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Acknowledgements

I wish to express my sincere gratitude to my advisor, Professor Eero
Saksman, for the admirable expert guidance I received from him throughout
the work. I would also like to thank the people at the Department of the
Mathematics and Statistics of the University of Jyväskylä for their great
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INTRODUCTION

1. The Hardy-Littlewood maximal operator

The Hardy-Littlewood maximal operator has long been a central tool in
mathematical analysis. The operator first appeared in the one-dimensional
case in a paper of the famous British mathematicians, G. H. Hardy and J.
E. Littlewood [HL]. The n-dimensional analogue was soon after studied by
N. Wiener [W].

The Hardy-Littlewood maximal operator M is defined

(1) Mf(x) = sup
r>0

−
∫

B(x,r)

|f(y)| dy

for locally integrable function f : R
n �→ R . Informally, the value of the

maximal function of f at x is the largest average value of f on any ball
centered at x.

There are various ways to define a maximal operator. For example, we
may replace the x-centered balls in the definition by balls that contain x
(the non-centered maximal operator), or use cubes instead of balls. In most
situations these definitions turn out to be essentially equivalent.
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Figure 1. 1-dimensional example of a function (the lower
graph) and its maximal function (the upper graph)

2. Basic properties of the maximal operator

The Hardy-Littlewood maximal operator and its variants play a key role
in differentation theory and in the theory of singular integrals. One often

1



2 INTRODUCTION

needs to estimate some quantities depending on a given function f . That
can be shown to be dominated by Mf . Hence, a natural question arises:
how ’big’ can the maximal function of a given function be? Pointwise in-
equalities are not possible, but the bounds in the Lp-sense can be given.
The fundamental result of Hardy-Littlewood-Wiener asserts that the maxi-
mal operator is bounded on Lp(Rn) when 1 < p ≤ ∞ [St]. This means that
there is a constant C(n, p) > 0 such that

(2) ‖Mf‖Lp(Rn) ≤ C(n, p)‖f‖Lp(Rn) ,

for all f ∈ Lp(Rn) . When p = 1, this result fails. However there is a
constant C(n) > 0 such that for all λ > 0 and f ∈ L1(Rn) it holds that

(3) |{x ∈ R
n : Mf(x) > λ}| ≤ C(n)

‖f‖1

λ
.

Thus, M is said to be of “weak type (1,1)”, and it is a bounded operator
from L1 to the weak Lebesque space L1

w. The inequality (3) follows from a
standard covering theorem, and (2) follows from (3) by interpolation between
L1

w and L∞ .

3. Mapping properties of the maximal operator

While the size of the maximal function is of principal interest, it is also
useful and interesting to study how the maximal operator preserves the
regularity properties of functions. A simple observation is that the set

(4) {x ∈ R
n : Mf(x) > λ}

is open for arbitrary f ∈ L1
loc and λ > 0. In the other words, Mf is always

lower semi-continuous. Moreover, it is easy to see that if f is continuous,
then so is Mf as well (if Mf �≡ ∞). What about the smoothness proper-
ties of the maximal function? In 1997, Kinnunen [K] observed that M is
bounded on the Sobolev spaces W 1,p(Rn). Moreover, he showed the point-
wise inequality

(5) |DiMf(x)| ≤ M(Dif)(x)

for all f ∈ W 1,p(Rn) and a.e x ∈ R
n Here Dif denotes the weak partial

derivative of f in the direction ei. Kinnunen applied this result to the study
Lebesgue points of Sobolev functions.

The boundedness of M in Sobolev spaces is basically implied by two facts
that also will be important for further results. First, the maximal operator
commutes with translations. Denote for h ∈ R

n that fh(x) = f(x + h).
Then it holds that M(fh)(x) = (Mf)h(x) for every x ∈ R

n . Second, M is
sublinear, which means that given locally integrable functions f and g, it
holds that |Mf(x) − Mg(x)| ≤ M(f − g)(x) a.e. From these facts we see
that

(6)
1
|h| |Mf(x + h) − Mf(x)| ≤ M

(
fh − f

|h|
)

(x) a.e.

The boundedness of M on W 1,p(Rn) and the pointwise inequality (5) are
easily implied by this inequality.

