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versity of Jyväskylä for providing a truly great working athmosphere.

I dedicate this work to the memory of my father Esko. Rest in peace.

I also want to thank my mother, Tuulikki, for all the support so far.

Finally, I deeply thank my wife, Tarja, for keeping me sane. I love you.
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List of Notation

We use the following notation that is assumed to be familiar to the

reader.

Rn Euclidean n-space

∂u/∂xi ith partial derivative of u : Rn → R
∂u/∂ν outer normal derivative of u

∇u gradient of u

|E| Lebesgue measure of a set E ⊂ Rn

∂E topological boundary of E

E closure of E

Hk k-dimensional Hausdorff measure

Br(x) {y ∈ Rn : |x− y| < r}
U ⊂⊂ Ω U is compact and U ⊂ Ω

oscA u diameter of the set {u(x) : x ∈ A}
sptu support of u, sptu = {x : u(x) 6= 0}
C(Ω) continuous functions on Ω

Ck(Ω) k times continuously differentiable functions on Ω

C∞0 (Ω) functions u ∈ C∞(Ω) such that sptu ⊂⊂ Ω

C0,α(Ω) locally Hölder continuous functions on Ω

Ck,α(Ω) functions in Ck(Ω) whose k-th order derivatives

are locally Hölder continuous on Ω

Lp(Ω) p-th power Lebesgue integrable functions on Ω

Lploc(Ω) functions in Lp(K) for each K ⊂⊂ Ω

||u||p;Ω or ||u||p Lp norm of u in Ω

W 1,p(Ω) Sobolev 1, p class, i.e. functions in Lp(Ω) whose

distributional first-order derivatives are in Lp(Ω)

W 1,p
loc (Ω) functions in W 1,p(K) for each K ⊂⊂ Ω

||u||1,p;Ω or ||u||1,p Sobolev 1, p norm of u; ||u||1,p;Ω = ||u||p + ||∇u||p
W 1,p

0 (Ω) closure of C∞0 (Ω) wrt. the Sobolev 1, p norm

W 1,p(Ω)∗ dual of W 1,p(Ω), i.e. the space of bounded linear

functionals W 1,p(Ω) → R
uE mean value of u over E,

uE := −
∫
E
u(x)dx := |E|−1

∫
E
u(x)dx

ux,r or ur uBr(x)

dist(x,E) distance from the point x to the set E.
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If a = (a1, . . . , an) and b = (b1, . . . , bn) are vectors in Rn, their tensor

product a⊗ b is an n× n matrix with

(a⊗ b)ij = aibj.

Finally, the ubiquitous constant whose values may change will generally

be called C.
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1. Introduction

In this text we consider weak solutions to the elliptic p-Laplace equation

(1) − div(|∇u|p−2∇u) = 0

in an open set Ω ⊂ Rn, n ≥ 2. Here p > 1 is a fixed real parameter,

and the weak solutions to (1) are called p-harmonic functions. By a

weak solution to (1) we mean a function u ∈ W 1,p
loc (Ω) satisfying∫

Ω

|∇u|p−2∇u · ∇ϕdx = 0 for all ϕ ∈ C∞0 (Ω).

The p-Laplace equation (1) is the Euler-Lagrange equation for the p-

Dirichlet integral ∫
Ω

|∇u|pdx.

With p = 2, we recover the classical Dirichlet integral and harmonic

functions, but for p 6= 2 the equation (1) is nonlinear and the ellipticity

breaks down at critical points, i.e. points where ∇u = 0. The equation

(1) is called singular for 1 < p < 2 and degenerate for p > 2. The

former case is considered more difficult and is less studied than the

latter.

The operator

∆pu = div(|∇u|p−2∇u)

is called the p-Laplace operator, or the p-Laplacian. It serves as a

prototype operator for more general classes of nonlinear operators with

p-growth. The elliptic theory for a wide class of similar operators is

developed in Heinonen, Kilpeläinen and Martio [15], and the parabolic

theory for a corresponding class in DiBenedetto [7].

In the first part of this text, we are concerned with the local C1,α

regularity of p-harmonic functions. That p-harmonic functions are in

the class C1,α for some α = α(n, p) ∈ (0, 1) was originally proven by

Uhlenbeck [38] and Ural’tseva [39] for p > 2, and independently by

DiBenedetto [6], Lewis [23] and Tolksdorf [37] for 1 < p < ∞. More-

over, for any p > 2 and any n ≥ 2, there exist p-harmonic functions

without continuous second partials, so any stronger regularity than

C1,α is not available for p > 2. Lewis [22] was perhaps the first to point

this out (he attributed the idea to Krol’ [19]); Bojarski and Iwaniec [4]
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constructed other examples by showing that the complex gradient of a

p-harmonic function in the plane is a quasiregular map.

The optimal regularity in the planar case was settled by Iwaniec and

Manfredi [16], who showed that p-harmonic functions (1 < p < ∞,

p 6= 2) in the plane are optimally in the class Ck+α, where

k + α =
1

6

(
7 +

1

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
.

Here 4/3 < k + α < 2 for p > 2 and k + α > 2 for 1 < p < 2, with

k + α → ∞ as p → 1 and k + α → 4/3 as p → ∞. Thus the question

is settled for n = 2; note the difference between the cases p > 2 and

1 < p < 2. In higher dimensions the question about optimal regularity

seems to be wide open.

Our first result is the following local C1,α estimate for p-harmonic func-

tions:

1.1. Theorem. Let 1 < p < ∞ be fixed. Let u be p-harmonic in Ω,

and let q ≥ min{2, p}. Then(
−
∫
Br(x0)

|∇u(x)− (∇u)x0,r|qdx
) 1

q

≤ C
( r
R

)σ (
−
∫
BR(x0)

|∇u(x)− (∇u)x0,R|qdx
) 1

q

(2)

for each BR(x0) ⊂⊂ Ω and each 0 < r ≤ R. Here C = C(n, p, q, σ) ≥ 1

and σ = σ(n, p) ∈ (0, 1). Moreover,

osc
Br(x0)

|∇u| ≤ Cn,p,σ

( r
R

)σ
osc

BR(x0)
|∇u|

for each BR(x0) ⊂⊂ Ω and each 0 < r < R/2.

The estimate (2) with q = p was proved by Lieberman [24] for solutions,

and with q = 2 (independently) by DiBenedetto and Manfredi [8] for

systems. We are not aware of a previously published version of the

estimate for other values of q. The supremum of the numbers σ for

which the estimate (2) holds is henceforth denoted by σ0 = σ0(n, p).

Another result also improves a Theorem by Lieberman [25], who proved

that the C1,α regularity of the solutions for the homogeneous equation

(1) is preserved also in a measure data equation, provided that the



GRADIENT ESTIMATES AND A FAILURE OF THE MVP 9

measure obeys certain growth conditions. Our result states the follow-

ing:

1.2. Theorem. Let 1 < p <∞, and let u ∈ W 1,p
loc (Ω) be a weak solution

to

(3) − div(|∇u|p−2∇u) = µ,

i.e. let ∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

ϕdµ for all ϕ ∈ C∞0 (Ω),

where µ is a signed Radon measure satisfying the growth condition

(4) |µ|(BR) ≤ CRn−1+α

for some α ∈ (0, 1) and for all BR ⊂ Ω. Moreover, let

(5) δ =


α, if p = 2

min

{
α

p− 1
, σ−0

}
, if p > 2

min{α, σ−0 }, if 1 < p < 2,

where σ−0 is any number smaller than σ0. Then u ∈ C1,δ(Ω).

Lieberman [25] proved that, for a nonnegative measure µ, the condition

(4) implies that the solution u is in C1,β(Ω) for some 0 < β < σ0. We

allow for signed measures, and the new feature here is the explicit α-

dependence in the Hölder modulus of the gradient.

A consequence of Theorem 1.2 is the following non-removability result

for p-harmonic functions:

1.3. Corollary. Let 1 < p <∞, let 0 < α < 1, and let δ be as in (5).

If E ⊂ Ω is a closed set with Hausdorff content Hn−1+α(E) > 0, then

there exists a function u ∈ C1,δ(Ω) which is p-harmonic in Ω \ E, but

which does not have a p-harmonic extension to Ω.

Proof. Let K ⊂ E be a compact set with 0 < Hn−1+α(K) < ∞. By

Frostman’s Lemma (see e.g. Adams and Hedberg [1, Theorem 5.1.1]),

there exists a nonnegative Radon measure µ such that sptµ ⊂ K,

µ(K) > 0 and µ(BR) ≤ CRn−1+α whenever BR ⊂ Ω.
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Let u ∈ W 1,p
loc (Ω) be any weak solution to the equation −∆pu = µ in Ω;

such solutions exist because the growth condition obeyed by the mea-

sure µ implies that µ belongs to the dual of W 1,p
0 (Ω) (see Theorem 3.2

on page 22), and thereafter the existence and uniqueness of solutions

(with prescribed boundary values) follows from the theory of mono-

tone operators, see e.g. Kinderlehrer and Stampacchia [18], Corollary

III.1.8, page 87.

The solution u is p-harmonic in Ω \ E (because sptµ ⊂ E), and u ∈
C1,δ(Ω) by Theorem 1.2. Now the interior of K is empty, so there

is only one continuous extension of u, namely u itself. But u is not

p-harmonic, since µ(K) > 0. �

The optimal removability and non-removability results for C1,α-smooth

p-harmonic functions was proved by Pokrovskii [33], but Theorem 1.2

is not covered in his treatment. See also Kilpeläinen and Zhong [17]

for the optimal result at the C0,α level.

At this point, let us mention one simple result as an aside.

1.4. Theorem. Let 1 < p < ∞, p 6= 2, and let H denote the set of

p-harmonic functions in an open set Ω ∈ Rn, n ≥ 2. Further, let

F = {f ∈ H : f + h ∈ H for all h ∈ H}.

Then F is the set of constants.

Proof. Obviously constants belong to F . Assume that there exists a

nonconstant f ∈ F . Then there exists a point x ∈ Ω such that ∇f 6= 0

at x. Lewis [21] proved that p-harmonic functions are real analytic

outside critical points (and also [22] that real analytic nonconstant p-

harmonic functions do not have any critical points), so f is real analytic

near x. Take a function h ∈ H that is not real analytic near x. Then

h has a critical point at x, so ∇(f + h)(x) = ∇f(x) 6= 0. Thus f + h

is real analytic in a neighborhood of x, but this implies that h is real

analytic in a neighborhood of x, a contradiction. �
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The second part of this work is devoted to the boundary behavior

of p-harmonic functions. We explain and partly extend a result in

a manuscript of the late Thomas H. Wolff [40]. In the paper, Wolff

(1954-2000) proves the following.

1.5. Theorem (Wolff 1984). For p > 2, there exists a bounded solution

of ∆pu = 0 in the upper half-plane R2
+ such that the set

{x ∈ R : the limit lim
y→0

u(x, y) exists}

has one-dimensional Lebesgue measure zero, and there exists a bounded

positive solution of ∆pv = 0 in R2
+ such that the set

{x ∈ R : lim sup
y→0

v(x, y) > 0}

has one-dimensional Lebesgue measure zero.

For p = 2, a Fatou Theorem states that a bounded harmonic function

has radial limits almost everywhere on the boundary of its domain, and

that these limits are positive if the function is positive. Thus Wolff’s

Theorem is an anti-Fatou Theorem for p-harmonic functions. We are

motivated by the following quote from Wolff’s paper:

Theorem 1.5 generalizes to Rn+1
+ , n ≥ 1, by adding

dummy variables. It must also generalize to other do-

mains but we have not carried this out; the argument is

easiest in a half space since ∆p behaves nicely under the

Euclidean operations.

For example, one can take p = 3 in Theorem 1.5, add one dummy vari-

able, and map the half-space R3
+ to a ball B ∈ R3 using a conformal

map. By using the fact that the n-Laplacian is conformally invariant

(see e.g. Reshetnyak [34], Bojarski and Iwaniec [3], Heinonen, Kilpeläi-

nen, and Martio [15, Chapter 14], and Rickman [35]), one obtains the

anti-Fatou theorem for 3-harmonic functions in a ball B ⊂ R3 with

minimal effort. This procedure does not work when n = 2, since the

conformal invariance of the p-Laplacian is lost for p 6= 2.
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The core of Wolff’s proof is the construction of a function Φ ∈ Lip(R2
+)

that is p-harmonic in R2
+, has period 1 in the x variable,∫ 1

0

Φ(x, 0) dx = η 6= 0,

and limy→∞ Φ(x, y) = 0.

(This is a failure of the mean value principle, and cannot be done for

p = 2.) After this, let Tj ≥ 1 be an increasing sequence of integers, and

consider the function Φ(Tjx, Tjy) for a fixed j. It is p-harmonic, it has

period T−1
j in the x variable, it still approaches zero when y →∞, and∫ 1

0

Φ(Tjx, 0) dx = η

independent of j. As we will see, all these features are heavily used

in the rest of Wolff’s construction; this is the nice behavior that Wolff

refers to in the quote above.

