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Chapter 1

Introduction

The field of single charge tunneling phenomena and superconducting devices has opened

a new demand on high performance nanofabrication techniques. In the past years there

has been a strong motivation to develop a technique for the reliable fabrication of a

small sized, Nb-based Josephson junction, because of large superconducting gap of Nb.

Until now, the conventional shadow evaporation technique known as the self-alignment

technique has been applied succesfully for soft metals like Al, Cu and Pb. For the

refractory metals like Nb it is known to be difficult to apply. The self-alignment tech-

nique providing nanoscale accuracy is commonly used with the polymethylmethacrylate

(PMMA) and the co-polymer [P(MMA-MAA)], containing PMMA and methacrylic

acid monomers (MAA), resist as a double layer stencil mask.

There are basically two different methods to fabricate submicron Nb-based tunnel

junctions. One is the self-alignment with a stencil mask in situ [3, 6, 7] and the second

one is the multilayer technique by which the layers are formed in situ, followed by

process ex situ [5]. The need for different fabrication processes is caused by the poor

quality of Nb film evidencing as their transition temperature Tc being far below the

bulk value. This degration of the film is believed to be due to the contamination of the

Nb layer by outgassing from the resists during the evaporation [8]. For this problem the

authors in [6] used thermostable trilayer resist Phenylene-ether-suofone (PES) polymere

which has a glass temperature and decomposition temperature much higher than those

of PMMA resist. By fabricating Nb wire with this process they reached Tc of 7.1
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1. INTRODUCTION

K. However the process itself is more complicated than conventional PMMA process.

Even more complicated method is developed by authors of [5]. Advantage of this

process is the reliability of the insulating layer and the high-quality superconducting

Nb-electrode. Disadvantage is the complicateness of the process which makes it more

difficult to reduce the size of the junction below (300× 300) nm.

There has been several reports on the fabrication of superconducting single-electron

devices using Niobium. Almost all of them has come to a conclusion, that it is not

possible to fabricate high quality Nb-based devices using shadow evaporation technique

with PMMA as a resist. Instead other methods have been developed. Therefore it is

more than welcomed to demonstate that high-quality submicron Nb-based devices can

be fabricated using conventional e-beam lithography methods. Inspired by an exciting

idea to create heterostructures with Nb island connected through Al leads, i.e., the

Nb acting as an energy barrier for undesirable quasiparticles reducing the poisoning

effect [44], it will be shown in this thesis, that it is possible to fabricate good quality

Nb-Al junctions using conventional PMMA-P(MMA-MAA) resists as a stencil mask

[56]. With single electron transistor geometry and single Nb-Al junctions appearing

transition temperature Tc of 8.54 K and a gap energy up to ∆Nb = 1.46 meV was

achieved. Furthermore, the measured Al/AlOX/Nb/AlOX/Al SSETs (Superconducting

Single Electron Transistor) showed clear signature of the resonant tunneling of Cooper

pairs combined with the elastic cotunneling of quasiparticles, q-MQT, through the

barrier of ∆Nb [51], since the inelastic cotunneling Iinelastic ∝ e−D(T )/kBT is exponentially

reduced leaving the elastic one as only possible tunneling process.
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Chapter 2

Tunneling phenomenon

2.1 Tunneling

What is meant by a quantum mechanical tunneling is the particle penetration through

a classically forbitten area. The α decay of radioactive nuclei through a potential

wall, formed by very short range nuclear attraction and Coulomb interaction, is one

example of the barrier penetration. As a simple mathematical example which describes

the tunneling behaviour of particles can be examined considering the one dimensional

potential

U(x) =

 V0 ,when |x| < a

0 , otherwise
(2.1)

and assuming that the mono-energetic source of particles is situated in direction

x < −∞. Classically particles´ total energy E < V0 would indicate all of them being

reflected from the left-hand edge (x < −a). Quantum-mechanically the situation is

very different. As a consequence of a particle´s wave property the time independent

Schrödinger equation

− ~2

2m
∇2ψ(x) + U(x)ψ(x) = Eψ(x), (2.2)

qives a non-classical solution. The solutions in the outer regions are

φ = Aeikx + A′e−ikx x < −a

φ = Ceikx x > a

3



2. TUNNELING PHENOMENON

where the two different terms, at x < −a, corresponds to incident and reflected par-

ticles. If restricted to situation E < V0 the solution of the Schrödinger equation (2.2)

inside the barrier is of the form [4]

φ = Be−κx +B′eκx, (2.3)

where

κ =

√
2m

~2
(V0 − E).

Finally the four unknown constants A’, B, B’ and C are determined by matching wave

equations (2.1) and (2.3) at the boundaries x = ±a, and requiring continuity of φ and

dφ/dx. The transmission coefficient T, indicating probability that a particle penetrates

through the barrier, is obtained from the ratio of incident and passing amplitudes. In

a limit κa� 1

T =

∣∣∣∣CA
∣∣∣∣2 ≈ e−4κa

(
κx

k2 + κ2

)2

. (2.4)

From the equation (2.4), which disagrees with classical physics, it can be seen that a

particle have a small probability to tunnel through the barrier of height V0 > E. The

probability decreases as the height V0 or the thickness of the barrier increases.
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Figure 2.1: The wave function penetrates through a potential barrier

Tunnel junction can be fabricated by two conductors separated by a thin insulating

layer. This capacitively connected structure represents a condensator according to the

classical physics but as the thickness of the insulator is reduced it forms a potential
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2. TUNNELING PHENOMENON

wall which still allows conduction electrons to tunnel through the barrier according

to the laws of quantum mechanics. This is what is called a tunnel junction and it

can be treated as any electrical component. In this thesis a tunnel junction is treated

in limiting conditions (partly at sub-Kelvin regime) where the used conductors turn

into superconducting state with disappearance of electrical resistance. In addition, the

energy-gap of superconductor makes the current-voltage dependence of a junction very

complicated.

2.1.1 Energy-gap ∆(T )

Transition of a metal from the normal state to the superconducting state has the

property of a condensating the electrons close to the Fermi level into a bosonic state

and leaving a band of forbidden states around it. A key conceptual element is the

pairing of electrons into bosonic Cooper pairs which behaves drastically different from

the single electrons that are fermions and obeys Pauli exclusion principle. According to

the BCS-theory the condensation of the electrons relieves energy ∆(T ) per electron.

The total binding energy of the Cooper pair is then 2∆(T ). As the temperature

increases the energy gap ∆(T ) decreases. The effect of condensation is illustrated in

occupation energy level diagram in figure (2.2).

Figure 2.2: The energy diagram gives the electron occupation according to the Fermi-

Dirac distribution at (a) T = 0 and at (b) T > 0. The normal metal is marked with N

and the superconductor with the gap of width 2∆ is marked with S

5



2. TUNNELING PHENOMENON

In order to break a Cooper pair the energy 2∆(T ) is needed. Also adding one

extra electron to a superconductor increases the energy of the system at least the value

of ∆(T ). That is, a single extra electron is not allowed to be at the gap level and

must therefore occupy the first empty level available above the gap (figure 2.2b). In

both cases, normal and superconducting, the single electron states which are vacant at

absolute zero are occupied according to Fermi-Dirac distribution. These electrons

are denoted as quasiparticles.

In addition, quasi-electrons below the gap can be excited with the minimum energy

of 2∆(T ) above the gap, leaving vacant states as seen in figure (2.2b). One of the

predictions of the BCS theory was the minimum energy needed to break a pair and

create two quasiparticle excitations [1]. The energy was predicted to increase from

zero, at transition temperature TC, to a maximum value

∆(0) = 1.76kBTC. (2.5)

Near TC, ∆(T ) drops to zero approximately as

∆(T )

∆(0)
≈ 1.74

√
1− T

TC

. (2.6)

So besides the temperature T the gap width is comparable to TC, the critical tem-

perature, at which the superconductor turns into normal metal. This is very essential

result from the point of view of fabricating good quality Josephson junctions as can be

seen later in this thesis.

2.1.2 Density of states and Fermi-Dirac distribution

Fermi-Dirac distribution f(E) gives the probability that the electron state with

energy E is occupied,

f(E) =
1

e
E−µ
kBT + 1

. (2.7)

When fermilevel EF is chosen as zero energy level and µ ' EF, equation (2.7) can be

written as

f(E) =
1

e
E

kBT + 1
. (2.8)
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Figure 2.3: Density of states in superconducting compared to normal state.

