FX(s) = 1 + µs2. The universal lower bound for exchange-correlation
energy i.e. Lieb-Oxford bound EX [n↑, n↓] ≥ EXC [n↑, n↓] ≥ −1.679e2

∫
d3rn4/3 will be

satis�ed if the spin polarized (ζ = 1) enhancement factor Fx grows gradually due to
density gradient s. This gives the condition FX ≤ 1.804. Final form of the gradient
correction function in exchange part of PBE-functional can be written

FX(s) = 1 + κ− κ/(1 + µs2/κ) , (B.9)

where κ is a tunable parameter. The total PBE exchange-correlation energy is a sum
of the correlation part de�ned with equations (B.5), (B.6) and (B.7) and the exchange
part de�ned with equations (B.8) and (B.9).

Figure B.1 shows the dependence of the enhancement factor Fxc on to gradient s. The
limits and requirements made earlier become clear. With increasing gradients and in
high electron-densities the exchange term dominates, while the correlation turns o�.
The exchange non-locality will be realized for valence electron densities, for which
PBE acts more physically than LSD. In contradiction, at low-densities non-locality
of the correlation term becomes dominating. As a remark, the non-locality will be
approximately cancelled at the low-densities rs → 0 in fully spin-polarized system to
maintain the correct features of LSD.
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Projector augmented wave method

The details that are represented next will follow strictly the original paper of the PAW
implementation into real-space grids and can be found in Ref. [110]. One essential part
of the density-functional theory section is to choose suitable basis set for the system.
The full set of electron states is not usually e�cient to solve the problem, although
the Kohn-Sham approach has itself already diminished the many-body problem into
a set of single-electron problems.

The projector augmented wave method (PAW) [73, 110] is an all-electron method,
which uses linear transformation to get all-electron Kohn-Sham wavefunctions from
more practical pseudo-wavefunctions. The concept of pseudo-wavefunctions in general
is to simplify the inert core states with pseudopotentials, that de�ne the Hamiltonian
for valence electrons. Instead of real wavefunctions, the valence electrons will be de-
scribed with pseudo-wavefunctions. Within pseudopotentials the core states have to
be solved only once, which makes the calculation faster. Some of the basic principles
of pseudopotentials are build into the following PAW description, but the wavefunc-
tions do not have to be normalized as in pure norm-conserving pseudopotential me-
thods [111]. The PAW-method has been constructed also for plane waves, but that
must not be mixed with the pseudo-wavefunction approach represented here.

In the PAW method, core-electron states are taken to be frozen. The rest of the
wavefunctions is expanded into partial-waves inside the suitably chosen augmentation
regions centered around each atom. An example of the core and valence state selec-
tion for platinum atom is shown in �gure C.1. The expansion into valence pseudo-
wavefunctions must be chosen to match the true all-electron wavefunction outside of
the augmentation regions wavefunction. This is one of the basic requirements famil-
iar from pure pseudo-potential methods also. Linear transformation between pseudo-
wavefunction and all-electron wavefunction acts only inside the augmentation region
and gives identity operator outside. Because of the projection to the all-electron wave-
functions, the PAW method gives true all-electron wavefunctions and densities. This is
another main di�erence from the pure pseudopotential methods, in which the electron
densities are constructed directly from the pseudo-wavefunctions. Figure C.2 shows
the relation of pseudo-wavefunctions to all-electron wavefunctions in PAW-method
with the CO-molecule example.

71
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Figure C.1: Separation of wavefunctions of Platinum atom into core states [Xe] and valence states
4f14, 5d9 and 6s1 with cuto� radius rc = 2.5 Bohr. Taken from Ref. [72].
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Figure C.2: Visualization of di�erent wavefunctions in PAW-method for CO molecule, ΨC/O stands
for all-electron wavefunction (thick lines) and Ψ̃C/O for pseudo-wavefunctions (thin lines) of indivi-
dual atoms C/O, and Ψ̃ for the total pseudo-wavefunction (blue crosses) of the CO molecule. Taken
from Ref. [72].
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The PAW-problem reduces to �nd out expression for the linear transformation de�ning
the projection inside the augmentations regions. Linear transformation between a
given smooth pseudo-wavefunction Ψ̃n and true all-electron Kohn-Sham wavefunctions
Ψn is

Ψn(r) = τ̂Ψ̃n(r) , (C.1)

where n denotes the band index, and smoothness indicates, that there are no nodes
in valence pseudo-wavefunctions. The transformation operator is determined in terms
of atom-centered all-electron wavefunctions φa

i (r), the corresponding smooth partial
pseudo-waves φ̃a

i (r), and projector functions p̃a
i (r)

τ̂ = 1 +
∑

a

∑
i

(
|φa

i (r)〉 − |φ̃a
i (r)〉

)
〈p̃a

i (r)| . (C.2)

Atom index is a whereas principal, angular, and magnetic quantum numbers (n, l,m)
are combined into index i. Atom centered all-electron states φa

i , smooth partial valence
states φ̃a

i , and projector functions due to partial states p̃a
i are left to be determined.