After [K] several articles devoted to the same topic have appeared. We
mention here [AP],[Bu],[HO],[KL],[KS], [Ko] and [Ta].
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4. Different maximal operators

In mathematical analysis, a number of different maximal operators have
been used for various purposes. Accordingly, one natural way to extend the
result of Kinnunen is to study the regularity of some other classical maximal
operators.

We now give the definitions of the local and fractional maximal operators.
Let Ω ⊂ R

n be an arbitrary subdomain (i.e. an open and connected subset)
of R

n. The local Hardy-Littlewood maximal operator MΩf , where f ∈
L1

loc(Ω), is defined by

(7) MΩf(x) = sup
0<r<d(x,Ωc)

−
∫

B(x,r)

|f(y)| dy .

Here d(x,A) denotes the Euclidean distance from x to set A.
The fractional maximal operator Mα, where 0 < α < n, has applications

in potential theory and partial differential equations. It is defined by

(8) Mαf(x) = sup
r>0

rα −
∫

B(x,r)

|f(y)| dy

for x ∈ R
n and f ∈ L1

loc(R
n) .

Again, as it was in the case of the original maximal operator, we could
define the local or the fractional maximal operator also by using cubes or
non-centered balls.

A result of Kinnunen and P. Lindqvist states that MΩ is bounded on
W 1,p(Ω) [KL]. This local case is more difficult to treat because MΩ does
not commute with translations. The proof is quite involved, and it does not
generalize to the case where the maximal operator is defined by cubes. A
simpler proof that also applies to the cube-based operator was obtained by
P. Hajlasz and J. Onninen [HO].

The fractional maximal operator was studied by Kinnunen and E. Saks-
man [KS] who proved that Mα is smoothing in the sense that it maps Lp-
spaces boundedly to certain first order Sobolev spaces.

5. Continuity of the Hardy-Littlewood maximal operator

As M is a sublinear operator, the boundedness of the maximal operator on
Lp(Rn) implies its continuity on Lp(Rn) . The result of Kinnunen now leads
us to another question: is the maximal operator continuous on W 1,p(Rn) ?
This question was posed in [HO] where it was attributed to T. Iwaniec.
In general, boundedness does not need imply continuity. An important
example is given in [AL], where it is shown that the symmetric decreasing
rearrangement, defined for measurable u : R

n �→ [0,∞) as the mapping
u �→ u∗, where

(9) u∗(x) := sup{t ≥ 0 : |{x ∈ R
n : u(x) > t}| ≥ |B(0, |x|)|} ,

is bounded on W 1,p(Rn) but not continuous when 1 < p < n. We will
later see that this phenomenon surprisingly takes place for a natural class
of maximal operators, as well.
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A main result of this thesis is the positive answer [A, Theorem 4.1] to the
question of Iwaniec:

Theorem 5.1. M is continuous W 1,p(Rn) → W 1,p(Rn), when 1 < p < ∞ .

An important role in the proof is played by the following new concept:

(10) Rf(x) = {r ≥ 0 : Mf(x) = −
∫

B(x,r)

|f(y)| dy } .

Here we make the convention that −
∫

B(x,0)

|f | = |f(x)| . In other words, Rf(x)

is the set containing the radii for which the maximum average is achieved.
We call this set the set of “best radii” at the point x. These sets turn out
to be non-empty and closed for almost every x. A major part of the proof
of Theorem 5.1 is based on the following results, which can be found in
[A, Lemma 2.1] and [A, Theorem 3.1]. We denote for A ⊂ R

n and λ > 0,
A(λ) = {x : d(x,A) ≤ λ} .

Lemma 5.2. Let 1 ≤ p < ∞, and suppose fj → f in Lp(Rn) as j → ∞ .
Then for all R > 0 and λ > 0 it holds that

(11) m({x ∈ B(0, R) : Rfj(x) �⊂ Rf(x)(λ)}) → 0 as j → ∞.

Theorem 5.3. Let f ∈ W 1,p(Rn) , 1 < p < ∞. Then for almost all x ∈ R
n,

(1) DiMf(x) = −
∫

B(x,r)

Di|f |(y) dy for all 0 < r ∈ Rf(x) ,

(2) DiMf(x) = Di|f |(x) if 0 ∈ Rf(x) .

