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ABSTRACT

Sarafanov, Oleg

Asymptotic Theory of Resonant Tunneling in Quantum Waveguides of Variable
Cross-Section

Jyvaskyla: University of Jyvaskyld, 2008, 69 p.

(Jyvaskyld Studies in Computing

ISSN 1456-5390; 100)

ISBN 978-951-39-3462-0 (PDF), 978-951-39-3432-3 (nid.)

Finnish summary

Diss.

The narrows of a quantum waveguide with variable cross-section play the role
of effective potential barriers for the electron longitudinal motion. Two narrows
form a quantum resonator where a resonant tunneling can occur. It means that
electrons with energy close to a resonant value pass through the resonator with
probability near to 1. We give an asymptotic description of electron wave prop-
agation in a quantum waveguide with two narrows. The wave number k is as-
sumed to be between the first and the second thresholds, so only one incoming
and one outgoing wave may propagate in every outlet of the waveguide to infin-
ity. We present the asymptotic expansions of wave functions, the reflection and
transition coefficients as the diameters of narrows tend to zero. Moreover, the
asymptotic formulas for the resonant frequencies are obtained and the behavior
of the coefficients is analyzed near a resonance.

Keywords: resonant tunneling, Helmholtz equation, scattering matrix, transition
coefficient, reflection coefficient, radiation conditions, cylindrical out-
lets, compound asymptotics
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1 INTRODUCTION

Resonant tunneling can occur as electrons propagate through a potential bar-
rier of complex shape (say, composed of two identical barriers placed one after
another). In the process, electrons of energies close to some (resonant) values
pass trough the barrier with probability near to one. In electronics, resonant de-
vices (transistors, key devices, electron energy monochromators) based on one-
dimensional hetero-structures consisting of layers of distinct chemical composi-
tions, have gained widespread usage. To provide operating these devices in an
optimal regime, one should know main characteristics of the process (the res-
onant energies, the shape of the transition coefficient near a resonance). These
characteristics can be calculated with the help of one-dimensional models by the
WKB method.

Such one-dimensional structures possess several disadvantages. That is
why the creation of homogeneous structures with resonant tunneling conditions
is a topical problem. Alternatively, one can consider two- and three-dimensional
waveguides of variable cross-section; their narrows play the role of effective bar-
riers. The behavior of the resonant tunneling characteristics in such waveguides
has not been studied theoretically. One-dimensional models are ineffectual. Nu-
merical modelling meets difficulties, when the narrows of the waveguide become
“too narrow” and the resonant peak too sharp. In this work, we present an
asymptotic description of the resonant tunneling in quantum waveguides with
narrows as the diameters of the narrows tend to zero, which gives qualitative
picture of the phenomenon.

In the introductory chapter we first consider the one-dimensional electron
motion and demonstrate the occurrence of the resonant tunneling in the case
(Sect. 1.1); then some applications of the one-dimensional resonant tunneling
are listed, in particular, the operation of some mentioned resonant devices is ex-
plained (Sect. 1.2); motivations for studying two- and three-dimensional waveg-
uides are given (Sect. 1.3); finally, the used mathematical methods are briefly
described (Sect. 1.4).
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1.1 One-dimensional resonant tunneling

The one-dimensional resonant tunneling (described by Schrodinger equation (1.1))
is a well studied phenomenon [1] — [3]. We remind some known results.

Consider an electron propagating through a potential barrier (Fig. 1) from
—oo to +o0. Its wave function ¥ satisfies

_%ty“(x) +U(x)¥(x) = E¥(x). (1.1)

Since U(x) = 0as x < x1 and x > xp, we have

ikx (1.2)

¥, (x) = ekx 4 pe=ikX as x < xq;
1 te'**, asx > Xxo,

where k2 = 2mE/ hz, the summand re~** is the reflected wave, and te** is the
transited one. The value R = |r|? is called the reflection coefficient and T = |¢|?
the transition coefficient, R+ T = 1.

Let ¥ be a wave function such that

Y(x) = {

Due to the linearity of the equation (1.1), the coefficients A; and B; depend on A;
and B; linearly. More exactly, one can prove that

Aq . As . 1/t r/t
(B1>_D<Bz>' where D_<r/t 1/t>'

r, t being the coefficients in (1.2).

Consider now a complex barrier composed of two simple barriers placed
one after another (Fig. 2). Given the reflection and transition coefficients for each
of the simple barriers, we can find such coefficients for the complex one. Assume
that

Ae*™ 4 Biem 'k asx < xq;
Azelkx + Bzeilkx, as x > xp.

¥ (x) =t as x> xg.

Ufx)

FIGURE1 A potential barrier.
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$ Ui(x)

|’I\‘ |/2\‘

FIGURE2 Two potential barriers.

Then . ‘
Y(x) = Aet** 4 Be—ikx as xy < x < X3,

A -D t . 1/t 1/t t ¢ 1/t
B -2 0) 7/t 1/f 0/) 7o/t )

Finally,

where

¥(x) = e 4 e~k as x < xy,

where

(14207
1N _p (A _,( Vh n/h Ut \ _, | kb Bz
r - B B 71/?1 1/?1 72/?2 o L — t2>

tito

This equality implies

t1t t
t:lizl r:iitz

1+ %rﬁz gy f—rﬁz.
We set ¢ = arg(tor172/12), Tj = |tj|?, and Rj = [rj|?,j = 1,2. Then
— |t = T _ 2 = Ry + Ry + 2¢/R1R; cos ¢
1+ RyRy +2/RiRycos ¢’ 1+ RqRy +2/RiRycos ¢’
Since R; + T; = 1, we obtain 1 + RiR; = Ry + Ry + T1 T, which leads to
Ty T,
T1T2+(\/_ \/_) +2RRa(cos g +1)
_ (VE—VE)*+2/RiFa(cosp+ 1)
T1T2+(\/_ \/_) +2\/Rl—Rcosq)~l—1)
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FIGURE 3 Rectangular potential barriers.
Thus, the T is maximal if cos ¢ = —1. When Ry = Rj, the maximum of T is equal

to one. Such a phenomenon is called the resonant tunneling.

The coefficients R(k) and T (k) for a single barrier can be obtained approx-
imately by the WKB-method (see, for instance, [4]). Let us consider a situation,
where the coefficients can be explicitly calculated.

Consider two rectangular barriers of heights U, U, and widths a1 = x —
X1, A2 = x4 — x3, respectively (Fig. 3). A direct calculation shows that, for energy
E in the interval 0 < E < min{U;, U>},

Zik%je*ik(xzj*xz]q)
t = ,
P (k2 — %}7—) sinh(sa;) + 2iks<j cosh(s¢a;)

(kK> + %]2) sinh(%jaj)eZik"zf—l

(k2 — %]2) sinh(s¢ja;) + 2iks; cosh(>¢a;)’

ri=

wherej =1,2, %]2 =2m(U; — E)/h?, and k* = 2mE /h?. Therefore

12
4k2%]2 (k* + %]2)2 sinh”(a;)

T, = , = :
e+ %]2)2 sinh®(5gja;) + 4k2%]2 e+ %]2)2 sinh®(5a;) + 4k2%].2

The equality Ry = Rj is obviously valid for barriers of equal heights and widths.
As follows from the last formula, R; monotonically increases when Uj or 4; is in-
creasing. This means that Ry = R; can be fulfilled for barriers of various shape.
The condition cos ¢ = —1 is independent of the condition Ry = R;. For rectan-
gular barriers,

2 2
¢ = 2k(x4 — x1) +arctan il 5 coth(sra1) | +arctan k2 5 coth(s0a3) | .
k2 — k2 — 5

The location of resonances (in the interval 0 < E < min{Uj, U>}) is determined
by the equality ¢ = 71(1 + 2n), n € Z; theirs height is determined by the differ-

ence /Ry — /R, (Fig. 4).



13
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FIGURE 4 T(k) in the case of rectangular potential barriers of the same height U; here
Uy = 2mU /1>,

1.2 Applications of resonant tunneling

1.2.1 Field emission from adsorbate-covered surfaces

The phenomenon of resonant tunneling is used to interpret a wide range of ex-
periments.

As known, electron removal from the surface of metal placed into vacuum
won't occur, if the energy of the electron is under some level (work function of
the metal). When an external electric field presents, the potential energy near the
metal-vacuum interface has the shape of a barrier (Fig. 5). Due to the tunneling
through the barrier, even "cold" electrons can escape from the metal surface. This
effect is called the field emission.

Near an atom adsorbed on the surface of the metal, the potential energy
has shape of two potential barriers (Fig. 6). If an electron in the metal has energy
close to one of the allowed electron energy levels in the adsorbed atom, the escape
probability of the electron from a neighborhood of an adsorbed atom (as a result
of the resonant tunneling) will be much more than the escape probability from
the pure surface. When the allowed energy levels of the adsorbate lie close to the
Fermi level of the metal, the resonant tunneling can result in a valuable increasing
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a) b)

FIGURE5 The potential energy near metal-vacuum interface a) without external field,
b) with an external electric field.

U(x)

Ur
| )

FIGURE 6 The potential energy near an adsorbed atom.

of the density of the emission current [5, Sect. 6.2.2, Fig. 6.7,a)]. The allowed
levels of the adsorbate located much lower the Fermi energy practically have no
influence on the emission current but dramatically change the electron energy
distribution [5, Sect. 6.2.1, Fig. 6.6].

The resonant tunneling can play an important role for initiating the explo-
sion electronic emission [6] — [8]. The explosion emission occurs whereas micro-
pimples on the metal surface are being heated and exploding. Presence of atoms
adsorbed on the metal surface results in increasing the local density of the initiat-
ing current and decreasing the explosion emission threshold.

1.2.2 Applications of the resonant tunneling in micro- and nano-electronics

The resonant tunneling can occur in hetero-structures consisting of layers of dis-
tinct chemical compositions (Fig. 7, a)). Such structures can be used as key-
devices and amplifiers.

To explain the operation of such devices, consider Figure 7, b), where the
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a)

b) conduction band

I_l [ﬁ band gap
Waence oan

FIGURE7 a) One-dimensional heterostructure. b) Band gap in this structure.

energy band gap for the structure is shown. The domain between the barriers
we call the resonator. When a small potential difference between the emitter and
the collector exists, in this structure, a very weak electric current flows due to the
tunneling of electrons through the barriers. If, in the emitter, one of the levels oc-
cupied with a high probability coincides with one of the resonator allowed levels
E4, the conditions for the resonant tunneling will be provided and the current will
become notable. Electric fields in a neighborhood of the resonator (created, say,
by an external control electrode) can change the resonant levels. For a certain con-
trol potential U, the resonant level moves and the current in the system almost
vanishes. Thus the structure works as a key device. For some densities of charge
carriers in the emitter and the collector, one can provide a smooth variation of the
current whereas U, varies. Then the device can be used as a transistor.

1.3 Resonant tunneling in deformed waveguides

The fabrication of the heterogeneous structures with given resonant properties
is complicated from the technological point of view (it is hard to produce layers
of given widths, to avoid defects arising at the interfaces between layers, etc.).
As far as we can see, the homogeneous structures would be free from such dis-
advantages. That is why the creation of homogeneous structures with resonant
tunneling conditions is a topical problem.

To this purpose, one can consider two- and three-dimensional waveguides
of variable cross-section; their narrows play the role of effective barriers (Figures
8 and 13 below). This can be explained by the following reasons. If a waveguide
is a cylinder (a strip), i.e. it has a constant cross-section, the full energy E of an
electron is represented as the sum E = E| + E|, E being the (quantized) energy
of the transverse motion and E| the energy of the longitudinal motion; the en-
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ergy E | is inversely proportional to the cross-section square. When a waveguide
cross-section varies along the axis, one can consider E ~ E | + E as approximate
relation. In a narrow, E | is increasing and E remains constant, so E is decreasing.

That the resonant tunneling can occur in deformed waveguides was con-
firmed by numerical experiments [9], where the dependence of the transition co-
efficient T on the energy E of an electron was calculated. For some E, resonant
peaks are present, where T is close to one. To analyze the operation of devices
based on such waveguides it is useful to study the behavior of the coefficient T for
energies close to a resonance. In particular, it is important to know the location
of the resonance, the height of the resonant peak, and its width at the half-height,
i.e., the resonant quality factor (Q-factor).

Approximate numerical calculations are effective only if the narrows of a
waveguide are "not too narrow" (so that the resonant peak is sufficiently wide).
When the peak is very sharp, known numerical procedures converge slowly and
become unstable. That is why to obtain a detailed picture of the phenomenon it
is important to combine both numerical and asymptotic methods supplementing
each other.

1.4 Method of compound asymptotics

We construct an asymptotics of the wave function using the method of compound
asymptotic expansions [10], [11].

Let the diameters €, and ¢, of the narrows of the waveguide G(ej, €2) play
the role of small parameters. The domain G(0, 0) obtained as the limit of G(e1, €2)
when g1, e, — 0 consists of three parts. The boundary value problem in any part
of G(0,0) is called the limit problem of the first kind. Solutions of the first kind
problems serve as the principal term of approximation of the wave function in the
corresponding part of G(0,0) within a certain distance of the narrows. Intuitively,
this means that we look at G(¢1, ¢2) with the naked eye observing no small de-
tails. Replacing the wave function by these solutions (in the corresponding part
of G(e1,¢2)) leads to an error which is supported in the very neighborhood of
the narrows. With the help of the transformation of coordinates x — e~ !x (with
origin at a narrow) we enlarge the neighborhood of the narrow whereas the the
remainder of the waveguide tends to infinity. As a result, we obtain the limit
problems of the second kind in unbounded domains (); and ). Solutions of
these problems together with solutions of the first kind problems give the first
order approximation to the wave function.

More precisely, we first solve the limit problem of the first kind in one of
the unbounded parts of G(0,0). The leading part of the obtained discrepancy is
compensated by a solution of the second kind limit problem. The discrepancy,
given in turn by this solution, is concentrated, generally speaking, on the both
sides of of the narrow. To continue the procedure, we need that the mentioned
discrepancy would be concentrated outside of the part of G(0,0), which was con-
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sidered on the previous step. To this end, we apply the method of "redistribution
of discrepancies" analogous to that used in [11]. Then the problem in the res-
onator must be solved. A new discrepancy is compensated by a solution of the
second kind limit problem supported near the second narrow and so on. A more
detailed but still short description of this procedure is given in Chapter 2.

An additional feature of our constructions in comparison with [10], [11] is
using radiation conditions at infinity to fix necessary solutions of problems in
unbounded domains. Moreover, that the limit problem in the resonator loses its
unique solvability for some energies, causes difficulties in estimating remainders
in the asymptotic expansions. Situations, when limit problems are not uniquely
solvable, were considered in [10], [11], too. But our case is more complicated,
because we derive an estimate uniform with respect both ¢1, £, and the wave
number k.

