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ABSTRACT

This thesis presents a psychoacoustically derived computational model of the
perceived distance between any two major or minor triads, the degree of activity
created by any given pair of triads, and the cadential effectiveness of three-triad
progressions. The model is tested against conventional music theory, and rat-
ings given by thirty-five participants for the “similarity” and “fit” of triads in a
pair, and the “cadential effectiveness” of three-triad progressions. Multiple re-
gressions show that the model provides highly significant predictions of the ex-
perimentally obtained ratings. Finally, it is argued that because the model is
based upon psychoacoustic axioms, it is likely the regression equations repre-
sent true causal models. As such, the computational model and its associated
theory question the plausibility of theoretical approaches to tonality that use
only long-term memory and statistical features, as well as those approaches
based upon symmetrical geometrical structures like the torus. It is hoped that
the approach proposed here may herald not only the return of psychoacoustics
to tonal music theory, but also the exploration of the tonal possibilities offered
by non-standard tunings and non-harmonic timbres.
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1. INTRODUCTION

Psychoacoustic approaches have provided relatively effective explanations for why certain si-
multaneities of notes (chords) are typically considered “dissonant” while others are considered
“consonant” (notably the major and minor triads that are so important in both the theory and
practice of Western tonal music) (Helmholtz, 1877; Plomp & Levelt, 1965; Kameoka &
Kuriyagawa, 1969; Parncutt, 1988; Sethares, 2004). However, to date, there has been no psycho-
acoustic explanation for one of the most important and mysterious aspects of Western tonal
music—the fact that a succession of consonant chords can induce feelings of “expectation” and
“resolution” that are not produced when the same chords are played in isolation, or in a
different order.

For example, listeners will typically feel that in the chord progression
F major— G major—C major, the second chord sounds particularly expectant whereas the third
chord resolves this expectation, thus providing a sense of closure. Chord progressions such as
these are called cadences, and they are typically used in tonal music to mark the ends of
phrases, or entire sections. Interestingly, cadences are commonly constructed with only conso-
nant triads (the example above is the familiar IV—»V—I cadence; other common cadences using
only major and minor triads are ii-»V—I, iv=>V—i, and iv>V—I). Such cadences imply that the
expectation or resolution induced by a chord is not necessarily a function of its inherent (verti-
cal) consonance or dissonance, but rather of its temporal (horizontal) context—most particu-
larly the chords that directly precede and proceed it.

Any theory of harmonic tonality—that form of music using chords (principally triads)
to establish a tonic (“home”) note or triad (Krumhansl, 1990)—must provide an explanation for
these feelings of expectation and resolution that lie at its very heart. In the absence of success-
ful psychoacoustic theories to account for this phenomenon, many contemporary researchers
have suggested a statistical (long-term memory) explanation (Bharucha, 1987; Krumhansl,
1990; Tillmann, Bharucha, & Bigand, 2000; Levitin, 2006). These approaches suggest that we

are culturally trained, by exposure, to expect certain progressions, and this accounts for the
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effect produced by the regularities (such as cadences) that are found in tonal music—that is, if
we've heard it before, we expect to hear it again. There is little doubt that this is a credible ap-
proach, but it has a number of problems if used as the sole explanation for these effects. For ex-
ample, (a) it implies that the effect induced by a given chord progression—such as a cadence—
should be very plastic, but there is little evidence, from either a cultural or historical perspec-
tive, that this is the case; (b) short-term memory has been demonstrated to play a significant
role in perception of tonality (Leman, 2000); (c) typical cadential progressions have been read-
ily adopted, with no modification, by non-Western cultures (e.g., see Agawu (2003)).

Statistical approaches undoubtedly play an important part in the cognition of harmonic
cadences, but I propose there are important psychoacoustic processes that underlie them. In
this thesis I present a psychoacoustically derived model designed to explain the flow of expecta-
tion and resolution induced by a succession of triads (Sect. 3). The model is built in MATLAB,
and is currently relatively simple (it calculates only root-position major and minor triads), and
can be substantially developed. I compare the model’s predictions to a broad range of regulari-
ties identified by conventional tonal music theory (Sect. 4), and to experimentally obtained
human ratings of the “similarity”, “fit”, and “cadential effectiveness” of a variety of triad progres-
sions (Sect. 5). Both data sets provide strong support for the model. I finish with a discussion of
some of the implications of this proposed psychoacoustic approach to tonal music theory and
practice (Sect. 6). The following section (Sect. 2) provides the context and background for the
model and its associated theory by giving a thematic summary of existing theories of harmonic
tonality and cadences.

But, before proceeding, let me give a quick explanation of the notation used in this the-
sis: for brevity, I will refer to major triads in upper case, minor triads in lower case—so “A” is an
A major triad, “g” is a g minor triad. Furthermore, without qualification, all triads are consid-
ered to be major or minor and in root position. Notes are differentiated from chords by being

written in italic (lower case)—so “a” and “g” are notes, not triads. For an explanation of the uses

of Roman numerals (for triads) and Arabic numerals for scale degrees, please see Appendix A.



2. BACKGROUND

2.1. Tonality and Cadences

Tonality is a term with many overlapping meanings, but its most common usage is reasonably
consistent (Dahlhaus, 1980; Hyer, 2002): “the term denotes, in the broadest sense, relationships
between pitches, and more specifically between pitches having a ‘tonic’ or central pitch as its
most important element” (Dahlhaus, 1980, p. 52). Dahlhaus also gives a concise definition for
the compound term harmonic tonality: it refers to a particular form of tonality that is “deter-
mined by chordal relationships, which formed the foundation of composition from the 17th
century to the early 20th century” (1980, p. 53). Similarly, Krumhansl defines tonal-harmonic
music as “traditional Western music...that is tonal in the sense of being organized around a cen-
tral reference pitch (tonic) and...harmony is important for establishing the tonal framework”
(1990, p. 9).

The harmonic cadence is typically considered to be one of the defining characteristics,
even the source, of harmonic tonality. For example, Lowinsky (1961) wrote that “the cadence is
the cradle of tonality” (p. 4); and harmonic cadences, such as [IV->V -1, ii-V—-I, and iv>V—i,
and so forth, do indeed exemplify, in the most distilled form, those patterns of expectation and
resolution that occur in the harmonic tonality. It seems likely, therefore, that understanding the
cadence—how it is that one chord out of a progression becomes tonicised (i.e., given a sense of

repose)—is a key step towards understanding tonality as a whole.

2.2. Theories of Harmonic Tonality

The quest for those (hopefully simple) principles that underlie the regularities (notably har-
monic cadences) of tonal-harmonic music, has been ongoing since the birth of tonality itself,
and is still an area of vigorous debate and research. An analysis of the theoretical approaches

taken by music theorists (both historical and modern) to answer such questions shows that
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only a relatively small number of different underlying principles have been used (though some
theorists use a combination of them). In this section, I briefly go through each of these princi-
ples; indicate their origin, and the arguments used to support them. I also include critical
analysis of each of the principles, indicating their shortcomings. I conclude with a description
of some of the features an ideal theory of tonality should have.

(Please note that I do not consider the impact of metrical position upon the
effectiveness of a cadence—cadences where the tonic falls on a strong beat are typically consid-
ered stronger than those ending on a weak beat—because this is an area outside the scope of

this thesis.)

2.2.1. The Generative Tonic

The principle of a generative tonic is frequently encountered in music theory—forms of it are
found in theorists as diverse as Rameau, Schenker, and Mathieu. The generative tonic theory
asserts that the harmonic partials of a single tone (the tonic) “generate” other structurally im-
portant tones, chords, or even keys, of a musical system. When these generated tones, chords,
or keys, return to the tonic they are, therefore, returning to their “source”. This is theoretically
enticing because it has both a clear acoustic basis (the harmonic series), and a clear psychologi-
cal basis (the return to the source explains the feeling of “finality”, or “completion” induced by
the tonic). But the theory has significant problems when followed through to its natural conclu-
sion. These issues are explored below.

In the 18th century, Rameau used the generative principle to explain the tonic’s different
levels of repose depending on whether it is approached from its dominant (a “perfect cadence”)
or from its subdominant (an “irregular cadence”) (Caplin, 1983). The perfect cadence is stronger
because (unlike the irregular cadence) the fundamental bass (i.e., root) of the triad “returns to
its source” (Rameau quoted in Caplin (1983, p. 4)). Rameau’s use of the generative tonic princi-
ple seems to produce a reasonable and uncontroversial conclusion—the authentic cadence is
stronger than the plagal. But if downward fifth progressions provide a sense of conclusion on
the second chord, when does this process end; one could resolve G to C, which then resolves to

F, which resolves to Bb, which resolves to Eb, which resolves ..., ad infinitum? The only way to
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stop this infinite cycle of resolutions is to make some sort of scalic restriction; for example, we
might say that all chords can come only from a single diatonic scale—this would mean that G
resolves to C, which resolves to F, which cannot resolve to Bb because Bb is not in the same dia-
tonic scale as G, C, and F. This implies that, in this context, F is the tonic; but this contradicts
conventional music theory, which would give C as the tonic. So, in this vital respect, the theory
of the generating tonic fails to provide an accurate prediction (see Lester (2002, p. 771), for a fur-
ther discussion of the theoretical difficulties posed by Rameau’s corps sonore).

Schenker used the generative principle to explain many aspects of music—chords,
scales, and key relationships—though voice leading concerns became more important in his
later writings. He claimed (1954) that “tonicalization can be effected only by a process of inver-
sion—tonicalization being essentially a descent to the tonic!” (p. 261). By “inversion” and “de-
scent” he is referring to a chord progression in which the root tone of a chord takes a more
“humbling” position as third or fifth in the subsequent chord (p. 235). This suggests the follow-
ing progressions should be cadential: V-1, V-i, v—1, v—i, iii=1, [II=1, bIlI-i, biii—i. In con-
ventional music theory and practice, however, only the first two of these progressions is typi-
cally treated as cadentially effective (and furthermore the V-1 progression is only cadential in
the presence of the subdominant, otherwise its true nature is ambiguous—it could be I-1V).

Schenker also used a scalic explanation for tonality. He wrote that any given tonic corre-
sponds to (it generates) a unique diatonic scale (the major, or Ionian, mode); a logical conse-
quence of this is that any given diatonic scale must have a unique tonic chord. However, his ex-
planation for why a specific mode of the diatonic scale is generated by the tonic—that mode
produced by going down one fifth and up five fifths from the tonic scale degree (i.e., the Ionian
mode)—is weak. To explain the five ascending fifths, Schenker (1954) used an explanation
based on an unjustified (and somewhat dubious) perceptual premise:

If he [the artist] did not want to lose sight of his point of departure, he had to restrict
himself to the use of only five tones above the C. Here, again, human perception has
wonderfully respected the limit imposed by the number five. (p. 30)

To explain the single descending fifth, Schenker (1954) used nothing more than a metaphor

that, even at a metaphorical level, seems unconvincing:
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The inversion of the fifths, leading to a fivefold descent down to the tonic, entailed a
new consequence: The artist, face to face with the tonic, felt an urge to apply inversion
once more, searching, so to speak, for the ancestor of this tonic with its stately retinue of
tones. Thus he discovered the subdominant fifth F, which represents, metaphorically
speaking, a piece of past history of the tonic C. (p. 38)

But why not, for example, include the bb ancestor of the ancestral f, why stop at the “parent”
rather than the “grandparent”?

Mathieu’s theory assumes a similar generating tonic (though Mathieu supposes that 7-
and higher-limit harmonics are important). He also requires similar metaphysical explanations.
Reviewing Mathieu’s Harmonic Experience, Carey (2002) writes:

Tonal systems entail relationships above and below the tonic, (“overtonal” and “recipro-
cal” are Mathieu's terms), but like a run of Biblical “begats,” the overtones run asymmet-
rically, in one direction only. Where do the reciprocals come from? Propagation meta-
phors falter. If the tonic is also the generator, metaphysics must be summoned to ex-
plain the riddle of the subdominant. “When you sing F you create C. How can you create
the creative principle? How does one go about giving birth to a musical god? That is the
work of the Musical Mother [the syllable ma stands for the fourth degree of the scale] ...
You who dare to sing F in the C world become the embodiment of the creative and the
sacred”. (p. 123)

The fundamental problem (pun intended) with the principle of the generating tonic is
the subdominant. The theory would have the subdominant as a tonic (unless metaphysical
wriggles, such as those above, are applied), and would therefore suggest that a subdominant
chord anywhere in the vicinity of a V-1 cadence would weaken that cadence (because it would
remind the listener that there is a “better” resolution chord). But in actual musical practice, not
only does this not happen, the subdominant actually plays an important role as a preparation to
the dominant in harmonic cadences—indeed it actually seems to strengthen the cadential

«:

effect. Schenker himself, writing about that paragon of tonal practitioners, J. S. Bach, states, “it
was almost a rule for him to anchor his tonic, right at the outset, by quoting, first of all, the
subdominant and then the dominant fifth, and only then to proceed with his exposition” (1954,

p- 38); and Agmon (1996) argues that:

Even in terms of Schenker's own theory, the idea that IV or II° represent some sort of
“leaping passing-tone” configuration in the bass surely leaves much to be desired. ... |
have often heard the complaint that a musical phrase is robbed of its essence once the

“structural subdominant” is removed. (para. 21)
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2.2.2. The Central Tonic—Structuralism

The use of regular geometrical structures to represent the interrelationships, and “distances’,
between different notes, chords, or keys has a long history, including Euler’s Tonnetz (Euler,
1739), Weber’s table of the relationships of keys (see Bernstein (2002)), Hauptmann’s concep-
tion of the major key (see Harrison (1994)), Oettingen’s tonal space (see Klumpenhouwer
(2002)), Schoenberg’s chart of the regions (1969), Krumhansl’s spatial representations of in-
terkey distance (1990), Chew’s spiral array (2000), Lerdahl’s tonal pitch space (2001), and so on.
These structures are generally lattice-like, in that they have translational symmetry, and can (in
principle) have infinite extension.

The concept of the tonic being the centre of such a structure is an important theoretical
strain within such structural approaches, but a geometrical structure can only have a centre if it
is truncated in some way (i.e., it has finite extent). A typical truncated structure is the chain of
six fifths, which can be used to generate the seven notes of the diatonic scale. The two most cen-
tral triads in this chain are I and vi—a conclusion that chimes well with conventional musical
theory and practice. For example, in the chain of fifths f, c, g, d, q, e, b, the two most centrally
located triads are C (c-e-g) and a (a-c-e).

Like the theory of the generating tonic, the theory of the central tonic provides an ele-
gant (though different) psychological explanation—the tonic is the centre of the system, it is
equally balanced between being a generator and having been generated. The tonic, therefore,
represents the most balanced, central, reference point in the system, and in the cadence, the
music proceeds from this centre to one extreme (the subdominant), skipping over the centre to
the other extreme (the dominant), with a final return to the point of balance (the tonic). Rie-
mann wrote, “it is a fact that successions of chords further related from one another stimulate
the expectation of a mediating chord which is closer related to both chords” (Mickelsen, 1977, p.
37).

From a cognitive point of view, this theory requires that this generated chain of fifths is
somehow intelligible to the mind, intelligible enough that we “feel” the natural balance of the
centre. Whether this is actually possible, however, is questionable—for example, Dahlhaus

(1990) writes:
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One can think at the same time of the fourth and fifth in reference to the whole tone, or
of the doubling of the whole tone in reference to the major third, but not of four fifths
in reference to the major third. (pp. 167-168)

Beyond the question mark that hangs over of the intelligibility of the complete chain of
fifths, there are other serious issues with the principle of centrality:

1. The actual centre of the diatonic chain of fifths is scale degree 2 (i.e., in the chain ex-
tending from f'to b, the central note is d)—the chords I and vi are both slightly, and equally, oft-
centre. Despite this, scale degree 2 does not seem to have any sense of tonicness, while I and vi
do function effectively as tonics.

2. For some non-diatonic scales, the centrality test fails to predict sensible tonics. For
example, the central triads of the ascending melodic minor scale (e.g., eb, (bb), f, ¢, g, d, q, (e),
b) are F and d, rather than the expected c (or possibly G).

3. The I and vi chords are equally distant from the absolute centre, but the former is
typically considered a much stronger tonic than the latter.

4. Similarly, the iii chord has a similar location in the chain of fifths to the V chord, but
does not seem to function effectively as a cadential penult (e.g., ii»V—Iand IV->V—I cadences
are much more common than ii—iii—I and IV—iii—I cadences).

5. Because these geometrical representations are symmetrical, they cannot explain the
temporal asymmetries of cadential chord progressions (and other aspects of tonality). For ex-
ample, in the chain of fifths, the IV and V chords are equidistant from [—this fails to explain
how it is that the V is generally felt to be more “expectant” than the IV, and that the majority of
cadences follow a [IV->V—I pattern, not a V-I1V—I pattern.

Such temporal asymmetries (which have been demonstrated in numerous experiments,
e.g., Brown (1988), Cuddy & Thomson (1991), Toiviainen and Krumhansl (2003)) are an impor-
tant part of human perception of tonality, and the inability of a symmetrical structure (of how-
ever many dimensions) to account for these asymmetries is well acknowledged (see, e.g.,

Krumhansl (1990) and Woolhouse (2007)).
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2.2.3. The Close Neighbour Tonic—Voice-Leading

Voice-leading principles are a core part not just of Schenkerian approaches, but also of Lerdahl’s
tonal pitch space. The voice-leading principle asserts that the “tonicness” of a putative tonic can
be strengthened (or weakened) by the size of the interval (or intervals) by which it is ap-
proached. For example, Schenker gave the following voice-leading explanation for the tonicis-
ing effect of the V-1 progression:

There is no doubt that it has been the purely contrapuntal collaboration of leading tone
principles together with the demand for completeness of triads that has introduced us
for the first time to the dominant-concept in any form. (1987, p. 47)

Schenker related the strength of the voice-leading effect to the size of the steps involved,
noting that that the major dominant has a semitone leading tone, while the minor dominant
(which is usually avoided in cadences) does not.