Lemma 5.2 reveals that the sets of best radii of the functions f and g
are typically “near” to each other if ‖f − g‖p is small. This is used to prove
Theorem 5.3, which gives a somewhat surprising formula for the derivative
of the maximal function.

f(x + r)

f(x - r)

Mf(x)

x + rx - r x

Tangent line
of Mf at x

Figure 2. tangent of the maximal function at point x

Figure 2 depicts the 1-dimensional situation. In this case Theorem 5.3
implies that

(Mf)′(x) =
1
2r

(f(x + r) − f(x − r)) for r ∈ Rf(x)
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and where it also holds that

1
2
(f(x − r) + f(x + r)) = Mf(x) for r ∈ Rf(x).

6. Continuity of the local maximal operator

The second major result of this thesis is the continuity of the local max-
imal operator on W 1,p(Ω) , where Ω ⊂ R

n is a subdomain and 1 < p < ∞
[B, Theorem 2.11].

Theorem 6.1. Suppose that Ω ⊂ R
n is subdomain and 1 < p < ∞. Then

MΩ : W 1,p(Ω) → W 1,p(Ω) is continuous.

The proof of the local case is somewhat similar to the global case. We
extend the concept of the best radii and analogous results from the global
case to the local case. In the local setting some of the auxiliary results
are slightly modified and technically complicated to prove, although the
philosophy is the same. However, the continuity itself does not seem to
easily follow from the continuity in the global case.

In the local case, the formula for the derivative of the maximal function
(Theorem 5.3) is stated in the following way [B, Theorem 2.4].

Theorem 6.2. Assume that p > 1 and f ∈ W 1,p(Ω) . Then for almost all
x ∈ Ω it holds that

(1) DiMΩf(x) = −
∫

B(x,r)

Di|f |(y) dy for all r ∈ Rf(x) , 0 < r < δ(x) and

(2) DiMΩf(x) = Di|f |(x) if 0 ∈ Rf(x) .

The difficulty in the local case lies at the points where the maximum
average is achieved with the largest ball contained in Ω. On these points,
the straightforward extension of Theorem 5.3 would say that

(12) DiMΩf(x) = −
∫

B(x,δ(x))

Di|f |(y) dy .

Unfortunately, this can not hold. A formula for the derivative of the maxi-
mal function at these points must depend on the derivative of the function
δ(x) . The most interesting and difficult case occurs when, in considering
a sequence fj → f ∈ W 1,p(Ω), there are sets Sj with |Sj| > λ uniformly
for some λ > 0 and such that for each x ∈ Sj only Mf(x) is achieved on
B(x, δ(x)) but Mfj(x) in slightly smaller ball. For the above reasons, in the
local case we have to prove several technical lemmata before attacking the
continuity.

The proof does not use the special geometric properties of balls. In par-
ticular, the spherical maximal operator is not used. Nor do we assume any
smoothness for Ω. The proof also applies, for example, to the local maximal
operator defined by cubes.
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7. Maximal operator on Triebel-Lizorkin spaces

Another way to extend the regularity theory of maximal operators is to
study its behaviour on different function spaces. As we know the bound-
edness in the spaces Lp(Rn) = W 0,p(Rn) and W 1,p(Rn), the next question
is about the boundedness on the fractional Sobolev spaces W s,p(Rn) , when
0 < s < 1. The work of S. Korry [Ko] also covers this case. Actually,
Korry proves that the maximal operator is bounded on the Triebel-Lizorkin
spaces F p

s,q(Rn) when 1 < p, q < ∞ and 0 < s < 1 , and it is known
that F p

s,2(R
n) = W s,p(Rn). Let 1 ≤ r < ∞ be fixed. The definition of

the Triebel-Lizorkin spaces is often given in terms of the Fourier transform,
but an equivalent definition can also be given in the following way [Tr2,
p.194]. For the above range of indices, the space F p

s,q(Rn) consists of those
measurable functions on R

n for which the norm
(13)

‖f‖F p
s,q(Rn) =

(∫
Rn

(∫ 1

0

(∫
B(0,1)

∣∣∣∣f(x + th) − f(x)

t
s+ 1

q

∣∣∣∣
r

dh

) q
r

dt

) p
q

dx

) 1
p

is finite. Different values of r lead to equivalent norms.
Korry’s proof was based on iterating the result of Benedek-Calderon-

Panzone concerning linear operators acting on Banach-space valued func-
tions [BCP], combined with the fundamental fact (6).