To make the material more understandable, in Chapter 2, we have presented
the main asymptotic formulas in a more simple situation, when the waveguide
is a strip or a cylinder with narrows. The particular case of symmetric waveg-
uide is considered there as well. In Chapter 3, the problem in a "general" three-
dimensional waveguide is stated. The limit problems are defined and some prop-
erties of these problems are listed. Then the tunneling in a waveguide with one
narrow is studied. Finally, the resonant tunneling is investigated in a waveguide
with two narrows.



2 FORMULATION OF MAIN RESULTS

2.1 Statement of the problem

2.1.1 Geometry of waveguide

We consider a waveguide with two narrows of small diameters ¢; and &;. To
describe the waveguide we first introduce three domains G, 01, () in R"” (n = 2
or 3) that are independent of the parameters ¢; and ¢;.

Let G be a cylinder R x D, where R is a straight line and D is a cross-section
that, for n = 2, is a segment and, for n = 3, is a domain bounded by a smooth
closed path.

Pass on to () (Fig. 8). For n = 2, we denote by K a couple of vertical angles.
For n = 3, by Kj is meant a double cone which is symmetric about the coordinate
origin and cuts out on the unit sphere centered at the origin two (symmetric)
domains; each of them is bounded by a smooth contour. Assume that ); contains
the cone K; and a neighborhood of its vertex, moreover, outside a large ball (with

4

(@]

FIGURE 8 Geometry of a narrow.
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FIGURE9 Geometry of the waveguide.

center at the vertex), (); coincides with Kj; the boundary of (), is assumed to be
smooth. The domain (), is described analogously (with a cone K3).

Now, we turn to the waveguide G(¢1, €2) (Fig. 9). For the time being, we let
O and O3 be arbitrary (interior) points of the domain G. Introduce orthogonal
coordinates (x;,yj,z;) with origin O; and axis x; parallel to the generatrices of the
cylinder G, j = 1,2. Suppose the domain (); to be located so that the vertex of K;
coincides with O; and the whole axis x; (except the origin) lies inside K;. From
now on we assume that the point O; is disposed far enough from the point O; so
that the distance between the sets dK; N 9K, and G is positive (as usual, aKj stands
for the boundary of K;). Denote by Q;(¢;) the domain obtained from Q; by the
contraction with center at O; and coefficient ¢;. In other words, (x;,yj,z;) € Q;(¢;)
if and only if (x;/¢;,y;/¢j, zj/¢;) € Q;. We put

G(e1,e2) = GNMy(e1) N (e).
2.1.2 Boundary value problem

A wave function of a free electron of energy k? satisfies the boundary value prob-
lem

Au+Ku = 0 in G(ey, ), (2.1)
u = 0 on 09G(eg,€).
Moreover, u is subject to radiation conditions at infinity. To formulate the condi-
tions we need the problem on the cross-section D of the waveguide:
No(y,z) +A%0(y,z) = 0,  (y,2) €D, (2.2)
u(y,z) = 0, (y,z) € aD.
The eigenvalues )\% of this problem, where g = 1,2,..., are called the thresh-

olds. In the case of a two-dimensional waveguide G(ey,¢2), the domain D is
the segment (—[/2,1/2) and the thresholds form the sequence A% = (mq/1)?,
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g =1,2,.... In a three-dimensional waveguide, the thresholds form an increas-
ing sequence of positive numbers tending to -+co. We suppose that k2 in (2.1) does
not coincide with any of thresholds. For fixed (real) k, there exist finitely many
linearly independent bounded wave functions. In the linear space of such wave
functions corresponding to the given k, the basis is formed by wave functions
that are subject to the radiation conditions

M .
L (,2) + Y smye U (y,2) +O(), x - —oo,
i—1
Um(x,y,z) = M ‘ ] ‘
Z Smm+je Yy, z) + O(e %), X — +o0;
=1
M .
Z smemje Yy, z) + O(e’), X — —o0o,
=1
iien(5y2) = Qe (y,2)+
M .
+ Y smpmmy €Y (y,2) £ O(e7%), x — Foo.
=1

Here M is the number of thresholds satisfying the inequality A? < k?* (for a fixed
ky,m=1,2,...,M; vy, = /K> — A2; ¥, is an eigenfunction of the problem (2.2)
that corresponds to the eigenvalue A%, and is normalized by the condition

vm/D ¥y, 2)Pdy dz = 1.

When the waveguide is two-dimensional,

(2/1vy) sin Ay, meven,

Fuly) = { (2/1vy) cos Ay, m odd. 2.3)

The function U; defined in the cylinder G by the equation
Uj(x,y,z) = ei"fx‘I’]-(y,z), j=1,...,M,
is a wave coming from —co and going to +-oco . Analogously, the function
Umyj(x,y,2) = e*ivfx‘l’j(y,z), i=1...,M,
is a wave going from +oo to —co. The scattering matrix

S= Hsijm,j:l,...,ZM

is unitary. The value

M
Rm = Z |smj‘2r m = 1/’ . -/M/ (24)
j=1
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is called the reflection coefficient for the wave U,,, which comes to G(e1, €2) from
—oo, the transition coefficient for this wave is defined by the equality

M
T = Z |5m,M+j|2' (2.5)
j=1

Similar definitions can be given for the wave U4, coming from +oo.

In this work, we discuss only the situation, when the parameter k2 is be-
tween the first and the second thresholds. Then the scattering matrix is of size
2 x 2 and (2.4) and (2.5) take the form

R = |su|%, T = |s1o]*.

We consider only the scattering of the wave coming from —co, that is why we omit
the indices in the notation of the coefficients R = R(k,e1,€2) and T = T(k, 1, €2).
The purpose is to find the "resonant" values k, = k.(¢1,¢€2) of the parameter k,
at which the transition coefficient takes the maximal value. Moreover, we are
interested in the behavior of k,(e1,€2) as €1,e2 — 0.

2.2 Asymptotics of the wave function in a two-dimensional waveg-
uide

To derive an asymptotics of a wave function (i.e. solution of the problem (2.1)) as
g1, &2 — 0 we use the method of compound asymptotic expansions. To this end
we introduce "limit" boundary value problems independent of the parameters &;
and ;. Remind that G is the strip {(x,y) : —o0o < x < +00,—1/2 <y <1/2}, Ky
is a couple of vertical angles with vertex at the point O; € G, and K; is a couple
of vertical angles with vertex at the point O, € G. We put G(0,0) = GNK; NK,
(Fig. 10). Thus, the set G(0,0) is divided into three parts G(l), G(z), and G(3),
where GV and G are infinite domains and G(?) is a bounded resonator.

/ N/

~(1 -
G¥ G%

G @)

FIGURE 10 The limiting domain G(0,0).
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The problems

Av(x,y) +Ko(x,y) = 0, (x,y) € G, (2.6)
v(x,y) = 0, (x,y) € 3G,

whereq =1,2,3and 9G ) is the boundary of G(‘?), are called the first kind bound-
ary value problems. Solutions v(!) and v(®) are subject to some radiation condi-
tions at infinity and all three functions v(!), v(?), v(®) are subject to some condi-
tions at the corner points. All of the conditions will be formulated as required.
Now we return to the domains )1 and (), (see Fig. 8). Problems of the form

Aw(E,m) = F(&,m)  inQy 2.7)
w(cf],q]) =0 onE)Qj,

are called the second kind boundary value problems. We seek solutions of these
problems in the class of functions satisfying the condition

—37‘[/(4)]'

w(é]’/ ’7]') =0 (P] ) as pj — oo;

here, (Cj, 77j) are Cartesian coordinates in Qj with origin at O]-, P; is the distance
from (¢;,77;) to O;, and wj is the opening of Kj, j = 1, 2.

In a two-dimensional waveguide G(¢1, €2), we consider the scattering of the
wave U(x,y) = 1% (y) coming from —oo (see (2.3)). The main technical result
is provided by the asymptotic formula (2.8) given below for the wave function.
Although rather cumbersome, it results in much more explicit corollaries for basic
physical characteristics of the process. The wave function admits the representa-
tion

u(x,yiene2) = x0 (6, )0 (x, y;e1,62) +

_ _ 2
+O(ry )y (g7 1, €y e, €2) + Xy ()o@ (6, i1, €2) + (2.8)
+®(7’2)w2(£2_1x2, 82_1y2,'€1, €) + Xg) (x,y)v(3) (x,y;€1,€2) + R(x,y; €1, €2).
Let us explain the notation and the structure of this formula. When composing
the formula, we first describe the behavior of the wave function to the right of the
narrows, where the wave function can be approximated by a solution of problem
(2.6) in the domain G®). The solution of (2.6) is subject to the radiation condition

o) (x,y;61,€2) ~ s12(e1,2)e™ ¥1 () as x — +oo, (2.9)

the element s15(€1,€2) of scattering matrix being yet unknown. Problem (2.6)
does not contain €7, €5, nevertheless the function o) depends on the parameters
because of s15(e1, €2)-

(3)
€

Let x¢, (x,y) be the cut-off function defined by

X () = (1-0(r2/e2)) 150 (%, ¥),
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where r, = /x5 + y3 and (xy, 1) are the coordinates of a point (x,y) in the sys-
tem obtained by shifting the origin to the point O; 1) is the characteristic func-

tion of G©3) (equal to one in G®) and to zero outside G®)), and ®(p) is a smooth
positive function on the half-axis 0 < p < 4o and isequaltooneas 0 < p < J
and to zero as p > 26 (J being a fixed small positive number). Note that the func-

tion )(S) turns out to be defined on the whole waveguide G(¢1, €2) as well as the
function Xg’)v(g’) in (2.8).
Being substituted to the problem (2.1), the function )(g’)v@ gives a discrep-

ancy in the right-hand side of the Helmholtz equation; the discrepancy is sup-
ported near the second narrow (to the right of it). We compensate the princi-
pal part of the discrepancy with the help of the second kind limit problem in
the domain (),. Namely, the discrepancy is rewritten into coordinates (¢2,12)
in (), and is taken as a right-hand side for the Laplace equation. The solu-
tion wy of the corresponding problem (2.7) has to be rewritten into coordinates
(x2,y2) and multiplied by a cut-off function. As a result, there arises the term
O(r2)wa (e ' x2, €5 yo; €1, €2) in (2.8).

Now we substitute the sum of two obtained terms into the problem (2.1).
The principal part of the corresponding discrepancy is supported in G2 near the
second narrow. We compensate it by solving the problem (2.6) in G(2) and obtain

the term )(g,)gz (x,y)0?) (x,y;€1,€2) with

2 _ _
Ko (xy) = (1= 0 'n) =0l ")) 160 (x,y):
After that the summands

@(rl)wl(sflxl,Eflyl;sl,sz) and xg)(x,y)v(l)(x,y;sl,sz)
arise in a similar way.
At the last step, we find the function v(!) that satisfies both the limit problem
(2.6) in G(Y) and the radiation condition

oM (x,y;e1,€2) ~ s1a(er, e2)a (e, €2)e™* W1 (y) + s12(e1, €2) Ble1, €2)e ¥ (y)

as x — —oo. The coefficients «, B and the elements s;1, 517 of the scattering matrix
turn out to be uniquely determined by a relation between a and p that assures
compensation of the principal part of the discrepancy arising when the problem
is being solved in G(!), and by the following requirements:

sip(er, e2)aler, e2) =1, sio(er, e2)B(er, e2) = suiler, e2),  |af* = B>+ 1;

the last equality means the scattering matrix is unitary.

The remainder R(x, y; €1, €2) in (2.8) is small in comparison with the princi-
pal part of (2.8) as ¢1,&, — 0.

We specify (2.8) for a "symmetric" waveguide, where ¢; = &, = ¢, both
narrows have the same opening w, and the resonator G?) is invariant with re-
spect to the transformation (x,y) — (d — x, —y), while d is the distance between
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the points O and O,. A specification can be obtained without any assump-
tions concerning symmetry, however the formulas would be much more cum-
bersome. Nevertheless, we will present asymptotic expansions for the most im-
portant characteristics (say, the transition coefficient) in the general case as well.

1. The function v® (x, y; ¢) is defined by the equality
oz y;e) = Ie)v® (v y), (2.10)

where I(¢) is a constant depending on ¢ and given by (2.15) below; v(®) (x, y)
is a solution of the first kind limit problem in G®) and satisfies

v(3)(x,y) ~ rz_”/‘*’d)(goz) asr, — 0
in a neighborhood of the point Oy; here (r;, ¢2) are polar coordinates with
center Oy, ®(¢) = cos(mp/w), and

®)

v (x,y) ~ Ae* MY (y)  as x — +oo, (2.11)

where A > 0. The problem for v(%) is uniquely solvable.

2. wy (&, mps€) = I(e)e™ ™ “wo (8, 112),
where wy is the solution of the second kind problem in (), with right-hand
side

B(p2, ¢2) = —[A,C4] (Pz_”/w@(sz)) -
—[A 2] <H21P£”/w + szpf/w) Q(7 — ¢2).

Here, { is a cut-off function equal to one in the right half-plane as p, > d
and to zero anywhere in the left half-plane and, in the right half-plane,
for pp < d/2 (d being a fixed sufficiently large number); {_(p2, ¢2) =
{+(p2, T — ¢2); the constants Hy; and Hyp are uniquely determined by the
requirement wy = O (p2_3”/“’> as pp — 0.

3. 0@ (x,y;¢) = I(e) (szﬂ/“’CH(%v(z) (%,y) + qoHa v (x,y)),
1

where v(_z) and v(? are solutions of the problem (2.6) in G, while

V@ o rz_”/“’cb(r[ — ¢2) near Oy,
qorf”/“’d)((pl) near Oq;

@ 1 (k)rF/ (7 — ¢2) near O,
- (K2 — k) /9D (1) + by (k)7 “®(1) near Oy;

where k3 is any eigenvalue of the resonator that is between the first and the
second thresholds. Given the increasing terms in the asymptotics near any
of the corner points, the solutions v'? and v?) are defined uniquely; at the
same time the constants g, ¢1(k), and by (k) are defined, too. The constant
qo is independent of k; for a symmetric waveguide, g0 = +1.
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4. w(C1,m5e) =

Hy, kK% — k2 b (k)
_ T/ w 22 0 - 1 +
€ l(cl(k) en/w q0H21> Wy (‘311771) szcl(k) Wy (611771) ’

where wf is the solution of the problem (2.7) in the domain (); for

(o 91) = —[A04] <an/wq>(q?1)) -
—18,2-) (Hioy ™ + Hipo /) @ = 1),
+

the constants H;; and Hj; are uniquely defined by the condition wi" =
o) (pf3”/“’) as p1— ©o.

5. 00(x,55¢) = v () +1(e) (i (”l &)+ mta) B a%f) V)

where v() is the solution of the problem (2.6) in elS) subject to the condi-
tions

v(l)(x,y) ~ r;"/‘”@((pl) asr; — 0,
and

(@)

viD(x,y) ~ Ae™ e Y () as x — —oo, (2.12)

A > 0is the same constant as in the radiation conditions for v(3), v(D stands
for the function complex-conjugated with v(!). Moreover,

2 _ 12 b (k)
= i + J1\E) -
ay (5) = H22H11 827[/“’C1 (k) + H22H11 o (k) + H21H11q0, (2.13)
_ K-k by (k _
ag (g) — g /w <H22H12€27_[/w(:1?k) + HmHECiEk; + H21H12qO ,(2.14)
(1 1 a0(&)\ T, a1
I(e) = (E (al(s) + al(e)> ~5ia > (Ae ). (2.15)

The a1 (e), ag(e), A, V), a®), and I(e) depend on k.