We have tried to prove Wolff’s Theorem in the unit disc D, but the

best we can currently do is the following:

1.6. Lemma. If p > 2, there exists a sequence of functions Φj ∈ Lip(D)

such that ||Φj||L∞(D) ≤ C <∞ for all j, ∆pΦj = 0 in D, Φj has period

λj > 0 (dividing 2π) in the θ variable, λj → 0 as j →∞,

lim
r→0

Φj(r, θ) = 0,

and ∫ 2π

0

Φj(1, θ)dθ = ηj > 0.

In order to prove the anti-Fatou Theorem in the unit disc using the

method of Wolff, we would like to bound the sequence ηj from below

by a sequence like (log j)−1, but we currently do not know whether this

is possible or not.

Let us mention some related results. Lewis [20] extended Wolff’s The-

orem to the case 1 < p < 2. Manfredi and Weitsman [30] proved that

if Ω ⊂ Rn is a smooth domain, if 1 < p < 3 + 2
n−2

and if ∆pu = 0 in Ω,

then the set

E = {x ∈ ∂Ω : u has a radial limit at x}
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has dimH(E) ≥ β for some β = β(n, p) > 0. Manfredi and Weitsman

were able to extend their result to all p ∈ (1,∞), but that result was

never published. At the same time Fabes, Garofalo, Maŕın-Malave and

Salsa [9] proved the analogous result that covers Lipschitz domains

as well (with β depending on the Lipschitz character of the domain).

Finally, Wolff’s proof has recently been used by Llorente, Manfredi,

and Wu [28] to construct a p-harmonic measure ω relative to R2
+ that

is not subadditive at the zero level1: there exist sets A,B ⊂ R such

that ω(A) = ω(B) = 0, but ω(A ∪ B) > 0. Also this construction

remains to be done in the disc.

1In the literature, there are two notions that carry the name p-harmonic measure,
one of them is a measure and the other one is not (if p 6= 2). This one is the non-
measure.
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PART I: INTERIOR ESTIMATES

2. Hölder Continuity

Let α ∈ (0, 1), and let u be a real-valued function on Ω. We say that u

is uniformly α-Hölder continuous on Ω if

[u]α,Ω = sup

{
|u(x)− u(y)|
|x− y|α

: x, y ∈ Ω, x 6= y

}
<∞,

and that u is locally α-Hölder continuous on Ω if [u]α,Ω′ <∞ for each

Ω′ ⊂⊂ Ω. We denote this latter space by Cα(Ω).

It is easy to see that u ∈ Cα(Ω) if and only if

(6) osc
BR(x0)

u ≤ CRα

for each ball BR(x0) ⊂⊂ Ω. The constant C may depend on α, u, and

dist(BR(x0), ∂Ω), but not on x0 or R.

By Campanato 1963 [5], the oscillation in (6) may be replaced by an

Lp norm for any 1 ≤ p <∞. That is, a function u (or a representative

in Lp) belongs to Cα(Ω) if and only if

(7)

(
−
∫
BR(x0)

|u(x)− ux0,R|p dx
) 1

p

≤ CRα

for each ball BR(x0) ⊂⊂ Ω.

We say that a function u is Cα(Ω) scalable if

(8) osc
Br(x0)

u ≤ C
( r
R

)α
osc

BR(x0)
u

for each BR(x0) ⊂⊂ Ω and for each 0 < r ≤ R. If u ∈ L∞loc(Ω), the

condition (8) readily implies u ∈ Cα(Ω). The converse is not true,

i.e. there exist functions in Cα(Ω) that are bounded in Ω, but are not

Cα(Ω) scalable. For unbounded domains this is easy to see, but for

bounded domains some work is required:

2.1. Remark. Let Ω = (0, 1) ⊂ R. For given 0 < α < 1, there

exists a bounded function u ∈ Cα(Ω) that is not Cβ(Ω) scalable for any

0 < β < 1.
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Proof. For an interval J ⊂ (0, 1), let x0 be the midpoint of J , and let

uJ be the tent function in J with maximum value |J |α, i.e.

uJ(x) =

 2|J |α−1

(
−|x− x0|+

|J |
2

)
, when x ∈ J,

0, otherwise.

Take a sequence of disjoint intervals Ii ⊂ (0, 1) converging to a point,

for example

Ii =
(
2−(2i+1), 2−2i

)
.

For each interval Ii, let 0 < λi < 1, and take a subinterval Ji ⊂ Ii such

that |Ji| = λi|Ii|. Then (denote ui = uJi
)

oscJi
ui

|Ji|β
=

oscIi ui

λβi |Ii|β
,

i.e.

osc
Ji

ui =
1

λβi

(
|Ji|
|Ii|

)β
osc
Ii
ui.

Note that also

osc
Ji

(aiui) =
1

λβi

(
|Ji|
|Ii|

)β
osc
Ii

(aiui)

for any ai ∈ R. Choose the sequence ai such that
∑∞

i=1 |ai| < ∞ (in

order to stay in the class Cα), choose the sequence λi such that λi → 0

as i→∞, and set

u =
∞∑
i=1

aiui.

Then u has the required properties. �

Let us also remark that the same method can be used to show that the

converse of Morrey’s theorem (see e.g. Theorem 7.19 in [12]) does not

hold.

The following Theorem, originally by Manfredi and H. I. Choe [29], is

a scalable version of Campanato’s result.

2.2. Theorem. Let 0 < α < 1 and 1 ≤ p < ∞. Assume u ∈ L∞loc(Ω)

satisfies (
−
∫
Br(x0)

|u(x)− ux0,r|pdx
) 1

p

≤ Cn,p,α

( r
R

)α(
−
∫
BR(x0)

|u(x)− ux0,R|pdx
) 1

p

(9)
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for all BR(x0) ⊂⊂ Ω and for all 0 < r ≤ R. Then, for any q > p,(
−
∫
Br(x0)

|u(x)− ux0,r|qdx
) 1

q

≤ Cn,p,q,α

( r
R

)α(
−
∫
BR(x0)

|u(x)− ux0,R|qdx
) 1

q

(10)

for all BR(x0) ⊂⊂ Ω and for all 0 < r ≤ R. Moreover,

(11) osc
Br(x0)

u ≤ Cn,p,α

( r
R

)α
osc

BR(x0)
u

for all BR(x0) ⊂⊂ Ω and for all 0 < r < R/2.

We will need the following two Lemmas:

2.3. Lemma. Let 1 ≤ p < ∞, and let f ∈ Lploc(Ω; RN), N ≥ 1. Then

there exists a constant C = Cp > 0 such that for each L ∈ RN and

each Br(x0) ⊂ Ω,

−
∫
Br(x0)

|f(x)− fx0,r|p dx ≤ Cp−
∫
Br(x0)

|f(x)− L|p dx.

Proof.

−
∫
Br(x0)

|f(x)− fx0,r|p dx

≤ Cp

(
−
∫
Br(x0)

|f(x)− L|p dx+−
∫
Br(x0)

|L− fx0,r|p dx
)
,

and, by Hölder’s inequality,

−
∫
Br(x0)

|L− fx0,r|p dx =

∣∣∣∣−∫
Br(x0)

(
f(x)− L

)
dx

∣∣∣∣p
≤ −
∫
Br(x0)

|f(x)− L|p dx.

�

2.4. Lemma. Let 1 ≤ p <∞, and let f ∈ Lploc(Ω; RN), N ≥ 1. Assume

that, for some 0 < ρ < 1,(
−
∫
Br(x0)

|f(x)− fx0,r|pdx
) 1

p

≤ Cn,p,α

( r
R

)α(
−
∫
BR(x0)

|f(x)− fx0,R|pdx
) 1

p
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for all BR(x0) ⊂ Ω and all 0 < r < ρR. Then(
−
∫
Br(x0)

|f(x)− fx0,r|pdx
) 1

p

≤ Cn,p,α,ρ

( r
R

)α(
−
∫
BR(x0)

|f(x)− fx0,R|pdx
) 1

p

for all 0 < r ≤ R.

Proof. Let r ≥ ρR. Then R/r ≤ ρ−1, and by Lemma 2.3,

−
∫
Br(x0)

|f(x)− fx0,r|pdx ≤ Cp
|BR|
|Br|

−
∫
BR(x0)

|f(x)− fx0,R|pdx

≤ Cn,p,ρ−
∫
BR(x0)

|f(x)− fx0,R|pdx.

Moreover, since 1 ≤ ρ−pα(r/R)pα, we obtain

−
∫
Br(x0)

|f(x)− fx0,r|pdx ≤ Cn,p,s,α

( r
R

)pα
−
∫
BR(x0)

|f(x)− fx0,R|pdx,

as wanted. �

Proof of Theorem 2.2.

We start by repeating the proof of Campanato’s Theorem (modified

from [11]). Fix a ball BR(x0) ⊂⊂ Ω, and let 0 < ρ ≤ r ≤ R. Then, for

an arbitrary x ∈ Bρ(x0),

(12) |ux0,r − ux0,ρ|p ≤ Cp
(
|u(x)− ux0,r|p + |u(x)− ux0,ρ|p

)
.

Integrating both sides of (12) over the ball Bρ(x0), and using Lemma

2.3 and (9), yields

|ux0,r − ux0,ρ|p|Bρ(x0)|

≤ Cp

(∫
Bρ(x0)

|u(x)− ux0,r|pdx+

∫
Bρ(x0)

|u(x)− ux0,ρ|pdx

)

≤ Cp

∫
Br(x0)

|u(x)− ux0,r|pdx

≤ Cn,p,αr
n+pαR−(n+pα)

∫
BR(x0)

|u(x)− ux0,R|pdx,

i.e.

(13) |ux0,r − ux0,ρ| ≤ C ρ−n/prn/p+α
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for each 0 < ρ ≤ r ≤ R, where

(14) C = Cn,p,αR
−α
(
−
∫
BR(x0)

|u(x)− ux0,R|pdx
) 1

p

<∞,

since u ∈ L∞loc(Ω). Keep r and R fixed, and let ri = 2−ir. Then (13)

implies

(15) |ux0,ri − ux0,ri+1
| ≤ C r

−n/p
i+1 r

n/p+α
i = Crαi ,

which gives, for any integer k ≥ 1,

|ux0,ri − ux0,ri+k
| ≤ C rα

∞∑
j=i

2−αj.

This approaches zero as i→∞, so the sequence {ux0,ri}∞i=1 is a Cauchy

sequence for all x0 ∈ Ω. Now we claim that the limit

ũ(x0) = lim
i→∞

ux0,ri

does not depend on the choice of r (or R). Indeed, for ρ < r, let ρi =

2−iρ and ri = 2−ir, and for each i choose j ≥ i such that rj+1 < ρi ≤ rj.

Then, using (15) and (13), we obtain

|ux0,ri − ux0,ρi
| ≤ |ux0,ri − ux0,rj |+ |ux0,rj − ux0,ρi

|

≤ C(rαi + rαj ) ≤ Crαi ,

as claimed. On the other hand ux,ρ converges, as ρ→ 0, in L1(Ω) to the

function u, so we have u = ũ a.e. Now, summing from zero to infinity

in (15), and taking (14) into account, yields the important estimate

(16) |u(x0)− ux0,r| ≤ Cn,p,α

( r
R

)α(
−
∫
BR(x0)

|u(x)− ux0,R|pdx
) 1

p

.

for each BR(x0) ⊂⊂ Ω and for each 0 < r ≤ R. This implies

(17) osc
Br(x0)

u ≤ C
( r
R

)α(
−
∫
BR(x0)

|u(x)− ux0,R|pdx
) 1

p

for each BR(x0) ⊂⊂ Ω and for each 0 < r < R/2. Indeed, let

BR(x0) ⊂⊂ Ω, let 0 < r < R/2, and let x ∈ Br(x0). Then

(18) |u(x)− u(x0)| ≤ |u(x)− ux,r|+ |ux,r − ux0,r|+ |u(x0)− ux0,r|.

The first and third terms on the right-hand side of (18) are estimated

in (16). (For the first term, use the ball BR/2(x) as the larger ball in

(16), and then use Lemma 2.4.) For the second term we have

|ux,r − ux0,r| ≤ |ux,r − u(y)|+ |u(y)− ux0,r|,
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and integrating with respect to y over Br(x0) ∩Br(x) yields∫
Br(x0)∩Br(x)

|ux,r − ux0,r| dy

≤
∫
Br(x)

|u(y)− ux,r| dy +

∫
Br(x0)

|u(y)− ux0,r| dy.
(19)

Since |Br(x0) ∩ Br(x)| = Crn, using Hölder’s inequality and dividing

both sides by rn leaves us with

|ux,r − ux0,r|

≤
(
−
∫
Br(x)

|u(y)− ux,r|p dy
) 1

p

+

(
−
∫
Br(x0)

|u(y)− ux0,r|p dy
) 1

p

≤ C
( r
R

)α(
−
∫
BR(x0)

|u(y)− ux0,R|p dy
) 1

p

.

Thus (17) holds, and the estimate (11) is proved.

