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ABSTRACT

Pavlova, Yulia
Multistage Coalition Formation Game
of a Self-Enforcing International Environmental Agreement
Jyväskylä: University of Jyväskylä, 2008, 127 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 94)
ISBN 978-951-39-3400-2
Finnish summary
Diss.

As environmental problems become more and more threatening, political reme-
dies for these problems have become increasingly international. Over the past
decade, a variety of multilateral agreements to protect the environment have been
initiated, though their effectiveness and continued existence is in peril.

Many of the challenges to these agreements can be explained by the concept
of positive externality, meaning that certain countries benefit from the environ-
mentally friendly actions of their neighbors, without making any efforts of their
own. Hence, if an agreement places restrictions on a countries technological and
economic development, contradicting their self-intrest, it will lead to free-riding
in terms of participation and compliance. In order to achieve multilateral coop-
eration, the strategic possibility interests of the parties must be understood. In
this thesis, game theory has been chosen as a tool to analyze these interests and
the ways they affect the formation, design, and performance of international en-
vironmental agreements (IEAs).

After providing a survey of game-theoretical methodology in the area of
IEAs, we examine certain aspects of IEAs such as the choice of emission reduc-
tion targets, membership status (signatory versus free-rider), and mechanisms to
motivate countries to participate in an agreement. In particular, we address the
following question: If the participants and free-riders in an IEA have incentives
to change their status during the life-cycle of the agreement, is there a threat to
compliance with that agreement? We develop a methodology to achieve the sus-
tainability of an IEA, and prove that under this methodology, participants in the
IEA comply with the abatement targets. Furthermore, we asses the impact of the
agreement on the welfare of the involved countries and on the global level of
pollution.

Keywords: IEA, coalitional game, heterogeneous players, self-enforcement, trans-
fer mechanisms, multistage game, time-consistency, renegotiation.
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1 INTRODUCTION

The increasing urgency of environmental problems has attracted the attention
of scientists, politicians, and society at large. Environmental issues include the
depletion of the ozone layer, the loss of biodiversity, and the affects of climate
change. To protect the environment and insure the stability of the ecosystem, a
variety of international environmental agreements (IEAs) have been developed.
These documents prescribe, among other things, pollution limits, the growth of
industrial efficiency, and the use of non-hazardous and environmentally friendly
raw materials and fuels. They also recommend more careful usage of resources
and the restoration of a balanced ecosystem.

Though the parties to such agreements are often well-intentioned, IEA’s ne-
gotiation and enforcement face significant obstacles, and they often fail to achieve
the desired results. At the root of such problems lies the realistic principle that
countries act only in their own interest. It is obvious that the required shifts in
industrial technology are costly in an economic and social sense, and thus each
country wants to avoid paying for environmental protection, even while recog-
nizing that if every country does so, the overall result is not satisfactory.

Despite the fact that rational debate on emission reduction can lead to an
agreement prescribing each country to reduce emission, self-interest and the
sovereignty of each country would put such an agreement in jeopardy. This can
occur in several ways. First, it is possible that an agreement is accessed and com-
plied with by all potential parties, but the outcome is nevertheless insufficient.
Second, the agreement might be accessed by only a few nations, or the parties in-
volved do not honor their obligations. Obstacles of this second kind are referred
to as free-riding.

In order to be successful, the agreement must be self-enforcing (or
self-enforceable, [Brechet et al. 2007]). This concept entails three properties, which
are also present in most stability criteria [Barrett 2003]. Individual rationality means
that no agreement member can gain by withdrawing from the agreement, given
the choices of the other members. Moreover, no non-member can gain by joining
the agreement, again, given the choices of the other countries. This property also
applies to compliance, i.e., no member can be better off by failing to comply with
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its commitment, given the agreements design, and no non-member can gain by
changing (positively or negatively) its environmental practices. Collective ratio-
nality means that the joint decisions made by the agreement members are such
that their total gain would not increase by collectively deviating from the chosen
targets. Finally, fairness means that the agreement should set feasible goals and
obligations without prejudice against any single country. However, this property
is of minor importance in comparison with the first two, as an agreement which
does not have the aforementioned properties has no chance of success.

Although collective rationality can call for global cooperation, individual ra-
tionality often stipulates free-riding behavior with respect to participation and/or
compliance. To mitigate this free-riding, the strategic options and incentives of
the countries must be understood. Game theory is the perfect instrument for ac-
complishing this task.

In game theory, “games" are used to model serious human interactions, such
as market competition, arms races, and pollution emissions. In these interactions,
as in a game, the individual’s choices constitute a strategy, and the outcome de-
pends on the strategy chosen by each participant. In this light, game theory al-
lows for a complex study of the formation and stability of IEAs.

In this thesis, an IEA is interpreted as a coalitional game, the coalition of
players represents the member-countries of the agreement. The central issues
discussed here correspond to the formation and promotion of international co-
operation among a heterogeneous group of nations towards the goal of pollution
control. We also examine the mechanisms enhancing such collaboration, such as
side payments and emission trading. Our results concern the dynamics of the
agreement, and in particular, the following question: if both members and free-
riders have incentives to change their status during the agreement life-cycle, is
there a threat to compliance with the agreement?

In Chapter 2, we introduce some basic terms and notions, and give a survey
of some well-known concepts in game theory. We also present contemporary
results in a critical way, build bridges between various results, and outline some
promising directions in the area of environmental agreements.

Part I describes our original contributions to the area of static games. These
results address IEA formation and the redistribution of gains from cooperation
among signatories. We explore an economic-ecological model of an N -country
world, linking the economic activity of the countries with the physical state of the
environment. This link is given by the social welfare function, which is the differ-
ence between the profit from emission reduction and the environmental protec-
tion costs. A detailed description of the basic assumptions and model character-
istics can be found in Section 3.1. Following this approach, we examine a game of
heterogeneous players, assuming ex ante that they are collected in several groups
regarding their welfare function.

Section 3.2 explores a particular case of agreement formation, where the
players are split into two groups. We consider the extreme cases of full cooper-
ation (a grand coalition forms) and pure non-cooperation (all players act alone),
and compare the environmental and economic benefits, arguing the preferabil-



13

ity of full cooperation. As we have already mentioned, full cooperation is rarely
achievable due to individual rationality, which motivates players to withdraw
from the agreement and benefit from the collective efforts of others.

Such reasoning leads to the consideration of an agreement with partial par-
ticipation of the players, and to the analysis of the coalition formations process,
which divides players into signatories and free-riders. We determine the optimal
abatement levels of the players and characterize the structure of a stable coalition
by applying the principle of self-enforcement. This provides an insight into the
expected environmental benefits of such an agreement and the players’ welfare.

The main result of Chapter 3 is presented in Section 3.3, where the approach
initiated in Section 3.2 is extended to the heterogeneous case, in which the players
are split into K types. Section 3.4 provides an analysis of the relationship between
the size of the agreement and the achieved emission reduction.

The heterogeneity of the players gives an opportunity to launch transfer
scheme mechanisms, which ought to enhance the players’ commitment to the
IEA and reduce the incentives to free-ride. This analysis is presented in Chapter
4.

Part II is devoted to the dynamic performance of the chosen abatement com-
mitments and dynamic stability of the agremeent. We focus on agreement dy-
namics, and, in particular, the following intuitive question: If the participants and
free-riders in an IEA have incentives to change their status during the life-cycle of
the agreement, is there a threat to compliance with the agreement? Furthermore,
we ask if the dynamics of pollution flow associated with the abatement activities
can affect agreement stability. Due to the present dynamics, the property of time-
consistency [Petrosjan 1977] is of great importance and plays fundamental role in
the undertaken analysis.

The dynamics of pollution flow is related to the way in which the countries
decide to reduce emissions during the life-cycle of the agreement. In order to
realistically model countries’ behavior, we consider the following approach to
stepwise emission reduction. The emission reduction over each stage is chosen to
maximize each country’s welfare both over the current stage and over the rest of
the abatement path. We prove that such a scheme is time-consistent. Moreover, it
appears to yield internal dynamic stability, and so guarantees that the signatories
have no incentives to leave the agreement, given that no new member can access
it. Part II concludes with an estimate of the players’ welfare over the accounted
period.

The issue of agreement vulnerability is continued in Part II. The analysis
of an IEA’s dynamic external stability presented in Section 6.3 reveals that with
the multistage abatement scheme described above, external dynamic stability is
violated after a certain time threshold. This provides countries with incentives
to withdraw from or access the agreement. Repeated IEA negotiation is needed
to handle this potential vulnerability, including the reconsideration of each coun-
tries’ membership status and emission reduction targets. Our analysis shows that
renegotiation eventually reassigns the abatement commitments to the agreement
members, but leaves the agreement structure unaffected. Moreover, it appears
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that renegotiations take place regularly, sufficiently increasing the total emissions
reduction.

Finally, we present concluding remarks and introduce some potential di-
rections for further research. These include the analysis of the dynamic stability
of the agreement upon meeting the agreement targets, and the potential internal
stability of the agreement in light of the dynamic framework.



2 A SURVEY

The game theory gives mathematical representations of agents’ preferences and
makes predictions about agents’ outcomes, resulting from their interaction. There
are two self-sustained directions of game-theoretic literature1 that explore the for-
mation mechanism of IEAs.

One stream of works utilizes a cooperative approach. The traditional co-
operative approach is based on the fundamental assumption that players have
already agreed to cooperate and the objective is to maximize the joint payoff of
the game. It implies existence of a ’third party’ (a supernational authority, which
has power to bring an IEA into force).

Another way of describing IEA belongs to non-cooperative game theory,
where players behave according to rational self-interest and cannot communicate
before the game. This approach allows a group of players to cooperate and form
a coalition which can be smaller than the grand coalition (all players).

Both cooperative and non-cooperative models test whether coalition mem-
bers have incentives to leave the coalition, considering reaction of remaining
players that imply a punishment. As well as cooperative models, in most non-
cooperative models the choice of abatement strategies is made by players under
assumption of potential collaboration. Another similarity lies in the facts that
both approaches expect coalition members, first, to cooperate among themselves
and to act competitively (non-cooperatively) against others, and second, to fully
comply with agreement obligations once a coalition has formed.

For cooperative and coalition games, stability has to be evaluated after the
solution to the game (abatement strategies) is determined. Cooperative game
theory is associated with the stability concept of the core and its variations. The
joint payoffs of the players are given with help of a corresponding character-
istic function. It is shown that an IEA signed by all countries is stable, using
the γ-core concept and implementing transfers to solve heterogeneity of the coun-
tries involved, [Chandler & Tulkens 1995] and [Chandler & Tulkens 1997].
Usually non-cooperative game theory is associated with the concept of

1 A review of current literature see [Finus 2001], [Petrosjan & Zakharov],
[Carraro & Siniscalco 1998], [Ioannidis 2000], [Carraro et al. 2006].
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internal and external stability and its modifications, [Hoel 1992], [Bauer 1992],
[Carraro & Siniscalco 1993], [Barrett 1994a]. The idea is to check for which size of
the coalition an individual country is indifferent, between joining or leaving and
to use that as the stability concept. It reveals that the grand coalition will not gen-
erally be stable as individual players have a strong incentive to take a free-rider
position, and the size of a stable coalition is typically very small2.

The explanation for such opposing conclusions is the difference in behav-
ioral assumptions. For instance, the γ-core concept assumes that in case a sub-
coalition deviates, the grand coalition falls apart and the rest of the players act
non-cooperatively against the sub-coalition. The non-cooperative approach sup-
poses that only a single player can deviate from a coalition (this assumption can
be considered as a drawback), but on the other hand if it happens the other mem-
bers continue as a coalition (more realistic outcome), which yields sufficient free-
rider benefits to end up with only a small coalition.

The present work utilizes the non-cooperative approach due to the follow-
ing reasoning. First of all, the assumption of an absence of a supernational au-
thority seems more realistic. It allows reference to questions of formation of a
successful agreement starting from individual incentives, but not from collective
rationality, which looks natural while dealing with problems of international en-
vironmental cooperation.

Second, coalitional games of environmental protection are games with pos-
itive externality. Technically it means that the merging of a larger coalition from
the smaller ones and/or single players creates a positive side effect on those ac-
tors who were not involved. This is quite obvious since a cleaner environment
certainly benefits society as a whole, but does not increase profits for the party re-
sponsible for it. Given the presence of positive externality, cooperative game the-
ory can become less satisfactory to work within, since it suggests that the coalition
typically acts independently of the actions chosen by non-members3, [Yi 2003].

Besides this classification, there are also two possible aspects of free-rider
incentives, [Finus 2003a]. The first type refers to the incentive not to participate
in an IEA; the second type to the incentive not to comply with the obligations
agreed upon an IEA. Membership models focus on the first type of free-rider in-
centive. Implicitly, they assume that once a country joins an agreement it will
comply with the agreed treaty obligations. Thus, compliance is exogenous. In
contrast, compliance models concentrate on the second type of free-rider incentive,
starting from the exogenous assumption that some coalition has formed and test
whether treaty obligations can be enforced with credible threats to sanction non-
compliance. Normally, for modelling an IEA, one or another type of free-riding
is accepted. One of the preliminary attempts to combine both free-riding aspects
can be found in [de Zeeuw 2008]. In the present work, our analysis mainly takes
place in the frame of membership model, though it will be shown in Part II that

2 More detailed analysis of literature is presented in Subsection 2.1.
3 Though it is necessary to mention that these days there are new sharing rules appearing in

cooperative framework, which take into account presence of externality effect, for instance,
satisfactory nucleolus proposed in [Kronbak & Lindroos] in the fishery context.
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issue of emission reduction compliance comes to light in the context of IEA dy-
namics.

2.1 Non-cooperative Membership Models

In non-cooperative membership models countries play a two stage game. Here
a term “stage” is used to indicate sequence of players decisions within a static
framework. In the first stage, each country decides to join or not to join an IEA. In
the second stage, every country decides on emissions (or abatements). The prob-
lem of coalition formation is solved backwards and, within each stage, different
assumptions (illustrated in Table 2.1) can be made.

TABLE 1 Structure of Coalition Formation in Membership Models

1. Stage: participation
sequence simultaneous sequential

no revision vs. revision of
on members members

agreements single multiple
membership open exclusive

majority vs. unanimity

2. Stage: abatement and transfers
sequence simultaneous (Cournot) sequential (Stackelberg)

abatement joint welfare maximization bargaining
(efficient) majority vs. unanimity

transfers no yes
payoffs objective subjective

social planner political
material non-material
certain uncertain

A keystone idea, underlying in our analysis, is based on a conjectural vari-
ation model, ([d’Aspremont et al. 1983], [d’Aspremont et al. 1986]). This type of
model was first used in the context of the IEAs formation in
[Carraro & Siniscalco 1993], [Barrett 1991], [Barrett 1992]. The common features
of the conjectural variation model are as follows:

(a) they consider only possible deviation from an equilibrium coalition by a
single country and discard the possibility that a sub-group of countries may
deviate;

(b) this model considers only one coalition (thus all players are divided into
two groups: signatories and free-riders) and all non-members behave as
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singletons;

(c) equilibrium strategies are based on the myopic behavior of players, who
consider only the immediate reaction of fellow players to a change in their
strategy but not the subsequent moves (chain reactions) which may be trig-
ged;

(d) choice of coalition abatement target is based on maximization of aggregate
welfare function, and abatement decision of free-riders is made by maxi-
mizing individual welfare;

(e) besides that, players’ payoffs are material and certain.

Alternatively, these games are defined as open-membership games. Typical set up
for these models is a two stage game. In the first stage players decide whether to
participate in an agreement or not. It is assumed that this is a binary choice: ’join’
and ’do not join’. In the second stage players choose their emission reduction
level. The problem is solved backwards.

Sequence of abatement moves

In the literature there are basically two assumptions regarding the sequence of
moves: (a) players choose their strategies simultaneously, [Hoel 1992],
[Carraro & Siniscalco 1993], [Bauer 1992]; (b) players choose their participation
strategy in stage one simultaneously, but abatement levels in the second stage are
decided sequentially [Barrett 1994a], [Barrett 1991], [Barrett 1992], [Barrett 1997a].
The first assumption is referred to as Nash-Cournot assumption and the second one
as the Stackelberg assumption. The latter assumption is only in use for the case,
when there is a single IEA and the rest of players are free-riders, and implies,
that there is a Stackelberg leader (a coalition of signatories), who takes into ac-
count the optimal choice of non-signatories that behave as Stackelberg followers.
Participants have an advantage towards non-participants as they choose their
emission levels based on reaction function of non-signatories. In context of in-
ternational environmental cooperation, such setting can be justified by arguing
that signatories are better informed than non-signatories about emission levels of
other countries since they coordinate their environmental policies within an IEA.

In the aforementioned literature, abatement targets are chosen by
maximizing global welfare, assuming players to be homogeneous and
their payoffs to be material and certain. It is shown that regardless of sequ-
ence of moves only coalitions of small size are stable, if gains from
cooperation are large. In particular, stable coalition size is 2, 3, 4 players in
[Barrett 1994a], [Diamantoudi & Sartzetakis 2006] and 2 and 3 players in
[Carraro & Siniscalco 1993].

Coalition stability

In the Introduction we have requirements, which an agreement must satisfy for
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self-enforcing: individual rationality, collective rationality and fairness. In a con-
text of a conjectural variation coalition equilibrium these requirements are expressed
with the help of the following conditions:

(a) internal stability (there is no incentive for a signatory to leave the coalition);

(b) external stability (there is no incentive for a non-signatory to join the coali-
tion);

(c) profitability of a coalition (each signatory is better off than in case of no agree-
ment).

Briefly speaking, the idea of this stability concept is to check for which structure
(size and types of players, if they are heterogeneous) of the agreement an indi-
vidual country is indifferent, between joining or leaving. As we have pointed out
above, employing this type of stability leads typically to a coalition of small size.

Transfers
For symmetric (homogeneous) countries the choice of abatement level is based on
welfare maximization, and the welfare allocation is trivial: each county receives
the same payoff and no reallocation of payoffs is necessary. With heterogeneous
players in particular, when assuming countries differ in abatement cost, a coali-
tion can exploit cheap abatement options if a low cost player joins the coalition
(thus, one may conclude that low cost countries are attractive as coalition part-
ners).