6. The remainder R(x, y; €) can be represented in tbe form 82’5ﬁ(x, y;€), where
J is an arbitrary small positive number, while R(x, y; ¢) is small by compar-
ison with the principal part of (2.8) as e — 0.

2.3 Resonant tunneling in a two-dimensional waveguide

First, we discuss a symmetric waveguide using the formula for the wave function
in Section 2.2. When considering asymmetric waveguides in the last part of this
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section, we do not write out the unwieldy expression for the wave function and
restrict ourselves to more comprehensible formulas for the resonant frequency,
the reflection and transition coefficients, the height of the resonant peak, and its
width at half-height.

2.3.1 Resonant frequency

A resonant frequency is a value k = k,(¢) at which the transition coefficient T =
T(k,e) has a (local) maximum, i. e. T(k,e) < T(k,(e), &) for any k in a small
neighborhood of k; (¢).

The formulas (2.10), (2.11), and (2.15) result in the expression for the transi-
tion coefficient:

T(ke) = A*k)|I(ke)]> =

2 2\ 1
= (411 (a1(k,£) + aﬂi,s)) + ‘Zg;’(sk)) ) <1+0(€2—5)>. (2.16)

From the representations (2.13) and (2.14) for a; and ay it follows that, as e is small,
the coefficient T(k, €) reaches its maximum, if ag(k, &) = 0.

We rewrite this condition (using (2.14)) in the k? — k%—resolved form. Note
that from the equation obtained, k? can be found by the step-by-step method
(since ¢ is small). Taking only the leading summand in the series for k* — k by
powers of ¢, we obtain the leading term in the asymptotics of the resonant fre-
quency:

H H, .
() = K5 — | qoc1 (kO)H—21 + by (ko) =22 | 277/« 4 (¥ WH20), (2.17)
22 Hyy

A more detailed analysis of the solutions of the limit problems involved in the
asymptotics of the wave function shows that the coefficient of €¥7/¢ in (2.17) is
negative.

2.3.2 The asymptotics of the wave function near a resonance (symmetric wave-
guide)

For k close to a resonant frequency, the expression for the wave function obtained
in Section 2.2 can be somewhat simplified.

We first consider (2.13) and (2.14). Let us expand all the functions in k in-
volved in these formulas in power series of k> — k2 and, under the assumption
k? — k2 = o(e¥"/%), take only the principal terms of the expansions:

Hy _ _ by (k) K-k
a(ke) = H7*2 (Hi Hy, — H11H1+2) cl(k:) +0 e2n/w |’
1

Rk R -R
ao(k,e) = H22H12€4n/wC1(’kr> +0 ( E27‘(/a;r> .
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The by (k,) and ¢1 (k;) depend on € due to k,. To avoid such a dependence we use
the following obvious relations

bl(kr) = b1(k0) +O(k§ —k%) = bl(ko) +O(827T/w),
Cl(kr) = Cl(ko) + O(k% — k%) = C1<k0) + O(SZTL'/LU).

Then
Hy _ _ by (ko)
a(k,e) = H—1_2 (H1+1H12 - H11H1+2) m +
2 12
2w 1K=k
+ O <max {s W, 82”7/“"7 , (2.18)
I K — k2
(IlQ(k, E) = H22H12€4ﬂ/w61 (rko) +0 ( 827r/wr) . (2.19)

One can show that, in a symmetric waveguide, the leading term in the right-
hand side of (2.18) is equal to g9 = £1. Taking that into account, we analogously
rewrite (2.15) :

- i@ (ko) 2 _ 12
) = —— 200 (e e Y
i 22195 — K €
2A K010+ 72 ) ( T )

(2.20)
As k* = k2 4 0(e¥"/«), we obtain the following expressions for the elements
of the asymptotics of the wave function:

i) —— [k k
(1) . _ ¢ 1) . . (k, €)ag (k, €) (1) . 27/ w
o\ (x,y;k,€) Alko) vl (x,y; ko) 721,14(1(0) v (x,y;ko) + O(e ),
_ bi(ko) ( Hij _
. _ T/w 1140 12 o+ _
wi(G, mke) = e ™I(ke) [ffzzcl(ko) <1ii2‘vi (&n) vvl(éfn)> +

2 2
2/ K=K
+ O(max{snw,&an_/tj ,

v (x,y;ke) = sfzn/wl(k, €)Hay ;V(,Z) (x,y;ko) +O(1),
c1(ko)
w2(€/ 1; k, 8) = Sin/wl(k/ S)WZ((:/ 77)/

0¥ (v yike) = I(ke)v® (x,yko) +O(E7),

where a¢(k, ¢) and I(k, ¢) are given by (2.19) and (2.20) respectively. In the formu-
las for (Y, 9(?), and v(®), the neglected terms are infinitely large near the points
O and O,, so their estimates O(e2™/«) and O(1) (as ¢ — 0) are uniform with
respect to (x,y) only on sets that are separated from O; and O; (and independent
of €). Analogously, the remainder estimate in the formula for w; is uniform with
respect to (¢, 77) on bounded sets independent of «.
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2.3.3 Reflection and transition coefficients

Using (2.11), (2.20), and the expression for v, we find the amplitude t(k, &) of
the transited wave,

. 'a( (
2iA(kg)el (@ (ko)+%) (ko)) . (SH).

. HpHy, (K2 —K?
ZZA(kO)qO + Cl(kO) A/ w

Suppose that k? — k2 = O(2™/«*2). Then the remainder
@) (max{szn/‘”, |k — K2 /82”/“’})

arisen after substituting the formulas (2.18)-(2.20) can be united with the sum-
mand o (e27%), which arises from the remainder in the formula (2.8). As shown
below, the width of the resonant peak is O(e¥/¢). Hence the condition put on k?
is not very burdensome; it allows us to use the stated asymptotics for f(k, ¢) in the
most interesting region, i. e. in a neighborhood of the resonant peak. However
the condition can be weakened; to this end, in the expansions (2.18)-(2.20) one
should take two or more terms.

Analogously, from (2.12), (2.20), and expression for v(!) we find the ampli-
tude of the reflected wave

2101 (ko) T22H 1 <k2 - k%)

e 8471/0.;

rke) = c1(ko) A 14o(29)).
2iA(ko)qo + ff?;l)z (kz_k%> ( ( ))

eAn/w

This leads to the asymptotics for the transition and reflection coefficients,

Tke) = |tke)]? = ;2 o (2), (2.21)
1+Q <£4TJ>
k2 _ k2 2
o ()
R(ke) = |rlke)? = kil

(0(e))

k2 _ k2
1+Q <€4n/w’)

where Q = (HxHp,/ 201(k0)A(k0))2. It can be seen that the principal term of
the asymptotics of T(k, ¢) has at k = k, a peak of height 1 and of width (at the
half-height)

Ae) = i64”/“’.

VQ
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2.3.4 Asymmetric waveguide

Let a waveguide have two narrows of distinct diameters ; and &,. Moreover
let the narrows have the distinct openings wj and wy. In such a situation, one
can repeat all the above reasoning. The values Hy /Hy, and (by(ko)/c; (ko)) (=
%) must no longer be equal to one. At the same time, the amplitudes of the
outgoing waves in the asymptotics (2.11) and (2.12) can be distinct; we denote
these amplitudes by A®) and A(M). As a result, we obtain

2 H 27/, Hoi 27/,
k%(51,€2) = kj— b1<k0)H71_1€1 - QOCl(kO)H722€2 +
+o (sﬁ”/ @it2=0 4 2/ “’2““5) L (2.22)
1
T(k,e1,62) = S 4o (s§—5 +s§—5) ,(2.23)

1 1\° o[ KR
4_1 z+ E + 27/ w1 270/ wy
81 €2

where k> = k2 + O (min{e?"/‘”l*z, E%n/w2+2}),

zZ =

AW (ko) Hypby (ko)™ 1 _ HyHp, 2
AB) (ko) Hieq (ko )eZ /2’ 2¢1 (ko) AD (ko) A®) (ko) |
12 2

Thus, in an asymmetric waveguide, the principal term of the asymptotics of T is
less than one. The width of the peak at half-height (calculated by means of the
principal term of the asymptotics of the transition coefficient) equals

-1
z+z
Aey, &) = weinmlegﬂ/wz. (2.24)

VP

2.4 Resonant tunneling in a three-dimensional waveguide

In this section, we present asymptotics for resonant frequencies and the transition
coefficients in a three-dimensional waveguide. To derive these formulas we have
first constructed (as well as in a two-dimensional waveguide) an asymptotics of
the wave function. The formula is rather unwieldy, and we do not present it here
(see the final formulas of Subsection 3.4.2).

2.4.1 Limit problems

Recall that G is a cylinder R x D, K; a cone with vertex at O; cutting out a domain
Sj on the unit sphere centered at the vertex of the cone, j = 1,2. The set G(0,0) =
G NK; NK; is divided into three parts G, G?), and G®), where G() and G©®)
are infinite domains and G is a bounded resonator.
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We consider the first kind boundary value problems

Av(x,y,z) + kzv(x,y,z) = 0, (x,y,2) € GW,
v(x,y,z) = 0,  (xyz) €3G,

where g = 1,2,3. Let vl!) be a solution of the problem in G(!) satisfying

AWeiao—ivixg (4 7Y as x — —co,
v<1)(x,y,2) ~ —p1u—1 1:2)
r D11(¢1) as r —0,

where AN > 0,4 € R, vy = /K2 — A2, A% is the first eigenvalue of the operator
—A in the domain D, ¥; is an eigenfunction corresponding to the eigenvalue
/\%, and (71, ¢1) are polar coordinates with center at O;. The p11(p11 + 1) stands
for the first eigenvalue of the Laplace-Beltrami operator on the base S; of the

cone K; and @1 is an eigenfunction corresponding to the eigenvalue p11 (p11 +1).
(2)

Moreover let v(?) and v\*/ be solutions of the problem in G2 such that

v (x,y,2) ~ rziyﬂilqiﬂ((l?z) near Oy,
qor; "M @11(g1) near Oy;

v (x,y,2) ~ cl(k)ré‘“%(qozl) near Oy,
- (k2 — k%)?’li}mi (I>11(q)1) + by (k)i’?”cbn((pl) near O,

where (72, ¢2) are polar coordinates with center at the point O, jp; is such that
121 (p21 + 1) is the first eigenfunction of the Laplace-Beltrami operator on S;, ®pq
is a corresponding eigenfunction, and k3 an eigenvalue of the operator —A in
G2, At last, let v(3) be a solution of the problem in G(3),

v (x,y,2) ~ A<3)€m(3)€ile‘¥1(y12) as x — +0o,
” 7y " Do (92) as 1, — 0,

where A®) > 0,43 € R. We did not indicate the dependence of vi), AD), and
) on the variable k for simplicity of notation.
Now, we consider the second kind boundary value problems

Aw(g,n) = F(&n) —[A,C-] (Hf;p”ﬂ + Hfgp*”ﬂ”) ®(p) inQ,
w(g,n) =0 on 0Q);,

where j = 1,2, the domains Q); are defined in Subsection 2.1.1, (p, ¢) are polar
coordinates in (); centered at O}, and the cut-off functions {_ are similar to those

described in §3. The constants H: HE are chosen so that w = o(p*Vﬂ*l) as

jv
p — 0. By {w].+, H].+1, H]+2} (j = 1,2), we denote the solution of the problem in Q);
with right-hand side

Fi(o, ) = —[A, 840" @1 (@),
H ]E} the solution of the problem with right-hand side

Fi(p, @) = —[A, {4]p '@ ().

and by {w;, Hﬁ,
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2.4.2 Asymptotic formulas

Let k3 be an eigenvalue of the operator —A in the resonator G®@ and let k3 lie
between the first and the second thresholds. Near such an eigenvalue there is a
frequency that resonant tunneling occurs at. It is expressed by the formula

H H,,
K2 (e1,€2) = k3 — b1(ko)Hfl_QS?mH—qul(ko)Hfz_lsimﬂ-l-
11 22 (2.25)
+o <£§u11+375 n gémlJrH) '
Near a resonance (as k> — k? = O(min{e?” ntd eiﬂ 21+3})), the transition coefficient
satisfies
1 o
T(ke1,e0) = - . (1 Yo <s§ b4 e 0)) . (2.26)
1 1 p K2 — k2
\ZTtZ ) T 2 2pn 1
1 2
where
(1) - 21 +1 o 2
_ AV (ko) Hypbr (ko)ey _ HyHy,
AB) (ko) Hpyer (ko) 2¢1 (ko) A (ko) A®® (ko )

The width of the resonant peak at its half-height calculated by means of the prin-
cipal term of the asymptotics for T'(k, &1, &) is

-1
Ale1,€) = wsﬁ”““eémﬂ. (2.27)

VP

The formulas of this Chapter were presented in [14] and the detailed proofs ex-
posed in the following Chapters were given in [15].



3 ASYMPTOTIC THEORY OF ELECTRON
TUNNELING IN THREE-DIMENSIONAL
WAVEGUIDES

3.1 Statement of the problem in a three-dimensional waveguide

3.1.1 Geometry of waveguide

We consider a waveguide with two narrows of small diameters ¢; and &,. To
describe the waveguide, we first introduce three domains G, (31, () in R3, which
are independent of the parameters €1 and ¢;.

Let G (Fig. 11) be a domain in R3 that coincides outside of a large ball with
the union of two non-overlapping half-cylinders C; and C; their cross-sections
are denoted by D; and D,. Each of D and D, is a domain bounded by a (simple)
smooth closed path. The boundary of G is assumed to be smooth.

Pass on to ) (Fig. 12). We denote by K; and L; open cones in R3 whose
closures K1 and L1 have no common points except vertex. Suppose that there ex-

FIGURE 11 The domain G.
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FIGURE 12 Geometry of a narrow.

ists a straight line s passing through the vertex of K; and L; and lying (except the
vertex) in Ky U L. (The last condition is assumed only to simplify the description
in what follows.) The cone K; (L;) cuts out on the unit sphere centered at the
vertex a domain S(Kj) (S(L1)) bounded by a smooth closed path. Suppose that
()1 contains both cones K and L; as well as a neighborhood of their vertex, more-
over, outside a large ball (with center at the vertex) (2; coincides with K; U Ly; the
boundary of (); assumed to be smooth. The domain (2, is described analogously
with cones Kj, L, and a straight line s,.