Especially when T = 0

f(E) =

 1 ,when E < 0

0 ,when E > 0.
(2.9)

Furthermore to achieve the actual occupation of the energy levels the density of

states,N(E), is needed. For normal metal this reads

Nn(E) =

√
2m

3
2

π2~3

√
E, (2.10)

and it tells the amount of quasiparticle states per unit energy. Based on the fact that

electrons cannot be vanished the number of states must coincide with the supercon-

ductor outside the gap, i.e,

Ns(E)dE = Nn(ξ)dξ, (2.11)

where ξ describes the squared energy difference from the gap edge. BCS-theory defines

the elementary quasiparticle excitations of the system as

E =
√
ξ2 + |∆|2, (2.12)

which leads to

ξ =
√
E2 −∆2. (|E| > ∆)

7



2. TUNNELING PHENOMENON

Concerning interest with energies ξ only a few electronvolts from the Fermi energy, the

density of states can be taken as constant Nn = N(0). This leads directly to result

Ns(E)

N(0)
=

dξ

dE
=


|E|√

E2−∆2 (|E| > ∆)

0 (|E| < ∆)
(2.13)

As a result of equation (2.13) there is a divergent state density just outside E = ∆.

But when integrated over the energy spectrum the total number of states is conserved.

However, it has a strong effect on current-voltage behavior, which can be used, e.g., in

technique known as the tunneling spectroscopy [2]. Following sections illustrates the

examination of the energy gap and the density of states provided by electron tunneling.

2.1.3 NIN-tunneling

Since the probability of tunneling (eq: 2.4) exists, obviously the barrier has a finite

resistance. Let’s look at the current-voltage behaviour of the normal metal-insulator-

normal metal (NIN). At T = 0 all states up to Ef are filled. Without bias voltage
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Figure 2.4: Energy level diagram at zero temperature (a) without bias voltage and (b)

with bias voltage.

the Fermi-surfaces are at even and no tunneling occur (fig: 2.4a). When negative
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2. TUNNELING PHENOMENON

potential difference V is applied over the junction the energy of the left-hand sided

electrons increases the amount of eV compared to the right-hand sided. This enables

electrons to tunnel to the right-hand electrode creating an electric current to the left

(fig:2.4b). With this model tunneling transitions are horizontal, i.e., they occur at

constant energy after adjusting their relative energies according to the applied voltage

[1]. This simplifies the calculations greatly. The current is directly proportional to the

amount of occupied states inside the energy band with width of dE, N1(E−eV )f(E−

eV )dE in the left-hand electrode, and the vacant states N2(E)(1 − f(E))dE in the

right-hand side electrode. The zero energy level has been chosen as Fermi-level at the

right-hand side electrode. Obviously the current is proportional to the transmission

coefficient |T | and some constant of proportionality A. The factor T (E) is assumed

to be constant for small bias voltages and at low temperature, therefore probabilities

T1→2 and T2→1 are equal. This is a fair approximation [10] at sub-Kelvin regime, and

thus the tunneling current 1 → 2 in the energy interval dE can be written as

dI1→2 ∝ A|T |2N1(E − eV )N2(E)f(E − eV )[1− f(E)]dE.

Correspondingly tunneling 2 → 1 can be written in the form

dI2→1 ∝ A|T |2N1(E − eV )N2(E)f(E)[1− f(E − eV )]dE

Subtracting the reverse current, the net current is obtained

I =

∫ ∞

−∞
dI1→2− dI2→1 ∝ A|T |2

∫ ∞

−∞
N1(E − eV )N2(E)[f(E − eV )− f(E)]dE (2.14)

If restricted only a few meV from the Fermi-level

N1(E − eV ) ' N1(E) ' N1(0) and N2(E) ' N2(0)

then equation (2.14) may be formed as

Inin = A|T |2N1(0)N2(0)
∫∞
−∞[f(E − eV )− f(E)]dE

= A|T |2N1(0)N2(0)eV ≡ GninV
(2.15)

where Gnin is a conductance. As a conclusion, current-voltage dependence of the junc-

tion can be find to be ohmic thus 1/Gnin can be denoted as tunneling resistance RT .

9



2. TUNNELING PHENOMENON

2.1.4 NIS-tunneling

Next will be examined a case when the other electrode is a superconductor (NIS-

junction). At thermal equilibrium at T = 0 all single-electron states in N-metal up to

Ef are filled, whereas in S-metal there are single-electrons states only up to Ef − ∆

available. Without voltage source the Fermi-levels coincide and because of the energy-

gap there is no tunneling current until e|V | ≥ ∆, in which case the current increases

rapidly. When the voltage difference is increased the tunnelling electrons are faced

with more unoccupied states and the current is further increased approaching NIN

tunneling behaviour. Correspondingly, reversed polarity gives current only until V ≤

−∆/e. The tunneling current can be calculated by replacing N2(0) in (2.15) with

the superconducting density of states, keeping in mind that the zero energy level was

chosen as the superconductor Fermi level so

Inis = A|T |2N1(0)

∫ ∞

−∞
Ns2(E)[f(E − eV )− f(E)]dE. (2.16)

Furthermore, if eguation (2.13) is substituded replacing Ns2 then the current can be

written as

Inis = A|T |2N1(0)N2(0)
∫ −∆

−∞
−E√

E2−∆2 [f(E − eV )− f(E)]dE

+A|T |2N1(0)N2(0)
∫∞

∆
E√

E2−∆2 [f(E − eV )− f(E)]dE.
(2.17)

At T = 0 this can be simplified into the form

Inis =

 Gnin

√
V 2 − (∆

e
)2 (|V | > ∆

e
)

0 (|V | < ∆
e
)

(2.18)

An interesting observation is made when one consideres the differential conductance

dI/dV. From (2.16) and (2.15)

Gnis =
dInis

dV
= Gnin

∫ ∞

−∞

N2s(E)

N2(0)

[
−∂f(E + eV )

∂(eV )

]
dE, (2.19)

where
[
−∂f(E+eV )

∂(eV )

]
represents a bell-shaped function with width kT . When kT → 0

the conductance

Gnis = Gnin
N2s(e|V |)
N2(0)

(2.20)

10



2. TUNNELING PHENOMENON

directly measures the density of states. At finite temperature the differential conduc-

tance is smeared from the density of states as can be seen in figure (2.5). This smearing

can be represented at zero bias voltage in a form [1]

Gnis

Gns

∣∣∣
V =0

=

(
2π∆

kT

)1/2

e−
∆
kT (2.21)

Figure 2.5: Characteristics of normal metal-superconductor tunneling. (a) I-V curves of

NIN and NIS junctions. (b) Ratio of the differential conductance G of the NIS and NIN

junctions. Solid curves represent T=0 and dashed ones represent finite temperature.

2.1.5 SIS-tunneling

If both metals are superconducting then the equation 2.14 becomes into the form

IS1IS2 = A|T |2
∫∞
−∞NS1(E − eV )NS2(E)[f(E − eV )− f(E)]dE

= A|T |2N1(0)N2(0)
∫∞
−∞

NS1
NS2

N1(0)N2(0)
[f(E − eV )− f(E)]dE

= GNIN

e

∫∞
−∞

|E−eV |√
(E−eV )2−∆2

1

|E|√
E2−∆2

2

[f(E − eV )− f(E)]dE

(2.22)

In the final form the range of integration, when |E| < |∆2| or |E − eV | < |∆1|,

are excluded. That is, when the density of states is zero at the one or the other

11



2. TUNNELING PHENOMENON

Figure 2.6: (a) Energy level diagram with different gap values when V = (∆1−∆2)/e at

finite temperature. (b) The negative resistance behaviour in current-voltage diagram,

near eV = |∆1 −∆2|

superconductor. At zero temperature all the energy levels are filled below the gap and

there is no current until V = (∆1+∆2)/e. At finite temperature the quasiparticles may

occupy the states above the gap, leading to a current even at lower voltage differences.

Especially, if superconductors have different gap values, as indicated qualitatively in

fiqure (2.6), the current rises sharply when thermally excited quasiparticles are able to

tunnel from above ∆2 into the peaked density of available states above ∆1 at

eV = ∆1−∆2. When the voltage exceeds the value ∆1−∆2 the electrons are faced with

the smaller density of states which leads into a smaller current until V = (∆1 + ∆2)/e.

The excistence of this ”negative-resistance region” is sketched in figure 2.6(b).