For all of the three components the spherical symmetry around atoms is required

φa
i (r) =φa

nl(r)YL(r̂)

φ̃a
i (r) =φ̃a

nl(r)YL(r̂)

p̃a
i (r) =p̃a

nl(r)YL(r̂) , (C.3)

where YL is a real-valued spherical harmonics with index L including quantum num-
bers l and m. At this point a suitable cut o� radius ra

c is chosen for each augmentation
region, which is of the same order as the cut-o� radius for pseudopotential. By in-
creasing the cuto� radius, smoother pseudo-wavefunctions can be found, but di�erent
augmentation regions must remain separable. Figure C.3 shows the schematic condi-
tions for the augmentation regions.

To have a reasonable description for total all-electron wavefunction smooth partial
waves of valence states must match the corresponding all-electron waves for r >
ra
c . Projector functions must be localized inside the augmentation spheres and be
orthogonal with all-electron valence states: 〈p̃a

i1
|φ̃a

i2
〉 = δi1i2 and

∫ ra
c

0
r2p̃a

nlφ̃
a
n′l(r) =

δnn′ . With this construction also valence all-electron states transform linearly φa
i (r) =

τ̂ φ̃a
i (r).

The electron density will have a rather simple form, which includes pseudo electron
density and a correction term. First, from the atomic frozen-core electron density na

c

can be constructed the smooth core-electron density ña
c , that, like for wavefunctions,

must be equal to the frozen core-electron density outside the augmentation sphere.
Pseudo electron density has a contribution from the pseudo-wavefunctions Ψ̃n(r) and
from the atom-centered smooth core-electron densities ña

c

ñ(r) =
∑

n

fn|Ψ̃n(r)|2 +
∑

a

ña
c(|r−Ra|) , (C.4)
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Figure C.3: Conditions for spherical augmentation regions within PAW, di�erent colors denoting
di�erent atoms. For each kind of atom the cut-o� radius is the same. Taken from Ref. [72].

where fn are the occupation numbers and Ra is the position of atom a. Atom-centered
all-electron and pseudo electron densities can be written

na(r) =
∑
i1i2

Da
i1i2

φa
i1
φa

i2
+ na

c(r)

ña(r) =
∑
i1i2

Da
i1i2

φ̃a
i1
φ̃a

i2
+ ña

c(r) , (C.5)

where Da
i1i2

=
∑

n〈p̃a
i1
|Ψ̃n〉fn〈Ψ̃n|p̃a

i2
〉 is the atomic density matrix. Finally the electron

density in PAW formalism is

n(r) = ñ(r) +
∑

a

[na(r−Ra)− ña(r−Ra)] . (C.6)

Total energy gets the same kind of form

E = Ẽ +
∑

a

(Ea − Ẽa) , (C.7)

where Ẽ is the soft energy contribution and Ea − Ẽa describes the correction needed
for each atom a similarly as for electron densities in equation (C.6). The soft energy
is

Ẽ =
∑

n

fn

∫
d3rΨ̃∗

n(r)

(
−1

2
∇2

)
Ψ̃n(r) +

1

2

∫
d3rṽH ρ̃(r) + Exc[ñ(r)]

+

∫
d3rñ(r)

∑
a

v(|r−Ra|) , (C.8)
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where Exc is the exchange-correlation energy, ṽH is the pseudo-Hartree potential satis-
fying Poisson equation ∇2ṽH = −4πρ̃. v is an arbitrary localized potential vanishing
outside the atomic augmentation region. Energies in correction term are given by

Ea =
core∑

i

∫
d3rφa,core

i (r)

(
−1

2
∇2

)
φa,core

i (r) +
∑
i1i2

Da
i1i2

∫
d3rφa

i (r)

(
−1

2
∇2

)
φa

i (r)