Now, we turn to the waveguide G(e;,€2) (Fig. 13). For the time being, we
let O and O; be arbitrary (interior) points of the domain G placed (for the sake

of simplicity) in the half-cylinders C; and Cy, respectwely Introduce orthogonal

coordinates x/ = (le, sz, xé) with origin O; and axis X parallel to the generatrices

of the half-cylinder C;, j = 1,2; the positive half-axis x/ lies inside Cj. Suppose
the domain Q to be located so that the vertex of K and L coincides w1th O the

straight line s; coincides with the axis xl, and the positive half-axis x1 lies inside
K;. From now on we assume that the points Oy and O; are disposed far enough
from the "non-cylindric" part of G so that the nearest to O; connected component

FIGURE 13 Geometry of the waveguide.
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of the set dG NJL; coincides with dC; NdL;. Denote by Q);(¢;) the domain obtained
from Q) i by the contraction with center at O i and coefficient ¢ i > 0. In other words,
X/ € Q;(¢;) if and only if (x//¢;) € Q. Let G(e1, £2) be the domain obtained from
G by changing C; and C, for C; N Q4 (e1) and C; N Oy (€3 ), respectively.

3.1.2 Boundary value problem

A wave function of a free electron of energy E = 1*k?/2m satisfies the boundary
value problem

Au+Ku = 0 in G(e,€), (3.1)
u = 0 on 9G(e,e),

where dG (g1, €2) is the boundary of G(e1,€2). Moreover, u is subject to radiation
conditions at infinity. To formulate the conditions, we need the problem on the
cross-section D; of the half-cylinder C;, j = 1,2:

Av+A* = 0 in Dj, (3.2)
0

v o= on 8Dj.

The eigenvalues A]z.m of this problem, wherem = 1,2, ..., are called the thresholds;
they form an increasing sequence of positive numbers tending to 4-cc. Denote by
¥ an eigenfunction of the problem (3.2) that corresponds to the eigenvalue )\Jz-m
and is normalized by

ij/D ¥ (x2, x3) Pdxp dos = 1, (3.3)
j

where vj,, =, /k? — AJZ-m. Let M; be the number of thresholds of the problem on

Dj, j = 1,2, satisfying the inequality A* < k? (for a fixed k). The function U},
defined in the half-cylinder C; by

Uf (xh) = exp (—ivy ) ¥im(xd, x3),  m=1,..., My,

is a wave coming in C; from infinity (remind that the positive half-axis x! lies in
C1). Analogously, the function

u+

Ml+m(x2) = exp (—iUme%)‘I’zm(xg, x%), m=1,..., My,

is a wave coming from infinity in C;. The outgoing waves U, m = 1,..., M; +

M), are obtained from the incoming ones by complex conjugation: U,, = Uy.

It is well known (see, e.g., [12, Chapter 5]) that if k2 is not a threshold, then
there exist (smooth) solutions u,,, m =1, ..., Mj + My, to problem (3.1) satisfying
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the radiation conditions

M _
Zp:z1 Sm,p+M, UPJFM1 (x%) + O(exp (—5x%), x% — 400,

m=1,..., M,
U (x) = { 1\%2/21 Smp Up_(fl) + O(exp (—6x1)), x} — +oo,
U (x?) + szzl Sm, p+M; UerMl(xZ) +O(exp (—6x3), 1% — oo,
m=M;+1,..., My +M,, (3.4)

i (x) _{ Uy (x) + Ty smp U, (21) + Olexp (=0x7)),  xf — +oo,

where ¢ is a sufficiently small positive number. The functions u,, form a basis
modulo O(exp —4|x|) in the space of bounded solutions of the problem (3.1) that
is any bounded solution to (3.1) is a linear combination of the functions u;,, up
to a term O(exp —d|x|); if for a given k there is no nonzero solutions to (3.1) ex-
ponentially decaying at infinity, then the functions u,, form a basis in the usual
sense. The scattering matrix S = ||qu p.g=1,..,M;+M, 1S unitary.

The value

M,
Ru=Y lsmgl, m=1,..,M, (3.5)
q=1

is called the reflection coefficient for the wave U,};, which comes in G(¢1, €7) from
C1; the transition coefficient for this wave is defined by

M,

Tm = Z |sm,q+M1|2- (3~6)
q=1

Similar definitions can be given for the wave U;h which comes from Cs.

+m’

In this work, we discuss only the situation where the parameter k? is "be-
tween the first and the second thresholds" or, more precisely, in the interval
(A%, A3,) N (A3, A%,) (supposed to be nonempty). Then the scattering matrix is
of size 2 x 2 and (3.5) and (3.6) take the form

R = [sn]?, T = |s12]*.

We consider only the scattering of the wave coming from C; and omit the indices
in the notation of the coefficients R = R(k,¢1,¢3) and T = T(k,e1,¢€2). The pur-
pose is to find the "resonant" values k, = k;(e1,¢2) of the parameter k at which
the transition coefficient takes the maximal value. Moreover, we are interested in
the behavior of k,(e1,€2), T(k,€1,¢€2), and R(k, €1,¢€2) as €1,€2 — 0.
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FIGURE 14 The domain G(0,0).

3.2 Limit problems

3.2.1 First kind limit problems

Recall that the limit domain G(0,0) consists of the unbounded parts G;, G, and
the bounded resonator Gy (Fig. 14). The boundary value problems

Av(x) +KPo(x) = f, x € Gj, (3.7)
v(x) = 0, x € 9G;j,

are called the first kind limit problems; here j = 0,1,2, and an is the boundary
of G;.
]

We introduce function spaces for the problem (3.7) in Gy. Let ¢1, and ¢, be
smooth real functions in the closure G of G such that ¢j=1ina neighborhood
of O]-,]' =1,2,and (,b% —I-(,b% =1.Forl=0,1,... and 7 €R, the space V. Go)
is the completion in the norm

71 'Yz(

1/2
103 V3,22 (Go)l = ( /. > st] Hy=tis) la“v<x)|2dx) (38)

Co |a|=0 =

of the set of smooth functions in Gy vanishing near O; and Oy; here r]-(x) =
dist(x, O;j), &« = (a1, a2, &3) is a multi-index, and 9* = ol /9x]10x5%0x5°.

Let S(L;) be the domain that the cone L; cuts out on the unit sphere centered
at Ojand let 0 < pj; < pjp < ... stand for the numbers such that p;, (p, +
1), m = 1,2,..., are the eigenvalues of the Dirichlet problem for the Beltrami
operator in S(L;). Proposition 3.1 follows from the well known general results
[13].

Proposition 3.1. Assume that |v; — 1| < pj1 + 1/2. Then for every f € V2 . (Go)
and any k* except the positive increasing sequence {k2 }‘;": of eigenvalues, k2 — 00,
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there exists a unique solution v € V7. . (Gy) to the problem (3.7) in Gy. The estimate

71 Y2
1; V2,1, (GOl < cllf; V3, ., (Go) | (3.9)

holds with a constant c independent of f. If f is a smooth function in Gy vanishing near
Oy and Oy and v is any solution in V3, 72(G0) of the problem (2.6), then v is smooth in
Gy except at O1 and O, and admits the asymptotic representations
1 ~ Wi .
U('x) = b]ﬁ]}l]1+l/2(kr])q)}l(¢]) + O(r] JZ)I 1’]' - 0/ ] = 112/
near the points Oy and Oy, where (pj, ;) are polar coordinates with center at O;, TM
stands for the Bessel function multiplied by a constant such that

1 T i .
W]Hjﬁl/z(kr) = i+ o(rHi1),

CIDle is an eigenfunction of the Beltrami operator corresponding to the eigenvalue pjy (pj1 +
1) and normalized by the condition

2~+1/ ®L (o) 2de = 1,
@i+ [ 12k

and bj are some constant coefficients.

If k* = k3 is an eigenvalue of problem (3.7) then the problem (3.7) in G will be
solvable only if (f,vg)g, = 0 for any eigenfunction vy corresponding to k3. Under such
conditions there exists a unique solution v to the problem (3.7) that is orthogonal to the
eigenfunctions and satisfies (3.9).

We turn to the problems (2.6) for j = 1,2. Let xo, and X, be smooth real
functions in the closure G; of G; such that xq ] = 1in a neighborhood of O, xo,
vanishes outside a compact set and )(O + )(oo = 1. We also assume that the
support suppX«,j is located in the cyhndrlcal partC; of G;. For v € R, 6 > 0, and
1=0,1,..., the space V,y, ;(G;) is the completion in the norm

1/2

1
lo; VL 5(Gy)ll / Z (3,27 2 exp(aoxd))[otoPdxd | (310)
/|tx\ 0

of the set of smooth functions in G; vanishing near O; and having compact sup-
ports.

Let S(K;) be the domain that the cone K; cuts out on the unit sphere centered
at Ojand let 0 < 51 < 5, < ... stand for the numbers such that s, (5, + 1),
m =1,2,..., are the eigenvalues of the Dirichlet problem for the Beltrami opera-
tor in S(K;). As was mentioned, in what follows we assume that k? lies between
the first and the second thresholds, so in every G; there is the only outgoing wave
U~ (we drop the subscript in the notation because confusions will be excluded
by the context). The next proposition follows, e.g., from Theorem 5.3.5 in [12].
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Proposition 3.2. Let |y — 1| < 31 + 1/2 and suppose that there is no nontrivial
solution to the the homogeneous problem (2.6) (where f = 0) in V“i 5(Gj) with arbitrary

small positive 6. Then for any f € V'(y), 5(Gj) there exists a unique solution v to the
problem (2.6) that admits the representation

U=1U-+ A]Xoo,]u_
where Aj = const and u € V,f,g(G]-), the & being sufficiently small, while the estimate
s V2 5(GpIl + 145 < ell £V 5(G) (3.11)

holds with a constant c independent of f. If, in addition, the f is smooth and vanishes
near O, then the solution v satisfies

n
Vi

CIDjK1 denotes an eigenfunction to the Beltrami operator corresponding to sy (sj1 + 1) and
normalized by

o(x)) = a; T%j1+1/2(krj)q)11‘<1(9"1') + O(r;'{jz)’ =0

2%-4—1/ DK (0)?de =1,
@ 1) [ (o) Py

aj is a constant.

3.2.2 Second kind limit problems

In the domains Qj, j = 1,2, introduced in Subsection 3.1.1, we consider the
boundary value problems

Aw(&E) F(&) inQy, (3.12)
w@) = 0 on d€);,

which are called the second kind limit problems; by & = (cfjl, 572, c:,‘é) we mean
Cartesian coordinates with origin at O;.

Let pj(¢/) = dist(¢/,0;) and let 9 j, Po,j be smooth real functions in Q;
such that ¢ ; equals 1 for p; < N/2, vanishes for p; > N, and wélj + 1/)201], =1,
the N being a sufficiently large positive number. For y € Rand! =0, 1,..., the
space Vé(Qj) is the completion of the set C°(€);) of smooth functions in Q; with
compact supports in the norm

1/2
Jos Vi(©)]| = ( | X (0@ + e (620, (&27 D) o) P
7 |a|=0
(3.13)
The next proposition is a corollary of Theorem 4.3.6 [12].
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Proposition 3.3. Let |y — 1| < min{y;y, 51} + 1/2. Then for every F € VJ(();)
there exists a unique solution w € V3(C);) to problem (2.7) and

loo; V()| < ellF; V()] (3.14)
holds with a constant c independent of F. If F € CZ° (ﬁj), then the w is infinitely
differentiable in (); and admits the representation

i —xj1—1 —xjr—1
w(@) =ap; T @F () + 00, 7 ), pj— oo, (3.15)
in the cone K;j; here (pj, goj) are polar coordinates in Qj with center at Oj, the Hip, <I>]I-<1
are the same as in Proposition 3.2, & is a constant coefficient. In the cone Lj, a similar
expansion holds with B;, y;,, and CDle instead of w;j, 5, and <I>]Kl. The aj and B; are
defined by
“]: _(Flwf)Q/ ,B]: _(Flw]L)Q/

where w]K and w]L are unique solutions to the homogeneous problem (2.7) such that, as
p] — 00,

. o1
(0" +ako, ) @fi(g)) + 00, ) in Ky
wk = / ; i1 ]V ) (3.16)
. e
Bip, " @) +0(p; " ) inlLy
oto; @k (g) + Olp, ) inKj;
wh = G e
j Wi —uip—1 —pp—1 . ’
()" + e, ) @h(g)) + 0G0, ") in L,

the coefficients ocf-(, ,Bf, ij, (5]-L being constant.
Proposition 3.4. For any F € CZ(QY;) there exists a unique solution w; € C*(Q);) to
(2.7) satisfying, as pj — oo, the asymptotic formulas

+Hjpp! " +0(p; ) in K;,

O(p~"27") in L,

. Hiqp, 917!
wi(g) =4 1P (3.18)

the Hjq1 and Hj being constant.

Proof. First, we prove that the constant ﬁf in (3.16) is nonzero. As is known,
for the first eigenvalue of the Beltrami operator, one can choose a positive eigen-
function. However, every eigenfunction ®,,, m > 2, corresponding to any other
eigenvalue, is not of the fixed sign. When <I>].K1 is positive in S5(K;), there exists no

any subdomain () j of (O; where w]K < 0. Indeed, if such a subdomain (~)j would
exist, then the restriction of wJK to Q) j is a solution of the Dirichlet problem in (~)]-
vanishing at infinity (if (); is unbounded). We arrive at a contradiction, because
wf =0in ﬁ]- and consequently in ;.
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In L, the expansion w; K@) ~ v, ﬁjmp;%"mil@]l(m((pj) holds. Let ,Bﬁ =0,
then all the coefficients B, must vanish. Otherwise there would exist a subdo-
main with wK < 0, since the eigenfunctions CDJKW m > 2, take both positive and
negative values. This leads to a contradiction, because, as is known, a harmonic
function decreasing at infinity faster any power of p; vanishes anywhere in ;.

Now, we prove the existence. Let w; be a bounded solution to the problem
(3.12). By Proposition 3.3

1 —xjp—1 .
wo; " @K (g) +0(p; ) inK;;
oy — yo—1 .
Bio; " ‘@ () + O(p; ") inlL;.

-~

The function w = @; — E—Kw is the desired solution w, here §; and /3K are the
coefficients in the expansions (3.19) and (3.16). The mentioned expansions result
in

— M 71 .
@ 'B_ K _ — O(p] 72 )1 X in K],
“Hin Ky -1, .
B N (Hﬂpf T+ szp]-’l) ®ji(g;) +O(p; "* ) inLy
where
Hji = ;= Bjai /B, Hp = —Bi/ B} (3.20)

To prove the uniqueness, it is enough to verify that F; = 0 leads to w; = 0.
When F; = 0, the difference w; — H]'sz solves the homogeneous Dirichlet prob-
lem in ();, vanishes at infinity, and, hence, must be zero. Comparing asymptotic
expansions of szw]K and w; as p; — oo in L, we obtain szle = 0. Since ﬁf #0,
we have Hjp = 0 and w; = H]2w =0. O

In O, consider the problem to find a function w; and numbers Hj;, Hj, such
that

a1 2 .
twp = F— [0 (Huo, ™ + Hop") @fi(g) inQy,  (321)
ZU] =0 on aQ], (322)
O(p;%jrl) as pj — oo in the cone Kj,

w = J o (3.23)
] O(p]» Hiz 1) as pj — oo in the cone L;,

where j = 1,2; the polar coordinates (p;, ¢;) are the same as in Proposition 3.3;
the cut-off function ng is nonzero only in K, equals 1 as p; > d and O as p; < 6/2,
0 being a positive number. The next proposition follows from Proposition 3.4.