2.1.6 Supercurrent

In 1962 B.D. Josephson proposed that a tunnel junction between superconductors, i.e.,

Josephson junction, should show a zero-voltage supercurrent due to the tunneling of

condensed pairs, i.e., Cooper pairs [11]. The supercurrent is dependent on the phase

difference of the macroscopic wavefunctions of the electrodes ϕ ≡ ϕ2 − ϕ1, i.e.,

IS = IC sin(ϕ), (2.23)

12



2. TUNNELING PHENOMENON

where IC is a maximum of the supercurrent, i.e., the critical current. This is called a

DC Josephson effect. In the AC Josephson effect, a Josephson junction will oscillate

with a characteristic frequency which is proportional to the voltage across the junction

so that

~
∂ϕ

∂t
= 2eV. (2.24)

Thus, if the voltage difference is applied over the junction the phase difference starts

to evolve rapidly. Ideally, there is a dc-supercurrent only at zero voltage. The macro-

scopic pseudowavefunction, which describes all the Cooper pairs in a superconductor,

was originally proposed by Ginsburg and Landau [12]. The pseudowavefunction ψ(~r)

was introduced as a complex order parameter representing the local density of super-

conducting electrons ns(~r) ∼ |ψ(~r)|2. The paired electrons can be represented by a

single wavefunction in the absence of current because all the pairs have the same phase

- they are said to be ”phase coherent”. The form of the wavefunction is

ψi(~r) = |ψi(~r)|eiϕi(~r). (2.25)

Now quantum mechanical tunneling of Cooper pairs can occur at Josephson junction

without breaking up the pairs by ”locking together” the phases of the wavefunctions of

different electrodes. The energy related to superconducting junctions, which couples

the charging states together is called Josephson energy EJ. The supercurrent equation

(2.23) can be calculated by substituting the macroscopic wavefunctions into ordinary

quantum mechanical continuity equation. The appropriate energy function for the

superconducting junction is the Gibbs free energy F. For small potential difference free

energy is

F =

∫
V ISdt =

∫
~
2e

dϕ

dt
IC sin(ϕ)dt = constant− ~IC

2e
cos(∆ϕ).

If Josehson energy is marked as EJ = ~IC/2e and the energy zero-level is chosen so

that constant = 0. Then

HJ = −EJ cos(ϕ) (2.26)

is the Josephson coupling energy of the junction.

13



2. TUNNELING PHENOMENON

2.2 Josephson transistor

Figure 2.7: (a) Single electron transistor where RT denotes normal state resistance

and C capacitance. (b) Superconducting Josephson transistor where ϕ denotes phase

difference over the junction and k charge that has passed through the junction.

The single-electron transistor (SET), device proposed by Averin and Likharev in

1986 [13] and first build by Fulton and Dolan [14] in the next year , consists of a

small metallic island connected to the electrodes by two tunnel junction. The device is

controlled through the voltage applied on a gate electrode capacitively coupled to the

island. The Hamiltonian of a SET contains typically two parts: a tunneling Hamilto-

nian and a charging Hamiltonian. The first one can be either single-electron tunneling,

if the SET is operated in the normal regime, or Josephson tunneling, in the case of a

superconducting SET (Cooper-pair transistor or Josephson transistor). If concentrated

on Josephson transistor the Hamiltonian of the transistor can be written as:

H = HC +HJ1 +HJ2. (2.27)

The first termHC = EC(n−ng) is the charging Hamiltonian in which EC = (2e)2/(2CΣ)

denotes the electrostatic energy of a Cooper-pair on the island, n is the number of excess

Cooper-pairs on the island and ng = CgVg/2e is the charge induced by the gate voltage

Vg on the gate capacitor Cg in units of 2e. CΣ = C1+C2+Cg is the total capacitance of

the island. HJ1 and HJ2 are the Josephson coupling Hamiltonians of the two junctions

HJ1 = −EJ1 cos(ϕ1)

14



2. TUNNELING PHENOMENON

HJ2 = −EJ2 cos(ϕ2).

The total Hamiltonian should also contain a phenomenological quantity called ”offset

charge” which is believed [15] to originate partly from the differences in the work func-

tion of the electrodes and the island, and partly by the charge motion in the substrate.

It is also assumed that the effect of the internal degrees of freedom (quasiparticles),

and the electromagnetic environment is negligible.

2.2.1 Good quantum variables for the Josephson transistor

Equation of motion of the mechanical harmonic oscillator has a form:

m
d2x

dt2
+ b

dx

dt
+ kx = 0, (2.28)

which can be written as:
d2x

dt2
+ 2B

dx

dt
+ ω2

0x = 0, (2.29)

where B := b
2m

is a damping constant and ω0 =
√
k/m is an angular frequency. Now,

if considering an electric circuit, in which a resistance (R), an inductance (L) and a

capacitance (C) are connected in series, then according to Kirchhoff:

d2q

dt2
+
R

L

dq

dt
+

q

CL
= 0, (2.30)

which has the form of an equation (2.29). By analogy between mechanical and electrical

system the Hamiltonians are

Hmechanical =
p2

2m
+

1

2
kx2

Helectrical =
1

2
LI2 +

q2

2C
(2.31)

Furthermore, from the equation (2.24)

ϕ =
2e

~

∫
V dt =

2e

~
LI,

and thus the current is

I =
ϕ~
2eL

,
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2. TUNNELING PHENOMENON

which can be substituded into HC. Then the Hamiltonian has the form

HC =
1

2L

(
~
2e

)2

ϕ2 +
q2

2C
. (2.32)

Again, by analogy with the harmonic oscillator where the conjugated variables are p

and k obeying commutation relation

[x, p] = i~, (2.33)

the charge q can be chosen to be a generalized coordinate corresponding to x. From the

classical mechanics Lagrangian L = T−U applied to equation 2.31 gives us generalized

momentum

p =
∂L

∂q̇
= LI.

Because operator ϕ = constant×LI the commutation relation can be proven to be as

[k̂, ϕ̂] = i, (2.34)

where q is replaced with operator k̂, which denotes charge that has passed through one

junction in a Josephson transistor in the units of 2e, as seen in figure (2.7). So far,

the Josephson junction can be described by conjugated operators ϕ̂ and k̂, which have

eigenstates |k〉 and |ϕ〉 so that

k̂|k〉 = k|k〉

ϕ̂|ϕ〉 = ϕ|ϕ〉 . (2.35)

These are the variables for one junction. What is needed are the variables describing

the electrostatic energy of the transistor. See figure (2.7)

• n = k1 − k2 = number of Cooper pairs on the island

• k = (k1 + k2)/2 = number of Cooper pairs that has passed the transistor

• ϕ = ϕ1 + ϕ2 = total phase difference over the transistor

• θ = (ϕ1 − ϕ2)/2 = conjugate variable for n

• ng = CgVg

2e
= charge on the island induced by gate voltage Vg.
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2. TUNNELING PHENOMENON

The variable θ was defined to get

[n̂, θ̂] = i. (2.36)

Since eigenstates of operators k̂ and ϕ̂ form a complete set, it can be formulated that

|k〉 =
∑

ϕ

|ϕ〉〈ϕ|k〉 ≡
∑

ϕ

ψk(ϕ)|ϕ〉. (2.37)

Similarly

|n〉 =
∑

θ

|θ〉〈θ|n〉 ≡
∑

θ

ψn(θ)|θ〉. (2.38)

And since

ψn(θ) = 〈θ|n〉 =
1√
2π
einθ, (2.39)

one finally obtains

|n〉 =
1√
2π

∫
eiθn|θ〉dθ, (2.40)

which is the result that is needed to calculate the energy of the Josephson transistor

at the charge basis {|n〉} .

2.2.2 Three-band model of the Josephson transistor

The simplest possible model to calculate the energy levels of the transistor is to take into

account only two states |n, θ〉 of lowest electrostatic energy [16]. However, the three-

band model predicts an effective Josephson coupling about twice as large as the two-

band model at ng = 0 [17]. Especially, in the case of niobium, large superconducting

gap produces large coupling energy, Ej ' EC or even bigger, which makes the two-band

approach too simplified. Total Hamiltonian when quasiparticles are excluded is

H = HC +HJ1 +HJ2, (2.41)

where

HJi = −EJi cosϕi. (2.42)

With operator change

ϕ̂1 = ϕ̂
2

+ θ̂

ϕ̂2 = ϕ̂
2
− θ̂ , (2.43)

17



2. TUNNELING PHENOMENON

Hamiltonian goes into the form

H = EC(n− ng)
2 − (EJ1 + EJ2) cos

ϕ

2
cos θ − (EJ1 + EJ2) sin

ϕ

2
sin θ, (2.44)

where EC = (2e)2/2CΣ. The charging energy part in the matrix of the Hamiltonian

is diagonal in the chosen {|n〉} basis. In the calculation of the Josephson coupling,

off-diagonal elements

〈n′| −
2∑

i=1

EJ1 cosϕi|n〉, (2.45)

change of basis is needed. Details of this calculation are presented in Appendix A. If

EJ1 = EJ2 ≡ EJ then the off-diagonal matrix elements have simple form:

〈n′|HJ1 +HJ2|n〉 = −EJ cos(
ϕ

2
)δn′,n+1 − EJ cos(

ϕ

2
)δn′,n−1. (2.46)

The matrix of the Hamiltonian in the {|n〉} basis of the three states | − 1〉, |0〉, and |1〉

is

H =


EC(−1− ng)

2 −EJ cos(ϕ
2
) 0

−EJ cos(ϕ
2
) ECn

2
g −EJ cos(ϕ

2
)

0 −EJ cos(ϕ
2
) EC(1− ng)

2


.

