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ABSTRACT

Sarafanov, Oleg
Asymptotic Theory of Resonant Tunneling in Quantum Waveguides of Variable
Cross-Section
Jyväskylä: University of Jyväskylä, 2008, 69 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 100)
ISBN 978-951-39-3462-0 (PDF), 978-951-39-3432-3 (nid.)
Finnish summary
Diss.

The narrows of a quantum waveguide with variable cross-section play the role
of effective potential barriers for the electron longitudinal motion. Two narrows
form a quantum resonator where a resonant tunneling can occur. It means that
electrons with energy close to a resonant value pass through the resonator with
probability near to 1. We give an asymptotic description of electron wave prop-
agation in a quantum waveguide with two narrows. The wave number k is as-
sumed to be between the first and the second thresholds, so only one incoming
and one outgoing wave may propagate in every outlet of the waveguide to infin-
ity. We present the asymptotic expansions of wave functions, the reflection and
transition coefficients as the diameters of narrows tend to zero. Moreover, the
asymptotic formulas for the resonant frequencies are obtained and the behavior
of the coefficients is analyzed near a resonance.

Keywords: resonant tunneling, Helmholtz equation, scattering matrix, transition
coefficient, reflection coefficient, radiation conditions, cylindrical out-
lets, compound asymptotics
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1 INTRODUCTION

Resonant tunneling can occur as electrons propagate through a potential bar-
rier of complex shape (say, composed of two identical barriers placed one after
another). In the process, electrons of energies close to some (resonant) values
pass trough the barrier with probability near to one. In electronics, resonant de-
vices (transistors, key devices, electron energy monochromators) based on one-
dimensional hetero-structures consisting of layers of distinct chemical composi-
tions, have gained widespread usage. To provide operating these devices in an
optimal regime, one should know main characteristics of the process (the res-
onant energies, the shape of the transition coefficient near a resonance). These
characteristics can be calculated with the help of one-dimensional models by the
WKB method.

Such one-dimensional structures possess several disadvantages. That is
why the creation of homogeneous structures with resonant tunneling conditions
is a topical problem. Alternatively, one can consider two- and three-dimensional
waveguides of variable cross-section; their narrows play the role of effective bar-
riers. The behavior of the resonant tunneling characteristics in such waveguides
has not been studied theoretically. One-dimensional models are ineffectual. Nu-
merical modelling meets difficulties, when the narrows of the waveguide become
“too narrow“ and the resonant peak too sharp. In this work, we present an
asymptotic description of the resonant tunneling in quantum waveguides with
narrows as the diameters of the narrows tend to zero, which gives qualitative
picture of the phenomenon.

In the introductory chapter we first consider the one-dimensional electron
motion and demonstrate the occurrence of the resonant tunneling in the case
(Sect. 1.1); then some applications of the one-dimensional resonant tunneling
are listed, in particular, the operation of some mentioned resonant devices is ex-
plained (Sect. 1.2); motivations for studying two- and three-dimensional waveg-
uides are given (Sect. 1.3); finally, the used mathematical methods are briefly
described (Sect. 1.4).
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1.1 One-dimensional resonant tunneling

The one-dimensional resonant tunneling (described by Schrödinger equation (1.1))
is a well studied phenomenon [1] – [3]. We remind some known results.

Consider an electron propagating through a potential barrier (Fig. 1) from
−∞ to +∞. Its wave function Ψ1 satisfies

− h̄
2

2m
Ψ′′(x) +U(x)Ψ(x) = EΨ(x). (1.1)

Since U(x) = 0 as x < x1 and x > x2, we have

Ψ1(x) =

{
eikx + re−ikx, as x < x1;
teikx, as x > x2,

(1.2)

where k2 = 2mE/h̄2, the summand re−ikx is the reflected wave, and teikx is the
transited one. The value R = |r|2 is called the reflection coefficient and T = |t|2
the transition coefficient, R+ T = 1.

Let Ψ be a wave function such that

Ψ(x) =

{
A1eikx + B1e−ikx, as x < x1;
A2eikx + B2e−ikx, as x > x2.

Due to the linearity of the equation (1.1), the coefficients A1 and B1 depend on A2
and B2 linearly. More exactly, one can prove that(

A1
B1

)
= D

(
A2
B2

)
, where D =

(
1/t r/t
r/t 1/t

)
,

r, t being the coefficients in (1.2).
Consider now a complex barrier composed of two simple barriers placed

one after another (Fig. 2). Given the reflection and transition coefficients for each
of the simple barriers, we can find such coefficients for the complex one. Assume
that

Ψ(x) = teikx as x > x4.

FIGURE 1 A potential barrier.
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FIGURE 2 Two potential barriers.

Then
Ψ(x) = Aeikx + Be−ikx as x2 < x < x3,

where (
A
B

)
= D2

(
t
0

)
=

(
1/t2 r2/t2
r2/t2 1/t2

)(
t
0

)
= t

(
1/t2
r2/t2

)
.

Finally,
Ψ(x) = eikx + re−ikx as x < x1,

where

(
1
r

)
= D1

(
A
B

)
= t

(
1/t1 r1/t1
r1/t1 1/t1

)(
1/t2
r2/t2

)
= t

⎛⎜⎜⎝
1
t1t2

(
1+
t2
t2
r1r2

)
1
t1t2

(
r1 +

t2
t2
r2

)
⎞⎟⎟⎠ .

This equality implies

t =
t1t2

1+
t2
t2
r1r2
, r =

t1
t1

r1 +
t2
t2
r2

1+
t2
t2
r1r2
.

We set ϕ = arg(t2r1r2/t2), Tj = |tj|2, and Rj = |rj|2, j = 1, 2. Then

T = |t|2 =
T1T2

1+ R1R2 + 2
√
R1R2 cos ϕ

, R = |r|2 =
R1 + R2 + 2

√
R1R2 cos ϕ

1+ R1R2 + 2
√
R1R2 cos ϕ

.

Since Rj + Tj = 1, we obtain 1+ R1R2 = R1 + R2 + T1T2, which leads to

T =
T1T2

T1T2 +
(√
R1 −

√
R2

)2
+ 2

√
R1R2(cos ϕ + 1)

,

R =

(√
R1 −

√
R2

)2
+ 2

√
R1R2(cos ϕ + 1)

T1T2 +
(√
R1 −

√
R2

)2
+ 2

√
R1R2(cos ϕ + 1)

.
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FIGURE 3 Rectangular potential barriers.

Thus, the T is maximal if cos ϕ = −1. When R1 = R2, the maximum of T is equal
to one. Such a phenomenon is called the resonant tunneling.

The coefficients R(k) and T(k) for a single barrier can be obtained approx-
imately by the WKB-method (see, for instance, [4]). Let us consider a situation,
where the coefficients can be explicitly calculated.

Consider two rectangular barriers of heights U1, U2 and widths a1 = x2 −
x1, a2 = x4 − x3, respectively (Fig. 3). A direct calculation shows that, for energy
E in the interval 0 < E < min{U1,U2},

tj =
2ikκje

−ik(x2j−x2j−1)

(k2 − κ
2
j ) sinh(κjaj) + 2ikκj cosh(κjaj)

,

rj =
(k2 + κ

2
j ) sinh(κjaj)e

2ikx2j−1

(k2 − κ
2
j ) sinh(κjaj) + 2ikκj cosh(κjaj)

,

where j = 1, 2, κ2j = 2m(Uj − E)/h̄2, and k2 = 2mE/h̄2. Therefore

Tj =
4k2κ2j

(k2 + κ
2
j )
2 sinh2(κjaj) + 4k2κ2j

, Rj =
(k2 + κ

2
j )
2 sinh2(κjaj)

(k2 + κ
2
j )
2 sinh2(κjaj) + 4k2κ2j

.

The equality R1 = R2 is obviously valid for barriers of equal heights and widths.
As follows from the last formula, Rj monotonically increases when Uj or aj is in-
creasing. This means that R1 = R2 can be fulfilled for barriers of various shape.
The condition cos ϕ = −1 is independent of the condition R1 = R2. For rectan-
gular barriers,

ϕ = 2k(x4− x1) + arctan

(
2kκ1
k2 − κ

2
1
coth(κ1a1)

)
+ arctan

(
2kκ2
k2 − κ

2
2
coth(κ2a2)

)
.

The location of resonances (in the interval 0 < E < min{U1,U2}) is determined
by the equality ϕ = π(1+ 2n), n ∈ Z; theirs height is determined by the differ-
ence

√
R1 −

√
R2 (Fig. 4).
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FIGURE 4 T(k) in the case of rectangular potential barriers of the same height U; here
U0 = 2mU/h̄2.

1.2 Applications of resonant tunneling

1.2.1 Field emission from adsorbate-covered surfaces

The phenomenon of resonant tunneling is used to interpret a wide range of ex-
periments.

As known, electron removal from the surface of metal placed into vacuum
won’t occur, if the energy of the electron is under some level (work function of
the metal). When an external electric field presents, the potential energy near the
metal-vacuum interface has the shape of a barrier (Fig. 5). Due to the tunneling
through the barrier, even "cold" electrons can escape from the metal surface. This
effect is called the field emission.

Near an atom adsorbed on the surface of the metal, the potential energy
has shape of two potential barriers (Fig. 6). If an electron in the metal has energy
close to one of the allowed electron energy levels in the adsorbed atom, the escape
probability of the electron from a neighborhood of an adsorbed atom (as a result
of the resonant tunneling) will be much more than the escape probability from
the pure surface. When the allowed energy levels of the adsorbate lie close to the
Fermi level of the metal, the resonant tunneling can result in a valuable increasing
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FIGURE 5 The potential energy near metal-vacuum interface a) without external field,
b) with an external electric field.

FIGURE 6 The potential energy near an adsorbed atom.

of the density of the emission current [5, Sect. 6.2.2, Fig. 6.7,a)]. The allowed
levels of the adsorbate located much lower the Fermi energy practically have no
influence on the emission current but dramatically change the electron energy
distribution [5, Sect. 6.2.1, Fig. 6.6].

The resonant tunneling can play an important role for initiating the explo-
sion electronic emission [6] – [8]. The explosion emission occurs whereas micro-
pimples on the metal surface are being heated and exploding. Presence of atoms
adsorbed on the metal surface results in increasing the local density of the initiat-
ing current and decreasing the explosion emission threshold.

1.2.2 Applications of the resonant tunneling in micro- and nano-electronics

The resonant tunneling can occur in hetero-structures consisting of layers of dis-
tinct chemical compositions (Fig. 7, a)). Such structures can be used as key-
devices and amplifiers.

To explain the operation of such devices, consider Figure 7, b), where the
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FIGURE 7 a) One-dimensional heterostructure. b) Band gap in this structure.

energy band gap for the structure is shown. The domain between the barriers
we call the resonator. When a small potential difference between the emitter and
the collector exists, in this structure, a very weak electric current flows due to the
tunneling of electrons through the barriers. If, in the emitter, one of the levels oc-
cupied with a high probability coincides with one of the resonator allowed levels
E1, the conditions for the resonant tunneling will be provided and the current will
become notable. Electric fields in a neighborhood of the resonator (created, say,
by an external control electrode) can change the resonant levels. For a certain con-
trol potential Uc, the resonant level moves and the current in the system almost
vanishes. Thus the structure works as a key device. For some densities of charge
carriers in the emitter and the collector, one can provide a smooth variation of the
current whereas Uc varies. Then the device can be used as a transistor.

1.3 Resonant tunneling in deformed waveguides

The fabrication of the heterogeneous structures with given resonant properties
is complicated from the technological point of view (it is hard to produce layers
of given widths, to avoid defects arising at the interfaces between layers, etc.).
As far as we can see, the homogeneous structures would be free from such dis-
advantages. That is why the creation of homogeneous structures with resonant
tunneling conditions is a topical problem.

To this purpose, one can consider two- and three-dimensional waveguides
of variable cross-section; their narrows play the role of effective barriers (Figures
8 and 13 below). This can be explained by the following reasons. If a waveguide
is a cylinder (a strip), i.e. it has a constant cross-section, the full energy E of an
electron is represented as the sum E = E⊥ + E‖, E⊥ being the (quantized) energy
of the transverse motion and E‖ the energy of the longitudinal motion; the en-
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ergy E⊥ is inversely proportional to the cross-section square. When a waveguide
cross-section varies along the axis, one can consider E ≈ E⊥ + E‖ as approximate
relation. In a narrow, E⊥ is increasing and E remains constant, so E‖ is decreasing.

That the resonant tunneling can occur in deformed waveguides was con-
firmed by numerical experiments [9], where the dependence of the transition co-
efficient T on the energy E of an electron was calculated. For some E, resonant
peaks are present, where T is close to one. To analyze the operation of devices
based on suchwaveguides it is useful to study the behavior of the coefficient T for
energies close to a resonance. In particular, it is important to know the location
of the resonance, the height of the resonant peak, and its width at the half-height,
i.e., the resonant quality factor (Q-factor).

Approximate numerical calculations are effective only if the narrows of a
waveguide are "not too narrow" (so that the resonant peak is sufficiently wide).
When the peak is very sharp, known numerical procedures converge slowly and
become unstable. That is why to obtain a detailed picture of the phenomenon it
is important to combine both numerical and asymptotic methods supplementing
each other.

1.4 Method of compound asymptotics

We construct an asymptotics of the wave function using themethod of compound
asymptotic expansions [10], [11].

Let the diameters ε1 and ε2 of the narrows of the waveguide G(ε1, ε2) play
the role of small parameters. The domain G(0, 0) obtained as the limit of G(ε1, ε2)
when ε1, ε2 → 0 consists of three parts. The boundary value problem in any part
of G(0, 0) is called the limit problem of the first kind. Solutions of the first kind
problems serve as the principal term of approximation of the wave function in the
corresponding part of G(0, 0)within a certain distance of the narrows. Intuitively,
this means that we look at G(ε1, ε2) with the naked eye observing no small de-
tails. Replacing the wave function by these solutions (in the corresponding part
of G(ε1, ε2)) leads to an error which is supported in the very neighborhood of
the narrows. With the help of the transformation of coordinates x → ε−1x (with
origin at a narrow) we enlarge the neighborhood of the narrow whereas the the
remainder of the waveguide tends to infinity. As a result, we obtain the limit
problems of the second kind in unbounded domains Ω1 and Ω2. Solutions of
these problems together with solutions of the first kind problems give the first
order approximation to the wave function.

More precisely, we first solve the limit problem of the first kind in one of
the unbounded parts of G(0, 0). The leading part of the obtained discrepancy is
compensated by a solution of the second kind limit problem. The discrepancy,
given in turn by this solution, is concentrated, generally speaking, on the both
sides of of the narrow. To continue the procedure, we need that the mentioned
discrepancy would be concentrated outside of the part of G(0, 0), which was con-
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sidered on the previous step. To this end, we apply the method of "redistribution
of discrepancies" analogous to that used in [11]. Then the problem in the res-
onator must be solved. A new discrepancy is compensated by a solution of the
second kind limit problem supported near the second narrow and so on. A more
detailed but still short description of this procedure is given in Chapter 2.

An additional feature of our constructions in comparison with [10], [11] is
using radiation conditions at infinity to fix necessary solutions of problems in
unbounded domains. Moreover, that the limit problem in the resonator loses its
unique solvability for some energies, causes difficulties in estimating remainders
in the asymptotic expansions. Situations, when limit problems are not uniquely
solvable, were considered in [10], [11], too. But our case is more complicated,
because we derive an estimate uniform with respect both ε1, ε2 and the wave
number k.

Tomake thematerial more understandable, in Chapter 2, we have presented
the main asymptotic formulas in a more simple situation, when the waveguide
is a strip or a cylinder with narrows. The particular case of symmetric waveg-
uide is considered there as well. In Chapter 3, the problem in a "general" three-
dimensional waveguide is stated. The limit problems are defined and some prop-
erties of these problems are listed. Then the tunneling in a waveguide with one
narrow is studied. Finally, the resonant tunneling is investigated in a waveguide
with two narrows.



2 FORMULATION OFMAIN RESULTS

2.1 Statement of the problem

2.1.1 Geometry of waveguide

We consider a waveguide with two narrows of small diameters ε1 and ε2. To
describe the waveguide we first introduce three domains G, Ω1, Ω2 in R

n (n = 2
or 3) that are independent of the parameters ε1 and ε2.

Let G be a cylinderR ×D, whereR is a straight line and D is a cross-section
that, for n = 2, is a segment and, for n = 3, is a domain bounded by a smooth
closed path.

Pass on toΩ1 (Fig. 8). For n = 2, we denote by K1 a couple of vertical angles.
For n = 3, by K1 is meant a double cone which is symmetric about the coordinate
origin and cuts out on the unit sphere centered at the origin two (symmetric)
domains; each of them is bounded by a smooth contour. Assume thatΩ1 contains
the cone K1 and a neighborhood of its vertex, moreover, outside a large ball (with

FIGURE 8 Geometry of a narrow.
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FIGURE 9 Geometry of the waveguide.

center at the vertex), Ω1 coincides with K1; the boundary of Ω1 is assumed to be
smooth. The domain Ω2 is described analogously (with a cone K2).

Now, we turn to the waveguide G(ε1, ε2) (Fig. 9). For the time being, we let
O1 and O2 be arbitrary (interior) points of the domain G. Introduce orthogonal
coordinates (xj, yj, zj)with originOj and axis xj parallel to the generatrices of the
cylinder G, j = 1, 2. Suppose the domain Ωj to be located so that the vertex of Kj
coincides with Oj and the whole axis xj (except the origin) lies inside Kj. From
now on we assume that the point O1 is disposed far enough from the point O2 so
that the distance between the sets ∂K1∩ ∂K2 andG is positive (as usual, ∂Kj stands
for the boundary of Kj). Denote by Ωj(ε j) the domain obtained from Ωj by the
contraction with center atOj and coefficient ε j. In other words, (xj, yj, zj) ∈ Ωj(ε j)
if and only if (xj/ε j, yj/ε j, zj/ε j) ∈ Ωj. We put

G(ε1, ε2) = G ∩ Ω1(ε1) ∩ Ω2(ε2).