To create incentives for low cost countries to join the coalition, the
sharing of the coalition payoff among members can be used. First analytical
and empirical attempts to address this issue are presented in [Hoel 1992],
[Carraro & Siniscalco 1993], [Bauer 1992], [Botteon & Carraro 1997],
[Barrett 1997a]. For example, [Carraro & Siniscalco 1993], [Barrett 1997a] and
[Botteon & Carraro 1997] show that the size of the coalition can be extended if
the signatories offer a transfer to outsiders for their willingness to join. More re-
cent studies have addressed the impacts of different sharing rules on the stability
of international environmental agreements.

It was shown that if sharing rules are applied to abatement
costs, [Bosello et al. 2003], or tradable pollution permits, e.g.
[Altamirano-Cabrera & Finus 2006], there is no guarantee that payoffs satisfy the
individual rationality constraint. By contrast, if sharing is applied to the gains
from cooperation, [Weikard et al. 2006], individual rationality is always satisfied
as long as a coalition is profitable. Recently a class of sharing rules has been pro-
posed that divides the difference between the coalition payoff and the sum of the
outside option’ payoffs4 of coalition members, [Carraro et al. 2006],
[Eyckmans & Finus 2004], [Weikard 2005].

4 The ’outside option’ payoff is the payoff a player would receive when leaving the agree-
ment.
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In addition to leadership behavior (Stackelberg concept) and
transfers, it is necessary to mention that including reputation effects,
[Jeppensen & Andersen 1998], issue linkages, [Carraro & Siniscalco 1998],
[Barrett 1997b], [Botteon & Carraro 1998], [Le Breton & Soubeyran 1997],
[Carraro & Marchiory 2004], [Katsoulacos 1997], [Finus & Rundshagen 2000], set-
ting a minimum participation clause, [Carraro et al. 2003], or low emission tar-
gets, [Finus 2004], also increase incentives to cooperate.

2.2 Criticism and Alternative Concepts

Further we are going to present some alternatives and extensions to the concepts
introduced in the previous section.

2.2.1 Myopic and farsighted behavior

Recently the concept of farsightedness was introduced and applied to
the problem of IEA’s stability, [Diamantoudi & Sartzetakis 2006], [Chwe 1994],
[Ray &Vohra 1999], [Eyckmans 2003]. The behavioral assumptions in this model
reconcile the cooperative and non-cooperative approaches (described in Chapter
2). Neither is it assumed that the coalition fully breaks down nor that the remain-
ing coalition stays intact but it is assumed that if a country leaves, it may also
trigger other countries to leave until some new stable situation is reached.

A country has to compare its initial position with its position at the end of
the process and this makes both large and small coalitions possible. At the same
time, necessity of tracing a series of deviations can make a game with heteroge-
neous players rather complex.

2.2.2 Membership: open vs. exclusive

In contrast to open membership games (when external players can freely access
an agreement if s/he has incentives to do so), games with exclusive membership
imply that if an outsider to a coalition wants to join, this can be turned down if a
majority of players (majority voting) or one member (unanimity voting) is against.

2.2.3 Agreements: single vs. poly

The alternative approach encourage to explore formation of multiple agreements
instead of a single agreement. The idea comes from the following reasoning: if the
target of getting as many countries as possible into one agreement seems difficult
to achieve in the presence of free-rider incentives, then it is practical to allow
for several separate agreements among regions of similar interests to foster the
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success of international cooperation. The proposed game-theoretical framework
suggests that once a particular poly-coalition structure has formed (in the first
stage), coalition members cooperate among themselves and play non-cooperative
against other coalitions (in the second stage).

For analyzing poly-coalition formation process (coalitions are disjoint5.), a
per-membership partition function (see [Bloch 1997], [Yi 1997]) is traditionally ap-
plied. By definition, this function is a mapping, which assigns a vector of play-
ers’ individual payoffs to each poly-coalition structure. Presented in [Bloch 1997]
and [Yi 1997] characterization of the per-membership partition function for the
games with positive externality is composed of 4 inequalities, which set conditions
on players’ payoffs.

The idea to consider multiple coalitions in the context of IEAs goes back to
[Carraro 2000]. Recently this approach has mainly been explored for
ex ante homogeneous countries and an equal sharing scheme. An analytical
analysis of single versus multiple coalitions under various membership rul-
es can be found in [Carraro & Marchiory 2003], [Finus 2003b],
[Finus & Rundshagen 2003].

Multiple coalition models can be structured in the following already famil-
iar manner. First, membership can be formed by sequential and simultaneous
accession. The type of model dictates choice of stability concept. If we deal with
simultaneous move membership game, such concepts as

• the strong Nash equilibrium6, [Aumann 1959] and

• the coalition-proof Nash equilibrium7 [Bernheim et el. 1987]

are applied (as well as some forms of core-stability for the cooperative case). Sec-
ond, membership can be opened or exclusive (unanimity or majority veto). The
most promising among simultaneous move concepts appears to be one based
on principle of farsightedness, discussed above. The farsighted coalition stability,
implying de facto exclusive membership, delivers Pareto-dominant poly-coalition
structure, allowing for sequential deviation and best-reply strategy for external
players.

Examples of sequential move membership games are

• the equilibrium binding agreements, [Ray & Vohra 1997], and

• the sequential coalition formations, introduced in [Bloch 1995], [Bloch 1996]
and its developments. For example, in [Ray &Vohra 1999] the fixed sharing
rule was improved by making it endogenous, effect of issue linkage was
studied in [Finus & Rundshagen 2000] and a role of international coordina-
tor was analyzed in [Finus & Rundshagen 2006].

5 The latest efforts are also directed to consider overlapping or intersecting coalitions,
[Breton et al. 2008a], [Alcalde & Revilla 2001], [Le Breton et al. 2007]

6 No subgroup of players can increase its benefit by deviating.
7 The stability concept is similar to the strong Nash equilibrium but it rules out less preferable

Pareto-dominated equilibrium outcomes which can appear in the first case.
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The latter type of game is also called sequential move unanimity games, or SMUG. In
comparison to simultaneous move games, SMUG explicitly depicts how coalition
is formed and how players coordinate on an equilibrium. In most of the games
there is an initiator, who is interested in starting an agreement and proposes a
certain coalition. External players are invited to join the coalition only if all the
coalition members unanimously agree.

Analysis of the presented approach allows one to conclude (e.g. [Finus 2001],
[Finus 2007]) that in the games with poly-coalition, more players (than in single
coalition models) are involved into bi- or multi-literal collaboration, which re-
sults in bigger environmental benefit. Besides that, it is shown that the grand
coalition becomes stable in some cases. Comparison of open and exclusive types
of membership is in favor of the latter, since it produces larger coalitions (by pre-
venting undesirable deviations). Considering formation of multiple coalitions
among heterogeneous players is a potential extension of the current results.

With no distraction from the merits of poly-coalition approach, we
would continue our work and analysis of games with a single coalition and open
membership: first, all current IEAs on pollution reduction and CO2 mitigation
are single agreements (for instance, there is only one Montreal and one Kyoto
protocol), second, it is common that environmental agreements do not restrict
accession and hence follow the principle of open membership.

2.2.4 Dynamic Models

The majority of non-cooperative game theory literature uses a static framework to
analyze the formation process of a self-enforcing agreement and choice of abate-
ment targets (the detailed discussion of this issue is presented in Sections 2.1 and
3.3.3). When we turn to the question how to fulfill abatement commitments,
which were assigned to or adopted by the players, a dynamic model is neces-
sary. Such a framework could not only allow us to consider emission reduction
flow but also to trace changes in players’ preferences of their agreement status.
The former aspect recalls that transboundary environmental damage is usually
related to accumulation of pollution, rather than to emission itself. The latter
aspect is that countries can revise their decisions of being in or out of an agree-
ment at different points in time if environmental damage (benefit) and cost are
changing over time.

Three types of dynamic games have been used to analyze the stability of an
IEA in a dynamic framework: the repeated games, see for instance [Barrett 1994a],
[Finus & Rundshagen 1998] – [Asheim et al. 2006], the differential (difference)
games, [Germain et al. 2003] – [Rubio & Ulph 2007], and the multistage games,
[Zakharov 1988], [Dementieva 2004]. The latter approach has been utilized to
consider dynamics and evolution of an IEA in Part II of the present work.

The earliest attempts to consider dynamic models focus either only on the
stock of accumulated pollution, assuming IEA membership to be fixed,
[Rubio & Casino], [Eyckmans 2001], or on coalition membership dynamics (se-
quential formation process according to the sequential move unanimity game,
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see Section 2.2.3). Recently attention to the dynamic difference games of agree-
ment formation has substantially increased and the following problems have
been studied:

(a) determining the stable pollution stock and the correspondent size stable
coalition, [Rubio & Ulph 2007], [Breton et al. 2008b],

(b) identifying conditions leading to breaking apart of the agreement,
[de Zeeuw 2008],

(c) introducing mechanisms of "sticks and carrots", which could prevent it,
[Weikerd & Dellink 2008] .

On the other hand such questions as

(a) specifying a time-consistent scheme of optimal pollution reduction and cor-
respondent dynamics of pollution flow,

(b) analyzing free-riding aspects,

(c) verification of time-consistency of a stable agreement,

(d) intermediate renegotiation of abatement commitments, specified by the
agreement, and players’ membership status,

have not been sufficiently explored. These and other related topics would be
explored in Parts II and III of the present work.
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Static Game
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3 MODEL OF IEA

Before going over to issues of dynamic performance of an international envi-
ronmental agreement, we start in the area of static games, IEAs formation and
the redistribution of gains from cooperation among signatories, and describe our
original contributions in light of the past results.

The following analysis of agreement formation is based on a non-co-
operative approach, implementing a conjectural variation model of mem-
bership, [Hoel 1992], [Carraro & Siniscalco 1993], [Bauer 1992], [Barrett 1994a],
[d’Aspremont et al. 1983], [d’Aspremont et al. 1986]. Typically it is set up as a
two-stage game, where a term “stage” is used to indicate sequence of players’
decisions within a static framework. In the first stage, each country decides to
join or not to join an IEA. In the second stage, every country decides on abate-
ments. Material of Part I is based on publications [Demetieva & Pavlova 2007a],
[Dementieva & Pavlova 2007b], [Pavlova et al. 2008].

According to model characterization provided in Table 2.1, and main and
alternative assumptions related to membership models discussed in the Chapter
2, we specify our approach in the following manner:

• coalition formation process is restricted to signatories, which coordinate
their strategies, and free-riders, behaving as singletons,
[Carraro & Siniscalco 1998];

• when withdrawing or accessing the coalition, a player assumes that all
other players maintain their status, that allows only singleton movements
as it is employed in the concept of internal/external stability (i.e. self-enforce-

ment), given in [d’Aspremont et al. 1983];

• players make their participation decisions myopically, i.e. don’t foresee the
subsequent chain reaction by other players;

• membership decisions are simultaneously taken in the first stage, and choice
of abatement strategy is sequentially made in the second stage;
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• within the coalition, players play cooperatively while the coalition and sin-
gle countries compete in a non cooperative way among them;

• welfare function is objective, material and certain. This assumption is mainly
caused by other model characteristics, because the chosen stability concept
had to rely on specific payoff functions to judge about signatory number
and type; moreover, we suppose that players’ payoffs are presented as the
difference between polynomial benefit function and quadratic cost function
and that all players are familiar with benefits of others;

• heterogeneous players are allocated K different groups so that they can be
identical within each group.

Heterogeneous approach, performed by numerical simulations with two groups
of players, has been presented in [Barrett 2001]. In [McGinty 2006] the N asym-
metric player game is presented. Such an advanced approach allows to study pol-
lution transfers and rule of fair surplus allocation among IEA signatories, though
it makes it rather difficult to provide estimations of IEA size and structure. To
derive a pattern of a stable IEA, we direct our attention to the game of hetero-
geneous players (they are allocated among several groups, regarding their wel-
fare function) and generalize principle of self-enforcement. In Sections 3.2 and 3.3
we determine optimal abatement levels, characterize structure of stable coalition
and get an insight into expected environmental benefits and players’ welfare. If
players are split into two groups, like in Section 3.2, it may be interpreted as
belonging to Annex B countries (Australia, Austria, Belgium, Bulgaria, Canada,
Croatia, Czech Republic, Denmark, Estonia, Finland, France (including Monaco),
Germany, Greece, Hungary, Iceland, Ireland, Italy (including San Marino), Japan,
Latvia, Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Poland,
Portugal, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden,
Switzerland (including Liechtenstein), Ukraine, United Kingdom, United States
of America) and non-Annex countries of the Kyoto Protocol. If we consider three
different groups (see Section 3.3 where K types are considered) then it means
that we distinguish the following groups: industrialized countries, like USA, Eu-
ropean Union, Japan, without pollution permits; rapidly developing countries,
like Russia, China and India, whose pollution permits stock is big enough but
emission trading might be inefficient because pollution permits would be neces-
sary for internal use to compensate extra emission discharge caused by industrial
growth; and agricultural countries with low abatement cost and large pollution
permits stock.

Furthermore, heterogeneity of players gives opportunity to launch transfer
scheme mechanisms, which should enhance players’ commitment to the IEA and
reduce free-riding incentives. Such analysis is presented in Chapter 4.

A mechanism of side payments allows one to reshape the agreement struc-
ture and attract nations, which so far preferred to be outsiders. We suggest a rule
to share a surplus gained by all coalition members, which would guarantee that
each nation receives at least as much as it would get deviating from IEA plus a
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coalition surplus share. We suppose that under such an approach nations prefer
to access IEA than to free-ride and IEAs become capable to provide more signif-
icant and meaningful impact on environment. Since more nations are involved
into the agreement, welfare of elder signatories might drop down, however being
still high enough to keep coalition membership profitable. To avoid likely thwart-
ing, we imitate a special committee to be responsible for assigning abatement
commitments and establishing pollution permits for coalition members, thereby
allowing thus emission trading to start among nations, [Hanley et al. 1997]. The
following Section 3.1 precisely describes model features.

3.1 Linear Marginal Abatement Benefits
and Costs

Let N =
⋃K

i=1 Ni
(Ni ∩Nj = ∅, i �= j

)
be a set of heterogeneous players, e.g.

countries of the world, each of which emits pollutants that damages a shared
environmental resource. Each subset Ni, i = 1, . . . , K, consists of Ni players of
type i, which have similar payoff functions. Thus, the set N is composed of N
elements (players), where N = ∑K

i=1 Ni.
Let set S (∅ �= S ⊆ N ) be a coalition of players that jointly intend to reduce

their emissions. Players simultaneously and voluntarily decide to join the coali-
tion S or act independently. Denote ni (ni ≤ Ni, i = 1, . . . , K) as the number
of players of type i that joined the coalition. The vector n = (n1, . . . , ni, . . . , nK)
describes the IEA structure S. Let us introduce the following practical notations:

• F = N \ S is the set of free-riders (players, who did not join the agreement);

• qS
i and qF

i are the individual abatement commitments chosen by a player of
type i from the coalition S and a free-rider of type i from the set F, respec-
tively;

• qS = (qS
1 , . . . , qS

K) and qF = (qF
1 , . . . , qF

K);

• QS = ∑K
i=1 niqS

i and QF = ∑K
i=1(Ni − ni)qF

i are the abatements that all signa-
tories of the coalition S and all free-riders from the set F commit to reduce;

• Q = QS + QF is total abatement by all players upon the IEA.

We declare a link between the economic activity of the countries and physical
state of environment. Such a link is established through a social welfare (or pay-
off) function and expressed via an economical-ecological model of the world. The
net benefit πi(qS, qF) of each player of type i, i = 1, . . . , K, depends on its own
abatement commitments qS

i and qF
i and on emission reduction Q undertaken by

all players, [Barrett 1994a],

πi(qS, qF) = B(Q) − Ci(qi), (1)
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and be expressed as difference between benefit and cost functions. The current
abatement benefits B(Q) are assumed to be identical for all participants and de-
pend on the current total abatement Q as follows

B(Q) =
b
N

(aQ − Q2/2). (2)

The positive parameters a and b describe the current pollution and slope of the
marginal benefit function. We assume that environmental benefit (2) is equally
allocated among all countries.

According to (2) the individual marginal benefit function (which can be
found as the differential of B(Q)) is

MB(Q) =
b
N

(a − Q)

and the global marginal benefit function (which can be found as the differential
of global benefit function) is

MB(Q)N = b(a − Q).

Each country’s abatement costs depend on its own abatement level qi, i =
1, . . . , K. For the country of type i the abatement cost function Ci(qi) is assumed
to be given by

Ci(qi) =
1
2

ciq2
j , (3)

where qi is each country’s abatement and parameter ci > 0 equals the slope of
each country’s marginal abatement cost curve. The marginal cost function is

MCi(qi) = ciqi.

We interpret agreement formation as a static two-level game
Γ0(S) = 〈N , {qS

i , qF
i }K

i=1, {πS
i , πF

i }K
i=1〉, where qS

i and qF
i are the players’ strategies

and πS
i and πF

i are the net benefits of players of type i. In the current gameΓ0(S)
the coalition S is the leader, and the free-riders in F are the followers. The strate-
gies (abatement targets) (qS, qF) are said to be feasible if Q ≤ a.

3.2 Coalition Formation Game Among Players of Two Types

It is quite obvious that considering formation of an IEA as a non-cooperative
game and potential countries-signatories as players, we may run against a prob-
lem which is too complicated. Indeed, each particular nation requires unique
adjustment of benefit and cost function parameters. This in turn allows to esti-
mate, quite explicitly, individual abatements and the net benefits of each country,
but when the question concerns stability of agreement, this data becomes too
complex to provide any solution.
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To handle the barrier, we introduce a practical assumption: we simplify our
knowledge about countries’ characteristics and allocate them among a limited
number of groups. Let us now assume players can be split into two groups.

We consider the world of N1 nations of type 1 and N2 nations of type 2. We
can say that parameters with indexes 1 and 2 determine the belonging of ith par-
ticipant to the group 1 or 2, respectively. Current abatement benefit is assumed
to be identical for all participants and depend on current total abatement Q

B(Q) =
b

N1 + N2
(aQ − 1

2
Q2).

Marginal benefit function is

MB(Q) = b(a − Q)/(N1 + N2),

and global marginal benefit

(N1 + N2)MB(Q) = b(a − Q).

For the country of type i, the abatement cost function is assumed to be given by
3.