(2.47)

The secular equation is a polynomial of third degree:

(E − ECn
2
g)(E − EC(1− ng)

2)(E − EC(−1− ng)
2)− E2

j (1 + cos(ϕ)) = 0, (2.48)

which is analytically solvable, even complicated. Solution is plotted in figure 2.8. The

eigenenergies in a charge state basis forms periodic bands. The shape of the bands are

dependent on the parameters ng and ϕ with periocidy of 1 (scaled by 1/2e) and 2π,

respectively. So far, the quasiparticles were ignored. In the next section this, and the

benefits on using niobium will be considered qualitatively.

2.2.3 Niobium based Josephson junctions

A research of Coherent Cooper pair tunneling in nanoscale superconducting structures

has been under an intensive study since these devices have been shown capable of op-

erating as charge qubits [18, 19, 20, 21, 22] or building blocks for more complicated
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2. TUNNELING PHENOMENON

Figure 2.8: Plot of the energy bands of the Josephson transistor as a function of total

phase difference ϕ and gate induced charge ng. Josephson coupling removes degeneracy

forming energy gap. The Josephson coupling energy EJ equals the level spacing at the

degeneracy point where ng = ±1
2

and phase ϕ = ±2π. Here EJ = 60%EC and the

energy scale is 100× E/EC [µeV ].

devices[23, 24]. For example, suggestions to use a so-called Cooper pair pump to re-

alise a metrological standard for current[25, 26] or measurement of a decoherence time

[27, 28], have created a demand for high performance nanofabrication technigue. Nio-

bium (Nb) would provide more reliable performance in many superconducting devices

due to its large superconducting gap compared to aluminum (Al). The following table

2.1 shows differences between Nb and Al as construction materials for nano-devices.

A theoretical calculation of the magnetic field dependence of the superconducting en-
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2. TUNNELING PHENOMENON

Table 2.1: The difference between aluminum and niobium from the viewpoint of im-

portant key values.

ergy gap, using the Ginzburg-Landau theory, agrees very well with measurements for

aluminum [29]. This is important from the point of view of analysing measurements

as can be seen later on. Also, much higher critical temperature of Nb produces much

higher superconducting gap (2.5).

It is important to have high suppression of quasiparticles for the undisturbed ma-

nipulation of the cooper pairs. The parity effect (fig 2.9) sets the upper limit for the

charging energy and the use of niobium would raise this limit much further due to its

high ∆. At zero temperature with adiabatic gate modulation the system occupies the

Figure 2.9: Parabolas represent the electrostatic energy of the different configuration

states of the transistor as a function of a gate charge. Here EC = e2/2CΣ and ng =

VgCg/e. At left side ∆ < EC at the degeneracy point. At right side ∆ > EC. The

minimum quasiparticle configuration energy, odd-n state, is ∆.

lowest available energy state. In case of ∆ < EC it is favorable for a quasiparticle to

enter the island in order for the system to be in its ground state. When ∆ > ECh

this entrance of a quasiparticle is suppressed. For heterostructure, Nb-Al junction, the
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2. TUNNELING PHENOMENON

Josephson coupling energy is given by Ambegaogar-Baratoff formula for two different

superconductors

ENb−Al
J =

RK

2πR

∆Nb ·∆Al

∆Nb + ∆Al

κ

(
|∆Nb −∆Al|
∆Nb + ∆Al

)
, (2.49)

where κ(x) is the complete elliptical integral of the first kind, RK = h/e2 ' 25kΩ

and R is the normal state tunneling resistance. Since ∆Nb is an order of magnitude

larger than ∆Al producing high ENb−Al
J and tolerating better any additional sources of

energy, it is possible to have both the high charging energy and the Josephson energy,

and still high normal state resistance of the junction Rt. At finite temperatures things

are more complicated, because the equilibrium probability of odd or even occupation

of the island is governed by the odd-even free energy difference of the island [31].
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Chapter 3

Sample fabrication

Figure 3.1: Scanning electron microscope (SEM) image of the Al-AlOx-Nb-AlOx-Al

transistor. Brighter lines are niobium and darker aluminum. Vertical line below is the

gate voltage conductor. White spots 1µm apart are the tunnel junctions.

Electron beam lithography enables fabrication of extremely fine patterns. It has

become possible to fabricate metallic tunnel junctions in a controlled way with ca-

pacitances in the range of C = 10−15F. In this case the charging energy associated

22



3. SAMPLE FABRICATION

with a single-electron charge, EC ≡ e2/2C, is of the order of 10−4eV , which corre-

sponds to a temperature scale EC/kB ' 1K. In this work, good quality submicron

Nb/AlOx/Al single tunnel junctions and single electron transistors (SET) with Nb

island and Al electrodes were fabricated using the conventional self aligning shadow

evaporation technique with oxidation between to form AlOx (see fig. ??). The nanos-

tructure fabrication consists of several steps starting from the oxidation of the silicon

substrate, covering it with electron sensitive material, patterning by SEM, metal evap-

oration and finally the lift-off. The final product is a mixture of knowledge, skill and

good quesses. Despite of reports claiming that it is not possible to fabricate high quality

Nb-based superconducting single-electron devices, recipe of fabrication will be shown.

The results were obtained with the standard e-beam lithography process followed by a

slightly different procedure and recipe.

3.1 Preparation of the sample

Samples were fabricated on a heavily oxidized Si substrate. A thickness of thermal

SiO2 ' 375 nm was achieved by oxidazing the p-type boron-doped wafer for 6 h at

1100 ◦C at steady oxygen flow which is slightly more than usual recipe. Based on

a phenomenological observation thicker SiO2 layer gives larger undercut profile due

to the electrons bouncing from the surface of the SiO2 while patterning with e-beam.

When the primary electrons hit from the substrate their energy is dissipated in the form

of secondary electrons with energies 2 to 50 eV. These electrons are mainly responsible

for the undercut profile (see figure 3.4). A small part of the secondary electrons have

energy of order of 1 keV which has an effect on widening the pattern of the mask.

As the electrons penetrate through the resist into the substrate, part of them return

back causing additional exposure of the resist. A lift-off mask with large undercut

profile is essential for the fabrication, ensuring the removement of remnants of the

resist, therefore reducing the suspected outgassing during the evaporation. The large

undercut is achieved by reducing the voltage used in e-beam but it also has an effect

of widening the pattern.
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3. SAMPLE FABRICATION

Figure 3.2: Undercut profile. From the bottom: silicon, SiO2, resist 1, resist 2.

3.2 Resists

After the oxidation, SiO2 surfaces were cleaned with acetone and isopropanol. Then

polymethylmethacrylate (PMMA) and co-polymer [P(MMA-MAA)] were spun on the

silicon chips.

Layer Resist Solvent Spinning speed Baking time at

[rpm] 160 ℃ [min]

1. 9% PMMA-MAA acetic acid 4000 45

2. 3% PMMA chloro benzene 3000 60

Table 3.1: Parameters for spinning the resist layers.

The spinning rates for PMMA and P(MMA-MAA) were 3000 and 4000 rpm, respec-

tively and the spinning time was 30 s for both. This also differs from the usual recipe

which is 3000 and 6000 rpm. That way the thickness of the PMMA and P(MMA-

MAA) were approximately 250 nm and 350 nm, respectively. Thicker bottom layer

was supposed to protect the upper layer from electrons scattering from the surface

thus enabling bigger current dose and hence cleaner surface. The resists were baked at

160 ◦C 45 min for the bottom layer and 60 min for the upper layer.

3.3 Dose determination

Determining the correct dose for a pattern is complicated because in addition to the

primary and secondary electrons, the backscattering electrons should also be included.
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3. SAMPLE FABRICATION

These electrons have a significant range, depending on the substrate, voltage and the

resist used. The range may be several micrometers. A higher beam energy (voltage)

causes deeper penetration into the substrate and fewer secondary electrons reach the

surface. This means smaller undercut profile. On the other hand, smaller energy

demands higher current, which limites accuracy. The dose also depends strongly on

success of focusing of the beam. Also, dose determination between different models

of SEM’s are not directly proportional. Furthermore, the dose needed varies weekly

even at the same SEM. However, the relation of the doses between different part of

the pattern is comparable. The Nb-based samples were mainly done using scanning

electron microscope JEOL JSM840 A, with acceleration voltage 20kV. A DesignCad

2D-program was used for pattern design, and NPGS-program for patterning. The

following table 3.2 shows relative differences between the doses for aluminum based,

and niobium based samples. The colour codes are shown in figure (3.3).

Figure 3.3: Design of the transistor. The dose for each layer is specified in table 3.2.