2.1.2 Boundary value problem

Awave function of a free electron of energy k2 satisfies the boundary value prob-
lem

Δu+ k2u = 0 in G(ε1, ε2), (2.1)

u = 0 on ∂G(ε1, ε2).

Moreover, u is subject to radiation conditions at infinity. To formulate the condi-
tions we need the problem on the cross-section D of the waveguide:

Δv(y, z) + λ2v(y, z) = 0, (y, z) ∈ D, (2.2)

v(y, z) = 0, (y, z) ∈ ∂D.

The eigenvalues λ2q of this problem, where q = 1, 2, . . ., are called the thresh-
olds. In the case of a two-dimensional waveguide G(ε1, ε2), the domain D is
the segment (−l/2, l/2) and the thresholds form the sequence λ2q = (πq/l)2,
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q = 1, 2, . . .. In a three-dimensional waveguide, the thresholds form an increas-
ing sequence of positive numbers tending to+∞. We suppose that k2 in (2.1) does
not coincide with any of thresholds. For fixed (real) k, there exist finitely many
linearly independent bounded wave functions. In the linear space of such wave
functions corresponding to the given k, the basis is formed by wave functions
that are subject to the radiation conditions

um(x, y, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eiνmxΨm(y, z) +

M

∑
j=1
smj e

−iνjxΨj(y, z) +O(eδx), x→ −∞,

M

∑
j=1
sm,M+j e

iνjxΨj(y, z) +O(e−δx), x→ +∞;

uM+m(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M

∑
j=1
sM+m,j e

−iνjxΨj(y, z) +O(eδx), x → −∞,

e−iνmxΨm(y, z)+

+
M

∑
j=1
sM+m,M+j e

iνjxΨj(y, z) +O(e−δx), x → +∞.

Here M is the number of thresholds satisfying the inequality λ2 < k2 (for a fixed
k); m = 1, 2, . . . ,M; νm =

√
k2 − λ2m; Ψm is an eigenfunction of the problem (2.2)

that corresponds to the eigenvalue λ2m and is normalized by the condition

νm

∫
D
|Ψm(y, z)|2dy dz = 1.

When the waveguide is two-dimensional,

Ψm(y) =

{
(2/lνm) sinλmy, m even,
(2/lνm) cos λmy, m odd.

(2.3)

The function Uj defined in the cylinder G by the equation

Uj(x, y, z) = eiνjxΨj(y, z), j = 1, . . . ,M,

is a wave coming from −∞ and going to +∞ . Analogously, the function

UM+j(x, y, z) = e−iνjxΨj(y, z), j = 1, . . . ,M,

is a wave going from +∞ to −∞. The scattering matrix

S = ‖smj‖m,j=1,...,2M
is unitary. The value

Rm =
M

∑
j=1

|smj|2, m = 1, . . . ,M, (2.4)
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is called the reflection coefficient for the wave Um, which comes to G(ε1, ε2) from
−∞, the transition coefficient for this wave is defined by the equality

Tm =
M

∑
j=1

|sm,M+j|2. (2.5)

Similar definitions can be given for the wave UM+m coming from +∞.
In this work, we discuss only the situation, when the parameter k2 is be-

tween the first and the second thresholds. Then the scattering matrix is of size
2× 2 and (2.4) and (2.5) take the form

R = |s11|2, T = |s12|2.
We consider only the scattering of thewave coming from−∞, that is whywe omit
the indices in the notation of the coefficients R = R(k, ε1, ε2) and T = T(k, ε1, ε2).
The purpose is to find the "resonant" values kr = kr(ε1, ε2) of the parameter k,
at which the transition coefficient takes the maximal value. Moreover, we are
interested in the behavior of kr(ε1, ε2) as ε1, ε2 → 0.

2.2 Asymptotics of thewave function in a two-dimensionalwaveg-
uide

To derive an asymptotics of a wave function (i.e. solution of the problem (2.1)) as
ε1, ε2 → 0 we use the method of compound asymptotic expansions. To this end
we introduce "limit" boundary value problems independent of the parameters ε1
and ε2. Remind that G is the strip {(x, y) : −∞ < x < +∞,−l/2 < y < l/2}, K1
is a couple of vertical angles with vertex at the point O1 ∈ G, and K2 is a couple
of vertical angles with vertex at the point O2 ∈ G. We put G(0, 0) = G ∩ K1 ∩ K2
(Fig. 10). Thus, the set G(0, 0) is divided into three parts G(1), G(2), and G(3),
where G(1) and G(3) are infinite domains and G(2) is a bounded resonator.

FIGURE 10 The limiting domain G(0,0).
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The problems

Δv(x, y) + k2v(x, y) = 0, (x, y) ∈ G(q), (2.6)

v(x, y) = 0, (x, y) ∈ ∂G(q),

where q = 1, 2, 3 and ∂G(q) is the boundary of G(q), are called the first kind bound-
ary value problems. Solutions v(1) and v(3) are subject to some radiation condi-
tions at infinity and all three functions v(1), v(2), v(3) are subject to some condi-
tions at the corner points. All of the conditions will be formulated as required.

Nowwe return to the domainsΩ1 andΩ2 (see Fig. 8). Problems of the form

Δw(ξ j, ηj) = F(ξ j , ηj) in Ωj, (2.7)

w(ξ j, ηj) = 0 on ∂Ωj,

are called the second kind boundary value problems. We seek solutions of these
problems in the class of functions satisfying the condition

w(ξ j, ηj) = O
(

ρ
−3π/ωj
j

)
as ρj → ∞;

here, (ξ j, ηj) are Cartesian coordinates in Ωj with origin at Oj, ρj is the distance
from (ξ j, ηj) to Oj, and ωj is the opening of Kj, j = 1, 2.

In a two-dimensional waveguide G(ε1, ε2), we consider the scattering of the
wave U(x, y) = eiν1xΨ1(y) coming from −∞ (see (2.3)). The main technical result
is provided by the asymptotic formula (2.8) given below for the wave function.
Although rather cumbersome, it results inmuchmore explicit corollaries for basic
physical characteristics of the process. The wave function admits the representa-
tion

u(x, y; ε1, ε2) = χ
(1)
ε1 (x, y)v(1)(x, y; ε1, ε2) +

+Θ(r1)w1(ε−11 x1, ε
−1
1 y1; ε1, ε2) + χ

(2)
ε1,ε2(x, y)v

(2)(x, y; ε1, ε2) + (2.8)

+Θ(r2)w2(ε−12 x2, ε
−1
2 y2; ε1, ε2) + χ

(3)
ε2 (x, y)v(3)(x, y; ε1, ε2) + R(x, y; ε1, ε2).

Let us explain the notation and the structure of this formula. When composing
the formula, we first describe the behavior of the wave function to the right of the
narrows, where the wave function can be approximated by a solution of problem
(2.6) in the domain G(3). The solution of (2.6) is subject to the radiation condition

v(3)(x, y; ε1, ε2) ∼ s12(ε1, ε2)eiν1xΨ1(y) as x → +∞, (2.9)

the element s12(ε1, ε2) of scattering matrix being yet unknown. Problem (2.6)
does not contain ε1, ε2, nevertheless the function v(3) depends on the parameters
because of s12(ε1, ε2).

Let χ
(3)
ε2 (x, y) be the cut-off function defined by

χ
(3)
ε2 (x, y) = (1− Θ(r2/ε2)) 1G(3)(x, y),
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where r2 =
√
x22 + y22 and (x2, y2) are the coordinates of a point (x, y) in the sys-

tem obtained by shifting the origin to the pointO2; 1G(3) is the characteristic func-
tion of G(3) (equal to one in G(3) and to zero outside G(3)), and Θ(ρ) is a smooth
positive function on the half-axis 0 � ρ < +∞ and is equal to one as 0 � ρ � δ

and to zero as ρ � 2δ (δ being a fixed small positive number). Note that the func-
tion χ

(3)
ε2 turns out to be defined on the whole waveguide G(ε1, ε2) as well as the

function χ
(3)
ε2 v

(3) in (2.8).

Being substituted to the problem (2.1), the function χ
(3)
ε2 v

(3) gives a discrep-
ancy in the right-hand side of the Helmholtz equation; the discrepancy is sup-
ported near the second narrow (to the right of it). We compensate the princi-
pal part of the discrepancy with the help of the second kind limit problem in
the domain Ω2. Namely, the discrepancy is rewritten into coordinates (ξ2, η2)
in Ω2 and is taken as a right-hand side for the Laplace equation. The solu-
tion w2 of the corresponding problem (2.7) has to be rewritten into coordinates
(x2, y2) and multiplied by a cut-off function. As a result, there arises the term
Θ(r2)w2(ε−12 x2, ε

−1
2 y2; ε1, ε2) in (2.8).

Now we substitute the sum of two obtained terms into the problem (2.1).
The principal part of the corresponding discrepancy is supported in G(2) near the
second narrow. We compensate it by solving the problem (2.6) in G(2) and obtain
the term χ

(2)
ε1,ε2(x, y)v

(2)(x, y; ε1, ε2) with

χ
(2)
ε1,ε2(x, y) =

(
1− Θ(ε−11 r1)− Θ(ε−12 r2)

)
1G(2)(x, y).

After that the summands

Θ(r1)w1(ε−11 x1, ε
−1
1 y1; ε1, ε2) and χ

(1)
ε1 (x, y)v(1)(x, y; ε1, ε2)

arise in a similar way.
At the last step, we find the function v(1) that satisfies both the limit problem

(2.6) in G(1) and the radiation condition

v(1)(x, y; ε1, ε2) ∼ s12(ε1, ε2)α(ε1, ε2)eiν1xΨ1(y) + s12(ε1, ε2)β(ε1, ε2)e−iν1xΨ1(y)

as x→ −∞. The coefficients α, β and the elements s11, s12 of the scattering matrix
turn out to be uniquely determined by a relation between α and β that assures
compensation of the principal part of the discrepancy arising when the problem
is being solved in G(1), and by the following requirements:

s12(ε1, ε2)α(ε1, ε2) = 1, s12(ε1, ε2)β(ε1, ε2) = s11(ε1, ε2), |α|2 = |β|2 + 1;

the last equality means the scattering matrix is unitary.
The remainder R(x, y; ε1, ε2) in (2.8) is small in comparison with the princi-

pal part of (2.8) as ε1, ε2 → 0.
We specify (2.8) for a "symmetric" waveguide, where ε1 = ε2 = ε, both

narrows have the same opening ω, and the resonator G(2) is invariant with re-
spect to the transformation (x, y) �→ (d− x,−y), while d is the distance between
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the points O1 and O2. A specification can be obtained without any assump-
tions concerning symmetry, however the formulas would be much more cum-
bersome. Nevertheless, we will present asymptotic expansions for the most im-
portant characteristics (say, the transition coefficient) in the general case as well.

1. The function v(3)(x, y; ε) is defined by the equality

v(3)(x, y; ε) = I(ε)v(3)(x, y), (2.10)

where I(ε) is a constant depending on ε and given by (2.15) below; v(3)(x, y)
is a solution of the first kind limit problem in G(3) and satisfies

v(3)(x, y) ∼ r−π/ω
2 Φ(ϕ2) as r2 → 0

in a neighborhood of the point O2; here (r2, ϕ2) are polar coordinates with
center O2, Φ(ϕ) = cos(πϕ/ω), and

v(3)(x, y) ∼ Aeiα(3)
eiν1xΨ1(y) as x → +∞, (2.11)

where A > 0. The problem for v(3) is uniquely solvable.

2. w2(ξ2, η2; ε) = I(ε)ε−π/ωw2(ξ2, η2),
where w2 is the solution of the second kind problem in Ω2 with right-hand
side

F2(ρ2, ϕ2) = −[Δ, ζ+]
(

ρ−π/ω
2 Φ(ϕ2)

)
−

−[Δ, ζ−]
(
H21ρ

−π/ω
2 + H22ρ

π/ω
2

)
Φ(π − ϕ2).

Here, ζ+ is a cut-off function equal to one in the right half-plane as ρ2 > d
and to zero anywhere in the left half-plane and, in the right half-plane,
for ρ2 < d/2 (d being a fixed sufficiently large number); ζ−(ρ2, ϕ2) =
ζ+(ρ2,π − ϕ2); the constants H21 and H22 are uniquely determined by the
requirementw2 = O

(
ρ−3π/ω
2

)
as ρ2 → ∞.

3. v(2)(x, y; ε) = I(ε)

(
ε−2π/ω H22

c1(k)
v(2)− (x, y) + q0H21v(2)(x, y)

)
,

where v(2)− and v(2) are solutions of the problem (2.6) in G(2), while

v(2) ∼
{
r−π/ω
2 Φ(π − ϕ2) near O2,
q0r

−π/ω
1 Φ(ϕ1) near O1;

v(2)− ∼
{
c1(k)r

π/ω
2 Φ(π − ϕ2) near O2,

(k2 − k20)r−π/ω
1 Φ(ϕ1) + b1(k)r

π/ω
1 Φ(ϕ1) near O1;

where k20 is any eigenvalue of the resonator that is between the first and the
second thresholds. Given the increasing terms in the asymptotics near any
of the corner points, the solutions v(2)− and v(2) are defined uniquely; at the
same time the constants q0, c1(k), and b1(k) are defined, too. The constant
q0 is independent of k; for a symmetric waveguide, q0 = ±1.
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4. w1(ξ1, η1; ε) =

= ε−π/ω

[(
H22
c1(k)

k2 − k20
ε2π/ω

+ q0H21

)
w−
1 (ξ1, η1) + H22

b1(k)
c1(k)

w+
1 (ξ1, η1)

]
,

where w±
1 is the solution of the problem (2.7) in the domain Ω1 for

F±1 (ρ1, ϕ1) = −[Δ, ζ+]
(

ρ±π/ω
1 Φ(ϕ1)

)
−

−[Δ, ζ−]
(
H±
11ρ

−π/ω
1 + H±

12ρ
π/ω
1

)
Φ(π − ϕ1),

the constants H±
11 and H

±
12 are uniquely defined by the condition w

±
1 =

O
(

ρ−3π/ω
1

)
as ρ1→ ∞.

5. v(1)(x, y; ε) = v(1)(x, y) + I(ε)

(
1
2

(
a1(ε) +

1
a1(ε)

)
− a0(ε)

2iA

)
v(1)(x, y),

where v(1) is the solution of the problem (2.6) in G(1) subject to the condi-
tions

v(1)(x, y) ∼ r−π/ω
1 Φ(ϕ1) as r1 → 0,

and
v(1)(x, y) ∼ Aeiα(1)

e−iν1xΨ1(y) as x → −∞, (2.12)

A > 0 is the same constant as in the radiation conditions for v(3), v(1) stands
for the function complex-conjugated with v(1). Moreover,

a1(ε) = H22H−
11
k2 − k20

ε2π/ωc1(k)
+ H22H+

11
b1(k)
c1(k)

+ H21H−
11q0, (2.13)

a0(ε) = ε−2π/ω

(
H22H−

12
k2 − k20

ε2π/ωc1(k)
+ H22H+

12
b1(k)
c1(k)

+ H21H−
12q0

)
, (2.14)

I(ε) =

(
1
2

(
a1(ε) +

1
a1(ε)

)
− a0(ε)

2iA

)−1
(Ae−iα

(1)
)−1. (2.15)

The a1(ε), a0(ε), A, α(1), α(3), and I(ε) depend on k.

6. The remainder R(x, y; ε) can be represented in the form ε2−δR̃(x, y; ε), where
δ is an arbitrary small positive number, while R̃(x, y; ε) is small by compar-
ison with the principal part of (2.8) as ε → 0.

2.3 Resonant tunneling in a two-dimensional waveguide

First, we discuss a symmetric waveguide using the formula for the wave function
in Section 2.2. When considering asymmetric waveguides in the last part of this
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section, we do not write out the unwieldy expression for the wave function and
restrict ourselves to more comprehensible formulas for the resonant frequency,
the reflection and transition coefficients, the height of the resonant peak, and its
width at half-height.

2.3.1 Resonant frequency

A resonant frequency is a value k = kr(ε) at which the transition coefficient T =
T(k, ε) has a (local) maximum, i. e. T(k, ε) � T(kr(ε), ε) for any k in a small
neighborhood of kr(ε).

The formulas (2.10), (2.11), and (2.15) result in the expression for the transi-
tion coefficient:

T(k, ε) = A2(k)|I(k, ε)|2 =

=

(
1
4

(
a1(k, ε) +

1
a1(k, ε)

)2
+
a0(k, ε)2

4A2(k)

)−1 (
1+ o(ε2−δ)

)
. (2.16)

From the representations (2.13) and (2.14) for a1 and a0 it follows that, as ε is small,
the coefficient T(k, ε) reaches its maximum, if a0(k, ε) = 0.

We rewrite this condition (using (2.14)) in the k2 − k20-resolved form. Note
that from the equation obtained, k2 can be found by the step-by-step method
(since ε is small). Taking only the leading summand in the series for k2 − k20 by
powers of ε, we obtain the leading term in the asymptotics of the resonant fre-
quency:

k2r (ε) = k20 −
(
q0c1(k0)

H21
H22

+ b1(k0)
H+
12

H−
11

)
ε2π/ω + o(ε2π/ω+2−δ). (2.17)

A more detailed analysis of the solutions of the limit problems involved in the
asymptotics of the wave function shows that the coefficient of ε2π/ω in (2.17) is
negative.

2.3.2 The asymptotics of the wave function near a resonance (symmetric wave-
guide)

For k close to a resonant frequency, the expression for the wave function obtained
in Section 2.2 can be somewhat simplified.