If BR(x0) ⊂⊂ Ω, if 0 < r < R/2, and if p < q < ∞, then by (17), by

the assumption (9), and by Hölder’s inequality,

−
∫
Br(x0)

|u(x)− ux0,r|qdx ≤
(

osc
Br(x0)

u
)q−p−∫

Br(x0)

|u(x)− ux0,r|pdx

≤ C
( r
R

)α(q−p)
(
−
∫
BR(x0)

|u(x)− ux0,R|qdx
) q−p

q

−
∫
Br(x0)

|u(x)− ux,r|pdx

≤ C
( r
R

)qα(
−
∫
BR(x0)

|u(x)− ux0,R|qdx
) q−p

q

−
∫
BR(x0)

|u(x)− ux0,R|pdx

≤ C
( r
R

)qα(
−
∫
BR(x0)

|u(x)− ux0,R|qdx
) q−p

q
(
−
∫
BR(x0)

|u(x)− ux0,R|qdx
) p

q

= C
( r
R

)qα
−
∫
BR(x0)

|u(x)− ux0,R|qdx.

By Lemma 2.4, this holds for all 0 < r ≤ R, and thus also (10) is

proved. 2

This also completes the proof of Theorem 1.1 (page 8), since the The-

orem holds for q = min{2, p}, see DiBenedetto and Manfredi [8] and

Lieberman [24].

The following perturbation lemma is needed in the next section.

2.5. Lemma. Let BR = BR(x0) ⊂ Rn be a ball, let u ∈ W 1,p(BR) be

an arbitrary Sobolev function, and let h ∈ W 1,p
loc (BR) be an arbitrary
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p-harmonic function in BR. Then, for each r ∈ (0, R],∫
Br(x0)

|∇u(x)− (∇u)x0,r|pdx

≤ C

{( r
R

)n+pσ
∫
BR(x0)

|∇u(x)− (∇u)x0,R|pdx

+

∫
BR(x0)

|∇u(x)−∇h(x)|pdx
}(20)

with any 0 < σ < σ0, where σ0 = σ0(n, p) is the number defined on

page 8.

Proof. Let r ∈ (0, R]. By adding and subtracting (∇u−∇h)x0,r,∫
Br(x0)

|∇u(x)− (∇u)x0,r|pdx

≤ C(p)

{∫
Br(x0)

|∇u(x)− (∇h)x0,r|pdx

+

∫
Br(x0)

|(∇u−∇h)x0,r|pdx
}
.

(21)

Analogously, by adding and subtracting ∇h(x),∫
Br(x0)

|∇u(x)− (∇h)x0,r|pdx

≤ C(p)

{∫
Br(x0)

|∇h(x)− (∇h)x0,r|pdx

+

∫
Br(x0)

|∇u(x)−∇h(x)|pdx
}
,

and using Hölder’s inequality yields∫
Br(x0)

|(∇u−∇h)x0,r|pdx

=

(
1

|Br(x0)|

)p−1 ∣∣∣∣∫
Br(x0)

(
∇u(x)−∇h(x)

)
dx

∣∣∣∣p
≤
∫
Br(x0)

|∇u(x)−∇h(x)|pdx,
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so all in all we obtain, combined with the estimate (10) for q = p,∫
Br(x0)

|∇u(x)− (∇u)x0,r|pdx

≤ C(p)

{∫
Br(x0)

|∇h(x)− (∇h)x0,r|pdx

+

∫
Br(x0)

|∇u(x)−∇h(x)|pdx
}

≤ C(n, p, σ)

{( r
R

)n+σp
∫
BR(x0)

|∇h(x)− (∇h)x0,R|pdx

+

∫
BR(x0)

|∇u(x)−∇h(x)|pdx
}
.

(22)

Again, adding and subtracting as before yields∫
BR(x0)

|∇h(x)− (∇h)x0,R|pdx

≤ C(p)

{∫
BR(x0)

|∇u(x)− (∇u)x0,R|pdx

+

∫
BR(x0)

|∇u(x)−∇h(x)|pdx
}
,

(23)

and the result follows by inserting (23) into (22). �
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3. Measure Data

In this section we prove Theorem 1.2 (page 9). Our main tool to handle

measure data is the following Theorem by Maz’ya [32, p.54]. Let us

note that in Maz’ya’s Theorem it is assumed that the boundary of Ω

is smooth, but the assumption is never employed in the proof. This

observation was already made by Haj lasz and Koskela [13].

3.1. Theorem. Let Ω ⊂ Rn be open and bounded, and let µ be a mea-

sure on Ω such that

(24) sup

{
µ(BR)

Rn−1
: BR ⊂⊂ Ω

}
=: M <∞.

Then ∫
Ω

|ϕ|dµ ≤ C(n)M

∫
Ω

|∇ϕ|dx for all ϕ ∈ C1
0(Ω).

2

We also need to test our measure data equation (3) with a function

in W 1,p
0 (Ω), i.e. we want our measure to be in the dual of W 1,p

0 (Ω).

This is indeed the case by the following Theorem, originally proven by

Hedberg and Wolff [14]:

3.2. Theorem. A nonnegative Radon measure µ on Ω (open and bound-

ed) belongs to the dual of W 1,p
0 (Ω) if and only if∫

Ω

∫ 1

0

(
rp−nµ(Br(x))

)1/(p−1) dr

r
dµ(x) <∞.

2

Indeed, since both the positive part µ+ and the negative part µ− of our

measure µ in Theorem 1.2 satisfy µ±(Br(x)) ≤ Crn−1+α, we have∫
Ω

∫ 1

0

(
rp−nµ±(Br(x))

)1/(p−1) dr

r
dµ±(x)

≤ C

∫
Ω

∫ 1

0

rα/(p−1)dr dµ±(x) = Cµ±(Ω) <∞.

Thus both µ+ and µ−, and thereby also µ, belong to the dual of

W 1,p
0 (Ω).

In addition to Theorems 3.1 and 3.2, we will use the following results

that are well known.
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3.3. Lemma. If Ω ⊂ Rn is open and bounded, and if u ∈ W 1,p(Ω), there

exists a unique p-harmonic h ∈ W 1,p(Ω) such that u− h ∈ W 1,p
0 (Ω). 2

3.4. Lemma. If h ∈ W 1,p(Ω) is p-harmonic, then∫
Ω

|∇h|pdx ≤
∫

Ω

|∇v|pdx

for each v ∈ W 1,p(Ω) with h− v ∈ W 1,p
0 (Ω). 2

3.5. Lemma. The following estimate holds for any ξ, ζ ∈ Rn, p ≥ 2:

|ξ − ζ|p ≤ 2p−1(|ξ|p−2ξ − |ζ|p−2ζ) · (ξ − ζ).

2

3.6. Lemma. The following estimate holds for any ξ, ζ ∈ Rn, 1 < p < 2

and ε > 0:

(p− 1)|ξ − ζ|2(ε+ |ξ|2 + |ζ|2)
p−2
2 ≤ 2p−1(|ξ|p−2ξ − |ζ|p−2ζ) · (ξ − ζ).

2

The proofs of Lemmas 3.3 and 3.4 can be found e.g. in Heinonen,

Kilpeläinen and Martio [15] (3,17 and 3.13, respectively), and the

proofs of Lemmas 3.5 and 3.6 can be found e.g. in the lecture notes by

Lindqvist [26] (section 10).

We now set out to prove Theorem 1.2. It suffices to prove that the

gradient of u satisfies the growth condition in Campanato’s theorem:

(25)

∫
BR

|∇u− (∇u)R|pdx ≤ CRn+pδ

whenever BR ⊂⊂ Ω.

Going one step further back, (25) follows after we prove that our func-

tion u satisfies, for each BR(x0) ⊂⊂ Ω and for each r ∈ (0, R],∫
Br(x0)

|∇u− (∇u)r|pdx

≤ C

{( r
R

)n+pσ(n,p)
∫
BR(x0)

|∇u− (∇u)R|pdx+Rn+pτ

}
,

(26)

where τ = αmin{1, (p − 1)−1}. This gives (25) because we have the

following result, also by Campanato (see e.g. [11, Lemma 2.1]):
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3.7. Lemma. Let Φ be a nonnegative and nondecreasing function on

[0, R0] ⊂ R such that for all r, R ∈ (0, R0], r ≤ R,

(27) Φ(r) ≤ A
( r
R

)γ
Φ(R) +BRβ,

where A,B ≥ 0 and 0 < β < γ. Then

(28) Φ(R) ≤ CRβ,

where C = C(A,B, γ, β,R0,Φ(R0)) > 0. 2

The condition β < γ in (27) yields our result only if τ < σ0. (This is

exactly the condition on the number δ in Theorem 1.2. Note also that

for p = 2, we have σ(n, p) = 1, see e.g. [11].)

Finally, (26) follows when Lemma 2.5 (page 19) is combined with the

following result:

3.8. Lemma. Let u, µ, and α be as in Theorem 1.2, and let BR ⊂⊂ Ω.

Then there exists a p-harmonic function h ∈ W 1,p(BR) such that

(29)

∫
BR

|∇u−∇h|pdx ≤ CRn+pτ ,

where τ = αmin{1, (p− 1)−1}.

Proof. Let BR ⊂⊂ Ω, and let h be the p-harmonic function in BR with

u− h ∈ W 1,p
0 (BR), given by Lemma 3.3. We start with the case p ≥ 2.

By using the inequality of Lemma 3.5, and by testing our equation with

ϕ = u− h, we obtain∫
BR

|∇u−∇h|pdx

≤ 2p−1

∫
BR

(
|∇u|p−2∇u− |∇h|p−2∇h

)
· (∇u−∇h)dx

= 2p−1

∫
BR

|∇u|p−2∇u · (∇u−∇h)dx

= 2p−1

∫
BR

(u− h)dµ ≤ 2p−1

∫
BR

|u− h|d|µ|.

(30)
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Next, use Theorem 3.1, the measure growth condition (4), and Hölder’s

inequality to obtain∫
BR

|u− h|d|µ| ≤ CRα

∫
BR

|∇u−∇h|dx

= CRα+ p−1
p
n(

∫
BR

|∇u−∇h|pdx)1/p.

We have arrived at∫
BR

|∇u−∇h|pdx ≤ CRα+ p−1
p
n

(∫
BR

|∇u−∇h|pdx
) 1

p

.

Raising both sides to the power p, dividing by the integral term (may

be assumed nonzero), and raising both sides to the power 1/(p − 1),

gives ∫
BR

|∇u−∇h|pdx ≤ C(n, p)Rn+ p
p−1

α

as wanted.

In the case 1 < p < 2, we use a device taken from Manfredi [31]. Set

w = u− h, fix ε > 0, and write

|∇w|p =
{

(ε+ |∇u|2 + |∇h|2)
p−2
2 |∇w|2

} p
2 {
ε+ |∇u|2 + |∇h|2

}( 2−p
2

) p
2 .

Use Hölder’s inequality with exponents 2/p, 2/(2 − p), and denote

A = ε+ |∇u|2 + |∇h|2, to obtain

(31)

∫
BR

|∇w|pdx ≤
{∫

BR

A
p−2
2 |∇w|2dx

} p
2
{∫

BR

A
p
2dx

} 2−p
2

.

We now estimate the first factor on the right-hand side of (31) as in

the case p ≥ 2, this time using the inequality of Lemma 3.6:∫
BR

(ε+ |∇u|2 + |∇h|2)
p−2
2 |∇w|2 dx

≤ C(p)

∫
BR

(|∇u|p−2∇u− |∇h|p−2∇h) · ∇w dx

= C(p)

∫
BR

w dµ ≤ C(n, p)Rα

∫
BR

|∇w| dx.
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For the second factor on the right-hand side of (31), we establish∫
BR

(ε+ |∇u|2 + |∇h|2)
p
2dx

≤
∫
BR

(ε+ |∇u|2)
p
2 dx+

∫
BR

|∇h|p dx

≤ 2

∫
BR

(ε+ |∇u|2)
p
2dx,

by Lemma 3.4, and since p < 2. Rewriting (31) with these estimates

yields∫
BR

|∇w|pdx ≤ C(n, p)

{
Rα

∫
BR

|∇w|dx
} p

2
{∫

BR

(ε+ |∇u|2)
p
2dx

} 2−p
2

.

Now Hölder’s inequality yields∫
BR

|∇w|pdx

≤ C(n, p)R
p
2
(α+ p−1

p
n)

{∫
BR

|∇w|pdx
} 1

2
{∫

BR

(ε+ |∇u|2)
p
2dx

} 2−p
2

,

so that∫
BR

|∇w|pdx ≤ C(n, p)Rpα+(p−1)n

{∫
BR

(ε+ |∇u|2)
p
2dx

}2−p

.