More generally, this suggests that in a scale such as the diatonic, (e.g., ¢, d, e, f, g, a, b),
those notes that can be approached by semitone (i.e., b, ¢, e, and f) are likely to be tonics, while
those notes that are approached only by whole tones (i.e., d, g, and a) are not likely to be tonics.
However, the voice-leading principle lacks directionality—it gives no inherent guidance as to
whether b leads to ¢ or c leads to b (or if e leads to f; or f'leads to e); for example, if ¢ leads to b
and f'leads to e, this suggests that iii can function as an effective tonic (but this is contradicted
by conventional music theory and practice). For this reason, the voice-leading principle can be
only a part of a broader theory. For example, it requires another factor to suggest a putative
tonic, which is confirmed (or not) by the voice-leading; or a factor that gives a preferred direc-
tion to the voice-leading.

This is precisely the approach taken by Lerdahl (2001)—his melodic and harmonic at-
traction rules say that the attraction between any two successive chords (or tones) is inversely
proportional to their semitone distance (or squared distance), respectively, and the direction of
attraction proceeds from a tone with a lower anchoring strength to a tone with higher anchoring
strength (2001, pp. 161-162).

Furthermore, although voice-leading principles give a neat explanation for why the

IV-V-I cadence is favoured over the V=IV—I and [V-v—I cadences, they fail to explain why
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bvii—1 (the Phrygian cadence) is not considered as cadentially effective as V—I (in both V—-I
and bvii—I, the tonic scale degree is approached by one tone and one semitone). Neither do
they explain the rarity of the bII->I cadence despite it having three semitone-sized leading

tones.

2.2.4. The Resolved Tonic—Melodic Activity or “Dissonance”

Rameau believed the resolution from harmonic dissonance to harmonic consonance—as
exemplified by the V’—=I progression, where the dissonant third and seventh of the first chord
resolve to the root and third of the second chord—provided an explanation for the sense of re-
pose induced by the tonic triad.

This theory seems quite reasonable, but is limited in its applicability because it only
covers the use of a harmonically expressed tritone (i.e., the 4 and 7 are expressed simultane-
ously), and so cannot directly explain cadences that use only major and minor triads (like
iimV-land IV->V-I).

Two centuries later, Hindemith hinted at an expansion of this concept:

The root-succession in which the tonal center is preceded by its fourth and its fifth
forms the ideal cadence. What makes it ideal is not only the succession of closely re-
lated tones. For the chords built on the fourth and the fifth embody (at least when they
are simple triads, the one on the fifth being major) a tritone divided between them,
which is resolved in the final chord. ... This same tritone relation results from the caden-
tial root-progression major second—fifth—tonic, and accordingly this root progression

is also very strong. (1942, pp. 139-140)

Neither of the tritones in the above examples are harmonically expressed—each is a me-
lodic tritone played in different voices of two successive chords. It is clear that Hindemith be-
lieved this resolution of a melodic tritone is associated with the cadential effectiveness of the
IV-V-I, orii—=» V-1, progressions; though it is less clear if he also believes the tritone’s resolu-
tion actually is a cause of cadential effectiveness.

A principle that the resolution of either melodic or harmonic tritones is the source of
tonicity seems to carry a lot of explanatory power. Most conventional cadential patterns (even
uncommon ones) can be explained by the resolution of a melodic tritone, and most resolutions

of the tritone do actually produce effective cadences. Such a theory requires the introduction of



2. BACKGROUND 11

some sort of function of melodic “dissonance” or activity (i.e., that certain intervals, whose
tones are expressed successively, are inherently unstable in some way). An important advantage
of such a melodic dissonance function is that it might be possible to psychoacoustically derive
the dissonance of melodic dyads, analogous to how the dissonance of harmonic dyads can be
derived from a sensory dissonance function (e.g., Plomp & Levelt (1965)).

But the concept of melodic dissonance also has problems—it does not explain why me-
lodic versions of some harmonic dissonances (e.g., tritones) are active and require resolution,
while others (e.g., diatonic semitones) do not (e.g., the melodic minor second b—c, between

the chords G and C, does not require resolution to c#).

2.2.5. The Familiar Tonic—Long-Term Memory

Long-term memory (also known as statistical or schematic) approaches are common in con-
temporary music cognition research, being the explanation favoured by, for example, Krum-
hansl, Bharucha, and Lerdahl.

Lerdahl justifies the importance of the diatonic scale on the basis of Balzano’s unique-
ness, coherence, and simplicity, but to explain the privileging of the lonian mode of the diatonic
scale, he relies upon a long-term memory explanation: “exposure to music is a prerequisite for
internalizing a tonal hierarchy” (2001, p. 41)—that is, we privilege the Ionian mode because we
are familiar with it. Considering that the lonian mode forms the foundation of his basic tonal
pitch space, which in turn determines the anchoring strength of tones, this seems a somewhat
insubstantial justification.

Krumhansl’s (1990) empirical data show that a statistical approach provides a more
effective explanation than at least one psychoacoustic approach:

Although the acoustic properties associated with consonance may determine to some
extent both the way tones are used in music and the quantified tonal hierarchies, the
latter two variables are more strongly interdependent. These results point to learning as
the dominant mechanism through which the tonal hierarchies are formed. (p. 76)

But many other psychoacoustic approaches are possible than the specific tonal consonance
method tested here, and it is wise to remember the dictum that correlation does not imply cau-

sation. For example, it is likely that any underlying cause (e.g., psychoacoustic) of tonal hierar-
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chies would also be a direct cause of the note-choices made by composers and musicians; in
which case, we would expect a high correlation between the way tones are used in music and
tonal hierarchies, even in the absence of any causal relationship between them.

Of his MUSCAT model, Bharucha (1987) writes that its units, and the strength of the
links between them, are assumed to depend on learning:

It would be surprising if chord and key units existed innately. A more plausible hy-
pothesis is that a hierarchical organization of units characterizes a general-purpose
cognitive architecture that finds, over time, the mapping of low-level units to high-level
units that produces the optimal patterns of expectation. Thus the same neonatal net-
works exposed to different cultures will develop different unit mappings, but they will
all have a hierarchical structure. (p. 24)

However, he also writes:

The development of musical structures may, in some cultures, have been biased in the
direction of a preference for the sensory consonance these relationships engender. Fur-
thermore, the ubiquitous co-occurrence of frequencies in the harmonic series ... may
cause the strengthening of connections between representations of these frequencies.

(1987, p. 27)

Both Krumhansl and Bharucha, therefore, accept that acoustic explanations may play
some part in constraining, or biasing, learning towards certain psychoacoustically motivated
structures. But they both consider long-term memory to be the dominant factor.

Putting constraints onto such learning is not just a theoretical hedge: it is an epistemo-
logical necessity. A theory based purely on long-term memory states that any pattern to which a
person is repeatedly exposed will become internalised such that that person will expect similar
patterns. This seems reasonable (though somewhat Pavlovian), but it also means that poten-
tially any pattern could be internalised and, therefore, any possible musical system is possible.
This raises an important issue—can such a theory be falsifiable? For example, if a musical sys-
tem is not used anywhere in the world, a purely long-term memory explanation must be that
this is because nobody has been exposed to it; if a musical system is used somewhere in the
world, that is presumably because people have been exposed to it; these are circular arguments,
which mean the theory cannot be tested against existing examples of factual music (or the ab-
sence of existing examples of factual music). This is quite different to a psychoacoustic theory

whose predictions can be tested against factual musical examples from anywhere in the world.
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For this reasons, long-term memory approaches must have some constraints—be they psycho-
acoustic, neurological (e.g., Bharucha (1987)), or cognitive—which will predict a limited set of
possible, or likely, musical systems that can be tested against actual musical practice.

There are three further problems with a purely long-term memory explanation:

1. It would imply that the rules of common practice harmony should be plastic (like
the brain), but the evidence is that the basic rules of harmony (e.g., that IV->V—-I is a more
effective cadence than, for example, V-1V -1, or iii—ii—I) are actually immutable; despite the
valiant efforts of generations of composers to be original, they have singularly failed to break or
supplant these “old” rules.

2. Western harmonic tonality has been readily accepted, incorporated, and understood
by cultures that previously had no contact with it (see, e.g., Agawu (2003)). Geo-economic and
political considerations (which Agawu emphasises) are an important factor, but the ease with
which Western tonal-harmonic music has been adopted by non-Western cultures suggests that
such music chimes with underlying psychoacoustic (i.e., universal) principles; that such music
may be (one type of) a natural system.

3. Leman’s research (2000) has shown that short-term memory plays a significant role
in the perception of tonality and it “refutes the claim that probe-tone experiments provide evi-

dence for a long-term memory of tonal hierarchies” (p. 506).

2.2.6. The Dialectical Tonic—Functionalism

Riemann proposed that tonal harmony has three functional prototypes (“harmonic pillars”),
tonic (T), dominant (D), and subdominant (S). These prototypes are represented by the pri-
mary chords I, V, and IV, respectively, but they can also be represented by alterations of these
chords. For example, ii is the relative minor of IV, and both are characterised as having sub-
dominant function, thus allowing the progressions ii—V—1and [V—-V—-I to be similarly caden-
tial.

Riemann’s theory of tonicisation, therefore, rests upon two axioms: that cadential func-
tion is expressed by [V-V—I (S-D—-T), and that a small subset of alterations (parallel, rela-

tive, and leading-tone exchange) preserve functional identity. There is good evidence to suggest
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that this ordering of functions is a regularity of tonal-harmonic music—it is much more com-
mon than D—-S—T, particularly in cadences (Dahlhaus, 1990, pp. 57-58). There is also good
evidence that different chords can share similar functionality—for example, the “subdominant”
chords IV, ii, and iv; the “tonic” chords I, vi, and i.

There are two major problems with the theory. The first is epistemological; Riemann’s
explanation for the standard cadential order of S=D—T is that “the tonic is thetic, the sub-
dominant antithetic, and the dominant synthetic” (as quoted in Dahlhaus (1990, p. 52)), and so
most naturally follow that particular order. But there is no explanation for the correspondence
of each of the musical functions with the dialectical functions (e.g., why is S, rather than D or T,
antithetic?). It also assumes that the dialectical process is a fundamental part of how we cognise
the world (or at least the musical part of the world), an argument that can only be made within
the domain of philosophy, not science.

The second issue is theoretical; although there is a functional similarity between some
common-tone transforms (like iv and IV), there is a functional dissimilarity between others
(such as v and V), and so a theory of common-tone transformations preserving functionality
does not provide an effective explanation for functional similarity.

Perhaps the most useful part of Riemann’s theory is that it identifies and highlights im-
portant features and regularities of tonal music that require explanation: the functional similar-
ity of certain chords within a key—e.g., the subdominant function of 1V, ii, and iv, and the tonic
function of I, vi, and i; the standard directionality of cadences (i.e., S»D—T, rather than
D—-S-T); the analytic effectiveness of a theoretical system that postulates three tonal func-
tions; certain major-minor functional dualisms, such as the tonic-strengthening functions of
the non-diatonic iv in major and its dual the non-diatonic V in minor—see Harrison (1994, pp.
15-34) for more examples. It may be this power to identify and highlight regularities of har-
monic tonality that accounts for functional theory’s popularity in pedagogy today, as well as
continuing theoretical interest in it (e.g., Harrison (1994), Agmon (1996), Quinn (2005), and

Kelley (2006)).
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2.3. An Ideal Theory of Harmonic Tonality

The preceding subsections show that there is, to date, no theory that can convincingly explain
the effects of tonality. But what would an ideal theory of harmonic tonality look like, and what
questions should it answer?

An ideal theory of harmonic tonality should be based upon verifiable axioms that are
logically developed into a theory or model that can make testable predictions of the effects it
induces, explain its regularities, and shed light upon its historical development. Amongst those
regularities and historical features are: (a) cadences—certain chord progressions are typically
used to provide a sense of closure; (b) tonal functionality—the similar feelings of expectancy or
resolution induced by some chords related by some common tone transforms; (c) tonal asym-
metries—the order in which chords or keys are presented moderates their function; (d) tonal
dualism—the functions of tones and chords in the major key often have a structure that is a
reflection of those in the minor; (e) tonal scales—from the seven possible modes of the diatonic
scale, the Ionian and Aeolian have been privileged; (f) tonality and harmony—triadic harmony
and tonality developed simultaneously, suggesting they may be interdependent; (g) tonal ro-
bustness—the expectations and resolutions induced by harmonic tonality seem to be robust
despite the use of different tunings and instrumental timbres.

One of the great advantages of a psychoacoustic approach is that its axioms can be ex-
perimentally tested and can use clearly defined concepts. In the next section, I will provide a
full description of a novel psychoacoustic model, and I hope that it fulfils at least some of the
requirements of this “ideal” theory. For the purpose of this thesis, I will focus my attention
upon cadences but, in Section 4, I will briefly consider all the above regularities in more detail

and see if the model can shed any light upon them as well.



3. THE PSYCHOACOUSTIC MODEL

This section presents a psychoacoustically derived computational model (built in MATLAB) of
the perceived distance between any two major or minor triads, the degree of activity created by
them, and the cadential effectiveness of three-triad progressions.

The underlying theory assumes the presence of six latent variables, which may be
thought of as psychoacoustic or cognitive components of a listener’s auditory system. The
model contains a simulation of each of these latent variables and their interactions.

The psychoacoustic variables pitch distance (pd), fundamental response distance (frd),
and spectral response distance (srd) are a function of psychoacoustic data (tone frequency, tim-
bre, and frequency difference limens) and can be thought of as different metrics to determine
the distance (level of difference) between any two chords (or tones). These three variables de-
termine the value of the cognitive variables voice-leading distance (vid), and spectral distance
(sd), which in turn determine the value of tonal activity (act).

The precise relationships between these six latent variables are summarised in the path

(23

diagram of Figure 3.1.

Figure 3.1. A path diagram showing the proposed flow of causation from the psychoacoustic
variables pitch distance (pd), fundamental response distance (frd), and spectral response dis-
tance (srd), to the cognitive variables of voice-leading distance (vid), spectral distance (sd), and
tonal activity (act). Error terms are not shown.
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The model described in this thesis attempts to replicate each of these latent variables,
and the relationships between them. The psychoacoustic metrics (pd, frd, and srd) are fully ex-
plained in Section 3.1, and the cognitive variables (vid, sd, and act) in Section 3.2. In Section 3.3,
I discuss how the model can be used to explain and analyse harmonic cadences, while in Sec-
tion 3.4, I show some ways of graphically depicting, and simplifying, the results of the model in
order to facilitate its interpretation.

In the following sections, I will use the following terms and mathematical notations for
chords, tones and their partials. A partial is a sine wave with a single frequency; a complex tone
(or tone, for short) is a collection of partials, with different frequencies, that are bound together
in some way (e.g., the partials move in pitch together, they are harmonic, they are produced by
the same sound-source, their changes in volume are related to each other in a recognisable fash-
ion, etc.); a chord is a collection of different complex tones.

When a complex tone comprises partials with frequencies that are integer multiples of a
common fundamental frequency (as produced by most Western instruments), they are called
harmonics; when a complex tone has harmonic partials, typically only one pitch is heard—its
value being a function of the frequency of the fundamental’s frequency; each harmonic is con-
ventionally numbered according to the ratio of its frequency to the fundamental’s (i.e., the fun-
damental is the first harmonic, the partial at twice its frequency is the second, etc.); in general,
a tone’s partials are indexed from lowest in frequency to highest, which means that when a set
of partials are harmonic, their index numbers and harmonic numbers are identical.

Let x be a partial, x be a (complex) tone containing m partials, and X be a chord con-
taining n tones. Let x;; be the ith partial (or harmonic) of the jth tone (x;) of the chord X.
Similarly, let y; ; be the kth partial (or harmonic) (k = 1 to q) of the lth tone (y;) (I = 1tor) of
the chord Y. The frequency and amplitude of x;; are denoted x;;; and x,; ;, respectively. For
this thesis, it will be assumed that all tones have harmonic partials, and that the indexing is or-
dered so that x¢;; < x¢; ;41 (i.e., tones are indexed from lowest in pitch to highest), and that,
for any given j, x¢;; < x¢;41,. For example, x¢; is the frequency of the lowest partial of the
chord X, or the tone x (the context will make clear which of the two); and y, 5 3 is the amplitude

of the fifth harmonic of the third tone in the chord Y.
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3.1. The Model’s Psychoacoustic Variables

3.1.1. Pitch Distance (pd)

The pitch distance between two tones is approximated by the logarithm of their pitch ratio. I
also assume that intervals are equivalent after octave reduction (e.g., a perfect twelfth is equiva-
lent to a perfect fifth) and inversion (e.g., a perfect fifth is equivalent to a perfect fourth); so all
intervals are no greater than six equally tempered semitones. If two tones x and y have har-
monic spectra (so their virtual pitches are a function of the frequencies of their fundamentals

x¢1 and yg 1), the pitch distance between them can be modelled accordingly:

), (31)

pd(x,y) = min(|{loga(x¢1/v1)}, 1— |{logz(x¢1/v61)}
where { } denotes the fractional part (i.e., {x} = x — int(x)).