Proposition 3.5. The problem (3.21)—(3.23) has a unique solution for any right-hand
side F € C2(Q))).
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3.3 Tunneling in a waveguide with one narrow

The purpose of this section is to carry out preliminary constructions which are
necessary in further steps but not related with the phenomenon of resonance. We
thereby lighten the exposition of the next section and by the way demonstrate the
compound asymptotic method in a more simple situation.

We consider the electron motion in a waveguide G(¢) with one narrow. The
role of such a waveguide is played by G(¢, €g) (see Subsection 3.1.1), where ¢y is
a fixed number, £ remains an infinitesimal parameter. Since only the first narrow
is considered, we omit the index "1" in the notation of its attributes; for instance,
we write "point O" instead of "point O;", etc.

3.3.1 Special solutions to the first kind homogeneous problems

The limit waveguide G(0) consists of two parts G; and Go; each of them has one
conic point and one cylindric end at infinity. Let us consider G;. Suppose that
the homogeneous problem (3.7) in G; has no nontrivial bounded solutions. In
what follows, to construct an asymptotics of a wave function, we will use special
solutions to the homogeneous problem (3.7) unbounded near the point O.

In the cone K, consider the problem

Au+Ku = 0 in K (3.24)
u =0 on 0K,

The function ,
o (r, @) = WNmH/z(kr)ch(rp), (3.25)

satisfies (3.24); here N% stands for the Neumann function multiplied by a constant

such that ,

WNmH/z(kr) =r A o(rah);
s, @K are the same as in Proposition 3.1. Let t — ©(t) be a cut-off function on R
equal to one for t < §/2 and zero for t > 6, 6 being a positive number. Introduce

a solution of the problem (3.7) in G; by the formula
vi(x) = O(r)vk(x) + 7 (x), (3.26)

where 77 is the bounded solution of the problem (3.7) with right-hand side f =
—[A, ®]vK. By Proposition 3.2, the v; exists, is uniquely determined, and admits
the asymptotic expansions

1 /~ ~ i
N (N%1+1/2(kr) + 111]%1+1/2(k7)) O (¢) +0(r=), r—0,

AU~ (x) +0O(e%4), X1 — +09,
(3.27)

V], =

where J, is the same as in Propositions 3.1 and 3.2.
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Lemma 3.1. There holds the equality | A1 |> = Im a;.

Proof. Denote by Gy s the truncated domain G; N {x; < N} N {r > é}. By the
Green formula

0= (Av+Kv, V)GM — (v, Av+ kzv)Gw = (aV/a”/V)aGN,,,~ — (v, av/an)acmS
= 2iIm(av/0n,v)agy ;-

The integral in the right-hand side is supported by the vertical part {x; = N} of
the boundary and by the sphere {r = ¢}. Taking account of (3.27) as x; — +o0
and (3.3), we have

ou-

(Ov/on,v)y,—Nn = A —(x)A U (x)

b, o dxpdxz+o(1) =

.xl:N
= |A1|2i1/1 /G |T1(X2, X3)|2de dX3 + 0(1) = i|A1|2 + 0(1),
N,o

Using (3.27) as ¥ — 0 and the normalization of ®; (see proposition (3.2)), we
obtain

P) - -
(OvV/On,v),—y = /S(K) {—5% (N%1+1/2(k7) +ﬂ1]%1+1/2(k7))] Df () x

X

% (N 12(kr) + 1]y 12 k) ) @ ()72

- —a1(2%1+1)/c 101 () Pdg + 0(1) = —ay +o(1).

N,o

5dq)+0(1) =

r=

Thus |A1|> —Ima; +0(1) = 0as N — co and § — 0, which completes the proof.

O
Assume that v satisfies the homogeneous problem (2.6) in G1, and
1 ~ ~
o= ) i (N2l +0 T k) @ (9) +0072), 1 —0;
AU (x) + ATUT (x) +O(e ), x] — +o0.
(3.28)

We find a relation between the coefficients a* and A*.

By (3.27) and (3.28), the function v — (a= — At /A;)v; — (AT /A;)V; is a
bounded solution to the homogeneous problem (2.6) satisfying the natural radi-
ation conditions. Applying the Green formula as in the proof of Lemma 3.1, we
obtain that the amplitude A~ — A;(a~ — AT /A7) of the outgoing wave in the
asymptotics of the function at infinity must be 0. Under assumptions of Proposi-
tion 3.2 any such a solution is trivial. Thus,a~ — A*/A; = A~ /A; and

- +
U= 12—1V1 + %V]. (3.29)
Equating the coefficients in the asymptotics of the both sides as r — 0, we obtain
the relations

_—Ai+AJr =4, +A+E
T A A A A
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Rewrite them in the matrix form:

a- . 1 Z1 Aq A~
( at > AP < mAy @A > < AT > (430
Because of the assumption A; # 0 and Lemma 3.1, we have
A~ - 1 A1 —Aq a
( AT > o 2iIth1 ( —alzl Zl at ’ (331)

In a similar way, one can treat a solution of the problem in G,.
3.3.2 Passing through a narrow
Assume that a wave function in G(¢) is approximated, to the left of the narrow, by

a solution v; to the first kind limit problems in G; and, to the right of the narrow,
by a solution v; to the first kind limit problem in G,; moreover,

1 — N7 T P

v = 7 (“1 N, 41/2(kr) + a1+]%1+1/2(kr)) O (p) +0(r2), r— 03.32)
1 ~ -

NV (“2 Ny, 11/2(kr) +”§rfm+1/2(kr)) ®f(p) +0(r2), r—0.

We seek a relation between the coefficients ali and aé‘. To this end, a formal
asymptotics of the wave function (more precisely, the principal term of the asymp-
totics) is constructed by the method of compound expansions.

Introduce a cut-off function x.» on G, by

Kea®) = (1= 077 ) 16, (),

where the cut-off function ® was defined before the relation (3.26) and 1, is the
characteristic function of the domain G, (equal to one in G; and to zero outside
G). The product x.,v, turns out to be defined on the whole waveguide G(¢).
Substitute it to the problem (3.1). The boundary condition is fulfilled and we get
the following discrepancy in the equation:

(A +E)xeav2 = [A Xeplva + Xea (D +K)v2 = [A,1—O(e )]0,

Clearly, the discrepancy is non-zero only in a small neighborhood of the narrow,
in which v, can be replaced by its asymptotics. Write out the principal part of the
discrepancy and transform it passing to the variables (p, ¢), where p = ¢~ !r:
(D +R)xeavs ~ [8,1-0( )] (ayr 1!+ af i) ok (p) =
= 28,1 = Op)] (aye Mo ag el ) D (g).
Now, introduce the solutions {w™, Hli, Hzi } of the problem (3.21)—(3.23)

where
F(p, ¢) = =14, 27120 (),
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the ¢ denotes the function 1 — © restricted to the cone L and then extended by
zero to the whole Q). We add to x. 20, the function ®(r)w(¢~!x), where

w=a,e M w +ajetw, (3.33)
and substitute the sum to (3.1):
(A +#) (xea(0)02(x) + O()w(e %)) =
= [& Xea(x)] (Uz (a roil 4 af rm) <I>L(<p)) +KO(r)w(e x) —
— [ )] {agem Tt (Hy () T+ Hy (7)) +
+ afer (Hf (') 4 H (7)) ol ().

Thus, we have compensated the leading terms of the discrepancy with support
to the right of the narrow. As is shown below in the proof of Theorem 3.1, the
summand k*@w is small. The remaining summands are supported to the left of
the narrow and cancel after adding x1v1 to X202 + @w; the cut-off function x,
in Gq is defined similar to .2, and v; satisfies the homogeneous first kind limit
problem in G; and admits the expansion (3.32) near O with the coefficients

- _ — g1~ + 7+ e+l
a;, = a,Hje +a, He ’

+ = g Hetia-l T H 1~
a = ay,H,e +a; Hye .

These equations imply

1 e + ore+pp+1 —
a4 . H1 X1 H1 P} a;
( a;r > o ( H;gfﬂlfﬁqfl H2+€;417;41 a2+ , (334)
1 1 Hy el —Hl+g%1+m+1 oy
ﬂ;— n Hl_H;_ — HZ_HT_ sz_e—Pl—%l—l Hl—sﬂl—yl aii— .
(3.35)

Lemma 3.2. There holds the equality H; Hy — Hy H; = —1.

Proof. First of all, we express Hljfz in terms of the coefficients in (3.16) and (3.17).
Remind that {w~, H;, H, } is the solution of the problem (3.21)—(3.23) with

F(p, ) = =, ¢ o " 0 (9).
The solution of (3.12) with that right-hand side F is
w(p, ) = —C (o, 9) p 1 DY (@)
The coefficients in (3.19) are « = 0 and § = —1. From (3.20) we obtain that

Hy = ocK//%K and H, = 1//3K.
Turn to the solution {w™, H;", H) } of the problem (3.21)—(3.23) with

F(o, ) = —[A, Mo @1 (g).
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The solution of the problem (3.12) corresponding to that right-hand side is

@(p, @) = wi(p, ¢) — ¢ (o, @) P @1 ().

The coefficients in (3.19) are « = L and B = OL. From (3.20) it follows that
HlJr — ,)/L —(SLOCK‘BK, H; — —JL/’BK.

The obtained expressions lead to H; Hy” — H, H” = —vL/BX. It remains to
prove that 4 /X = 1. Denote by Q the truncated domain Q N {p < R}. By the
Green formula

0= (AwX, wh)q, — (@5, Awh)q, = Ow*/an, wh)s0, — (@5, 0w /9n)0,.

The right-hand side is supported by the sphere p = R. To calculate the integrals,
replace wX and w’ by theirs asymptotics (3.16) and (3.17). As a result (compare
with the proof of Lemma 3.1) we get 0 = oL — X 4+ 0(1) as R — oo, which
completes the proof. O

3.3.3 Formal asymptotic expressions

Here, we obtain asymptotic formulas for the amplitudes of the reflected and tran-
sited waves. We do not need the asymptotic formula for the wave function to this
end. In fact, in the preceding subsection, we employed the formula to find the re-
lation between coefficients in asymptotics of solutions to the first kind limit prob-
lems on the opposite sides of the narrow. The asymptotics of the wave function
will be explicitly exposed at the end of the subsection. We will use the formula,
when estimating remainders in asymptotic formulas.

Suppose that, in the domain G, the wave function is approximated by a
solution of the first kind limit problem that admits an asymptotic expansion at
infinity of the form (3.28) with coefficients A, = 51 and A;‘ = 0, where 575 is the
yet unknown amplitude of the transited wave. According to (3.30), this solution
has the asymptotics near the point O with coefficients

a . 1 Zz Ap Az_ . S12 1
(az+>_w<azflz 52A2>(A2+>_A_2<02>'
where a;, A; are similar to a1, Ay and are defined by the asymptotics of the form
(3.27) of the special solution v, to the homogeneous limit problem in G,, which is
defined by an equality similar to (3.26).

As was shown in the previous subsection, in the domain G, the wave
function is approximated by the solution v; of the homogeneous limit problem,
which, near the point O, admits the asymptotics of the form (3.32) with coeffi-
cients (cf. (3.34))

( a; ) 52 < Hyea~#  Hfgatmtl ) ( 1 > B
+ - Al — o= —p1—1 +o—+ -
aj Ay \ Hye 1™ h Hy e T ap

S12 Hyea 1+ azHlJFS}{lerJrl

A, szej?ﬂ*ﬂl*l + aZH;£7%1+}41
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According to (3.31) and Lemma 3.1, the coefficients in the asymptotics of v; at
infinity (see (3.27)) are given by

Ay Yo L @mAr —AN (e S (10
A} ) T T2ilma \ —amA, A a ) 2iA, \ It )’

where
= le(ﬁlHls’“Vl + @ Hf et — Hoem il gy et
I = _Ail(alHl—sm—m _ alazHiFg%lﬂlﬁl 4 Hz—g—%l—ﬂ1—1 4 asz-g—%ﬁ-M)'
The value AI“ = —5121"/2iA; is the amplitude of the incoming wave and

supposed to equal one. This gives the first order approximations 51, and 517 to
the amplitudes of the transited and reflected waves:

~ 2iAy ~ _ Sl o I~

S12= " si= A :_ZiA2 I

Substituting the expressions for I" and I~ and omitting terms of higher orders,
we obtain

,512 _ _ZiAl_AZ e}qu]zt]Jrl + 0] (€4K1+2) ,
HZ

= A1 - Hy 5.4 4y 42
511 = —— [ 14 2iImay—Le#atl O (Mt ,
H A ( "Hy ( )

where k1 = min{s7, j1 }. Using 515, we obtain the approximation to the transmis-
sion coefficient:

2
ﬁ _ |§12|2 _ 2A1:42 82%1+2y1+2 +0 (£6K1+3>
H,
A direct calculation shows that
1 Ima;Ima
ITRP—|I"P) = ——2—"2(H H — Hy H}) = 1.
4’A2|2(| | | | ) |Al|2 |A2|2( 1 2 2 1)

Hence, R+ T = 1 with T = [53;]? and

2
at2ut2 | o (86K1+3) .

2A1A
T=1-|°142

Hy

Emphasize that the remainders in the above formulas denote the summands,
which were omitted in the explicit expressions for the first order approximations,
and do not show the distinction between the kept terms and the real values of the
coefficients we are interested in. We estimate this distinction in the next subsec-
tion.
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The first order approximation to the wave function is of the form
1 (x;e) = xe1(x)v1(x;e) + @(r)w(s_lx; €) + Xe2(x)v2(x;€), (3.36)

where, owing to (3.29) and (3.33),

v (x;e) = gli%w(x), (3.37)

w(Ge) = ay (e)e MW (Z) +af () wT(§), (3.38)
- +

or(xie) — “‘jaf")vl<x>+“‘j4§)vl<x> (3:39)

3.3.4 Estimates of remainders

Introduce function spaces for the problem
Au+Ku=f inG(e), u=0 onadG(e). (3.40)

Let © be the same as was introduced before (3.26) and let7;, j = 1,2, be supported
by G; and satisfy #1(x) + ©(r) + 72(x) = 1in G(e). Fory € R, J > 0, and
1=0,1,..., the space V,ly, 5(G(g)) is the completion in the norm

1/2

! 2 ;
lo; VI, 5(G(e))|| = (/( Y <@2 (72+£2)’Yl+tx+277j2e25x]1> |av¢v|2dx)

G(e) |a|=0 j=1
(3.41)
of the set of smooth functions in G (&) having compact supports.