+
1

2

∫
d3r

∫
d3r′

[na(r) + Za(r)][na(r′) + Za(r′)]

|r− r′|
+ Exc[n

a(r)] (C.9)

and

Ẽa =
∑
i1i2

Da
i1i2

∫
d3rφ̃a

i (r)

(
−1

2
∇2

)
φ̃a

i (r)

+
1

2

∫
d3r

∫
d3r′

[ña(r) + Z̃a(r)][ña(r′) + Z̃a(r′)]

|r− r′|
+ Exc[ñ

a(r)] +

∫
d3rña(r)va(r),

(C.10)

where Za and Z̃a are compensation charges for all-electron density and pseudo electron
density, and are added to have a neutral charge density ρ = n(r) +

∑
a Za(r − Ra)

and ρ̃ = ñ(r) +
∑

a Z̃a(r −Ra). Compensation charges can be determined requiring
that pseudo charge density ña + Z̃a has the same electrostatic multipole moments as
the all-electron charge density na + Za.

Finally the methods to determine partial wave and projector functions is represented.
First, the radial all-electron wave functions φa,core

nl can be solved from the radial Kohn-
Sham equations, which further de�nes the smooth frozen-core electron density

na
c(r) = s

core∑
nl

2l + 1

4π
[φa,core

nl (r)]2 . (C.11)

Smooth partial waves φ̃a
nl are �tted with coe�cients ci so that they will approach

smoothly all-electron wavefunctions φa
nl at the augmentation region boundaries r = ra

c

φ̃a
nl =

3∑
i=0

cir
2i . (C.12)

Smooth partial waves de�nes the projector functions to be

p̃a
nl(r) =

(
−1

2
∇2 + ṽ(r)− εa

nl

)
φ̃a

nl , (C.13)

where ṽ = ṽH + ṽxc + va is the local e�ective potential. The arbitrary potential va will
be chosen to give the shape of ṽ by

ṽ(r) = aa + bar2 , r ≤ ra
c . (C.14)
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To �nd constants aa and ba, potential v is required to go smoothly to zero at the
boundaries of the augmentation regions; v(ra

c ) = 0 and dv/dr|r=ra
c

= 0.

In order to be applicable in numerical calculations previous formulas must be dis-
cretized with good accuracy. GPAW uses a real-space-grid, and instead of having
computationally ine�cient large grids, it uses the double-grid technique of Ono and
Hirose [75]. The main discretization is done in a coarse-grid and the �nal accuracy is
achieved by interpolating the electron densities, wavefunctions, and potentials to �ner,
denser grid. This changes the formulation of PAW method only with an additive inter-
polation mapping [110]. To �nd self-consistency within Kohn-Sham equations GPAW
uses Pulay-mixing [112, 113] for electron densities.
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Appendix D:

Density-functional tight-binding

method

The following description strictly follows the details presented in paper of P. Koskinen
et.al. and can be found from the Ref. [79]. Code used in this thesis is hotbit [114].
Density-functional tight-binding (DFTB) [76, 77] Kohn-Sham equations can be de-
rived starting from DFT Kohn-Sham total energy in equation (A.8) with ion-ion
interaction included [79]

E[n] =
∑

a

fa〈Ψa| −
1

2
∇2 + Vext +

1

2

∫
d3r′

n(r′)

|r′ − r|
|Ψa〉+ Exc[n] + EII , (D.1)

where fa ∈ {0, 1, 2} is the occupation of the eigenstate a.

Electron density can be written in terms of neutral atom electron density n0 and a
small change δn yielding n(r) = n0 + δn and n(r′) = n′0 + δn′. With certain δn0 the
total energy will be minimized. For small �uctuations, neutral atom density must be
close to ground state density. Expanding the total energy with respect to n0 and δn all
the linearly dependent terms in density �uctuations will vanish. Because n0 is �xed,
the only dependence is on δn, and the expanded total energy can be written

E[δn] ≈

=EBS︷ ︸︸ ︷∑
a

fa〈Ψa| −
1

2
∇2 + Vext + VH [n0] + Vxc[n0]|Ψa〉

=Efluct︷ ︸︸ ︷
+

1

2

∫ ∫ ′(δ2Exc[n0]