Net benefit of ith country is

πi

(
qS, qF

)
= B(Q) − Ci(qS(F)

i ) (4)

and global net benefit is

Π
(

qS, qF
)

=
(

n1π1(qS, qF) + n2π2(qS, qF)
)

︸ ︷︷ ︸
players from S

+
(
(N1 − n1)π1(qS, qF) + (N2 − n2)π2(qS, qF)

)
︸ ︷︷ ︸

players from F

(5)

= (N1 + N2)B(Q) + n1C1(qS
1) + n2C2(qS

2) + (N1 − n1)C1(qF
1 ) + (N2 − n2)C2(qF

2 ).

3.2.1 Full Cooperation

First, we assume that the grand coalition S = N has been formed. Under full
cooperation, members of the grand coalition maximize the joint net benefit Π(qc),

Π(qc) = b
(

aQc − 1
2

Q2
c

)
−

[
1
2

c1N1 (qc
1)

2 +
1
2

c2N2 (qc
2)

2
]

,

where qc
i is an abatement effort chosen by a signatory of type i, Qc is aggregate

abatement achieved by the grand coalition N . The first order conditions{
∂Π(qc)/∂qc

1 = 0, for N1 players of type 1,
∂Π(qc)/∂qc

2 = 0, for N2 players of type 2,
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deliver {
b(a − Qc) − c1qc

1 = 0, for N1 players of type 1,
b(a − Qc) − c2qc

2 = 0, for N2 players of type 2.

The first order condition requires setting each country’s marginal cost of
abatement MCi(qc

i ), i ∈ 1, 2, equal to the global marginal benefit of abatement
∑ MB(Qc). Thus obtained system{

c1qc
1 = b(a − N1qc

1 − N2qc
2),

c2qc
2 = b(a − N1qc

1 − N2qc
2)

yields the aggregate emission level under full cooperation

Qc = N1qc
1 + N2qc

2 =
a(N1 + pN1)
γ + N1 + ζN2

.

Individual abatements are

qc
1 =

a
γ + N1 + ζN2

, for each of N1 countries of type 1,

qc
2 = pqc

1 =
ap

γ + N1 + ζN2
, for each of N2 countries of type 2,

where γ = c1/b and ζ = c1/c2.

3.2.2 Non-Cooperative Case

In the non-cooperative case all players act as singletons playing Nash strategies
against each other. Each country of type i, i = 1, 2, chooses the abatement level
qo

i so that to maximize its payoff, taking the other countries’ abatements as given.
That is, each of N players behaves in a typical Nash-Cournot fashion maximizing
its net benefit πi(qo), i = 1, 2,

πi(qo) =
b

N1 + N2

(
aQo − 1

2
Q2

o

)
− 1

2
ci (qo

i )
2 ,

where qo
i is abatement effort of a singleton of type i and Qo is aggregate emission

reduction achieved in pure non-cooperative case. The first order conditions

∂πi(qo)
∂qo

i
= 0, i = 1, 2,

deliver {
b

N1+N2
(a − Qo) − c1qo

1 = 0, for N1 players of type 1,
b

N1+N2
(a − Qo) − c2qo

2 = 0, for N2 players of type 2

and require setting each country’s own marginal benefit MB(Qo) equal to its own
marginal cost of abatement MCi(qo

i ). We obtain the following system{
c1qo

1 = b
N1+N2

(a − N1qo
1 − N2qo

2),
c2qo

2 = b
N1+N2

(a − N1qo
1 − N2qo

2).
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The solution is

qo
1 =

a
γ(N1 + N2) + (N1 + ζN2)

, for each of N1 countries from group 1,

qo
2 = ζqo

1 =
aζ

γ(N1 + N2) + (N1 + ζN2)
, for each of N2 countries from group 2.

Global abatement Qo under non-cooperative behavior is

Qo =
a(N1 + ζN2)

(N1 + ζN2) + γ(N1 + N2)
.

3.2.3 Environmental and Economic Benefit

It is easily verifiable that each country abates more and is better off in the case of
full cooperation than under non-cooperation, i.e. qc

1 > qo
1, qc

2 > qo
2 and πi(qo) >

πi(qc).
The environmental benefit of cooperation is

Qc − Qo =
aγ(N1 + ζN2)(N1 + N2 − 1)

(γ + N1 + ζN2)(N1 + N1γ + ζN2 + γN2)
.

Let us introduce notation α = N1 + N2 and β = N1 + ζN2. Then

Qc − Qo =
aγβ(α − 1)

(γ + β)(γα + β)
. (6)

The economic benefit is

Π(qc) − Π(qo) =
1
2

[
(N3

1 + 2N2
1 N2 − 2N2

1 + ζN2
1 N2 + N1 − 2N1N2

(N1 + γN1 + ζN2 + γN2)2(γ + N1 + ζN2)
(7)

+
N1N2

2 − 2ζN1N2 + 2ζN1N2
2 + ζN2 − 2ζN2

2 + ζN3
2 )c1γa2

(N1 + γN1 + ζN2 + γN2)2(γ + N1 + ζN2)

]
.

Lemma 3.2.1 Let

θ(N1, N2) =
−(N1 + N2) +

√
(N1 + N2)2 + 8(N2 + N1)

4(N1 + N2)(N1 + ζN2)

=
−α +

√
β2 + 8α

4αβ
,

ϑ(N1, N2) =
−N1 − 1

4 γ + 1
4

√
γ2 + 8γ2N2 + 8γ2N1

N2
.

Then

(i) Π(qc) − Π(qo) increases in b, when 0 < γ < θ(N1, N2) and decreases if γ >
θ(N1, N2);

(ii) Π(qc) − Π(qo) increases in c1;
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(iii) θ(N1, N2) is monotonic and approaches values of 1 and ζ as N1 and N2 becomes
very large respectively;

(iiii) Π(qc) − Π(qo) decreases in ζ, when

ζ > max {0, ϑ(N1, N2)} .

P r o o f.

(i) Net benefit difference between full cooperation and pure non-cooperative
case is given by (7). Differentiating it with respect to γ (while c1 is constant)
delivers that

∂ (Π(qc) − Π(qo))
∂γ

� 0



2(N1 + N2)2γ3 + (N1 + ζN2)(N1 + N2)2γ2

−2(N1 + ζN2)2(N1 + N2)γ − (N1 + ζN2)3 � 0. (8)

The cubic equation has three roots among which only γ = θ(N1, N2) is
positive. Expression (8) is positive when γ > θ(N1, N2).

FIGURE 1 Dependence of the net benefit on parameter γ.

(ii) From (8) it follows immediately that ∂(Π(qc) − Π(qo))/∂c1 |γ=const> 0.
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(iii) Finding the limits,

lim
N1→∞

−(N1 + N2) +
√

(N1 + N2)2 + 8(N2 + N1)
4(N1 + N2)(N1 + ζN2)

= 1,

lim
N2→∞

−(N1 + N2) +
√

(N1 + N2)2 + 8(N2 + N1)
4(N1 + N2)(N1 + ζN2)

= ζ.

Coefficient ζ determines c1/c2, so it is essential that it belongs to (0, 1].

(iiii) Solution of equation
∂(Π(qc) − Π(qo))

∂ζ
= 0

consists of three roots, among which only one can be positive,

ζ = ϑ(N1, N2).

When ζ > max{0, ϑ(N1, N2)}, partial differential is negative.

FIGURE 2 Dependence of the net benefit on parameter ζ.

Value ϑ can be positive only if inequality holds

2N2
1 + N1γ ≤ γ2(N1 + N2),

it would imply that number of countries N1 from group 1 is relatively small
in comparison to N2. �



36

In a similar way to [Barrett 1994a], we can make the following conclusion from
Lemma 3.2.1:

• the gains of cooperation Π(qc)− Π(qo) are larger the closer γ to θ(N1, N2),
the closer ζ to max{0, ϑ};

• when p is small, i.e. c2 is much bigger than c1 (marginal abatement cost of
group 2 grows faster than those of 1) then the gains of cooperation Π(qc)−
Π(qo) are large;

• when c1 is small and b is large, the gains of cooperation are relatively small,
and countries will have slight incentives to join the agreement;

• when c1 is large and b is small then difference Qc − Qo is relatively small
and ecological benefit is not sufficient;

• when c1 ≈ b and they are small then Qc − Qo is large, but Π(qc)− Π(qo) is
small;

• when c1 ≈ b and they are large then both Qc − Qo and Π(qc) − Π(qo) are
large.

The last two statements describe a set of parameters, where stable coalition might
form.

3.2.4 Formation of Self-Enforcing Coalition

Let us consider formation of a coalition S, which is composed of n1 and n2 coun-
tries from groups 1 and 2, which make the decision to sign the IEA. There are then
(n1 + n2) signatories and (N1 − n1) + (N2 − n2) free-riders. To determine a stable
structure n = (n1, n2) of the coalition S we apply the principle of internal and ex-
ternal stability of a coalition, also known as self-enforcing, [d’Aspremont et al. 1983].

Definition 3.2.1 A coalition S, characterized by vector n = (n1, n2) of signatories, is
self-enforcing if

πi(qS\{i}, qF∪{i}) ≤ πi(qS, qF), i ∈ S, (9)

πi(qS∪{i}, qF\{i}) ≤ πi(qS, qF), i ∈ F. (10)

Inequality (9) sets condition of internal stability, i.e. no member of S, described
by vector n prefers to withdraw from the agreement (so that coalition would be
characterized by vector (n1 − 1, n2) or (n1, n2 − 1)). Condition (10) of external sta-
bility guarantees that no free-rider from set F prefers to join the coalition S, thus
increasing number of signatories (so that coalition structure would be specified
by vector (n1 + 1, n2) or (n1, n2 + 1)). Stability conditions ensure that no player
unilaterally deviates.

Signatories of IEA reduce qS
1 , qS

2 of their emissions, and total abatement un-
dertaken by coalition is

QS =
2

∑
i=1

niqS
i . (11)
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In a similar manner, each free-rider from groups 1 and 2 emits qF
1 and qF

2 , yielding
total abatement level

QF =
2

∑
i=1

(Ni − ni)qF
i .

Supposing that a non-empty coalition S, characterized by n = (n1, n2) of
signatories, has formed. Let us determine optimal abatement strategies of players
as Stackelberg equilibrium in the two level game Γ0(S), where the coalition S acts
as a leader and free-riders from set F accept position of the followers. Thus free-
riders reduce their emission non-cooperatively taking the choice of signatories
into account. Every free-rider of type i, i = 1, 2, maximizes its net benefit non-
cooperatively

max
qF

i

πi(qS, qF), i ∈ F,

where

πi(qS, qF) =
b

N1 + N2

(
a(QS + QF) − 1

2
(QS + QF)2

)
− 1

2
ci

(
qF

i

)2
.

Reaction function of Ni − ni free-riders from set F of type i, i = 1, 2 can be
found from the equation

MCi(qF
i ) = MB(Q),

that is equivalent to

b
N1 + N2

(a − Qs − QF) − ciqF
i = 0.

Thus we obtain{
qF

1 = (a − QS)/(γ(N1 + N2) + (N1 − n1) + ζ(N2 − n2)),
qF

2 = ζqF
1 .

The reaction function of non-signatories is

QF = g(a − QS), (12)

where

g =
(N1 − n1) + ζ(N2 − n2)

γ(N1 + N2) + (N1 − n1) + ζ(N2 − n2)
.

Signatories choose their abatement level by maximizing their collective net bene-
fit while taking into account behavior of non-signatories. Abatement QS is chosen
by solving the following constrained maximization problem

max ∑i∈S πi(qS, qF),
subject to (12),

where πi(qS, qF) is the net benefit function of each signatory of type i. Solution
of maximization problem is

qS
2 = ζqS

1 =
aζ(n1 + n2)(1 − g)2

γ(N1 + N2) + (n1 + ζn1)(n1 + n2)(1 − g)2 .
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According to (11) coalition of n1 1-counties and n2 2-counties undertake the
following abatement

QS =
a(n1 + n2ζ)(n1 + n2)(1 − g)2

γ(N1 + N2) + (n1 + n2ζ)(n1 + n2)(1 − g)2 . (13)

Substituting (13) into reaction function (12) of non-signatories abatement, we ob-
tain the following abatement for free-riding (N1 + N2 − n1 − n2) countries

QF =
γag(N1 + N2)

γ(N1 + N2) + (n1 + n2ζ)(n1 + n2)(1 − g)2 ,

individual abatements of free-riders will be

qF
1 =

QF

(N1 − n1) + ζ(N2 − n2)
,

qF
2 =

ζQF

(N1 − n1) + ζ(N2 − n2)
.

Total abatement is Q = QS + QF.
The remaining problem is to determine n1 and n2. We invoke Definition

3.2.1, applying stability conditions (9) and (10). The net benefits (1) for each sig-
natory of the coalition S and each free-rider from set F need to be calculated

πi(qS, qF) = B(Q) − Ci(qS
i ), i ∈ S,

πi(qS, qF) = B(Q) − Ci(qF
i ), i ∈ F,

when the coalition S is described with vector n = (n1, n2) and set F is character-
ized by vector (N1 − n1, N2 − n2). We should point out that values qS

i , qF
i and QS,

QF depend on coalitional structure, and thus on vector n. Hence to identify the
stable structure of S, we substitute expressions of players’ abatement strategies
into the net benefit functions, and examine two scenarios:

1. a member of type 1 may deviate from the coalition or join the coalition; then
we need to solve the following system of inequalities

B(QS(n1 − 1, n2) + QF(n1 − 1, n2)) − C1(qF
1 (n1 − 1, n2)) ≤

B(QS(n1, n2) + QF(n1, n2)) − C1(qS
1(n1, n2)),

B(QS(n1, n2) + QF(n1, n2)) − C1(qF
1 (n1, n2)) ≥

B(QS(n1 + 1, n2) + QF(n1 − 1, n2)) − C1(qS
1(n1, n2));

2. a member of type 2 may deviate from coalition or joins to coalition. System
of inequalities is

B(QS(n1, n2 − 1) + QF(n1, n2 − 1)) − C2(qF
2 (n1, n2 − 1)) ≤

B(QS(n1, n2) + QF(n1, n2)) − C2(qS
2(n1, n2)),

(14)

B(QS(n1, n2) + QF(n1, n2)) − C2(qF
2 (n1, n2)) ≥

B(QS(n1, n2 + 1) + QF(n1, n2 + 1)) − C2(qS
2(n1, n2)).

(15)
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Due to complexity of inequalities (14) and (15) in general case, we shall first go
over to numerical simulations and then continue our analysis.

Example 3.2.1

Let us assume the following parameters of the model (see Table 2). We are go-

TABLE 2 Example 3.2.1 Model Parameters

b = 1
a = 100

Type 1 Type 2
c1 = 0.5 c2 = 0.8
N1 = 5 N2 = 10

ing to identify stable coalition structures, the net benefits, and abatement targets
of the players. The following technique reveals self-enforcing structure (further
analysis is based on data presented in Fig. 13 and 14 in Appendix 1). First, we
fix one of the values, e.g. n1, and run through all n2 checking conditions (14) and
(15). For example, let us assume n1 = 1. After set of comparisons

πF
2 (1, 0) = 271.825 < πS

2 (1, 1) = 275.350,

πF
2 (1, 1) = 274.293 < πS

2 (1, 2) = 276.779,

process stops at πF
2 (1, 2) = 280.286 > πS

2 (1, 3) = 279.747, delivering external
stability at next

2 = 2. Then we check internal stability likewise:

πS
2 (1, 10) = 308.749 < πF

2 (1, 9) = 326.130,

πS
2 (1, 9) = 305.485 < πF

2 (1, 8) = 323.083,

πS
2 (1, 8) = 301.771 < πF

2 (1, 7) = 318.879,

πS
2 (1, 7) = 297.616 < πF

2 (1, 6) = 313.262,

πS
2 (1, 6) = 293.095 < πF

2 (1, 5) = 306.113,

πS
2 (1, 5) = 288.384 < πF

2 (1, 4) = 297.643,

πS
2 (1, 4) = 283.788 < πF

2 (1, 3) = 288.596,

πS
2 (1, 3) = 279.747 < πF

2 (1, 2) = 280.286,

πS
2 (1, 2) = 276.779 > πF

2 (1, 1) = 274.293.

Internal stability is reached at nint
2 = 2. Since nint

2 = next
2 , which guarantees

internal and external stability simultaneously, we are able to come to the second
step. By a similar way we should fix now n∗

2 = 2 and running through all n1 we
check if there is stability n∗

1 = nint
1 = next

1 and if so compare the obtained stable
solution to the assumption n1 made before searching for n∗

2. If n1 is the same,
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TABLE 3 Example 3.2.1 Self-Enforcing Coalitions

Structure S1 S2
n1 = 0 n2 = 3 n1 = 1 n2 = 2

Coalition members’ – π1 = 272.226
net benefit π2 = 275.986 π2 = 276.779

Sigantories’ commitments – qS
1 = 6.969

qS
2 = 4.301 qS

2 = 4.355
Free-riders’ abatement qF

1 = 5.161 qF
1 = 5.11

qF
2 = 3.22 qF

2 = 3.194
Emission reduction Q = 61.290 Q = 61.673

then it means that self-enforcing equilibrium has been achieved, in a particular
case (n∗

1 = 1, n∗
2 = 2).

Under the given set of parameters, we obtain two self-enforcing coalitional
structures of IEA, which are S1 with n∗ = (0, 3) and S2 with n∗ = (1, 2). Fig.
3 and 4 demonstrate graphical interpretation of the conditions of internal and
external stability of both coalitions:
1) internal stability of S1

πS
2 (0, 3) = 275.986 > πF

2 (0, 2) = 275.986,

2) external stability of S1

πF
2 (0, 3) = 279.223 > πS

2 (0, 4) = 278.034,

πF
1 (0, 3) = 276.726 > πS

1 (1, 3) = 272.373,

3) internal stability of S2

πS
1 (1, 2) = 272.226 > πF

1 (0, 2) = 271.721,

πS
2 (1, 2) = 276.779 > πF

2 (1, 1) = 274.293,

4) external stability of S2

πF
1 (1, 2) = 277.838 > πS

1 (2, 2) = 274.121,

πF
2 (1, 2) = 280.286 > πS

2 (1, 3) = 279.747.

It is also important to note that each self-enforcing coalition structure brings
different environmental benefit (see Table 3), i.e. Q1∗,2∗ = 61.673 and Q0∗,3∗ =
61.290. Thus from an environmental point of view, coalition structure (n∗

1 =
1, n∗

2 = 2) is more beneficial. It directly follows from considering net benefits
of signatories and free-riders

πF
2 (1∗, 2∗) = 280.286 > πF

2 (0∗, 3∗) = 279.223,
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FIGURE 3 Example 3.2.1. Graphical analysis of a self-enforcing IEA, when n∗ = (1, 2).