Proposition 3.6. Let |y — 1| < min{s, 1} +1/2, f € V$,5(G(e)), and let u be a
solution to the problem (3.40) that admits the representation

u=1u+mA;yuU; +mA,U,, (3.42)

where A" = const and il € V2 5(G(€)), 6 being a small positive number. Then the
estimate

17 V3 5(G()) | + AT+ [A7 | < cllfs V3 5(G(e)l (343)

holds with a constant c independent of f and e.

Proof. Here, we adapt to our purpose the proof of Theorem 5.5.1 in [10]. For the
sake of simplicity, denote the left-hand sides of (3.11) and (3.43) by

[[v; Vf,é,f(Gj)Hr [|u; Vi,tsﬁ(G(E))H/

respectively. Let the cut-off functions x.; be the same as in Subsection 3.3.2.
Rewrite the right-hand side f of the problem (3.40) in the form

f(x) = fi(x;e) + e 732F(e 7 xse) + fo(xse), (3.44)



48

where x are Cartesian coordinates with center at O,

fitxie) = xyej(0)f(x),  F(Ge) = 20(Vep) f(e8)-

From the definitions of the norms is follows that
1fi: VsGll S il iVys(GleDll,  j=12 (3.45)
IE; V()| < ClIf; vy 5(G (el '

where the constants ¢; and C are independent of . Consider solutions v; and w
of the problems

Av—l—kzvzfj, in Gj, v=0 onan;
Aw=F, inQ, w=0 onoad),

respectively. Owing to Propositions 3.2 and 3.3, these problems are uniquely solv-

able and the estimates
o Vs, (Gl < &5 V24(G)l o6
lw; V2(Q)|| < CIIF; VY (Q)]

hold with constants ¢; and C independent of . Put

U(x;e) = xe1(x)o1(x;8) + e 7120(Nw(e 1 x;€) + xea(x)va(x;€).
The mapping R, : f +— U(f) is bounded uniformly with respect to ¢, which
follows from the chain of inequalities

IU; V25 (G(e)] <& (Hvl;Vf,,s,_(GOH +[lw; VI + [loz Vf,(s,_(Gz)II) <

<& (11 V(G| + B VO + 1 VO5(Go)ll ) < V(G
(3.47)
where we took into account the estimates
lx = ©(rw(e " x;); VI(G(e) | < ™2 (|w; VE(Q)|
(with c independent of €), (3.46), and (3.45). Clearly, U vanishes on the boundary
of G(e). The discrepancy given by U in the Helmholtz equation is of the form
AU(x;e) +KU(xze) = fi(xe) + [A, xV (0))o® (x;0)+
+ e T3 2F (e ;) + e VT2 (A, O(r) |w(e xe)+
+ e "MV2120(r)w(e L e) + falx;e)+
+ A xea(x)]va (7€) = f(x) + Sef (x7 ).
Below, we prove that the operator S, has small norm in the space VA?, 5(G(g)).

Hence, the operator I + S, is invertible, the same is true for the operator of the
problem (3.40)

(3.48)

Ag i u— Au+ku: \7,2%5’7(G(£)) — V,(Y),&(G(S)),
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where V,ZY 5, (G(¢)) stands for the subspace in VWZ, 5, (G(¢)) consisting of the func-

tions equal to zero on the boundary. Moreover, the inverse operator A;! =
R¢(I + S¢)~! is uniformly bounded with respect to e. This gives the inequality
(3.43).

In the last part of the proof, we establish

I1Sef; VY s(GeDl < eIV 5(G(e) ],

where d is a small positive number, such that |y — 1| +d < min{se, u1} +1/2;
here and further, ¢ denotes, generally speaking, different constants independent
of e.

To begin with, we estimate the norm of the operator f — [A, x,1]v1. Since
the function [A, x¢1]v; is supported in the region ce < r < Ce,

A xealou Ve s(GE) < ce[[[A, xealor; V)_g (G (o),

d being a small positive number, such that vy —d —1 > —min{sq, 1} —1/2.
According to (3.46)

A, xealors Vg s (G < cllow Vi_g (GOl < el fis Vy_g,5(G1)Il

Because r > c¢y/e on the support of f;,
1f1: V) —a6(G < ce™ 2| f1; V) 5(G) |

From the last three inequalities and (3.45), the estimate

1A, xealor; Vs (Gl < ce®?|1 £V 5(G(e))

follows. In a similar way, one can estimate [A, x¢1]v1.
Now, consider the summand e~ 7+1/2@(r)w(e ' x;¢). Assume that d satisfies
¥ +d—1 < min{sq, u1} + 1/2. Then, taking into account (3.46), we have

lx = [A, ©(r)w(e™ x;e); Vi) 5 (G(e) | <
<cllx = [A, 0wl xe); V) 5 (Ge)]| <
e 2|1E o (A, O(ep)Jw(Sie); Vi ()] <

d— . d— .
e 2w V2 Q) < e VB VD ()]

IN I\

Since the function F is nonzero only as p < c/ Ve,
IE; VY a( Q)] < ce=2|[F; vV(Q)].
From here and (3.45), we obtain that
e T2 |x = [A,0(n)]w(e " x); V] 5(Gle))| < Ced/zl\f; Vsl
It remains only to estimate the summand ¢~71/2k2@ (r)w (e x; €):
lx = e 20 (nw(e xe); V) (G(E))H ce?||w; V()| <
< ce|w; V3 ()| < cellw; V2, ()] < e £V 5(G(e)) -
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The following theorem contains the main result of this section. Let 17 be a
solution of the problem (3.1) in G(e) defined by (3.4) (it is supposed that M; =
M, = 1); s11 and sq; are the entries of scattering matrix elements determined by
this solution (the amplitudes of outgoing waves in its asymptotics at infinity).
The function ;7 and the numbers 511, 15 are constructed in Subsection 3.3.3.

Theorem 3.1. Assume the hypotheses of Proposition 3.2 to be fulfilled and the constant
A1 in (3.27) to be nonzero. Then the following estimate is valid:

sup |u(x;e) —i(x;e)| +[s11(e) —511(e)| + [s12(e) —512(e)| <
x€G(e) (3.49)
< C(€K2+1 +87+3/2)8%1,

where v > 0 satisfies |y — 1| < k1 +1/2; iy = min{sq, 1y}, | = 1,2; 29(59 + 1)
(resp., pi(p; + 1)) is the first eigenvalue of the Beltrami operator on the base of the cone
K (resp., L); the constant c does not depend on e.

Proof. The difference u — i satisfies the problem (3.40), where, according to (3.36),

F50) =~ 1] (ma(x56) — (ag (17" + 0 ()@ () -
(8, xe2] (02(x56) — (a3 () 7 4 af ()@l (g)) — B:50)
—[A,@lw(e tx;e) — KPO(r)w(e 1x;e).

Moreover, u — i is subject to the natural radiation conditions at infinity, i.e. its
asymptotics contains only outgoing waves (indeed both u and u have in their
asymptotics the incoming wave with amplitude 1. We are going to use Proposi-
tion 3.6. To this end, we estimate || f; V,?I(;(G(s)) Il

Consider the first summand in the right hand side of (3.50). Since it is sup-
ported by the region ¥ = O(¢), one can replace v; by the leading term of its
asymptotics as r — 0. Then

= [8 xeal (o1(x58) = (o ()11 +ai () )@ () ) ; VIs(G (o)) 2

2
<c /G( )(rz + 82)7 ‘[A,Xm](al_ (zz)r_}‘lJr1 + a{“ (e)r”1+2)q>{<(q))‘ dx;
€

the integration can be carried out only over the domain G; (even over the cone
K), where x.1(x) is equal to 1 — @(¢~!r). Passing to the variables ¢ = ¢ 'x and
taking into account (3.34), we obtain

I = 14 xeal (o1(x58) = (a ()17 4 () )@ () ) ; VI5(G (o)) <
ce"t3/2 <|a1_(e)|£_%1_1 + |af'(s)\e”1) L ce’t3/2 <|a2_ (e)|e "1 + |af (£)|£”1> .
Analogously,

= 18, xe2] (a(x36) = (a3 (&) 17+ af (e)r1) @k () 5 VO4(G (o))

<2 (Jag (e)le 7+ [af (e) e )
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Turn to the summands containing w. Taking into consideration (3.38) and
the fact that, at infinity, w* behaves as O(p=271) in K and as O(p~#>"!) in L
(since it solves the problem (3.21)—(3.23)), we get the estimate

/(;(8)(72 +e2)7 ’[A,(@]W(e_lx;e)‘zdx <c (|a2‘(e)|g—ﬂl—1 + ‘a;(g)km)z «
< (02 fia el 1ok de
+ [P 18,00 ki) dr) <

2
<c (lag @)™ + |af () e ) e+,

where k; = min{sn, i }. Finally, again due to (3.38), we see that
2
Jo (P 7 O0)le o) e = 272 [ (g2 +1)7 @(ep)u(dse) i <
€

2
<c <|a£ (e)|e M1+ |a2+(s)|€f’1> 2173,
Combining the obtained estimates, we get
£ V25(Gle)|| < ¢ (|a5 (e)[e™M 1 + |a§r(s)|sf‘1) (s’Q“ + £7+3/2) . (351

Now, apply Proposition 3.6 to the function u — u. In (3.43) the u and A]f

must be replaced by u — i and s1; — 51, respectively. From (3.51) and a; =
O(eg1t1+1), we obtain

[s11.(e) =51 (e)| + [s2(e) — S1a(e)| < Jlu =L V35 _(G(e))l| <
< o(e2Fl 4 e1+3/2)g, (3.52)
Moreover, since the norm ||u — I; Vﬂi 5, (G(¢))|| is bounded, the function
Uy (=1 = (s11 = 511)mUy — (s12 — S12)12Uy)
with v, 5 = @2 (r? + €2)7 7l 4 2]2:1 17]2 exp(Z(Sx]l‘) belongs to the Sobolev space
W2(G(e)) and
va (U — i = (su —su)mly — (s12 = s12)m2lly ); sz(G(S)) H <
<lu =i V3 _(G(e)]-
According to the known Sobolev imbedding theorem, any element u of W3 (D) is
a continuous function and ||u; C(D)|| < |lu; W3(D)||, D C R3. Hence,
sup [u(x;e) —u(x;€) — (s11(e) —s11(€)) (i Uy ) (x) -
xeG(e)
—(s12(e) = S12(€)) (2L ) (x)| < e 4743/ 2)e,
Owing to (3.52), this gives

sup |u(x;e) — ti(x;e)| < c(e2T1 4713/ 2y,
xeG(e)

and we arrive at (3.49). O
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3.4 Tunneling in a waveguide with two narrows

In this section, we consider the problem in the waveguide G(e1,€&2) with two
narrows. The limit domain G(0,0) consists of three parts: infinite domains Gy,
G, and the bounded "resonator" Gy. For k2 in any interval, where the first kind
limit problem in the resonator has no eigenvalues, all the results of the preceding
section can be obtained by the same arguing for the waveguide with two nar-
rows. Some new difficulties arise, when k? changes in a small neighborhood of
an eigenvalue of the limit problem in the resonator. For the sake of simplicity,
suppose that the eigenvalue is simple.

3.4.1 Special solution to the problem in resonator

Denote by k2 a simple eigenvalue of the operator —/\ in the domain Gy and
by v, an eigenfunction corresponding to k? and normalized by the condition
i) Go |ve|?dx = 1. According to Proposition 3.1, we have

b-LT, kory )M near Oy,
ne(x) ~ { 17 Junr1/2(ker1) @y (1) 1 (353)

b2%]~m1+1/2(ke7’2)®%2 (¢2) near Oy,

where, as before, (r]-, (pj) are polar coordinates with center at O; (j = 1,2); pj1 is a
number such that i1 (/1 + 1) is the first eigenvalue of the Laplace-Beltrami oper-
ator on the base of L;; q)fj denotes an eigenfunction corresponding to pj1 (pj1 + 1)
and normalized by (2uj1 +1) [ |d>%2 2dp = 1. For k? in a small punctured neigh-

borhood of the number k2, introduce solutions v%, j = 1,2, to the homogeneous
first kind limit problem in Gg by

o0 (x) = O(r))oy (1), ¢}) + 37 (), (3.54)

where v? ,j = 1,2, are defined by (3.25) with K and s replaced by L; and y;3; 50i
are the bounded solutions to the problem of the form (3.7) in the resonator for
fi= -4, @]v].Ll. It is clear, that, as k = k., the problems to find 7; are, generally
speaking, unsolvable and the functions 09 are defined incorrectly.

We set vg; = (k2 — k2)v°1 and vy = byo®1 — b1v°2. As follows from Lemma
3.3 below, such the linear combinations are correct even at k = k,. Owing to
Proposition 3.1,

vor (x) ~

N I ((kz — k2)Nyy, 1/2(kr1) + 1 (k)7y11+1/2(k7’1)) O (1), 11— 0
c2(k) T T 112(kr2) @12 (92), 12 = 0;
(3.55)
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N T L
voa (1) ~ \/jﬁ b2Nyyy 11/2(kr1) +d1(k)]H11+1/2(kr1)) ohi(g), 1 —0;
NG

—b1Ny 41/2(kr2) + dZ(k)Tm]-i-l/Z(er)) 12 (g2), 12— 0.
(3.56)

2

Lemma 3.3. In a punctured neighborhood of k = k. containing no eigenvalues of the
problem in the resonator, the relations

bj

-k

0 = Ve + 09

are valid, where b; are the coefficients in (3.53), 891 are some functions analytic in k? in
the mentioned neighborhood.

Proof. First, we prove that (v, v,)g, = —b;/ (k* — k%), where 09 are defined by
(3.54). Consider

(Avof + K209, Ve)G, — (vof, Av, + kZUe)Gé,

in the domain G; obtained from Gy by cutting out the balls of radius J centered
at O;. The expression equals — (k* — k2) (v, ve)g,. Applying the Green formula
as in the proof of Lemma 3.1, we obtain that it equals b; + o(1). It remains to let 6
go to zero.

Remembering that kZ is a simple eigenvalue, obtain that

2

50, — Bitk)

k2 — k2
9 are some functions analytic in k% near the
point k> = k2. Multiplying (3.54) by v, taking account of (3.57), the formula for
(09, v¢)G,, and the normalization condition (v, v.)g, = 1, we find that B j(k2) =
—b; + (k* — kg)Ej(kZ), Ej being an analytic function. Together with (3.57) this
leads to the required statement. U

ve + 09, (3.57)

where B;(k?) is independent of x;

Consider a solution vy of the homogeneous first kind limit problem in the
resonator Go, which admits the expansions

by (k)N 41/2(kr1) + b (k) Ty, 41 2(kr1) ) @Y (1), 11— 0;
vp(x) ~

by (K)Nyyy +1/2(kr2) 4 b3 (k) [y 412 (kr2) P12 (¢2), 12— 0.
Comparing the asymptotics near O, one can see that

N =

(3.58)

1
bica(k)

bgb(k) v (X). (3.59)
1

Uo(x) = (blb;(k) + dz(k)b; (k)) Vo1 (X) —

This equation and the expansions (3.55) and (3.56) near O; give the following
relation between the coefficients bljE and bzi:

bf . L (kz — kg)dz —byoy (kz — kg)bl b; (3.60)
bIL o b1C2 Cldz — Czdl blcl b;r ! )
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b; o 1 bicy —(kz — kg)b] b;

by ) (k2 —k2)dy —bycy \ —cida+ cody (K2 — K2)da — boco b )’
where, for the sake of implicity, the dependence of the coefficients bfz, €12, dip
on k is not shown.