δnδn′
+

1

|r− r′|

)
δnδn′

=Erep︷ ︸︸ ︷
−1

2

∫
VH [n0](r)n0(r) + Exc[n0] + EII −

∫
Vxc[n0](r)n0(r) , (D.2)

where shorthand notations
∫

d3r =
∫
,
∫

d3r′ =
∫ ′, n(r) = n, and n(r′) = n′ have been

used. Energy can be divided into three parts shown in equation (D.2); (1) band struc-
ture part EBS with neutral electron density and no charge transfer in Hamiltonian,
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(2) Coulombic energy term Efluct responsible of density �uctuations, and (3) repulsive
energy part Erep. The neutral atom Hamiltonian included in band structure part is
H[n0] = H0 = −1

2
∇2 + Vext + VH [n0] + Vxc[n0]. The repulsive energy part contains, in

addition to true repulsive ion-ion interaction, all the rest of the energy terms, that are
not dependent on density �uctuations, and are not included in band structure. This
kind of division aims for tight-binding type energy interpretation.

Starting from the last term; the repulsive energy can be approximated with a sum of
pair potentials depending on distance RIJ between atoms I and J

Erep =
∑
I<J

V IJ
rep(RIJ) , (D.3)

which will be �nally parametrized based on reference structures.

To simplify the second term, Coulomb energy due to �uctuations, the extra charge in
atom I will be denoted by ∆qI ≈

∫
ΩI

δn(r)d3r, where ΩI is the space needed by atom
I. Denoting normalized �uctuations with δñ = δn

∆q
and reducing the integration space

to atomic regions ΩI , the second term of equation (D.2) can be written

Efluct =

 1
2
∆q2

I

∫
ΩI

∫ ′
ΩI

(
δ2Exc[n0]

δnδn′
+ 1

|r−r′|

)
ññ′ ; I = J

1
2
∆qI∆qJ

∫
ΩI

∫ ′
ΩJ

1
|r−r′| ññ′ ; I 6= J ,

(D.4)

where for on-site energy with I = J Hubbard U identi�es to be the coe�cient given by
the double integral, since all of the quadratic dependencies of charge �uctuations are
in Efluct. Hubbard U is by de�nition the coe�cient of the second order term in energy
expanded with respect to extra charge ∆q. Integration of the exchange-correlation
energy derivative for I 6= J will be zero because of the localization of the atoms.

To solve inter-site energy with I 6= J , normalized charge �uctuations are chosen to be
Gaussian

δñI(r) =
1

(2πσ2
I )

3/2
exp

(
−r2

2σ2
I

)
, (D.5)

where σI = WI/
√

8 ln 2 gives the variation of Gaussian �uctuation distribution for
atom I with full width of half maximum (FWHM) denoted by WI . Using equation
(D.5) and extending the integration over all space Ω, double integral of equation (D.4)
for I 6= J gives an analytic solution

∫
Ω

∫ ′

Ω

1

|r− r′|
ññ′ =

=γIJ (RIJ )︷ ︸︸ ︷
erf (CIJRIJ)

RIJ

; CIJ = 2

√
ln 2

(WI + WJ)
. (D.6)

Change of the integration over all space is valid, if electrons are localized into de�nite
atoms. When charge distributions are far away from each other compared to their
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Figure D.1: Example of γIJ(RIJ) function for two spherically symmetric Gaussian charge distribu-
tions withWI = WJ and CII = 1.177/WI . With RIJ �WI interaction is Coulomb like i.e. ∝ 1/RIJ ,
and with RIJ → 0 approaches to Hubbard U . Taken from Ref. [79].

widths e.g. RIJ � WI , WJ , Coulomb interaction of pure point-like charges can be
assumed giving dependence WI ∝ 1/RIJ . On the other limit RIJ → 0 e.g. I → J
widths are inversely proportional to Hubbard U . This initiates from the exact solution
in equation (D.6) giving γIJ(RIJ → 0) → 2

√
πCIJ , which must be then connected to

the on-site energies. After all, �uctuation dependent energy term e�ectively depends
only on Hubbard U . For extra clari�cation, dependencies of γIJ , just described, is
shown in �gure D.1.

The width of the charge �uctuation distribution obtained on the on-site limit is

WI =

√
8 ln 2

π

1

UI

. (D.7)

This is the default dependence that includes information from all of the energy parts
in the on-site energy, not only Coulomb part. Finally the �uctuation dependent energy
term can be written

Efluct =
1

2

∑
IJ

γIJ(RIJ)∆qI∆qJ ;

γIJ =

{
UI I = J
erf(CIJRIJ )

RIJ
I 6= J .