When considering the pitch distance between two chords (each comprising many sepa-
rate tones), [ assume the overall pitch distance can be modelled by using a sum of the pitch dis-
tance moved by each voice. Each voice is also individually weighted (by the n-tuple 4;) to allow
more importance to be given to, for example, the bass or soprano voices because these may be
more salient. This is expressed in Equation (3.2), which assumes that both chords have the
same number of voices (n), and that the voices do not cross, so the lowest voice of X (i.e., x1) is
compared to the lowest voice of Y (i.e., y1), the next higher voice of X (i.e., x;) is compared to

the next higher voice of Y (i.e., y,), and so on:

n

pd(X,V) = > (4 x pd(x, ). G.2)

j=l=1
Pitch distance (in conjunction with the fundamental response distance discussed later)

is intended to give an indication of the voice-leading distance between two chords (see Sect.

3.2.1).

3.1.2. Fundamental and Spectral Response Distances (frd and srd)

The two response distance measures are novel metrics based upon the tenets of signal detection
theory. Given a signal with a specific frequency, the auditory system is assumed to produce an

internal response (ir) that may be characterised as consisting of both signal plus noise; fur-
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thermore, the noise component is assumed to have a Gaussian distribution. So the internal re-
sponse to a sine wave with a specified frequency may be characterised as a Gaussian centred on
that frequency. It is this noise component that makes the frequency difference limen (frequency
DL) greater than zero—that is, when two sine tones of similar frequency are played successively,
the listener may, incorrectly, hear them as having the same pitch.

In a two-alternative forced-choice (2-AFC) experiment, the frequency DL is normally
defined as the value at which the true positive and false positive rates correspond to a d’ (also
known as d-prime) of approximately one. Because d’ is defined as the distance between the
means of two distributions divided by their standard deviation, the standard deviation of the
internal response is equal to the frequency DL. This means that the internal response, as a func-
tion of frequency f, produced by a sine tone x with a frequency x; is:

_(f_xf)z ( )
ir,(f) = e 20L(x? 33

where DL(x;) is the frequency difference limen at x;. This equation allows the internal frequency
response to a sine tone to be modelled using experimentally obtained measurements of fre-
quency DLs, such as those obtained by Moore, Glasberg, and Shailer (1984).

The response distance (rd) between any two sine tones is the distance between their
(Gaussian) internal responses. Although there may be many suitable metrics to measure this
distance, I have chosen cosine distance because it is relatively easy to express in functional
form, and because it makes intuitive sense—being the normalised cross-correlation between
the two Gaussians. (A possible alternative metric would be the area under the ROC curve pro-
duced by two such Gaussian distributions.)

The cosine distance between the response curves ir,(f) and ir), (f), produced by two
sine tones x and y with frequencies of x; and vy, is given by

(es=yp)?
V2e 20L(xpZ+DL(yp)?)

I'dcos (ny) =1-

DL(xp)? + DL(Yp)? G4)

DL(x¢)* DL(yp)?

IDL(xe)? DL(yp)?|

(a full derivation of this equation is provided in Appendix B).
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Given two sine tones with independent frequencies, their response distance gives an in-
dication of the probability that they are distinguishable: when they are identical in frequency,
their response distance is zero; when they are far apart in frequency, their response distance ap-
proaches unity. Response distance, therefore, models a cognitive simplification of pitch dis-
tance—the former requires only a simple (binary) categorisation value of “same” or “different”,
while the latter requires the mind to hold a specific pitch distance value.
3.1.2.1. Spectral Response Distance
Given two successive complex tones, or chords comprising a number of complex tones, I define
the spectral response distance to be the sum of the response distances between all possible pair-
ings of partials where each pair contains a partial from the first chord (or tone) and a partial
from the second chord (or tone). The partials in any given complex tone may have different am-
plitudes (typically the higher the harmonic number the lower its amplitude), so the product of
their respective amplitudes weights the cosine distance for any given partial pair. For two chords
X and Y, the first with m partials of frequency x¢; and amplitude x,; (for i = 1 tom), the sec-
ond with q partials of frequency y¢;, and amplitude y,; (for k = 1to q), the total spectral re-
sponse distance can be expressed accordingly:

m 4
srd(X,Y) = z z Xa,i¥akTdeos(Xei Vi ): (3:5)
i=1 k=1

Spectral response distance is intended to give a measure of the perceived spectral dis-
tance between two chords. The values calculated by Equation (3.5) can be normalised by sub-
tracting the value produced for two identical chords to give a minimum possible distance
of zero. Also note that srd has a domain spanned by m X g dimensions, because every possible
pair of partials between both chords is entered into it.

According to Moore, Glasberg, and Shailer (1984), the frequency DLs for harmonics
within a complex tone vary according to their harmonic number (harmonics lower than five
typically have a frequency DL of approximately 0.5%, harmonics higher than seven typically
have a frequency DL of approximately 3%). At the time of writing, the psychoacoustic model
does not allow for different widths to be chosen for different harmonics, so a compromise value

of ERB/13, which corresponds to a frequency DL of approximately 1%, was chosen (ERB denotes
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the equivalent rectangular bandwidth, and has the value ERB(f) = 0.108f + 24.7 (Glasberg &
Moore, 1990)).

For this thesis, all the values of srd have been calculated with tones comprising 32 har-
monic partials with amplitudes of 1/i, where i is the harmonic number. The resulting tones,
therefore, approximate sawtooth waves, and are spectrally similar to the steady-state timbre of
many Western instruments (e.g., bowed strings and brass).

Furthermore, when calculating the spectral response distance between two triads, one
of the triads is repeated over five octaves (two below, two above) in order to provide results that
generalise better over the broad range of pitches used in music, as well as to simulate octave and
inversional equivalence. For example, the progression from the note ¢ to the note g could be
down a perfect fourth (or eleventh, or eighteenth) or up a perfect fifth (or twelfth or nine-
teenth), and so forth.
3.1.2.2. Fundamental Response Distance

The response distance can also be applied to just the fundamentals of each tone. This
fundamental response distance (in conjunction with pitch distance) is intended to give an indi-
cation of the voice-leading distance between two chords. Let X be a chord containing n tones
with harmonic partials; the frequency and amplitude of its tones’ fundamental partials are de-
noted x¢;; and x, 1 ;, respectively, where j indexes each tone in the chord (from lowest to high-
est, and j = 1 ton). Similarly, let Y be a chord containing r tones with harmonic partials; the
frequency and amplitude of its tones’ fundamental partials are denoted y¢;, and y, ; ;, respec-
tively, where [ indexes each tone in the chord (from lowest to highest, and [ = 1 tor). This
means that the fundamental frequencies and amplitudes of each tone in X are
Xf11,X61,2) - Xe1n aNd Xa11,%a12, -, Xa10; the fundamental frequencies and amplitudes of
each tone in Y are yf11,¥12, -, Y61, and ¥Ya11,Ya1,2 - Ya1,- | define the fundamental re-
sponse distance between the chords X and Y to be

nor
frd(X,Y) = z Z Xa1j Va1, 1Tdeos(X61,/, VE11)- (3.6)
j=11=1
Note that the domain of fid is spanned by n X r dimensions, because every possible pair of fun-

damentals between both chords is entered into the calculation.



22 A PSYCHOACOUSTIC MODEL OF HARMONIC CADENCES

According to Moore, Glasberg, and Shailer (1984), the frequency DL for a complex har-
monic tone, as a whole, is smaller than that for any of its partials, and generally approximates
0.2%. This is approximated by ERB/66, which is the value used in the model to calculate fun-
damental response distance.

The Gaussian noise component of the internal frequency response is, therefore, rela-
tively narrow compared to the smallest musical interval used in common practice (the semi-
tone). This means that the fundamental response distance effectively acts as a counter for the
number of non-common tones between two chords. That is, it gives a distance of zero to two
identical triads, a distance of approximately one third to two triads with two common tones
(e.g., parallel triads like C and c, relative triads like C and a, leading tone exchange triads like C
and e), a distance of approximately two thirds to two triads sharing one common tone (e.g.,
dominant triads like C and G), and a distance of approximately unity to two triads with no
common tone (like C and D). This is clearly in accord with Riemannian and neo-Riemannian
music theory, which treats the above-mentioned common-tone transformations as being espe-

cially close (see, e.g., Kopp (2002)).

3.2. The Model’s Cognitive Variables

The psychoacoustic variables of the model are assumed to directly affect the cognitive variables.
However, the paths from psychoacoustic to cognitive are mediated by musical (and long-term
memory) constraints; given a (familiar) musical system with a specific structure or set of
rules—such as the use of instruments with approximately harmonic timbres, and a limited
number of differently tuned tones—only certain spectral and voice-leading possibilities are ac-
tually possible (expected).

Let it be assumed that the musical system under analysis uses a number of independent
tones each of which consists of dependent (i.e., approximately harmonically related) spectra.
This is a fair description of the majority of Western music, where voices move with some degree
of independence, and the majority of these voices are harmonic complexes with a clear sense of

pitch. This type of musical system creates strict constraints upon movements within the con-
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tinuum of all possible spectral tunings. For example, imagine we are able to create any possible
spectrum, containing 16 independently tuned partials, and let any specific point in this 16-
dimensional spectral continuum be denoted a spectral tuning; it would be possible to move
from any arbitrary spectral tuning within this space to any other. But in conventional music,
with the above-mentioned constraints, we can control—and are accustomed to hearing—the
movement of a limited number of voices (typically four) built from tones comprising harmonic
partials. This means that the range of musically possible spectral tunings, and possible paths
between them, is substantially constrained.

Voice-leading distance (vId) is the cognitive distance between two spectral tunings under
these musical constraints. The distances along these constrained paths are mediated by the
pitches (fundamentals) of each tone; so it makes sense to hypothesise that voice-leading dis-
tance is a function of pitch distance and fundamental response distance (because, these two
distances are concerned only with the frequencies of the fundamentals). Voice-leading distance
can be used to describe the musically-constrained distance between any two triads; it can also
be used to describe the musically-constrained distance between two pairs of triads: given two
pairs of triads, U & V, and X < Y, the voice-leading distance between them is equivalent to the
voice-leading distances between U and X plus the voice-leading distance between V and Y (or
the voice-leading distance between U and Y plus the voice-leading distance between V and X,
whichever is smaller).

Spectral distance (sd), on the other hand, is the unconstrained cognitive distance be-
tween any two spectral tunings. Because it is a function of the tuning of all partials in each
chord, it makes sense to hypothesise it to be a function of the spectral response distance.

A corollary of having two independent distances is that it is possible for a pair of triads
to be voice-leading close but spectrally distant; or for a pair of triads to be voice-leading distant
but spectrally close. This has a very important consequence: given two pairs of chords that are
voice-leading close (e.g., the two triad pairs Db« G and Db &g are voice-leading close because
G and g differ by just one semitone in one voice), such that one pair is spectrally more distant
than the other (in reference to the triad Db, the triad G is spectrally more distant than the triad

g), the spectrally distant pair will tend to be heard as if it were a voice-leading alteration of the
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spectrally closer pair. I hypothesise that this sense of alteration (i.e., of a more “complex”, or
“difficult”, choice made as a substitute for a “simpler”, more “straightforward”, choice) is the ori-
gin of tonal activity, or expectation. I also hypothesise that this activity is resolved by allowing
the altered tone to move to a different tone that is in a triad that is spectrally close to (has a
“simple”, “straightforward” relationship with) preferably both of the preceding two chords.

The next three subsections discuss voice-leading distance, spectral distance, and tonal

activity in more detail.

3.2.1. Voice-Leading Distance (vid)

Voice-leading distance is the latent variable representing the cognitive distance between the
(musically constrained) voices of two chords, or two pairs of chords. When assessing the per-
ceived distance between two chords, it is common to measure the overall pitch distance be-
tween them. This is typically calculated as the city block, Euclidean or other Minkowski, dis-
tance between the semitone values of the notes in two chords. It seems reasonable to assume
this is a good measure for pairs of tones, or other simple stimuli. But when it comes to measur-
ing the distance between triads, or between any voice-leading involving three or more parts, is
it reasonable to expect a listener to individually track the degree of movement of every voice
before summing them?

As discussed above, for standard musical tuning systems, the fundamental response dis-
tance is effectively binary—it has a value of zero for a common tone, a value of one for anything
else, and so counts the number of non-unisons between any two triads. It seems plausible that,
due to the simplicity of this (neo-Riemannian-like) binary measure, the fundamental response
distance may also play a part in determining the voice-leading distance for more complex stim-
uli (such as three, or more, part voice-leadings).

We might expect a listener, therefore, to judge the voice-leading distance between two
chords to be a function of pitch distance and fundamental response distance. Furthermore, we
might expect the pitch distance between the more salient voices, such as the lowest, highest, or

root, to be more important than the pitch distances between less salient voices.
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For two chords X and Y both containing n tones indexed by j and [ (so X contains the
tones X1, Xy, ..., X,; Y contains the tones y, y,, ..., ), voice-leading distance is modelled in the

following way:

n

vld(X,Y) = 2 (4 x pd(x;,y,)) + (B x frd(X,Y)). (3.7)
j=l=1

Observe that the first part of the right-hand side is the city block pitch distance between tones
of the same voice, except that each voice is individually weighted. This individual weighting al-
lows more importance to be given to, for example, the bass or soprano voices because these may
be more salient (this part of the equation assumes that voice crossing does not occur). The do-
main of this part of the formula is spanned by n dimensions, because only pairs with matching
voice indexes are entered. The second part of the right-hand side “counts” the number of non-
common tones regardless of their voice index numbers. The domain of this part of the formula
is spanned by n? dimensions because all possible pairs of the tones’ fundamentals (where one
tone is in chord X and one is in chord Y) are used (see Sect. 3.1.2.2). In Section 5.2, empirical
data is used to determine values for the parameters 4; and B (see Eq. (5.1)).
The voice-leading distance between two pairs of chords (U < V and X «< Y), all contain-
ing n voices, is calculated accordingly:
vidiUeo V,X oY) = min(vld(U,X) +vld(V,Y), vld(U,Y) + vld(V,X)). (3.8)

Note that when U ORV = X OR Y, the domain is still spanned by n? dimensions.

3.2.2. Spectral Distance (sd)

Spectral distance is the latent variable representing the cognitive distance between the spectra
of two chords. In the same way it seems unreasonable to expect a listener to track the move-
ment of every single tone in a three, or more, part voice-leading, it is even more unreasonable to
expect a listener to track the distance moved by every single partial found in one chord to the
partials found in a second chord. Furthermore, in normal listening even those partials that can
be resolved are not actually “heard out”; instead they are subsumed into the unified perceptions
of virtual pitch and timbre. Furthermore, even if they were actively heard out, it would be al-

most impossible to know in which direction any given partial “moves”—does it “go” to the par-



26 A PSYCHOACOUSTIC MODEL OF HARMONIC CADENCES

tial that is closest in pitch, or the partial that has the same position in a frequency-ranked stack
of partials? The spectral response distance does not attempt to “track” any supposed motion of
partials, it simply scores every coincident pair as zero, every non-coincident pair as unity. Every
pair that is almost coincident is given a score between zero and unity—its precise value deter-
mined by the width of the underlying Gaussian internal response curve.

For this reason, it is reasonable to expect the spectral distance (sd) between any two tri-
ads to be strongly correlated to their spectral response distance (srd) and, in the current model,
they are treated as mathematically equivalent (i.e., sd(X,Y) =srd(X,Y)). At first sight, it may
seem odd to keep sd and srd conceptually separate, but further testing may show the cognitive
component (sd) is not linearly related to the psychoacoustic component (srd), and that there
may be other, as yet unidentified, components that also determine sd. In other words, a more
developed model may define spectral distance accordingly: sd(X,Y) = f(srd(X,Y)) + {, where
f is a monotonic function, and { represents currently unidentified components of the model
(e.g., long-term memory and neurological priming may impact upon our cognition of spectral
distance). For that reason, srd and sd are kept conceptually separate, even though there is, at
this stage, no mathematical requirement.

In tonal terms, spectral distance acts as a type of weighted counter because a smaller
distance is given to those intervals (dyads) whose tunings approximate low integer frequency
ratios (such as the perfect fifth, which approximates 3/2). This is because low-integer (simple)
ratio intervals of tones with harmonic spectra have more coincident partials. For harmonic
tones, the ratio of coincident to non-coincident partials can be expressed mathematically,
which enables the approximate spectral response distance between two tones, x and y, with

harmonic partials to be easily calculated by hand:

dxy) =1- (.9)
srd(x,y) = 25 2r 39

where s/t is the frequency ratio, in reduced form (i.e., s and t are coprime), of x and y (see Ap-
pendix B for the derivation of this equation). Equation (3.9) shows that melodic dyads conven-

tionally considered harmonically consonant (perfect fifths and fourths, and thirds and sixths,
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which typically approximate simple ratios) have lower spectral distance than dyads like seconds
and sevenths and the tritone, which approximate more complex ratios.

When considering the total spectral distance between two triads, the spectral distance
of every single melodic dyad between them (there are nine melodic dyads between the tones of
two triads) can be separately calculated, by hand, using Equation (3.9), and then summed. This
means that the greater the number of dyads between two triads that approximate simple ratios
(i.e., they have low-valued s and t), and the greater their simplicity, the lower the spectral re-
sponse distance between them.

This approximation has been introduced only to provide a simple illustration of the re-
lationship between the complexity of a dyad’s frequency ratio and its spectral distance. The psy-

choacoustic model uses the full calculation, not this approximation.

3.2.3. Tonal Activity (act)

I hypothesise that tonal activity is the result of the interplay between voice-leading distance
(which is a function of pitch distance and fundamental response distance) and spectral distance
(which is a function of spectral response distance).