In the following theorem [B, Theorems 3.2 and 4.2] we extend the result
of Korry to the local case of MΩ on F p

s,q(Ω) .

Theorem 7.1. MΩ is bounded and continuous on F p
s,q(Ω) , when 1 < p, q <

∞ .

The local Triebel-Lizorkin spaces are defined by Triebel [Tr1, 3.1] as a
restrictions of functions in F p

s,q(Rn):

(14) F p
s,q(Ω) = {f|Ω : f ∈ F p

s,q(R
n) }.

When considering the local case, we are again, as it is in the case of
MΩ on W 1,p(Ω)), faced with the problem that MΩ does not commute with
translations. We find a suitable property for MΩ replacing commutativity
and allowing us to use the BCP result in roughly the same way as Korry
did.

The proof of the continuity of MΩ is easier in the case of Triebel-Lizorkin
spaces (when s < 1) than in the case of Sobolev spaces (s = 1).

8. General results for a wide class of maximal operators on
different function spaces

The results above are proven for the global or local centered Hardy-
Littlewood maximal operator, defined using balls. However, it is easy to
observe that all of these proofs are valid, for example, in the case where
balls are replaced by cubes. This raises two interesting questions:

(Q1) For which maximal operators can the techniques used above also be
used to imply continuity from boundedness?

(Q2) Are there any natural maximal operators for which continuity is not
implied by boundedness?
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Our last main results deal with these questions.
Let us first discuss (Q1). We will consider the class of maximal operators

which are determined by an admissible family of operators {Tr}r∈I . This
means that {Tr}r∈I has some natural properties which are given in (A1)-
(A7) in [C, Section 2], and a maximal operator T ∗ can be defined by

(15) T ∗f(x) = sup
r∈I

|Trf(x)| .

We study T ∗ acting on functions on normed space F1 ⊂ Lp(Rn) of a
natural type, where 1 < p < ∞. Typically F1 can be thought to be a
certain Lebesgue space or Sobolev space. In this general setting we will
prove results that are counterparts to Theorems 5.1 and 5.3 and Lemma
5.2.

We show [C, Lemma 2.5 and Theorem 2.9] that if {Tr}r∈I is admissible
then for every f ∈ F1,

(16) DiT
∗f ∈ Lq(Rn) and ‖DiT

∗f‖q ≤ C‖f‖F1 ,

The numbers 1 < q, s < ∞ above come from (A1)-(A7). Moreover, for a
sequence (hk)∞k=1 such that hk > 0 and hk → 0, for a.e. x ∈ R

n it holds that

(17) DiT
∗f(x) = lim

k→∞
|Trf(x + hkei)| − |Trf(x)|

hk
for all r ∈ Rf(x) .

The main general result is the following [C, Theorem 2.10].

Theorem 8.1. If {Tr}r∈I is admissible and f, fj ∈ F1 so that ‖fj −f‖F1 →
0, then

(18) ‖DiT
∗fj − DiT

∗f‖s → 0 as j → ∞ .

Equation (17) above and Theorem 8.1 generalize Theorem 5.3 and Theo-
rem 5.1.

One of the assumptions (A1)-(A7) is that for almost every x the function
r �→ Trf(x) is continuous on I ⊂ R. More precisely, we find representatives
of the functions Trf so that this holds. This makes it possible to generalize
the definition of the best radii simply by setting

(19) Rf(x) = {r ∈ I : T ∗f(x) = |Trf(x)|} .

Concerning the derivatives of the maximal operator, we recall that f ∈ F1

does not need to have functions as weak partial derivatives, for example in
the case where F1 is some Lp-space or fractional Sobolev-space with smooth-
ness index less than 1. However, in many cases it still holds that T ∗ maps
F1 boundedly into a certain Sobolev-space. We show that if assumptions
(A1)-(A7) hold, then this occurs.