(D.8)
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Figure D.2: Convention used in Mulliken charge analysis in integral of the charge equation (D.11).
From the overlap of two wavefunctions from di�erent atoms I and J , half will be considered to belong
to atom I and half to atom J . Taken from Ref. [79].

The �rst term in equation (D.2), the band structure part, depends on the neutral atom
electron density and does not need any approximations. At this point tight-binding
approach is taken account. Tight-binding wavefunctions for eigenstate a are described
by linear combination of atomic orbitals (LCAO) φν(r)

Ψa(r) =
∑

ν

caνφν(r) , (D.9)

which in the case of periodic lattices can be written in terms of Bloch waves

Ψa,µ(k, r) =
1√
N

∑
T

exp (ik ·T) φµ(r−T) , (D.10)

where T describes the periodic translation. Bloch waves changes the �nal form of the
Kohn-Sham equations only giving the k-dependence.

Atomic orbitals are normalized and strongly localized, but have small overlap Sµν =
〈φµ|φν〉 6= δνµ. Atomic orbitals will be calculated for pseudo-atom using DFT with
LDA and extra con�nement to describe free atoms as a part of a solid. Con�nement
squeezes the orbital wavefunctions, which gives opportunity to use short cut o� radius.
Hamiltonian for orbital calculation is H = −1

2
∇2+Z

r
+VH(r)+Vxc(r)+Vconf , where the

con�nement is Vconf ∝
(

r
r0

)2

and r0 ≈ 2rcov, twice the covalent radius. The minimal
basis set is usually chosen for DFTB to optimize the computational e�ciency. DFT
with LDA, but without con�nement, is also used for solving free neutral atom electron
density no.

Mulliken charge analysis is one opportunity to de�ne charges of atoms. Figure D.2
shows the approximative convention that is suitable for strongly localized orbitals i.e.
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for only little overlapping atomic regions. Charge on atom I with tight-binding basis
of equation (D.9) can be written

qI =
∑

a

fa

∑
µν

c∗aµcaν

∫
ΩI

φ∗µφν , (D.11)

which goes through all the eigenstates a and wavefunctions φµ and φν , and sums to-
gether their overlap integrals over the space of atom I. Using Mulliken charge analysis
with convention shown in �gure D.2, equation (D.11) can be written with the overlap
matrix S

qI =
1

2

∑
a

fa

∑
µ∈I

∑
ν

(
c∗aµcaνSµν + c∗aνcaµSνµ

)
. (D.12)

LCAO basis gives the band structure energy to be

EBS =
∑

a

fa

∑
νµ

c∗aµcaνH
0
µν (D.13)

where H0
µν = 〈φµ|H0|φν〉. Total energy can be combined from equations (D.3),(D.8),

and (D.13). Written in three rows similarly to equation (D.2) DFTB total energy is

E =
∑

a

fa

∑
νµ

c∗aµcaνH
0
µν

+
1

2

∑
IJ

γIJ(RIJ)∆qI∆qJ

+
∑
I 6=J

V IJ
rep(RIJ) . (D.14)

Kohn-Sham equations in DFTB can be �nally written by taking variation of expec-
tation value of the total energy with respect to c∗aµ∑

ν

caν (Hµν − εaSµν) = 0 , (D.15)

where εa is a Lagrange multiplier. Hamiltonian matrix element Hµν is

Hµν =H0
µν +

1

2
Sµν

∑
K

(γIK + γJK) ∆qK ; µ ∈ I, ν ∈ J

=H0
µν + h1

µνSµν , (D.16)

where h1
µν = 1

2
(εI + εJ) gives the average of electrostatic energies of atom I and atom

J .
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Tight-binding Kohn-Sham equation must be solved self-consistently. The computa-
tional procedure starts by guessing trial charges for atoms and proceeds with con-
struction of the Hamiltonian and the wavefunctions; hence, giving computational loop
qI → h1

µν → Hµν → Ψa → qI → . . . .

The repulsive pair potential V IJ
rep can be �tted to a set of DFT total energies for

speci�c reference systems. On-site and inter-site energies H0
µν and Sµν are also pa-

rameterized with DFT. For inter-site part, Slater-Koster transformations is used to
decompose atomic orbitals giving Slater-Koster tables. These parameterizations are
the characteristic of tight-binding approach and reduces the computational load sig-
ni�cantly. Compared to evaluation of interactions on every step like in DFT, using
pre-parameterization in DFTB is computationally much more e�cient.