We first consider (2.13) and (2.14). Let us expand all the functions in k in-
volved in these formulas in power series of k2 − k2r and, under the assumption
k2 − k2r = o(ε2π/ω), take only the principal terms of the expansions:

a1(k, ε) =
H22
H−
12

(
H+
11H

−
12− H−

11H
+
12

) b1(kr)
c1(kr)

+O
(
k2 − k2r
ε2π/ω

)
,

a0(k, ε) = H22H−
12
k2 − k2r

ε4π/ωc1(kr)
+O

(
k2 − k2r
ε2π/ω

)
.
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The b1(kr) and c1(kr) depend on ε due to kr . To avoid such a dependence we use
the following obvious relations

b1(kr) = b1(k0) +O(k2r − k20) = b1(k0) +O(ε2π/ω),

c1(kr) = c1(k0) +O(k2r − k20) = c1(k0) +O(ε2π/ω).

Then

a1(k, ε) =
H22
H−
12

(
H+
11H

−
12− H−

11H
+
12

) b1(k0)
c1(k0)

+

+ O
(
max

{
ε2π/ω,

|k2 − k2r |
ε2π/ω

})
, (2.18)

a0(k, ε) = H22H−
12
k2 − k2r

ε4π/ωc1(k0)
+O

(
k2 − k2r
ε2π/ω

)
. (2.19)

One can show that, in a symmetric waveguide, the leading term in the right-
hand side of (2.18) is equal to q0 = ±1. Taking that into account, we analogously
rewrite (2.15) :

I(k, ε) =
2ieiα

(1)(k0)

2iA(k0)q0 +
H22H−

12
c1(k0)

(
k2 − k2r
ε4π/ω

) +O
(
max

{
ε2π/ω,

|k2 − k2r |
ε2π/ω

})
.

(2.20)
As k2 = k2r + o(ε2π/ω), we obtain the following expressions for the elements

of the asymptotics of the wave function:

v(1)(x, y; k, ε) =
eiα

(1)(k0)

A(k0)
v(1)(x, y; k0)− I(k, ε)a0(k, ε)2iA(k0)

v(1)(x, y; k0) +O(ε2π/ω),

w1(ξ, η; k, ε) = ε−π/ω I(k, ε)

[
H22
b1(k0)
c1(k0)

(
H+
12

H−
12
w+
1 (ξ, η) −w−

1 (ξ, η)

)
+

+ O
(
max

{
ε2π/ω,

|k2 − k2r |
ε2π/ω

})]
,

v(2)(x, y; k, ε) = ε−2π/ω I(k, ε)H22
1

c1(k0)
v(2)− (x, y; k0) +O(1),

w2(ξ, η; k, ε) = ε−π/ω I(k, ε)w2(ξ, η),

v(3)(x, y; k, ε) = I(k, ε)v(3)(x, y; k0) +O(ε2π/ω),

where a0(k, ε) and I(k, ε) are given by (2.19) and (2.20) respectively. In the formu-
las for v(1), v(2), and v(3), the neglected terms are infinitely large near the points
O1 and O2, so their estimates O(ε2π/ω) and O(1) (as ε → 0) are uniform with
respect to (x, y) only on sets that are separated fromO1 andO2 (and independent
of ε). Analogously, the remainder estimate in the formula for w1 is uniform with
respect to (ξ, η) on bounded sets independent of ε.
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2.3.3 Reflection and transition coefficients

Using (2.11), (2.20), and the expression for v(3), we find the amplitude t(k, ε) of
the transited wave,

t(k, ε) =
2iA(k0)ei(α(1)(k0)+α(3)(k0))

2iA(k0)q0 +
H22H−

12
c1(k0)

(
k2 − k2r
ε4π/ω

) + o
(

ε2−δ
)
.

Suppose that k2 − k2r = O(ε2π/ω+2). Then the remainder

O
(
max{ε2π/ω , |k2 − k2r |/ε2π/ω}

)
arisen after substituting the formulas (2.18)-(2.20) can be united with the sum-
mand o

(
ε2−δ

)
, which arises from the remainder in the formula (2.8). As shown

below, the width of the resonant peak isO(ε4π/ω). Hence the condition put on k2

is not very burdensome; it allows us to use the stated asymptotics for t(k, ε) in the
most interesting region, i. e. in a neighborhood of the resonant peak. However
the condition can be weakened; to this end, in the expansions (2.18)-(2.20) one
should take two or more terms.

Analogously, from (2.12), (2.20), and expression for v(1) we find the ampli-
tude of the reflected wave

r(k, ε) =

e2iα
(1)(k0)

H22H−
12

c1(k0)

(
k2 − k2r
ε4π/ω

)
2iA(k0)q0 +

H22H−
12

c1(k0)

(
k2 − k2r
ε4π/ω

) (
1+ o

(
ε2−δ

))
.

This leads to the asymptotics for the transition and reflection coefficients,

T(k, ε) = |t(k, ε)|2 =
1

1+Q
(
k2 − k2r
ε4π/ω

)2 + o
(

ε2−δ
)
, (2.21)

R(k, ε) = |r(k, ε)|2 =

Q
(
k2 − k2r
ε4π/ω

)2
1+Q

(
k2 − k2r
ε4π/ω

)2 (1+ o
(

ε2−δ
))
,

where Q =
(
H22H−

12/2c1(k0)A(k0)
)2. It can be seen that the principal term of

the asymptotics of T(k, ε) has at k = kr a peak of height 1 and of width (at the
half-height)

Δ(ε) =
2√
Q

ε4π/ω.
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2.3.4 Asymmetric waveguide

Let a waveguide have two narrows of distinct diameters ε1 and ε2. Moreover
let the narrows have the distinct openings ω1 and ω2. In such a situation, one
can repeat all the above reasoning. The values H22/H−

12 and (b1(k0)/c1(k0))
2 (=

q20) must no longer be equal to one. At the same time, the amplitudes of the
outgoing waves in the asymptotics (2.11) and (2.12) can be distinct; we denote
these amplitudes by A(3) and A(1). As a result, we obtain

k2r (ε1, ε2) = k20 − b1(k0)
H+
12

H−
11

ε2π/ω1
1 − q0c1(k0)H21H22 ε2π/ω2

2 +

+o
(

ε2π/ω1+2−δ
1 + ε2π/ω2+2−δ

2

)
, (2.22)

T(k, ε1, ε2) =
1

1
4

(
z+
1
z

)2
+ P

(
k2 − k2r

ε2π/ω1
1 ε2π/ω2

2

)2 + o
(

ε2−δ
1 + ε2−δ

2

)
, (2.23)

where k2 = k2r +O
(
min{ε2π/ω1+2

1 , ε2π/ω2+2
2 }

)
,

z =
A(1)(k0)H22b1(k0)ε2π/ω1

1

A(3)(k0)H−
12c1(k0)ε2π/ω2

2

, P =

(
H22H−

12

2c1(k0)A(1)(k0)A(3)(k0)

)2
.

Thus, in an asymmetric waveguide, the principal term of the asymptotics of T is
less than one. The width of the peak at half-height (calculated by means of the
principal term of the asymptotics of the transition coefficient) equals

Δ(ε1, ε2) =

∣∣z+ z−1∣∣√
P

ε2π/ω1
1 ε2π/ω2

2 . (2.24)

2.4 Resonant tunneling in a three-dimensional waveguide

In this section, we present asymptotics for resonant frequencies and the transition
coefficients in a three-dimensional waveguide. To derive these formulas we have
first constructed (as well as in a two-dimensional waveguide) an asymptotics of
the wave function. The formula is rather unwieldy, and we do not present it here
(see the final formulas of Subsection 3.4.2).

2.4.1 Limit problems

Recall that G is a cylinderR ×D, Kj a cone with vertex atOj cutting out a domain
Sj on the unit sphere centered at the vertex of the cone, j = 1, 2. The set G(0, 0) =

G ∩ K1 ∩ K2 is divided into three parts G(1), G(2), and G(3), where G(1) and G(3)

are infinite domains and G(2) is a bounded resonator.
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We consider the first kind boundary value problems

Δv(x, y, z) + k2v(x, y, z) = 0, (x, y, z) ∈ G(q),

v(x, y, z) = 0, (x, y, z) ∈ ∂G(q),

where q = 1, 2, 3. Let v(1) be a solution of the problem in G(1) satisfying

v(1)(x, y, z) ∼
{
A(1)eiα

(1)
e−iν1xΨ1(y, z) as x → −∞,

r−μ11−1
1 Φ11(ϕ1) as r1 → 0,

where A(1)
> 0, α(1) ∈ R, ν1 =

√
k2 − λ21, λ

2
1 is the first eigenvalue of the operator

−Δ in the domain D, Ψ1 is an eigenfunction corresponding to the eigenvalue
λ21, and (r1, ϕ1) are polar coordinates with center at O1. The μ11(μ11 + 1) stands
for the first eigenvalue of the Laplace–Beltrami operator on the base S1 of the
cone K1 andΦ11 is an eigenfunction corresponding to the eigenvalue μ11(μ11+ 1).
Moreover let v(2) and v(2)− be solutions of the problem in G(2) such that

v(2)(x, y, z) ∼
{
r−μ21−1
2 Φ21(ϕ2) near O2,
q0r

−μ11−1
1 Φ11(ϕ1) near O1;

v(2)− (x, y, z) ∼
{
c1(k)r

μ21
2 Φ21(ϕ2) near O2,

(k2 − k20)r−μ11−1
1 Φ11(ϕ1) + b1(k)r

μ11
1 Φ11(ϕ1) near O1,

where (r2, ϕ2) are polar coordinates with center at the point O2, μ21 is such that
μ21(μ21 + 1) is the first eigenfunction of the Laplace-Beltrami operator on S2, Φ21
is a corresponding eigenfunction, and k20 an eigenvalue of the operator −Δ in
G(2). At last, let v(3) be a solution of the problem in G(3),

v(3)(x, y, z) ∼
{
A(3)eiα

(3)
eiν1xΨ1(y, z) as x → +∞,

r−μ21−1
2 Φ21(ϕ2) as r2 → 0,

where A(3)
> 0, α(3) ∈ R. We did not indicate the dependence of v(j), A(j), and

α(j) on the variable k for simplicity of notation.
Now, we consider the second kind boundary value problems

Δw(ξ, η) = F(ξ, η) − [Δ, ζ−]
(
H±
j1ρ

μj1 + H±
j2ρ

−μj1−1
)

Φ(ϕ) in Ωj,

w(ξ, η) = 0 on ∂Ωj,

where j = 1, 2, the domains Ωj are defined in Subsection 2.1.1, (ρ, ϕ) are polar
coordinates in Ωj centered at Oj, and the cut-off functions ζ− are similar to those
described in §3. The constants H±

j1, H
±
j2 are chosen so that w = o(ρ−μj1−1) as

ρ → ∞. By {w+
j ,H

+
j1,H

+
j2} (j = 1, 2), we denote the solution of the problem in Ωj

with right-hand side
Fj(ρ, ϕ) = −[Δ, ζ+]ρμj1Φj1(ϕ),

and by {w−
j ,H

−
j1,H

−
j2} the solution of the problem with right-hand side

Fj(ρ, ϕ) = −[Δ, ζ+]ρ−μj1−1Φj1(ϕ).
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2.4.2 Asymptotic formulas

Let k20 be an eigenvalue of the operator −Δ in the resonator G(2) and let k20 lie
between the first and the second thresholds. Near such an eigenvalue there is a
frequency that resonant tunneling occurs at. It is expressed by the formula

k2r (ε1, ε2) = k20 − b1(k0)
H+
12

H−
11

ε
2μ11+1
1 −q0c1(k0)

H−
21

H−
22

ε
2μ21+1
2 +

+o
(

ε
2μ11+3−δ
1 + ε

2μ21+3−δ
2

)
.

(2.25)

Near a resonance (as k2− k2r = O(min{ε
2μ11+3
1 , ε2μ21+32 })), the transition coefficient

satisfies

T(k, ε1, ε2) =
1

1
4

(
z+
1
z

)2
+ P

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2 (1+ o
(

ε2−δ
1 + ε2−δ

2

))
, (2.26)

where

z =
A(1)(k0)H−

22b1(k0)ε
2μ11+1
1

A(3)(k0)H−
12c1(k0)ε

2μ21+1
2

, P =

(
H−
22H

−
12

2c1(k0)A(1)(k0)A(3)(k0)

)2
.

The width of the resonant peak at its half-height calculated by means of the prin-
cipal term of the asymptotics for T(k, ε1, ε2) is

Δ(ε1, ε2) =
|z+ z−1|√

P
ε
2μ11+1
1 ε

2μ21+1
2 . (2.27)

The formulas of this Chapter were presented in [14] and the detailed proofs ex-
posed in the following Chapters were given in [15].



3 ASYMPTOTIC THEORY OF ELECTRON
TUNNELING IN THREE-DIMENSIONAL
WAVEGUIDES

3.1 Statement of the problem in a three-dimensional waveguide

3.1.1 Geometry of waveguide

We consider a waveguide with two narrows of small diameters ε1 and ε2. To
describe the waveguide, we first introduce three domains G, Ω1,Ω2 inR

3, which
are independent of the parameters ε1 and ε2.

Let G (Fig. 11) be a domain in R
3 that coincides outside of a large ball with

the union of two non-overlapping half-cylinders C1 and C2; their cross-sections
are denoted by D1 and D2. Each of D1 and D2 is a domain bounded by a (simple)
smooth closed path. The boundary of G is assumed to be smooth.

Pass on to Ω1 (Fig. 12). We denote by K1 and L1 open cones in R
3 whose

closures K1 and L1 have no common points except vertex. Suppose that there ex-

FIGURE 11 The domain G.
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FIGURE 12 Geometry of a narrow.

ists a straight line s1 passing through the vertex of K1 and L1 and lying (except the
vertex) in K1 ∪ L1. (The last condition is assumed only to simplify the description
in what follows.) The cone K1 (L1) cuts out on the unit sphere centered at the
vertex a domain S(K1) (S(L1)) bounded by a smooth closed path. Suppose that
Ω1 contains both cones K1 and L1 as well as a neighborhood of their vertex, more-
over, outside a large ball (with center at the vertex)Ω1 coincides with K1 ∪ L1; the
boundary of Ω1 assumed to be smooth. The domainΩ2 is described analogously
with cones K2, L2 and a straight line s2.

Now, we turn to the waveguide G(ε1, ε2) (Fig. 13). For the time being, we
let O1 and O2 be arbitrary (interior) points of the domain G placed (for the sake
of simplicity) in the half-cylinders C1 and C2, respectively. Introduce orthogonal
coordinates xj = (xj1, x

j
2, x
j
3)with originOj and axis x

j
1 parallel to the generatrices

of the half-cylinder Cj, j = 1, 2; the positive half-axis xj1 lies inside Cj. Suppose
the domain Ωj to be located so that the vertex of Kj and Lj coincides with Oj, the

straight line sj coincides with the axis x
j
1, and the positive half-axis x

j
1 lies inside

Kj. From now on we assume that the points O1 and O2 are disposed far enough
from the "non-cylindric" part of G so that the nearest toOj connected component

FIGURE 13 Geometry of the waveguide.
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of the set ∂G∩ ∂Lj coincides with ∂Cj∩ ∂Lj. Denote byΩj(ε j) the domain obtained
fromΩj by the contraction with center atOj and coefficient ε j > 0. In other words,
xj ∈ Ωj(ε j) if and only if (xj/ε j) ∈ Ωj. Let G(ε1, ε2) be the domain obtained from
G by changing C1 and C2 for C1 ∩ Ω1(ε1) and C2 ∩ Ω2(ε2), respectively.

3.1.2 Boundary value problem

A wave function of a free electron of energy E = h̄2k2/2m satisfies the boundary
value problem

Δu+ k2u = 0 in G(ε1, ε2), (3.1)

u = 0 on ∂G(ε1, ε2),

where ∂G(ε1, ε2) is the boundary of G(ε1, ε2). Moreover, u is subject to radiation
conditions at infinity. To formulate the conditions, we need the problem on the
cross-section Dj of the half-cylinder Cj, j = 1, 2:

Δv+ λ2v = 0 in Dj, (3.2)

v = 0 on ∂Dj.

The eigenvalues λ2jm of this problem, wherem = 1, 2, . . ., are called the thresholds;
they form an increasing sequence of positive numbers tending to +∞. Denote by
Ψj m an eigenfunction of the problem (3.2) that corresponds to the eigenvalue λ2j m
and is normalized by

νj m

∫
Dj

|Ψj m(x2, x3)|2dx2 dx3 = 1, (3.3)

where νj m =
√
k2 − λ2j m. Let Mj be the number of thresholds of the problem on

Dj, j = 1, 2, satisfying the inequality λ2 < k2 (for a fixed k). The function U+
m

defined in the half-cylinder C1 by

U+
m (x1) = exp (−iν1mx11)Ψ1m(x12, x

1
3), m = 1, . . . ,M1,

is a wave coming in C1 from infinity (remind that the positive half-axis x11 lies in
C1). Analogously, the function

U+
M1+m

(x2) = exp (−iν2mx21)Ψ2m(x22, x
2
3), m = 1, . . . ,M2,

is a wave coming from infinity in C2. The outgoing waves U−
m , m = 1, . . . ,M1 +

M2, are obtained from the incoming ones by complex conjugation: U−
m = U+

m .
It is well known (see, e.g., [12, Chapter 5]) that if k2 is not a threshold, then

there exist (smooth) solutions um,m = 1, . . . ,M1+M2, to problem (3.1) satisfying
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the radiation conditions

um(x) =

{
U+
m (x1) + ∑

M1
p=1 sm p U

−
p (x1) +O(exp (−δx11)), x

1
1 → +∞,

∑
M2
p=1 sm,p+M1U

−
p+M1

(x2) +O(exp (−δx21), x
2
1 → +∞,

m = 1, . . . ,M1,

um(x) =

{
∑
M1
p=1 sm p U

−
p (x1) +O(exp (−δx11)), x

1
1 → +∞,

U+
m (x2) + ∑

M2
p=1 sm, p+M1U

−
p+M1

(x2) +O(exp (−δx21), x
2
1 → +∞,

m = M1 + 1, . . . ,M1 +M2, (3.4)

where δ is a sufficiently small positive number. The functions um form a basis
modulo O(exp−δ|x|) in the space of bounded solutions of the problem (3.1) that
is any bounded solution to (3.1) is a linear combination of the functions um up
to a term O(exp−δ|x|); if for a given k there is no nonzero solutions to (3.1) ex-
ponentially decaying at infinity, then the functions um form a basis in the usual
sense. The scattering matrix S = ‖sp q‖p,q=1,...,M1+M2 is unitary.