The assumption (A2) is that there exists a Sobolev-space W 1,p(Rn) such
that for every fixed r ∈ I it holds that Trf ∈ W 1,p(Rn) . This enables us to
define the maximal operator R∗ controlling the derivative of Trf by setting

(20) R∗f(x) = sup
r∈I0,1≤i≤n

|Di(Trf)(x)| ,

where I0 is some countable and dense subset of I . The property that is most
closely connected to the continuity of T ∗ between F1 and Sobolev spaces is
(A7), which requires that R∗ is bounded F1 → Ls(Rn) for some s > 1 .
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9. Some applications of the general results

The classical spherical maximal operator S is defined for f ∈ L1
loc(R

n),
n ≥ 2, by

(21) Sf(x) = sup
r>0

−
∫

∂B(x,r)

|f(y)| dσ(y) .

Above σ denotes the n − 1-dimensional Hausdorff measure on R
n . It is a

deep result of Stein [St] (n ≥ 3) and Bourgain [Bo] (n = 2) that S is bounded
on Lp(Rn) when p > n

n−1 . Knowing this, it is easy to observe that S is also
bounded on W 1,p(Rn) when p > n

n−1 [HO]. The continuity is more involved
but it turns out that the results in the previous chapter can be applied to
S [C, Section 3], yielding:

Theorem 9.1. S is continuous W 1,p(Rn) �→ W 1,p(Rn), when n
n−1 < p < ∞.

Our results can be applied also to maximal singular integral operators.
As an example, we verify that the maximal Hilbert transform operator H∗,
defined by

(22) H∗f(x) = sup
0<r<1

∣∣ ∫
{|x−y|>r}

f(y)
x − y

dy
∣∣ ,

is continuous on W 1,p(R) , when 1 < p < ∞ [C, Section 3].
As we mentioned earlier, it was shown in [KS] that the fractional maximal

operator Mα, 1 ≤ α < n
p , has the following property: if f ∈ Lp(Rn),

1 < p < n, then there exists C = C(n, p, α) so that

(23) ‖DiM
αf‖q ≤ C‖f‖p ,

where q = np
n−(α−1)p . We extend this result by proving [C, Section 3] that if

fj → f in Lp(Rn) and p, α, q are as above, then

(24) ‖DiM
αfj − DiM

αf‖q → 0 .

10. Bounded but discontinuous maximal operator

We now discuss the question (Q2). This is related to the necessity of the
properties of R∗ for results (16), (17) and, especially, for Theorem 8.1.

Let us define the maximal operator which in some sense is at the core
of this question. The restricted Hardy-Littlewood maximal operator MQ

λ ,
λ ≥ 0, is given by

(25) MQ
λ f(x) = sup

r≥λ
−
∫

Q(x,r)

|f(y)| dy ,

for each f ∈ L1
loc(R

n). Here Q(x, r) denotes the cube centered at x with side
length 2r . We also denote by MB

λ the maximal operator where the cubes
Q(x, r) in (25) are replaced by balls B(x, r).

For λ > 0, rather elementary properties imply that MQ
λ and MB

λ are
bounded from Lp(Rn) to W 1,p(Rn) for every 1 < p < ∞ with a constant
comparable to 1

λ [C, Theorem 4.1]. However, we observe that the R∗ corre-
sponding to MQ

λ is basically defined by taking the supremum of averages of a
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function f on sets ∂Q(x, r) , r ≥ λ. In this case R∗ is definitely unbounded.
From this we conclude that the boundedness (or other similar property) of
R∗ is not necessary for (16).

The question about the necessity of the properties of R∗ for (17) is more
delicate. Actually, we do not know if even (17) holds for MQ

λ , but we guess
that it may at least be proved in some modified form. However, the non-
boundedness of R∗ is in accordance with the following result:

Theorem 10.1. MQ
λ is discontinuous from Lp(Rn) to W 1,p(Rn) when 1 <

p < ∞ and λ ≥ 0 .

This result is based on the construction in [C, Theorem 4.4]. There we
find a sequence of functions fj ∈ W 1,p(R), which are even smooth except
at a finite set of points so that each fj is supported in (−10,−9) ∪ (9, 10),
−1 ≤ fj ≤ 1 everywhere, ‖fj‖1 → 0 , and

(26)
∫ 1

2

− 1
2

|D(M(χ(−10,10) + fj))(x)| dx ≥ C for all j ∈ N .