FIGURE 4 Example 3.2.1. Graphical analysis of self-enforcing IEA, when n∗ = (0, 3).

πS
2 (1∗, 2∗) = 276.779 > πS

2 (0∗, 3∗) = 275.986,

πF
1 (1∗, 2∗) = 277.838 > πF

1 (0∗, 3∗) = 276.726,
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Numerical examples, presented in Fig. 15 and 16 in Appendix 1, describe
how high and low asymmetry of types and variation of initial parameters b, c1
and c2 effect the IEA structure. Despite the fact that full analytical characteriza-
tion is not available due to complex model specification, these simulations reveal
the relationship between parameters γ and ζ and the ability of IEA to fill the gap
between full-cooperative and non-cooperative behaviors.

3.3 Coalition Formation Game among
Heterogeneous Players of K Types

In this section we consider the coalition formation game among N heterogeneous
players. Similar ideas of heterogeneous approaches can, for instance, be found
in [Barrett 2001], where numerical simulations with K = 2 groups of players are
performed, and where analytical analysis for K = 2 and K = 3 are presented. In
addition to that, in [McGinty 2006] N pure asymmetric player game is presented.
Further we present analysis of general case with K types of players in order to
provide estimations of IEA size and structure and to study pollution transfers
and rule of fair surplus allocation among IEA signatories.

Within the framework of this section we interpret agreement formation as
a static two-level game Γ0(S) = 〈N , {qS

i , qF
i }K

i=1, {πS
i , πF

i }K
i=1〉, where qS

i , qF
i are

players’ strategies and πS
i , πF

i are net benefits of players of type i from S (and
F = N \ S). In the current game Γ0(S) the coalition S is the leader, and free-riders
F are the followers. Strategies (abatement targets) (qS, qF) are feasible if Q ≤ a.

3.3.1 Pure Non-Cooperative Outcome

As before in the pure non-cooperative case all players act as singletons choosing
Nash strategies to play against each other. Each country chooses its emission
reduction level assuming others’ rational reaction.

Individual abatement qi = qo
i , i = 1, . . . , K, is determined in such a way that

maximize individual net benefit πi(qo)

πi(qo) =
b
N

(aQo − 1
2

Q2
o) −

1
2

ci (qo
i )

2 .

Consequently, we need to find the solution of the first order conditions⎧⎨
⎩

∂πi(qo)
∂qo

i
= 0,

i = 1, . . . , K.

This leads each country to set its own marginal cost of abatement MCi equal
to marginal abatement benefit MB{

MCi(qo
i ) = MB(Qo),

i = 1, . . . , K,
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that is equivalent to

ciqo
i =

b
N

(a −
K

∑
l=1

Nlqo
l ), i = 1, . . . , K. (16)

To present the solution of non-cooperative outcome, we introduce the fol-
lowing notations.

• Let λ = (λ1, . . . , λt, . . . , λK) be a vector, where

λi =
b
ci

. (17)

• N = (N1, . . . , Ni, . . . , NK).

• Let 1̄ = (1, . . . , 1) be a vector of units.

• For two given vectors x = (x1, . . . , xr) and y = (y1, . . . , yr) expression (x, y)
means their scalar product and equals to ∑r

l=1 xiyi.

It follows from system (16) that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qo
1 = λ1

1
N (a − ∑K

l=1 Nlqo
l ),

. . .
qo

i = λi
1
N (a − ∑K

l=1 Nlqo
l ),

. . .
qo

K = λK
1
N (a − ∑K

l=1 Nlqo
l ).

It is easy to notice correlation qo
l = λl

1
λi

qo
i . Thus we obtain⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qo
1 = λ1

1
N (a − qo

1
λ1

∑K
l=1 Nlλl),

. . .
qo

i = λi
1
N (a − qo

i
λi

∑K
l=1 Nlλl),

. . .
qo

K = λK
1
N (a − qo

K
λK

∑K
l=1 Nlλl).

It follows that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qo
1(N + ∑K

l=1 Nlλl) = λ1a,
. . .
qo

i (N + ∑K
l=1 Nlλl) = λia,

. . .
qo

K(N + ∑K
l=1 Nlλl) = λKa.

Using notations described above, the non-cooperative solution can be pre-
sented as

qo
i =

aλi

(1̄ + λ, N)
, i = 1, . . . , K,

and total non-cooperative abatement

Qo =
a(λ, N)

(1̄ + λ, N)
.
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3.3.2 Full Cooperation

We need to assume that all players have made a decision of full cooperation
S = N (i.e. the grand coalition is formed). To determine optimal abatements
and corresponding net benefits of abatement, the grand coalition maximizes the
global net benefit Π

Π(qc) =
K

∑
i=1

Niπi(qc) = b(aQc − 1
2

Q2
c) −

1
2

K

∑
i=1

Nici (qc
i )

2 .

Since players are homogeneous within one type, we can say that their strategies
are also equal, thus qc

i , i = 1, . . . , K, denotes individual abatement of each country
from group i under full cooperation. The problem

max
qc

Π(qc)

leads to the fist order conditions

∂Π(qc)
∂qc

i
= 0, i = 1, . . . , K.

We come to the following system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1b(a − ∑K
l=1 Nlqc

l ) − N1c1qc
1 = 0,

. . .
Nib(a − ∑K

l=1 Nlqc
l ) − Niciqc

i = 0,
. . .
NKb(a − ∑K

l=1 Nlqc
l ) − NKcKqc

K = 0,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1qc
1 = b(a − ∑K

l=1 Nlqc
l ),

. . .
ciqc

i = b(a − ∑K
l=1 Nlqc

l ),
. . .
cKqc

K = b(a − ∑K
l=1 Nlqc

l ).

(18)

System (18) proves that in case of full cooperation each country’s marginal cost
of abatement is equal to the global marginal benefit of abatement

MCi(qc
i ) = NMB(Qc), i = 1, . . . , K.

Using correlation qc
j = λj

1
λi

qc
i ,j �= i, the system can be transformed to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1qc
1 = λ1(a − q1

λ1
∑K

l=1 Nlλl),
. . .
ciqc

i = λi(a − qi
λi

∑K
l=1 Nlλl),

. . .
cKqc

K = λK(a − qK
λK

∑K
l=1 Nlλl).
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Commitments of each player of type i are determined as

qc
i =

aλi

1 + (λ, N)
.

The global abatement is

Qc =
a(λ, N)

1 + (λ, N)
.

3.3.3 Self-Enforcing Coalition Formation

In the framework, when participation decisions are made simultaneously, play-
ers have an incentive to cheat on the agreement and be better off by emission
reduction achieved by other players who joined the IEA (see Example 3.2.1).

Let set S (∅ �= S ⊆ N ) be a coalition of players that jointly intend to
reduce their emissions, the rest of the players (free-riders) belong to the set F =
N \ S. Players simultaneously and voluntarily decide to join the coalition S or
act independently. Denote ni (ni ≤ Ni, i = 1, . . . , K) as the number of players of
type i that joined the agreement. They choose their abating strategies to maximize
the net benefit of the coalition. The remaining Ni − ni players (free-riders) adjust
their abatement levels non-cooperatively, maximizing individual net benefit. The
vector n = (n1, . . . , ni, . . . , nK) describes the IEA structure.

To determine players strategies
(
qS, qF)

in the two-level game Γ0(S) we ap-
ply the Stackelberg equilibrium concept. It implies that there is a Stackelberg
leader (a coalition S of signatories) who takes into account the optimal choice of
non-signatories (from the set F) which accept a position of the Stackelberg fol-
lowers. In this case the agreement participants have an advantage towards free-
riders as they choose their abatement levels based on the reaction functions of
non-signatories. Free-riders are assumed to play non-cooperatively against each
other and the coalition by choosing Nash strategies.

Lemma 3.3.1 In the two level game Γ0(S) the Stackelberg equilibrium is unique and is
constituted by the following strategies

qS
i =

aλi(1 − g)2(1̄, n)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

, i = 1, . . . , K, (19)

qF
i =

λia(1̄, N)
[(1̄, N) + (1 − g)2(1̄, n)(λ, n)][(1̄ + λ, N) − (λ, n)]

, i = 1, . . . , K, (20)

where
g =

(λ, N − n)
N + (λ, N − n)

.

P r o o f. We are going to construct the Stackelberg equilibrium in the two level
game Γ0(S). Assuming that the coalition S has chosen some feasible strategies
qS

i , free-riders of type i (from the set F) adjust their optimal abating efforts qF
i by

maximizing individual net benefit

max
qF

i

πi(qS, qF), i = 1, . . . , K,
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which is expressed by

πi(qS, qF) =
b
N

(
a(QS + QF) − 1

2
(QS + QF)2

)
− 1

2
ci

(
qF

i

)2
.

The first order condition

∂πi(qS, qF)
∂qF

i
= 0, i = 1, . . . , K,

leads to the system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1qF
1 = b

N

(
a − (QS + ∑K

l=1 qF
l (Nl − nl))

)
,

. . .
ciqF

i = b
N

(
a − (QS + ∑K

l=1 qF
l (Nl − nl))

)
,

. . .
cKqF

K = b
N

(
a − (QS + ∑K

l=1 qF
l (Nl − nl))

)
.

(21)

Since qF
l = λl

1
λi

qF
i , the system (21) can be presented as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qF
1

(
N + ∑K

l=1 λl(Nl − nl)
)

= λ1(a − QS),

. . .
qF

i

(
N + ∑K

l=1 λl(Nl − nl)
)

= λi(a − QS),

. . .
qF

K

(
N + ∑K

l=1 λl(Nl − nl)
)

= λK(a − QS).

The solution of the system is

qF
i =

λi(a − QS)
N + ∑K

l=1 λl Nl − ∑K
l=1 λlnl

=
λi(a − QS)

(1̄ + λ, N) − (λ, n)
, (22)

and since
∂2πi(qS, qF)

∂2qF
i

= − b
N

− ci < 0,

the solution given in (22) is maximum and determines optimal strategies of the
followers (free-riders’ individual abatements). The total abatement of the free-
riders is

QF = g(a − QS), (23)

where

g =
(λ, N − n)

N + (λ, N − n)
.

The expressions (22) and (23) can be interpreted as a rational (Nash equilib-
rium) reply of the followers to any of the leader’s strategies. Taking the reaction
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functions (22) and (23) into account, the leader chooses its abatement QS by max-
imizing its aggregate net benefit

max
qS

i

K

∑
i=1

niπi(qS, qF), (24)

where
K

∑
i=1

niπi(qS, qF) = ∑K
i=1 ni

N
b
(

a(QS + g(a − QS)) − 1
2
(QS + g(a − QS))2

)

− 1
2

K

∑
i=1

nici

(
qS

i

)2
.

The maximization problem (24) leads to the first order conditions{
∂ ∑K

i=1 niπi(qS, qF)/∂qS
i = 0,

i = 1, . . . , K.

Thus we come to the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑K
l=1 nl
N b (a(1 − g)n1 − (1 − g)(QS(1 − g) + ag)n1) − c1n1qS

1 = 0,
. . .
∑K

l=1 nl
N b (a(1 − g)ni − (1 − g)(QS(1 − g) + ag)ni) − ciniqS

i = 0,
. . .
∑K

l=1 nl
N b (a(1 − g)nK − (1 − g)(QS(1 − g) + ag)nK) − cKnKqS

K = 0,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1qS
1 = ∑K

l=1 nl
N b

(
a(1 − g)2 − QS(1 − g)2)

)
,

. . .

ciqS
i = ∑K

l=1 nl
N b

(
a(1 − g)2 − QS(1 − g)2)

)
,

. . .

cKqS
K = ∑K

l=1 nl
N b

(
a(1 − g)2 − QS(1 − g)2)

)
.

Using the expression (17), system can be converted to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

NqS
1 = λ1

(
a(1 − g)2 − QS(1 − g)2) ∑K

l=1 nl,
. . .
NqS

i = λi
(
a(1 − g)2 − QS(1 − g)2) ∑K

l=1 nl,
. . .
NqS

K = λK
(
a(1 − g)2 − QS(1 − g)2) ∑K

l=1 nl.

Applying correlation among individual abatement levels qS
i = λi

1
λl

qS
l , the system

can be presented as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

NqS
1 = λ1

(
a(1 − g)2 − (1 − g)2 1

λ1
qS

1 ∑K
l=1 nlλi

)
∑K

l=1 nl,

. . .
NqS

i = λi

(
a(1 − g)2 − (1 − g)2 1

λi
qS

i ∑K
l=1 nlλi

)
∑K

l=1 nl,

. . .
NqS

K = λK

(
a(1 − g)2 − (1 − g)2 1

λK
qS

K ∑K
l=1 nlλi

)
∑K

l=1 nl,
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which is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qS
1

(
N + (1 − g)2 ∑K

l=1(nlλl) ∑K
l=1 nl

)
= λ1a(1 − g)2 ∑K

l=1 nl,

. . .
qS

i

(
N + (1 − g)2 ∑K

l=1(nlλl) ∑K
l=1 nl

)
= λia(1 − g)2 ∑K

l=1 nl,

. . .
qS

K

(
N + (1 − g)2 ∑K

l=1(nlλl) ∑K
l=1 nl

)
= λKa(1 − g)2 ∑K

l=1 nl.

The solution of the maximization problem (24) is

qS
i =

aλi(1 − g)2(1̄, n)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

, i = 1, . . . , K,

since
∂2 ∑K

i=1 niπi(qS, qF)
∂2qS

i
= − b

N
− ci < 0.

The aggregate coalitional abatement is given by

QS =
a(1 − g)2(1̄, n)(λ, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
. (25)

The solution (qS, qF) is feasible because

Q = QS + QF = QS + g(a − QS)

= a
(1 − g)2(1̄, n)(λ, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
+ a

g(1̄, N)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

= a
[

(1 − g)2(1̄, n)(λ, n)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

+
g(1̄, N)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)

]

= a
[

1 − (1 − g)(1̄, N)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

]
.

Here we have
1 − g =

1
1 + (λ, N − n)

∈ (0, 1]

and
(1̄, N)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
∈ (0, 1].

As a result, Q = QS + QF ≤ a. This completes the proof. �
It is also important to point out that values (qS, qF) are positive and finite

because the parameters a, b and ci, i = 1, . . . , K, are positive.
As before we assume that the stability of the coalition S is associated with a

principle of a self-enforcement under the formal players’ payoffs.

Definition 3.3.1 A coalition S, characterized by vector n of signatories of K ≤ N types,
is self-enforcing in the game Γ0(S), if for each type i, i = 1, . . . , K,

πi(qS, qF) ≥ πi(qS\{i}, qF∪{i}), i ∈ S, (26)
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where (qS, qF) is the Stackelberg equilibrium in the game Γ0(S) and (qS\{i}, qF∪{i}) is
the Stackelberg equilibrium in the game Γ0(S \ {i}),

πi(qS∪{i}, qF\{i}) ≤ πi(qS, qF), i ∈ F, (27)

where (qS, qF) is the Stackelberg equilibrium in the game Γ0(S) and (qS∪{i}, qF\{i}) is
the Stackelberg equilibrium in the game Γ0(S ∪ {i}).

The inequality (26) guarantees internal stability of the coalition, i.e., no member
has reason to leave the IEA. The external stability condition (27) guarantees that
no non-member prefers to join the coalition. In general, stability conditions en-
sure that no player benefits from unilateral deviation. In order to identify the
structure of the self-enforcing coalition S, we substitute the abatement strategies
(qS, qF), presented in (19) and (20), into the conditions of internal/external sta-
bility, (26) and (27).

Since the benefit and cost functions (see Section 3.1) are nonlinear, and we
deal with heterogeneous players, the system (26), (27) does not have an analy-
tical solution. Numerical simulations can be found in [McGinty 2006] and
[Dementieva & Pavlova 2007b]. It is shown that a solution of the system exists
for a sufficiently large set of model parameters, and that the solution is often not
unique, which means that one of a few coalitions can form.

To illustrate the concept of self-enforcing equilibrium we consider the fol-
lowing examples.

Example 3.3.1

Let us first consider parameters of the model as they were given in Example 3.2.1
(Table 2), where only two types of players are distinguished.

If players are split into two groups, it may be interpreted, for instance, as
belonging to Annex B countries and non-Annex countries of the Kyoto Protocol.
Under the given set of parameters, we have obtained two self-enforcing coali-
tional structures of IEA, i.e. n = {(0, 3), (1, 2)} (see Table 3). Table 3 demonstrates
that each self-enforcing coalition structure brings different individual benefits
to coalition members and different environmental benefit (Q1∗,2∗ = 61.673 and
Q0∗,3∗ = 61.290). Thus coalition structure n = (1, 2) is more preferable.

Example 3.3.2

This example demonstrates, how slight variation of model parameters may ef-
fect coalition formation. Let us consider a case similar to Example 3.3.1. Here
we have strengthened the difference between players’ marginal abatement costs.
Emission reduction of the first type is characterized by moderate cost and abate-
ments of the the second one are rather expensive. Other model parameters were
left unchanged.
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TABLE 4 Example 3.3.2 Model Parameters

b = 1
a = 100

Type 1 Type 2
c1 = 0.3 c2 = 1
N1 = 5 N2 = 10

We repeat the algorithm given in the previous example and obtain the fol-
lowing results. As Table 5 shows even slight variations of type characteristics
reduces the number of stable coalitions. It appears that when the difference be-
tween nation types is increasing, countries with lower abatement cost are not
motivated to join coalitions formed by countries with higher abatement costs,
simply because it is less beneficial than free-riding.

TABLE 5 Example 3.3.2 Self-Enforcing Coalitions

1
Structure n1 = 0 n2 = 3

Coalition members’ –
net benefit π2 = 287.324

Emission reduction Q = 64.42

Example 3.3.3

Let us turn to a more general case and consider three types of players. As it men-
tioned before, it means that we distinguish between three groups: industrialized
countries (like USA, European Union, Japan); rapidly developing counties (like
Russia, China); and agricultural countries with low abatement cost.