After the patterning the samples were developed. See table (3.3) To develop the

upper layer of the PMMA resist the sample was immersed in a mixed (1 : 2) solution
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3. SAMPLE FABRICATION

Table 3.2: Table for successful patterning. Upper table is for the Niobium sample and

below one for aluminum with similar design. The maximum current should always be

adjusted at the same value between the different patterning set.
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3. SAMPLE FABRICATION

Developer Time [s]

MIBK (methyl-iso-butylketon) : Isopropanol 38

1 : 2

Methylglycol : Methanol 8

1 : 2

Table 3.3: Developers and developing times used. Mibk/Isopropanol mixture is for

upper resist and Methylglygol/Methanol for lower the resist.

of methyl-iso-butylketon (MIBK) and isopropylic alcohol for 30 s. The lower layer

P(MMA-MAA) was developed in a mixture of (1 : 2) methylglycol and methanol for

8 s. Between the developers the sample was rinsed in an usual way in isopropylic

alcohol but after the second developer the rinse was placed in an ultra sonic machine

(FinnSonic). Before evaporation the uncovered SiO2 surfaces were cleaned in a reactive

ion etcher (AXIC BENCHMARK) for 30 s at 30 mTorr pressure with 50 sccm flow of

oxygen and 48 W RF-power. After the etching the mask was baked below 90 ◦C for

30 min to get rid of the moisture and to glaze the mask to endure the heating by the

niobium at the evaporation.

3.4 Evaporation

The evaporation took place in an ultrahigh vacuum (UHV) chamber equipped with

a cryo-vacuum pump (Cryo-Torr High vacuum pump, CTI-Cryogenics) and a liquid-

nitrogen trap (see fig. 3.5). The pressure was 2 − 4 × 10−8 during the evaporation.

The evaporation rate for Al and Nb was 0.5 nm/s and 0.75 nm/s, and the power of

the electron gun was 0.35 kW and 2.0 kW, respectively. In addition to be able to form

the tunnelling barrier by oxidising aluminium, the order of evaporation has another

meaning. When the aluminum leads are evaporated first, extra metal sticked at the

top of the stencil mask serves as a protective layer for the resist while evaporating the

niobium. The next step was to let the aluminum cool down for 5 minutes to ensure the

hardness and stability of the aluminum. Then the process continued by oxidating the
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sample at steady flow of oxygen, pressure being 16 mBar for three minutes. The layer

thicknesses were chosen to be 40 nm for the Al and 60 nm for the Nb. The resulting

linewidth was 125 nm. After evaporation of the niobium (99.9%, Goodfellow) the

sample was let to cool down again followed by oxidation at athmospheric pressure for

3 minutes. The process was completed by lift-off by placing the sample in an acetone

and slowly heating to a boiling point of 56 ◦C and leaving there for three hours. Finally

the sample was cleaned by reactive ion etcher with the parameters shown before.

Figure 3.4: Principle of the self-aligning technigue. The tunnel junction is formed

between the two metallic layers which are evaporated at different angles so that the

result is an overlapping structure. The tunnel barrier is formed by oxidising the first

layer before evaporating the second one. The first layer is usually Al thus the barrier

is formed of AlOx.
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Figure 3.5: Photograph of the ultrahigh vacuum (UHV) chamber equipped evaporator.

As a speciality, it has a long distance (40 cm) between the source metal and the sample

state. This may have an effect on the Niobium samples since the power needed to

evaporate Nb exceeds 2 kW, and thus the long distance reduces the effect of the heat

radiation on the sample. And as an accessory it is equipped with a cold trap between

the oxidation chamber and the oxygen flow pump (left down in a picture).
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Chapter 4

Measurements

The measured quantities in these experiments were the tunneling conductance and

the tunneling current as a function of voltages, temperature and/or an applied mag-

netic field. All the sub-Kelvin measurements were done in a small dilution refrigerator

(Nanoway, PDR50) placed inside an electrically shielded room (Euroshield). Current

and voltage measurements were done with DL-Instrument’s 1211 current amplifier and

1201 low-noise pre-amplifier. All the wires in refrigerator contained commercial π-

filters at room temperature and at 4.2 K. Between the filters manganin wires inside

CuNi tube (electric shielding) were used to reduce a heat leak. In addition, home

made strip filters were fabricated and mounted into the lines at the sample stage. The

temperature in dilution refrgerator was measured using a resistance bridge (Picowatt

AVS-47) and a carbon resistor which was originally calibrated using primary Coulomb

blockade thermometer (Nanoway CBT). In critical temperature measurement of a nio-

bium a commercial calibrated Cernox resistor was used. Magnetic field measurements

were carried out in a superconducting Nb-Ti wired magnet (Cryomagnetic Systems,

OXFORD INSTRUMENTS). The power supply for the magnet was 6260B (Hewlett

Packard). Measurement set up using lock-in amplifier is shown in figure 4.1.

In the measurements bias voltage was obtained from the battery powered voltage

source slowly sweeping the output voltage between ±4 V DC. Also, the excitation, i.e.,

AC-voltage with amplitude dV for lock-in measurement was obtained from the same

box. The alternating reference signal dV (≈ 0.1 mV and 87.5 Hz ) and bias voltage
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Sweep box

DC voltage

Lock-in

Reference signal dv for lock-in

Voltage divider Filtering 1
V+dV
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Current amplifier
High pass, low pass
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Filtering 2

dI

I

ch 1

ch 2

ch 3

DC V

dI/dV

DC I

Computer

Figure 4.1: Schematic measurement setup using the lock-in amplifier.

V was fed into commercial π-filter via voltage divider. Thus, the voltage regime over

the sample was ±15 mV and the excitation (reference signal) ≈ 0.7 µV. After the

sample the signal was filtered again with π-filter and fed into the current amplifier,

which picked and amplified the DC signal into the computer via ch 3, and directed

the AC component into the lock-in amplifier. The lock-in amplifier picked the signal

at the reference frequency and thus fed out dynamical conductance dI/dV to ch 2.

Meanwhile, voltage amplifier picked DC component between the first filtering and the

sample and, amplified it and fed into the computer via ch 1. Between the channels 1-3

(inside the shielded room) and the computer (outside) the signals had to go through

the highly efficient low pass filters (Euroshield) mounted in the wall of shielded room.

4.1 Critical temperature TNb
c

A method of determining TNb
c is shown in figures 4.3 and 4.4. While measuring the

zero bias conductance the samples were gradually heated over the critical temperature

of niobium until the weaker temperature dependence of Coulomb blockade became

visible after the vanishion of ∆Nb(T ). The samples were heated using ohmic resistor

and measured with commercial calibrated Cernox resistor. The set up is shown in

figure 4.2. The values for TNb
c were obtained from the conductance measurement (see
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Figure 4.2: TNb
c measurement set up. The sample is clued on a copper plate with

commercial calibrated Cernox resistor on the right and a thermal resistor for heating

on the left. The distance between the Cernox and the resistor is ≈ 2 cm.

fiqure 4.4). The critical temperature obtained for the best sample was 8.5 ± 0.5 K,

which is very close to TNb
c = 9.3 K in bulk Nb. It may be possible that the reduction

of the TNb
c from the bulk value is not caused by impurities in the sample due to the

fabrication process but the dimensions of the sample [8]. The second critical field HNb
C,2

was determined similarly as a function of a magnetic field.

4.2 Charging energy

The charging energies of the samples were derived from the normal state conductance

curve measured at 4.2 K with magnetic field of B ∼ 5 T. See figure 4.5. Undesired

background effect becomes observable at high bias voltages due to distortion of the

potential barrier. In this case it was distruptive already at low bias voltage due to

the small work function of Niobium. The effect of the background was subtracted

by the lines parallel to asymtotes. The ∆G/GT (see eq. 4.1) was set to correspond

to the difference between the crossing point of the lines and the lowest value of the

conductance curve. The charging energies of the samples 3-5 (see table 4.1) were also

obtained from the VG modulated I−V curve at temperatures around 100 mK without

magnetic field. Obtained charging energies varied between EC ≈ 68 − 156 µeV. The

32



4. MEASUREMENTS

Figure 4.3: A method for determining the critical temperature TNb
c . Circles are the

zero bias conductances obtained from the dI/dV measurement. (See figure 4.4).

charging energies were calculated from the equation

∆G/GT =
EC

6kBT
, (4.1)

which neglects the effects due to electromagnetic environment.

4.3 Characteristics of the samples

Table 4.1: Characteristic of the samples. See text.

All the parameters from the samples measured are shown in table 4.1. The TNb
c of
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Figure 4.4: Conductance measurement. Curves were obtained by gradually heating

the sample over the critical temperature TNb
c . One curve represents one sweep over the

bias voltage regime at constant temperature.

the samples 4 and 5 were probably higher than notified in table 4.1. The measurements

were interrupted due to technical problem. The resistances in 2nd and 3rd column

were measured at room temperature and in liquid He at 4.2 K, respectively. The

gap values ∆Nb in 6th column were measured at 4.2 K, and are unrealistic high due to

measurement set up corresponding to NISIN measurement, except the 3rd sample which

was measured at 150 mK (SISIS). The Josephson coupling energies were obtained from

the Ambegaogar-Baratoff -formula for two different superconductors (see eq. 2.49),

which yielded EJ ≈ 41−123 µeV. Thus the ratio EJ/EC varied between 0.26 and 1.81.