This construction is essentially based on three facts. The first necessary
condition is that we are able to find a set A ⊂ R with measure zero such
that for almost every x ∈ [−1

2 , 1
2 ] there is r > 0 so that both x− r and x + r

are in A. This set can be found rather easily by using Cantor sets. In fact,
we will use the set (C −10)∪ (C +9), where C is the standard Cantor 1

3 -set.
The second fact we need is that in the middle of two suitable bumps with

integral zero, we obtain a peak in the graph of the maximal function. The
crucial point is that the sharpness of this peak does not essentially change
if we scale the bumps.

Figure 3. Function χ− 1
2
, 1
2
+ f2 from (26) and in the middle

its maximal function on interval [−1
2 , 1

2 ] (the amplitude of
the fluctuation of the maximal function is magnified).

Finally, it is possible to combine the above facts. The way we do this
is described in Figure 3. Let us denote by Cj

− and Cj
+ the j:th generation

of intervals in the construction of (C − 10) and (C + 9). The width of
these intervals is 3−j . We add to the characteristic function of an interval
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(−10, 10) the bumps like on the left in the picture to every interval of Cj
−

and bumps like on the right on every interval of Cj
+. The outcome will be

that the maximal function of this function fluctuates on the interval (−1
2 , 1

2)
with frequency 3−j and amplitude greater than c3−j , where c depends only
on the shape of the original bump and the distance between the intervals of
Cj
− and Cj

+. For that, the decisive fact is that for every j ∈ N, there exists
a set of points Dj ⊂ (−1

2 , 1
2) with density 3−j and such that for any x ∈ Dj

there does not exist r > 0 such that x − r ∈ Cj
− and x + r ∈ Cj

+ (here
Cj

+ and Cj
− are assumed to be open). This reveals how the Cantor set used

satisfies surprisingly well the requirements for the construction.
Since we know that MQ

λ is bounded but not continuous from Lp(Rn) to
W 1,p(Rn), let us consider the operator MB

λ . It turns out that the operator
R∗ corresponding to this operator is controlled by 1

λS, which is bounded
on Lp(Rn) when n

n−1 < p < ∞. Then it is easy to observe that (17) and
(8.1) hold for MB

λ . Hence MB
λ is continuous from Lp(Rn) to W 1,p(Rn) when

n
n−1 < p < ∞ .

The above results clarify the picture on the regularity properties of the
maximal operators. Here it is observed for the first time the real difference
between continuity and boundedness of a classical maximal operators and,
at the same time, how the regularity properties of the classical maximal
operators may change if they are defined by cubes or by balls.

11. Questions

During our research, several natural questions have arisen related to the
regularity theory of different maximal operators. We mention here those
that are most closely related to the results presented in this thesis.

Question 1. What is the infimum of those s > 1 for which M does not
preserve the fractional Sobolev space W s,p(Rn) ? Or, what is the supremum
of s > 1 so that M is bounded (or continous) on W s,p(Rn)? It has been
showed by Korry [Ko] that s ≤ 1 + 1

p .

Question 2. Suppose that the maximal operator T ∗ corresponding to
the family {Tr}, as in [C, Section 2], is bounded on W 1,p(Rn). What are the
minimal assumptions guaranteeing that the formula for the derivative of the
maximal function is valid, i.e

DiT
∗f(x) = Tr(Dif)(x) for all r ∈ Rf(x) ?

Question 3. Let us denote by Mα
Q the fractional maximal operator

defined by using cubes instead of balls. Are the regularity properties of Mα
Q

and Mα similar? In particular, does (24) hold for Mα
Q? The example given

by operators MQ
λ and Mλ seems to suggest that the answer may be negative.

However, there are real difficulties coming in when trying to modify the
argument of Theorem 10.1.

Question 4. We proved the continuity of the derivatives of Mα in the
case where p > n

n−1 , see (24). To prove the boundedness of the operator
R∗ corresponding to Mα we used the spherical maximal operator, which
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is bounded only when p > n
n−1 . However, Mα is bounded for any p > 1.

Accordingly, it is reasonable to ask if the assumption p > n
n−1 is necessary

for the result in (24).
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(315 pp.) 2001

84. ONNINEN, JANI, Mappings of finite distortion: Continuity. (24 pp.) 2002
85. OLLILA, ESA, Sign and rank covariance matrices with applications to multivariate analysis.

(42 pp.) 2002
86. KAUKO, VIRPI, Visible and nonexistent trees of Mandelbrot sets. (26 pp.) 2003
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