Since ∇u ∈ L∞loc(Ω) (see e.g. Manfredi [31]), we have∫
BR

(ε+ |∇u|2)
p
2dx ≤ (C + ε)Rn,

and by letting ε→ 0 we arrive at our final estimate:

(32)

∫
BR

|∇u−∇h|pdx ≤ C(n, p)Rn+pα,

since pα + (p− 1)n+ (2− p)n = n+ pα. �
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PART II: BOUNDARY BEHAVIOR

4. The Wolff Story

In this section we explain the big picture of Wolff’s proof, concentrating

on the first form of his anti-Fatou Theorem:

4.1. Theorem. For p > 2, there exists a bounded solution of ∆pu = 0

in R2
+ such that the set

{x ∈ R : the limit lim
y→0

u(x, y) exists}

has measure zero.

The proof of the second form (see page 11) is similar, as commented in

the end of this section (see page 32).

The reader is advised to have Wolff’s paper [40] at hand throughout

the rest of this text.

Let us start with a classical theorem, found in many probability theory

books. Our proof is modified from Llorente [27]; we have stripped it of

the probabilistic terminology.

4.2. Theorem. Consider the formal series

(33)
∞∑
j=1

± 1

j
,

where the independent signs are chosen by a coin toss at each stage.

The series converges with probability one.

Proof. Let us first rephrase the problem. Let x ∈ [0, 1), and consider

the binary representation of x:

x =
∞∑
j=1

ξj(x)

2j
,

where ξj(x) ∈ {0, 1} for each j. Rescale these numbers to obtain the

sequence

Rj(x) = 1− 2ξj(x),
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where Rj(x) ∈ {−1, 1} for each j. Now, saying that the series (33)

converges with probability one is equivalent to saying that the series

(34)
∞∑
j=1

1

j
Rj(x)

converges almost everywhere in [0, 1). If we denote

sk(x) =
k∑
j=1

1

j
Rj(x),

then we want the sequence {sk(x)}∞k=1 to be Cauchy for almost every

x ∈ [0, 1). It is rather easy to see that it suffices to prove, for λ > 0

fixed, that

(35)

∣∣∣∣{x ∈ [0, 1) : sup
m≤k≤n

|sk(x)− sm(x)| ≥ λ}
∣∣∣∣→ 0,

when first n → ∞, and then m → ∞. To this end, we prove the

following maximal inequality2: for all 1 ≤ m ≤ n <∞,∣∣∣∣{x ∈ [0, 1) : sup
m≤k≤n

|sk(x)− sm(x)| ≥ λ}
∣∣∣∣

≤ 1

λ2

∫ 1

0

(sn(x)− sm(x))2 dx.

Fix 1 ≤ m ≤ n <∞. Denote

Tk(x) = sk(x)− sm(x)

for k = m, . . . , n, and define a stopping time

τ : [0, 1) → {m, . . . , n} ∪ {∞}

as the least index k ∈ {m, . . . , n} where

|Tk(x)| > λ.

(If no such index exists, we define τ(x) = ∞.) We now ”stop” the

sequence {
Tk(x)

}n
k=m

as soon as |Tk(x)| > λ, by defining the stopped sequence

T τk (x) =

{
Tk(x), if k ≤ τ(x)

Tτ(x)(x), otherwise.

2This is a special case of Kolmogorov’s inequality.
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Note that{
x ∈ [0, 1) : sup

m≤k≤n
|sk(x)− sm(x)| ≥ λ

}
= {x ∈ [0, 1) : τ(x) ≤ n}

and that in this set

|T τn (x)| ≥ λ.

Thus we use Chebychev’s inequality:∣∣∣∣{x ∈ [0, 1) : sup
m≤k≤n

|sk(x)− sm(x)| ≥ λ}
∣∣∣∣

= |{x ∈ [0, 1) : τ(x) ≤ n}| ≤ 1

λ2

∫ 1

0

T τn (x)2dx.

Next, we compute the representation (note that T τm(x) = 0)

T τn (x) =
n∑

k=m+1

(
T τk (x)− T τk−1(x)

)
+ T τm(x)

=
n∑

k=m+1

(
Tk(x)− Tk−1(x)

)
χ{τ(x)≥k}(x)

=
n∑

k=m+1

1

k
Rk(x)χ{τ(x)≥k}(x),

so ∫ 1

0

T τn (x)2dx =

∫ 1

0

n∑
k=m+1

(
1

k
Rk(x)χ{τ(x)≥k}(x)

)2

dx,

where we also used the orthogonality of the sequence Rj(x)χ{τ(x)≥j}

(left as an excercise to the reader):

(36) i 6= j =⇒
∫ 1

0

Ri(x)χ{τ(x)≥i}Rj(x)χ{τ(x)≥j} = 0.

Moreover,

n∑
k=m+1

(
1

k
Rk(x)χ{τ(x)≥k}(x)

)2

≤
n∑

k=m+1

(
1

k
Rk(x)

)2

≤ (sn(x)− sm(x))2 .

Summing up, ∣∣∣∣{x ∈ [0, 1) : sup
m≤k≤n

|sk(x)− sm(x)| ≥ λ}
∣∣∣∣

≤ 1

λ2

∫ 1

0

(sn(x)− sm(x))2 dx,

(37)
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as wanted. After this, proving (35) is simple. Note that by (36),∫ 1

0

sn(x)2dx =
n∑
j=1

∫ 1

0

1

j2
Rj(x)2dx,

and that this sequence increases to M , say, as n→∞. Using (37) and

(36) yields∣∣∣∣{x ∈ [0, 1) : sup
m≤k≤n

|sk(x)− sm(x)| ≥ λ}
∣∣∣∣

≤ 1

λ2

∫ 1

0

(sn(x)− sm(x))2 dx

=
1

λ2

∫ 1

0

(
sn(x)2 − sm(x)2

)
dx ≤ 1

λ2

∫ 1

0

(
M − sm(x)2

)
dx.

Let m→∞ to finish the proof. �

We now know that the formal series

(38)
∞∑
j=1

1

j
Rj(x)

converges to a finite limit a.e. x ∈ [0, 1). It immediately follows that

iff η ∈ R is nonzero, the formal series
∞∑
j=1

(
η +

1

j
Rj(x)

)
diverges for almost every x ∈ [0, 1). Wolff proves this even more gen-

erally (Lemma 2.1 in Wolff):

4.3. Lemma. Let φ : R → R satisfy φ(x + 1) = φ(x) and φ ∈ Lip(R).

If ∫ 1

0

φ(x)dx = η 6= 0

and if Tj is any sequence of integers such that Tj+1/Tj > q > 1, then

the sequence

(39)
k∑
j=1

1

j
φ(Tjx),

diverges as k →∞ for almost every x ∈ R. 2

This result is well known; the philosophy is that φ(Tjx) behaves like

η +Rj(x) in our basic example.
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With Lemma 4.3 as the starting point, Wolff’s proof now consists of

three other Lemmas. In the first one, the function φ in Lemma 4.3

is fixed as φ(x) = Φ(x, 0), where Φ: R2
+ → R is as in the following

Lemma (Lemma 1.1 in Wolff):

4.4. Lemma. If p > 2, there exists a function Φ ∈ Lip(R2
+) such that

∆pΦ = 0 in R2
+, Φ has period 1 in the x variable,

lim
y→∞

Φ(x, y) = 0 for all x ∈ R,

and ∫ 1

0

Φ(x, 0)dx = η 6= 0.

2

This is the most important Lemma, we will prove it in detail in the

upcoming sections.

The purpose of the next Lemma (Lemma 2.12 in Wolff) is to insert

”stopping times” Lj into the sequence (39), so as to make it uniformly

bounded. For this to work, one needs fast growth in the sequence Tj:

4.5. Lemma. Let Φ be the function constructed in Lemma 4.4, and

define the function φ : R → R by φ(x) = Φ(x, 0). If Tj is any sequence

of integers such that Tj+1 > ρ(Tj) for some function ρ : [0,∞) → [0,∞)

having faster than linear growth (Wolff has ρ(x) = x(log(2 +x))3, then

there exists a sequence of 1-periodic Lipschitz functions Lj on R such

that 0 ≤ Lj ≤ 1, and such that the sequence

(40) σk(x) =
k∑
j=1

1

j
Lj(x)φ(Tjx)

is uniformly bounded, and diverges a.e. as k →∞. 2

We will skip the proof.

For a continuous and bounded function f : R → R, denote by f̂ the

unique p-harmonic function in R2
+ with boundary values f on R. It is

rather simple to prove that there exists a uniform limit

lim
y→∞

f̂(x, y) = µ ∈ R

for all x; see Wolff’s Lemma 1.3.
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Now, return to the sequence (40) and for each k, consider the p-

harmonic function σ̂k. Eventually, after a clever choice of the sequence

Tj, this (uniformly bounded) sequence of p-harmonic functions will

converge, as k → ∞, to a p-harmonic limit function that gives the

anti-Fatou example. To make this work, a sophisticated comparison

principle (Lemma 1.6 in Wolff) is needed. We don’t even state the

Lemma here due to its messy appearance. Let us just state that it

enables us to fix the sequence Tj in a specific way, in order to obtain a

decreasing sequence of positive numbers βk → 0, along with estimates

of the following form:

(41) |σ̂k+1(x, y)− σ̂k(x, y)| < 1

2k+1
when y > βk

(42) |σ̂k+1(x, y)− σk(x)| < 1

2k
+

1

k
when y ≤ βk.

We skip this proof as well.

After these Lemmas, Theorem 4.1 follows: the estimate (41) yields that

the sequence σ̂k converges locally uniformly to a limit function G, that

this limit function is p-harmonic in R2
+, and that

|G(x, y)− σ̂k(x, y)| < 1

2k
when y > βk.

Moreover, by (42),

|G(x, y)− σk(x)| ≤ |G(x, y)− σ̂k+1(x, y)|+ |σ̂k+1(x, y)− σk(x)|

<
1

2k+1
+

1

2k
+

1

k
,

when βk+1 < y ≤ βk. Let k →∞ to obtain the Theorem. 2

To prove the second form of the anti-Fatou Theorem, Lemma 4.5 is

modified in such a way that the sequence

σk(x) =
k∑
j=1

1

j
Lj(x)φ(Tjx)

is positive for each k, is uniformly bounded, and such that

lim
k→∞

σk(x) = 0

for almost every x. (This is Lemma 2.13 in Wolff.) The rest of the

proof remains unchanged.
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5. Failure of the Mean Value Property in the Half-Plane

We now set out to prove Lemma 4.4. In this section we give the big

picture in the half-plane case of Wolff, detailed proofs for the disc case

(applicable also in the half-plane) are given in the next two sections.

Throughout, we have p > 2.

Start by fixing a p-harmonic function in R2
+:

5.1. Lemma. The function f(x, y) = e−ya(x) satisfies ∆pf = 0 in R2
+

if a : R → R satisfies the ordinary differential equation

(43) axx + V (a, ax)a = 0,

where

V (a, ax) =
(2p− 3)a2

x + (p− 1)a2

(p− 1)a2
x + a2

.

2

Note that for p = 2 we have V ≡ 1.

It turns out that the equation (43) has a unique solution in R for given

initial data, that a and ax cannot vanish simultaneously (unless a ≡ 0),

and that a ∈ C∞(R). Moreover, a turns out to be periodic with period

λ = λ(p) > 0, and if we fix the solution with initial data a(0) = 0,

a′(0) = 1, then ∫ λ

0

a(x)dx = 0

with ∫ λ/2

0

a(x)dx = −
∫ λ

λ/2

a(x)dx.

Moreover,

a(x+ λ/2) = −a(λ/2− x)

for all x, so that this fixed solution a behaves much like the sine func-

tion.

Fix a as above, and let f(x, y) = e−ya(x). Then f is p-harmonic, but∫ λ

0

f(x, y)dx = 0

for all y, so f as such does not fail the mean value principle. We

perturbate f by considering solutions v to the following linear equation:
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5.2. Lemma. The formal equation

− d

dε
|ε=0∆p(f + εv) = 0

reduces to

(44) − div(A∇v) = 0,

where

A(x, y) = |∇f |p−4

(
|∇f |2 + (p− 2)f 2

x (p− 2)fxfy
(p− 2)fxfy |∇f |2 + (p− 2)f 2

y

)

= e−(p−2)y(a2
x + a2)

p−4
2

(
(p− 1)a2

x + a2 (2− p)aax
(2− p)aax a2

x + (p− 1)a2

)
.

2

Note that the equation (44) is linear, degenerate elliptic (the ellipticity

degenerates like e−(p−2)y at infinity), and that the partials fx and fy of

f solve (44).

Now, the crucial step (which takes many pages in the proof and cannot

be done if p = 2) is to solve a Neumann problem for the equation (44),

and thereby to obtain a solution v ∈ C∞(R2
+)∩W 1,∞(R2

+) (with period

λ in the x variable) such that

∂v

∂ν
(x, 0) = h(x),

where ∫ λ

0

h(x)dx = M > 0.

In other words, by denoting

F (y) =

∫ λ

0

v(x, y)dx,

we have

F ′(0) = M > 0.

This implies the existence of small numbers y2 > y1 > 0 such that

|F (y2)− F (y1)| > b > 0,

i.e.

(45)

∣∣∣∣∫ λ

0

v(x, y2)− v(x, y1)dx

∣∣∣∣ > b > 0.
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Finally, take a small ε > 0, and consider the function f+εv ∈ C∞(R2
+).