The charging energies in 4th column were obtained at 4.2 K with magnetic field 5T and

backround subtracted as explained before, and the charging energies in 10th column

were obtained from the period of the gate modulated I − V at base temperature 100

mK.
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Figure 4.5: The charging energy measurement at 4.2 K with magnetic field 5T & HNb
C,2.

Conductance as a function of bias voltage. The height of the conductance dip was

measured from the crossing point of the lines parallel to asymtotics.
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Subgap transport phenomena

Figure 5.1: Left: I-V curve from the sample number 3 in table 4.1. Right: Conductance

showing high gap value and regularly spaced oscillation below V . 0.9 mV.

In Fig. 5.1 (left) I-V characteristics and (right) a dI/dV -curve are shown for

one of the samples with EC ∼ 34 µeV and EJ ≈ 92 µeV. The gap with a width of

4(∆Al + ∆Nb)/e is clearly visible and the maximums in the dI/dV -curve yield ∆Nb ≈

1.45 meV. Here it is assumed ∆Al ≈ 0.2 meV. The oscillations seen in the dI/dV -

curve near the supercurrent at V = 0 are clearly visible in three of the measured

samples. These peaks at the bias voltages below V . 0.9 mV are equally spaced in

V and appear only when decreased magnetic field below the critical of aluminum HAl
c ,

i.e., in SISIS configuration. It has been verified that the positions of these peaks do

not depend on the applied magnetic field (fig. 5.2). Also these resonances cannot be
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due to the coupling of the Josephson oscillations to the electromagnetic environment

of the sample. To rule out this hypothesis, Al-only single junctions and SET’s with

the same SEM design for the contact pattern were fabricated, and measured with the

same dilution refrigerator. The subgap conductances of these samples can be regarded

as a spectral analysis of the environment, as seen by the sample. The result was

that mild resonances do exist but only below 0.15 meV. Above this value (and up to

the quasiparticle threshold voltage) the I-V’s and the conductivities were exactly flat,

for all the samples measured. The observed resonance pattern is similar to so-called

Josephson-quasiparticle -cycle (JQP), which, however, appears only at much larger

voltages, ∆Nb + ∆Al + EC ≤ eV ≤ ∆Nb + ∆Al + 3EC, which in the sample yields 1.72

eV . eV . 1.87 eV.

Figure 5.2: I-V characteristics measured with different gate voltages Vg and magnetic

fields ranging: From the uppest H = 0, to the lowest H = 30 mT curve. Different

colours correspond to different value of magnetic field. See text.

Figure (5.2) shows the oscillations near supercurrent. The plot includes all data
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from the measurement below 0.9 mV. Each colour indicates constant magnetig field

while bias voltage Vb and gate voltage Vg were varied. First, the bias voltage was set

to a certain value, then the gate voltage was varied over the whole period. The bias

voltage was set to another value, and again varied with the gate voltage until the whole

bias measurement range from -15 mV to 15 mV was completed. As seen, the position

of the peaks do not depend on the applied external magnetic field or the gap of the

aluminum electrodes, but the baseline of the I-V curve shows clear dependence on the

magnetic field. It appears that measured Al/AlOx/Nb/AlOx/Al show clear signature

of the resonant tunneling of Cooper pair combined with the elastic cotunneling of

quasiparticles, q-MQT, through the barrier of ∆Nb [51].

5.1 Resonant tunneling of Cooper pairs

If considering the simplest and the most probable resonant tunnelling event, seen in

Fig. 5.3, where one Cooper pair tunnels into the island, the constraint is obtained as

2DAl

2DAl

2DNb

Al AlII Nb

EC

-2e

-e

-e

DE

Figure 5.3: The resonance tunneling. Cooper pair enters the island. This 2e excess

charge has to be carried out into the external circuit which is inelastic process. The

rate of the process is determined by the electromagnetic environment, which ability

to absorb energy is described by the probability function P(E) from the ’P(E)’ theory

[52]. ∆E is the energy difference from above the Nb gap into single electron state.
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Figure 5.4: Left: The peaks appearing due to resonant tunneling of Cooper pairs as a

function of both V and Vg. The data is measured while a small magnetic field H ≈ 23

mT . HAl
c was applied. Right: The same data as a contour plot with a background

subtracted, showing clear diamond shaped pattern.

V =
1

2
CΣV ± CgVg ±Q0 − e = 0 (5.1)

for the necessary resonant condition in a symmetric SET. Here CΣ = 2C + Cg and Cg

is the gate capacitance. Q0 is the charge on the island before the tunnelling event,

i.e., Q0 is e or 2e. This equation yields diamond shaped pattern in (V, Vg) plane for

the resonances (see Fig. 5.4). The resonance tunnelling itself is not enough to carry a

current since it only charges the island with 2e. This excess charge has to be carried out

by another process in the external circuit before a next resonance tunnelling event can

take place. This again needs inelastic tunnelling of quasiparticles, whose rate depends

greatly on the electromagnetic environment. The environment can be modelled as an

infinite number of harmonic LC-oscillators, which can represent any kind environment.

This leads to ’P(E)’-theory where Gaussian like P(E) function describes the probability

of the system to emit or absorb energy [52]. The resonance peaks appearing in measured
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data at V . 0.9 meV are plotted in Fig.5.4 as a function of both V and Vg. Obtained

3D-plot is shown on the left and the right figure shows the same data as a contour plot

with the background substracted and it explicitly demonstrates the diamond shaped

pattern of the resonant tunnelling of Cooper pairs. If let Q0 in Eq. 5.1 be either e or

2e, i.e., assumed the e-periodicity of the structure, the spacing of the measured pattern

in the direction of V yields EC ≈ 34 µeV, which agrees with the value EC ∼ 38 µeV

estimated earlier for that sample. The height of the resonances agrees also well with

the P(E) theory.

5.2 Elastic cotunneling of quasiparticles, q-MQT

In the I-V curves 5.2 another feature is also visible as a smooth broader peak in

the baselines. In Figure 5.5 the voltage dependence of this baseline peak is shown in

various magnetic fields ranging from H = 0 to H & HAl
c . The baseline was obtained by

averaging the current over the bias range smaller than the spacing of resonance peaks

and over the whole Vg range at certain bias voltage. Therefore the supercurrent is also

unrealistically smeared in the figure 5.5.

In figure 5.6 comparison between the conductance peak of the baseline of the var-

ious samples and the gap of aluminium, obtained by measuring the magnetic field

dependence of a single Al-Al junction, clearly shows that the peak follows the voltage

determined by V = 2∆Al/e. As well as the height of the step in baseline follows the

gap of aluminum as seen in figure 5.7.

Several processes are known to produce structures in the IV of SSET at bias voltages

below the quasiparticle branch, but most of them are in fact excluded in this case

by the fact that they leave an excitation on the island. This is forbidden, since at

about 2∆Al/e the system cannot provide enough energy to break the Nb Cooper pairs.

Therefore, only two processes are left: the AA cycle and elastic co-tunneling. The first

one can be described as follows: two quasiparticles are created in the left electrode

and they tunnel to form a Cooper pair on the island. (Equivalently: one electron-like

quasiparticle is Andreev-reflected as a hole-like quasiparticle through the left junction,
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Figure 5.5: Left: The baseline measured at several different magnetic fields ranging

from H = 0 (highest absolute value of current) to H & HAl
c (lowest absolute value of

current). The baseline was obtained by averaging over the resonance peaks, and taking

the mean value of the current over whole period of the gate voltage. Right: Derivative

of the baseline (conductance). Peaks in the conductance indicating sudden raise in

the current as a function of applied magnetic field and bias voltage. The peaks moves

towards zero bias voltage while increasing magnetic field.

Figure 5.6: Comparison between the position of the conductance peak in Vb and the

gap of aluminum on a single Al/Al junction at various magnetic fields.

41



5. SUBGAP TRANSPORT PHENOMENA

Figure 5.7: The height of the step in the baseline. Circles indicates the gap of the

aluminum and the stars relative height of the step, as a function of the applied magnetic

field. Triangles follow the step position as in figure (5.6).

with the creation of a Cooper pair propagating to the right in the island.) Then the

same Andreev-like process happens at the right junction, resulting in an electron-like

excitation propagating in the right electrode. The energy threshold for each of these

processes is ∆Al/e, therefore, neglecting the effect of the charging energy, it follows that

the whole AA cycle should become important at about twice the gap of aluminum.

In this case, it would mean that the Andreev-like reflection should be visible also in a

single junction. To analyse this, several Al-(AlOx)-Nb single junctions were fabricated

and measured. For this structure, the theory of MAR (multiple Andreev reflection) and

MPT (multiple-particle tunneling) predict a conductance peak (corresponding to a step

in the current) at ∆Al/e for a single Andreev reflection. The general structure predicted

by these theories is much more complicated, with peaks at 2∆Al/2ne, ∆Nb/e, and

(∆Al +∆Al)/(2n+1)e. None of these structures were observed in single-junctions. But,

some other leak currents were observed probably due to other processes that cannot be

characterized yet. However, it has been checked carefully that the activation voltage

for these processes does not depend on the gap of Al (by sweeping the temperature
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up to the critical temperature of Al). Therefore, even if they might contribute to the

backgroud current in the SSET, they cannot account completely for the variation of

the current with the Al gap.