The value

Rm =
M1

∑
q=1

|sm q|2, m = 1, . . . ,M1, (3.5)

is called the reflection coefficient for the wave U+
m , which comes in G(ε1, ε2) from

C1; the transition coefficient for this wave is defined by

Tm =
M2

∑
q=1

|sm, q+M1|2. (3.6)

Similar definitions can be given for the wave U+
M1+m

, which comes from C2.
In this work, we discuss only the situation where the parameter k2 is "be-

tween the first and the second thresholds" or, more precisely, in the interval
(λ211, λ

2
12) ∩ (λ221, λ

2
22) (supposed to be nonempty). Then the scattering matrix is

of size 2× 2 and (3.5) and (3.6) take the form

R = |s11|2, T = |s1 2|2.

We consider only the scattering of the wave coming from C1 and omit the indices
in the notation of the coefficients R = R(k, ε1, ε2) and T = T(k, ε1, ε2). The pur-
pose is to find the "resonant" values kr = kr(ε1, ε2) of the parameter k at which
the transition coefficient takes the maximal value. Moreover, we are interested in
the behavior of kr(ε1, ε2), T(k, ε1, ε2), and R(k, ε1, ε2) as ε1, ε2 → 0.
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FIGURE 14 The domain G(0,0).

3.2 Limit problems

3.2.1 First kind limit problems

Recall that the limit domain G(0, 0) consists of the unbounded parts G1, G2 and
the bounded resonator G0 (Fig. 14). The boundary value problems

Δv(x) + k2v(x) = f , x ∈ Gj, (3.7)

v(x) = 0, x ∈ ∂Gj,

are called the first kind limit problems; here j = 0, 1, 2, and ∂Gj is the boundary
of Gj.

We introduce function spaces for the problem (3.7) in G0. Let φ1, and φ2 be
smooth real functions in the closure G0 of G0 such that φj = 1 in a neighborhood
of Oj, j = 1, 2, and φ21 + φ22 = 1. For l = 0, 1, . . . and γj ∈ R, the space Vlγ1,γ2(G0)
is the completion in the norm

‖v;Vlγ1,γ2(G0)‖ =

⎛⎝∫
G0

l

∑
|α|=0

2

∑
j=1

φ2j (x)rj(x)
2(γj−l+|α|)|∂αv(x)|2 dx

⎞⎠1/2 (3.8)

of the set of smooth functions in G0 vanishing near O1 and O2; here rj(x) =

dist(x,Oj), α = (α1, α2, α3) is a multi-index, and ∂α = ∂|α|/∂xα1
1 ∂xα2

2 ∂xα3
3 .

Let S(Lj) be the domain that the cone Lj cuts out on the unit sphere centered
at Oj and let 0 < μj 1 < μj 2 < . . . stand for the numbers such that μj m(μj m +
1), m = 1, 2, . . ., are the eigenvalues of the Dirichlet problem for the Beltrami
operator in S(Lj). Proposition 3.1 follows from the well known general results
[13].

Proposition 3.1. Assume that |γj − 1| < μj 1 + 1/2. Then for every f ∈ V0γ1,γ2(G0)
and any k2 except the positive increasing sequence {k2p}∞

p=1 of eigenvalues, k
2
p → ∞,
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there exists a unique solution v ∈ V2γ1,γ2(G0) to the problem (3.7) in G0. The estimate

‖v;V2γ1,γ2(G0)‖ ≤ c‖ f ;V0γ1,γ2(G0)‖ (3.9)

holds with a constant c independent of f . If f is a smooth function in G0 vanishing near
O1 and O2 and v is any solution in V2γ1,γ2(G0) of the problem (2.6), then v is smooth in
G0 except at O1 and O2 and admits the asymptotic representations

v(x) = bj
1√rj J̃μj1+1/2(krj)ΦLj1(ϕj) +O(r

μj2
j ), rj → 0, j = 1, 2,

near the points O1 and O2, where (ρj, ϕj) are polar coordinates with center at Oj, J̃μ
stands for the Bessel function multiplied by a constant such that

1√
r
J̃μj1+1/2(kr) = rμj1 + o(rμj1),

ΦLj1 is an eigenfunction of the Beltrami operator corresponding to the eigenvalue μj1(μj1+

1) and normalized by the condition

(2μj1 + 1)
∫
S(Lj)

|ΦLj1(ϕ)|2dϕ = 1,

and bj are some constant coefficients.
If k2 = k20 is an eigenvalue of problem (3.7) then the problem (3.7) in G0 will be

solvable only if ( f , v0)G0 = 0 for any eigenfunction v0 corresponding to k20. Under such
conditions there exists a unique solution v to the problem (3.7) that is orthogonal to the
eigenfunctions and satisfies (3.9).

We turn to the problems (2.6) for j = 1, 2. Let χ0,j and χ∞,j be smooth real
functions in the closure Gj of Gj such that χ0,j = 1 in a neighborhood of Oj, χ0,j
vanishes outside a compact set, and χ20,j + χ2

∞,j = 1. We also assume that the
support suppχ∞,j is located in the cylindrical part Cj of Gj. For γ ∈ R, δ > 0, and
l = 0, 1, . . . , the space Vlγ, δ(Gj) is the completion in the norm

‖v;Vlγ, δ(Gj)‖ =

⎛⎝∫
Gj

l

∑
|α|=0

(χ20,jr
2(γ−l+|α|)
j + χ2∞,j exp(2δx

j
1))|∂αv|2 dxj

⎞⎠1/2 (3.10)
of the set of smooth functions in Gj vanishing near Oj and having compact sup-
ports.

Let S(Kj) be the domain that the cone Kj cuts out on the unit sphere centered
at Oj and let 0 < κj 1 < κj 2 < . . . stand for the numbers such that κj m(κj m + 1),
m = 1, 2, . . ., are the eigenvalues of the Dirichlet problem for the Beltrami opera-
tor in S(Kj). As was mentioned, in what follows we assume that k2 lies between
the first and the second thresholds, so in every Gj there is the only outgoing wave
U− (we drop the subscript in the notation because confusions will be excluded
by the context). The next proposition follows, e.g., from Theorem 5.3.5 in [12].
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Proposition 3.2. Let |γ − 1| < κj 1 + 1/2 and suppose that there is no nontrivial
solution to the the homogeneous problem (2.6) (where f = 0) in V2γ, δ(Gj) with arbitrary
small positive δ. Then for any f ∈ V0γ, δ(Gj) there exists a unique solution v to the
problem (2.6) that admits the representation

v = u+ Ajχ∞,jU
−

where Aj = const and u ∈ V2γ, δ(Gj), the δ being sufficiently small, while the estimate

‖u;V2γ, δ(Gj)‖ + |Aj| ≤ c‖ f ;V0γ, δ(Gj)‖ (3.11)

holds with a constant c independent of f . If, in addition, the f is smooth and vanishes
near Oj, then the solution v satisfies

v(xj) = aj
1√rj J̃κj 1+1/2(krj)ΦKj 1(ϕj) +O(r

κj 2
j ), rj → 0,

ΦKj1 denotes an eigenfunction to the Beltrami operator corresponding to κj1(κj1+ 1) and
normalized by

(2κj1 + 1)
∫
S(Kj)

|ΦKj1(ϕ)|2dϕ = 1,

aj is a constant.

3.2.2 Second kind limit problems

In the domains Ωj, j = 1, 2, introduced in Subsection 3.1.1, we consider the
boundary value problems

�w(ξ j) = F(ξ j) in Ωj, (3.12)

w(ξ j) = 0 on ∂Ωj,

which are called the second kind limit problems; by ξ j = (ξ
j
1, ξ
j
2, ξ
j
3) we mean

Cartesian coordinates with origin at Oj.
Let ρj(ξ j) = dist(ξ j,Oj) and let ψ0,j, ψ∞,j be smooth real functions in Ωj

such that ψ0,j equals 1 for ρj < N/2, vanishes for ρj > N, and ψ20,j + ψ2
∞,j = 1,

the N being a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . . , the
space Vlγ(Ωj) is the completion of the set C∞

c (Ωj) of smooth functions in Ωj with
compact supports in the norm

‖v;Vlγ(Ωj)‖ =

⎛⎝∫
Ωj

l

∑
|α|=0

(ψ0,j(ξ j)2 + ψ∞,j(ξ j)2ρj(ξ j)2(γ−l+|α|))|∂αv(ξ j)|2 dξ j
⎞⎠1/2 .
(3.13)

The next proposition is a corollary of Theorem 4.3.6 [12].
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Proposition 3.3. Let |γ − 1| < min{μj 1,κj 1} + 1/2. Then for every F ∈ V0γ(Ωj)

there exists a unique solution w ∈ V2γ(Ωj) to problem (2.7) and

‖w;V2γ(Ωj)‖ ≤ c‖F;V0γ (Ωj)‖ (3.14)

holds with a constant c independent of F. If F ∈ C∞
c (Ωj), then the w is infinitely

differentiable in Ωj and admits the representation

w(ξ j) = αjρ
−κj 1−1
j ΦKj 1(ϕj) +O(ρ

−κj 2−1
j ), ρj → ∞, (3.15)

in the cone Kj; here (ρj, ϕj) are polar coordinates in Ωj with center at Oj, the κj p, ΦKj 1
are the same as in Proposition 3.2, αj is a constant coefficient. In the cone Lj, a similar
expansion holds with β j, μj p, and ΦLj 1 instead of αj, κj p, and ΦKj 1. The αj and β j are
defined by

αj = −(F,wKj )Ω, β j = −(F,wLj )Ω,

where wKj and w
L
j are unique solutions to the homogeneous problem (2.7) such that, as

ρj → ∞,

wKj =

⎧⎨⎩
(

ρ
κj1
j + αKj ρ

−κj1−1
j

)
ΦKj1(ϕj) +O(ρ

−κj2−1
j ) in Kj;

βKj ρ
−μj1−1
j ΦLj1(ϕj) +O(ρ

−μj2−1
j ) in Lj;

(3.16)

wLj =

⎧⎨⎩ δLj ρ
−κj1−1
j ΦKj1(ϕj) +O(ρ

−κj2−1
j ) in Kj;(

ρ
μj1
j + γLj ρ

−μj1−1
j

)
ΦLj1(ϕj) +O(ρ

−μj2−1
j ) in Lj,

(3.17)

the coefficients αKj , β
K
j , γ

L
j , δ
L
j being constant.

Proposition 3.4. For any F ∈ C∞
c (Ωj) there exists a unique solution wj ∈ C∞(Ωj) to

(2.7) satisfying, as ρj → ∞, the asymptotic formulas

wj(ξ j) =

⎧⎨⎩ Hj 1ρ
−κj 1−1
j + Hj 2ρ

κj 1
j +O(ρ

−κj 2−1
j ) in Kj,

O(ρ−μj 2−1) in Lj,
(3.18)

the Hj 1 and Hj 2 being constant.

Proof. First, we prove that the constant βKj in (3.16) is nonzero. As is known,
for the first eigenvalue of the Beltrami operator, one can choose a positive eigen-
function. However, every eigenfunction Φm, m � 2, corresponding to any other
eigenvalue, is not of the fixed sign. When ΦKj1 is positive in S(Kj), there exists no

any subdomain Ω̃j of Ωj where wKj < 0. Indeed, if such a subdomain Ω̃j would

exist, then the restriction of wKj to Ω̃j is a solution of the Dirichlet problem in Ω̃j

vanishing at infinity (if Ω̃j is unbounded). We arrive at a contradiction, because
wKj = 0 in Ω̃j and consequently in Ωj.
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In L, the expansion wKj (ξ j) ∼ ∑m β jmρ
−κjm−1
j ΦKjm(ϕj) holds. Let βKj1 = 0,

then all the coefficients β jm must vanish. Otherwise there would exist a subdo-
main with wKj < 0, since the eigenfunctions ΦKjm, m � 2, take both positive and
negative values. This leads to a contradiction, because, as is known, a harmonic
function decreasing at infinity faster any power of ρj vanishes anywhere in Ωj.

Now, we prove the existence. Let ŵj be a bounded solution to the problem
(3.12). By Proposition 3.3

ŵj =

⎧⎨⎩ αjρ
−κj1−1
j ΦKj1(ϕj) +O(ρ

−κj2−1
j ) in Kj;

β jρ
−μj1−1
j ΦLj1(ϕj) +O(ρ

−μj2−1
j ) in Lj.

(3.19)

The function w = ŵj − βj
βKj
wKj is the desired solution w, here β j and βKj are the

coefficients in the expansions (3.19) and (3.16). The mentioned expansions result
in

ŵ− β j

βKj
wKj =

⎧⎨⎩ O(ρ
−κj2−1
j ) in Kj,(

Hj1ρ
−μj1−1
j + Hj2ρ

μj1
j

)
Φj1(ϕj) +O(ρ

−μj2−1
j ) in Lj,

where
Hj1 = αj − β jα

K
j /βKj , Hj2 = −β j/βKj . (3.20)

To prove the uniqueness, it is enough to verify that Fj = 0 leads to wj = 0.
When Fj = 0, the difference wj − Hj2wKj solves the homogeneous Dirichlet prob-
lem in Ωj, vanishes at infinity, and, hence, must be zero. Comparing asymptotic
expansions of Hj2wKj and wj as ρj → ∞ in L, we obtain Hj2βKj = 0. Since βKj �= 0,
we have Hj2 = 0 and wj = Hj2wKj = 0.

InΩj, consider the problem to find a function wj and numbers Hj1, Hj2 such
that

�wj = F− [�, ζKj ]
(
Hj1ρ

−κj1−1
j + Hj2ρ

κj1
j

)
ΦKj1(ϕj) in Ωj, (3.21)

wj = 0 on ∂Ωj, (3.22)

wj =

⎧⎨⎩ O(ρ
−κj2−1
j ) as ρj → ∞ in the cone Kj,

O(ρ
−μj2−1
j ) as ρj → ∞ in the cone Lj,

(3.23)

where j = 1, 2; the polar coordinates (ρj, ϕj) are the same as in Proposition 3.3;
the cut-off function ζKj is nonzero only in K, equals 1 as ρj > δ and 0 as ρj < δ/2,
δ being a positive number. The next proposition follows from Proposition 3.4.

Proposition 3.5. The problem (3.21)–(3.23) has a unique solution for any right-hand
side F ∈ C∞

c (Ωj).
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3.3 Tunneling in a waveguide with one narrow

The purpose of this section is to carry out preliminary constructions which are
necessary in further steps but not related with the phenomenon of resonance. We
thereby lighten the exposition of the next section and by the way demonstrate the
compound asymptotic method in a more simple situation.

We consider the electron motion in a waveguide G(ε) with one narrow. The
role of such a waveguide is played by G(ε, ε0) (see Subsection 3.1.1), where ε0 is
a fixed number, ε remains an infinitesimal parameter. Since only the first narrow
is considered, we omit the index "1" in the notation of its attributes; for instance,
we write "point O" instead of "point O1", etc.

3.3.1 Special solutions to the first kind homogeneous problems

The limit waveguide G(0) consists of two parts G1 and G2; each of them has one
conic point and one cylindric end at infinity. Let us consider G1. Suppose that
the homogeneous problem (3.7) in G1 has no nontrivial bounded solutions. In
what follows, to construct an asymptotics of a wave function, we will use special
solutions to the homogeneous problem (3.7) unbounded near the pointO.

In the cone K, consider the problem

Δu+ k2u = 0 in K, (3.24)

u = 0 on ∂K,

The function
vK1 (r, ϕ) =

1√
r
Ñ

κ1+1/2(kr)ΦK1 (ϕ), (3.25)

satisfies (3.24); here Ñκ stands for the Neumann function multiplied by a constant
such that

1√
r
Ñ

κ1+1/2(kr) = r−κ1−1+ o(r−κ1−1);

κ1,ΦK1 are the same as in Proposition 3.1. Let t �→ Θ(t) be a cut-off function on R

equal to one for t < δ/2 and zero for t > δ, δ being a positive number. Introduce
a solution of the problem (3.7) in G1 by the formula

v1(x) = Θ(r)vK1 (x) + ṽ1(x), (3.26)

where ṽ1 is the bounded solution of the problem (3.7) with right-hand side f =
−[�,Θ]vK1 . By Proposition 3.2, the v1 exists, is uniquely determined, and admits
the asymptotic expansions

v1 =

⎧⎨⎩
1√
r

(
Ñ

κ1+1/2(kr) + a1 J̃κ1+1/2(kr)
)

ΦK1 (ϕ) +O(rκ2), r → 0,
A1U−(x) +O(e−δx1), x1 → +∞,

(3.27)
where J̃κ is the same as in Propositions 3.1 and 3.2.
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Lemma 3.1. There holds the equality |A1|2 = Im a1.

Proof. Denote by GN,δ the truncated domain G1 ∩ {x1 < N} ∩ {r > δ}. By the
Green formula

0 = (�v+ k2v, v)GN,δ − (v,�v+ k2v)GN,δ = (∂v/∂n, v)∂GN,δ − (v, ∂v/∂n)∂GN,δ

= 2i Im(∂v/∂n, v)∂GN,δ .