Take its values on R (i.e. y = 0), and solve the Dirichlet problem

to obtain the p-harmonic function f̂ + εv. Denote the uniform limit

at infinity, limy→∞(f̂ + εv)(x, y), by µ. A suitable translate to the y

direction of the function

f̂ + εv − µ

now gives what we want, for ε small enough. To see this, denote first

qε(x, y) = ̂(f + εv)(x, y)− (f + εv)(x, y).

Next, one proves the estimate (Lemma 3.19 in Wolff)

(46)

∫
(0,λ)×(0,1)

|∇qε| dxdy ≤ Cετ ,

where τ = τ(p) > 1 and C = C(p, ||∇f ||∞, ||∇v||∞) ≥ 1.

Now, using the fact that ∫ λ

0

f(x, y)dx = 0

for each y, along with (45) and (46), we obtain

|
∫ λ

0

̂(f + εv)(x, y2)− ̂(f + εv)(x, y1)dx|

≥ ε|
∫ λ

0

v(x, y2)− v(x, y1)dx| − |
∫ λ

0

qε(x, y2)− qε(x, y1)dx|

≥ εb− Cετ .

Since τ > 1, this is greater than zero for ε small enough. For such an

ε, we thus have a gap η > 0 between∫ λ

0

̂(f + εv)(x, y2)dx

and ∫ λ

0

̂(f + εv)(x, y1)dx.

Hence one of the functions

Φ(x, y) = ̂(f + εv)(x, y + y1)− µ

or

Φ(x, y) = ̂(f + εv)(x, y + y2)− µ

must fail the mean value principle as desired.
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Before we move on to the calculations in the disc case, let us repeat

once again the problem of proving the actual anti-Fatou Theorem for

the disc.

In the half-plane, Wolff needs to construct only one function Φ (of pe-

riod 1 in the x variable) that fails the mean value principle. Thereafter,

the functions qj(x) = φ(Tjx) = Φ(Tjx, 0) are of period 1/Tj,

(47)

∫ 1

0

qj(x)dx = η

with a uniform η 6= 0, and the functions

(48) q̂j(x, y) = φ̂(Tjx) = Φ(Tjx, Tjy)

all have the property that

(49) lim
y→∞

q̂j(x, y) = 0.

The property (49) is essential in obtaining the estimates (41) and (42)

(see page 32). On the other hand, a uniform η 6= 0 in (47) is essential

for the argument to work3, since the behavior of qj(x) has to mimic the

behavior of η +Rj(x) (see section 4) with η 6= 0.

In the unit disc D, we currently lose either the uniformity of η in (47)

or the uniform limit zero in (49). Indeed, we are able to construct a

function Φ that has the properties of lemma 4.4:

5.3. Lemma. If p > 2, there exists a function Φ ∈ Lip(D) such that

∆pΦ = 0 in D, Φ is periodic in the θ variable,

lim
r→0

Φ(r, θ) = 0,

and ∫ 2π

0

Φ(1, θ)dθ = η 6= 0.

2

But if we now set qj(θ) = Φ(1, Tjθ), then we do not know of any reason

why (49), i.e.

lim
r→0

q̂j(r, θ) = 0,

3Actually, a sequence like ηj = (log j)−1 would work as well.
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should hold for all j. Moreover, the scaling in the θ variable does not

preserve the p-harmonicity, and we do not know how to express q̂j(r, θ)

in terms of the original function Φ.

We are, however, able to prove Lemma 1.6, let us restate it here.

5.4. Lemma. If p > 2, there exists a sequence of functions Φj ∈ Lip(D)

such that ||Φj||L∞(D) ≤ C <∞ for all j, ∆pΦj = 0 in D, Φj has period

λj > 0 (dividing 2π) in the θ variable, λj → 0 as j →∞,

lim
r→0

Φj(r, θ) = 0,

and ∫ 2π

0

Φj(1, θ)dθ = ηj > 0.

2

Then the behavior of qj(θ) = Φj(1, θ) is like that of ηj +Rj(θ), but this

time we do not know how to estimate the sequence ηj.

In the rest of the text, we will prove Lemma 5.4 in detail.
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6. Failure of the Mean Value Property in the Disc

In the unit disc D, the big picture is the same as in the half-plane.

However, using polar coordinates yields messy terms in the matrix A

of the linearized equation, and solving the Neumann problem seems

to be difficult. Luckily, the calculations are much more elegant in the

moving frame

er =
∂

∂r
, eθ =

1

r

∂

∂θ
.

The intrinsic gradient of a function f is defined as Xf = (er(f), eθ(f)).

Note that Xf = R(θ)∇f , where R(θ) is the rotation by θ and ∇f is

the gradient in cartesian coordinates.

The dual basis to {er, eθ} is {dr, rdθ} and the volume element is dA =

rdrdθ. The adjoints e∗r and e∗θ of er and eθ are defined as∫
D
er(u)v dA =

∫
D
ue∗r(v) dA for all u, v ∈ C∞0 (D)

and similarly for eθ. They turn out to be

e∗r = −1

r
er(r·), e∗θ = −eθ.

The divergence of a vector field F = (F 1, F 2) is defined as

divX F = −
(
e∗r(F

1) + e∗θ(F
2)
)

=
1

r
er(rF

1) + eθ(F
2),

and one verifies that ∆pu = 0 in D is equivalent to

divX(|Xu|p−2Xu) = 0 in D.

6.1. Lemma. Let k ∈ R, k ≥ 1. The function fk(r, θ) = rkak(θ)

satisfies ∆pfk = 0 in D, if ak : R → R is 2π-periodic and satisfies4

(50) aθθ + V (a, aθ)a = 0,

where

V (a, aθ) =

(
(2p− 3)k2 − (p− 2)k

)
a2
θ +

(
(p− 1)k2 − (p− 2)k

)
k2a2

(p− 1)a2
θ + k2a2

.

This is the same separation equation that is obtained in [2] using polar

coordinates.

4The index k is henceforth dropped from a and f . Also, a has to be 2π-periodic
for the statement to make sense; the periodicity of a is not proved until in Lemma
6.3.
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Proof. We have

er(f) = krk−1a, eθ(f) = rk−1aθ,

so that

|Xf | = rk−1(a2
θ + k2a2)

1
2 .

Thus we obtain

|Xf |p−2 = r(k−1)(p−2)(a2
θ + k2a2)

p−2
2 ,

|Xf |p−2er(f) = r(k−1)(p−1)(a2
θ + k2a2)

p−2
2 ka,

|Xf |p−2eθ(f) = r(k−1)(p−1)(a2
θ + k2a2)

p−2
2 aθ,

and further, denoting γ = (p− 1)k2 − (p− 2)k,

divX(|Xf |p−2Xf) =
1

r
er
(
r|Xf |p−2er(f)

)
+ eθ

(
|Xf |p−2eθ(f)

)
= r(k−1)(p−1)−1

{
γ(a2

θ + k2a2)
p−2
2 a+

∂

∂θ

(
(a2
θ + k2a2)

p−2
2 aθ

)}
,

where

∂

∂θ

(
(a2
θ + k2a2)

p−2
2 aθ

)
= (a2

θ + k2a2)
p−4
2

(
(a2
θ + k2a2)aθθ + (p− 2)a2

θ(aθθ + k2a)
)
.

Hereby

divX(|Xf |p−2Xf) = 0

if a verifies(
(a2
θ + k2a2) + (p− 2)a2

θ

)
aθθ +

(
γ(a2

θ + k2a2) + (p− 2)k2a2
θ)
)
a = 0.

The lemma follows. �

6.2. Lemma. The equation (50) has a unique solution a ∈ C∞(R) with

given initial data a(0), aθ(0).

Proof. Denote

γ = (p− 1)k2 − (p− 2)k,

β = (2p− 3)k2 − (p− 2)k,

so that

(51) |V | ≤ max{γ, β}
min{p− 1, 1}

≤ C(p, k).

Written as a system, (50) reads

(52) (a, aθ)θ = f(a, aθ),
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where f : R2 → R2 is the function

f(x, y) = (y,−V (x, y)x) for (x, y) 6= (0, 0),

and, by (51), we may define f(0, 0) = 0. To obtain the existence and

uniqueness of a local solution to (50), it suffices to observe that the

function f is 1-homogeneous and thereby Lipschitz.

Multiplying (50) by aθ, we obtain

(53) |(a2
θ)θ| ≤ Cp,k|(a2)θ|.

taking antiderivatives and square roots of both sides of (53) implies

that the logarithmic derivative of a remains bounded. Thus |a| remains

bounded, except perhaps when θ →∞. It follows from (50) that |aθθ| is

similarly bounded, and thereby the same must hold also for |aθ|. Since

both |a| and |aθ| are bounded like this, the existence and uniqueness of

solutions follows for −∞ < θ <∞.

Since the system is C∞ except at points where a = aθ = 0, also the

solutions are C∞ except at such points. But such points are ruled out

(for nonconstant a) by uniqueness. �

6.3. Lemma. There exists an increasing sequence {kj}∞j=1 of positive

real numbers so that the following holds:

For each k in the sequence, let a = ak be the corresponding solution to

(50) (i.e. a is such that rka(θ) is p-harmonic in D) with a(0) = 0 and

aθ(0) = 1. Then a has a period λ = λ(p, k) > 0 dividing 2π such that

λ→ 0 as k →∞. Moreover, each such a satisfies

a(θ +
λ

2
) = −a(

λ

2
− θ) for all θ,

in particular ∫ 2π

0

a(θ)dθ = 0.

Proof. We know that a is positive in {θ : 0 < θ < ε} for some ε > 0.

We claim that a does not remain positive forever, i.e. that a(θ0) = 0

for some θ0 > 0. Assume, on the contrary, that a > 0 in R+. Since (for

p > 2)

V ≥ min{γ, β}
max{p− 1, 1}

= k2 − p− 2

p− 1
k = τ > 0,
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a satisfies

aθθ + τa ≤ 0 in R+.

Let b be the solution of

bθθ + τb = 0 in R+

with b(0) = 0 and bθ(0) = 1, i.e. let

b(θ) =
sin(

√
τθ)√
τ

,

and consider the function c = a− b. It satisfies

cθθ + τc = f ≤ 0 in R+

with c(0) = 0, cθ(0) = 0. We have

c(θ) =

∫ θ

0

f(t− θ)
sin(

√
τt)√
τ

dt,

so that c ≤ 0 for 0 ≤ θ ≤ π√
τ
, i.e. a ≤ b for 0 ≤ θ ≤ π√

τ
. In particular,

a(
π√
τ

) ≤ 0,

contrary to our assumption of positivity. Thus there must exist a num-

ber θ0 > 0 such that a(θ0) = 0.

Next, let

a(θ + θ0) = g(θ),

−a(θ0 − θ) = h(θ).

We have

g(0) = h(0) = 0,

gθ(0) = hθ(0) = aθ(θ0).

Hence, by the uniqueness of solutions,

a(θ + θ0) = −a(θ0 − θ)

for every θ. With λ = 2θ0, the Lemma follows, except that λ must

divide 2π, and therefore most values of k are ruled out. Conversely,

given j ∈ N, we can fix k = k(p, j) > 0 (not necessarily an integer)

such that the solution ak has period λ = 2π/j. An explicit formula for

k is calculated in [36]; there it is shown that

k(p, j) ∼ p

2(p− 1)
j +

p2 − 4

4p(p− 1)
+O

(
1

j

)
.

We refer the reader to [2] and [36] for more details. �
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From now on we assume that k belongs to the sequence {kj}∞j=1 in

Lemma 6.3.

6.4. Lemma. Let k be fixed, let a be the corresponding function as in

Lemma 6.3, and let f(r, θ) = rka(θ). Then

− d

dε
|ε=0∆p(f + εv) = 0

reduces to

− divX(AXv) = 0,

where

A(r, θ)

= r(p−2)(k−1)(a2
θ + k2a2)

p−4
2

(
a2
θ + (p− 1)k2a2 (p− 2)kaaθ
(p− 2)kaaθ k2a2 + (p− 1)a2

θ

)
.

(54)

Proof. Since

d

dε

(
|Xf + εXv|p−2(Xf + εXv)

)
= |Xf + εXv|p−2Xv

+ (p− 2)(Xf · Xv + ε|Xv|2)|Xf + εXv|p−4(Xf + εXv),

the expression

− d

dε
|ε=0 divX

(
|Xf + εXv|p−2(Xf + εXv)

)
becomes

− divX

(
|Xf |p−2Xv + (p− 2)|Xf |p−4(Xf · Xv)Xf

)
=− divX

(
|Xf |p−2Xv + (p− 2)|Xf |p−4(Xf ⊗ Xf)Xv

)
=− divX(AXv),

where

A = |Xf |p−4
(
|Xf |2I + (p− 2)(Xf ⊗ Xf)

)
.