Given a musically presented triad pair, let any other pair against which that musically
presented pair is mentally compared, be denoted a comparison pair. I hypothesise that when a
triad pair has a higher spectral distance than a comparison triad pair that is voice-leading close,
the former triad pair may be heard as an alteration of that comparison triad pair. This sense of
alteration creates a feeling of “activity” and, for two comparison triad pairs, the activity is
greater when the difference between their spectral response distances is greater, and the voice-
leading distance between them is smaller.

This can be stated more formally: Let there be a pair of played triads, X < Y, that are
mentally compared to another pair, U < V, that is held in memory. The tonal activity of X & Y,
given the (cognitive) existence of the comparison pair U < V, is denoted act(X,Y|U,V), and is

calculated accordingly:

(3.10)

sd(X,Y) —sd(U,V) )

act(X,Y|U,V) = f <vld(U, X) +vld(V,Y)
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where f is a monotonic function (see the next two subsections for a description of two possible
monotonic functions). In the subsequent analyses, [ will be concerned mostly with comparison
pairs where only one of the triads is different: that is, the tonal activityof U & Y, or X & V, due

to the comparison pair U < V. In such cases, the above equation simplifies to act(U,Y |U,V) =

sd (X,V)—sd(U,V)

d(U,Y)—sd(U,V
f(FEDOD) oract(x, VU, V) = f (2 T

a0 ), respectively.

In the next two subsections (3.2.3.1 and 3.1.2.2), I propose two monotonic functions,
each giving separate (but correlated) measures of tonal activity: continuous activity (act.), and
discrete activity (acty). Both these measures are experimentally tested in Section 5.2, and I as-
sume that tonal activity (act) is a linear combination of both continuous and discrete activity
though, due to their high collinearity, it is not currently possible to determine their relative im-
portance and only the “best” out of these two measures is used in the regression equations of
Section 5.2.
3.2.3.1. Continuous Activity (act,)

The continuous activity measure simply assumes the monotonic function in Equation (3.10) to

be linear:

sd(X,Y) —sd(U,V)

vld(U, X) + vid(V, Y)’ (3.1)

act.(X,Y|U,V) =

A result of this definition is that act.(X,Y|U,V) = —act.(U,V|X,Y). Assuming the ab-
solute level of continuous activity is more than negligible, I hypothesise that the triad pair with
positive continuous activity is heard as an alteration of the comparison pair with negative con-
tinuous activity. This is because the two triads in a pair with high positive continuous activity
have a more distant (complex) spectral relationship than the voice-leading close pair with nega-
tive continuous activity. I presume that triad pairs with negative continuous activity tend to

” «

sound “passive’, “stable”, and “at rest”, while triad pairs with positive continuous activity tend to
sound “active”, “unstable”, and “restless”.

Let me illustrate this concept with a relatively straightforward example. The psycho-
acoustic model predicts that the two root-position triad pairs C<d and C+ D are voice-leading

close (D and d have two common tones, one of which is the salient bass note). It also predicts

the two triads C«d are spectrally closer than the two triads C<D (the latter pair replaces the
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former's low spectral distance perfect fourth—between the root of the first chord and the third
of the second chord—with a high spectral distance tritone). So the former pair has negative
continuous activity, the latter has positive continuous activity, which means that the latter is
heard as an alteration of the former.

(If that example still seems difficult to understand, consider just two successive tones.
We might consider melodic intervals of a semitone and tritone to be active because they can be
mentally compared to the voice-leading close melodic intervals of the unison and perfect
fourth/fifth, respectively. The process for triads, described above, is simply an extension of this
concept to a higher-dimensional tone space—illustrations of which are given in Sect. 3.4.)
3.2.3.2. Discrete Activity (act,)

The discrete activity measure represents a cognitive simplification of the continuous measure. It
models the probability that a triad pair will be discretely categorised as being either active (an
alteration of a comparison pair) or inactive (not an alteration of a comparison pair).

This process of representing a continuous variable with a simpler categorical variable is
very similar to how the response distance of two sine tones represents a cognitive simplification
of their pitch distance (see Sect. 3.1.2): pitch distance is a continuous measure of the distance
between two sine tones; response distance is the probability the two tones will be categorised as
either “different” or “the same”. I presume that a similar process of cognitive simplification can
also occur for activity and, under cognitive load (and maybe as mediated by long-term mem-
ory), activity is cognitively categorised as being either present or not: its precise magnitude be-
ing cognitively ignored or discarded.

Discrete activity is defined as the probability of a triad pair being heard as active, due to
a given comparison, and it can be simply modelled with a logistic function of that triad pair’s

continuous activity:

1
+ ek x act.(X,Y|UV)’

acty(X,Y|U,V) = N (3.12)

so as a triad pair’s continuous activity decreases below zero, its discrete activity tends towards
zero; as its continuous activity increases above zero, its discrete activity tends towards unity.

Attempting to empirically derive the value of the parameter k (which controls the width of the
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transition) is beyond the scope of this thesis so, for simplicity’s sake, I assume it approaches

infinity. This means the above function can be replaced by the Heaviside step function,

0, x<0

1L x>0 that is,

Ho(x) = {
acty(X,Y|U,V) =Hy(act.(X,Y|U,V)). (3.13)
3.2.3.3. Asymmetry of Tonal Activity
When considering any given type of comparison, the model of tonal activity has a plausible
asymmetry. For the following explanation and examples, | will consider just the parallel com-
parison, e.g., C&D compared with Ced; or c&D compared with CeD; or c&D compared
with Ced. The reason for privileging the parallel comparison is because it is reasonable to
surmise that, for root-position triads, the parallel transformation will be judged to have the
smallest voice-leading size (Sect. 5.2.3 also provides experimental support for this). This is be-
cause it has two common tones; the non-common tone moves the smallest possible pitch dis-
tance (one semitone); the non-common tone is not the salient root (bass note) of the two
chords. The parallel transform is the only one that has all three of these characteristics. Equa-
tion (3.10) implies that the absolute value of activity is maximised by having a comparison pair
that is voice-leading close (i.e., both vld(U, X) and vld(V,Y) are small), so by choosing the par-
allel comparison, we are likely to be exploring those tonal activities that are most important to
our perception of music (see Sect. 5.1.3.2 for a further discussion of this issue).
For more compact notation, let the activity of the pair X & Y, where X is played first and
Y second, due to comparison with its parallel transform pair X < V, be denoted act(X — Y|P);
the arrow points rightwards to the second triad because this triad is being compared to its
transform, and the bold letter indicates the type of transform: P is the parallel transform,
though R, L, S, and S + P, etc. could be used to denote the relative, leading tone exchange,
SLIDE (e.g., Cec#) (Lewin, 1987), and SLIDE + parallel (e.g., C~C#) transforms, respectively.
Similarly, the activity of the pair X & Y, where X is played first and Y second, due to comparison
with its parallel transform pair U < Y is denoted act(X «< Y|P) (in this case, the arrow points
leftwards to the first chord, because this chord is being compared to its parallel transform). Ac-

tivities with a rightwards arrow are called forwards activities; activities with a leftwards arrow
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are called backwards activities. In the absence of any broader context, it is reasonable to assume
that forwards activities are more salient than backwards activities, because the most recently
played (or currently playing) triad will have greater prominence in the listener’s short-term or
echoic memory.

Generally, act(X —» Y|P) # act(X « Y|P). For example, the model calculates that
act.(C » D|P) <0, while act.(C« D|P) <0 (which implies that acty(C—- D|P)=1,
while acty (C < D|P) = 0). In words, given the pairing of triads C and D, the D is heard as al-
tered, rather than the C. A natural consequence of is that a putative cadential progression pro-
ceeding from C to D to some resolution triad is likely to be more effective than a progression
from D to C to some resolution triad (because, in the former case, the active triad is more
prominent in the listener’s short term or echoic memory). Hence the temporal asymmetries of
tonality (e.g., see Dahlhaus’ discussion of the order of “functions” within cadences (1990)) are a
natural consequence of the proposed activity function. Such asymmetries cannot be explained
by inherently symmetrical structural models, such as Lerdahl’s (2001), without the addition of a
separate layer of theory.
3.2.3.4. Exclusive and Non-Exclusive (Double) Alterations
When considering a triad pair such as C—f, it is reasonable to say that this could be heard as an
alteration of either C—F or c—f, because the triads in either pair have a lower spectral distance
than C—f. It is also reasonable to assume that only one of these possible alterations is likely to
be heard at any given time—that is, either C is heard as altered, or f is heard as altered, but not
both at the same time. The reason these two alterations are exclusive is because if both were
assumed to coexist, it would imply a comparison triad pairing of c—F, which is itself an altera-
tion (act.(c = F|P) > 0 and act.(c « F|P) > 0) and so cannot function as a stable reference
point.

However, there are three triad pairings (cD, Coeb, and ¢~ E) in which both triads
can be heard as simultaneously altered. Let X < Y be a triad pairing, and let U < V be a com-
parison pairing such that U < X are parallels, and V « Y are also parallels. Both triads X and Y

can be heard as simultaneously altered if, and only if, act.(X — Y|P) > 0 AND act.(X « Y|P) >
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0 AND act.(U = V|P) < 0 AND act (U « V|P) < 0. Any such pairing is denoted a double al-
teration.

For example, c—D is heard as an alteration of c—d, which is heard as an alteration of
C—d, so c=D is heard as a double alteration of C—d and has two active notes—eb and f¥ (al-
ternatively, it could be said that c—D is heard as an alteration of C— D, which is heard as an al-
teration of C—d, etc., but this amounts to the same conclusion). Similarly, C—eb can be inter-
preted as an alteration of C—=Eb, which can be interpreted as an alteration of c=Eb, so C—eb is

heard as a double alteration of c—Eb and has two active notes—e and gb.

3.3. Applying the Model to Harmonic Cadences

I hypothesise that cadential effectiveness is a function of the tonal activities between each pair
of triads in a putative cadence, and that there are four other factors that may also impact upon

cadential effectiveness. All five factors are described in the following subsections.

3.3.1. Cadential Form—Patterns of Tonal Activity

When two triads are played successively and one of those triads is heard as an active alteration
of the other, we expect it to resolve. For a third triad to act as a successful resolution, the pair-
ings it makes with both the earlier triads should have low (negative) activity. If this is not the
case, the third triad is creating new active notes that may require further resolution, and the
cadence may feel incomplete.

This structure gives a template for harmonic cadences formed with three triads denoted
antepenult (A), penult (P), and final (F) (i.e., the putative cadential progression is A - P = F,
so there are six different activity values to be considered: act(4 — P|P), act(4 « P|P),
act(P - F|P), act(P « F|P), act(A — F|P), act(4 « F|P).

(The terms “antepenult’, “penult’, and “final” come from linguistics, where they indicate
the position of syllables in a word; I have adopted these terms to describe three-triad progres-
sions because their meaning is easy to deduce, and they are free of the functional and scale de-

gree associations of terms like “subdominant’, “dominant’, and “tonic”.)
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I hypothesise that an effective cadence requires the pairing between A and P to have
high (positive) activity, and the pairings between P and F, and between A and F, to have low
(negative) activity; the classic IV-»>V—-I and ii-»V—I cadences (e.g.,, C»D—-G and d»G—-C,
respectively) have precisely this pattern of activities. Generally speaking, we might expect to see
a positive correlation between act(A — P|P) and act(4 < P|P) and cadential effectiveness, and
a negative correlation between act(P — F|P), act(P < F|P), act(A — F|P), and act(4 < F|P)
and cadential effectiveness.

For those triad pairs where the backwards and forwards activities are exclusive (e.g.,
Cef), only the forwards activity is used (because it has greater salience—see Sect. 3.2.3.3), and
the backwards activity value is replaced with zero. For those doubly active triad pairings where

the forwards and backwards activities can coexist (e.g., C>eb), both activity values are used.

3.3.2. Cadential Fit—Spectral Distances

The spectral distances between each pair may also have a direct impact on cadential
effectiveness. If the triads are spectrally distant they may “fit badly”, making the progression
sound “difficult”, “clumsy”, or “unnatural”—high spectral distance cadences may be aesthetically
unappealing, or the extra cognitive load they may require may distract from their cadential
function. Because the A < P pair should be active, the spectral distance may be less important

for that particular pair.

3.3.3. Cadential Salience and Flow—Voice-Leadings Toward Resolution

The manner in which active notes resolve from one triad to the next (and most particularly
from the penult to final) may impact upon the overall effectiveness of the resolution. There are
three possible variations in the manner of resolution, discussed below.

3.3.3.1. Position in Final

It is generally accepted that the most salient tone of a triad is its root (Parncutt, 1988); there-
fore, for a resolution to be as salient as possible, active tones and resolution tones should (if
possible) be roots. In this thesis, I am principally examining activities due to parallel compari-

sons, which means the active tone is always the third of the triad. The resolution tone, however,
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is not constrained—it can take any position of the triad. It is reasonable to expect, therefore,
that the most effective resolutions will be those where the penult’s active tone resolves to the
final’s root.

3.3.3.2. Direction

The direction of the resolution is likely to be an important factor in cadential effectiveness. An
active tone is perceived as an alteration of another tone; it has, therefore, directionality. For ex-
ample, in the progression C—D, the active f¥ is heard as an upwards, not a downwards, altera-
tion of fi. The motion towards resolution is more “directed”, or aesthetically consistent, if it
continues in the same direction.

3.3.3.3. Amount

The size of the voice-leading between the penult’s active tone and its resolution tone in the final
may also impact upon cadential effectiveness. It may be that smaller movements (e.g., semi-

tones) induce a more effective sense of resolution than larger movements (e.g., whole tones).

3.3.4. Cadential Synergy—Latent Activities of the Embedding Scale

Chord pairs, triples, and so on, do not exist as independent units isolated from a broader con-
text of possibilities: they exist within a scale (a set of notes that is bound together in some way)
that is either explicitly spelled out (in full) by the chords used, or implicitly indicated. For ex-
ample, a perceptually simple scale—for example, a well-formed scale like the diatonic (well-
formed scales are those consisting of just two step sizes distributed as evenly as possible (Carey
& Clampitt, 1989))—or a scale familiar to the listener, may be partially spelled out by the chords
used, the rest of the notes being mentally “filled in” by the listener.

Most scales embed a number of possible harmonic progressions that are not necessarily
actualised by a given chord progression. For example, the progression C—D contains the notes
¢, d, e, f¥, g, a, and this scale contains not just C and D, but also the triad a. Furthermore, it is
likely that such a progression will be heard as part of the familiar well-formed diatonic scale c,
d, e, f%, g, a, b, which contains the additional triads e, G, and b. (From an analytical point of
view, it is perhaps safest to consider only those scales that are explicitly indicated by a progres-

sion.)
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This means that, when considering the overall impression of a triad progression, it is
necessary to consider the scalic context, or contexts, within which the progression is embed-
ded—that is, it is necessary to consider the latent activities of the embedding scale. For exam-
ple, it may be that a putative cadence spells out a scale all of whose latent activities support the
same tonic triad—there is, therefore, cadential synergy; alternatively, the latent activities may
give contradictory tonics, so that a triad that is a tonic for one latent progression may be active

in a different latent progression.

3.3.5. Cadential Complexity—Melodic Complexity of Embedding Scale

The embedding scale may be melodically simple in form (e.g., it may be well-formed, or a scale
that is similar to well-formed). Alternatively, it may be melodically complex. One clear marker
of a type of scale that is so complex it is infrequently used (for tonal-harmonic music) is the
presence of two consecutive semitones. Tymoczko’s “no consecutive semitones” rule, states that
this is a necessary condition for scales to have a clear distinction between steps and leaps; for
that reason, most tonal-harmonic music, even contemporary, avoids such scales (2004).
Putative cadential progressions that spell out such scales may, therefore, be heard as

having excessively complex melodic latencies, and may be heard as less effective as a result.

3.3.6. The Model’s Calculations

The current model produces direct calculations for the spectral response distance and tonal ac-
tivity for all pairs of triads and, in Section 5, these values are used as variables in regressions of
ratings of “similarity”, “fit”, and “cadential effectiveness”. The model, therefore, calculates caden-
tial form and cadential fit, but it does not (currently) produce calculations for cadential sali-
ence, flow, synergy, or complexity, so these form no part of the regressions analyses. However,
these factors are discussed, in broad terms, in Section 4.1 (which considers the ability of the

model to predict the conventional cadences used in tonal harmonic music).
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3.4. Interpreting the Model

3.4.1. Plotting the Model’s Calculations

The implications of the model are easier to understand and interpret when its calculations are
plotted. The continuous activity (act.) of one triad pair, as a result of comparison with another
triad pair, is equivalent to the difference between their spectral distances (srd) divided by the
voice-leading distance (vId) between them (see Eq. (3.5)). This means that if two triad pairs are
plotted such that the voice-leading distance between them is plotted on one axis, and their re-
spective spectral response distances are plotted on another axis, the continuous activity of each
triad pair, due to comparison with the other, is equivalent to the slope between them. It is pos-
sible to produce such a plot for any two pairs of triads but, because the voice-leading metric vid
is not Euclidean, it is impossible to do this for a continuum of different pairs of triads. As dis-
cussed in Section 3.2.1, the voice-leading metric (see Eq. (3.7)) is a function whose domain is
spanned by n? dimensions (where both chords have n tones each), so it could be (crudely) ap-
proximated by an n?-dimensional Euclidean metric. But that still does not enable a visually in-
formative plot to be produced, because a minimum of nine dimensions would be required for
pairs of triads. However, if the fundamental response distance (i.e., the count of non-common
tones) is removed from the vld measure, the domain of the vid function is now spanned by only
n dimensions; furthermore, if only root-position triads are considered, only n — 1 dimensions
are required. This is because all root-position major and minor triads have a perfect fifth above
their bass, so the bass voice and the fifth voice do not move independently, which means these
two dimensions can be concatenated into a single root + fifth dimension.