The integral in the right-hand side is supported by the vertical part {x1 = N} of
the boundary and by the sphere {r = δ}. Taking account of (3.27) as x1 → +∞

and (3.3), we have

(∂v/∂n, v)x1=N =
∫
D1
A1

∂U−

∂x1
(x)A1U−(x)

∣∣∣∣
x1=N

dx2 dx3 + o(1) =

= |A1|2iν1
∫
GN,δ

|Ψ1(x2, x3)|2dx2 dx3 + o(1) = i|A1|2 + o(1),

Using (3.27) as r → 0 and the normalization of Φ1 (see proposition (3.2)), we
obtain

(∂v/∂n, v)r=δ =
∫
S(K)

[
− ∂

∂r
1√
r

(
Ñ

κ1+1/2(kr) + a1 J̃κ1+1/2(kr)
)]

ΦK1 (ϕ) ×

× 1√
r

(
Ñ

κ1+1/2(kr) + a1 J̃κ1+1/2(kr)
)

ΦK1 (ϕ)r2
∣∣∣
r=δ
dϕ + o(1) =

= −a1(2κ1 + 1)
∫
GN,δ

|Φ1(ϕ)|2dϕ + o(1) = −a1 + o(1).

Thus |A1|2 − Im a1 + o(1) = 0 as N → ∞ and δ → 0, which completes the proof.

Assume that v satisfies the homogeneous problem (2.6) in G1, and

v =

⎧⎨⎩
1√
r

(
a−Ñ

κ1+1/2(kr) + a+ J̃
κ1+1/2(kr)

)
ΦK1 (ϕ) +O(rκ2), r → 0;

A−U−(x) + A+U+(x) +O(e−δx1), x1 → +∞.
(3.28)

We find a relation between the coefficients a± and A±.
By (3.27) and (3.28), the function v − (a− − A+/A1)v1 − (A+/A1)v1 is a

bounded solution to the homogeneous problem (2.6) satisfying the natural radi-
ation conditions. Applying the Green formula as in the proof of Lemma 3.1, we
obtain that the amplitude A− − A1(a− − A+/A1) of the outgoing wave in the
asymptotics of the function at infinity must be 0. Under assumptions of Proposi-
tion 3.2 any such a solution is trivial. Thus, a− − A+/A1 = A−/A1 and

v =
A−

A1
v1 +

A+

A1
v1. (3.29)

Equating the coefficients in the asymptotics of the both sides as r → 0, we obtain
the relations

a− =
A−

A1
+
A+

A1
, a+ =

A−

A1
a1 +

A+

A1
a1.
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Rewrite them in the matrix form:(
a−
a+

)
=

1
|A1|2

(
A1 A1
a1A1 a1A1

)(
A−
A+

)
. (3.30)

Because of the assumption A1 �= 0 and Lemma 3.1, we have(
A−
A+

)
= − 1

2i Im a1

(
a1A1 −A1

−a1A1 A1

)(
a−
a+

)
. (3.31)

In a similar way, one can treat a solution of the problem in G2.

3.3.2 Passing through a narrow

Assume that a wave function in G(ε) is approximated, to the left of the narrow, by
a solution v1 to the first kind limit problems in G1 and, to the right of the narrow,
by a solution v2 to the first kind limit problem in G2; moreover,

v1 =
1√
r

(
a−1 Ñκ1+1/2(kr) + a+1 J̃κ1+1/2(kr)

)
ΦK1 (ϕ) +O(rκ2), r → 0;(3.32)

v2 =
1√
r

(
a−2 Ñμ1+1/2(kr) + a+2 J̃μ1+1/2(kr)

)
ΦL1 (ϕ) +O(rμ2), r → 0.

We seek a relation between the coefficients a±1 and a
±
2 . To this end, a formal

asymptotics of thewave function (more precisely, the principal term of the asymp-
totics) is constructed by the method of compound expansions.

Introduce a cut-off function χε,2 on G2 by

χε,2(x) =
(
1− Θ(ε−1r)

)
1G2(x),

where the cut-off function Θ was defined before the relation (3.26) and 1G2 is the
characteristic function of the domain G2 (equal to one in G2 and to zero outside
G2). The product χε,2v2 turns out to be defined on the whole waveguide G(ε).
Substitute it to the problem (3.1). The boundary condition is fulfilled and we get
the following discrepancy in the equation:

(� + k2)χε,2v2 = [�, χε,2]v2 + χε,2(� + k2)v2 = [�, 1− Θ(ε−1r)]v2.

Clearly, the discrepancy is non-zero only in a small neighborhood of the narrow,
in which v2 can be replaced by its asymptotics. Write out the principal part of the
discrepancy and transform it passing to the variables (ρ, ϕ), where ρ = ε−1r:

(� + k2)χε,2v2 ∼ [�, 1− Θ(ε−1r)]
(
a−2 r

−μ1−1+ a+2 r
μ1
)

ΦL1 (ϕ) =

= ε−2[�(ρ,ϕ), 1− Θ(ρ)]
(
a−2 ε−μ1−1ρ−μ1−1+ a+2 εμ1ρμ1

)
ΦL1 (ϕ).

Now, introduce the solutions {w±,H±
1 ,H

±
2 } of the problem (3.21)—(3.23)

where
F±(ρ, ϕ) = −[�, ζL]ρ±(μ1+1/2)−1/2ΦL1 (ϕ),
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the ζL denotes the function 1− Θ restricted to the cone L and then extended by
zero to the whole Ω. We add to χε,2v2 the function Θ(r)w(ε−1x), where

w = a−2 ε−μ1−1w− + a+2 εμ1w+, (3.33)

and substitute the sum to (3.1):

(� + k2)
(

χε,2(x)v2(x) + Θ(r)w(ε−1x)
)

=

= [�, χε,2(x)]
(
v2(x) −

(
a−2 r

−μ1−1+ a+2 r
μ1
)

ΦL1 (ϕ)
)

+ k2Θ(r)w(ε−1x)−
− [�, ζK(ε−1x)]

{
a−2 ε−μ1−1

(
H−
1 (ε−1r)−κ1−1+ H−

2 (ε−1r)κ1
)

+

+ a+2 εμ1
(
H+
1 (ε−1r)−κ1−1+ H+

2 (ε−1r)κ1
)}

ΦK1 (ϕ).

Thus, we have compensated the leading terms of the discrepancy with support
to the right of the narrow. As is shown below in the proof of Theorem 3.1, the
summand k2Θw is small. The remaining summands are supported to the left of
the narrow and cancel after adding χε,1v1 to χε,2v2 + Θw; the cut-off function χε,1
in G1 is defined similar to χε,2, and v1 satisfies the homogeneous first kind limit
problem in G1 and admits the expansion (3.32) near O with the coefficients

a−1 = a−2 H
−
1 εκ1−μ1 + a+2 H

+
1 εκ1+μ1+1,

a+1 = a−2 H
−
2 ε−μ1−κ1−1+ a+2 H

+
2 εμ1−κ1.

These equations imply(
a−1
a+1

)
=

(
H−
1 εκ1−μ1 H+

1 εκ1+μ1+1

H−
2 ε−μ1−κ1−1 H+

2 εμ1−κ1

)(
a−2
a+2

)
, (3.34)

(
a−2
a+2

)
=

1
H−
1 H

+
2 − H−

2 H
+
1

(
H+
2 εμ1−κ1 −H+

1 εκ1+μ1+1

−H−
2 ε−μ1−κ1−1 H−

1 εκ1−μ1

)(
a−1
a+1

)
.

(3.35)

Lemma 3.2. There holds the equality H−
1 H

+
2 − H−

2 H
+
1 = −1.

Proof. First of all, we express H±
1,2 in terms of the coefficients in (3.16) and (3.17).

Remind that {w−,H−
1 ,H

−
2 } is the solution of the problem (3.21)—(3.23) with

F(ρ, ϕ) = −[�, ζL]ρ−μ1−1ΦL1 (ϕ).

The solution of (3.12) with that right-hand side F is

ŵ(ρ, ϕ) = −ζL(ρ, ϕ) ρ−μ1−1ΦL1 (ϕ).

The coefficients in (3.19) are α = 0 and β = −1. From (3.20) we obtain that
H−
1 = αK/βK and H−

2 = 1/βK .
Turn to the solution {w+,H+

1 ,H
+
2 } of the problem (3.21)—(3.23) with

F(ρ, ϕ) = −[�, ζL]ρμ1ΦL1 (ϕ).
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The solution of the problem (3.12) corresponding to that right-hand side is

ŵ(ρ, ϕ) = wL1 (ρ, ϕ) − ζL(ρ, ϕ) ρμ1ΦL1 (ϕ).

The coefficients in (3.19) are α = γL and β = δL. From (3.20) it follows that
H+
1 = γL − δLαKβK , H+

2 = −δL/βK .
The obtained expressions lead to H−

1 H
+
2 − H−

2 H
+
1 = −γL/βK . It remains to

prove that γL/βK = 1. Denote by ΩR the truncated domain Ω ∩ {ρ < R}. By the
Green formula

0 = (�wK ,wL)ΩR − (wK ,�wL)ΩR = (∂wK/∂n,wL)∂ΩR − (wK , ∂wL/∂n)∂ΩR .

The right-hand side is supported by the sphere ρ = R. To calculate the integrals,
replace wK and wL by theirs asymptotics (3.16) and (3.17). As a result (compare
with the proof of Lemma 3.1) we get 0 = γL − βK + o(1) as R → ∞, which
completes the proof.

3.3.3 Formal asymptotic expressions

Here, we obtain asymptotic formulas for the amplitudes of the reflected and tran-
sited waves. We do not need the asymptotic formula for the wave function to this
end. In fact, in the preceding subsection, we employed the formula to find the re-
lation between coefficients in asymptotics of solutions to the first kind limit prob-
lems on the opposite sides of the narrow. The asymptotics of the wave function
will be explicitly exposed at the end of the subsection. We will use the formula,
when estimating remainders in asymptotic formulas.

Suppose that, in the domain G2, the wave function is approximated by a
solution of the first kind limit problem that admits an asymptotic expansion at
infinity of the form (3.28) with coefficients A−

2 = s̃12 and A+
2 = 0, where s̃12 is the

yet unknown amplitude of the transited wave. According to (3.30), this solution
has the asymptotics near the point O with coefficients(

a−2
a+2

)
=

1
|A2|2

(
A2 A2
a2A2 a2A2

)(
A−
2
A+
2

)
=
s̃12
A2

(
1
a2

)
,

where a2, A2 are similar to a1, A1 and are defined by the asymptotics of the form
(3.27) of the special solution v2 to the homogeneous limit problem in G2, which is
defined by an equality similar to (3.26).

As was shown in the previous subsection, in the domain G1, the wave
function is approximated by the solution v1 of the homogeneous limit problem,
which, near the point O, admits the asymptotics of the form (3.32) with coeffi-
cients (cf. (3.34))(

a−1
a+1

)
=
s̃12
A2

(
H−
1 εκ1−μ1 H+

1 εκ1+μ1+1

H−
2 ε−κ1−μ1−1 H+

2 ε−κ1+μ1

)(
1
a2

)
=

=
s̃12
A2

(
H−
1 εκ1−μ1 + a2H+

1 εκ1+μ1+1

H−
2 ε−κ1−μ1−1 + a2H+

2 ε−κ1+μ1

)
.
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According to (3.31) and Lemma 3.1, the coefficients in the asymptotics of v1 at
infinity (see (3.27)) are given by(

A−
1
A+
1

)
= − 1

2i Im a1

(
a1A1 −A1

−a1A1 A1

)(
a−1
a+1

)
= − s̃12

2iA2

(
I−
I+

)
,

where

I− =
1
A1

(a1H−
1 εκ1−μ1 + a1a2H+

1 εκ1+μ1+1− H−
2 ε−κ1−μ1−1 − a2H+

2 ε−κ1+μ1),

I+ = − 1
A1

(a1H−
1 εκ1−μ1 − a1a2H+

1 εκ1+μ1+1 + H−
2 ε−κ1−μ1−1+ a2H+

2 ε−κ1+μ1).

The value A+
1 = −s̃12 I+/2iA2 is the amplitude of the incoming wave and

supposed to equal one. This gives the first order approximations s̃12 and s̃11 to
the amplitudes of the transited and reflected waves:

s̃12 = −2iA2
I+
, s̃11 = A−

1 = − s̃12 I
−

2iA2
=
I−

I+
.

Substituting the expressions for I+ and I− and omitting terms of higher orders,
we obtain

s̃12 = −2iA1A2
H−
2

εκ1+μ1+1+O
(

ε4κ1+2
)
,

s̃11 = −A1
A1

(
1+ 2i Im a1

H−
1

H−
2

ε2κ1+1 +O
(

ε4κ1+2
))
,

where κ1 = min{κ1, μ1}. Using s̃12, we obtain the approximation to the transmis-
sion coefficient:

R̃ = |s̃12|2 =

∣∣∣∣∣2A1A2H−
2

∣∣∣∣∣
2

ε2κ1+2μ1+2 +O
(

ε6κ1+3
)

A direct calculation shows that

1
4|A2|2 (|I

+|2 − |I−|2) = − Im a1|A1|2
Im a2
|A2|2 (H

−
1 H

+
2 − H−

2 H
+
1 ) = 1.

Hence, R̃+ T̃ = 1 with T̃ = |s̃11|2 and

T̃ = 1−
∣∣∣∣∣2A1A2H−

2

∣∣∣∣∣
2

ε2κ1+2μ1+2+O
(

ε6κ1+3
)
.

Emphasize that the remainders in the above formulas denote the summands,
which were omitted in the explicit expressions for the first order approximations,
and do not show the distinction between the kept terms and the real values of the
coefficients we are interested in. We estimate this distinction in the next subsec-
tion.
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The first order approximation to the wave function is of the form

ũ1(x; ε) = χε,1(x)v1(x; ε) + Θ(r)w(ε−1x; ε) + χε,2(x)v2(x; ε), (3.36)

where, owing to (3.29) and (3.33),

v2(x; ε) =
s̃12(ε)

A2
v2(x), (3.37)

w(ξ; ε) = a−2 (ε)ε−μ1−1w−(ξ) + a+2 (ε)εμ1w+(ξ), (3.38)

v1(x; ε) =
A−
1 (ε)

A1
v1(x) +

A+
1 (ε)

A1
v1(x). (3.39)

3.3.4 Estimates of remainders

Introduce function spaces for the problem

�u+ k2u = f in G(ε), u = 0 on ∂G(ε). (3.40)

LetΘ be the same as was introduced before (3.26) and let ηj, j = 1, 2, be supported
by Gj and satisfy η1(x) + Θ(r) + η2(x) = 1 in G(ε). For γ ∈ R, δ > 0, and
l = 0, 1, . . . , the space Vlγ, δ(G(ε)) is the completion in the norm

‖v;Vlγ, δ(G(ε))‖ =

⎛⎝∫
G(ε)

l

∑
|α|=0

(
Θ2 (r2 + ε2)γ−l+|α| +

2

∑
j=1

η2j e
2δxj1

)
|∂αv|2 dx

⎞⎠1/2
(3.41)

of the set of smooth functions in G(ε) having compact supports.

Proposition 3.6. Let |γ − 1| < min{κ1, μ1} + 1/2, f ∈ V0γ, δ(G(ε)), and let u be a
solution to the problem (3.40) that admits the representation

u = ũ+ η1A−
1 U

−
1 + η2A−

2 U
−
2 , (3.42)

where A−
j = const and ũ ∈ V2γ, δ(G(ε)), δ being a small positive number. Then the

estimate
‖ũ;V2γ, δ(G(ε))‖ + |A−

1 | + |A−
2 | � c‖ f ;V0γ, δ(G(ε))‖ (3.43)

holds with a constant c independent of f and ε.

Proof. Here, we adapt to our purpose the proof of Theorem 5.5.1 in [10]. For the
sake of simplicity, denote the left-hand sides of (3.11) and (3.43) by

‖v;V2γ,δ,−(Gj)‖, ‖u;V2γ,δ,−(G(ε))‖,

respectively. Let the cut-off functions χε,j be the same as in Subsection 3.3.2.
Rewrite the right-hand side f of the problem (3.40) in the form

f (x) = f1(x; ε) + ε−γ−3/2F(ε−1x; ε) + f2(x; ε), (3.44)
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where x are Cartesian coordinates with center atO,

f j(x; ε) = χ√
ε,j(x) f (x), F(ξ; ε) = εγ+3/2Θ(

√
ερ) f (εξ).

From the definitions of the norms is follows that

‖ f j;V0γ,δ(Gj)‖ � cj‖ f ;V0γ,δ(G(ε))‖, j = 1, 2,

‖F;V0γ (Ω)‖ � C‖ f ;V0γ,δ(G(ε))‖, (3.45)

where the constants cj and C are independent of ε. Consider solutions vj and w
of the problems

�v+ k2v = f j, in Gj, v = 0 on ∂Gj;

�w = F, in Ω, w = 0 on ∂Ω,

respectively. Owing to Propositions 3.2 and 3.3, these problems are uniquely solv-
able and the estimates

‖vj;V2γ,δ,−(Gj)‖ � c̃j‖ f j;V0γ,δ(Gj)‖,
‖w;V2γ (Ω)‖ � C̃‖F;V0γ (Ω)‖ (3.46)

hold with constants c̃j and C̃ independent of ε. Put

U(x; ε) = χε,1(x)v1(x; ε) + ε−γ+1/2Θ(r)w(ε−1x; ε) + χε,2(x)v2(x; ε).