Inserting

|Xf | = rk−1(a2
θ + k2a2)

1
2

yields (54). �

6.5. Lemma. Let A be as in (54). Then

r(p−2)(k−1)(a2
θ+k

2a2)
p−2
2 |ξ|2 ≤ Aξ ·ξ ≤ (p−1)r(p−2)(k−1)(a2

θ+k
2a2)

p−2
2 |ξ|2

for all ξ ∈ R2.
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Proof. The eigenvalues λ of the matrix

B =

(
a2
θ + (p− 1)k2a2 (p− 2)kaaθ
(p− 2)kaaθ k2a2 + (p− 1)a2

θ

)
are

λ =
trB ±

√
(trB)2 − 4 detB

2

=
pa2

θ + pk2a2 ±
√
p2(a2

θ + k2a2)2 − 4 detB

2
.

Since

detB = (p− 1)(a2
θ + k2a2)2,

we obtain

λ =
(p± (p− 2)) (a2

θ + k2a2)

2
.

The claim follows. �

Since aθ and a never vanish simultaneously, A is elliptic and degenerates

like r(p−2)(k−1) at the origin. We will look for solutions v to the equation

Tv = − divX(AXv) = 0 in D

in the weighted Sobolev space

Y1 =
{
v ∈ W 1,2

loc (D∗) :

∫
D
|v|2r2β + |∇v|2r2α dA <∞

}
,

where D∗ = D \ {0}, α = (p− 2)(k − 1)/2 and β > α.

6.6. Lemma. Let k be fixed, let A be as in (54), and let M > 0. There

exists a solution v ∈ Y1 ∩ C∞(D \ {0}) ∩W 1,∞(D) to

Tv = − divX(AXv) = 0 in D

such that ∫ 2π

0

dv

dν
(1, θ)dθ = M.

Proof. The conormal on ∂D with respect to T is

ν∗(θ) = At(1, θ)

(
1
0

)
= (a2 + k2a2

θ)
p−4
2

(
a2
θ + (p− 1)k2a2

(p− 2)kaaθ

)
.

With

ω = (a2
θ + k2a2)

p−4
2 ,

we have

ν∗ = ω
(
a2
θ + (p− 1)k2a2

)(1
0

)
+ ω(p− 2)kaaθ

(
0
1

)
,
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so that (
1
0

)
=

1

ω(a2
θ + (p− 1)k2a2)

(
ν∗ − (p− 2)ωkaaθ

(
0
1

))

= q

(
ν∗ + τ

(
0
1

))
,

where

q(θ) =
(a2
θ + k2a2)

4−p
2

a2
θ + (p− 1)k2a2

,

τ(θ) = −(a2
θ + k2a2)

p−4
2 (p− 2)kaaθ.

(55)

It follows that

(56)
∂

∂ν
= q(

∂

∂ν∗
+ τ

∂

∂θ
),

and in particular that the equation

∂v

∂ν
= ψ

is equivalent to the equation

(57)
∂v

∂ν∗
+ τ

∂v

∂θ
=
ψ

q
.

Thus we want to solve the oblique derivative problem

(58)

{
Tv = 0 in D
∂v
∂ν∗

+ τ ∂v
∂θ

= ψ
q

on ∂D,

with the additional constraint∫ 2π

0

ψ(θ)dθ = M.

We postpone the proof of the following Lemma to the next section:

6.7. Lemma. The oblique derivative problem (58) has a solution v ∈
Y1 ∩ C∞(D \ {0}) ∩W 1,∞(D) if∫ 2π

0

ψ(θ)q(θ)−1g(θ) dθ = 0 for all g ∈ E,

where E is the finite-dimensional set consisting of all the boundary val-

ues g(θ) = F (1, θ) of solutions F ∈ Y1∩C∞(D\{0}) to the homogeneous

adjoint problem

(59)

{
TF = 0 in D
∂F
∂ν∗

− ∂
∂θ

(τF ) = 0 on ∂D.
2
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Hence what we need is

(60)

∫ 2π

0

ψ

q
g dθ = 0 for all g ∈ E, and

∫ 2π

0

ψ dθ = M.

Writing ϕ = ψ/q and using the bracket notation, (60) reads

〈ϕ, g〉 = 0 for all g ∈ E and 〈ϕ, q〉 = M.

A necessary condition clearly is q /∈ E, but it is also sufficient: if q /∈ E,

we write q = qE + q⊥, where qE ∈ E and q⊥ ⊥ E. Then

〈ϕ, q〉 = 〈ϕ, q⊥〉,

so if q /∈ E, we can pick any function ψ such that ϕ = ψ
q
/∈ E in order to

have 〈ϕ, q〉 6= 0, and then multiply by a constant to obtain 〈ϕ, q〉 = M .

In order to finish the proof, we still need to show that q /∈ E. Suppose,

on the contrary, that q ∈ E, i.e. q(θ) = F (1, θ) for some solution

F ∈ Y1 ∩ C∞(D \ {0}) to{
TF = 0 in D
∂F
∂ν∗

(1, θ) = d
dθ

(τ(θ)q(θ)) on ∂D.

Let θ0 be a global minimum point of q. (Such a point exists since

q ∈ C∞(∂D).) By the maximum principle (see Lemma 7.6 on page 60),

(1, θ0) is a minimum point of F on D. By (56),

∂F

∂ν∗
(1, θ) =

1

q(θ)

∂F

∂ν
(1, θ)− τ(θ)

∂F

∂θ
(1, θ).

At the minimum point (1, θ0), the last term on the right hand side

equals zero, and the outer normal derivative of F has to be nonpositive.

Since q > 0, we obtain

∂F

∂ν∗
(1, θ0) ≤ 0,

i.e. by (59),

d

dθ
|θ=θ0

(
τ(θ)q(θ)

)
≤ 0.

But this is impossible by the following very important Lemma. �

6.8. Lemma. Let k ≥ 2, let q and τ be as in (55), and let θ0 be a

minimum point of q. Then

(τq)θ(θ0) > 0.
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Proof. Recall that

q =
(
a2
θ + k2a2

) 4−p
2
(
a2
θ + (p− 1)k2a2

)−1
,

τq = −
(
a2
θ + (p− 1)k2a2

)−1
(p− 2)kaaθ,

and that a satisfies aθθ = −V a, where

V =

(
(2p− 3)k2 − (p− 2)k

)
a2
θ +

(
(p− 1)k2 − (p− 2)k

)
k2a2

(p− 1)a2
θ + k2a2

.

We start with the simpler case p = 4, where

q = (a2
θ + 3k2a2)−1,

τq = −(a2
θ + 3k2a2)−12kaaθ,

V =
(5k2 − 2k)a2

θ + (3k2 − 2k)k2a2

3a2
θ + k2a2

.

Now

qθ = −(a2
θ + 3k2a2)−22(aθaθθ + 3k2aaθ)

= −2aaθ(a
2
θ + 3k2a2)−2(3k2 − V ),

which is zero only when a = 0 or aθ = 0 or V = 3k2. The last

alternative leads to

a2
θ(4k

2 + 2k) = k2a2(−2k),

which is impossible. Next, the case a = 0 turns out to be a local

maximum for q, since denoting A = 2(a2
θ + 3k2a2)−2 and differentiating

qθ yields

qθθ =
(
−A(3k2 − V )

)
θ
aaθ − A(3k2 − V )(aaθ)θ,

which, when a = 0, equals

−a2
θA(3k2 − V ),

and thus has the same sign as V − 3k2. But when a = 0, V = (5k2 −
2k)/3, and 3k2 − V > 0. Hence qθθ < 0 when a = 0, so the local

maximum of q must occur when aθ = 0. At such a point,

(τq)θ = 2k(3k2)−2V,

i.e. the sign of (τq)θ equals the sign of V , which is always positive.

Now consider the case p 6= 4. We calculate

(τq)θ = (p− 2)
(
a2
θ + (p− 1)k2a2

)−2 (
(p− 1)k2a2 − a2

θ

) (
V a2 + a2

θ

)
,
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which is positive when aθ = 0 or when a2
θ < (p− 1)k2a2. Also,

(61) qθ = (a2
θ + k2a2)

2−p
2

(
a2
θ + (p− 1)k2a2

)−2
(2− p)aaθJ,

where

(62) J = (3k2 − V )a2
θ +

(
(p− 1)k2 − (p− 3)V

)
k2a2.

Thus the extremal points of q are the points where a = 0 or aθ = 0 or

J = 0. Rewriting (61) as

qθ = AB(2− p)aaθJ,

and differentiating, yields

qθθ = (2− p)
(
aaθ(ABJ)θ + (aaθ)θABJ

)
.

Whenever a = 0 or aθ = 0,

qθθ = (2− p)(a2
θ − V a2)ABJ,

and we conclude: qθθ has the sign of −J when a = 0, and qθθ has the

sign of +J when aθ = 0.

Next, inserting the formula for V in (62), expanding, and disregarding

positive terms, yields that J has the same sign as(
(k + 1)p− 2

)
a2
θ +

(
(−k + 1)p2 + (5k − 5)p− 4k + 6

)
k2a2

=
(
(k + 1)p− 2

)
a2
θ +

(
(−k + 1)(p− p1)(p− p2)

)
k2a2,

(63)

where

p1,2 =
5

2
± 1

2

√
9k − 1

k − 1
with the convention p1 < p2. Further, factoring out k− 1 in (63) yields

that J has the same sign as(
k + 1

k − 1
p− 2

k − 1

)
a2
θ − (p− p1)(p− p2)k

2a2.

We note that the coefficient of a2
θ is positive and that p1 < 1. Thus

the sign of J is positive whenever p < p2. In this case we observe that

the local minimum of q occurs when aθ = 0, and we have (τq)θ > 0 as

desired.

The remaining case to check is p ≥ p2 and J ≤ 0, where J ≤ 0 reads(
(k + 1)p− 2

)
a2
θ ≤

(
(k − 1)p2 + (−5k + 5)p+ (4k − 6)

)
k2a2,

i.e.

a2
θ ≤

(k − 1)p2 + (−5k + 5)p+ (4k − 6)

(k + 1)p− 2
k2a2.
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Denote the fraction on the right hand side by F . It suffices to show

(for k ≥ 2) that F < p− 1 when p ≥ p2, since a2
θ < (p− 1)k2a2 yielded

(τq)θ > 0 as desired. Now F < p− 1 precisely when

p2 + (2k − 4)p− 2k + 4 > 0,

in particular whenever

p >
√
k2 − 2k − k + 2.

But for k ≥ 2 we have
√
k2 − 2k − k + 2 < 4, while p ≥ p2 > 4. This

completes the proof. �

With our solution v as in Lemma 6.6, we obtain a number b > 0 and

numbers r2, r1 < 1, all depending on k and p, such that

|
∫ 2π

0

v(r2, θ)− v(r1, θ) dθ| > b > 0,

as described in the previous section, see page 34.

At this point, pick ε > 0 and denote

(64) qε(r, θ) = ̂(f + εv)(r, θ)− (f + εv)(r, θ),

where ̂(f + εv) denotes the unique p-harmonic function in D with

̂(f + εv)− (f + εv) ∈ W 1,p
0 (D).

We need the following estimate which employs only the facts that

∆pf = 0 and Tv = 0:

6.9. Lemma.

(65)

∫
D∩{r> 1

2
}
|∇qε|dA ≤ Cετ ,

where τ > 1 and C = C(p, ||∇f ||L∞(D), ||∇v||L∞(D)) > 0.

Proof. Let ϕ ∈ W 1,p
0 (D), and estimate the integral∣∣∣∣∫

D
|X(f + εv)|p−2X(f + εv) · Xϕ− |Xf |p−2Xf · Xϕ

−ε d
dt
|t=0

(
|X(f + tv)|p−2X(f + tv) · Xϕ

)
dA

∣∣∣∣(66)

using the inequalities∣∣∣∣|x+ εy|p−2(x+ εy)− |x|p−2x− ε
d

dt
|t=0

(
|x+ ty|p−2(x+ ty)

)∣∣∣∣
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≤

{
C|εy|p−1 for 2 < p ≤ 3,

C|εy|2(|εy|p−3 + |x|p−3) for p > 3,

valid for vectors x, y ∈ R2. Since the second and third term in (66) are

zero, we obtain ∣∣∣∣∫
D
|X(f + εv)|p−2X(f + εv) · XϕdA

∣∣∣∣
≤

{
Cεp−1

∫
D |∇v|

p−1|∇ϕ| dA (2 < p ≤ 3),

Cε2
∫

D |∇v|
2|∇ϕ|(εp−3|∇v|p−3 + |∇f |p−3) dA (p > 3).

Since |∇v| and |∇f | are in L∞, we have

(67)

∣∣∣∣∫
D
|X(f + εv)|p−2X(f + εv) · XϕdA

∣∣∣∣ ≤ Cεσ||ϕ||1,p,

where σ = min{2, p− 1} > 1 and C = C(p, ||∇f ||∞, ||∇v||∞).

Next, use ϕ = qε in (67) together with Young’s inequality to obtain∫
D
|∇(f + εv)|p dA

=

∫
D
|X(f + εv)|p−2X(f + εv) · X ̂(f + εv) dA

+

∫
D
|X(f + εv)|p−2X(f + εv) · Xqε dA

≤ 1

p
|| ̂(f + εv)||p1,p +

p− 1

p
||f + εv||p1,p + Cεσ||qε||1,p.