TABLE 6 Example 3.3.3 Model Parameters

b = 1
a = 100

Type 1 Type 2 Type 3
c1 = 0.5 c2 = 0.8 c3 = 2
N1 = 5 N2 = 10 N3 = 3

This case is similar to Example 3.3.1. The simulation of stable coalition struc-
ture delivers:

Together with the previous example, results of these settings illustrate that
nations with low abatement costs are not interested in joining agreements with
other nations whose abatement costs are higher. Since the deal would not benefit
them, they prefer to stay outside of the formed coalition. This and other under-
taken numerical tests, [Barrett 1997a], [McGinty 2006], show that full cooperation
is rather unlikely, coalition size is low and coalition structure lacks for diversity.
Consequently, emission reduction is insufficient.
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TABLE 7 Example 3.3.3 Self-Enforcing Coalitions

1
Structure n1 = 0 n2 = 0 n3 = 3

Coalition members’ –
net benefit π3 = 225.490

Emission reduction Q = 57.647

3.4 Environmental Efficiency

Definition 3.4.1 An IEA, characterized by a coalition S, is environmentally efficient if
for each i ∈ S

Q ≥ Q−i. (28)

Here Q is the total abatement undertaken by the players from the coalition S and
free-riders from set F, as determined by (23) and (25) in the game Γ0(S). We
denote by Q−i the total abatement undertaken by the players from the coalition
S \ {i} and free-riders F ∪ {i}, as determined in the game Γ0(S \ {i}). The in-
equality (28) means that if any signatory of type i withdraws from S, it reduces
the total abatement.

In the current section we assume that the players are symmetric. This as-
sumption does not cause a major loss of generality and is an important step to-
wards the more complex heterogeneous case. In this case, we deal with N homo-
geneous players with identical net benefit functions

π(qS, qF) = b(aQ − 1
2

Q2) − 1
2

cq2,

and λ = b/c, as in Section 3.1.
For convenience, we set

η1, η2 =
(λ + N)(λ + 2N + 2λN) ∓ √

λ2(λ + N)2 + 4N3(λ + N)(λ + 1)2

2λ(λ + N)
. (29)

Lemma 3.4.1 The numbers η1 and η2 satisfy the following inequalities

1 ≤ η1 ≤ N,

and
η2 > N.

P r o o f. Let us first prove that η1 < N. This is equivalent to the inequality

λ2 + 2N2 + 3λN − √
λ2(λ + N)2 + 4N3(λ + N)(λ + 1)2

2λ(λ + N)
< 0.
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Since the denominator 2λ(λ + N) is positive, it suffices to show that

λ2 + 2N2 + 3λN <
√

λ2(λ + N)2 + 4N3(λ + N)(λ + 1)2.

As both sides of the inequality are positive, it is equivalent to show that

(λ2 + 2N2 + 3λN)2 < λ2(λ + N)2 + 4N3(λ + N)(λ + 1)2.

From this, we obtain

−8λN3(N − 1) − 4λ3N(N2 − 1) − 8λ2N2(N − 1) − 4λ2N2(N2 − 1) < 0.

It is clear that the above inequality holds, and it follows that η1 < N.
The other assertions follow similarly. �
We denote by �x� the smallest integer larger than x ∈ R.

Theorem 3.4.1 A coalition S, composed of n homogeneous players, is environmentally
efficient if n ≥ �η1�.

P r o o f. In order to proof the statement, we introduce the following auxiliary
function

f = Q − Q−i, i ∈ S.

Due to the symmetry of the players and formulas (19) and (20), it is easy to see
that f is a function of n = |S|.

Equation f (n) = 0 has two solutions η1 and η2 (29). Lemma 3.4.1 provides
us with properties of these solutions.

The agreement is feasible if n ∈ [0, N]. Since n ≤ 1 corresponds to a trivial
agreement structure, we assume that n ∈ [2, N]. By Lemma 3.4.1, η1 is in the
feasible interval (1, N). The function f (n) does not change sign on (η1, N], and
so to prove that f (n) is positive on this interval, it is sufficient to observe that

f (N) =
(λN2 + 2N2 − 2N − λ)λa

(λ2 + 3λN + N2 + N3λ − 2λN2)(1 + λN)

=
(λ(N2 − 1) + 2N(N − 1))λa

((λ + N)2 + λN(N − 1)2)(1 + λN)
> 0.

Fig. 5 shows how the function f (n) depends on λ when N = 10 and a = 100.
It is easy to see that as λ grows, η1 increases as well.

The coalition S is environmentally efficient if and only if f (n) > 0. Thus,
the above argument shows that S is environmentally efficient when n ≥ �η1�.
�

Theorem 3.4.1 means that an agreement needs to be formed by at least �η1�
participants to be environmentally efficient. This statement matches real-world
examples where the ecological consistency of an agreement requires the partici-
pation of a certain number of actors (nations, countries, regions, etc.).
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FIGURE 5 Function f (n) under different settings. N = 10, a = 100.

Let us denote solution of the differential equation1

d f (x)
dx

= 0, x ≥ 0,

as η∗ (see Fig. 6).
If η∗ belongs to the feasibility interval (η∗ ∈ [2, N]), then we say that on the

closed interval [2, N] function f (x) reaches its maximus at x = η∗. Otherwise if
η∗ /∈ [2, N], we say that function f (x) gets its maximum value at x = N, and
value η∗ is reassigned as η∗ = N.

We denote the closest integer to η∗ by [η∗]. When the number of players n
in the coalition is equal to [η∗], the difference between Q and Q−i is the largest.

Lemma 3.4.2 A coalition S composed of n = [η∗] homogeneous players is the most
sensitive to withdrawal of its signatory in terms of environmental efficiency.

Thus, the grand coalition of all N homogeneous players results in the largest total
emission reduction.

1 To provide consistency of the analysis, integer variable n is substituted by real variable x.
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FIGURE 6 Maximum of Function f (n). N = 10, a = 100, λ = 0.5.

Example 3.4.1

Let us reconstruct an example, given in [Barrett 1994a], which describes process
of coalition formation among homogeneous players and results in a single self-
enforcing IEA. According to [Barrett 1994a] parameters of the game Γ0(S) are as
follows: N = 10, a = 100, b = 1 and c = 0.25. The process of identifying a
self-enforcing coalition delivers a single stable IEA composed of 4 signatories.

This agreement, if formed, would provide total abatement Q = 81.069 (of
a = 100), payoff of signatories and free-riders are πS = 472.16 and π f = 474.913,
respectively.

Let us calculate η1,2, determined in (29),

η1 = 2.424, η2 = 23.576.

According to Theorem 3.4.1 we can guarantee that the agreement is environmen-
tally efficient when it is composed of �η1� = 3 and more players. From Table 8
one may see that for n = 0, 1, 2 Q(n) − Q(n − 1) < 0 and when n = 3, . . . , N
Q(n) − Q(n − 1) > 0. Consequently, a coalition which consists of 4, satisfies this
condition.

Lemma 3.4.2 says that a coalition is most sensitive, in terms of environ-
mental efficiency, to withdrawal of signatory if it is composed of 6 players (here
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TABLE 8 Example 3.4.1 Coaliton Stability Analysis.

n qS
i qF

i πS πF Q Π
0 0 8 0 472 80 4720
1 1.855 8.534 476.809 468.135 78.664 4690.022
2 4.158 8.732 474.012 466.643 78.170 4681.169
3 6.652 8.426 472.284 468.941 78.936 4699.436
4∗ 8.909 7.572 472.160 474.913 81.069 4738.121
5 10.526 6.316 473.684 482.548 84.211 4781.163

6∗∗ 11.342 4.915 476.371 489.431 87.713 4815.949
7 11.457 3.6 479.542 494.328 90.998 4839.776
8 11.096 2.497 482.663 497.273 93.759 4855.85
9 10.477 1.63 485.448 498.838 95.925 4867.872

10∗∗∗ 9.756 0 487.805 0 97.56 4878.049

η∗ = 5.668). It means that if the agreement of 5 (of 10) nations will be accessed
by the 6th one, it will significantly improve abatement effort, from Q = 84.211
up to Q = 87.713. The biggest abatement achievable by the grand coalition is
Q = 97.56.

Both theoretical results and numerical tests, presented in this chapter, show
that full cooperation is rather unlikely and coalition structure lacks for diversity.
Consequently, emission reduction is insufficient.

Under present circumstances we need to propose a mechanism, simple and
comprehensive enough, which would allow one to reshape the agreement struc-
ture. One of the options is to introduce a rule, according to which coalition sur-
plus is redistributed among possible coalition members. Such reallocation in-
creases net benefits of potential signatories, who so far preferred to be outsiders,
so that it would be more beneficial to access the agreement than to free-ride. On
the other hand, according to this rule, welfare of current signatories will drop
down but still will be high enough to keep coalition membership profitable. This
rule can be represented, for instance, as side payments.
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Since negotiators can anticipate how their disposition (to signatories and free-
riders) is restructured by the agreement, they can design the agreement in such a
way that it will contain an incentive mechanism system at the outcome. In Section
2.1 we have already described that incentive mechanisms incorporate methods
of "stick and carrot", which mean transfers (financial transfers, emission trading)
and punishments (trade restrictions etc.). In the present chapter we address the
concept of potential self-enforcement (it requires weaker condition of internal sta-
bility), and suggest a transfer scheme interpreting it as emission trading.

4.1 Coalition Formation under Side Payments

Side payments aim to reallocate surplus, obtained by coalition S. Signatories of
the IEA can share their individual surplus with other coalition members fully or
partially (so that to keep at least a certain part of their individual surplus). We
consider the first option. The total coalition surplus is

ΔS =
K

∑
i=1

ΔS
i ni, (30)

where
ΔS

i = πi(qS, qF) − πi(qS\{i}, qF∪{i}), i ∈ S, (31)

where πi(qS, qF) is net benefit of signatory of type i, given structure
(n1, . . . , nK) of coalition S; πi(qS\{i}, qF∪{i}) is net benefit of a player of type i
if it decides to free-ride from the agreement, so that coalition structure becomes
(n1, . . . , ni − 1, . . . , nK).

If condition of internal stability (26) holds for ni coalition members of type
i, the correspondent term ΔS

i is non-negative, otherwise it would be negative.
Surplus share can be considered in two cases.

1. The first case is when surplus share is introduced to reallocate profit among
signatories of a self-enforcing coalition.
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2. Surplus share can be introduced to attract more players to sign IEA; it is rea-
sonable when size of self-enforcing coalition is rather small (and coalition
abatement efforts are not sufficient). In this context, total surplus ΔS con-
sists of positive surplus provided by members of a self-enforcing IEA and
non-positive one provided by outsiders. The coalition will grow in size,
inviting new members of different types, until total surplus ΔS becomes
non-positive.

New individual payoff of signatory of the coalition S is

σS
i = πi(qS\{i}, qF∪{i}) + δS

i , (32)

where δS
i ≥ 0 is such a surplus share of a signatory of type i that

K

∑
i=1

niδ
S
i = ΔS. (33)

Formula (32) means that each player, which has joined IEA, receives as much
as it could get deviating from IEA, plus individual share of common surplus.
Condition (33) says that the whole surplus is fully allocated.

Proposition 4.1.1 Functions σS
i accurately reallocate the coalition gain.

P r o o f. The proof of this statement is quite straightforward. We need to show
that the sum of benefits received by coalition members under introduced side
payments

K

∑
i=1

σS
i · ni

is equal to the total coalition gain received by signatories before introduction of
side payments

K

∑
i=1

πi(qS, qF) · ni.

To prove it, it is useful to represent the total gain as follows

K

∑
i=1

σS
i · ni =

K

∑
i=1

ni · πi(qS\{i}, qF∪{i}) +
K

∑
i=1

ni · δS
i

=
K

∑
i=1

ni · πi(qS\{i}, qF∪{i}) + ΔS.

Using formulae (30) and (31), it follows that

K

∑
i=1

σS
i · ni =

K

∑
i=1

πi(qS, qF) · ni.

�
Hence condition of self-enforcing coalition can be rewritten as follows.
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Definition 4.1.1 A coalition S is called potentially internally stable if ΔS ≥ 0.

Definition 4.1.2 A coalition S is called potentially self-enforcing if

ΔS ≥ 0,

ΔS∪{i} ≤ 0 for all i = 1, . . . , K.

Now we can go over to examples and consider game outcome when the given
mechanism of side payments is allowed. Further we suppose that surplus ΔS is
distributed among coalition members according to the following allocation rule
with weight coefficients

δS
i =

λi

(n, λ)
ΔS, (34)

guaranteeing that individual share is characterized by individual marginal abate-
ment. This allocation rule implies that nations with lower abatement costs receive
greater surplus share than nations with higher abatement costs, and thus they can
use surplus for investing in technological growth.

Example 4.1.1

We examine the model, where only two types of players are distinguished (see
Examples 3.2.1 and 3.3.1).

TABLE 9 Example 4.1.1 Model Parameters

b = 1
a = 100

Type 1 Type 2
c1 = 0.5 c2 = 0.8
N1 = 5 N2 = 10

Side payments will reshape coalition structure of self-enforcing agreement
as it is illustrated in Table 10. It is easy to notice, that in comparison to results
in Examples 3.2.1 and 3.3.1, self-enforcing coalitions doubled their number and
structures became more diverse. It is also important to mark that payoffs of the
second coalition have changed. Nation of type 1 receives π1 = 274.156 (more than
π1 = 272.226 in case without side-payments). On the other hand, nations of type
2 lose by receiving π2 = 275.814, which is less than π2 = 276.779 in case when
no side payments allowed. Despite that, two nations of type 2 are still willing to
access agreement since it is more beneficial than leaving. The total surpluses that
have been shared are

Δ(n1 = 1, n2 = 2) = 6.33,

Δ(n1 = 2, n2 = 1) = 5.478.
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TABLE 10 Example 4.1.1 Self-Enforcing Coalitions

1 2
Structure n1 = 0 n2 = 3 n1 = 1 n2 = 2

Coalition members’ – π1 = 274.156
payoff π2 = 275.986 π2 = 275.814

Emission reduction Q = 61.290 Q = 61.673

3 4
Structure n1 = 2 n2 = 1 n1 = 3 n2 = 0

Coalition members’ π1 = 273.979 π1 = 273.916
payoff π2 = 275.753 –

Emission reduction Q = 62.098 Q = 62.567

Coalition n1 = 3 and n2 = 0 has become self-enforcing only after introduc-
tion of side payments. Before this, at least one nation of type 2 had incentive to
join agreement of three countries of type 1, since it would increase its welfare. Let
us assume that a player of type 2 attempts to access the coalition. This makes the
agreement unstable because the joining of this player reduces individual payoffs
of three former members of coalition.

Now when side payments have been started, player of type 2 has to share
his surplus with three other members who suffer from his accession. It occurs that
surplus is not big enough to cover losses of three nations of type 1 and that total
coalition surplus is negative. From this moment player of type 2 places himself
in an unprofitable situation (he loses from accessing the agreement) and has no
incentive to make a claim for partnership.

Example 4.1.2

The second example demonstrates a situation with diverse players’ parameters,
when only single self-enforcing coalition is possible it may effect coalition forma-
tion. Let us consider a case similar to the first one.

TABLE 11 Example 4.1.2 Model Parameters

b = 1
a = 100

Type 1 Type 2
c1 = 0.3 c2 = 1
N1 = 5 N2 = 10

Side payments will reshape coalition structure of self-enforcing agreement
as follows in Table 12.
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TABLE 12 Example 4.1.2 Self-Enforcing Coalitions

1 2
Structure n1 = 0 n2 = 3 n1 = 1 n2 = 2

Coalition members’ – π1 = 274.156
payoff π2 = 275.986 π2 = 275.814

Emission reduction Q = 61.290 Q = 61.673

3 4
Structure n1 = 2 n2 = 1 n1 = 3 n2 = 0

Coalition members’ π1 = 273.979 π1 = 273.916
payoff π2 = 275.753 –

Emission reduction Q = 62.098 Q = 62.567

Example 4.1.3

Let us turn to the case when three types of players are involved and reconsider an
already familiar example. Correspondent stable coalition structure can be found

TABLE 13 Example 4.1.3 Model Parameters

b = 1
a = 100

Type 1 Type 2 Type 3
c1 = 0.5 c2 = 0.8 c3 = 2
N1 = 5 N2 = 10 N3 = 3

in Table 14.
The presented examples demonstrate how introduction of side payments

increases size of the coalition and structure diversity, even allowing abatement
to grow to a certain degree. Side payments solve the problem of agreement inef-
ficiency. At the same time another question arises. How to convince nations to
share their welfare with others in order to increase agreement membership and
accordingly reduce the level of global pollution? What is the suitable way of as-
signing commitments to potential signatories, so that side payments are naturally
included into agreement patterns?

4.2 Emission Trading

In this section we propose one of the ways how emission trading can be designed.
The bottleneck of this approach is to suggest sufficient a mechanism of setting the
price and amount of tradable pollution permits (TPPs), as well as initial allocation
of signatories’ abatement commitments.
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TABLE 14 Example 4.1.3 Self-Enforcing Coalitions

1 2 3 4 5
Structure n1 = 0 n1 = 1 n1 = 0 n1 = 2 n1 = 1

n2 = 0 n2 = 0 n2 = 1 n2 = 0 n2 = 1
n3 = 3 n3 = 2 n3 = 2 n3 = 1 n3 = 1

Coalition – π1 = 222.479 – π1 = 222.193 π1 = 222, 318
members’ – – π2 = 224.012 – π2 = 223.716

payoff π3 = 225.49 π3 = 225.213 π3 = 225.322 π3 = 225.237 π3 = 225.192
Em. Red. Q = 57.647 Q = 58.289 Q = 57.95 Q = 59.072 Q = 58.663

6 7 8 9 10
Structure n1 = 0 n1 = 3 n1 = 2 n1 = 1 n1 = 0

n2 = 2 n2 = 0 n2 = 1 n2 = 2 n2 = 3
n3 = 1 n3 = 0 n3 = 0 n3 = 0 n3 = 0

Coalition – π1 = 222.222 π1 = 222.181 π1 = 222.226 –
members’ π2 = 223.84 – π2 = 223.739 π2 = 223.698 π2 = 223.742

payoff π3 = 225.226 – – – –
Em. Red. Q = 58.289 Q = 60 Q = 59.518 Q = 59.072 Q = 58.663

Price per TPP can be determined in two ways, it depends on market scope
and if a finite or infinite number of players is presented. In case there is an infinite
number, the market price can be supposed to be a fixed value p∞, proposed by
a certain consulting assembly, for example. When the emission trading market
can be accessed by a finite number n = ∑K

i=1 ni of players, which belong to the
formed agreement, the market price p per TPP unit is determined according to
the economics optimality principle.