The mapping Rε : f �→ U( f ) is bounded uniformly with respect to ε, which
follows from the chain of inequalities

‖U;V2γ,δ,−(G(ε))‖ � ˜̃c1 (‖v1;V2γ,δ,−(G1)‖ + ‖w;V2γ (Ω)‖ + ‖v2;V2γ,δ,−(G2)‖
)

�

� ˜̃c2 (‖ f1;V0γ,δ(G1)‖ + ‖F;V0γ (Ω)‖ + ‖ f2;V0γ,δ(G2)‖
)

� ˜̃c3‖ f ;V0γ,δ(G(ε))‖,
(3.47)

where we took into account the estimates

‖x �→ Θ(r)w(ε−1x; ε);V2γ (G(ε))‖ � c εγ+3/2‖w;V2γ(Ω)‖
(with c independent of ε), (3.46), and (3.45). Clearly, U vanishes on the boundary
of G(ε). The discrepancy given by U in the Helmholtz equation is of the form

�U(x; ε) + k2U(x; ε) = f1(x; ε) + [�, χ(1)
ε (x)]v(1)(x; ε)+

+ ε−γ−3/2F(ε−1x; ε) + ε−γ+1/2[�,Θ(r)]w(ε−1x; ε)+

+ ε−γ+1/2k2Θ(r)w(ε−1x; ε) + f2(x; ε)+

+ [�, χε,2(x)]v2(x; ε) = f (x) + Sε f (x; ε).

(3.48)

Below, we prove that the operator Sε has small norm in the space V0γ,δ(G(ε)).
Hence, the operator I + Sε is invertible, the same is true for the operator of the
problem (3.40)

Aε : u �→ �u+ k2u : V̊2γ,δ,−(G(ε)) �→ V0γ,δ(G(ε)),
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where V̊2γ,δ,−(G(ε)) stands for the subspace in V2γ,δ,−(G(ε)) consisting of the func-
tions equal to zero on the boundary. Moreover, the inverse operator A−1

ε =
Rε(I + Sε)

−1 is uniformly bounded with respect to ε. This gives the inequality
(3.43).

In the last part of the proof, we establish

‖Sε f ;V0γ,δ(G(ε))‖ � c εd/2‖ f ;V0γ,δ(G(ε))‖,
where d is a small positive number, such that |γ − 1| + d < min{κ1, μ1} + 1/2;
here and further, c denotes, generally speaking, different constants independent
of ε.

To begin with, we estimate the norm of the operator f �→ [�, χε,1]v1. Since
the function [�, χε,1]v1 is supported in the region cε � r � Cε,

‖[�, χε,1]v1;V0γ,δ(G(ε))‖ � cεd‖[�, χε,1]v1;V0γ−d,δ(G(ε))‖,
d being a small positive number, such that γ − d − 1 > −min{κ1, μ1} − 1/2.
According to (3.46)

‖[�, χε,1]v1;V0γ−d,δ(G(ε))‖ � c‖v1;V2γ−d,δ(G1)‖ � c‖ f1;V0γ−d,δ(G1)‖.
Because r > c

√
ε on the support of f1,

‖ f1;V0γ−d,δ(G1)‖ � cε−d/2‖ f1;V0γ,δ(G1)‖
From the last three inequalities and (3.45), the estimate

‖[�, χε,1]v1;V0γ,δ(G(ε))‖ � cεd/2‖ f ;V0γ,δ(G(ε))‖
follows. In a similar way, one can estimate [�, χε,1]v1.

Now, consider the summand ε−γ+1/2Θ(r)w(ε−1x; ε). Assume that d satisfies
γ + d− 1 < min{κ1, μ1} + 1/2. Then, taking into account (3.46), we have

‖x �→ [�,Θ(r)]w(ε−1x; ε);V0γ,δ(G(ε))‖ �

� c‖x �→ [�,Θ(r)]w(ε−1x; ε);V0γ+d,δ(G(ε))‖ �

� cεγ+d−1/2‖ξ �→ [�ξ ,Θ(ερ)]w(ξ; ε);V0γ (Ω)‖ �

� cεγ+d−1/2‖w;V2γ+d(Ω)‖ � cεγ+d−1/2‖F;V0γ+d(Ω)‖.
Since the function F is nonzero only as ρ < c/

√
ε,

‖F;V0γ+d(Ω)‖ � cε−d/2‖F;V0γ (Ω)‖.
From here and (3.45), we obtain that

ε−γ+1/2‖x �→ [�,Θ(r)]w(ε−1x);V0γ,δ(G(ε))‖ � cεd/2‖ f ;V0γ,δ(G(ε))‖.
It remains only to estimate the summand ε−γ+1/2k2Θ(r)w(ε−1x; ε):

‖x �→ ε−γ+1/2Θ(r)w(ε−1x; ε);V0γ,δ(G(ε))‖ � cε2‖w;V0γ (Ω)‖ �

� cε2‖w;V2γ+2(Ω)‖ � cεd‖w;V2γ+d(Ω)‖ � cεd/2‖ f ;V0γ,δ(G(ε))‖.



50

The following theorem contains the main result of this section. Let u1 be a
solution of the problem (3.1) in G(ε) defined by (3.4) (it is supposed that M1 =
M2 = 1); s11 and s12 are the entries of scattering matrix elements determined by
this solution (the amplitudes of outgoing waves in its asymptotics at infinity).
The function ũ1 and the numbers s̃11, s̃12 are constructed in Subsection 3.3.3.

Theorem 3.1. Assume the hypotheses of Proposition 3.2 to be fulfilled and the constant
A1 in (3.27) to be nonzero. Then the following estimate is valid:

sup
x∈G(ε)

|u(x; ε) − ũ(x; ε)| + |s11(ε) − s̃11(ε)| + |s12(ε) − s̃12(ε)| �

� c(εκ2+1+ εγ+3/2)εκ1 ,
(3.49)

where γ > 0 satisfies |γ − 1| < κ1 + 1/2; κl = min{κl, μl}, l = 1, 2; κl(κl + 1)
(resp., μl(μl + 1)) is the first eigenvalue of the Beltrami operator on the base of the cone
K (resp., L); the constant c does not depend on ε.

Proof. The difference u− ũ satisfies the problem (3.40), where, according to (3.36),

f (x; ε) = −[�, χε,1]
(
v1(x; ε) − (a−1 (ε)r−κ1−1 + a+1 (ε)rκ1)ΦK1 (ϕ)

)
−

−[�, χε,2]
(
v2(x; ε) − (a−2 (ε)r−μ1−1 + a+2 (ε)rμ1)ΦL1 (ϕ)

)
−

−[�,Θ]w(ε−1x; ε)− k2Θ(r)w(ε−1x; ε).

(3.50)

Moreover, u − ũ is subject to the natural radiation conditions at infinity, i.e. its
asymptotics contains only outgoing waves (indeed both u and ũ have in their
asymptotics the incoming wave with amplitude 1. We are going to use Proposi-
tion 3.6. To this end, we estimate ‖ f ;V0γ,δ(G(ε))‖.

Consider the first summand in the right hand side of (3.50). Since it is sup-
ported by the region r = O(ε), one can replace v1 by the leading term of its
asymptotics as r → 0. Then

‖x �→ [�, χε,1]
(
v1(x; ε) − (a−1 (ε)r−κ1−1 + a+1 (ε)rκ1)ΦK1 (ϕ)

)
;V0γ,δ(G(ε))‖2

� c
∫
G(ε)

(r2 + ε2)γ
∣∣∣[�, χε,1](a−1 (ε)r−κ1+1 + a+1 (ε)rκ1+2)ΦK1 (ϕ)

∣∣∣2 dx;
the integration can be carried out only over the domain G1 (even over the cone
K), where χε,1(x) is equal to 1− Θ(ε−1r). Passing to the variables ξ = ε−1x and
taking into account (3.34), we obtain

‖x �→ [�, χε,1]
(
v1(x; ε) − (a−1 (ε)r−κ1−1 + a+1 (ε)rκ1)ΦK1 (ϕ)

)
;V0γ,δ(G(ε))‖ �

cεγ+3/2
(
|a−1 (ε)|ε−κ1−1+ |a+1 (ε)|εκ1

)
� cεγ+3/2

(
|a−2 (ε)|ε−μ1−1 + |a+2 (ε)|εμ1

)
.

Analogously,

‖x �→ [�, χε,2]
(
v2(x; ε) − (a−2 (ε)r−μ1−1+ a+2 (ε)rμ1)ΦL1 (ϕ)

)
;V0γ,δ(G(ε))‖

� cεγ+3/2
(
|a−2 (ε)|ε−μ1−1 + |a+2 (ε)|εμ1

)
.
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Turn to the summands containing w. Taking into consideration (3.38) and
the fact that, at infinity, w± behaves as O(ρ−κ2−1) in K and as O(ρ−μ2−1) in L
(since it solves the problem (3.21)–(3.23)), we get the estimate∫

G(ε)
(r2 + ε2)γ

∣∣∣[�,Θ]w(ε−1x; ε)
∣∣∣2 dx � c

(
|a−2 (ε)|ε−μ1−1+ |a+2 (ε)|εμ1

)2×
×
(∫
K
(r2 + ε2)γ

∣∣∣[�,Θ](ε−1r)−κ2−1ΦK2 (ϕ)
∣∣∣2 dx+

+
∫
L
(r2 + ε2)γ

∣∣∣[�,Θ](ε−1r)−μ2−1ΦL2 (ϕ)
∣∣∣2 dx) �

� c
(
|a−2 (ε)|ε−μ1−1 + |a+2 (ε)|εμ1

)2
ε2κ2+2,

where κ2 = min{κ2, μ2}. Finally, again due to (3.38), we see that∫
G(ε)

(r2 + ε2)γ
∣∣∣Θ(r)w(ε−1x; ε)

∣∣∣2 dx = ε2γ+3
∫

Ω
(ρ2 + 1)γ |Θ(ερ)w(ξ; ε)|2 dξ �

� c
(
|a−2 (ε)|ε−μ1−1+ |a+2 (ε)|εμ1

)2
ε2γ+3.

Combining the obtained estimates, we get

‖ f ;V0γ,δ(G(ε))‖ � c
(
|a−2 (ε)|ε−μ1−1+ |a+2 (ε)|εμ1

) (
εκ2+1+ εγ+3/2

)
. (3.51)

Now, apply Proposition 3.6 to the function u − ũ. In (3.43) the u and A−
j

must be replaced by u − ũ and s1j − s̃1j, respectively. From (3.51) and a±2 =

O(εκ1+μ1+1), we obtain

|s11(ε) − s̃11(ε)| + |s12(ε) − s̃12(ε)| � ‖u− ũ;V2γ,δ,−(G(ε))‖ �

� c(εκ2+1+ εγ+3/2)εκ1 . (3.52)

Moreover, since the norm ‖u− ũ;V2γ,δ,−(G(ε))‖ is bounded, the function
υγ,δ

(
u− ũ− (s11 − s̃11)η1U−

1 − (s12 − s̃12)η2U−
2
)

with υγ,δ = Θ2 (r2 + ε2)γ−l+|α| + ∑
2
j=1 η2j exp(2δx

j
1) belongs to the Sobolev space

W22 (G(ε)) and∥∥∥υγ

(
u− ũ− (s11 − s̃11)η1U−

1 − (s12 − s̃12)η2U−
2 );W22 (G(ε)

)∥∥∥ �

� ‖u− ũ;V2γ,−(G(ε))‖.
According to the known Sobolev imbedding theorem, any element u ofW22 (D) is
a continuous function and ‖u;C(D)‖ � ‖u;W22 (D)‖, D ⊂ R

3. Hence,

sup
x∈G(ε)

|u(x; ε) − ũ(x; ε) − (s11(ε) − s̃11(ε))(η1U−
1 )(x)−

−(s12(ε) − s̃12(ε))(η2U−
2 )(x)| � c(εκ2+1+ εγ+3/2)εκ1 .

Owing to (3.52), this gives

sup
x∈G(ε)

|u(x; ε) − ũ(x; ε)| � c(εκ2+1+ εγ+3/2)εκ1 ,

and we arrive at (3.49).
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3.4 Tunneling in a waveguide with two narrows

In this section, we consider the problem in the waveguide G(ε1, ε2) with two
narrows. The limit domain G(0, 0) consists of three parts: infinite domains G1,
G2 and the bounded "resonator" G0. For k2 in any interval, where the first kind
limit problem in the resonator has no eigenvalues, all the results of the preceding
section can be obtained by the same arguing for the waveguide with two nar-
rows. Some new difficulties arise, when k2 changes in a small neighborhood of
an eigenvalue of the limit problem in the resonator. For the sake of simplicity,
suppose that the eigenvalue is simple.

3.4.1 Special solution to the problem in resonator

Denote by k2e a simple eigenvalue of the operator −� in the domain G0 and
by ve an eigenfunction corresponding to k2e and normalized by the condition∫
G0

|ve|2dx = 1. According to Proposition 3.1, we have

ve(x) ∼
{
b1 1√r1 J̃μ11+1/2(ker1)Φ

L1
1 (ϕ1) near O1,

b2 1√r2 J̃μ21+1/2(ker2)Φ
L2
1 (ϕ2) near O2,

(3.53)

where, as before, (rj, ϕj) are polar coordinates with center at Oj (j = 1, 2); μj1 is a
number such that μj1(μj1+ 1) is the first eigenvalue of the Laplace–Beltrami oper-

ator on the base of Lj; Φ
Lj
1 denotes an eigenfunction corresponding to μj1(μj1+ 1)

and normalized by (2μj1 + 1)
∫ |ΦL21 |2dϕ = 1. For k2 in a small punctured neigh-

borhood of the number k2e , introduce solutions v
Oj , j = 1, 2, to the homogeneous

first kind limit problem in G0 by

vOj(x) = Θ(rj)v
Lj
1 (rj, ϕj) + ṽOj(x), (3.54)

where v
Lj
1 , j = 1, 2, are defined by (3.25) with K and κ replaced by Lj and μj1; ṽ

Oj

are the bounded solutions to the problem of the form (3.7) in the resonator for
fj = −[�,Θ]vL1j . It is clear, that, as k = ke, the problems to find ṽj are, generally

speaking, unsolvable and the functions vOj are defined incorrectly.
We set v01 = (k2 − k2e)vO1 and v02 = b2vO1 − b1vO2 . As follows from Lemma

3.3 below, such the linear combinations are correct even at k = ke. Owing to
Proposition 3.1,

v01(x) ∼

∼
⎧⎨⎩

1√
r1

(
(k2 − k2e )Ñμ11+1/2(kr1) + c1(k) J̃μ11+1/2(kr1)

)
Φ
L1
1 (ϕ1), r1 → 0;

c2(k) 1√r2 J̃μ21+1/2(kr2)Φ
L2
1 (ϕ2), r2 → 0;

(3.55)
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v02(x) ∼
⎧⎨⎩

1√
r1

(
b2Ñμ11+1/2(kr1) + d1(k) J̃μ11+1/2(kr1)

)
Φ
L1
1 (ϕ1), r1 → 0;

1√
r2

(
−b1Ñμ11+1/2(kr2) + d2(k) J̃μ21+1/2(kr2)

)
Φ
L2
1 (ϕ2), r2 → 0.

(3.56)

Lemma 3.3. In a punctured neighborhood of k = ke containing no eigenvalues of the
problem in the resonator, the relations

ṽOj = − bj
k2 − k2e

ve + v̂Oj

are valid, where bj are the coefficients in (3.53), v̂
Oj are some functions analytic in k2 in

the mentioned neighborhood.

Proof. First, we prove that (vOj , ve)GO = −bj/(k2 − k2e ), where vOj are defined by
(3.54). Consider

(�vOj + k2vOj , ve)Gδ
− (vOj ,�ve + k2ve)Gδ

,

in the domain Gδ obtained from G0 by cutting out the balls of radius δ centered
at Oj. The expression equals −(k2 − k2e)(vOj , ve)Gδ

. Applying the Green formula
as in the proof of Lemma 3.1, we obtain that it equals bj + o(1). It remains to let δ

go to zero.
Remembering that k2e is a simple eigenvalue, obtain that

ṽOj =
Bj(k2)
k2 − k2e

ve + v̂Oj , (3.57)

where Bj(k2) is independent of x; v̂
Oj are some functions analytic in k2 near the

point k2 = k2e . Multiplying (3.54) by ve, taking account of (3.57), the formula for
(vOj , ve)GO , and the normalization condition (ve, ve)G0 = 1, we find that Bj(k2) =

−bj + (k2 − k2e )B̃j(k2), B̃j being an analytic function. Together with (3.57) this
leads to the required statement.

Consider a solution v0 of the homogeneous first kind limit problem in the
resonator G0, which admits the expansions

v0(x) ∼
⎧⎨⎩

1√
r1

(
b−1 (k)Ñμ11+1/2(kr1) + b+1 (k) J̃μ11+1/2(kr1)

)
Φ
L1
1 (ϕ1), r1 → 0;

1√
r2

(
b−1 (k)Ñμ11+1/2(kr2) + b+2 (k) J̃μ21+1/2(kr2)

)
Φ
L2
1 (ϕ2), r2 → 0.

(3.58)
Comparing the asymptotics nearO2, one can see that

v0(x) =
1

b1c2(k)

(
b1b

+
2 (k) + d2(k)b−2 (k)

)
v01(x)−

b−2 (k)
b1
v02(x). (3.59)

This equation and the expansions (3.55) and (3.56) near O1 give the following
relation between the coefficients b±1 and b

±
2 :(

b−1
b+1

)
=
1
b1c2

(
(k2 − k2e )d2 − b2c2 (k2 − k2e )b1
c1d2 − c2d1 b1c1

)(
b−2
b+2

)
, (3.60)
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b−2
b+2

)
=

1
(k2 − k2e )d1 − b2c1

(
b1c1 −(k2 − k2e )b1

−c1d2 + c2d1 (k2 − k2e)d2 − b2c2
)(

b−1
b+1

)
,

where, for the sake of implicity, the dependence of the coefficients b±1,2, c1,2, d1,2
on k is not shown.

Lemma 3.4. Assume that the functions v01 and v02 make sense for a fixed k. Then, at
this k, (k2 − k2e )d1(k) = b2c1(k) − b1c2(k).

Proof. Let the domain Gδ be the same as in the proof of Lemma 3.3. Applying the
Green formula to v01 and v02 in Gδ, using the expansions (3.55) and (3.56), and
letting δ → 0, we complete the proof.