Appendix E:

Theoretical modeling of resonant

Raman spectroscopy

Details that will be represented next follow the description reported in review of the
Ref. [11]. Resonant Raman calculation mimics the scattering process strictly, which
was described in chapter 2.6. In �rst order scattering process, �gure 2.6 (a), resonant
Raman intensity can be written by denoting electron-photon coupling with M el−phot

and electron-phonon coupling with M el−phon as [11]

I(ω,EL) =C
∑

j

∣∣∣∣∣∑
a

Ja(ω)

∣∣∣∣∣
2

;

Ja(ω) =
M el−phot(k − q, jb)M el−phon(q, ba)M el−phot(k, aj)

∆Eaj(∆Ebj − ~ω)
, (E.1)

where j, a and b are the initial, excited and scattered electron states respectively, and
∆Eaj = EL− (Ea−Ej)− iγ with a broadening factor γ for resonant event. EL is the
energy of the laser, and Ea and Ej energies of the excited and initial electron states.
Constant C includes for example the thermal occupation of phonons and possible
extra structural dependencies.

Based on description of the �rst-order Raman scattering, it is easy to construct second-
order process shown in �gure 2.6 (c) by just adding an extra electron-phonon coupling
matrix [11]

I(ω,EL) =C
∑

j

∣∣∣∣∣ ∑
a,b,ω1,ω2

Ja,b(ω1, ω2)

∣∣∣∣∣
2

;

Ja,b(ω1, ω2) =
M el−phot(k − q, jc)M el−phon(−q, cb)M el−phon(q, ba)M el−phot(k, aj)

∆Eaj(∆Ebj − ~ω1)(∆Ecj − ~ω1 − ~ω2)
,

(E.2)

where now also one extra intermediate electron state c appears in the scattering
process and ω = ω1 + ω2. The rest of the interpretation remains the same.

Second-order scattering can also exist as a one-phonon process shown in �gure 2.6 (b).
One of two the electron-phonon coupling matrices in equation (E.2) is replaced then by
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matrix describing electron coupling to some defect in the system; M el−pho(−q, cb) →
M el−defect(cb) in numerator and (∆Ecj−~ω1−~ω2) → (∆Ecj−~ω1) in denominator. J
does not depend anymore on ω1 and ω2, but just one phonon frequency ω1. Dependence
on four electron states still remains [11]

I(ω,EL) =C
∑

j

∣∣∣∣∣ ∑
a,b,ω1,ω2

Ja,b(ω1, ω2)

∣∣∣∣∣
2

;

Ja,b(ω1) =
M el−phot(k − q, jc)M el−defect(cb)M el−phon(q, ba)M el−phot(k, aj)

∆Eaj(∆Ebj − ~ω1)(∆Ecj − ~ω1)
. (E.3)

Electron-photon coupling from initial state Ψi to �nal state Ψf can be estimated
mainly from the product of polarization vector P of the light and dipole vector
〈Ψf (k)|∇|Ψi(k)〉 of the system [11]

M el−phot(k, fi) = i
e~
mω

√
I

εc
ei(ωf−ωi∓ω)tP · 〈Ψf (k)|∇|Ψi(k)〉 , (E.4)

where I and ω are the intensity and the frequency of the photon, and∓ denotes photon
absorption and emission, respectively. For absorption initial state is on valence and
�nal state conduction band, whereas for emission vice versa. Related to equations
(E.1), (E.2) and (E.3), for the �rst photon absorption initial state i = j and �nal
state f = a.

Electron-phonon coupling is usually taken from the change in the e�ective Kohn-Sham
potential under the Born-Oppenheimer approximation [11]

M el−phon
j (q, fi) = vj

q · 〈Ψf (k + q)|∇Veff |Ψi(k)〉 , (E.5)

where vj
q is the eigenvector of the phonon j with wave vector q; i and f are for the

initial and �nal electron states during the phonon scattering. Related to the equations
(E.1), (E.2) and (E.3) initial state is i = a and �nal state is f = b for the �rst
electron-phonon coupling. Scattered states and change in e�ective potential can be
calculated for example using linear response theory, for which the change in e�ective
potential is usually written in response form with respect to atomic displacements
δVeff

δR
[67, 68]. The more complete descriptions about resonant Raman calculation,

including for example the derivation of the self-consistently solvable linear response
theory equations for electron-phonon coupling, are omitted.
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