The remaining process, q-MQT (elastic co-tunneling), explains the behavior of the

background transport in a following way. An electron-like quasiparticle below the

energy gap of Al from left electrode tunnels into the island above the Nb gap as a

virtual excitation. It may stay on the island a time comparable to uncertainty principle

until it tunnels into the right electrode, above the energy gap of Al as shown in figure

5.8. Under the simplifying assumption that the tunneling matrix elements are real and

k-independent, the elastic contribution to the current at zero temperature becomes:

I(el) =
1

eReff

∫ ∞

∆Al

dEL

∫ ∞

∆Al

dER
ELER√

E2
L −∆2

Al

√
E2

R −∆2
Al

T 2(ELER)δ(eV − EL − ER).

(5.2)

Figure 5.8: Quasiparticle from the left electrode below the gap of Al tunnels to the

right electrode above the gap of Al via a virtual excitation on the island. The whole

process requires an energy 2∆Al. Dotted lines corresponds to different charging states

in the island. The magnetic field and therefore ∆Al dependence of the baseline current

becomes easily visualized.
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Here Reff = Rt,1Rt,2/RK , RK = h/e2 and Rt,1, Rt,2 are the resistances of the two

junctions, and

T (EL, ER) = 2π

∫ ∞

∆Nb

dE
E√

E2 −∆2
Nb

[
1

E1 + EL − ER

− 1

E2 − Ek + Em

]
, (5.3)

where E1 and E2 are defined in [53] as changes in charging energy to move a quasipar-

ticle through the left side junction and the right hand junction, respectively.

It can be seen that the first formula (5.2) is analog to the tunneling current between

two Al superconductors with effective junction resistance Reff and with an energy-

dependent tunnelling matrix element. Also it shows that the elastic current starts

at 2∆Al and the corresponding I-V feature will be step-like. In the limit of charging

energy and bias voltages much smaller than the Nb gap, these equations indicates that

T(EL, ER) is independent on the energies E1 and E2. When kBT � EC � ∆Nb and the

spacing between the Coulomb states are small compared to ∆Nb it makes no difference

in the equation (5.2) whether to tunnel via first available Coulomb state or the second,

thus making the current gate voltage independent. Furthermore, the equation for the

minimum free energy of the quasiparticle excitation at finite temperature

D(T ) = ∆(T = 0)− kBT lnNdg (5.4)

where Ndg describes the number of different possibilities to choose a quasiparticle into

the island, suppresses any excitation in the island exponentially. This means that

inelastic cotunneling, which is usually dominating, is suppressed ∝ eD(T )/kBT .

5.3 Smearing of the gap

An interesting observation was also that in every sample the steep raise of guasipar-

ticle current at the gap voltage |V | = 2(∆Nb + ∆Al) was very smeared. The Pippard

coherence length of Al is ξAl
0 = 1600 nm, which is extremely large when compared to

that of Nb, ξNb
0 = 38 nm. For pure metals, the Ginzburg-Landau coherence length

ξ(T ) = 0.74ξ0(1− T/TC)−1/2 will be then dramatically different for Al and Nb at any

temperature. In the case of thin films (d ≈ 30 − 40 nm) it can be assumed that the
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mean free path l is limited by surface scattering, therefore l ≈ d. The Ginzburg-Landau

coherence length for dirty films, e.g., thin films, ξ(T ) = 0.855
√
ξ0l(1 − T/TC)−1/2 will

then be still almost one order of magnitude larger in the case of Al. Although the

GL equation is strictly valid only close to the critical temperature, it gives in many

situations a good qualitative insight about what happens at low temperatures.

In this case, at T = 0 K it can be seen that the GL coherence length for Nb would

be of about 30− 40 nm, little less than the film thickness, while for Al it is larger by a

factor of ∼7. If one analyses the GL equation in the absence of magnetic fields, with

f = ψ/ψ∞ as the reduced order parameter,

ξ2(T )∆f + f − f 3 = 0, (5.5)

then for samples with GL coherence length much larger than the thickness of the sample

ξ(T ) � d the order parameter is constant. If it were not constant across the sample,

the first term in the GL equation would be ξ2(T )∆f ≈ ξ2(T )f/d2 � f , therefore

the equation cannot be satisfied. This means that for Al films, the superconducting

order parameter is almost constant in a transversal section. In contrast, in Nb films this

constraint doesn’t hold. Therefore, the order parameter can vary across the sample and

still satisfy the GL equation. Hence, there could be regions in the Nb electrode with a

(continuously) depressed order parameter (a smeared gap). The current corresponding

to tunnelling from or into these regions will appear at a smaller value of the bias

voltage.

5.4 Conclusion

It is shown that Nb/AlOX/Al junctions, with high critical temperature (T ≈ 8.5) and

Josephson coupling, can be fabricated using the conventional self-alignment technique

with PMMA-based resists. The measured Nb-based SSETs show the clear signature

of the resonant tunneling of Cooper pairs combined with the more smeared signature

of elastic cotunneling of quasiparticles, q-MQT, through the barrier of ∆Nb. The in-

elastic cotunneling usually dominating over the elastic one is suppressed according to

equation ∆Nb � EC, kbT . This virtually yields situation where the density of single
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electron state on the island is much smaller than density of Coulomb states, which

in general is fullfilled only in the case of quantum dots or semiconductor heterostruc-

tures. In figure (5.4) spacing of the measured pattern indicates e-periodicity, which

means non-equilibrium quasiparticles being present. One solution for the problem is to

use quasiparticle traps, that is, to place a normal metal part in a vicinity of the island

therefore offering plenty of single electron states below the gap level.
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Chapter 6

Further improvements

The use of Nb offered great improvement as an energy barrier for unwanted quasi-

particles. As treated in theory part, the charging Hamiltonian contains also quantity

called ”offset charge”. This continuous quantity takes different values for each device

and cooldown and it fluctuates in time with an 1/f spectral density. This effect limites

dramatically the usefulness of the device in many applications. For example, digital

devices require a perfect control over the gate voltage, therefore the SET cannot be

used. Also, this noise imposes severe limits on devices in which parity effects [41] are

important: for example (single) microwave photon detectors [36], metrological applica-

tions of Cooper pair pumps [39], or Bloch oscillation devices [35, 54]. The effect is also

the limiting factor for the sensitivity of low-frequency SET electrometers (currently of

the order of ×10−5e/
√

Hz [42]); the r.f.-SET improves this figure by paying the price

of going up to higher frequencies, thus making the device more difficult to operate.

It is believed [43] that this phenomenon is caused partly by the differences in the

work functions of the electrodes and the island, and partly by the charge motion in

the substrate. The first effect can be eliminated by careful material-engineering: for

example, in the case of superconducting SET’s, it is shown that enhancing the gap of

the island by oxygen doping or lowering the gap of the leads by ”quasiparticle traps”

creates a barrier for the nonequilibrium tunnel electrons, thus reducing considerably

the probability of unequilibrium quasiparticles [44]. Also, in the case of multiple-island

devices such as Cooper pair pump the 2e periodicity has not been observed even when
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the same precautions (filtering of the leads, quasiparticle traps, low temperatures) as

for single-island devices have been taken; rather, the trend in the charging diagram

is the coexistence of four 2e honeycomb patterns shifted by 1e along the axis of the

gate voltages [45]. This suggests that the effect of the substrate is rather strong and

essentially not eliminable through the methods described above. The existing noise

measurements in SET’s suggest that there is a correlation between the type of substrate

used and the minimum sensitivity achieved [55]. A more radical approach to the issue

of substrate noise is proposed: to eliminate the substrate itself.

6.1 Suspended single-electron transistor

It is possible to fabricate working high-quality single-electron transistor in which the

island is not in contact with the substrate [50]. This new type of device, suspending

single-electron transistor (SUSET), has shown well-defined I-V and dI/dV-V features

typical for high-quality standard SET’s. The fabricated Al-based transistor is shown

in Figure 6.1. The height of the island from the substrate is approximately 4-5 µm and

the length of the suspending part is about 20 µm. The length of the island is 1µm,

and the thickness is less than 100 nm.

6.2 Fabrication of SUSET

The suspended SET was fabricated using conventional two-angle evaporation on a

nitridized (300 nm) Si wafer of 500 µm thickness followed by reactive ion etching.

The current dose was double compared to SET-on-oxidized-substrate, due to a smaller

amount of secondary electrons (see section 3.1). The mask was drawn using a scanning

electron microscope (JEOL, JSM 840A) with acceleration voltage of 20 kV. The mini-

mum width of the pattern in the island region was 50 nm; however, the resulting width

of the metallic wires after the whole process increased to 100 nm. The resists were

developed, and the mask was further cleaned in a reactive ion etcher (AXIC BENCH-

MARK) at 30 mTorr pressure with 50 sccm flow of O2 and 48 W RF-power for 30 s,
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Figure 6.1: High-magnification SEM image of a suspending single-electron transistor.