3.4.2 Formal asymptotic expansions

In the waveguide G(ε1, ε2), consider the wave function u1 such that

u1(x; k, ε1, ε2) ∼

∼
{
U+
1 (x1; k) + s11(k, ε1, ε2)U−

1 (x1; k), x11 → +∞,
s12(k, ε1, ε2)U−

2 (x2; k), x21 → +∞.

As in the case of a waveguide with one narrow, we derive approximations for
the coefficients s11 and s12 by using only solutions to the first kind limit problems
and the relation between coefficients in the asymptotics of these solutions near
the opposite sides of a narrow (cf. Subsection 3.3.2). At the end of the subsection,
we write out the first order approximation to u1, which, besides the mentioned
solutions to the first kind limit problems, contains solutions to the second kind
limit problems supported near the narrows.

In the domains Gj, j = 1, 2, u1 is approximated by the solutions vj to the first
kind limit problems in Gj, which admit the asymptotic expansions

vj(x
j; k, ε1, ε2) ∼⎧⎨⎩
1√rj

(
a−j (k, ε1, ε2)Ñκj1+1/2(krj) + a+j (k, ε1, ε2) J̃κj1+1/2(krj)

)
Φ
Kj
1 (ϕj; k), rj → 0;

A−
j (k, ε1, ε2)U−

j (xj; k) + A+
j (k, ε1, ε2)U+

j (xj; k), xj1 → +∞,

(3.61)

where xj are the coordinates with center at Oj introduced in Subsection 3.1.1. As
was shown in Subsection 3.3.1, the coefficients a±j and A

±
j are connected by the

relation (
a−j (k, ε1, ε2)
a+j (k, ε1, ε2)

)
=

⎛⎝ 1
Aj(k)

1
Aj(k)

aj(k)
Aj(k)

aj(k)
Aj(k)

⎞⎠(
A−
j (k, ε1, ε2)
A+
j (k, ε1, ε2)

)
; (3.62)

here Aj, aj are the coefficients in asymptotics of special solutions vj of the homo-
geneous first kind limit problems in Gj; the solutions vj admit asymptotics of the
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form (3.61) and are uniquely determined by the conditions a−j = 1, A+
j = 0; at

the same time, a+j = aj, A−
j = Aj (cf. (3.27)).

In the resonator G0, u1 is approximated by a solution v0 of the first kind limit
problem in G0, which satisfies (3.58). Let {w±

j ,H
±
j1,H

±
j2} be special solutions to the

problem (3.21)—(3.23) in Ωj analogous to the solutions introduced in Subsection
3.3.2. Then the coefficients b±j in (3.58) are connected with a

±
j by the equality(

b−j (k, ε1, ε2)
b+j (k, ε1, ε2)

)
=

⎛⎝ −H+
j2ε

μj1−κj1
j H+

j1ε
κj1+μj1+1
j

H−
j2ε

−μj1−κj1−1
j −H−

j1ε
κj1−μj1
j

⎞⎠(
a−j (k, ε1, ε2)
a+j (k, ε1, ε2)

)
.

Emphasize that a±j are the coefficients in the asymptotics near the vertex of the
cone Kj, and b±j are those near the vertex of Lj; that is why, we use a relation
similar to (3.35) rather then (3.34).

The last two equalities result in(
b−j (k, ε1, ε2)
b+j (k, ε1, ε2)

)
=

(
−β j(k, ε j) −βj(k, ε j)
αj(k, ε j) αj(k, ε j)

)(
A−
j (k, ε1, ε2)
A+
j (k, ε1, ε2)

)
, (3.63)

where

αj(k, ε j) =
1
Aj(k)

(
H−
j2ε

−κj1−μj1−1
j − aj(k)H−

j1ε
κj1−μj1
j

)
,

β j(k, ε j) =
1
Aj(k)

(
H+
j2ε

−κj1+μj1
j − aj(k)H+

j1 ε
κj1+μj1+1
j

)
.

(3.64)

To make formulas shorter, denote the entries of the matrix connecting b±1 and b
±
2

(cf. (3.60)) by Blm(k). Then(
A−
1 (k, ε1, ε2)
A+
1 (k, ε1, ε2)

)
=

( −β1(k, ε1) −β1(k, ε1)
α1(k, ε1) α1(k, ε1)

)−1
×

×
(
B11(k) B12(k)
B21(k) B22(k)

)( −β2(k, ε2) −β2(k, ε2)
α2(k, ε2) α2(k, ε2)

)(
A−
2 (k, ε1, ε2)
A+
2 (k, ε1, ε2)

)
.

Taking into account the relation( −β1(k, ε1) −β1(k, ε1)
α1(k, ε1) α1(k, ε1)

)−1
=
1
2i

(
α1(k, ε1) β1(k, ε1)
−α1(k, ε1) −β1(k, ε1)

)
and assuming that A+

1 = 1, A−
1 = s̃11, A+

2 = 0, A−
2 = s̃12, we obtain formulas for

the first order approximations s̃11 and s̃12 to the amplitudes s11 and s12,

s̃11 =
1
2i

(−B11α1β2 + B12α1α2 − B21β1β2 + B22β1α2
)
s̃12,

1 =
1
2i

(B11α1β2 − B12α1α2 + B21β1β2 − B22β1α2) s̃12,
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where the arguments of all the coefficients are omitted. By a direct calculation
(using Lemmas 3.1, 3.2, and 3.4), we find

|s̃11|2 − 1 =− Im(α1β1) Im(α2β2) (B11B22 − B12B21) |s̃12|2 =

=
Im a1
|A1|2

(
H−
11H

+
12− H+

11H
−
12

) Im a2
|A2|2

(
H−
21H

+
22 − H+

21H
−
22
) |s̃12|2 = |s̃12|2.

Let k2 run over a set separated from eigenvalues of the problem in the res-
onator. Then B12 �= 0 and the terms B12α1α2 and B12α1α2 are leading in the for-
mulas for s̃11 and s̃12. Using (3.64) and omitting the summands of higher order,
we get

s̃12(k, ε1, ε2) = − 2i
B12α1α2

(
1+O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
=

= − 2iA1A2
H−
12H

−
22

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

(
1+O

(
ε2κ11+11 + ε2κ21+12

))
,

s̃11(k, ε1, ε2) = − α1
α1

(
1+O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
= −A1

A1
+O

(
ε2κ11+11 + ε2κ21+12

)
,

where κj1 = min{κj1, μj1}, j = 1, 2.
Now, suppose that k2 coincides with an eigenvalue k2e of the problem in the

resonator. In this case, B12 = 0 and the expressions for s̃11 and s̃12 given above
make no sense. To derive correct formulas as k2 is near to k2e , one should consider
higher order terms. We have

2iA1A2
s̃12

= A1A2
(
−B12α1α2 + B11α1β2 − B22β1α2 +O

(
ε

μ11−κ11
1 ε

μ21−κ21
2

))
=

H−
12H

−
22

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

[
−B12 + B11

H+
22

H−
22

ε
2μ21+1
2 − B22

H+
12

H−
12

ε
2μ11+1
1 +O (. . .)

]
+

iH−
11H

−
22 Im a1

ε
−κ11+μ11
1 ε

κ21+μ21+1
2

[
B12 − B11

H+
22

H−
22

ε
2μ21+1
2 + B22

H+
11

H−
11

ε
2μ11+1
1 +O (. . .)

]
+

iH−
12H

−
21 Im a2

ε
κ11+μ11+1
1 ε

−κ21+μ21
2

[
B12 − B11

H+
21

H−
21

ε
2μ21+1
2 + B22

H+
12

H−
12

ε
2μ11+1
1 +O (. . .)

]
;

dots in brakets stand for ε2κ11+11 ε2κ21+12 . Denote by k2r the value of k
2, at which

the real part of 2iA1A2s̃−112 equals zero. Substitute B12(k) = (k2 − k2e )/c2(k) into
Re 2iA1A2s̃−112 = 0 and rewrite the resulting equality it in the k2 − k2e -resolved
form:

k2 − k2e = c2(k)B11(k)
H+
22

H−
22

ε
2μ21+1
2 − c2(k)B22(k)

H+
12

H−
12

ε
2μ11+1
1 +O

(
ε2κ11+11 ε2κ21+12

)
.

Since ε1 and ε2 are small, this equation can be solved by the step-by-step method.
Taking only the leading terms in the power series (in ε1, ε2) for k2r − k2e , changing
B11 and B22 for their expressions (3.60), and using the equalities cj(ke) = −b1bj,
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j = 1, 2, which follow from (3.54) and Lemma 3.3, we obtain the principal term in
the asymptotics of k2r :

k2r = k2e + b21
H+
12

H−
12

ε
2μ11+1
1 + b22

H+
22

H−
22

ε
2μ21+1
2 +O

(
ε4κ11+21 + ε4κ21+22

)
. (3.65)

Suppose that k2 − k2r = O
(

ε2κ11+11 + ε2κ21+12

)
, then

Re 2iA1A2s̃−112 =
H−
12H

−
22

b1b2

(
k2 − k2r +O

(
ε4κ11+21 + ε4κ21+22

))
.

Under the same assumptions, Im2iA1A2s̃−112 can be rewritten in the form

(Im a1)
ε
κ11−μ11
1

ε
κ21+μ21+1
2

(
b1H−

22

b2H−
11

ε
2μ11+1
1 − H

−
11H

−
22

b1b2
(k2 − k2r ) +O

(
ε4κ11+21 + ε4κ21+22

))
+

(Im a2)
ε
κ21−μ21
2

ε
κ11+μ11+1
1

(
b2H−

12

b1H−
22

ε
2μ21+1
2 − H

−
12H

−
21

b1b2
(k2 − k2r ) +O

(
ε4κ11+21 + ε4κ21+22

))
.

Now we take a more narrow interval for k2,

k2 − k2r = O
(

ε
2μ11+2+p1
1 + ε

2μ21+2+p2
2

)
,

p1, p2 being small positive numbers (as it turns out below, the resonant peak lies
inside this interval). Then, in the expression for the principal part of Im 2iA1A2s−112 ,
one can neglect the summands with k2 − k2r . The coefficients Aj depend on k; we
get rid of this dependence using the equalities Aj(k) = Aj(ke) +O(k2 − k2e ). As a
result, we obtain

s̃12(k, ε1, ε2) =

i
A1(ke)
|A1(ke)|

A2(ke)
|A2(ke)|

i
2

(
z+
1
z

)
+ P

k2 − k2r
ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

(
1+O(ε

p1
1 + ε

p2
2 )

)
, (3.66)

where

z =
b1H−

12|A1(ke)|ε
κ11+μ11+1
1

b2H−
22|A2(ke)|εκ21+μ21+1

2

, P =
H−
12H

−
22

2b1b2|A1(ke)||A2(ke)| .

Similarly,

s̃11(k, ε1, ε2) =
A1(ke)
A1(ke)|

i
2

(
z− 1
z

)
− P k2 − k2r

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

i
2

(
z+
1
z

)
+ P

k2 − k2r
ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

(
1+O(ε

p1
1 + ε

p2
2 )

)
.



58

Now, we find approximations to the transmission and reflection coefficients:

T̃(k, ε1, ε2) =
1

1
4

(
z+
1
z

)2
+ P2

(
k2 − k2r

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

)2 (1+O(ε
p1
1 + ε

p2
2 )

)
, (3.67)

R̃(k, ε1, ε2) =

1
4

(
z− 1
z

)2
+ P2

(
k2 − k2r

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

)2
1
4

(
z+
1
z

)2
+ P2

(
k2 − k2r

ε
κ11+μ11+1
1 ε

κ21+μ21+1
2

)2 (1+O(ε
p1
1 + ε

p2
2 )

)
.

It is easy to see that T̃ has a peak at k2 = k2r . The width of the peak at its half-
height is

Δ(ε1, ε2) =
|z+ z−1|√

P
ε
κ11+μ11+1
1 ε

κ21+μ21+1
2 . (3.68)

Finally, present the asymptotics of the wave function. Let the cut-off functions
t �→ Θ(t) and xj �→ χε j,j(x

j), j = 1, 2, be the same as in Subsections 3.3.2 and 3.3.3.
Introduce one more cut-off function x �→ χε1,ε2(x) by

χε1,ε2(x) = 1G0(x) (1− Θ(r1/ε1)) (1− Θ(r2/ε2)) ,

where 1G0 is the characteristic function of G0. The leading term of the asymptotics
of the wave function is of the form

ũ(x; k, ε1, ε2) = χ1,ε1(x
1)v1(x1; k, ε1, ε2)+

+ Θ(r1)w1(ε−11 x
1; k, ε1, ε2) + χε1,ε2(x)v0(x; k, ε1, ε2)+

+ Θ(r2)w2(ε−12 x
2; k, ε1, ε2) + χ2,ε2(x

2)v2(x2; k, ε1, ε2),

(3.69)

where, similarly to (3.29), (3.33), and (3.59),

v1(x1; k, ε1, ε2) =
s̃11(k, ε1, ε2)
A1(k)

v1(x1; k) +
1
A1(k)

v1(x1; k),

w1(ξ1; k, ε1, ε2) =a−1 (k, ε1, ε2)ε−κ11−1
1 w−

1 (ξ1) + a+1 (k, ε1, ε2)εκ11
1 w

+
1 (ξ1),

v0(x; k, ε1, ε2) =
1

b1c2(k)
(b1b+2 (k, ε1, ε2) + d2(k)b−2 (k, ε1, ε2))v01(x; k)−

− 1
b1
b−2 (k, ε1, ε2)v02(x; k),

w2(ξ2; k, ε1, ε2) =a−2 (k, ε1, ε2)ε−κ21−1
2 w−

2 (ξ2) + a+2 (k, ε1, ε2)εκ21
2 w

+
2 (ξ2),

v2(x2; k, ε1, ε2) =
s̃12(k, ε1, ε2)
A2(k)

v2(x2; k).
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Here, owing to (3.62), (3.63), and our choice of the coefficients A±
j ,

(
a−1
a+1

)
=

⎛⎜⎜⎝
1
A1

1
A1

a1
A1

a1
A1

⎞⎟⎟⎠(
s̃11
1

)
=

⎛⎜⎜⎝
s̃11
A1

+
1
A1

a1 s̃11
A1

+
a1
A1

⎞⎟⎟⎠ , (3.70)

(
a−2
a+2

)
=

⎛⎜⎜⎝
1
A2

1
A2

a1
A2

a2
A2

⎞⎟⎟⎠(
s̃12
0

)
=

⎛⎜⎝
s̃12
A2
a2 s̃12
A2

⎞⎟⎠ , (3.71)

(
b−2
b+2

)
=

( −β2 −β2
α2 α2

)(
s̃12
0

)
=

( −β2 s̃12
α2s̃12

)
.

3.4.3 Estimate of remainders

Introduce function spaces for the problem

�u+ k2u = f in G(ε1, ε2), u = 0 on ∂G(ε1, ε2). (3.72)

Let Θ be the same as was introduced before (3.26) and let ηj, j = 0, 1, 2, be sup-
ported by Gj and satisfy η1(x) + Θ(r1) + η0(x) + Θ(r2) + η2(x) = 1 in G(ε1, ε2).
For γ1,γ2 ∈ R, δ > 0, and l = 0, 1, . . . , the space Vlγ1,γ2,δ(G(ε1, ε2)) is the comple-
tion in the norm

‖u;Vlγ1,γ2,δ(G(ε1, ε2))‖ =
(∫
G(ε1,ε2) ∑

l
|α|=0

(
∑
2
j=1Θ2(rj) (r2j + ε2j )

γj−l+|α|+

+ ∑
2
j=1 η2j e

2δxj1 + η0

)
|∂αv|2 dx

)1/2
(3.73)

of the set of smooth functions in G(ε1, ε2) having compact supports.

Proposition 3.7. Let kr be a resonance and let |k2− k2r | = O(ε
2μ11+1
1 + ε

μ21+1
2 ). Assume

that the first eigenvalues κj1(κj1 + 1) and μj1(μj1 + 1) of the Beltrami operator on the
bases of the cones Kj and Lj, j = 1, 2, are subject to the condition μj1 < κj1 + 2,
γ1,γ2 satisfy the inequalities μj1 − 3/2 < γj − 1 < min{κj1, μj1} + 1/2, and f ∈
V0γ1,γ2,δ(G(ε1, ε2)). Suppose that u is a solution to the problem (3.72) that admits the
representation

u = ũ+ η1A−
1 U

−
1 + η2A−

2 U
−
2 ,

where A−
j = const and ũ ∈ V2γ1,γ2,δ(G(ε1, ε2)), δ being a small positive number. Then

the estimate

‖ũ;V2γ1,γ2,δ(G(ε1, ε2))‖ + |A−
1 |+ |A−

2 | � C(ε1, ε2, k)‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖ (3.74)
holds, where

C(ε1, ε2, k) =
c

ε
2κ11+2μ11+2
1 + ε

2κ12+2μ12+2
2 + |k− kr |

,

c being independent of f and ε1, ε2.

Proof. Divide the proof into several steps.
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Step A First, we construct an auxiliary function up. To this end, turn to the
asymptotics of the wave function exposed at the end of the preceding subsection.
All the solutions of the first kind limit problems that are used in the asymptotics,
are defined as k2 ∈ R; nevertheless, they make sense for complex k2, too. As
follows from (3.66), the coefficient s̃12 has a pole k2p in the lower complex half-
plane, and

k2p = k2r −
i
2P

(
z+
1
z

)(
1+O

(
ε21 + ε22

))
=

= k2r − i
⎡⎣(b1|A1(k0)|

H−
12

)2
ε
2κ11+2μ11+2
1 +

(
b2|A2(k0)|
H−
22

)2
ε
2κ21+2μ21+2
2

⎤⎦×

×
(
1+O

(
ε21 + ε22

))
.