This means that the voice-leading distance between root-position triads, connected by
parallel motion, can be (very) crudely approximated by the following two-dimensional Euclid-

ean metric,

vld ~ J2|10g2 (x¢1,1) —loga(ve1,1)| + [logz(x¢13) —loga (ve13)), (3.14)

where x¢ 1, and yg ; are the frequencies of the fundamentals of the two triads’ roots (or fifths),

and x¢ 3 and Y4 3 are the frequencies of the fundamentals of the two triads’ thirds.
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This results in the forms illustrated in Figure 3.2—(a), (b), and (c) have a major refer-
ence triad, while (d), (e), and (f) have a minor reference triad; both reference triads are tuned to
twelve tone equal temperament (12-TET). In (a) and (d), the horizontal axes show the pitch dis-
tance between the roots (and fifths) of the reference triad and a continuum of differently tuned
triads, the vertical axes show the pitch distance between the thirds of the reference triad and a
continuum of differently tuned triads. They are scaled as indicated by Equation (3.14), so a one
semitone distance on the horizontal axis is V2 longer than a one semitone distance on the verti-
cal axis. This ensures that all straight-line distances between triads are Euclidean. The spectral
response distance between the reference triad and every continuum triad (i.e., at each point on
the plot) is illustrated with a greyscale that is black at the global minimum spectral distance,
gets lighter as spectral distance increases, and is white at the global maximum spectral distance.

To provide a more precise visualisation of the topology, the remaining figures view (a)
and (d) from the side, so the vertical axes show the spectral response distance. In (b) and (e),
the horizontal axes show the pitch distance between the roots (and fifths) of the reference triad
and a continuum of differently tuned triads; in (c) and (f), the horizontal axes show the pitch
distance between the thirds of the reference triad and a continuum of differently tuned triads.

I have labelled the location of a selection of major and minor triads to help orient the
reader (note that in (a) and (d), the major and minor continuum triads run up the two diagonal
lines, with major triads located vertically above their minor parallel). The precise values of srd
calculated by the model for every 12-TET triad pair can be found in Appendix C.

When using these figures it should be remembered that, due to the excision of the frd
component of vid, the voice-leading distances they show are approximations; it is likely that
triads with common tones (e.g., C and e, or C and a) have substantially closer voice-leading dis-
tances than shown here (but, as explained above, it is not possible to graphically represent all

such relationships in a low-dimensional Euclidean space).
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Figure 3.2. The spectral response distances between a 12-TET reference triad and a continuum of

differently tuned triads, plotted against their pitch distances. The reference triad is major in (a),

(b),

and (c), minor in (d), (e), and (f). In (a) and (d), the horizontal axes show the pitch dis-

tance (in cents) between the “roots” and “fifths” of the continuum triads and the root and fifth
of the reference triad; the vertical axis shows the pitch distance between the “thirds” of the con-
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tinuum triads and the reference triad. The greyscale indicates the spectral response distance (the
lighter the colour the greater the spectral response distance). The remaining figures view (a) and
(d) from the side, so their vertical axes show the spectral response distance; in (b) and (e) the
horizontal axes are equivalent to the horizontal axes of (a) and (d); in (c) and (f), the horizontal
axes are equivalent to the vertical axes of (a) and (d). A selection of continuum triads is labelled.
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3.4.2. Charting Tonal Activities

Figure 3.3 uses the same layout as Figure 3.2 (a) and (d) to show the most important activities
implied by the model (those due to parallel comparisons). The reference triad is either C (in
which case the blue arrows are used) or c (in which case the pink arrows are used). The arrows
indicate the direction of activity between the continuum triad comparison pairs—each arrow
points from the triad with negative activity to the comparison triad with positive activity. So,
given a reference triad of C, a blue arrow points from a continuum triad to another continuum
triad that has a higher spectral response distance and so is heard as its alteration; given a refer-
ence triad of ¢, a pink arrow points from a continuum triad to another continuum triad that is

heard as its alteration.
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Figure 3.3. A chart of the tonal activities of all 12-TET triads in reference to a C or c triad. The ver-

tical arrows represent activities due to P comparisons. Prototypical continuum triads are cir-
cled.
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When a pairing of a continuum triad W and the reference triad C is inactive in both di-
rections (i.e., act,(C » W|P) < 0 AND act.(C « W|P) < 0, it is circled in blue; when a pairing
of a continuum triad T and the reference triad c is inactive in both directions (i.e., act.(c —
W|P) < 0 AND act.(c « W|P) < 0), it is circled in pink. Such pairings might be considered to
be somewhat prototypical in that they invoke no activity, and any other pairing is likely to be
heard as an alteration of one these prototypes. Indicating the prototypical pairings in this way
also enables double alterations to be easily noticed—when proceeding from C to any triad that
is not circled and has an arrow pointing towards it from a triad that is circled in pink, such a
triad pair is a double alteration; similarly, when proceeding from c to any triad that is not circled
and has an arrow pointing towards it from a triad that is circled in blue, such a triad pair is a
double alteration. See, for example, the double alteration pairs: c&D, Ceeb, and coE.

In the following section (which aims to explain familiar cadential progressions, and to
shed light upon a number of other regularities of tonal-harmonic music), it may be helpful to

refer back to this chart to get an effective visualisation of the analyses undertaken.



4. NON-EXPERIMENTAL TESTING OF THE MODEL

The principal test of any model or theory is to measure its predictive power—the scope of its
predictions and their accuracy. The accuracy of predictions can be assessed by comparing them
with either surveyed data, or experimentally generated data. The former has the advantage of
ecological validity, but the disadvantage of an inability to isolate the impact of different vari-
ables, as well as the inevitable errors and approximations required when collecting the data.
The latter has the advantage of greater precision, control, and an ability to isolate, but may lack
ecological validity.

I will use both approaches to test the model. My main focus is on experimental testing
(discussed in Sect. 5), but in this section I discuss how the model correlates with widely ac-
cepted regularities of harmonic tonality. Ideally these regularities would be determined by a
thorough statistical analysis of a large database of existing music. Such a task would require the
writing of special software (as well as access to a large database of symbolically notated music);
this is beyond the scope of this thesis, but may become at least one area for future research.

The next best option is to examine those regularities that are common knowledge, or
can be readily identified from pedagogical music theory text books (it is reasonable to assume
these provide a good reflection of actual practice). The subsections below provide a survey of
these regularities. I cannot claim the survey to be comprehensive, and my own choices will al-
most certainly show some bias, so any correlations between the regularities and the model must
be viewed with some caution. However, this approach is important because it allows the model
to be tested against a broader scope of enquiry than is possible with an experimental approach,

and the data is ecologically valid.

4.1. Cadences

Music theory typically asserts that the most emphatic root-position major and minor triad ca-

dences are the authentic cadences IV-V -1, ii-»V—=I, ivo>V—-i, and iv>V—-I. Less emphatic
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cadences are the deceptive cadences, the most common examples of which are [V—V-vi, and
ii=V-vi. Another type of cadence is the tritone substitution cadence, which is an important
part of later tonal-harmonic music (particularly jazz), and involve one, or more, chords of the
above cadences being transposed by a tritone; for example, VII-bII-I (which is IV of $4—V of
#4-1).

The following subsections examine the cadential implications predicted by the model
for a selection of active antepenult—penult progressions (i.e., progressions where act.(P —
F|P) is positive); a similar process can be conducted for any active triad pair to determine ca-

dentially effective progressions.

4.1.1. IV->V- Cadences

Figure 3.3 shows that C—D is heard as an alteration of C—d (i.e., act.(P — F|P) is positive) so
the note f# is heard as an upwards alteration of the note f. To most effectively resolve this altera-
tion, we require a final triad that is in a prototypical pairing with both C and D (i.e., act(P -
F|P), act(P < F|P), act(A = F |P), and act(4 « F|P) are all negative), and that the altered
note f¥ moves, preferably upwards, to a note in the final triad, preferably the root (the final
should not contain the active tone otherwise no resolution has occurred).

Figure 3.3 shows that the only finals in a prototypical pairing with the antepenult C are
C, c4,d, e, F, ff, G, a, b and—mentally transposing Figure 3.3 from a C reference to a D refer-
ence—the only finals in a prototypical pairing with the penult D are D, d¥, e, f%, G, g#, A, b, c#.
The only triads common to both groups are c#, e, f#, G, and b. Of these, the only triads that do
not contain f¥ (the active note) are c#, e, and G. Of these, the root of G provides an upwards
resolution for the active tone, the root of e provides a downwards resolution of the active tone,
the root of c# is not a resolution for the active tone. This suggests the following ranking of ca-
dential effectiveness (from more effective to less effective): C-D—-G (IV->V-I); C-»D-a
(IV-V—-vi); C»D—-c# (IV of b5—>V of b5—i). This corresponds to conventional theory, in that
it gives the highest effectiveness to the authentic cadence, the next highest to the deceptive, and

the next highest to the tritone substitution of the authentic.
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4.1.2. ii-»V- Cadences

The same process can be carried out for cadences with an antepenult of ii and a penult of V, by
starting with the chord pairing c—F. Figure 3.3 shows this is likely to be heard as an alteration of
c—f, so the note a¥ is heard as an upwards alteration of ab. To most effectively resolve this al-
teration, we require a final triad in a prototypical pairing with both c and F, and that the altered
note af moves, preferably upwards, to a note in the final triad, preferably the root.

The only triads that are in a prototypical pairing with both c and F are Bb and g; of these
the root of Bb provides an upwards resolution for at, while the root of g provides a downwards
resolution. This suggests two cadences, in order of decreasing effectiveness, c>F—-Bb (ii-»V-I)
and ¢c-»F-g (ii-V-vi), which again accords well with conventional music theory—the first

being a commonly used authentic cadence, the latter a commonly used deceptive cadence.

4.1.3. iv—»V- Cadences

Figure 3.3 shows that c—D is heard as a double alteration of C—d, and so has two active tones:
f¥ (which is heard as an upwards alteration of the f) and eb (which is heard as a downwards al-
teration of e). Of these two tones, f# is the most salient because it is in the penult (and so more
recently heard). To most effectively resolve these alterations we require a final triad that is in a
prototypical relationship with both the antepenult and penult, and that both altered notes can
move, preferably in the same direction as their alteration, to a tone of the final, one of which is,
preferably, the root.

For this antepenult—penult progression, there is no final that is prototypical in refer-
ence to both. Relative to c, the following triads are prototypical: ¢, Db, Eb, f, F%, g, Ab, Bb, Cb.
Relative to D, the following triads are prototypical: D, d#, e, f#, G, g4, A, b, c#. Of these, D and A
make doubly active pairings with ¢, while ¢ and f make doubly active pairings with D, which
leaves the singly altered e, G, g, and Bb as the best available choices (in terms of activity) for a
final. The roots of G and g provide an upwards resolution for the most salient altered tone (f¥),
the root of e provides a downwards resolution for f¥, and the root of Bb is not a resolution for

the active tone. This suggests the following ranking of cadential effectiveness (from more
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effective to less effective): c»>D—-G or g (ivoV—-I or i); coD—e (ivo>V-vi); c>D-Bb (iv of
#4-V of #4—1) (note that this last tritone substitution cadence is more effective when the an-
tepenult and penult are reversed to give D—»c—Bb (V of #4—iv of #4—1), because now the sali-
ent active note is the downwards alteration eb, which can resolve downwards to the third of the
final). Once again this accords well with conventional music theory, with the authentic cadence

ranked highest, then the deceptive, and then the tritone substitution.

4.1.4. PII->V- Cadences

C—F# is heard as an alteration of C—f%, so the note a# is heard as an upwards alteration of at.
To most effectively resolve this alteration, we require a final triad in a prototypical pairing with
both C and F#, and that the altered note a¥ moves, preferably upwards, to a note in the final
triad, preferably the root (the final should not contain the active tone otherwise no resolution
has occurred).

There is no final that is prototypical in reference to both C and F#. Relative to C, the fol-
lowing triads are prototypical: C, c#, d, e, F, f#, G, a, b. Relative to F#, the following triads are
prototypical: F#, g, g#, a#, B, ¢, C#, d¥, e#. Of these, g#, a# and d# make doubly active pairings
with C, while d, a, and e make doubly active pairings with F#, which leaves the singly altered C,
¢, C%, ct, F, e, F4, %, G, g, B, b as the best available choices (in terms of activity) for a final. Of
these, the only triads that do not contain the active tone a# are C, ¢, C#, c#, F, e#, %, G, B, b. The
roots of B and b provide an upwards resolution for a#, and so make the most cadentially
effective final—giving the cadences C->F4—-B (bII-V—I) and C->F4-b (bII->V—i). These are
familiar cadences using the Neapolitan bII triad (though this triad is typically played in first
inversion, in order to improve the voice-leading). The remaining finals provide cadences with
varying degrees of effectiveness—many of the embedding scales contain three consecutive
semitones and likely have contradictory latent activities. Furthermore, it is likely that the S + P
comparison is important for the C—F# progression because C<F and Ce& G have substantially

lower spectral response distances than C<F#.



46 A PSYCHOACOUSTIC MODEL OF HARMONIC CADENCES

4.2. Tonal Functionality

One of the central tenets of functional theory is that all chords can be categorised as belonging
to one of three different functions: subdominant, dominant and tonic. When considering only
major and minor triads, subdominant is typically represented by 1V, iv, ii, or bII (these triads are
all on the flat, or subdominant, end of the chain of fifths), dominant is typically represented by
V (which is at the sharp, or dominant, end of the chain of fifths), and tonic by I and vi (which
are in the middle of the chain of fifths).

For triadic harmony, the theory presented here has a similar structure. It requires three
triads (antepenult—penult—final) and, as discussed in the previous subsection, effective ca-
dences typically have an antepenult of ii, IV, or iv (i.e., all subdominant function triads), a pe-
nult of V (the archetypal dominant function triad), and a final of I or vi (i.e., both tonic func-

tion triads).

4.3. Tonal Asymmetry

Functional music theory, and general descriptions of musical practice (see, e.g., Piston
& Devoto (1987), and Dahlhaus (1990)), indicate that cadences generally follow the pattern sub-
dominant—dominant—tonic. Reversing the order of the subdominant and dominant chords is
generally considered to significantly weaken the effectiveness of the cadence.

This is an example of a tonal asymmetry—the order of presentation of the harmony
significantly impacts upon the effect it induces in a listener and, as a result, certain permuta-
tions of chords are preferred (and used more often) than others. Other examples of tonal
asymmetry can be found in the movement between keys rather than between chords, for exam-
ple Toiviainen and Krumhansl’s (2003) data show that moving from a key to a sharper key is
perceived as having greater distance than moving in the opposite direction; similar results were
found by Cuddy and Thomson (1991).

As explained in Section 3.2.3.3, act(X — Y|P) and act(X « Y|P) are not, in general,

equal, and they are frequently of opposite sign. For example, in the pairing C~D, only D is
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heard as a parallel alteration, not C. For that reason, the cadence C-»D—-G (IV-V-I) is likely
to be more effective than the cadence D-»C—-G (V—IV—I) because, in the former, the active
tone has extra salience due to it being in the most recently played triad.

Purely structural models, such as the tonal toroid proposed by many contemporary re-
searchers (e.g., see volume 15 of Tonal Theory in the Digital Age: Computing in Musicology)
and Lerdahl’s tonal pitch space, are inherently symmetrical and so cannot capture the asymme-
tries that are an important part of our perception of tonality. In the model presented here, tonal
asymmetries are a function of the comparisons used—no extra theory needs to be tacked on to

account for them.

4.4. Tonal Dualism

Tonal dualism, a concept introduced by Oettingen and Hauptmann, sees major and minor tri-
ads as opposites: the major triad is built upwards from the root with a major third and perfect
fifth, the minor triad is built downwards from the fifth with the same two intervals. In Rie-
mann, and some of his contemporary followers, tonal dualism is expanded to cover the func-
tions of the scale degrees and triads within the major and minor keys; the functions are typi-
cally considered to be reflections of one another. A prominent example of this is the minor key’s
b6, which resolves downwards to the fifth of the minor tonic, which is the dual of the major
key’s 7, which resolves upwards to the root of the major tonic; the b6 sometimes being consid-
ered as characteristic of the minor key as 7 is of the major (Harrison, 1994).

Tonal dualism is graphically represented in the plots of spectral response distance—the
plots for the major and minor reference triads (Figure 3.2 (a) and (d), respectively) are 180° rota-
tions of each other. For example, with two major triads a whole tone apart (e.g., CD), the up-
per triad (D), not the lower (C), is heard as altered; conversely, with two minor triads a whole
tone apart (e.g., c—d), the lower triad (c), not the upper (d), is heard as altered. If either pro-
gression resolves to a G or g tonic: the D has an upwardly altered f¥ (7) that resolves upwards to

g (1); the c has a downwardly altered eb (6) that resolves downwards to d (5).
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Also notice how in Figure 3.3, the activities of triad pairings whose roots differ by a per-
fect fifth or fourth (the most common root progressions in Western music) have opposite direc-
tions depending on whether the reference triad is major or minor. For example, C—F and c—f
are prototypical, while C—f and c¢—F are active. In C—f the active tone of the latter triad is a
downwards alteration, in c—F the active tone of the latter triad is an upwards alteration. If the
former resolves to triad a perfect fourth below (e.g., C=f—C), the penult contains the down-
ward resolving b6; if the latter resolves to a tonic a perfect fifth below (e.g., c>F—Bb), the pe-

nult contains the upward resolving 7.

4.5. Tonal Scales

The modal system of music, which was prevalent until the end of the 16th century, gave no
privileged status to any of the modes of the diatonic scale. Tonal music, on the other hand,
privileges the Ionian and Aeolian modes; none of the other modes survived into common prac-
tice.