The tip of the gate electrode (center up) points to the island. The junctions can be seen

as two thicker nodular structures along the suspended aluminum wire. The two lines

pointing downwards (towards the substrate) are the usual by-products of two-angle

evaporation.

a process that removes the resist leftovers from the SiN2 surfaces. The aluminum was

evaporated in an UHV chamber at pressure of 2–4×10−8 mbar with an evaporation

rate of 0.5 nm/s for both the island and the electrodes. The film, with a thickness of

60 nm, was oxidized between the evaporations in a steady flow of O2, at a pressure

of 20 mbar for three minutes. In the sample presented here, the 45 nm and 60 nm

correspond to the thicknesses of the island and the leads, respectively. The process

was completed by lift-off, with the sample being slowly heated in acetone up to the

boiling point (56
◦
C) and gradually cooled down to room temperature.
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Finally the SET was put into a RIE (AXIC BENCHMARK) and etched in a two

step process. The power was 60 Watts, and the flow of O2 and CF4 was 5 sccm and

10.5 sccm respectively. The first step was anisotropic etch at a pressure of 40 mTorr

for 3 minutes (ion bombarment to break the surface of the nitride). The second step

(isotropic etch) was at a pressure of 70 mTorr for 7 minutes. The process was on all

the time, shift to higher pressure was done on the fly. Table 6.1 captures the essential

of the fabrication of SUSET.

Table 6.1: Table of parameters for SUSET. Pressure of etching was changed while

process is still running.

Figure 6.2: A lower-magnification SEM picture of a suspended single-electron transis-

tor, showing the effect of etching on the SiN2 substrate. The picture at right shows

the full large-scale structure, including the bonding pad for the gate.
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6.3 Measurement of SUSET

The SUSET was measured in an electrically shielded room using a Nanoway PDR-50

dilution refrigerator with the lines filtered with commercial π-filters at 4.2 K and a

combination of π-filters and RC-filters at room temperature, as in previous sections.

The conductance was measured using a lock-in amplifier technique. The results are

presented in Fig. 6.3. The sample presented here had a room-temperature resistance

of Rn = 73 kΩ. From the threshold voltage of the quasiparticle branch at 0.755 meV

we can determine the gap of Al to be 0.189 meV.

Figure 6.3: Current and conductance as function of bias voltage, showing features of a

good-quality SET (Josephson current, JQP, and quasiparticle conductance edge). The

inset is a low-bias voltage detail, with a better visible Josephson effect and mild Cooper

pair resonant peaks in the current.

The charging energy of the sample was derived from the Coulomb-blockade con-

ductance measured at 4.2 K; we found a change in the zero-bias conductance peak
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δG/GT = 1.24%, yielding a charging energy Ec = e2/2CΣ = 13.5µeV, where

CΣ = C1 + C2 + Cg is the usual definition for the total capacitance of the island.

The critical Josephson current from Fig. 6.3 is approximately 70 pA; switching-

current measurements, which are more precise, yielded a value Ic = 61 pA for this

sample. This corresponds to a quite small Josephson energy EJ = ~Ic/2e = 0.13µ eV.

The Ambegaokar-Baratoff formula gives EJ = RK∆Al/8Rn = 8.3µ eV, significantly

larger than the measured value. These are a well-known discrepancies for SET’s, caused

by the sensitivity of the Josephson effect in small junctions to the external electromag-

netic environment [46]. They occur when Ec is larger or of the same order of magnitude

as EJ (therefore the phase of the island is not a good quantum number and the current

has strong fluctuations), which is indeed the case for our sample.

In Fig. 6.3 the two symmetric peaks in the current are due to a combined Josephson

and quasiparticle (JQP) tunneling in the junctions; this effect is predicted to happen

at a bias voltages 2∆Al +EC ≤ eV ≤ 2∆Al +3EC [47]. For our sample, this gives 0.391

meV . eV . 0.418 meV, in excellent agreement with the position of the peak in the

experimental data (Fig. 6.3). The JQP features are quite broad, as expected from the

theory of this process for samples with small Ec/∆ [48].

Finally, a measurement at low bias voltages (inset of Fig. 6.3) reveals a finer

structure of resonances in the current, corresponding to oscillations in the conductance.

According to the theory of resonant tunneling of Cooper pairs [49], the spacing between

consecutive peaks peaks should be 4EC, i.e., 54 µeV. Although the data were quite

noisy, it was still possible to estimate the distance between peaks as being indeed

50-60 µeV. The SUSET is affected by temperature in the same way as conventional

SET’s. Fig. 6.4 presents I-V measurements from 0.2 K to about 0.9 K, close to the

critical temperature of Al. The low-temperature features get more rounded and they

are displaced towards lower bias voltages, in agreement with the decrease of the gap of

Al.
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Figure 6.4: I-V characteristics as a function of temperature. The sharpest features cor-

respond to T = 0.2 K; the temperature was then raised close to the critical temperature

of Al.

6.4 Conclusion of Suset

In conclusion, high quality Al-based superconducting suspended SET was fabricated

and measured. Any decrease of the quality was not observed due to the extra etching

process. On a contrary, the SET’s showed remarkable tolerance under thermal cycling

and athmospheric condition. Therefore, we believe that this new device can be useful in

applications that require a precise control of the nonequilibrium charge on the islands.
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Appendix A

Matrix presentation of Hamiltonian

Total Hamiltonian when quasiparticle excitations are excluded is

HC +HJ1 +HJ2,

where

HJi = −EJi cosϕi,

HC = EC(n− ng)
2

and EC = (2e)2/2CΣ. With operator change

ϕ̂1 = ϕ̂
2

+ θ̂

ϕ̂2 = ϕ̂
2
− θ̂,

where states |θ〉 form a complete set so that

|n〉 =

∫
|θ〉〈θ|n〉dθ =

1√
2π

∫
eiθn|θ〉dθ,

the total Hamiltonian gets the form

H = EC(n− ng)
2 − (EJ1 + EJ2) cos

ϕ

2
cos θ − (EJ1 + EJ2) sin

ϕ

2
sin θ.

The charging energy part in the matrix of the Hamiltonian is diagonal in the chosen

|n〉 basis. In the calculation of the Josephson coupling, off-diagonal elements

〈n′| −
2∑

i=1

EJ1 cosϕi|n〉
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can be simplified with the help of following equations

cos θ = 1/2(eiθ + e−iθ)

sin θ = 1/2i(eiθ − e−iθ).

The off-diagonal element gets the form

〈n′|(EJ1 − EJ2) sin
ϕ

2

1

2i
(eiθ − e−iθ)

1√
2π

∫
eiθn|θ〉dθ

〈n′| − (EJ1 − EJ2) cos
ϕ

2

1

2
(eiθ + e−iθ)

1√
2π

∫
eiθn|θ〉dθ

= 〈n′|(EJ1 − EJ2) sin
ϕ

2

1

2i

[
1√
2π

∫
eiθ(n+1)|θ〉dθ − 1√

2π

∫
eiθ(n−1)|θ〉dθ

]
〈n′| − (EJ1 + EJ2) cos

ϕ

2

1

2i

[
1√
2π

∫
eiθ(n+1)|θ〉dθ − 1√

2π

∫
eiθ(n−1)|θ〉dθ

]

= 〈n′|(EJ1−EJ2) sin
ϕ

2

1

2i
[|n+ 1〉 − |n− 1〉]−〈n′|(EJ1+EJ2) cos

ϕ

2

1

2
[|n+ 1〉+ |n− 1〉]

= 〈n′|(EJ1 − EJ2) sin
ϕ

2

1

2i
|n+ 1〉 − 〈n′|(EJ1 + EJ2) cos

ϕ

2

1

2
|n+ 1〉

−〈n′|(EJ1 − EJ2) sin
ϕ

2

1

2i
|n− 1〉 − 〈n′|(EJ1 + EJ2) cos

ϕ

2

1

2
|n− 1〉.

If it is assumed that EJ1 = EJ2 = EJ, then

= −〈n′|EJ cos
ϕ

2
|n+ 1〉 − 〈n,|EJ cos

ϕ

2
|n− 1〉,

so that

〈n′|HJ1 +HJ2|n〉

= −EJ cos
ϕ

2
δn′,n+1 − EJ cos

ϕ

2
δn′,n−1.
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Finally, the Hamiltonian in the |n〉 basis of the three states | − 1〉, |0〉, and |1〉 becomes

H =


EC(−1− ng)

2 −EJ cos(ϕ
2
) 0

−EJ cos(ϕ
2
) ECn

2
g −EJ cos(ϕ

2
)

0 −EJ cos(ϕ
2
) EC(1− ng)

2


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