Lemma 3.4. Assume that the functions vy, and vy make sense for a fixed k. Then, at
this k, (kz — kg)dl (k) = b2C1 (k) — blcz(k>.

Proof. Let the domain G; be the same as in the proof of Lemma 3.3. Applying the
Green formula to vg; and vy, in G, using the expansions (3.55) and (3.56), and
letting 6 — 0, we complete the proof. O

3.4.2 Formal asymptotic expansions

In the waveguide G(¢1, €2), consider the wave function u; such that

uy(x;k,e1,€2) ~

~ Uf(xl,'k) +s11(k, €1, €2) Uy (xl,‘k), x% — 400,
S12(k,£1, 52) Uz_ (xz; k), x% — +-o00.

As in the case of a waveguide with one narrow, we derive approximations for
the coefficients s;; and sq; by using only solutions to the first kind limit problems
and the relation between coefficients in the asymptotics of these solutions near
the opposite sides of a narrow (cf. Subsection 3.3.2). At the end of the subsection,
we write out the first order approximation to u;, which, besides the mentioned
solutions to the first kind limit problems, contains solutions to the second kind
limit problems supported near the narrows.

In the domains Gj, j = 1,2, u; is approximated by the solutions v; to the first
kind limit problems in G;, which admit the asymptotic expansions

vi(xsk,e1,82) ~

% (a] (k, 81,52)N%j1+1/2(k7’j) + a]—-i_(k/ 81/82)]%j1+1/2(krj)) q)l](qoj;k)’ i — 0;
Ar (k,sl,sz)uj’(xf; k) + Af(k,€1,€2)uj+(xj) k), x3— +oo,
(3.61)

where x/ are the coordinates with center at Oj introduced in Subsection 3.1.1. As

was shown in Subsection 3.3.1, the coefficients aji and A].i are connected by the
relation
1 _1
< a]._(k,sl,sz) ) A Ak ( A]-_(k,s1,sz) ) ' (3:62)
a =1 a4k K " ; -
a; (k,e1,€2) /‘Jj(k) ij(k) A]. (k,e1,¢€2)

here A;, a; are the coefficients in asymptotics of special solutions v; of the homo-
geneous first kind limit problems in Gj; the solutions v; admit asymptotics of the
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form (3.61) and are uniquely determined by the conditions a; =1, AJr = 0; at
the same time, a;’ =aj, A; = Aj (cf. 3.27)).
In the resonator Gy, 11 is approximated by a solution vy of the first kind limit

problem in Gy, which satisfies (3.58). Let {wi H]jlt, H 2} be special solutions to the

problem (3.21)—(3.23) in Q; analogous to the solutlons 1ntroduced in Subsection
3.3.2. Then the coefficients b in (3.58) are connected with a by the equality

_ » i +uint+1 _
b]. (k,e1,€2) H]‘; ?’l n H+ ]]1 ki a; (k,e1,€2)
e ) et e [\ e )

Emphasize that a]i are the coefficients in the asymptotics near the vertex of the
cone K;, and bT are those near the vertex of Lj; that is why, we use a relation
similar to (3.35) rather then (3.34).

The last two equalities result in

by (ke e2) \ [ —Bilke) —Bike) A7 (k e, €2)
( b?“(k,el,sz) ) o ( (Xjék,&j; E]'ék,e]'ﬁ ) ( j (k 81182) )’ (363)

where

wp—pp—1 — H—Hj
A0 ]-28] aj(k)H e ),
]l + +ujp+1 (3:64)
— + 71T . + 0 Hj1
Bilk,¢j) = Aj(k) (szej Y _”]<k)H]1 ]j ! )

To make formulas shorter, denote the entries of the matrix connecting bf and by
(cf. (3.60)) by By, (k). Then

Ay (keye) \ _ ( —pilker) —By(ke)
Al (k e1,€) ar(k,er) @ik e)

Bu(k) Buk) \ [ —Palkes) —Balken) \ [ Ap(heren)
(oo Bon ) (ke Shel) (e ).

Taking into account the relation

< —pi(ker) —pBy(ker) )1 _ l( mi(ker)  By(ker) )
0(1(](,81) E1(k,81> 2i —0(1(](,81) —‘Bl(k,ﬁ)

and assuming that A} =1, A =511, Aj =0, A, = 51, we obtain formulas for
the first order approximations s3; and 51, to the amplitudes s1; and s15,

_ 1 _ _ — — o\~
s =5 (—B11®1 B2 + Bia@ix2 — Ba1 By B2 + BxaBa2) 512,

1 == (B11&182 — Broa1az + Bo1 8182 — Baofi1az) 512,

1
5 (
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where the arguments of all the coefficients are omitted. By a direct calculation
(using Lemmas 3.1, 3.2, and 3.4), we find

5111 — 1 = — Im(a1 8;) Im(a28,) (B11B22 — B12Bn) [512]* =

Imay _\ Imay N~ 2~ 2

|A |2 (H11H1+2 Hﬁle) 1A, |z (H21H7jr2 H;Esz) [s12|" = [s12]"

Let k? run over a set separated from eigenvalues of the problem in the res-

onator. Then By, # 0 and the terms Byo&jay and Bipaqa; are leading in the for-

mulas for 537 and s75. Using (3.64) and omitting the summands of higher order,
we get

~ 2i
Sia(k,€1,€2) = — Bryaits (1 +0 ( 2u11+1 +82V21+1)) _
= % st ;21+H21+1 (1 +0 ( 2x11+1 +82x21+1)) )
127122
5 Aq
s11(k,e1,8) = — ‘X_ (1 +0 (8?‘11'“ _|_€§V21+1)) _ _A_ —I—O( 2i11+1 +£2K21+1) )
1

where ;1 = min{s;, pj1},j = 1,2.

Now, suppose that k? coincides with an eigenvalue k? of the problem in the
resonator. In this case, B = 0 and the expressions for 51; and sj, given above
make no sense. To derive correct formulas as k? is near to k%, one should consider
higher order terms. We have

2iA1A _ _
7%12 2 _ A1Ay (—3120é1062 + Biia1 B2 — B Biaz + O (8’;11 %118521 %21>) =
H - H,, Hi, H}
121122 —By+B Hy, ZP’ZlJrl _B 1282u11+1+o( )|+
e +H+1_s iz +1 12T b —& 2549
8111 K1 8221 M1 sz le
iH-H,,Ima Hi, H
111122 1 B B 22 2ﬂz1+1 B 11 2pnn+1
. —=¢ Of...
ot s a1 |12 11H + ZZH— 1 +O(...)| +
& & 2 11

7

iH;,H,, Ima H H}
124421 2 [ 12_Ban 2;421+1+3227125?1411+1_i_o(m)

1 - —
8;‘114‘}411"" £ 01t H21 le

21

dots in brakets stand for &1 'e2*!. Denote by k? the value of k2, at which
the real part of 2iA; A,3;," equals zero. Substitute Bip(k) = (k? — k2)/c2(k) into
Re 2iA1A2§f21 = 0 and rewrite the resulting equality it in the k* — k2-resolved
form:

H, H,
212 _ 22 2#21+1 12 2#11+1 2r11+1 291 +1
K2 — K2 = co(k)Byy (k) —22 o c2(K)Baa (k) —12 e 0 ( & )
Since &1 and ¢, are small, this equation can be solved by the step-by-step method.
Taking only the leading terms in the power series (in €1, €) for k2 — k2, changing
By1 and By, for their expressions (3.60), and using the equalities c]-(kg) = —bibj,
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j = 1,2, which follow from (3.54) and Lemma 3.3, we obtain the principal term in
the asymptotics of k2:

K=k +bi 2 Hip et 4 p sz & 1o ( Tt 4 s”"‘ﬂ“) (3.65)
12 22

Suppose that k> — k2 = O (e?K“H + S%K“H), then

H,H,,
Re 21A1A2§f21 blbz (kz k2 +0 ( i1y +2 + 84K21+2)) )

Under the same assumptions, Im 2i A, Azgle can be rewritten in the form

11— H11 — —
€ biHy, ouy+1 HypHy Ay 42 | Ay 42
Ima 1 2 2mtl _Hntlo g2 g2y o ( K11+ +e K1+ ) +
( 1)8321-&-#21'*‘1 (szl_l 1 b1by ( 2
01— H21 — —
& b Hy, 2441 Hy, H21 2 12 4icy1+2 4K21+2
(Im a2)€71411+1411+1 <b1H2282 b1b, (k —k ) +0 ( Te ) ’

Now we take a more narrow interval for k2,

2411 +2 24z +2
-k =0 (glmﬁr Py 821421+ +pz) )

p1, p2 being small positive numbers (as it turns out below, the resonant peak lies
inside this interval). Then, in the expression for the principal part of Im 2i A Azsl_zl,
one can neglect the summands with k* — k7. The coefficients A; depend on k; we

get rid of this dependence using the equalities A;(k) = Aj(k,) + O(k* —k2). Asa
result, we obtain

CAq(ke) Aa(ke)
sio(k,e1,82) = Arke)| |A2(ke)] (1+O0(e +65)), (3.66)

i N p K2 — k2
2 Z+E t 8%11+H11+1€%21+H21+1
1 2
where
— > 1 R —
_ biHp| A (ke)|ey e p— Hy,Hy, ‘
baHy | Aa (k)52 T2+ 201b7| Ax (Ke) [ A2 (ke ) |
Similarly,
@S I
B Aq (k) 2 z st pnt1 o1+ +1
s1(k e1,82) = 1(ke) ! 2 (1+O0( +€57)) .

A : 2 12
Al(ke)|z<z+1>+P 2 — K2

2 8%11+H11+1£%21+H21+1
1 2
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Now, we find approximations to the transmission and reflection coefficients:

= 1
T(ke1,€) = ; = e 5 (14 0(el" +€5)) , (3.67)
Z - 2 M
1 <Z + Z) + P <5’1“1+H“+18J2421+H21+1>
2 2
1 . 1 4 p2 k* — k%
N 4 z 8%11+H11+1S%21+H21+1
R(ke1,e2) = ! 2 > (1+O0(h + b))

1 1\? K2 — k2

_ _ 2 r

4 <Z + z> +P (8%11+H11+18%21+M21+1
1 2

It is easy to see that T has a peak at k2 = k2. The width of the peak at its half-
height is
_ 2+ z! | 8?11+H11+1€§21+}121+1‘ (3.68)

A(e1,82) = \/ﬁ

Finally, present the asymptotics of the wave function. Let the cut-off functions
t— O(t) and x/ — Xe;,j(x7),j = 1,2, be the same as in Subsections 3.3.2and 3.3.3.

Introduce one more cut-off function x — X, ¢, (x) by
Xerer (¥) = 16, (x) (1 = O(r1/e1)) (1~ O(r2/22)),

where 1, is the characteristic function of Go. The leading term of the asymptotics
of the wave function is of the form

i(x;k,e1,82) = X1, (x)v1(x' K €1, 82)+
+ O(r1)wi (e ' x5k, €1, €2) 4 Xey e, (X)00 (25 K, €1, 82) + (3.69)

+ O(r2)wa (&5 ' %%k, €1, €2) + X6, (XP)V2(x% K, €1, €2),
where, similarly to (3.29), (3.33), and (3.59),

s11(k,eq, e 1 _
v (xlk e, e0) :%Vl(xl;k) Zl(k)V1<X1;k)’

w (& k, €1, €2) :al_(k,sl,sz)sl_”“_lwl_({:l) + af(k,sl,sz)si’“wf(gl),

1 _
vo(x;k, €1, €2) :m(blb;(kﬂc—l/?&) +da(k)by (k,€1,€2))vor (x;k)—

1. _
_Ebz (k/ El,SZ)VOZ(X,’ k)/
wy(E%;k, €1, €2) =a, (k,el,sz)s;’m*lwz_((fz) +a;(k,£1,sz)s’2{21w§“(§2),
vz(xz;k,sl,sz) :MV2(XZ,’IC).

Az (k)
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Here, owing to (3.62), (3.63), and our choice of the coefficients A]i,

11 su, 1

a; _ A A S11 0\ _ A A

()= o & |(7)- wen  m |0 70
Al Zl A1 Zl
11 S12

ay B A A s12 ) _ A

() = | & &|(%)-|a2)  om
AZ Zz AZ

by \ _ (B —B s12 | _ [ —B2sn2
b; 153 73] 0 512 ’
3.4.3 Estimate of remainders

Introduce function spaces for the problem
Au+KPu = f in G(ey,€2), u=0 ondG(e,ep). (3.72)

Let O be the same as was introduced before (3.26) and let i, j = 0,1,2, be sup-
ported by G; and satisfy #1(x) + ®(r1) + 170(x) + @(r2) +72(x) = 1in G(ey, &2).
For y1,72 € R,6 > 0,and [ =0,1,..., the space ny G(e1,€2)) is the comple-
tion in the norm

145 V310G Cer,e2) | = (S em Zhetmo (K1 ©2(r7) (73 + ¥l

i 1/2
+ X2 e+ ;70) ERE dx) (3.73)

1/72/5(

of the set of smooth functions in G(¢1, €2) having compact supports.

Proposition 3.7. Let k, be a resonance and let |k* — k2| = O(siy utly sé‘”“). Assume
that the first eigenvalues s (s¢jy + 1) and pj (uj1 + 1) of the Beltrami operator on the
bases of the cones K and Lj, j = 1,2, are subject to the condition pj; < »j +2,
Y1, 72 satisfy the inequalities pj; —3/2 < j —1 < min{s1, pj} +1/2, and f €
V%,yz,&(c(slf€2))' Suppose that u is a solution to the problem (3.72) that admits the
representation

u=u+mA;yu; +mA,U,,

where A; = const and i € V2 (G(e1,e2)), 8 being a small positive number. Then

. Y1,72,0
the estimate

||1/~l' Vyzl,'yz,&(c(sllSZ))H + |A;| + |AE| < C(€1,£2, k)”f/ V’(y)l,’yz,é(G(Sl/ gZ))H (3.74)
holds, where
c

2 2 2 25 2 2 4
81%114' Ht _|_€2%12+ M1+ + |k B kr|

C(€1,€2, k) =

c being independent of f and €1, €.