The privileged status of these modes is a natural consequence of the model: Given a dia-
tonic scale, the only triad pairs with positive continuous activity are those containing both
members of the tritone (e.g., in the "white note" diatonic scale, activity is present only if one
triad contains the note f (i.e., the triads d and F) and the other triad contains the note b (i.e.,
the triads G and e)). The only triads that make pairings that are prototypical with (d OR F) AND
(G OR e) are C and a. These two triads are, therefore, the natural tonics of the “white note” dia-
tonic scale, hence the privileging of the Ionian (whose tonic is C) and Aeolian (whose tonic is a)

modes.
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4.6. Tonal Harmony

It is interesting to observe that the birth of tonality in the 17th century coincided with the birth
of triadic harmony. Balzano (1980) speculates that the privileging of the Aeolian and Ionian
modes and the use of triadic harmony are mutually dependent.

The model presented here has a similar dependency—it is only when pairs of triads,
rather than pairs of tones or dyads, are used that the conventional effects of tonality are pre-
dicted. This mirrors the historical development, and demonstrates a causal dependency of to-

nality upon triadic harmony.

4.7. Tonal Robustness

The effects of tonal music are robust over the range of tunings used throughout the common
practice period (such as meantones, well-temperaments, just intonation, and 12-TET (Barbour,
1951)). They are also robust over a wide range of instrumental timbres (there isn't a different
music theory for each different type of instrument).

The model has, so far, been calculated over a variety of meantone tunings and 12-TET,
and the resulting srd plots, and the activities they imply, are broadly similar. Furthermore, the
model does not (like so many others, such as Lerdahl’s (2001), or Woolhouse’s (2007)) rest upon
an implicit assumption of twelve-tone equal temperament—a point that is crucial given that
tonality was born in the 17th century when the most common tuning was quarter-comma
meantone and 12-tone equal temperament was no more than a gleam in Apollo’s eye.

The predictions are also robust over different timbres. The calculations have been made
with a spectrum where the partials have amplitudes of 1/i, where i is the harmonic number of
the partial. But the model produces broadly similar results for amplitudes of 1/i=¢ for a wide

range of values of d (e.g., 0 < d < 2).
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4.8. Discussion and Conclusion

The data surveyed in this chapter support the conclusion that the psychoacoustic model can
explain a broad range of important regularities found in tonal-harmonic music. A non-
experimental survey such as this is not, however, the most stringent of tests; the following sec-
tion describes and analyses two rigorous experiments designed to test the model against human

ratings.



5. EXPERIMENTAL TESTING OF THE MODEL

In the previous section, I discussed how the model can be used to explain many of the regulari-
ties of tonal-harmonic music. In this section, I describe two experiments designed to empiri-
cally test the model’s effectiveness at predicting the reactions of 35 listeners to prepared exam-

ples of music.

5.1. Method

The cognitive variables voice-leading distance, spectral distance, and tonal activity cannot be
directly measured. But, with careful experimental design, I hoped it would be possible to get a
good indication of their values in response to musical stimuli. In two experiments, 35 partici-
pants rated the “similarity” and “fit” of the two triads in 26 different triad pairs, and the “caden-
tial effectiveness” of 72 different three-triad progressions.

I expected “similarity” would correspond to voice-leading distance, and “fit” to spectral
distance, though I also expected the participants would somewhat confound the two variables,
as well as be influenced by unforeseen factors. Despite this, I hoped the results would still be
pure enough to allow the ratings to be successfully regressed on pitch distance, fundamental
response distance, spectral response distance, and tonal activity, thus providing a useful test of
the psychoacoustic model and its underlying theory. I expected the ratings for “cadential
effectiveness” to be accurate enough to test the model by regressing it on the spectral response

distances and tonal activities of each triad pair.

5.1.1. Participants

There were 35 participants (19 male, 16 female, with a mean age of approximately 30 years),
most of whom were students or staff of Jyvaskyla University, Finland. Participants were asked to
rate their instrumental and music theory skills. The average level of both was “intermediate’,

and only two participants had no playing or music theory skills (on a scale of “none” = o, “ba-
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sic” =1, “intermediate” = 2, “advanced” = 3, average instrumental skill was 2.3, average music
theory skill was 2.1).

The average level of self-reported “reliability” was 66% (participants were asked to esti-
mate the percentage of stimuli they would give the same, or a similar, answer to if they were to
do the test again). Participants were asked if they had done analytical listening (i.e., working
out the mode of the chords and the root relationships between them): 16 participants claimed
to have done no analytical listening; 13 claimed to have done “some” or “a little” analytical lis-
tening; 4 to have mostly listened analytically; and 1 to have listened analytically all the time

(this participant claimed to possess absolute pitch).

5.1.2. Apparatus and Procedure

The experimental interface (see Appendix D) was created with Max/MSP. The music was stored
as MIDI files and played through a software sampler to emulate a string quartet (the synthesizer
was Cakewalk’s Dimension Pro playing a sample set from Garriton). A string quartet was chosen
because, after discussions with colleagues, it was felt to be more pleasant than listening to a
purely synthetic sound, and because it lends itself to the hearing out of four independent me-
lodic parts.

The experiments were conducted back-to-back in a quiet room, and the music was
played on headphones, with the individual instruments panned to provide a naturalistic stereo
image. The first experiment (to rate the “similarity” and “fit” of pairs of triads) took approxi-
mately 10 minutes, the second experiment (to rate the cadential effectiveness of three-triad

progressions) took approximately 20 minutes.

5.1.3. Stimuli

For each chord progression, voice-leadings were chosen according to standard rules of har-
mony: there were four parts; common tones and steps were used rather than leaps; parallel
fifths and octaves were completely avoided; hidden fifths and octaves were avoided when possi-

ble and, when unavoidable, approached by step in one part (given some of the very unusual
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triad pairings required, hidden fifths cannot always be avoided without creating unpleasant
leaps).

The order of presentation was individually randomised for each participant, the tuning

was conventional twelve-tone equal temperament (12-TET), and the precise pitch of every chord
progression was randomised (in 12-TET steps) over an octave. In between each progression, a
short sequence of randomly generated chords was played to lessen the possibility of the previ-
ous progression colouring the response to the next.
5.1.3.1. Triad Pairs—“Similarity” and “Fit”
In the first experiment, every participant was asked to rate all possible pairs of 12-TET triads
(when disregarding order and overall transposition, there are just 26 different pairs of 12-TET
triads) for their “similarity” and “fit”. Each triad pair was played as a loop—going from triad 1 to
triad 2 to triad 1 to triad 2, and so on. Each chord had a minim (half-note) length, and the
tempo was 100 beats (quarter-notes) per minute.

The ratings were made on two separate 5-point scales marked at the bottom and top
with “similar” and “dissimilar”, and “good fit” and “bad fit”, respectively. A value of 1 was given to
a rating of maximal similarity or fit (i.e., minimal distance), and a value of 5 to a rating of
minimal similarity or fit (i.e., maximal distance). In the instructions, “similar” chords were
defined as being those “you might inadvertently think the same”; “dissimilar” with “their

», «

difference is obvious and easy to hear”; “good fit” was likened to a chord transition that was
“straightforward”, “elegant”, “easy”; “bad fit” to “clumsy”, “awkward”, “difficult”.

The aim of the “similar/dissimilar” question was to get a rating for voice-leading dis-
tance. The aim of the “good fit/bad fit” question to get a rating of spectral distance. It was ex-
pected that there would be some confounding of the two concepts, as well as some confounding
with other variables (such as activity). But I hoped the ratings would give some indication of
the two types of distance.
5.1.3.2. Triad Triples—“Cadential Effectiveness”

In the second experiment, every participant was asked to rate 72 different three-triad progres-

sions for their “cadential effectiveness”. Ignoring transposition, there are 1,152 different order-

dependent triples of 12-TET triads, so it is unfeasible (in a single experiment) to obtain ratings
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for all of them. The specific sample of 72 was chosen in order to test the impact of a single type
of comparison—the parallel transform—upon discrete activity (and ultimately upon cadential
effectiveness), and also to maximise the statistical power of the test at detecting the impact of
the variable acty (4 — P|P).

The parallel comparison (e.g., comparing the spectral distance of triad pair CE with
the spectral distance of the triad pair C+>e) was chosen because, as discussed in Section 3.2.3.3,
it is likely to have the smallest possible voice-leading distance (I show in Sect. 5.2.3 how the ex-
perimental data support this conclusion), and so should maximise the absolute value of the
continuous activity produced by the two pairs (see Eq. (3.11)). It is likely, therefore, to be the
comparison that produces the most salient alteration. Furthermore, as discussed in Section 4,
the implications of the parallel comparison provide an effective explanation for many of the
regularities of tonal-harmonic music.

Discrete, rather than continuous, activity was chosen for two reasons: firstly, it is rela-
tively easy to choose a sample of three-triad progressions that can isolate changes in the discrete
activity of at least one triad pair in a three-triad progression (see below), whereas with continu-
ous activity this is not possible; secondly, it is possible that when judging cadential
effectiveness, activity may be more accurately modelled by the simpler discrete measure (due to
the cognitive load and long-term memory requirements of the task).

The statistical power for the variable acty(A — P|P) was maximised because it seems
likely this is one of the more important activity predictors: an effective cadence should be pro-
duced when the penult is heard as active as soon as it is played (i.e., directly after the antepe-
nult) so that the following final triad is able to resolve this activity.

The selection of triad triples was made in the following way. The antepenult was either
C major or ¢ minor, this makes two possible one-triad “progressions”.

The penult was each of the 24 different triads in 12-TET (i.e., the major and minor chords
on each degree of the chromatic scale), making a total of 48 different progressions. According
to Equations (3.11) and (3.13), for each pair that is a parallel of another (e.g., c=>Ab compared to

c—ab) one pair will have a negative continuous activity (act.) value, that is, a discrete activity



5. EXPERIMENTAL TESTING OF THE MODEL 55

(act,) of zero (e.g., c—>Ab), the other a positive act, value, that is, an act, value of unity (e.g.,
c—ab). Hence the latter should be heard as an alteration of the former.

The final chosen for each parallel pair of antepenult—penult pairs was identical (so
c¢—D and c—d get the same final); the root of this final being the resolution of the active tone of
the active penult (I have presumed that the best available resolution is made by a semitone step
in the same direction as the alteration—see Sect. 3.3.3); the mode of the final was chosen to en-
sure that acty(A — P|P) = 0; this gives pairs of progressions such as c»D—gand c»>d-g.

This selection method is a way of isolating, as much as possible, changes in the value of
the discrete activity acty (4 — P|P) from changes in the remaining two forwards discrete activ-
ity values, acty(P — F|P) and acty(4 — F|P) (the reverse activities acty(4 < P|P), acty(P «
F|P), and actq(A < F|P) are not controlled) as well as other possibly confounding variables
such as the scale degrees of the triads’ roots or their modes (major or minor). The selection
method, therefore, provides four groups with the following patterns of discrete forward activi-
ties. Using the simple shorthand notation of actq(4A = P|P) | acty(P = F|P) | actq(A = F|P),
the four groups are: Group1 =1|1| 0, Group2 =0 |1|0, Group3 =1]|o0 | o, and Group 4 =
o | o | 0. For every member of Groups 1and 3, there is a member of Group 2 or 4 that has exactly
the same triads (ignoring transposition) except for the penult, which has a different mode. The
value of having paired groups is that it helps to reduce the degree to which uncontrolled vari-
ables contaminate the experiment. Each group contains essentially the same elements, but with
the variable of interest, acty(A — P|P), being changed. Note also that all the progressions have
acty(4 — F|P) = 0, eliminating the impact of this variable.

When these 48 progressions are transposed to give a final major or minor triad with the
same root (e.g., C or ¢), there are just eight different penult—final endings (G—-C, G—c, g—C,
g—c, Bh—>C, Bb—c, bb—C, and bb—c). Of these, only four (G—»C, G—¢, bb—C, or bb—c) have
a penult with a discrete activity of unity (i.e., they are members of Groups 1 and 3, which have
actqy(A » P|P) = 1). The final 24 progressions (which make up the total of 72) use these four
different penult—final endings but use all antepenults that give both acty(4 — P|P) = 0 and
acty(A = F|P) = 0. This provides two more groups: Group5=0 1| 0,and Group6 =0 | o | o.

For every member of Groups 5 and 6, there is a member of Group 1 or 3 or 5 or 6 that has (ignor-
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ing transposition) exactly the same penult, a final that has the same root (but not necessarily
the same mode), and an antepenult of the opposite mode. As before, these paired groups help
to ensure that changes in the value of acty(4 — P|P) are isolated from changes in the remain-
ing discrete activities, as well as other potentially confounding variables. Note also, that all 72
progressions have actq(4 — F|P) = 0, thus eliminating this variable from the analysis. Appen-
dix C provides a full listing of the triad triples used, and their group numbers.

These related groups are intended to provide an effective way to estimate the impact of
acty(A — P|P) upon cadential effectiveness, but this is by no means the only way to select a
manageable, but useful, subset of triad triples; however, it does provide a systematic and unbi-
ased method to select those triples that should effectively test the model.

Each triad triple was played through once in full, but the participant could repeat play
after a two-second delay. Each chord had a minim (half-note) length, and the tempo was 8o
beats (quarter-notes) per minute.

The rating of cadential effectiveness was made on a 7-point scale marked “cadentially
effective” at the top, “cadentially ineffective” at the bottom, and “neutral” in the middle. The
instructions gave the following explanation of “cadential effectiveness” “how effectively does
the third chord give a feeling of ‘closure’ or ‘finality’? For example: If the progression is ‘caden-
tially effective, the third chord gives a clear and definite sense of closure, and would be an
effective and unambiguous ending for a piece of music; if the progression is ‘cadentially
ineffective, the third chord suggests or implies that another chord, or chords, should follow; if
the progression is ‘neutral, the third chord may give no feeling of closure, but neither does it

imply a need for any more chords to follow”

5.2. Results

5.2.1. Similarity

A correlation matrix for the 35 participants’ ratings of all 26 triad pairs was created. One par-

ticipant had three negative correlations with other participants and a low average correlation
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level (.136), and so was removed as an outlier. The mean of the inter-participant correlations for
the 34 remaining participants was .470 (per participant averages ranging from .275 to .599),
with no negative values between any pairs of participants, and a Cronbach’s « of .967. The inter-
participant correlations are given in Table E.1.

For each triad pair, the ratings of similarity were averaged over the 34 participants to
create a variable called sim. Table 5.1 shows the correlations between sim and a number of pre-
dictors: the pitch distance moved by the bass (bas), tenor (ten), alto (alt), and soprano (sop)

voices; the fundamental response distances between the two triads (frd); the average of the con-

act. (X—Y)+act

- C(X(_Y)); the average of

tinuous forwards and backwards activities (act.(X & Y) =

actq(X-Y)+d (X«—Y))
2 .

the discrete forwards and backwards activities (acty; (X « Y) =

Table 5.1. Pearson correlations, and their one-tailed significance, between sim, bas, ten, alt, sop,
frd, act(X<Y), and acty(XeY).

sim bas ten alt sop frd act(XeY) acty(XeY)

. 1.000 .504 757 388 557 .916 .686 .486
sim

.004 .000 .025 .002 .000 .000 .006

X .504 1.000 427 348 190 308 114 138
as

.004 .015 .041 176 .063 .290 .250

\ 757 427 1.000 140 .639 .760 .386 289
en

.000 .015 247 .000 .000 .026 .076

" 388 348 140 1.000 -.034 317 .258 .069
a

.025 .041 247 435 .057 .101 .370

sop .557 190 .639 -.034 1.000 715 .251 .275

.002 176 .000 435 .000 108 .087

fid .916 .308 .760 317 715 1.000 .595 429
T

.000 .063 .000 .057 .000 .001 .014

act(XoV) .686 114 .386 258 .251 .595 1.000 .802

.000 .290 .026 .101 108 .001 .000

.486 138 289 .069 275 429 .802 1.000
acty(XeY)

.006 .250 .076 .370 .087 .014 .000

All the predictor variables are positively correlated (as expected) with sim, and the cor-
relations are all significant (p < .05, one-tailed). Table 5.1 indicates there is some collinearity

between the predictors, so a stepwise multiple linear regression of sim was performed on all the
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above predictors. The variables ten, alt, and sop, and act,(X<Y) drop out; the three remaining
variables, bas, frd, and act.(X<Y), provide a highly significant R* =.934 (R%.g =.925),
F(3, 22) =103.120, p =.000. Coefficients and their significance for this regression are summa-
rised in Table 5.2, and a scatter plot is shown in Figure 5.1 (note that the two low-valued items
are CoC, and coc (and their transpositions), so it makes sense that these are heard as dis-

tinctly more similar than all other possible pairs).

Table 5.2. Regression coefficients and significance for multiple regression of sim on frd, bas, and
act(XeY).

B Std. Error B t p
(Constant) 1.548 147 32.497 .000
frd 123 .013 .688 9.607 .000
bas 115 .025 .265 4.565 .000
act(XeY) .017 .005 247 3.595 .002

34

sim

R Sg Linear = 0.934

1-

] T T T T T
3 2 1 0 1 2

Regression Standardized Predicted Value

Figure 5.1. Multiple regression of sim on bas, frd, and act (X<Y).

5.2.2. Fit

A correlation matrix for the 35 participants’ ratings of all 26 triad pairs was created. Three par-
ticipants had low average correlation levels (-.048, .004, and .044), and so were removed as out-

liers. The mean of the inter-participant correlations for the remaining 32 participants was .363
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(per participant averages ranging from .165 to .495), with nine negative values between pairs of
participants, and a Cronbach’s a of .949. The inter-participant correlations are given in
Table E.2.