(68)

Finally, use the inequality

|x+ y|p − |x|p − p|x|p−2x · y ≥ Cp|y|2(|y|+ |x+ y|)p−2,

valid for x, y ∈ R2 and p ≥ 2. With x = ∇ ̂(f + εv) and y = ∇qε, this

becomes ∫
D
|∇(f + εv)|p dA−

∫
D
|∇ ̂(f + εv)|p dA

≥ C

∫
D
|∇qε|2 (|∇qε|+ |∇(f + εv)|)p−2 dA

≥ C

(∫
D
|∇qε|p dA+

∫
D
|∇qε|2|∇(f + εv)|p−2 dA

)
,

since ∆p
̂(f + εv) = 0. Combine this with (68) to obtain

(69)

∫
D
|∇qε|p dA+

∫
D
|∇qε|2|∇(f + εv)|p−2 dA ≤ Cεσ||qε||1,p,
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in particular ∫
D
|∇qε|p dA ≤ Cεσ||qε||1,p,

i.e. (since qε ∈ W 1,p
0 (D))

||qε||1,p ≤ Cε
σ

p−1 .

Inserting this in the right hand side of (69) yields∫
D
|∇qε|2|∇(f + εv)|p−2 dA ≤ Cε

σp
p−1 .

Since |∇f | > ρ > 0 when r > 1
2

and since |∇v| is bounded from above,∫
D∩{r> 1

2
}
|∇qε|2 dA ≤ Cε

σp
p−1 ,

and Schwarz’s inequality yields the lemma with

τ =
σp

2(p− 1)
> 1.

�

The rest is similar to the half-plane case. By the previous estimate and

the fact that ∫ 2π

0

f(r, θ) dθ = 0

for each r, we have∣∣∣∣∫ 2π

0

̂(f + εv)(r2, θ)− ̂(f + εv)(r1, θ)dθ

∣∣∣∣
≥ ε

∣∣∣∣∫ 2π

0

v(r2, θ)− v(r1, θ)dθ

∣∣∣∣− ∣∣∣∣∫ 2π

0

q(r2, θ)− q(r1, θ)dθ

∣∣∣∣
≥ εb− Cετ .

Since τ > 1, this is greater than zero for ε small enough. For such an

ε, we have a gap5 between∫ 2π

0

̂(f + εv)(r2, θ) dθ

and ∫ 2π

0

̂(f + εv)(r1, θ) dθ.

Hence one of the functions

Φ(r, θ) = ̂(f + εv)(r2r, θ)− ̂(f + εv)(0)

5This gap is the ηk that we would like to estimate as k →∞.
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or

Φ(r, θ) = ̂(f + εv)(r1r, θ)− ̂(f + εv)(0)

must fail the mean value principle as required.
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7. The Oblique Derivative Problem

In this section we prove Lemma 6.7. Let us start by restating the

ingredients. Our function spaces are the weighted L2 and W 1,2 spaces,

denoted by Y0 and Y1, respectively, where α = (p − 2)(k − 1)/2 and

β > α:

Y0 =

{
f ∈ L2

loc(D∗) :

∫
D
|f(r, θ)|2r2β dA <∞

}
,

Y1 =

{
f ∈ W 1,2

loc (D∗) :

∫
D
|f(r, θ)|2r2β + |∇f(r, θ)|2r2α dA <∞

}
.

The inner product in Y0 is defined as

(f | g)Y0
=

∫
D
f(r, θ)rβ g(r, θ)rβ dA,

and the inner products in Y1, and in

Y ∗0 =

{
f ∈ L2

loc(D∗) :

∫
D
|f(r, θ)|2r−2β dA <∞

}
,

are defined accordingly. The dual pairing between f ∈ Y0 and g ∈ Y ∗0
is

〈f |g〉 =

∫
D
fg dA.

The operator T : Y1 → Y ∗0 is

(70) Tu = − divX(AXu),

where A is the (degenerate) elliptic and symmetric matrix with entries

in C∞(D \ {0}), as defined in (54), page 42.

First, we want to find a solution w ∈ Y1 to

(71)

{
Tw = 0 in D
∂w
∂ν∗

+ τ ∂w
∂θ

= h on ∂D,

where τ and h are 2π-periodic functions in the class C∞(R). The

function τ is fixed as in (55), page 44; our goal is to find a condition

for h such that the problem (71) admits a solution.

The strategy is to first consider the problem

(72)

{
Tu = g in D
∂u
∂ν∗

+ τ ∂u
∂θ

= 0 on ∂D,
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and find a suitable condition for g ∈ Y ∗0 such that problem (72) admits

a solution. Thereafter the problem (71) is reduced to the problem (72),

and the desired condition for h is obtained.

We start by constructing the Dirichlet form for the oblique derivative

problem, following Folland [10], pages 240–241. Our form D : Y1×Y1 →
R should satisfy

D(v, u)− 〈v |Tu〉 =

∫
∂D
v

(
∂u

∂ν∗
+ τ

∂u

∂θ

)
dθ,

so that the condition

D(v, u) = 〈v | g〉 for all v ∈ Y1

guarantees that u ∈ Y1 is a weak solution to (72).

First, we calculate

divX(AXu) =
1

r
er
(
r [AXu]1

)
+ eθ

(
[AXu]2

)
=

1

r

{
rer
(
[AXu]1

)
+ [AXu]1

}
+ eθ

(
[AXu]2

)
=

1

r

{
rer
(
a11er(u) + a12eθ(u)

)
+ a11er(u) + a12eθ(u)

}
+ eθ

(
[AXu]2

)
= a11erer(u) + er(a11)er(u) + a12ereθ(u) + er(a12)eθ(u)

+
1

r
a11er(u) +

1

r
a12eθ(u)

+ a21eθer(u) + eθ(a21)er(u) + a22eθeθ(u) + eθ(a22)eθ(u)

= a11erer(u) + a12ereθ(u) + a21eθer(u) + a22eθeθ(u)

+

(
er(a11) +

1

r
a11 + eθ(a21)

)
er(u)

+

(
er(a12) +

1

r
a12 + eθ(a22)

)
eθ(u).

(73)

Now

ereθ(u) = er
(1

r

∂u

∂θ

)
= − 1

r2

∂u

∂θ
+

1

r
er
(∂u
∂θ

)
= − 1

r2
eθ(u) +

1

r

∂

∂r

(∂u
∂θ

)
= − 1

r2
eθ(u) +

1

r

∂

∂θ

(∂u
∂r

)
= − 1

r2
eθ(u) + eθer(u),

so

a12ereθ(u) = a12eθer(u)− 1

r
a12eθ(u),
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and (73) reads

divX(AXu)

= a11erer(u) +
(
a12 + a21

)
eθer(u) + a22eθeθ(u)

+

(
er(a11) +

1

r
a11 + eθ(a21)

)
er(u) +

(
er(a12) + eθ(a22)

)
eθ(u).

(74)

Next, if

C =

(
0 −c
c 0

)
is any matrix with c ∈ C∞(D) (to be specified later), and if we denote

B = (bij) = A+ C, then

divX(AXu)

= b11erer(u) +
(
b12 + b21

)
eθer(u) + b22eθeθ(u)

+

(
er(a11) +

1

r
a11 + eθ(a21)

)
er(u) +

(
er(a12) + eθ(a22)

)
eθ(u).

(75)

Next, we need a Stokes’ Theorem.

7.1. Lemma.

(76)

∫
∂D
v
∂u

∂ν∗B
dθ =

∫
D
v divX(BXu) dA+

∫
D

Xv ·BXu dA,

for each u, v ∈ Y1.

Proof. By definition,

(77)

∫
D
v divX U dA = −

∫
D
U · Xv dA

for each U ∈ C1(D; R2) and v ∈ C∞0 (D). When v is not compactly

supported, we multiply it by ϕε, a standard radial function in C∞0 (D)

satisfying ϕε → χD as ε→ 0. Then, by (77),∫
D
ϕεv divX U dA = −

∫
D
U · X(ϕεv) dA

= −
∫

D
U · (vXϕε) dA−

∫
D

U · (ϕεXv) dA.

Letting ε→ 0 yields, since Xϕε → (−δ1, 0) as ε→ 0,∫
D
v divX U dA =

∫
∂D
U1v dθ −

∫
D
U · Xv dA.
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With U = BXu, we have U1 = b11er(u) + b12eθ(u), and

∂u

∂v∗B
= Bt

(
1
0

)
· Xu = B

(
1
0

)
· Xu = U1,

which yields the Lemma6. �

Now, replacing the divergence term in (76) by the form calculated in

(74), yields∫
∂D
v
∂u

∂ν∗B
dθ =

∫
D

Xv ·BXu dA

+

∫
D
v
{
b11erer(u) +

(
b12 + b21

)
eθer(u) + b22eθeθ(u)

}
dA

+

∫
D
v

{(
er(b11) +

1

r
b11 + eθ(b21)

)
er(u)

+
(
er(b12) + eθ(b22)

)
eθ(u)

}
dA,

(78)

and replacing the middle term on the right-hand side of (78) by the

form calculated in (75) yields∫
∂D
v
∂u

∂ν∗B
dθ =

∫
D

Xv ·BXu dA+

∫
D
v divX(AXu) dA

+

∫
D
v

{(
er(b11) +

1

r
b11 + eθ(b21)

)
er(u)

+
(
er(b12) + eθ(b22)

)
eθ(u)

}
dA

−
∫

D
v

{(
er(a11) +

1

r
a11 + eθ(a21)

)
er(u)

+
(
er(b12) + eθ(b22)

)
eθ(u)

}
dA.

Thus we finally obtain (since cij = bij − aij and since c11 = c22 = 0)∫
∂D
v
∂u

∂ν∗B
dθ =

∫
D

Xv ·BXu dA+

∫
D
v divX(AXu) dA

+

∫
D
v
{
eθ(c21)er(u) + er(c12)eθ(u)

}
dA.

The Dirichlet form is now defined such that∫
∂D
v
∂u

∂ν∗B
dθ =

∫
D
v divX(AXu) dA+D(v, u),

6Note added in proof. This proves the Lemma only for u, v ∈ C1(D). To actually
obtain the Lemma for u, v ∈ Y1, we need to take care of the origin. We repeat the
stated proof for an annulus, and obtain an extra boundary term that vanishes as
the inner radius of the annulus approaches zero. This is proved in a similar manner
as (89), page 61.
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i.e.

D(v, u) =

∫
∂D
v
∂u

∂ν∗B
dθ −

∫
D
v divX(AXu) dA

=

∫
D

Xv ·BXu dA

+

∫
D
v
{
eθ(c21)er(u) + er(c12)eθ(u)

}
dA.

Finally, we need to choose the matrix C such that

∂u

∂ν∗B
=

∂u

∂ν∗A
+ τ(θ)

∂u

∂θ
.

Since

∂u

∂ν∗B
= (A+ C)t

(
1
0

)
· Xu =

∂u

∂ν∗A
+ Ct

(
1
0

)
· Xu,

and since

Ct
(

1
0

)
· Xu =

(
0 c
−c 0

)(
1
0

)
·
(
er(u)
eθ(u)

)
= −c eθ(u) = −c∂u

∂θ
,

we choose c to be any function in C∞(D) such that −c(1, θ) = τ(θ),

and such that c(r, θ) = 0 for r < 1/2, say. This latter condition is

needed to obtain coercivity:

7.2. Lemma.

|D(u, u)| ≥ C1||u||2Y1
− C2||u||2Y0

.

Proof. First we estimate

(79)

|D(u, u)| ≥
∣∣∣∣∫

D
Xu ·BXu dA

∣∣∣∣− ∣∣∣∣∫
D
u
{
eθ(c21)er(u) + er(c12)eθ(u)

}
dA

∣∣∣∣ .
Since Xu ·BXu = Xu ·AXu and since A is elliptic, i.e. Aξ ·ξ ≥ Cr2α|ξ|2,
we have∫

D
Xu ·BXu dA ≥ C

∫
D
r2α|Xu|2 dA = C

(
||u||2Y1

− ||u||2Y0

)
.

For the second term on the right-hand side of (79), we first have∫
D
u
{
eθ(c21)er(u) + er(c12)eθ(u)

}
dA ≤ C

∫
{r≥ 1

2
}
|u
(
er(u) + eθ(u)

)
| dA,
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since the functions cij are in the class C∞(D) and are supported in the

annulus {r ≥ 1/2}. Then, we estimate using Young’s inequality:∫
{r≥ 1

2
}
|u
(
er(u) + eθ(u)

)
| dA ≤ C

∫
{r≥ 1

2
}
|uXu| dA

≤ Cε

∫
{r≥ 1

2
}
|Xu|2 dA+ C

1

ε

∫
{r≥ 1

2
}
|u|2 dA

≤ Cε||u||2Y1
+ C

1

ε
||u||2Y0

.