Optimal market price p lies on the intersection of marginal benefit of
coalition and collective marginal abatement cost curves, e.g. [Hanley et al. 1997],
[Copeland & Taylor 2003]. Thus to find price per TPP unit, it is necessary to solve
the equation

MB(Q)
K

∑
i=1

ni︸ ︷︷ ︸
marginal benefit of coalition

=
K

∑
i=1

ni MCi(qS
i ).︸ ︷︷ ︸

marginal abatement costs of coalition

(35)

Values qi = qS
i are optimal individual abatements of signatories and Q = QS + QF

is abatement undertaken by all players, both signatories and free-riders. Accord-
ing to [Hanley et al. 1997], price can be determined as

p = MC1(qS
1) = MC2(qS

2) = . . . = MCK(qS
K). (36)
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System of equations (35) delivers a solution which is equivalent to the solution of
problem (24) from Section 3.3.3. Using results of Section 3.3.3, one can say that
optimal abatement levels for individual signatories are

qS
i =

aλi(1 − g)2(1̄, n)
(1̄, N) + (1 − g)2(1̄, n)(λ, n)

, i = 1, . . . , K,

and the total abatement of signatories is

QS =
a(1 − g)2(1̄, n)(λ, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
,

where

g =
(λ, N − n)

(1̄ + λ, N) − (λ, n)
.

Free-riders adjust their abatement levels after having observed the choice of sig-
natories, each free-rider maximizes its payoff non-cooperatively. Thus abatement
reaction function of free-riders is

QF = g(a − QS).

According to (36) market price of pollution permit unit is

p = ciqS
i ,

substituting expression of individual abatement qS
i of a signatory delivers value

p =
ab(1 − g)2(1̄, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
.

The IEA coalition is composed of ∑K
i=1 ni players. It means that total coali-

tion abatement QS should be allocated among signatories

K

∑
i=1

qSo
i ni = QS. (37)

Players will reduce their emissions up to the level where marginal costs of re-
duction are equal to the market price of permits (market is made up of coalition
members). Players’ emissions must be covered by equivalent amount of permits.
Individual demand for pollution permits is ri = qSo

i − qS
i . If the player does not

initially receive enough permits to cover its emissions, it must buy more permits
from the market. If the player gets more permits than it needs to cover its emis-
sions, it can sell the excess permits.

Individual cost of environmental protection is composed of net costs of re-
ducing emissions and selling or buying emission permits. Costs of emission re-
ductions are given by the area between the marginal abatement curve and the
x-axis for the section between unregulated emission level (where MCi = 0) and
abatement level at which MCi is equal to the market price for permits, p. The
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cost/benefit of buying/selling permits is simply the permit price multiplied by
the quantity of permits bought/sold. Individual payoff of a signatory is

πi(qS, qF) − pri,

where (qS, qF) is a vector of optimal individual abatements qS
i and qF

i of signato-
ries and free-riders respectively, p is a market price per TPP unit, and ri is quantity
of TPPs of signatory of type i.

The question of fair allocation of TPP is still opened and for this purpose
we apply a side payments approach. According to (30), (34), the total surplus of
coalition is

ΔS =
K

∑
i=1

ΔS
i ni,

where individual surplus ΔS
i is from (31), and individual share of total surplus is

δS
i =

λi

∑K
l=1 nlλl

ΔS.

Then fair allocation of pollution commitments according to agreement can be
found from the equation

pri = ΔS
i − δS

i ,

where, as mentioned before, ri = qSo
i − qS

i . Hence

• market TPP price is

p =
ab(1 − g)2(1̄, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
,

• signatory’s commitment for pollution reduction, prescribed by IEA, is

qSo
i = qS

i +
1
p

(
ΔS

i − δS
i

)
.

It is easy to check that condition (37) holds for such distribution. It is nec-
essary to point out that in some particular cases values qSo

i can be non-
positive, which implies that according to IEA some nations are allowed to
increase their pollution to a certain level to improve global pollution situa-
tion. TPP amount for coalition members should be

ri =
1
p

(
ΔS

i − δS
i

)
,

• individual payoff of signatory is

σS
i = πi(qS\i, qF∪{i}) + δS

i ,

which is similar to (32).
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Example 4.2.1

Let us turn to the case when three types of players are involved and reconsider
the already familiar Example 4.1.3.

As was mentioned before, it means that we distinguish a group of industri-
alized countries (like USA, European Union, Japan, without pollution permits); a
group of rapidly developing counties (like Russia, China), whose pollution per-
mits stock is big enough but emission trading might be inefficient because pol-
lution permits would be necessary for internal use to compensate extra emission
discharge caused by industrial growth; and a group of agricultural countries with
low abatement cost and large pollution permits stock.

TABLE 15 Example 4.2.1 Model Parameters

b = 1
a = 100

Type 1 Type 2 Type 3
c1 = 0.5 c2 = 0.8 c3 = 2
N1 = 5 N2 = 10 N3 = 3

The simulation of stable coalition structure reveals diverse coalition struc-
ture (see Table 16). Now we shall accompany already given data of coalition
structures, individual payoffs under side payments and global abatement, with
agreement details, like amount of TPP units and market price per unit.

Real world situation related to emission trading among industrialized,
rapidly developing, and agricultural countries reveals that emission trading
might be inefficient for developing countries because pollution permits
would be necessary for their internal use to compensate extra emis-
sion discharge caused by industrial growth. Investigations of this chapter
have been carried out for static case only, thus to provide more de-
tailed and specific analysis of possible scenarios, it is desirable that further
research ought to concern dynamics of the process (see [de Zeeuw 2008],
[Rubio & Ulph 2007], [Breton et al. 2008b], [Rubio & Ulph 2002]) possibly accom-
panied with introduced technological change, e.g. [Golombek & Hoel 2005],
[Copeland & Taylor 2003], [Grübler & Gritsevskyi 2002].
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TABLE 16 Example 4.2.1 Self-Enforcing Coalitions

1 2 3 4 5
Structure n1 = 0 n1 = 1 n1 = 0 n1 = 2 n1 = 1

n2 = 0 n2 = 0 n2 = 1 n2 = 0 n2 = 1
n3 = 3 n3 = 2 n3 = 2 n3 = 1 n3 = 1

Coalition – π1 = 222.479 – π1 = 222.193 π1 = 222, 318
members’ – – π2 = 224.012 – π2 = 223.716

payoff π3 = 225.49 π3 = 225.213 π3 = 225.322 π3 = 225.237 π3 = 225.192
Em. Red. Q = 57.647 Q = 58.289 Q = 57.95 Q = 59.072 Q = 58.663

Abatement – qSo
1 = 5.381 – qSo

1 = 6.04 qSo
1 = 5.708

by IEA – – qSo
2 = 3.449 – qSo

2 = 4.06
qSo

3 = 1, 569 qSo
3 = 2.122 qSo

3 = 1.846 qSo
3 = 2.654 qSo

3 = 2.39
TPP – q1 = −1.036 – q1 = −0.509 q1 = −0.777

– – q2 = −0.518 – q2 = 0.008
– q3 = 0.518 q3 = 0.259 q3 = 1.017 q3 = 0.769

Price – p = 3.242 p = 3.173 p = 3.274 p = 3.242

6 7 8 9 10
Structure n1 = 0 n1 = 3 n1 = 2 n1 = 1 n1 = 0

n2 = 2 n2 = 0 n2 = 1 n2 = 2 n2 = 3
n3 = 1 n3 = 0 n3 = 0 n3 = 0 n3 = 0

Coalition – π1 = 222.222 π1 = 222.181 π1 = 222.226 –
members’ π2 = 223.84 – π2 = 223.739 π2 = 223.698 π2 = 223.742

payoff π3 = 225.226 – – – –
Em. Red. Q = 58.289 Q = 60 Q = 59.518 Q = 59.072 Q = 58.663

Abatement – qSo
1 = 6.667 qSo

1 = 6.353 qSo
1 = 6.03 –

by IEA qSo
2 = 3.754 – qSo

2 = 4.643 qSo
2 = 4.352 qSo

2 = 4.053
qSo

3 = 2.118 – – – –
TPP – – q1 = −0.256 q1 = −0.519 –

q2 = −0.257 – q2 = 0.512 q2 = 0.26 –
q3 = 0.514 – – – –

Price p = 3.209 – p = 3.305 p = 3.274 –
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5 DYNAMIC GAME AND TIME-CONSISTENCY

IEAs open up possibilities to analyze prospects and features of long-term collab-
oration among countries. In light of dynamic framework, such familiar issues of
IEA formation as

• promotion of agreement membership, [Hoel & Schneider 1997],
[Barrett 1994b],

• influence of participants heterogeneity on abatement target settings,
[Finus 2001], [Barrett 1997a], [McGinty 2006], [Eyckmans & Tulkens 2003],

• introduction of incentive mechanisms, [Hoel 1992], [Bauer 1992],
[Carraro & Siniscalco 1993], [Barrett 1997a], [Botteon & Carraro 1997],
[Barrett 1997b], [Le Breton & Soubeyran 1997], [Katsoulacos 1997],
[Carraro & Siniscalco 1998], [Jeppensen & Andersen 1998], [Finus 2004],
[Botteon & Carraro 1998], [Finus & Rundshagen 2000], [Bosello et al. 2003],
[Carraro et al. 2003], [Kolstad 2003], [Altamirano-Cabrera & Finus 2006],
[Eyckmans & Finus 2004], [Carraro & Marchiory 2004], [Weikard 2005],
[Weikard et al. 2006], [Carraro et al. 2006],

receive new ways of interpretation and require additional solution methods. On
top of that, such novel topics as dynamics of the accumulated pollution stock,
optimal abatement dynamics, and IEA evolution emerge.

An understanding of the fact that multilateral agreements are targeted to
stepwise emission reduction over a finite number of time periods motivates us
to generalize the static model, presented in Section 3.1, to dynamic framework.
We constitute a non-cooperative multistage game with a finite time horizon and
pollution flow (given as a difference between pollution levels at the previous and
current steps). To determine how to proceed with the abatement compliance and
how the abatement compliance process affects players’ incentives to change their
signatory/free-rider status during the agreement life-cycle, we use the concept of
time-consistency.

Independently from [de Zeeuw 2008], we address the problem of compli-
ance with the emission reduction required by the agreement and for that pur-
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pose we construct time-consistent reallocation of emission reduction and compare the
outcomes of the signatories and free-riders regarding such abatement dynamics.
The time-consistent emission reduction scheme stipulates that the choice of abate-
ment efforts during each time period is adjusted according to the emission reduc-
tions taken during the previous stages as well as dynamics of the
pollution. Material of Part II is based on publications [Pavlova et al. 2008],
[Dementieva et al. 2007], [Dementieva et al. 2008], [Pavlova 2008].

Dynamic Model of IEA

We suppose that a certain coalition S has been formed and its members have
committed to reduce prespecified amount of emission during [0, m] (m > 1)
time periods. Let us assume that the chosen abatement commitments (qS, qF)
are allocated over [0, m] according to a certain scheme so that at each step t =
0, . . . , m − 1, each player of type i, i = 1, . . . , K, reduces emissions by the amount(
ΔqS

i [t, t + 1), ΔqF
i [t, t + 1)

)
over the time period [t, t + 1). Then

ΔQS[t, t + 1) = ∑K
i=1 niΔqS

i [t, t + 1),
ΔQF[t, t + 1) = ∑K

i=1(Ni − ni)ΔqF
i [t, t + 1)

are the aggregate abatement undertaken by the coalition S and the free-riders
N \ S over the time period [t, t + 1).

Let us suppose that during t = 0, . . . , m the parameters b and ci, which
describe slopes of the marginal abatement benefit and cost functions (see (2) and
(3)), are fixed. Pollution flow is specified by the parameter a(t) (a(0) = a) and
associated with undertaken abatements during each time period [t − 1, t)

a(t + 1) = (1 − θ)a(t) − ΔQ[t, t + 1), (38)

where ΔQ[t, t + 1) = ΔQS[t, t + 1) + ΔQF[t, t + 1) and θ is the pollutant’s natural
rate of degradation (θ ∈ [0, 1)). Let us define the aggregate emission reduction
undertaken by player of type i during the first t steps by

qS
i [0, t) =

t−1

∑
l=0

ΔqS
i [l, l + 1), t = 1, . . . , m;

qF
i [0, t) =

t−1

∑
l=0

ΔqF
i [l, l + 1); t = 1, . . . , m;

the aggregate emission reduction, which player of type i is going to make during
the rest m − t steps (see Fig. 5) by

qS
i [t, m] =

m−1

∑
l=t

ΔqS
i [l, l + 1),
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FIGURE 7 The abatement targets
(
qS

i [t, m], qF
i [t, m]

)
, t = 0, . . . , m − 1.

qF
i [t, m] =

m−1

∑
l=t

ΔqF
i [l, l + 1);

the aggregate emission reduction, which is to be performed by coalition S during
the rest m − t steps by

QS[t, m] =
K

∑
i=1

niqS
i [t, m];

the aggregate emission reduction, which is to be performed by free-riders during
m − t steps by

QF[t, m] =
K

∑
i=1

(Ni − ni)qF
i [t, m];

and
Q[t, m] = QS[t, m] + QF[t, m].

Consider a current game Γt
(
S, qS[0, t), qF[0, t)

)
, where pollution flow1 is

indicated by a(t) (38),

a(t) = (1 − θ)a − (ΔQS[t − 1, t) + ΔQF[t − 1, t)) ,

and the players’ payoff over the remaining time period is assigned according to
(1)

πi(qS[t, m], qF[t, m])= ρt
[

b
N

(
a(t)(Q[t, m] − 1

2
(Q2[t, m]

)
− 1

2
ci(qi[1, m])2

]
.

(39)
Here θ is the pollutant’s natural rate of degradation (θ ∈ [0, 1)) and ρ is discount
factor (ρ ∈ (0, 1]).

We assume that the chosen abatement commitments, determined by the
Stackelberg equilibrium (qS, qF) in the game Γ0(S) (see Lemma 3.3.1). A step-
wise realization of a solution of the game Γ0(S) during the given time period
[0, m] can cause loss of optimality of the solution in the current game. In such a
case the solution is said to be time-inconsistent, [Dementieva et al. 2007]. Absence
1 We point out that the static game Γ0(S) = Γ0(S, 0, 0) when t = 0.
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of time-consistency involves the possibility that the previous “optimal" decision
is abandoned at some current moment of time, thereby making the problem for
seeking an optimal control meaningless, [Strotz 1955].

Introduced in [Petrosjan 1977], the term of time-consistency of an optimality
principle, is of high importance while analyzing dynamic games. It means that
any segment of the optimal trajectory determines optimal motion with respect to
the relevant initial states of the process. This property holds for the overwhelm-
ing majority of classical optimal control problems and follows from the Bell-
man optimality principle, [Bellman 2003]. Approaches to design a mechanism
for allocation over time of players’ payoffs, which guarantees
time-consistency of solutions in cooperative and noncooperative games, were
discussed in [Petrosjan & Zaccour 2003], [Zakharov 1988], [Dementieva 2004],
[Petrosjan & Danilov 1979], [Petrosjan & Zaccour 2000]. Basing on such
approaches, let us introduce a definition of a time-consistent scheme of stepwise
emission reduction in the game Γ0(S).

Definition 5.0.1 A scheme of stepwise emission reduction {ΔqS
i [t, t + 1),

ΔqF
i [t, t + 1)}m−1

t=0 of players of type i = 1, . . . , K is called time-consistent, if the cor-
respondent abatements

(
qS[t, m], qF[t, m]

)
, t = 0, . . . , m − 1, constitute Stackelberg

equilibrium in the reduced game Γt
(
S, qS[0, t), qF[0, t)

)
.

Since stepwise emission reduction affects the pollution flow a(t), it can likely mo-
tivate players to reconsider their signatory/free-rider status at a certain moment
t and put stability of the agreement S in jeopardy. Withdrawal of some nations
from the agreement and accessing of others would cause structural change of
the coalition and sequential switch to another abatement goal. We say that a
self-enforcing coalition is time-consistent if none of the signatories/free-riders has
incentive to change its status and leave/access the coalition at any moment of
time. In other terms it implies that if at the initial moment t = 0 in the game
Γ0(S) players form a coalition S according to the self-enforcing optimality prin-
ciple (see Definition 3.3.1) then at each current moment t the formed coalition
must remain stable, i.e. satisfy the conditions of internal and external stability,
(26) and (27), required by self-enforcement, in the game Γt(S, qS[0, t), qF[0, t)),
t = 0, . . . , m − 1.

Given that the pollution evolves according to the formula (38), we should
modify the conditions of internal/external stability and explore players’ moti-
vation to reconsider their signatory/free-rider status. We assume that having
accomplished its obligations for moment t, a signatory considers withdrawing
from the coalition S if its payoff as a signatory of S over the time period [t, m] is
smaller than its payoff as a free-rider from set the F ∪ {i}; and vice versa, a free-
rider considers accessing the coalition S if its payoff as a free-rider from the set F
over the time period [t, m] is smaller than its payoff as a signatory of the coalition
S ∪ {i}.

Definition 5.0.2 A self-enforcing coalition S, characterized by n = (n1, . . . , nK) of
players of K types, is time-consistent under a given abatement scheme, if for every time t,
t = 0, . . . , m − 1, the following conditions hold simultaneously
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1) internal time-consistency

πi(qS[t, m], qF[t, m]) ≥ πi(qS\{i}[t, m], qF∪{i}[t, m]), ∀i ∈ S, (40)

where (qS[t, m], qF[t, m]) is the restriction to the period [t, m] of an optimal solution of
the game Γ0(S) and (qS\{i}[t, m], qF∪{i}[t, m]) is the restriction to the period [t, m] of
an optimal solution of the game Γ0(S \ {i}),

2) external time-consistency

πi(qS[t, m], qF[t, m]) ≥ πi(qS∪{i}[t, m], qF\{i}[t, m]), ∀i ∈ F, (41)

where (qS∪{i}[t, m], qF\{i}[t, m]) is restriction over the period [t, m] of an optimal solu-
tion of the game Γ0(S ∪ {i}).