Clearly, the responses for fit were less consistent than those for similarity. Indeed, in the
interviews following the test, many participants stated, or implied, that they used familiarity as
a strategy—if they recognised a particular progression, they would give it a higher fit. This sug-
gests that these ratings are somewhat affected by each participant’s musical taste and familiar-
ity—in other words, a long-term memory (Itm) component.

For each triad pair, the ratings of similarity were averaged over the 32 participants to
create a variable called fit. Table 5.3 shows the correlations between fit, spectral response dis-

tance (srd), the average of the continuous forwards and backwards activities (act.(X < Y) =

act. (X—Y)+act
2

XY . L
(X )), and the average of the discrete forwards and backwards activities

actq(X—=Y)+d (X<—Y))

(act;(X & Y) = -

Table 5.3. Pearson correlations, and their one-tailed significance, between fit, srd, act.(X<Y),
and acty(XeY).

fit srd act(XeY) actidXeY)
fit 1.000 775 .676 .549
.000 .000 .002
775 1.000 .601 -475
srd
.000 .001 .007
.676 .601 1.000 .802
act(XeY)
.000 .001 .000
act (X Y) .549 475 .802 1.000
.002 .007 .000

The predictors act.(X<Y) and act,(X<Y) are highly collinear, so it makes sense to enter
only one of them into a regression of fit. The predictor act. (X< Y) is better correlated than
act (X< Y) with fit, so a multiple linear regression of fit was performed on srd and act.(XeY),

giving a highly significant R* = .670 (R’ = .641), F(2, 23) = 23.320, p = .000. Coefficients and
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their significance for this regression are summarised in Table 5.4, and a scatter plot is shown in

Figure 5.2.

Table 5.4. Regression coefficients and significance for multiple regression of fit on srd and
act(XeY).

B Std. Error B t D
(Constant) 1.438 .306 4.706 .000
srd .022 .006 578 3.853 .001
act(XeY) .021 .010 329 2.101 .039

4

fit
9

R Sg Linear = 0.67

T T T T T T
3 2 1 0 1 2

Regression Standardized Predicted Value

Figure 5.2. Multiple regression of fit on srd and act (X< Y).

The four low-valued items are C&C, co ¢, Ceoa, and Coe (and their transpositions),
which makes sense from a musical perspective (they are all voice-leading close and diatonic).
For this reason, it would be inappropriate to treat them as outliers.

An attempt was made to simulate the effects of the (non-psychoacoustic) long-term
memory component by finding all tested cadences that contained a given chord pair. The ca-
dence with the highest-rated cadential effectiveness transferred this rating to an [tm rating for
that chord pair. The assumption being made here is that if a chord pair is found to be caden-
tially effective, it is likely to play a prominent and familiar role in music. An example is the pro-

gression CoF# (and its transpositions), which was given a much higher rating for fit than is
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predicted from its high spectral response distance and tonal activity. The reason is conjectured
to be because it is part of a cadence (the Neapolitan bI[-V—1i) that has a high effectiveness rat-
ing and so is commonly used in tonal-harmonic music.

Regressing fit with this additional /tm variable, significantly increased the regression
coefficient (the significance of the change in F was.oo1) to give R*=.796 (R’ =.769),
F(3, 22) = 28.674, p = .000. This suggests not only that fit is influenced by long-term memory,
but also that the long-term memory component can be endogenously modelled using calcu-

lated values for cadential effectiveness (but that is beyond the scope of this thesis).

5.2.3. Similarity and Fit

The correlations between sim, fit, frd, and srd, are shown in Table 5.5.

Table 5.5. Pearson correlations between sim, fit, frd, and srd.

sim fit frd srd

sim 1.000 741 .916 .907
fit 741 1.000 725 775
frd .916 725 1.000 .990
srd .907 775 .990 1.000

A Hotelling t-test for the difference between two correlation coefficients from one sam-
ple (Hotelling, 1940) shows that the correlation between frd and sim is not significantly higher
than the correlation of srd with sim, but that the correlation between srd and fit is significantly
higher than the correlation between frd and sim (t(23) = 3.047, p < .005, one-tailed). This sug-
gests that srd could be substituted for frd. However, when the model is developed to enable srd
to be calculated with different frequency difference limens for different harmonic numbers (see
Sect. 3.1.2.1), it is possible that srd and frd will correlate less. Furthermore, it would be desirable
to collect more empirical data to check the correlation of frd and srd with a variety of different
ratings. For this thesis, therefore, it would be premature to explore the implications of such a

substitution.
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The results of this first experiment suggest the path diagram illustrated in Figure 5.3.

sim
pd
vid
frd act
sd
srd
fit

Figure 5.3. A path diagram showing the proposed relationships between the cognitive variables
discussed above—including a long-term memory (/tm) component—and the measured vari-
ables similarity (sim) and fit (fit). Error terms are not shown.

If the path diagram is correct, these results suggest that not only can sim be predicted
with great accuracy using pd, frd, and act.(X<Y), but also that the latent voice-leading variable
vld can be accurately predicted with just pd and frd. The B values shown in Table 5.2 imply the
following formula for voice-leading distance (i.e., they provide values for 4; and B of Eq. (3.7)):

vld(X,Y) = (0.115 x pd(x1,y1)) + (0.123 x frd(X, Y)), (5.1)
for two triads X and Y with bass notes x; and y;. Using Equation (5.1), Table 5.6 gives the rank-

ing of voice-leading distance for all possible 12-TET triad pairs.

Table 5.6. Example triad pairs are shown in rank order, from smallest to largest, of their vid (as
calculated with Eq. (5.1)). Common neo-Riemannian abbreviations representing some of the
transforms are in the second row.

1 2 3 4 5 6 7 8 9 10 u 12 13
P R L S

CoC Coc (Ceoa Ceoe (Coct CoEb CoE CoF CoDb CoD Ceoeb coE CoFt

coc coeh coe  cof coDh Ced Coft
Cof codb oD coft
Cof ced
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According to this calculation method, the parallel transform has the smallest non-zero
voice-leading distance (which confirms the assumption made to guide the choice of triad pro-

gressions for the cadential effectiveness experiment—see Sect. 5.1.3.2).

5.2.4. Cadential Effectiveness

A correlation matrix for the 35 participants’ ratings of all 72 triad triples was created. There were
no negative correlations between pairs of participants, and the mean of the inter-participant
correlations was .494 (per-participant averages ranging from .234 to .621), with a Cronbach’s «
of .971. The inter-participant correlations are given in Table E.3.

For each triad triple, the ratings of cadential effectiveness were averaged over the 35 par-
ticipants to create a variable called eff. As explained in Section 3.3, the procedure for calculating
cadential effectiveness from the psychoacoustic model is multifaceted and complex; ideally it
should take into account not just the spectral distance and activity of every chord pairing (in
both directions, for the latter), but also trace whether or not each active note is resolved, and
whether it resolves to the root, third, or fifth of a triad, as well as undertake analysis of latent
progressions in the embedding scale. At the time of writing, these latter factors have not yet
been incorporated into the model, but I hope to include them in a future version.

The correlations between eff, act,(A—P|P), act;(A<P|P), actP—F|P), act,(P<F|P),
acty(A<F|P), srd(A, P), srd(P, F), and srd(A, F) are shown in Table 5.7. Note that act;(A—F|P) is
not included because it always has a value of zero for the sample of triad triples tested. Also
note that only discrete (act,), not continuous (act,), activity values were used because the sam-
ple was chosen specifically to test the impact of the discrete activity variable (see Section
5.1.3.2); it can be noted, however, that the continuous activity values are all correlated with eff in
the expected direction, but with generally lower significance levels than those for discrete ac-

tivities shown in Table 5.7.
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Table 5.7. Pearson correlations, and their one-tailed significance, between eff, act (A—P|P),
acty(A<P|P), acty(P—F|P), acty(P<F|P), acts(A<F|P), srd(A, P), srd(P, F), and srd(A, F).

eff acty(A—P|P) actA<P|P) actyP—F|P) actP<F|P) actfA<F|P) srd(A, P) srd(P, F) srd(A, F)
7 1.000 .205 .036 -.083 -.616 -.024 .207 -.806 -181
€

.042 382 243 .000 420 .040 .000 .064
.205 1.000 .000 303 .250 -.145 314 .099 -.075

acty(A—P|P)
.042 .500 .000 .017 112 .004 .204 .266
.036 .000 1.000 .225 .000 .415 273 .042 .088

acty(A<P|P)
382 .500 .029 .500 .000 .010 .364 231
-.083 393 .225 1.000 .039 -.006 353 311 .023

act(P—F|P)
243 .000 .029 371 481 .001 .004 424
393 .250 .000 .039 1.000 .073 .077 769 .037

acty(P<F|P)
.000 .017 .500 371 272 .259 .000 377
-.024 -.145 415 -.006 .073 1.000 .080 -.017 .256

acty(A<F|P)
420 112 .000 481 272 .251 444 .015
.207 314 273 353 .077 .080 1.000 .075 -198

srd(A, P)
.040 .004 .010 .001 .259 .251 .266 .048
o -.806 .099 .042 31 769 -.017 .075 1.000 -.041

srd(P, F,
.000 .204 .364 .004 .000 444 .266 .366
-181 -.075 .088 .023 .037 256 -198 -.041 1.000

srd(A, F)

.064 266 231 424 377 .015 .048 .366

All the predictors show correlations with eff in the expected direction (i.e., predictors
relating to the final triad have negative correlations, and vice versa); however, not all of the cor-
relations with eff are significant. This is probably because the sample set was chosen specifically
to maximise the statistical power of the variable act,(A—P|P) at the expense of the other activity
variables (see Sect. 5.1.3.2) (reassuringly, act,(A—P|P) is significantly correlated (p = .042, one-
tailed)).

In order to find a more parsimonious model for this sample, a stepwise multiple linear
regression was performed on eff using all eight variables. The resulting model has four predictor
variables: acty(A—P|P), srd(A, P), srd(P, F), and srd(4, F), with R* of .794 (R%,q; = .782), F(4, 67) =
64.693, p = .000. Coefficients, and their significance, for this regression are summarised in Ta-

ble 5.8, and a scatter plot is shown in Figure 5.4.
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Table 5.8. Regression coefficients and significance for multiple regression of eff on
acts(A—P|P), srd(A, P), srd(P, F), and srd(A, F).

B Std. Error B t p
(Constant)  9.845 .505 19.495 .000
acts(A—P|P) .677 177 224 3.820 .000
srd(A, P) .013 .005 168 2.819 .006
srd(P, F) -1 .007 -.848 -15.207 .000
srd(A, F) -.012 .004 -.166 -2.938 .005
7 5

5

eff
il

R 5q Linear = 0.794

2=

1

T T T
2 1 0

— ]
M

Regression Standardized Predicted Value

Figure 5.4. Multiple regression of the cadential effectiveness (eff) of 72 different triad triples on
acts(A—P|P), srd(A, P), srd(P, F), and srd(A, F).

It is interesting to note that most of the act, predictors (all except act(A—P|P)) drop
out in the stepwise regression. This is due, in part, to the high multicollinearities between the
acty variables and their related srd variables (e.g., between act,(P—F|P), actyP<F|P), and
srd(P, F)). The reason for these multicollinearities is because, when considering all possible
voice-leading comparisons, it is probable that any chord pairing with a high srd is voice-leading
close to another pair with a lower srd, so there will be a correlation between srd and activity due
to all possible comparison pairs. In the current model, only parallel comparisons are consid-
ered, but for certain triad pairs (e.g., C<>f#) other comparisons (e.g., the SLIDE transformation
(Lewin, 1987) used to compare Cf# to C~F) may become important. At this stage, it is im-

possible to know whether the high f values of the three srd variables in the regression are due
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to a direct relationship between srd and eff;, or whether they are only indicative of activity due to
comparisons other than just the parallel. It is possible that when a greater variety of triad triples
are rated, and more types of comparison are considered, the importance of the srd predictors
will be diminished and the importance of the activity predictors will be augmented.

It is also interesting to note that many of the “outliers” (both up and down) in this re-
gression are those triad triples that contain only prototypical triad pairs (prototypical pairs have
a discrete activity of zero in both directions—see Sect. 3.4.2), such as Bb—»g—c and C-»G—-C
(all 18 prototypical-only progressions are labelled in Figure 5.4). Removing all the prototypical-
only progressions, and performing the same regression as above, gives an R* of.843
(R?,q; = .830), F(4, 49) = 65.619, p = .000. It may be speculated that a progression without active
triad pairs lacks cadential “cues” and that the listener may, therefore, be more strongly
influenced by long-term memory—that is, does the presented chord progression (which has
limited cadential cues) sound like an abbreviation of a familiar progression that does have
strong cues that make it cadentially effective, or ineffective? The model predicts that the most
effective cadences end with G—C (and its transpositions). This may explain why those proto-
typical-only progressions that have an ending of G—C (and its transpositions) were typically
rated as more cadentially effective than the model predicts, while prototypical-only progres-
sions ending in g—c were typically rated as having a lower cadential effectiveness than the
model predicts. This suggests it may be possible to endogenously model the long-term memory
component required by the cadential effectiveness model—in a way similar to the ltm compo-

nent implicated in the model for fit—but that is beyond the scope of this thesis.

5.3. Discussion and Conclusion

The “similarity” experiment shows that sim can be very accurately predicted (R* =.934) with
bas, frd, and act.(X<Y). This indicates that, when judging the “similarity” of two major or mi-
nor root-position triads, a listener is primarily focussed upon their number of common tones

(B = .688), then by the pitch distance moved by the bass note (which, for root-position triads, is
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equivalent to the root note) (f = .265), then by the level of activity due to that pair’s parallel
comparison (8 = .247).

The “fit” experiment shows that fit can be reasonably well predicted (R* = .670) with srd
and act (X« Y). This indicates that, when judging the “fit” of two major or minor root-position
triads, a listener is primarily focussed upon the number of melodic dyads between them that
are spectrally similar (e.g., perfect fifths and fourths, and major and minor thirds and sixths)
(B = .578), then by the level of activity due to that pair’s parallel comparison (8 = .329). It is also
likely that long-term memory plays an important role in judgements of “fit”, and that triad pairs
that occur in effective cadences fit better than might otherwise be expected from their srd and
act(X<Y) values.

If the latent variable voice leading distance (vid) is assumed to be equivalent to “similar-
ity”, but with the act.(X<Y) variable removed, the parameter values determined by the regres-
sion of sim in the “similarity” experiment can be used to calculate values for voice-leading dis-
tance. These calculations indicate that the parallel transform has the smallest (non-zero) voice-
leading distance, followed by the relative transform, then the leading tone exchange, then the
SLIDE transform.

The “cadential effectiveness” experiment shows that eff is correlated in the expected di-
rection with the srd and act, values for each of the three triad pairs involved (significantly so,
for all the srd values and some of the activity values). Due to multicollinearity between many of
the predictors it is impossible (without collecting further empirical data) to specify a best-
possible parsimonious model for all possible triad triples. However, a stepwise regression was
used to indicate a possible model, with just four predictors, that provides a good prediction of
eff (R* = .794). The 72 progressions used in the experiment represent only 6.25% of all possible
root-position progressions with three triads but, for this sample, the experiment indicates that,
when judging the “cadential effectiveness” of progressions with three root-position major and
minor triads, a listener’s response is strongly determined by the spectral response distance and
tonal activities of each pair of triads—an effective cadence is judged to have occurred when
triad pairs involving the final are spectrally similar and/or inactive, and triad pairs not involving

the final are spectrally dissimilar and/or active. It is not possible to determine the relative im-
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portance of the spectral response distance and tonal activity components without further stim-
uli to reduce their collinearity. Furthermore, without further experiments to provide ratings for
a more complete range of three-triad progressions, it is impossible to know how well the model
will generalise; despite this, the current results suggest the cadential model holds great prom-
ise.

Despite being at an early stage of development, the model provides effective predictions
for the perceived “similarity” and “fit” of triads in a pair, and the “cadential effectiveness” of
three-triad progressions. I expect that enhancements of the model will further increase its ac-
curacy; these enhancements include: different frequency difference limens for different har-
monics; activity values for non-parallel comparisons; ability to track the position, in each triad,
of active notes and their resolutions, and weight them accordingly; methods to explore the la-
tent activities of embedding scales; endogenously modelled variables to simulate long-term
memory effects; the simulation of short-term memory effects; the ability to handle non-root-
position chords, and other more complex chords. Furthermore, the precise details of the causal
structure may need modification as more chord progressions are tested. I expect the implemen-
tation of these enhancements, as well as collecting ratings for a more complete range of chord

progressions, to form part of my future research.



6. DISCUSSION AND CONCLUSION

Both the experimental and non-experimental data support the conclusion that the psycho-
acoustic model effectively explains how successive triads induce feelings of expectation and
resolution (as exemplified by harmonic cadences).

The non-experimental data also support the conclusion that, in addition to cadences,
the model explains a broad range of tonal-harmonic regularities; these include tonal asymme-
tries, functional characteristics, the interdependence of tonality and harmony, and the privileg-
ing of certain modes.

Additionally, because this model uses variables based upon empirically derived data and
connects them, in a logical fashion, to measures of cognitive distance, it seems reasonable to
conclude that its variables, and the causal relationships between them, correspond with real
perceptual and cognitive processes.

Acoustics and psychoacoustics have had a long and chequered history in music theory,
with theorists from Rameau to Riemann and Schenker grappling, uncomfortably, to make
acoustical realities fit with musical realities. And today, a typical view is that although psycho-
acoustics has some use in explaining harmonic consonance and dissonance it cannot provide an
adequate explanation for other aspects of harmonic tonality. I hope the model proposed here
demonstrates that psychoacoustics can actually explain many of the core regularities of har-
monic tonality.