Multiply all the solutions of the limit problems in the expression for ũ1 by

(A2(k)b2/H−
22s̃12(ε1, ε2, k))ε

κ21+μ21+1
2 ,

substitute k = kp, and denote the resulting functions by the same symbols with
addition index "p". Then

vjp(x; ε1, ε2) = bjH
−
j2ε

κj1+μj1+1
j vj(x; kp),

v0p(x; ε1, ε2) =

(
− 1
b1

+O
(

ε2κ11+11 + ε2κ21+12

))
v01(x; kp) +

+ ε
2μ2+1
2

(
b2H+

22

b1H−
22

+O
(

ε2κ11+11 + ε2κ21+12

))
v02(x; kp),

wjp(ξ j; ε1, ε2) =
bj
H−
j2

ε
μj1
j

(
w−
j (ξ j) + aj(kp)ε

2κj1+1
j w+

j (ξ j)
)
,

where j = 1, 2; the dependence of kp on ε1, ε2 is not shown. We set

up(x; ε1, ε2) = χ1,ε1(x
1)v1p(x1; ε1, ε2)+

Θ(ε−3/41 r1)w1p(ε−11 x
1; ε1, ε2) + χε1,ε2(x)v0p(x; ε1, ε2)+

Θ(ε−3/42 r2)w2(ε−12 x
2; k, ε1, ε2) + χ2,ε2(x

2)v2(x2; k, ε1, ε2),

where the cut-off functions Θ, χε j,j, and χε1,ε2 are the same as in the previous
subsection. Obviously, the principal part of the norm of up is given by χε1,ε2v0p.
Taking into account the formula for v0p, the definition of v01 (cf. Subsection 3.4.1),
and Lemma 3.3, we obtain ‖χε1,ε2v0p‖ = ‖ve‖ + o(1). For later use, note that the
function (� + k2p)up is nonzero only in the region {r1 < c1ε

3/4
1 } ∪ {{r2 < c2ε

3/4
2 }.

Arguing as in the proof of Theorem 3.1, we obtain the estimate

‖(� + k2p)up;V
0
γ1,γ2,δ(G(ε1, ε2))‖ �

� c
[

ε
μ11
1

(
εκ12+1
1 + ε

γ1+3/2
1

)
+ ε

μ21
2

(
εκ22+1
2 + ε

γ2+3/2
2

)]
.

(3.75)
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Step B This part contains somewhat modified arguments from the proof of
Proposition 3.6. Denote the left-hand sides of the inequalities (3.11) and (3.74)
by

‖v;V2γj,δ,−(Gj)‖2, ‖u;V2γ1,γ2,δ,−(G(ε1, ε2))‖2,
respectively. Rewrite the right-hand side of the problem (3.72) in the form

f (x) = f1(x; ε1) + f0(x; ε1, ε2) + f2(x; ε2)+

+ ε
−γ1−3/2
1 F1(ε−11 x

1; ε1) + ε
−γ2−3/2
2 F2(ε−12 x

2; ε2),
(3.76)

where

f0(x; ε1, ε2) = χ√
ε1,

√
ε2(x) f (x),

f j(x; ε j) = χ√
ε j,j(x) f (x),

Fj(ξ j; ε j) = ε
γj+3/2
j Θ(

√
ε jρj) f (xOj + ε jξ

j);

x are arbitrary Cartesian coordinates; xOj denote the coordinates of the points
Oj in the coordinate system x; xj are introduced in Subsection 3.1.1. From the
definition of the norms it follows that

‖ f0;V0γ1,γ2(G0)‖ � c0‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖,
‖ f j;V0γj,δ(Gj)‖ � cj‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖,
‖Fj;V0γ(Ωj)‖ � Cj‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖,

(3.77)

where ci and Cj are independent of ε1, ε2. Consider the solutions v0, vj, and wj of
the problems

�v+ k2v = f0, in G0, v = 0 on ∂G0;

�v+ k2v = f j, in Gj, v = 0 on ∂Gj;

�w = Fj, in Ωj, w = 0 on ∂Ωj,

respectively; moreover, vj satisfy the natural radiation conditions at infinity. Ow-
ing to Propositions 3.2 and 3.3, the problems in Gj and Ωj, j = 1, 2, are uniquely
solvable, and the following estimates

‖vj;V2γj,−(Gj)‖ � c̃j‖ f j;V0γj,δ(Gj)‖,
‖wj;V2γj(Ωj)‖ � C̃j‖Fj;V0γj(Ωj)‖

(3.78)

hold, where c̃j and C̃j are independent of ε1, ε2.

Step C Suppose that f in (3.72) analytically depends in k, takes values in the
spaceV0γ1,γ2,δ(G(ε1, ε2)), and, for k = ke, satisfies the condition (χ√

ε1,
√

ε2 f , ve)G0 =

0 (the subspace of such functions is denoted byV0,⊥γ1,γ2,δ
(G(ε1, ε2))). Then the prob-

lem in G0 is solvable for any k in a neighborhood of ke. Assume the solution v0 to
be subject to the condition (v0, ve)G0 = 0 as k = ke. According to Proposition 3.1,

‖v0;V2γ1,γ2(G0)‖ � c̃0‖ f0;V0γ1,γ2(G0)‖, (3.79)
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where c̃0 does not depend on k. We set

U(x; ε1, ε2) = χε1,1(x)v1(x; ε1) + ε
−γ1+1/2
1 Θ(r1)w1(ε−11 x

1; ε1)+

+χε1,ε2(x)v0(x; ε1, ε2) + ε
−γ2+1/2
2 Θ(r2)w2(ε−12 x

2; ε2) + χε2,2(x)v2(x; ε).

The estimates (3.77)—(3.79) result in

‖U;V2γ1,γ2,−(G(ε1, ε2))‖ � ˜̃c‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖, (3.80)

where˜̃c is independent of ε1, ε2. This means that the mapping Rε1,ε2 : f �→ U( f ) is
uniformly bounded with respect to ε1, ε2. Arguing as in the proof of Proposition
3.6, one can verify that (� + k2)Rε1,ε2 = I + Sε1,ε2, where Sε1,ε2 is an operator in
V0γ1,γ2,δ(G(ε1, ε2)) of small norm.

Remind that the operator Sε1,ε2 is defined on the subspace V
0,⊥
γ1,γ2,δ

(G(ε1, ε2)).

We need the image of the operator Sε1,ε2 be included in V
0,⊥
γ1,γ2,δ

(G(ε1, ε2)), too. To

this end, replace the mapping Rε1,ε2 by R̃ε1,ε2 : f �→ U( f ) + a( f )up , where up is
constructed in A, a( f ) being a constant. Then (� + k2)R̃ε1,ε2 = I + S̃ε1,ε2, with
S̃ε1,ε2 = Sε1,ε2 + a(·)(� + k2)up. The condition (χ√

ε1,
√

ε2 S̃ε1,ε2 f , ve)G0 = 0 as k = ke
gives a( f ) = −(χ√

ε1,
√

ε2Sε1,ε2 f , ve)G0/(χ√
ε1,

√
ε2(� + k20)up, ve)G0 .

Prove that ‖S̃ε1,ε2‖ � c‖Sε1,ε2‖, c being independent of ε1, ε2, k. We have

‖S̃ε1,ε2 f‖ � ‖Sε1,ε2 f‖ + |a( f )| · ‖(� + k2)up‖.

The estimate (3.75), the formula for kp, the condition k2 − k20 = O(ε
2μ11+1
1 +

ε
2μ21+1
2 ), and the inequalities γj > μj1 − 1/2 result in

‖(� + k2)up;V0γ1,γ2,δ‖ � |k2 − k2p|‖up;V0γ1,γ2,δ‖ + ‖(� + k2p)up;V
0
γ1,γ2,δ‖ �

� c
(
|k2 − k2p| +

[
ε

μ11
1

(
εκ12+1
1 + ε

γ1+3/2
1

)
+ ε

μ21
2

(
εκ22+1
2 + ε

γ2+3/2
2

)])
�

� c(ε
2μ11+1
1 + ε

2μ21+1
2 ).

Since the supports of the functions (� + k2p)up and χ√
ε1,

√
ε2 do not intersect,

|(χ√
ε1,

√
ε2(� + k20)up, ve)G0 | = |(k20 − k2p)(up , ve)G0 | � c(ε

2μ11+1
1 + ε

2μ21+1
2 ),

and, since γj − 1 < min{κj1, μj1} + 1/2),

|(χ√
ε1,

√
ε2Sε1,ε2 f , ve)G0 | � ‖Sε1,ε2 f ;V

0
γ1,γ2,δ(G(ε1, ε2))‖×

× ‖χ√
ε1,

√
ε2ve;V

0−γ1,−γ2
(G0)‖ � c‖Sε1,ε2 f ;V

0
γ1,γ2,δ(G(ε1, ε2))‖.

Hence,
|a( f )| � c‖Sε1,ε2 f ;V

0
γ1,γ2,δ(G(ε1, ε2))‖/(ε

2μ11+1
1 + ε

2μ21+1
2 )

and ‖S̃ε1,ε2 f‖ � c‖Sε1,ε2 f‖.
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Thus the operator I + S̃ε1,ε2 in V
0,⊥
γ1,γ2,δ

(G(ε1, ε2)) is invertible, which is also
true for the operator of the problem (3.40)

Aε1,ε2 : u �→ �u+ k2u : V̊2,⊥γ1,γ2,−(G(ε1, ε2)) �→ V0,⊥γ1,γ2,δ
(G(ε1, ε2));

here V̊2,⊥γ1,γ2,−(G(ε1, ε2)) denotes the space of elements of V2γ1,γ2,−(G(ε1, ε2)) that

vanish on ∂G(ε1, ε2) and are sent by the operator � + k2 to V0,⊥γ1,γ2,δ
. The inverse

operator A−1
ε1,ε2 = R̃ε1,ε2(I+ S̃ε1,ε2)

−1 is bounded uniformly with respect to ε1, ε2, k.
Hence, the inequality (3.74) holds with C independent of ε1, ε2, k.

Step D Consider now a solution u of the problem (3.72) with arbitrary f in
C∞
c (G(ε1, ε2)). Rewrite this solution in the form (u− b( f )up) + b( f )up , where

b( f ) = ( f , χ√
ε1,

√
ε2ve)G0/((� + k2)up, χ√

ε1
√

ε2ve)G0 .

The difference u− b( f )up is a solution of the problem (3.72) with right-hand side
f − b( f )(� + k2)up in V0,⊥γ1,γ2,δ

(G(ε1, ε2)). From C and the obvious inequality
|b( f )| � c|k2 − k2p|−1, we obtain

‖u− b( f )up ;V2γ1,γ2,−(G(ε1, ε2))‖ � c‖ f − b( f )(� + k2)up;V0γ1,γ2,δ(G(ε1, ε2))‖ �

� c
ε
2μ11+1
1 + ε

2μ21+1
2

|k2 − k2p|
‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖.

Hence,

‖u;V2γ1,γ2,−(G(ε1, ε2))‖ � ‖u− b( f )up ;V2γ1,γ2,−(G(ε1, ε2))‖+
+|b( f )|‖up ;V2γ1,γ2,−(G(ε1, ε2))‖ �

c
|k2 − k2p|

‖ f ;V0γ1,γ2,δ(G(ε1, ε2))‖.

It remains to take account of

|k2 − k2p| � c
(
|k2 − k2r | + ε

2κ11+2μ11+2
1 + ε

2κ21+2μ21+2
2

)
as k ∈ R.

Remark 3.1. In the formulation of the theorem, the requirement

|k2 − k2r | = O(ε
2μ11+1
1 + ε

2μ21+1
2 )

and the conditions on κj1, μj1 are not essential. They can be eliminated by using
for proof an auxiliary function up, such that

‖(� + k2)up‖ = O(ε
2κ11+2μ11+2
1 + ε

2κ21+2μ21+2
2 ).

One can construct such up with the help of an higher order approximation to the
wave function u1.
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Consider the solution u1 of the homogeneous problem (3.1) defined by (3.4).
Let s11 and s12 be the entries of scattering matrix determined by this solution. The
function ũ1 and the numbers s̃11, s̃12 are constructed in Subsection 3.4.2.

Theorem 3.2. Let the hypotheses of Propositions 3.2 and 3.7 be fulfilled and assume that
the coefficients Aj introduced below the relations (3.61) are nonzero. Then the estimate

sup
x∈G(ε1,ε2)

|u1(x) − ũ1(x)| + |s11 − s̃11|+ |s12 − s̃12| �

� cεκ11+μ11+1
1

ε
μ11
1 (εκ12+1

1 + ε
γ1+3/2
1 ) + ε

μ21
2 (εκ22+1

2 + ε
γ2+3/2
2 )(

|k2 − k2r | + ε
2κ11+2μ11+2
1 + ε

2κ21+2μ21+2
2

)2
holds, where κj2 = min{κj2, μj2}, j = 1, 2; c is independent of ε1, ε2, k.
Proof. The difference u1 − ũ1 is in the space V2γ1,γ2,−(G(ε1, ε2)), and f1 := (� +

k2)u1 − ũ1 is in V0γ1,γ2,δ(G(ε1, ε2)). By Proposition 3.7,

‖u1 − ũ1;V2γ1,γ2,−(G(ε1, ε2))‖ � c
‖ f1;V0γ1,γ2,δ(G(ε1, ε2))‖

|k2 − k2r | + ε
2κ11+2μ11+2
1 + ε

2κ21+2μ21+2
2

.

Arguing as in the proof of Theorem 3.1, we obtain that

‖ f1;V0γ1,γ2,δ(G(ε1, ε2))‖ �c
(
(|a−1 |ε−κ11−1

1 + |a+1 |εκ11
1 )(εκ12+1

1 + ε
γ1+3/2
1 )+

+ (|a−2 |ε−κ21−1
2 + |a+2 |εκ21

2 )(εκ22+1
2 + ε

γ2+3/2
2 )

)
.

From (3.70)-(3.71), it follows that

|a−j |ε
−κj1−1
j + |a+j |ε

κj1
j � cεκ11+μ11+1

1 ε
μj1
j (ε

κj2+1
j + ε

γj+3/2
j ).

The required estimate follows from the last three inequalities by the arguing used
at the end of the proof of Theorem 3.1.



4 CONCLUSION

We considered an infinite waveguide with two cylindric ends and two narrows
of diameters ε1 and ε2. We have given an asymptotic description of the electron
wave propagation in such a waveguide as ε1 and ε2 tend to zero. The wave num-
ber k is assumed to be between the first and the second thresholds, so only one
incoming and one outgoing wave may propagate in every outlet of the waveg-
uide to infinity.

The asymptotic formulas depend on the shape of narrows (in the limit as
ε1, ε2 → 0) of the waveguide. In the 2D case, assume that a neighborhood of each
narrow, in the limit as ε1, ε2 → 0, coincides with a neighborhood of the vertex of
two vertical angles of opening ω1 and ω2, respectively.

While the diameters and openings of the narrows are the same (ε1 = ε2 = ε,
ω1 = ω2 = ω) and the resonator is symmetric in a sense, the resonant energies
(i.e., the energies k2 at which the resonant tunneling occurs) are given by (2.17):

k2r (ε) = k20 + k1ε2π/ω +O(ε2π/ω+2),

where k20 is an eigenvalue of the resonator (part of the waveguide between two
narrows obtained after passing to the limit as ε → 0), k1 is a constant independent
of ε, which can be found numerically. Near k = kr , the transition coefficient is of
the form (see (2.21))

T(k, ε) =
1

1+Q
(
k2 − k2r
ε4π/ω

)2 ,
Q being a positive constant independent of ε. From here we find the width of the
resonant peak at half-height:

Δ(ε) =
2√
Q

ε4π/ω.

To obtain these formulas we first construct the asymptotic representation (2.8) of
the corresponding wave function using the method of "compound" asymptotics.

Analogous formulas (2.22)—(2.24) (becoming more sophisticated) are valid
for asymmetric waveguides where the resonator is not symmetric and (or) the
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narrows have distinct openings and diameters. In particular, in contrast to the
symmetric case, the principal part of the asymptotics already shows that the max-
imum of the transmission coefficient is less than 1.

In the 3D case we assume that a neighborhood of each narrow, in the limit as
ε j → 0, coincides with a neighborhood of the vertex of a double cone. Asymptotic
formulas (2.25)—(2.27), (3.65)—(3.68) for the basic characteristics of the process
are analogous to those in the 2D case. The exponent 2π/ωj of ε j must be replaced
by the number μ such that μ(μ + 1) is the first eigenvalue of the Dirichlet problem
for the Beltrami operator on the base of the cone.

Various electronic devices (transistors, key devices, electron energy mono-
chromators, amplifiers) can be based on waveguides of variable cross-section.
The formulas obtained can be useful to calculate characteristics of these devices
and to provide optimal regimes of theirs operation.



YHTEENVETO (FINNISH SUMMARY)

Halkaisijaltaan muunnellun kvanttiaaltojohtimen kapenemat toimivat tehokkai-
na potentiaalivalleina elektronin pitkittäissuuntaiselle liikkeelle. Kaksi kapene-
maa muodostaa kvanttiresonaattorin, jossa resonoiva tunnelointi voi tapahtua.
Tämä tarkoittaa sitä, että elektronit, joiden energia on lähellä resonanssia, läpäi-
sevät resonaattorin todennäköisyydellä lähellä yhtä. Kuvailemme asymptootti-
sesti elektroniaallon etenemistä kvanttiaaltojohtimessa, jossa on kaksi kapene-
maa. Aaltoluvun k oletetaan olevan ensimmäisen ja toisen kynnysluvun välissä,
jolloin vain sisään tuleva ja poismenevä aalto voivat edetä jokaisessa aaltojohti-
men päässä äärettömyydessä. Esitämme asymptoottiset kehitelmät aaltofunk-
tioille, ja heijastus- ja siirtymäkertoimille, kun kapenemien halkaisijat menevät
nollaan. Lisäksi esitämme asymptoottiset kaavat resonaatiotaajuuksille ja analy-
soimme kertoimien käyttäytymistä lähellä resonanssipistettä.
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