6 PROPERTY OF TIME-CONSISTENCY IN
MULTISTAGE DYNAMICS

6.1 Time-Consistent Emission Reduction Scheme

Construct a time-consistent scheme of stepwise emission reduction in the game
Γ0(S). Defining approachs to reallocating abatement commitments over account-
ing periods requires understanding of players intentions. Indeed, what would be
a reasonable perspective to judge of nations’ realistic behavior? Imagine N na-
tions have just made their decisions wether or not to join an IEA and according
to these decisions each of them has an optimal abating target.

In other words, each player has got a certain set of cards, which can be
disposed during the game, and knows that his payoff will depend on the actions
of others, and that every card he plays will effect the following sequence of the
game.

Hence after the players have indicated their equilibrium abatement efforts,
they split their commitments into two parts, the former part specifies abatement
over [0, 1) and the latter one corresponds to the rest of the game. Choosing
strategies

(
ΔqS

i [0, 1), ΔqF
i [0, 1)

)
for the first period, the players anticipate that dur-

ing [1, m] they will have to couple with the remaining part of the abatement
commitments

(
qS

i [1, m], qF
i [1, m]

)
upon the pollution level a(1), which is a(1) =

(1 − θ)a − ΔQS[0, 1) − ΔQF[0, 1).
We are going to construct a stepwise emission reduction scheme, that is

time-consistent within the considered model, so that the choice of abatement ef-
forts during each time period [t, t + 1) is adjusted according to the emission re-
duction, undertaken during the previous stage, and dynamics of the pollutant.
Let us consider the current game Γt

(
S, qS[0, t), qF[0, t)

)
, where players’ payoff is

assigned according to (39) and the parameter a(t), which indicates the current
pollution flow, determined by (38).

In line with Definition 5.0.1, time-consistency of a scheme means that emis-
sion reduction

(
qS[t, m], qF[t, m]

)
constructs Stackelberg equilibrium in the cur-
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rent game Γt
(
S, qS[0, t), qF[0, t)

)
. We introduce the following notations:

μ̃i =
λi(1 − ρ)

(1 + ρ)N + (1 − ρ)(λ, N − n)
,

μ = (μ̃, N − n),

η =
Nρ

(1 + ρ)N + (1 − ρ)(λ, N − n)
.

We remind that here ρ ∈ (0, 1] is the discount factor and θ is the pollutant’s natu-
ral rate of degradation.

Theorem 6.1.1 Consider a coalition S and the corresponding Stackelberg equilibrium(
qS, qF)

of the game Γ0(S). The scheme of stepwise abatement

ΔqS
i [t, t + 1) =

Nρ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
qS

i [t, m]

+
λi(1 − ρ)(1 − μ)(1̄, n)

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
(((1 − θ)(1 − μ)

+ θ(1 − 2μ))a(t) − ηQF[t, m]),

ΔqF
i [t, t + 1) = μ̃i ((1 − θ)a(t) − ΔQS[t, t + 1))

+
λiθ

(1 + ρ)N + (1 − ρ)(λ, N − n)
a + ηqF

i [t, m],

(42)

is time-consistent, t = 0, . . . , m − 1, i = 1, . . . , K.

P r o o f. The proof of the theorem is based on the principle of mathematical
induction. Consider the time t = 1. Having determined abatement commit-
ments

(
qS, qF)

in the game Γ0(S), the players split these commitments into two
parts. The first part

(
ΔqS

i [0, 1), ΔqF
i [0, 1)

)
specifies abatement during [0, 1) and

the remaining part of the commitment qS(F)
i [1, m] is expected to be reduced by the

end of the game. Choosing strategies
(

ΔqS(F)
i [0, 1), ΔqF

i [0, 1)
)

for the first period,
players anticipate that during [1, m] they will have to deal with the remaining
abatement commitments

(
qS

i [1, m], qF
i [1, m]

)
while the pollution stock is given by

a(1) = (1 − θ)a − ΔQS[0, 1) − ΔQF[0, 1).

As before, we consider a two-level game, where the coalition S is the leader
and the free-riders in the set F are the followers. Suppose the players in the coali-
tion S decide about certain feasible strategies ΔqS

i [0, 1), i = 1, . . . , K.
Having such information, free-riders should react rationally (choosing Nash

strategies). In pursuit of the most beneficial situation for them in the reduced
game Γt

(
S, qS[0, t), qF[0, t)

)
during [1, m], they adjust ΔqF

i [0, 1) by solving the
following problem

max
qF

i

φF
i (1), i ∈ F (43)
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where

φF
i (1) = πi(ΔqS[0, 1), ΔqF[0, 1)) + ρπi(qS[1, m], qF[1, m])

=
b
N

(
a(ΔQS[0, 1) + ΔQF[0, 1)) − 1

2
(ΔQS[0, 1) + ΔQF[0, 1))2

)
− 1

2
ci

(
ΔqF

i [0, 1)
)2

+ ρ
b
N

(
a(1)(QS[1, m] + QF[1, m]) − 1

2
(QS[1, m] + QF[1, m])2

)
− ρ

1
2

ci

(
qF

i [1, m]
)2

.

The signatories solve the maximization problem regarding the interests of
the whole coalition S, given

max
qS

i

K

∑
i=1

niφ
S
i (1), (44)

where

∑
i=1

niφ
S
i (1) =

K

∑
i=1

ni

(
πi(ΔqS[0, 1), ΔqF[0, 1)) + πi(qS[1, m], qF[1, m])

)
=

b
N

(1, n)
(

a(ΔQS[0, 1) + ΔQF[0, 1)) − 1
2
(ΔQS[0, 1) + ΔQF[0, 1))2

)

− 1
2

K

∑
i=1

nici

(
ΔqS

i [0, 1)
)2

+ ρ
b
N

(1, n)
(

a(1)(QS[1, m] + QF[1, m]) − 1
2
(QS[1, m] + QF[1, m])2

)

− 1
2

ρ
K

∑
i=1

nici

(
qS

i [1, m]
)2

.

Let us define the followers’ reaction functions for any choice of the leader’s
strategy. To identify ΔqF

i [0, 1) and qF
i [1, m], i = 1, . . . , K, and thus ΔQF[0, 1)

and QF[1, m], we solve maximization problem (43), assuming the leader’s choice
of the strategies qS

i [1, m] is known. Taking into account that qF
i = ΔqF

i [0, 1) +
qF

i [1, m], the first order condition

∂φF
i (1)

∂ΔqF
i [0, 1)

= 0, i = 1, . . . , K,

leads to
b
N

(a − ΔQ[0, 1)) + ρ
b
N

(−a(1 − θ) + ΔQ[0, 1)) − ciΔqF
i [0, 1)

+ ciρ(qF
i − ΔqF

i [0, 1)) = 0,

which is equivalent to

b
N

(1 − ρ)(a(1 − θ) − ΔQ[0, 1)) +
b
N

θa − (1 + ρ)ciΔqF
i [0, 1) + ciρqF

i = 0
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and

b
N

(1 − ρ)(a(1 − θ) − ΔQS[0, 1)) +
b
N

θa + ρciqF
i − b

N
(1 − ρ)ΔQF[0, 1)

= (1 + ρ)ciΔqF
i [0, 1).

Since ciqF
i = cjqF

j (i �= j) holds (see, for instance, Section 3.2), then it also holds
that ΔqF

i [0, 1) = ΔqF
j [0, 1). Consequently, the first order condition turns out to be

as follows

b
N

(1 − ρ)((1 − θ)a − ΔQS[0, 1)) +
b
N

θa + ρciqF
i

= (1 + ρ)ciΔqF
i [0, 1) + (1 − ρ)

ci

N
(λ, N − n)ΔqF

i [0, 1).

Thus, we obtain the following solution

ΔqF
i [0, 1) =

λi(1 − ρ)((1 − θ)a − ΔQS[0, 1)) + λiθa
(1 + ρ)N + (1 − ρ)(λ, N − n)

(45)

+
NρqF

i
(1 + ρ)N + (1 − ρ)(λ, N − n)

,

where i = 1, . . . , K. Since

∂2φF
i (1)

∂2ΔqF
i [0, 1)

= −2ci(1 + ρ) − b/N(1 − ρ) − (1 − ρ)(λ, N − n)ci/N < 0

for every i = 1, . . . , K, then (45) is a solution of the maximization problem (43).
Thus during period [0, 1) free-riders reduce their emissions according to (45), and
their aggregate abatement during [0, 1) is

ΔQF[0, 1) =
(1 − ρ)(λ, N − n)((1 − θ)a − ΔQS[0, 1)) + (λ, N − n)θa

(1 + ρ)N + (1 − ρ)(λ, N − n)

+
NρQF

(1 + ρ)N + (1 − ρ)(λ, N − n)
,

where QF is given in (23), (25).
In order to determine leader’s strategies ΔqS

i [0, 1), i = 1, . . . , K we need to
solve the maximization problem (44), taking the rational reaction functions (45)
of the followers into account. The first order conditions

∂ ∑i=1 niφ
S
i (1)

∂ΔqS
i [0, 1)

= 0, i = 1, . . . , K,
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delivers

b
N

(1, n)ni(1 − μ)
[
(1 − μ)(1 − θ)a − μ

1 − ρ
θa − ηQF

]

− ρ
b
N

(1, n)ni(1 − μ)
[
(1 − μ)(1 − θ)a − μ

1 − ρ
θa − ηQF

]
+

b
N

(1, n)ni(1 − μ)2θa + ρciniqS
i

− b
N

(1, n)(1 − μ)2(1 − ρ)niΔQS − (1 + ρ)niciΔqS
i

= (1 − ρ)
b
N

(1, n)(1 − μ)
[
(1 − μ)(1 − θ)a − μ

1 − ρ
θa − ηQF

]
+

b
N

(1, n)ni(1 − μ)2θa + ρniciqS
i

− ci

N
(1, n)ni(1 − μ)2(1 − ρ)(λ, n)ΔqS

i − (1 + ρ)niciΔqS
i = 0.

Consequently, the equation can be represented in the following manner

λi(1 − ρ)(1̄, n)(1 − μ)
[
(1 − μ)(1 − θ)a − μ

1 − ρ
θa − ηQF

]
+ ρciqS

i

+ λi(1̄, n)(1 − μ)2θa = ΔqS
i ((1̄, n)(1 − μ)2(1 − ρ)(λ, n) + N(1 + ρ)).

Hence, the maximization problem (44) has the following solution

ΔqS
i [0, 1) =

Nρ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
qS

i (46)

+
λi(1 − ρ)(1 − μ)2(1̄, n)(1 − θ)

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a

+
λi(1̄, n)(1 − μ)(1 − 2μ)θ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a

− λi(1̄, n)(1 − μ)(1 − ρ)η

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
QF

for i = 1, . . . , K. Since the second partial derivatives are negative, then (46) is a
solution of maximization problem (44) and describes individual abating efforts
of signatories during t ∈ [0, 1). All the signatories together will abate

ΔQS[0, 1) =
(λ, n)(1̄, n)(1 − μ)2(1 − ρ)(1 − θ)

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a

+
(λ, n)(1̄, n)(1 − 2μ)θ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a

− (λ, n)(1̄, n)(1 − μ)η

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
QF

+
ρN

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
QS,
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where QS is given by (25).
Assume that for every t = 1, . . . , τ ≤ m − 1 and i = 1, . . . , K

ΔqS
i [t, t + 1) =

Nρ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
qS

i [t, m]

+
λi(1 − ρ)(1 − μ)2(1̄, n)(1 − θ)

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a(t)

+
λi(1̄, n)(1 − μ)(1 − 2μ)θ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a(t)

− λi(1̄, n)(1 − μ)(1 − ρ)η

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
QF[t, m],

ΔqF
i [t, t + 1) =

λi(1 − ρ)
(1 + ρ)N + (1 − ρ)(λ, N − n)

((1 − θ)a(t − 1) − ΔQS[t, t + 1))

+
λiθ

(1 + ρ)N + (1 − ρ)(λ, N − n)
a(t)

+
Nρ

(1 + ρ)N + (1 − ρ)(λ, N − n)
qF

i [t, m].

We now show that for t = τ + 1 it also holds. Following a similar approach,
we determine abatement levels ΔqS(F)

i [τ, τ + 1), so that the restricted solution(
qS

i [τ + 1, m], qF
i [τ + 1, m]

)
constitutes Stackelberg equilibrium in the current game

Γτ

(
S, qS[0, τ), qF[0, τ)

)
. The pollution level at the time t = τ and t = τ + 1 is

given by
a(τ) = (1 − θ)a(τ − 1) − ΔQ[τ − 1, τ),

and
a(τ + 1) = (1 − θ)a(τ) − ΔQ[τ, τ + 1).

Each free-rider of type i maximizes its individual payoff gained during the peri-
ods [τ, τ + 1) and [τ + 1, m], taking the abatement choice of the leader as given

max
ΔqF

i [τ,τ+1)
φF

i (τ + 1). (47)

These payoffs are expressed by

φF
i (τ + 1) = ρτ b

N

[
a(τ)(ΔQS[τ, τ + 1) + ΔQF[τ, τ + 1))

− 1
2
(ΔQS[τ, τ + 1) + ΔQF[τ, τ + 1))2

]
− ρτ 1

2
ci

(
ΔqF

i [τ, τ + 1)
)2

+ ρτ+1 b
N

[
a(τ + 1)(QS[τ + 1, m] + QF[τ + 1, m])

− 1
2
(QS[τ + 1, m] + QF[τ + 1, m])2

]
−ρτ+1 1

2
ci

(
qF

i [τ + 1, m]
)2

.

A solution of the maximization problem (47) is

ΔqF
i [τ, τ + 1) =

Nρ

(1 + ρ)N + (1 − ρ)(λ, N − n)
qF

i [τ, m] (48)
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+
λiθ

(1 + ρ)N + (1 − ρ)(λ, N − n)
a(τ)

+
λi(1 − ρ)(1 − θ)

(1 + ρ)N + (1 − ρ)(λ, N − n)
a(τ)

− λi(1 − ρ)
(1 + ρ)N + (1 − ρ)(λ, N − n)

ΔQS[τ, τ + 1).

Thus during [τ, τ + 1) free-riders will undertake emission reduction accord-
ing to (48). To determine the strategies ΔqS

i [τ, τ + 1), i = 1, . . . , K, the signatories
maximize coalitional net benefit using information about the free-riders’ rational
reaction, leading the maximization problem

max
ΔqS

i [τ,τ+1)

K

∑
i=1

niφ
S
i (τ + 1)

where

K

∑
i=1

niφ
S
i (τ + 1) (49)

=
b
N

(1, n)
[

a(τ)(ΔQS[τ, τ + 1) + ΔQF[τ, τ + 1)) − 1
2
(ΔQS[τ, τ + 1) + ΔQF[τ, τ + 1))2

]

− 1
2

K

∑
i=1

nici

(
ΔqS

i [τ, τ + 1)
)2

+
b
N

(1, n)
[

a(τ + 1)(QS[τ + 1, m] + QF[τ + 1, m]) − 1
2
(QS[τ + 1, m] + QF[τ + 1, m])2

]

− 1
2

K

∑
i=1

nici

(
qS

i [τ + 1, m]
)2

.

A solution of the maximization problem (49) is

ΔqS
i [τ, τ + 1) =

Nρ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
qS

i [τ, m] (50)

+
λi(1 − ρ)(1 − μ)2(1̄, n)(1 − θ)

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a(τ)

+
λi(1̄, n)(1 − μ)(1 − 2μ)θ

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
a(τ)

− λi(1̄, n)(1 − μ)(1 − ρ)η

(λ, n)(1̄, n)(1 − ρ)(1 − μ)2 + N(1 + ρ)
QF[τ, m].

Hence, abatement undertaken by a signatory of type i during [τ, τ + 1) is given
by (50). According to the principle of mathematical induction we have shown
that the emission reduction scheme (51) is time-consistent in the game Γ0(S) by
definition. �
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Corollary 6.1.1 Let a coalition S and the correspondent Stackelberg equilibrium
(
qS, qF)

be formed in the game Γ0(S). We set discount factor ρ = 1 and natural degradation rate
θ = 0.

The time-consistent scheme of stepwise abatement reduces to

ΔqS(F)
i [t, t + 1) =

1
2t qS(F)

i , where t = 0, . . . , m − 2, (51)

ΔqS(F)
i [m − 1, m] =

1
2m−1 qS(F)

i .

Notice that the time-consistent scheme (51) is described as a geometric progres-
sion with 0.5 as a common ratio and (qS, qF) as an initial element. According
to such a scheme, large emission reduction should be undertaken during first
stages and the following sequence of abating efforts will monotonically decrease.
Additionally, from the representation of the time-consistent scheme in Corollary
6.1.1 it follows that the determined Stackelberg equilibrium in the current game
Γt

(
S, qS[0, t), qF[0, t)

)
coincides with Nash equilibrium, because free-riders and

signatories choose their strategies simultaneously and independently of each
other.

FIGURE 8 The time-consistent abatement scheme (51), ρ = 1, θ = 0.
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Example 6.1.1

Consider the numerical example with the model settings given in Table 17.

TABLE 17 Example 6.1.1 Model Parameters

b = 1
a = 100

Type 1 Type 2
c1 = 0.5 c2 = 0.8
N1 = 5 N2 = 10

In this example there are two self-enforcing coalitions, Table 18. Let us check
the IEA S2 for time-consistency and explore properties of its emission reduction
trajectory.

TABLE 18 Example 6.1.1 Self-Enforcing Coalitions

Coalition structure S1 S2
(n1 = 0, n2 = 3) (n1 = 1, n2 = 2)

Signatory’s payoff — πS
1 = 272.226

πS
2 = 275.986 πS

2 = 276.779
Free-rider’s payoffs πF

1 = 276.726 πF
1 = 277.838

πF
2 = 279.223 πF

2 = 280.286
Signatories’ abatement — qS

1 = 6.969
qS

2 = 4.301 qS
2 = 4.355

Free-riders’ abatement qF
1 = 5.161 qF

1 = 5.11
qF

2 = 3.22 qF
2 = 3.194

Suppose that the abatement commitments must be fulfilled over m steps
according to the time-consistent abatement scheme (42), when discounting and
pollutant degradation rates are ρ = 0.95 and θ = 0.05. Let us assume potential
free-riding from membership and have a look what may occur at the step t = 1:

• signatories’ abatement during [0, 1) is ΔqS
1 [0, 1) = 5.395, ΔqS

2 [0, 1) = 3.372,

• free-riders’ abatement during [0, 1) is ΔqF
1 [0, 1) = 3.022, ΔqF

2 = 1.889,

• signatories’ abatement during [1, m] is ΔqS
1 [1, m] = 1.574, ΔqS

2 [1, m] = 0.983,

• free-riders’ abatement during [1, m] is ΔqF
1 [1, m] = 2.069, ΔqF

2 [1, m] = 1.293.
It is important to point out the following interesting observation: according
to the scheme (42), larger part of emission should be reduced on the first
abating interval!