Furthermore, because the model is psychoacoustically based, it opens up the possibility
of exploring the tonal implications of musical systems that use microtonal scales, or tones with
non-harmonic partials, or tones with partials that are, to a lesser or greater degree, related to
the underlying tuning system (see, e.g., the temperaments, and their related non-diatonic
scales, identified by contributors to the Alternate Tunings mailing list and catalogued by Erlich
(2006), and the non-harmonic spectra and related scales discussed by Sethares (2004) and

Sethares, Milne, Tiedje, Prechtl, and Plamondon (2009)).
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Such microtonal scales and non-harmonic timbres also open up interesting avenues for
future experimental tests of the model: musical examples could be created with chords and
progressions that have never been heard before, thus removing many of the long-term memory
effects that can so easily contaminate experiments designed to test psychoacoustical features. I
expect such experiments to form an important part of my future research.

I hope it is evident that the novel psychoacoustic approach to tonality presented here
holds great promise. Indeed, I hope it may herald a return of psychoacoustics to tonal music
theory, as well as act as a launch pad for the exploration of the tonal possibilities opened up by

non-standard tunings and spectra.
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APPENDIX A: NOTATIONAL STYLE

In order to provide musical notation that is unambiguous and precise, I have adopted the fol-
lowing conventions (within quotations, however, the original style of notation has been left un-

changed).

Absolute Notation

Lower case italic letters (a, b, ..., g) are used for notes. Upper case Roman letters (A, B, ..., G) are
used for major triads, lower case for minor triads (a, b, ..., g). For example:

1. ¢ =thenotec;

2. C=the C major triad;

3. ¢ =the c minor triad;

Relative Notation

Arabic numerals (3, 2, ..., 7) are used for notes. Upper case Roman numerals (I, II, ..., VII) are
used for major triads, lower case (i, ii, ..., vii) for minor triads. The number and accidental indi-
cate the position of the note, or chord root in relation to a major scale extending from the over-
all tonic (i.e., the root of I or i). For example:

1. #4 =forexample, the note f¥ in the key of C;

2. DbIII = for example, the major triad Eb in the key of ¢;

Progressions and Pairings

Directional arrows between pairs of triads, notes, or keys, indicate whether the relationship
goes in either direction, or just the one indicated; so C—D indicates a progression from C to D,

while C& D indicates a pairing—a progression from either C to D, or D to C.



APPENDIX B: MATHEMATICAL PROOFS AND DERIVATIONS

Cosine Distance Between Two Response Curves

The internal response curve ir, (f), as a function of frequency f, produced by a sine tone of fre-

quency X; is:

_(f—xp)?
ir, (f) = e 2007, (B.)

where DL(x) is the frequency difference limen at x. The internal response curve ir, (f) is, there-
fore, a Gaussian function of f centred at x; with a standard deviation of DL(xy).

The cosine distance between two response curves ir, (f) and ir, (f) is

I i (P)ir, (f)df

rdcos (%, ¥) = rdeos (irx (f): iry (f)) =1

e - (B.2)
(o ar 7, iy (2 ar
The product of two Gaussians is another Gaussian:
bib bicit+baca)?
eb1(u—c1)? g=bz (u—c2)? _ e—b11+§2(61—62)26—(b1+bz)(u— 1;1:[1,;62) . (B.3)
and the definite integral, from —oo to o, of a Gaussian is given by
w _(utp)?
f ae  v* du=alylVm (B.4)
Equations (B.3) and (B.4) imply that
©  bib bicit+bycay? bib
J e_ﬁ(q_mzEwﬁbﬂ(w%) du = e_ﬁ(”_mz . V. (B.5)
e b, + b,

5 for by; x¢ for c¢q; and y¢ for ¢, (see Eq. (B.1)) into

o 1 1
Substituting f for u; LU for by; m

Equation (B.5) gives

(xe—yp)?

o V2me 20L@)Z+oL(yp)?)
f ir, (f)ir, (f)df = — (B.6)
e J |DL(Xf)2 + DL(yf)? .

DL(x¢)%DL(yf)?

f ir, (F)2df = DLV, (B.7)
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and

| s = oo (B.3)

Substituting these into Equation (B.2) gives

N (fo—J/f)Z ,
2e 2(L(xp)*+DL(y)?)
rdCOS (X’ Y) = rdcos (rx (f)'ry (f)) =1- n

J |DL(xf)2 + DL(yp) IDL (%) DL(yp)?|

(B.9)

DL(x¢)* DL(yr)?

Approximate Spectral Distance Between Two Tones with Harmonic Partials

A harmonic tone w consists of partials of frequencies: w, 2w, 3w, ..., iw, ..., cow, where i € Z is
the harmonic number, and w € R is the frequency of the fundamental. If a second tone x = sw,
where s € Z, then every partial i of x will be at the same frequency as partial si of w; that is,
ix = siw. If a third tone y = tw, where t € Z, then every partial i of y will be at the same fre-
quency as partial ti of w; that is, iy = tiw.

Therefore, iw = ix/s = iy/t, so

ix = —, (B.10)
t
and
itx
v = —. B.u1
iy = — (B.11)

However, partials isy/t are only harmonics of y if s/t € Z. Since s € Z and t € Z, Equation
(B.10) can be simplified accordingly:

ix = isy. (B.12)
Similarly, Equation (B.11) can be simplified accordingly:

iy = itx. (B.13)
This means that, given two harmonic tones x and y with a frequency ratio of s/t (where s and t
are coprime), 1/t of x’s partials match y’s partials, and 1/s of y’s partials match x’s.

Let the total approximate spectral response distance between x and y, denoted

~srd(x,y), when s/t = 1/1 (so all their partials match), equal zero; let the total approximate

spectral response distance of x and y, when s/t — o0/c0 (so none of their partials match), equal
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unity. Furthermore, if 1/p of all the partials from both tones are matched with another partial,
let the approximate spectral response distance equal 1 — 1/p. This relationship is captured by

Equation (B.ig)—as sand t - 1, ~srd(x,y) - 0;as sand t - oo, ~srd(x,y) — 1:

1
~srd(x,y) =1————mnm (B.1g)



APPENDIX C: TRIAD PAIRS AND TRIPLES

Table C.1. The triad pairs used in the experiment to get ratings for “similarity” and “fit”. The
pitch of each pair was randomised over 12 equally tempered semitones. The spectral response
distances (srd) calculated by the model are also shown.

No. Pair srd

1 CeFf 73.04
2  Ceft 6914
3 CeG 4330
4 Ceg 46092
5 CoAb 4516
6 Cogit 6588
7 CoeA  47.66
8 Cea 2264
9 CeBb 64.68
10 Cebb 6916
1 CeB 67.86
12  Ceb  64.89
13 CeoC 4.62
14 Cec 2333
15 Cec#f 5135
16 Ced  60.64
17 Ceed 7129
18 Cee 2326
19 Cof 4589
20 cegh  72.01

21 cog 43.28
22 ceab  44.95
23 cea  47.63
24 ceobb  64.50
25 cob  67.70
26 coc 4.54



Table C.2. The triad triples used in the ex-
periment to collect ratings for “cadential
effectiveness”. The pitch of every progres-
sion was randomised over 12 equally tem-
pered semitones. The Group number (see

Sect. 5.1.3.2) is also shown.

No. Triple Group
1 Db—-G-c bII-V-i 1
2 Db—g—c bI[->v—i 4
3  Eb-Bb-oc pII-bVII-i 4
4  Eb-bb-oc  plll-bvii—i 3
5 D-Bb-C [I-bVII->I 2
6 D-bb-C - bvii—1 1
7 Bb=oG-oc  pVIISV- 1
8 Bb—g—c bVII->v-i 4
9 (C-Bb-C [-bVII->I 2
10 C-bb-C [-bvii—I 1
n  Ab-G-c bVI->V-i 1
12 Ab—g—c bVI-v—-i 4
13 Bb-Bb-oc HVII-HVII-i 4
14 Bb-obb-oc  pVII-bvii—i 3
15 F£->G-c $IV-V-i 1
16 Gbhb—g—c bV-ov—-i 4
17 F-G-C VoVl 3
18 F-g-C IVov-l 2
19 G-Bb->C  VohVII-I 2
20 G-bb-C V- bviioI 1
21 Eb->G-c bIII-V—-i 1
22 Eb-g-c pIII->v—i 4
23  F-Bb->C IV-=bVII-I 2
24 F-bb->C IV-bvii=] 1
25 e-Bb->C  jii-bhVII-I 2
26 e-bb-C iii—bvii—I 1
27 c—>G-c i»V-i 1
28 c—og—c i»v—i 4
29 d-Bb->C ii—»bVII-1 2
30 d-bb-C ii—bvii—I 1
31 bb—>G-c bvii—>V—-i 1
32  bb-g-c bvii=>v—i 4
33 c—Bb-c i-bVII-i 4
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No. Triple Group
34 cobb-oc i—bvii—i 3
35 b-Bb-C  vii-bVII-I 2
36 b-obb-C  viiobviiol 1
37 g—>G-oc v->V-i 1
38 gog—c vov-i 4
39 a=Bb=C  vispVII-I 2
40 a-bb->C vi—o bvii—I 1
41 f-G-c ivoV-i 1
42 f->g—c ivovoi 4
43  g—oBb-oc  vobVII-i 4
44  g—bb-oc v— bvii—i 3
45 eb—>G-c biii—>V—i 1
46 eb—>g—c bili-»v—i 4
47 d-G-C ii-»V-l 3
48 d-g-C iimv-l 2
49 D-G-C [[-V->I 6
50 E-G-C -Vl 6
51  G-G-C V-Vl 6
52 A-G-C VI->V-l 6
53 B->G-c VII-V-i 5
54 C->G-C [-V->I 6
55 e—->G-C iii-»V-I 6
56 f#-G-C tiv-> V-l 6
57 gi->G-c tvoV-oi 5
58 a—>G-oC vioV-oI 6
50 b->G-C vii=> V-l 6
60 ct->G-C ti->V-ol 6
61 E-bb-C 11— bvii—I 5
62 Gb-obb-c HV-obviioi 6
63 Ab-bb-c  pVI-bvii—i 6
64 A-bb-C VI-bviioI 5
65 B-bb-c VII-bvii—i 6
66 Db-bb—oc  plI-bvii—i 6
67  f-bb-c ivobvii—i 6
68 gb—-bb->C bv— bvii—I 5
69 ab-bb—c  bviobviioi 6
70  bb-obb-oc  bviiobviioi 6
71 db->bb>C  pij-bviioI 5
72 eb-bb-c  piii>bviioi 6



APPENDIX D: INTERFACES OF THE TWO EXPERIMENTS

Part 1 (of 2)
In this part of the experiment, you will hear 26 different How "similar" or "dissimilar" How "well" or "badly" do the
pairs of chords. Each pair is played in a loop. Please rate do the two chords sound? two chords "fit together"?

each pair according to two different features:

DISSIMILAR BAD FIT
1. SIMILARITY - how "similar" do the two chords sound?

o o
For example:
- If the two chords are "similar", you might inadvertently
think they are the same (e} (e}
- If the two chords are "dissimilar”, their difference is
obvious and easy to hear.

2. FIT - how well do the two chords "fit together", sound
"well-related”, or "go together"?

Wi , 0r "gotog o o
For example:
- If the two chords have a "good fit", the transition o o
between them sounds "straightforward", "elegant”, "easy"
-- If the two chords have a "bad fit", the transition SIMILAR GOOD FIT

between them sounds "clumsy", "awkward", "difficult”.

To make the ratings, click on the appropriate button in
each of the two scales (only one choice can be made per
scale).

When you have made your rating, click "Save". Playback of
the chords can be stopped and restarted using the
"Stop/Play" button.

Save Stop

In between each pair of chords, a short piece of randamly
generated music will be played to "cleanse" your ears.

When you are ready to start, please click on "Start Part 1",
below.

Start Part 1

Figure D.1. GUI of the first experiment.
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Part 2 (of 2)
Thank you for taking part in the first part of this How effectively does the final
experiment. In this part, you will hear 72 different chord provide a feeling of closure?

successions of three chords (they will not loop). Please
rate each succession according to one feature:

CADENTIALLY EFFECTIVE
CADENTIAL EFFECTIVENESS - how effectively does the third o
chord give a feeling of "closure" or "finality"?
For example: O
- If the progression is "cadentially effective", the third
chord gives a clear and definite sense of closure, and o
would be an effective and unambiguous ending for a piece
i NEUTRAL @

- If the progression is "cadentially ineffective”, the third
chord suggests or implies that another chord, or chords, fe)
should follow.

— If the progression is "neutral”, the third chord may give O
no feeling of closure, but neither does it imply a need for
any more chords to follow. &

CADENTIALLY INEFFECTIVE

Save Stop

Playback of the chords can be stopped and replayed (after
a short delay) using the "Stop/Play" button.

In between each pair of chords, a short piece of randamly
generated music will be played to "cleanse" your ears.

When you are ready to start, please click on "Start Part 2",
below.

Start Part 2 26 %

Figure D.2. GUI of the second experiment.



APPENDIX E: INTER-PARTICIPANT CORRELATION MATRICES

Table E.1. Inter-participant correlations (Pearson) for ratings of “similarity”. The single outlying
participant is not shown. The column to the right shows the per participant mean correlation,
the value at the bottom right shows the overall mean correlation.

Inter-participant Correlations Mean

= o 805850405
s

0.2

0.4 0.4

0.3 0.4 0.2 0.3
0.3

0.2 0.1 0.0 0.3 0.3 0.3 0.2

0.4 0.3
0.3

0.4 0.3
0.3 m
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Table E.2. Inter-participant correlations (Pearson) for ratings of “fit”. The three outlying partici-
pants are not shown. The column to the right shows the per participant mean correlation, the
value at the bottom right shows the overall mean correlation.

Inter-participant Correlations Mean

0.3 0.2 0.2 0.4 0.1 0.4 0.2 0.1-0.2 0.4 -

0.2 01 0.1 0.3 -0.1 0.1 0.3 0.3 0.4 0.0 0.380

0.2 0.3 0.3 0.1 0.4 0.3 0.2 0.4 0.3.0.2 0.3 0.3 0.3 0.393

F 0.3 0.0 0.0 0.3 0.2 0.2 03 0.3 0.3 0.3 0.0 0.0 0.2 0.2 0.4 0.318

0.4 0.3 0.3 0.2 0.4 03 0.4 -0.1 0.1 0.3

0.2 0.3 0.3 0.1 0.3 -0.20.2 0.1 0.3 0.4 0.3 -0.1 0.3 0.2 0.1 0.2 0.2 0.1 ! 0.2 0.2 0.3
0.2 0.4 03 0.3 -0.1 0.4 .0 0.0 0. 0.2 03

0.3 0.4 .2 0. 0.3

0.3 .. B 0.1 0.0 .. 5 0.1

0.1 . .. 0.2 0.2 0.2 . . b .4 0.1

0.3 0.3 0.4 .4 0. 0.3 0.2 0.2 0.2 0. g .2 0. .3 0.1

0.2 0.0 0.4 0.3 5 0.3 0.1.0.2 .2 0.3 0. 0.338
0.3 0.1 0.2 0.0 0.3-0.2 0.3 0.2-0.20.0 0.1 0.1 O. .0 0. b 0.181
03 0.1 0.4 03
0.2 0.3 0.2 ! 0.3 0.3
0.3 0.3-0.20.3 0.3 b 0.4 0.4 0.3 0.4
0.2 0.1 0.0 0.1 0.3 03 .1 0.3 0.3 0.3 0.3 0.4
o.z. 0.1 0.4 0.2 0.3 0.3 0.4 0.4 03 0.3 .1 0. b 0.313

0.2 0.2 0.1 0.3 0.4 b 0.4 .2 0. .4 o. 0.350

0.2 0.3 0.1 0.2 0.0 -0.1 0.1 0.4 0.1 0.3 0.1 0.3 0.3 0.2 0.0 0.4 0.2 0. .4 o. 0.200

0.3 0.4 0.3

0.1

0.3 0.4 0.3 0.3
03 0.3 0.3 0.3 0.3 .2 0.2 0. b 0.377
0.4 0.4 0.4 0.2 0.4 0.4

0.0 0.2 0.3 0.2 0.1 0.3 0.2 0.0 0.1 0.1 0.4 0.2 0.2 .1 0. 5 5 0.165

0.1 0.3 0.3 0.0 0.1 0.1 0.2 0.4 0.3 0.1 0.1 0.2 .2 0.1 0.1 0.3 O. 0.208

0.1 0.1 0.0 0.3 0.2 § 1 0. b 0.336

0.4 0.3 0.3 0.1 0.3

0.0 0.3 0.2 0.3 0.2 0.2 0.3 0.1 0.1 0.1 0.2-0.20.2 0.2 0.2 0.2 0.4 0.3 0.3 0.1 0.2 O. .3 0.1 0.0 O. 0.228

.3 0.4 0.2 03 03 0.3 0.4 0.4 0.4 0.4 0.4 .4 0.4 0. b
g 0.3 0.2 0.3 0.0 0.3 0.1 0.3 0.3 0.4 5 b 0.376

0.363
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Table E.3. Inter-participant correlations (Pearson) for ratings of “cadential effectiveness”. The
column to the right shows the per participant mean correlation, the value at the bottom right
shows the overall mean correlation.

Inter-participant Correlations Mean

0.4 0.3 0.3

.3 0.3 0.0 0.1 0.2

0.3 0.0 0.2 0.3