Proof. Divide the proof into several steps.
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Step A First, we construct an auxiliary function up. To this end, turn to the
asymptotics of the wave function exposed at the end of the preceding subsection.
All the solutions of the first kind limit problems that are used in the asymptotics,
are defined as k* € RR; nevertheless, they make sense for complex k?, too. As
follows from (3.66), the coefficient 51, has a pole k%, in the lower complex half-
plane, and

K2 —kz—%<z+é> (1+0(2+4)) =

2 2
2 by|Aq (ko) 222 + ba|As (ko) 22 +2
- %r H— 1 H— 2

12 22

X (1+O (5%4-8%)).
Multiply all the solutions of the limit problems in the expression for 7 by
(Aa(k)ba/Hyys12 (81, €2, k) )8’2421 +ﬂ21+1/

substitute k = kj, and denote the resulting functions by the same symbols with
addition index "p". Then

]1""P‘jl+1

vjp(x;e1,82) = biH e vi(xky),
1

vop(x;glng) = <_bl+O<2K11+1+€2K21+1)>VOl(X;kp)+

2uy+1 b2H22 2Kx11+1 2Ky +1 .

+ & <b1H22 +0 ( JrS )) Voz(x,kp),
, b; i 26 +1 ;

wip(@enen) = e’ (w7 (@) +a (k)™ wf (@),

2

where j = 1,2; the dependence of k;, on €1, €2 is not shown. We set

up(x;€1,82) = X160 (x1 )01, (x'; 61, €2) +
Oy *r1)wiy (7 ' x €1, €2) + Xey 0 (¥)00p (5 €1, 82) +

O(e; 4 r2)w (5 x5 k, €1, €2) + Xo,e, (X202 (x5 K, 81, €2),

where the cut-off functions ©, X, j, and Xe, ¢, are the same as in the previous
subsection. Obviously, the principal part of the norm of u, is given by xe, ,v0p-
Taking into account the formula for vy, the definition of vo; (cf. Subsection 3.4.1),
and Lemma 3.3, we obtain || X, ¢,00p = ||[ve|| 4+ 0(1). For later use, note that the
function (A + klzg)up is nonzero only in the region {r; < c1e3/*} U {{r, < cpe3/*}.
Arguing as in the proof of Theorem 3.1, we obtain the estimate

(A + K up; V2 5(Gler, )] <

<c [Sﬁlu ( K12+1 +€71+3/2> _’_85121 ( K041 +€72+3/2)] ' (3.75)
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Step B This part contains somewhat modified arguments from the proof of
Proposition 3.6. Denote the left-hand sides of the inequalities (3.11) and (3.74)

by
o; V2 o0~ GHIP V2 .5 (Gler, €)%,

respectively. Rewrite the right-hand side of the problem (3.72) in the form
f(x) = filx;e1) + fo(x;e1,82) + fa(x;e2)+
+e, "V R (e I er) + 6, P R (5 1xPs e2),

where
fo(x;e1,€2) = X /7, (X) f(x),
fi(x:€j) = X (%) f (x),
'y +3/ 2 ;
Fi(&ie)) = ¢ "0 /2jp))f (xo, +¢i¢));
x are arbitrary Cartesian coordmates; Xp, denote the coordinates of the points

O; in the coordinate system x; x/ are introduced in Subsection 3.1.1. From the
definition of the norms it follows that

| fo; 7172((30)” collf; V. 1725( (e1,€2)) ],
Ifi; Vs, (Gl < ¢llf; V. D 1ns(Gle,€2))l, (3.77)
HF]‘?VO I <Gl VY L, 5(Gler,e)ll,

where ¢; and C;jare independent of €7, 3. Consider the solutions vy, vj, and wj of
the problems
Av+ Ko = fo, in Gy, v=0 ondGy;
Av+kzv:fj, in Gj, v=0 onan;
Aw=F F, inQ, w=20 onE)Q]-,
respectively; moreover, v; satisfy the natural radiation conditions at infinity. Ow-

ing to Propositions 3.2 and 3.3, the problems in G; and ()}, j = 1,2, are uniquely
solvable, and the following estimates

loj: Vi, (G < ElIfii V3, (Gl

le0j; VZ(Q))II < ClIF]/Vag( )l

(3.78)

hold, where ¢; and éj are independent of 1, €.

Step C Suppose that f in (3.72) analytically depends in k, takes values in the
space V. 7 1,,6(G(€1,€2)), and, for k = k, satisfies the condition (x, &, /& f, ve)G, =

0 (the subspace of such functions is denoted by VS L,YZ 5(G(e1,€2))). Then the prob-
lem in Gy is solvable for any k in a neighborhood of k.. Assume the solution vy to

be subject to the condition (v, ve)¢, = 0 as k = k.. According to Proposition 3.1,

”00’ 7, VZ(GO)” COHfO/ 7, 72(G0)”/ (3.79)
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where ¢y does not depend on k. We set

U(x;e1,€2) = Xey1(X)v1(x;61) + € 71+1/2®(r1)w1(61’1x1;51)+
FXere (X)00(x;€1,€2) + €5 22O (1) wy (651 x% €2) + Xey 2 (X)02(X; ).

The estimates (3.77)—(3.79) result in
IU; V3, —(Gler,e2)) || SENF5 VS, 6(Gler,e2)), (3.80)

where¢ is independent of €1, €. This means that the mapping Re, ¢, : f — U(f) is
uniformly bounded with respect to €1, €2. Arguing as in the proof of Proposition
3.6, one can verify that (A + k*)Re, e, = I + Se,e,, Where Sg, ¢, is an operator in
V,(Y)1 1,,5(G(€1,€2)) of small norm.

Remind that the operator S¢, ¢, is defined on the subspace V$ va 5(G(e1, €2)).
We need the image of the operator S, ¢, be included in VS 1,,5(Gle1,€2)), too. To
this end, replace the mapping Re, e, by Re, e, : f +— U(f) + a(f)u,, where u, is
constructed in A, a(f) being a constant. Then (A + k? )R81 o = 1+ S81 ep, With
Serer = Seyer +a(-) (A 4 k*)up. The condition (X e, \/—Sglfng ve)g, = 0ask =k

gives a(f) = —(X /&,y Seref ve)Go/ (X i, e (D +K§)up, ve) Gy
Prove that ||S;, ¢, || < ¢||Se, e, ||, ¢ being independent of &1, €, k. We have

ISerea fIl < 1Sy eaf Il + (A - 1A + )|l

The estimate (3.75), the formula for k,, the condition k> — k3 = O(e] 2l

iy 21+1), and the inequalities i > Ml — 1/2 result in

1A+ K )up; V) sll < UK = I [0 V) sll + 1A+ K ) ups V) s
<c (|k2 k2| + |: Hi1 ( K12+1 +€’)/]+3/2> +€]§21 < Kop+1 +€’72+3/2):|) <

2p11+1 2pip1+1
< c(g] + & ).

Since the supports of the functions (A + k%)u pand X /& /& do not intersect,

2un+1 | 2up+1
(X g, (D + Kk )tp, ve) G| = |(k§ = K3) (up, ve) | = ()™ + ™)

and, since y; — 1 < min{s, pj1} +1/2),
|(X\/7,\/_S€1r€2f vﬁ’)Go| Hs€1r€zf 71,72, (G(€1/€2))”X
||X\F\FU€/ -1, 'yz(GO)H C||S€1€2f 172,5((;(81’82))”'

Hence,
2 1, 2ux;+1
a(f)] < cllSer e fi V2, 5(Gler, )1/ (e + 657

and H§£1/£2f|| < C||S€1,€zf||-
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Thus the operator I + S, ¢, in V " 0(G(€1,€2)) is invertible, which is also
true for the operator of the problem (3 40)

Ay s D4 Ru: V22 (Gler,e2)) 0 VOL (Gler,e2));

here V,zhj‘ﬂy2 (G(e1,€2)) denotes the space of elements of V2 . (G(ey, e2)) that
vanish on 9G(g1, &) and are sent by the operator A + k? to V,? LV - The inverse
operator A_ Y, = R, &, (I+S¢,¢,) ! is bounded uniformly with respect to €1, &, k.
Hence, the inequality (3.74) holds with C independent of ¢1, €3, k.

Step D Consider now a solution u of the problem (3.72) with arbitrary f in
C°(G(e1,€2))- Rewrite this solution in the form (u — b(f)up) + b(f)u,, where

b(f) = (f, X ey, yes0e)Go/ (D + K )iy, X /a7 /e3¢ 6o
The difference u — b(f)u, is a solution of the problem (3.72) with right-hand side

f=0b(f)(A + k)up in V$ 7,,5(G(€1,82)). From C and the obvious inequality

Ib(f)| < clk? — k‘;‘,!_l,we obtain

[ = 6(f)up; V3, (Gler,e2)) | S cllf = bUND +K)up; V7, o, 5(Gler,e2)) || <

2#11+1+ 2un+1
S e AP CCRE
Hence,
[[u; %yr( (e1,€2))] < IIH—b( )uP/V72172 (G(e1,€2)) ||+
Jr‘b )H|up/ Y172, — (G(€1,€2 H\| k2|Hf 'yl'yzé 81/82 H

It remains to take account of

2 2 2 2 2 2
K-> (|k2 e N e ) as keR

Remark 3.1. In the formulation of the theorem, the requirement

’k2 _ k%| _ O(E?Mﬁ_l + 8;11214‘1)

and the conditions on sy, yij1 are not essential. They can be eliminated by using
for proof an auxiliary function uy,, such that

(A + KR)uy|| = O(T2H+2 4 on 2242y

One can construct such u, with the help of an higher order approximation to the
wave function u.
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Consider the solution u; of the homogeneous problem (3.1) defined by (3.4).
Let 511 and s1, be the entries of scattering matrix determined by this solution. The
function 771 and the numbers 571, 17 are constructed in Subsection 3.4.2.

Theorem 3.2. Let the hypotheses of Propositions 3.2 and 3.7 be fulfilled and assume that
the coefficients A; introduced below the relations (3.61) are nonzero. Then the estimate

sup  |ug(x) — 17 (x)] 4 [s11 — S11] + [512 — B12] <
x€G(e1,€2)

pit (Ko +1 Y1+3/2 H21 ( Koo +1 Y2+3/2
san+pn+1€1 (€ +é& ) +e7 (6% 4 )

< ce 5
25011 +2p11+2 2 2p21+2
(|k2 _ k%| + 51%11 H11 + 82%21+ Ho1 )

holds, where xjp = min{%jz, ij},j =1,2; c is independent of €1, €2, k.

Proof. The difference 1y — i1 is in the space V721,72,_(G(81,82)), and f1 := (A +

k?)uy — i is in V'?mz,é(c(sl’ €2)). By Proposition 3.7,

1 V0 5(Gler,e2))]

luy — 1i1; V2, (G(e1,€))| < c _
7 7 X |k2 . k%l + Ei%]1+2}111+2 + 8%%2] +2“L[21 +2

Y1,Y2,—

Arguing as in the proof of Theorem 3.1, we obtain that

113 Vi s (Gler, e2)) | <e ((lag e+ [af ) (e 4 €]17%/%)+
+ oy ley ™ ™ e g7 (€27 670

From (3.70)-(3.71), it follows that

it 4.5 s+l _pip g Kptl o y+3/2
|a]. |sj + |aj |sj <cgg £ (sj +¢ )-

The required estimate follows from the last three inequalities by the arguing used
at the end of the proof of Theorem 3.1. O



4 CONCLUSION

We considered an infinite waveguide with two cylindric ends and two narrows
of diameters £; and &;. We have given an asymptotic description of the electron
wave propagation in such a waveguide as €1 and ¢, tend to zero. The wave num-
ber k is assumed to be between the first and the second thresholds, so only one
incoming and one outgoing wave may propagate in every outlet of the waveg-
uide to infinity.

The asymptotic formulas depend on the shape of narrows (in the limit as
g1,€2 — 0) of the waveguide. In the 2D case, assume that a neighborhood of each
narrow, in the limit as &1, e, — 0, coincides with a neighborhood of the vertex of
two vertical angles of opening wj and w», respectively.

While the diameters and openings of the narrows are the same (¢] =&, = ¢,
w1 = wy = w) and the resonator is symmetric in a sense, the resonant energies
(i-e., the energies k? at which the resonant tunneling occurs) are given by (2.17):

kf(s) _ k(z) +k1£2n/w + O(SZH/erZ)/

where k3 is an eigenvalue of the resonator (part of the waveguide between two
narrows obtained after passing to the limit as ¢ — 0), k; is a constant independent
of ¢, which can be found numerically. Near k = k;, the transition coefficient is of
the form (see (2.21))

1
T(k’s) = kz _ kz 27
1+Q <£4n/w’>

Q being a positive constant independent of . From here we find the width of the
resonant peak at half-height:

2
Ale) = —=e¥/w,
VQ
To obtain these formulas we first construct the asymptotic representation (2.8) of
the corresponding wave function using the method of "compound" asymptotics.
Analogous formulas (2.22)—(2.24) (becoming more sophisticated) are valid
for asymmetric waveguides where the resonator is not symmetric and (or) the
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narrows have distinct openings and diameters. In particular, in contrast to the
symmetric case, the principal part of the asymptotics already shows that the max-
imum of the transmission coefficient is less than 1.

In the 3D case we assume that a neighborhood of each narrow, in the limit as
¢j — 0, coincides with a neighborhood of the vertex of a double cone. Asymptotic
formulas (2.25)—(2.27), (3.65)—(3.68) for the basic characteristics of the process
are analogous to those in the 2D case. The exponent 271/ w; of ¢; must be replaced
by the number p such that p(p + 1) is the first eigenvalue of the Dirichlet problem
for the Beltrami operator on the base of the cone.

Various electronic devices (transistors, key devices, electron energy mono-
chromators, amplifiers) can be based on waveguides of variable cross-section.
The formulas obtained can be useful to calculate characteristics of these devices
and to provide optimal regimes of theirs operation.



YHTEENVETO (FINNISH SUMMARY)

Halkaisijaltaan muunnellun kvanttiaaltojohtimen kapenemat toimivat tehokkai-
na potentiaalivalleina elektronin pitkittdissuuntaiselle liikkeelle. Kaksi kapene-
maa muodostaa kvanttiresonaattorin, jossa resonoiva tunnelointi voi tapahtua.
Tama tarkoittaa sitd, ettd elektronit, joiden energia on ldhelld resonanssia, lapéi-
sevit resonaattorin todennikoisyydelld lahelld yhtd. Kuvailemme asymptootti-
sesti elektroniaallon etenemistd kvanttiaaltojohtimessa, jossa on kaksi kapene-
maa. Aaltoluvun k oletetaan olevan ensimmdisen ja toisen kynnysluvun vilissd,
jolloin vain sisdédn tuleva ja poismenevé aalto voivat edetd jokaisessa aaltojohti-
men pddssd ddrettomyydessd. Esitimme asymptoottiset kehitelmit aaltofunk-
tioille, ja heijastus- ja siirtymékertoimille, kun kapenemien halkaisijat menevat
nollaan. Liséksi esitimme asymptoottiset kaavat resonaatiotaajuuksille ja analy-
soimme kertoimien kdyttaytymista ldhelld resonanssipistetta.
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