Finally, choose ε > 0 small enough such that Cε ≤ 1/2 to obtain

|D(u, u)| ≥
∣∣∣∣∫

D
Xu ·BXu dA

∣∣∣∣− ∣∣∣∣∫
D
u
{
eθ(c21)er(u) + er(c12)eθ(u)

}
dA

∣∣∣∣
≥ C||u||2Y1

− 1

2
||u||2Y1

− C2||u||2Y0
= C1||u||2Y1

− C2||u||2Y0

as wanted. �

Next, consider the adjoint Dirichlet form

D∗(v, u) = D(u, v).

7.3. Lemma. If u ∈ Y1 satisfies, for some f ∈ Y ∗0 ,

D∗(v, u) = 〈v | f〉 for all v ∈ Y1,

then u is a weak solution to the boundary value problem

(80)

{
Tu = f in D
∂u
∂ν∗

− ∂
∂θ

(τu) = 0 on ∂D.

Proof. Since A is symmetric, Stokes’ Theorem yields

(81)

∫
D
vTu− uTv dA =

∫ 2π

0

u(1, θ)
∂v

∂ν∗
(1, θ)− v(1, θ)

∂u

∂ν∗
(1, θ) dθ.

By definition of D(v, u),

D(v, u) =

∫
D
vTu dA+

∫ 2π

0

v(1, θ)

(
∂u

∂ν∗
(1, θ) + τ(θ)

∂u

∂θ
(1, θ)

)
dθ,

and

D∗(v, u) =

∫
D
uTv dA+

∫ 2π

0

u(1, θ)

(
∂v

∂ν∗
(1, θ) + τ(θ)

∂v

∂θ
(1, θ)

)
dθ,

so combined with (81),

D∗(v, u)−D(v, u) =

∫ 2π

0

u(1, θ)τ(θ)
∂v

∂ν∗
(1, θ)−v(1, θ)τ(θ)

∂u

∂ν∗
(1, θ) dθ.
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Thus D∗(v, u) and D(v, u) differ only on the boundary, and the bound-

ary condition for D∗ is∫ 2π

0

v
∂u

∂ν∗
+ uτ

∂v

∂θ
dθ =

∫ 2π

0

v

(
∂

∂ν∗
− ∂

∂θ
(τu)

)
dθ.

�

7.4. Lemma. The imbedding id : Y1 → Y0 is compact.

Proof. Let ε > 0 be small, and denote id = id1 + idε, where id1 is the

imbedding restricted to the annulus A1 = {(r, θ) : ε < r < 1, 0 ≤ θ <

2π} and idε is the imbedding restricted to the annulus Aε = {(r, θ) : 0 <

r < ε, 0 ≤ θ < 2π}. The mapping id1 is compact (since the imbedding

W 1,2 → L2 is compact), so it suffices to show for u ∈ Y1 that

||u||2Y0(Aε) ≤ C(ε)||u||2Y1
,

where C(ε) → 0 as ε → 0. Indeed, this guarantees that id can be

made arbitrary close to the compact operator id1, which yields (see

e.g. Folland, [10, Theorem 0.34]) that id itself is compact.

For u ∈ Y1 and 0 < r < 1, we use the estimate

|u(r, θ)| ≤
∫ 1

r

|∇u(s, θ)| ds+−
∫

(1/2,1)

|u(s, θ)| ds

along with the Cauchy-Schwartz inequality∫ 1

r

|∇u(s, θ)| ds ≤
(∫ 1

r

|∇u(s, θ)|2s2α+1 ds

) 1
2
(∫ 1

r

s−(2α+1) ds

) 1
2

≤ Cr−α
(∫ 1

r

|∇u(s, θ)|2s2α+1 ds

) 1
2

,

to obtain∫
Aε

u2r2β dA ≤ C

∫ 2π

0

∫ ε

0

r2βr−2α

∫ 1

r

|∇u(s, θ)|2s2α sds rdr dθ

+ C

∫
Aε

(
−
∫

(1/2,1)

|u(s, θ)| ds
)2

dA

≤ C||u||2Y1

∫ ε

0

r2β−2α+1 dr + C|Aε|

= Cε2(β−α+1)||u||2Y1
+ Cε2

as wanted, since β > α. �
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Next, denote

W = {u ∈ Y1 : D∗(v, u) = 0 for each v ∈ Y1},

i.e.

W = {v ∈ Y1 : D(v, u) = 0 for each u ∈ Y1}.

Finally, since our Dirichlet form is coercive and since the injection Y1 →
Y0 is compact, the standard Fredholm-Riesz-Schauder theory (see e.g.

[10], Theorem 7.21, pages 250–251) yields that W is finite-dimensional

in Y0, and that the problem (72) admits a solution whenever

〈g | v〉 =

∫
D
gv dA = 0

for each v ∈ W . This is the condition for g, the remaining step is to

find the condition for h in the original problem (71).

7.5. Lemma. The problem (71) admits a solution whenever

(82)

∫ 2π

0

h(θ)v(1, θ)dθ = 0

for each v ∈ W.

Proof. Let h ∈ C∞(∂D) satisfy (82). Let H ∈ Y1 ∩ C∞(D \ {0}) be

such that
∂H

∂ν∗
(1, θ) + τ(θ)

∂H

∂θ
(1, θ) = h(θ).

We claim that

(83)

∫
D
v TH dA = 0 for all v ∈ W .

Indeed, let v ∈ W , i.e. D(v, u) = 0 for each u ∈ Y1. Now

D(v,H)−
∫

D
vTH dA =

∫ 2π

0

v

(
∂H

∂ν∗
+ τ

∂H

∂θ

)
dθ,

so the claim follows.

Since (83) holds, we can solve the problem (72) with g = −TH, ob-

taining a weak solution u to{
Tu = −TH in D
∂u
∂ν∗

+ τ ∂u
∂θ

= 0 on ∂D.

Now the function w = u+H solves (71). �
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With the desired existence part done, we will next prove regularity of

solutions to Tu = 0 in D. Since the coefficients of the matrix A are

in the class C∞(D \ {0}), also the solutions are automatically in this

class. The task is to prove Sobolev regularity at the origin.

We start with a maximum principle that corresponds to Wolff’s Lemma

3.8:

7.6. Lemma. If u ∈ Y1 ∩ C∞(D \ {0}) satisfies Tu = 0 in D, then

u ∈ L∞(D); in fact,

u(r, θ) ≤ max
0≤θ<2π

u(1, θ)

for all (r, θ) ∈ D.

Proof. For 0 < R < 1, let

AR = {(r, θ) : R < r < 1, 0 ≤ θ < 2π} ⊂ D∗.

We make two claims.

Claim 1. Fix R, ρ ∈ (0, 1) such that R < ρ. Then there exists a

function ψ : AR → R, continuous and such that

(84) for all θ, ψ(R, θ) = R−α and ψ(1, θ) = 0,

(85) Tψ = 0 in AR,

(86) ψ(r, θ) ≤ C(ρ) when ρ ≤ r < 1.

To prove this, define ψ0 : AR → R as

ψ0(r, θ) = ψ0(r) = (r−2α − 1)Rα.

Then ψ0 satisfies (84) and∫ 1

R

|ψ′0(r)|2r2αrdr ≤ CR2α < C

uniformly in R. By Dirichlet’s principle, there is a function ψ : AR → R
satisfying (84), (85) and

(87)

∫
AR

|∇ψ(r, θ)|2r2α dA < C

uniformly in R. Then (86) follows by elliptic regularity, T being uni-

formly elliptic on (say) AR/2.
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Claim 2. If u ∈ Y1 and Tu = 0 in D∗, then

lim
r→0

(
max

0≤θ<2π
rαu(r, θ)

)
= 0.

To prove this, define the dyadic annuli

Ak =
{

(r, θ) : 2−(k+1) < r < 2−(k−1), 0 ≤ θ < 2π
}
.

for k ∈ N, k ≥ 1. Then, define rk = 2−k along with the functions

Mk = max
0≤θ<2π

u(rk, θ),

and

mk = min
0≤θ<2π

u(rk, θ).

Since the equation Tu = 0 is invariant under scaling, Harnack’s in-

equality is valid in each annulus Ak with uniform bounds. Applying

the weak Harnack’s inequality in Ak yields

(Mk −mk)
2 ≤ C

∫
Ak

|∇u|2 dA,

which readily yields

r2α
k (Mk −mk)

2 ≤ C

∫
Ak

r2α
k |∇u|2 dA.

Next, we sum over k to obtain

∞∑
k=1

r2α
k (Mk −mk)

2 ≤ C||u||2Y1
<∞,

especially

(88) rαk (Mk −mk) → 0 as k →∞.

Computations using only that u ∈ Y1 now give

(89) lim sup
k→∞

rαkmk ≤ 0.

Indeed, were (89) not true, there would exist an ε0 > 0 and a subse-

quence of rk (still call it rk) such that mk ≥ ε0r
−α
k for each k. Fix k1

and choose k2 large enough such that Mk1 becomes negligible compared

to mk2 . Without loss of generality, we may assume that u is a radial

function satisfying u(rk1) = 0 and u(rk2) = M ≥ ε0r
−α
k2

. We have∫ rk1

rk2

u′(r) dr = M,
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and we want to estimate ∫ rk1

rk2

|u′(r)|2r2αrdr

from below. Let v(r) = u′(r)rα+1/2, so that we want to estimate∫ rk1

rk2

v(r)2 dr = ||v||22

from below, under the condition∫ rk1

rk2

v(r)r−(α+1/2) dr = 〈v, r−(α+1/2)〉 = M.

By elementary geometry, the smallest value of ||v||2 under 〈v, g〉 = M

is attained when v is parallel to g, i.e. v = gM/||g||2. In our case,

g(r) = r−(α+1/2) and∫ rk1

rk2

|u′(r)|2r2αrdr ≥ M2∫ rk1
rk2

r−(2α+1)dr
=

M2

r−2α
k2

− r−2α
k1

≥ ε0

r−2α
k2

r−2α
k2

− r−2α
k1

≥ Cε2
0.

Summing over k, we obtain ||u||Y1 = ∞, a contradiction.

Thus (89) must hold, and by (88), also lim supk→∞ r
α
kMk ≤ 0. If we

similarly consider −u, we have Claim 2.

Suppose now (r, θ) is given. Fix ε > 0. Let R be small and consider

u − εψ, with ψ as in Claim 1 (taking ρ = r). Then T (u − εψ) = 0 in

AR, and

max
θ

(u− εψ)(1, θ) = max
θ
u(1, θ),

since ψ(1, θ) = 0. By Claim 2,

max
θ

(u− εψ)(R, θ) → −∞ as R→ 0.

Choose R small enough such that

max
θ

(u− εψ)(R, θ) < min
θ

(u− εψ)(1, θ).

Then, by the maximum principle applied to u− εψ on AR, we have

(u− εψ)(r, θ) ≤ max
θ

(u− εψ)(1, θ).

Since ψ(r, θ) ≤ C(r) and maxθ(u− εψ)(1, θ) = maxθ u(1, θ), we finally

obtain

u(r, θ) ≤ εψ(r, θ) + max
θ
u(1, θ) ≤ εC(r) + max

θ
u(1, θ).
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Now let ε→ 0. �

The following corresponds to Wolff’s Lemma 3.12.

7.7. Lemma. If u ∈ Y1 ∩ C∞(D \ {0}) and Tu = 0 in D, then

(90) max
θ
u(r, θ)−min

θ
u(r, θ) ≤ Crγ

for some γ > 0. Consequently,∫
D
|∇u|q dA <∞

for any q ∈ (0,∞].

Proof. Let the dyadic annuli Ak along with rk, Mk and mk be as in the

proof of Claim 2 in Lemma 7.6. Lemma 7.6 implies that Mk decreases

and mk increases with k. Hence the solutions Mk − u and u−mk are

positive in the annulus Ak+1. Harnack’s inequality (applied on the ring

of radius rk+1) yields for Mk − u that

max
θ

(
Mk − u(rk+1, θ)

)
≤ C min

θ

(
Mk − u(rk+1, θ)

)
,

i.e.

(91) Mk −mk+1 ≤ C
(
Mk −Mk+1

)
,

and similarly for u−mk,

(92) Mk+1 −mk ≤ C
(
mk+1 −mk

)
.

Adding (91) and (92) yields for ωk = Mk −mk,

ωk + ωk+1 ≤ C
(
ωk − ωk+1

)
,

i.e.

ωk+1 ≤
C − 1

C + 1
ωk = Aωk,

where 0 < A < 1. This yields, by iteration as in Gilbarg-Trudinger

[12, Lemma 8.23], the statement (90) with the number γ > 0 satisfying

(1/2)γ = A.

Again, since T is scaling invariant, the coefficients of T are smooth

uniformly in each annulus. Elliptic regularity gives for any q > 0,∫
Ak+1

|∇u|q dA ≤ C
(
Mk −mk

)q ≤ Crqγk .
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Now ∫
D∗
|∇u|q dA ≤ C

∞∑
k=1

∫
Ak

|∇u|q dA ≤ C

∞∑
k=1

(rk−1)
qγ <∞,

which implies the Lemma. �
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