• Abatement of possible free-riders from the agreement is

ΔqF∪1
1 [1, m] = 2.211, ΔqF∪2

2 [1, m] = 1.383,
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• abatement of possible new members of the agreement is

ΔqS∪1
1 [1, m] = 2.055, ΔqS∪2

2 [1, m] = 1.255,

• additionally, ΔQ[1, m] = 39.335, Q[1, m] = 22.164, Q−1[1, m] = 23.327,
Q−2[1, m] = 22.988.

To check time-consistency of the self-enforcing coalition S2 we substitute thus
found data into inequalities (40)–(41):
1) internal stability fails

π1(qS[t, m], qF[t, m]) = 72.645 ≤ π1(qS\1[t, m], qF∪1[t, m]) = 74.98,

π2(qS[t, m], qF[t, m]) = 73.022 ≤ π2(qS\2[t, m], qF∪2[t, m]) = 74.132,

2) external stability holds

π1(qS[t, m], qF[t, m]) = 72.193 ≥ π1(qS∪1[t, m], qF\1[t, m]) = 69.452,

π2(qS[t, m], qF[t, m]) = 72.845 ≥ π2(qS∪2[t, m], qF\2[t, m]) = 70.691.

Hence we can conclude that after the abatement process has been started the
coalition may no longer satisfy its initial stability criterion and the players, which
used to be signatories, have incentives to leave the coalition. Similar conclusions
can be derived when considering potential free-riding from the compliance. Loss
of time-consistency can lead to the renegotiation of the agreement structure and
targets to regulate coalition instability.

In the following Sections 6.2 and 6.3 we analyze a special case of the time-
consistent emission reduction scheme when discounting and pollutant degrada-
tion rates are equal to zero.

6.2 Time-Consistency of Internally Stable Agreement

Given the Stackelberg solution in the game Γ0(S) and assuming that the coalition
S remains the same over the time period [0, m], we produced in Section 6.1 a time-
consistent scheme that allows players to fulfil their emission reduction targets
gradually.

To analyze the possibility of withdrawal of some nations from the agree-
ment S and the joining of the new nations, we have given a notion of time-
consistency of a self-enforcing coalition and applied it to the current game
Γt(S, qS[0, t), qF[0, t)). According to Definition 5.0.2, an internally stable coali-
tion S, characterized by vector n = (n1, . . . , nK) of players of K types, is time-
consistent under a given abatement scheme, if for every time t, t = 0, . . . , m − 1,
the following conditions hold simultaneously:

πi(qS[t, m], qF[t, m]) ≥ πi(qS\{i}[t, m], qF∪{i}[t, m]), ∀i ∈ S.
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Here (qS[t, m], qF[t, m]) is the restriction to the period [t, m] of an optimal solution
of the game Γ0(S), and (qS\{i}[t, m], qF∪{i}[t, m]) is the restriction to the period
[t, m] of an optimal solution of the game Γ0(S \ {i}). We compare the free-riders’
outcomes with the outcomes of signatories, supposing that they are calculated
under abatement strategies determined by the restriction to the period [t, m] of
the Stackelberg solutions, t = 1, . . . , m − 1. Since parameters ci, b are constant,
for each signatory of type i, i ∈ S, the functions in the internal time-consistency
conditions are

πi(qS[t, m], qF[t, m]) =
b
N

(
a(t)Q[t, m] − 1

2
Q2[t, m]

)
− 1

2
ci

(
qS

i [t, m]
)2

,

πi(qS∪{i}[t, m], qF\{i}[t, m])

=
b
N

(
a(t)Q−i[t, m] − 1

2
(Q−i[t, m])2

)
− 1

2
ci

(
qF∪{i}

i [t, m]
)2

,

where Q−i[t, m] is the total emission to be reduced over [t, m], if the coalition S is
abandoned by one of the players of type i.

Time-consistency of an internally stable agreement is based on the member-
ship preferences of the players. Having accomplished its obligations for the time
t, a signatory of type i considers withdrawing from the coalition S, assuming from
that moment onwards, the abatement path will continue along the restriction of
the optimal solution of the game Γ0(S \ {i}). In such a scenario, a condition for
the time-consistency of an internally stable coalition is as follows.

Lemma 6.2.1 An internally stable agreement in the game Γ0(S) (using Stackelberg equi-
librium concept) is time-consistent under the abatement scheme (51), if the following
inequality holds for all t = 1, . . . , m − 1, i = 1, . . . , K,

ΔS
i + (2t − 1)

b
N

(Q − Q−i)(a − Q) ≥ 0, (52)

where 1

ΔS
i = πi(qS, qF) − πi(qS\{i}, qF∪{i}). (53)

P r o o f. Let us analyze a property of time-consistency of internal stability (40) of
the agreement S at t = 1, . . . , m − 1, that is

πi(qS[t, m], qF[t, m]) ≥ πi(qS\{i}[t, m], qF∪{i}[t, m]),

for all i ∈ S. The net benefit of a signatory of type i, i = 1, . . . , K, is

πi(qS[t, m], qF[t, m]) =
b
N

(
a(t)Q[t, m] − 1

2
Q2[t, m]

)
− 1

2
ci

(
qS

i [t, m]
)2

,

where

a(t) = a − 1
2

Q − 1
4

Q − . . . − 1
2t Q = a − 2t − 1

2t Q.

1 This notation was introduced in Section 4. If the coalition S is self-enforcing, then ΔS
i is

nonnegative.
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Then, according to (38),

πi(qS[t, m], qF[t, m]) =
b
N

(
(a − (1 − 1

2t )Q)
1
2t Q − 1

2
1

22t Q2
)
− 1

2
1

22t ci

(
qS

i

)2

=
1
4t

(
b
N

(aQ − 1
2

Q2) − 1
2

ciqS2

i

)
+

b
N

(− 1
2t Q2 +

1
4t Q2 +

2t − 1
4t aQ)

=
1
4t πi(qS, qF) +

2t − 1
4t

b
N

Q(a − Q).

Let us now assume that a signatory of type i leaves the agreement S at a certain
moment t. Then its net befit is

πi(qS\{i}[t, m], qF∪{i}[t, m])

=
b
N

(
a(t)Q−i[t, m] − 1

2
(Q−i[t, m])2

)
− 1

2
ci

(
qF∪{i}

i [t, m]
)2

,

where Q−i[t, m] is restriction over [t, m] of a Stackelberg solution in the game
Γ0(S \ {i}). Then

πi(qS[t, m], qF[t, m]) − πi(qS\{i}[t, m], qF∪{i}[t, m]) (54)

=
1
4t

(
πi(qS, qF) − πi(qS\{i}, qF∪{i})

)
+

2t − 1
4t

b
N

(Q − Q−i)(a − Q).

Using (53), inequality

πi(qS[t, m], qF[t, m]) ≥ πi(qS\{i}[t, m], qF∪{i}[t, m])

can be rewritten as follows

ΔS
i + (2t − 1)

b
N

(Q − Q−i)(a − Q) ≥ 0. �

Since the condition of internal stability holds at the time t = 0, then ΔS
i ≥ 0

and the first term in (54) is nonnegative. The sign of the second term in (54)

2t − 1
4t

b
N

(Q − Q−i)(a − Q)

is indicated by Q − Q−i (difference between total abatement in cases when agree-
ment is given by set S and S \ {i}) and its sign depends on the model parameters.
Let us assume that the agreement is environmentally efficient, i.e. inequality (28)
holds. The following statement holds.

Theorem 6.2.1 Assume environmental efficiency condition (28) holds. Then an inter-
nally stable agreement in the game Γ0(S) (using the Stackelberg equilibrium concept) is
time-consistent under the abatement scheme (51).
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P r o o f. We consider an internally stable agreement S. According to Lemma 6.2.1
condition of time-consistency of internal stability requires

ΔS
i +

b
N

(2t − 1)(Q − Q−i)(a − Q) ≥ 0.

Since the condition of internal stability holds at the time t = 0, we see that ΔS
i ≥ 0.

The second term
(2t − 1)

b
N

(Q − Q−i)(a − Q)

is non-negative as well. Thus during [0, m], an internally stable agreement is
time-consistent and no signatory has the incentives to withdraw. �

Corollary 6.2.1 Let players of set N be homogeneous. An internally stable agreement S
is time-consistent, if it is composed of at least �η1� signatories, where η1 is given in (29)

η1 =
(λ + N)(λ + 2N + 2λN) − √

λ2(λ + N)2 + 4N3(λ + N)(λ + 1)2

2λ(λ + N)
.

This corollary directly follows from Theorems 3.4.1 and 6.2.1.

Example 6.2.1

The model parameters are assumed to be as in Table 17. We shall examine time-
consistency of internal stability of the coalition S2 (see Table 18) when discounting
and pollutant decay rates are ρ = 1 and θ = 0, respectively. According to the
time-consistent abatement scheme (51), stepwise emission reduction should be
as in Table 19.

TABLE 19 Example 6.2.1 Emission Reduction Scheme, m=5.

qS
1 = 6.969 qS

2 = 4.355 qF
1 = 5.11 qF

2 = 3.194
[t, t + 1)

[0, 1) 3.485 2.178 2.555 1.597
[1, 2) 1.742 1.089 1.278 0.799
[2, 3) 0.871 0.544 0.639 0.399
[3, 4) 0.436 0.272 0.319 0.2
[4, 5] 0.436 0.272 0.319 0.2

Let us confirm that conditions environmental efficiency of the coalition S2
hold

Q−1 = 59.615 < Q = 61.672, Q−2 = 59.565 < Q = 61.672,

Q+1 = 65.581 > Q = 61.672, Q+2 = 64.802 > Q = 61.672.

Theorems 6.2.1 and 7.2.1 guarantee that the internal stability of the agreement S
is time-consistent upon both free-riding options. This fact is demonstrated in Fig.
9–11.
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FIGURE 9 Example 6.2.1. Time-consistency of internal stability of the agreement subject
to the players of type 1, t = 0, . . . , m, ρ = 1, θ = 0. See enraged image in Fig.
10.
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FIGURE 10 Example 6.2.1 . Time-consistency of internal stability of the agreement sub-
ject to the players of type 1, t = 0, . . . , 2, ρ = 1, θ = 0.
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FIGURE 11 Example 6.2.1. Time-consistency of internal stability of the agreement sub-
ject to the players of type 2, t = 0, . . . , m, ρ = 1, θ = 0 (also see enraged
image below).
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6.3 Time-Consistency of Externally Stable Agreement

Now we are going to analyze the property of time-consistency of external stabil-
ity of the coalition (Definition 5.0.2) and consider the possibility of joining new
nations to the agreement. In Section 6.2 we formulated Lemma 6.2.1 and Theorem
6.2.1, which guaranteed time-consistency of an internally stable agreement. Now
we intend to explore external time-consistency and see if the free-riders’ attitude
towards the agreement can change over time. Given that for time t players re-
duced emission according to the scheme (51), a free-rider of type i considers join-
ing in the coalition S, assuming that from that moment onwards abatement path
will continue along the restriction of the optimal solution of the game Γ0(S∪ {i}).
In such a scenario, we formulate the following statements.

Lemma 6.3.1 An externally stable agreement in the game Γ0(S) (using Stackelberg
equilibrium concept) is time-consistent under the abatement scheme (51) if the follow-
ing inequality holds for all t = 1, . . . , m − 1, i ∈ F,

ΔS∪{i}
i + (2t − 1)

b
N

(a − Q)(Q+i − Q) ≤ 0. (55)

To verify time-consistency of external stability, we apply a similar approach as
earlier in Lemma 6.2.1 and represent the net benefit of a free-rider of type i from
the set F as follows

πi(qS[t, m], qF[t, m]) =
1
4t πi(qS, qF) +

2t − 1
4t

b
N

Q(a − Q).

The net benefit of a former free-rider of type i, which accesses the agreement, is

πi(qS∪{i}[t, m], qF\{i}[t, m]) =
1
4t πi(qS∪{i}, qF\{i}) +

2t − 1
4t

b
N

Q+i(a − Q).

The condition (41) of time-consistency of external stability is rewritten in the fol-
lowing manner

ΔS∪{i}
i ≤ − b

N
(2t − 1)(a − Q)(Q+i − Q).

It is useful to remind that

ΔS∪{i}
i = πi(qS∪{i}, qF\{i}) − πi(qS, qF), ∀i ∈ F,

due to the assumption of external stability of the coalition S in the game Γ0(S)

Theorem 6.3.1 Assume the condition (28) of environmental efficiency holds. The abate-
ment scheme (51) does not guarantee time-consistency of an externally stable agreement
S in the game Γ0(S).
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P r o o f. To verify the time-consistency condition of external stability, we are
going to use inequality (55)

ΔS∪{i}
i +

b
N

(2t − 1)(a − Q)(Q+i − Q) ≤ 0, i ∈ F.

The condition (28) of environmental efficiency holds, then (55) can be represented
as follows

− ΔS∪{i}
i +

b
N

(a − Q)(Q+i − Q) ≥ 2t b
N

(a − Q)(Q+i − Q),

2t ≤ −ΔS∪{i}
i + b

N (a − Q)(Q+i − Q)
b
N (a − Q)(Q+i − Q)

,

t ≤ log2
−N

b ΔS∪{i}
i + (a − Q)(Q+i − Q)
(a − Q)(Q+i − Q)

.

Herewith we conclude that external time-consistency holds for t < t∗, where

t∗ =

[
log2

−N
b ΔS∪{i}

i + (a − Q)(Q+i − Q)
(a − Q)(Q+i − Q)

]
+ 1 (56)

determines a threshold stage. Notation [. . .] means an integer part of a number.
Notice that since

−N
b

ΔS∪{i}
i + (a − Q)(Q+i − Q) ≥ (a − Q)(Q+i − Q),

then
−N

b ΔS∪{i}
i + (a − Q)(Q+i − Q)
(a − Q)(Q+i − Q)

> 1,

and hence t∗ ≥ 1. As soon as t ≥ t∗, external time-consistency is violated. If t∗ is
less than two then external time-consistency breaks at the stage t = 1, if it is less
than three then external time-consistency breaks at the stage t = 2 and so on. �

Example 6.3.1

Let us reconstruct the example, given in [Barrett 1994a], considering coalition for-
mation process among 10 homogeneous players (see also Example 3.4.1). We
remind that according to [Barrett 1994a] parameters of the game Γ0(S) are as fol-
lows: N = 10, a = 100, b = 1, and c = 0.25. The process of identifying a
self-enforcing coalition delivers a single stable IEA composed of four signatories
(see Table 20).

This agreement, if formed, would provide total emission reduction Q =
81.069 (of a = 100), payoff of signatories and free-riders are πi∈S = 472.16 and
πi∈F = 474.913, respectively. Environmental target will be met in line with the
following abatement scheme (51)

qS[t, m] =
1
2t 8.909, qF[t, m] =

1
2t 7.572,
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TABLE 20 Example 6.3.1 Coaliton Stability Analysis.

n qS
i qF

i πS πF Q Π
0 0 8 0 472 80 4720
1 1.855 8.534 476.809 468.135 78.664 4690.022
2 4.158 8.732 474.012 466.643 78.170 4681.169
3 6.652 8.426 472.284 468.941 78.936 4699.436
4∗ 8.909 7.572 472.160 474.913 81.069 4738.121
5 10.526 6.316 473.684 482.548 84.211 4781.163
6 11.342 4.915 476.371 489.431 87.713 4815.949
7 11.457 3.6 479.542 494.328 90.998 4839.776
8 11.096 2.497 482.663 497.273 93.759 4855.85
9 10.477 1.63 485.448 498.838 95.925 4867.872

10 9.756 0 487.805 0 97.56 4878.049

where t = 0, m − 1. Let m = 10 then the agreement commitments (qS, qF) =
(8.909, 7.572) should be fulfilled over 10 steps. Following the time-consistent
abatement scheme, players perform emission reduction during each time period
according to Table 21.

TABLE 21 Example 6.3.1 Players“Per-Interval” Abatement Plans.

Intervals → [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7)
Example 6.3.1. Players ↓

’signatory’ 4.455 2.227 1.114 0.557 0.278 0.139 0.07
’free-rider’ 3.786 1.893 0.947 0.473 0.237 0.118 0.059

Intervals → [7, 8) [8, 9) [9, 10]
Example 6.3.1. Players ↓

’signatory’ 0.035 0.017 0.017
’free-rider’ 0.03 0.015 0.015

Let us calculate η1,2, determined in (29),

η1 = 2.424, η2 = 23.576.

According to Theorem 3.4.1 we can guarantee that the agreement is environmen-
tally efficient when it is composed of �η1� = 3 and more players. From Table
20 we conclude that for n = 0, 1, 2 Q(n) − Q(n − 1) < 0 and for n = 3, . . . , N
Q(n) − Q(n − 1) > 0. Consequently, a coalition which consists of four satisfies
condition of environmental efficiency, and, according to Lemma 6.2.1 and Theo-
rem 6.2.1, the internally stable agreement is time-consistent over t = 0, . . . , m. It
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means that no agreement members would unilaterally abandon the coalition dur-
ing [0, m]. Using the abatement scheme (51) guarantees time-consistency of inter-
nal stability of the coalition S (Theorem 6.2.1) but fails to sustain time-consistency
of external stability of the coalition after a threshold moment t∗, determined ac-
cording to (56) and equal to 1 in the current example.

6.4 Total Payoffs over Accounting Periods

We assume that the net present value of each abating interval is decreasing, as
it occurs due to natural uncertainty about the future. In practice, it means that
profits to be received in a certain time interval, are less valuable in comparison to
those, we can get ’today’.

Usage of the net present value notation requires the discount factor

ρ =
(

1 +
r
m

)−1
,

where r is an interest rate. Traditionally r � 1, for instance, r = 0.05. Then it
follows that 0 < ρ < 1.

Previously we have constructed the time-consistent abatement scheme and
considered property of time-consistency of a self-enforcing coalition. Now we
are going to see what happens to the players’ total net benefit in dynamics using
such a scheme

m−1

∑
t=0

ρtπi(ΔqS[t, t + 1), ΔqF[t, t + 1)). (57)

Unfortunately, it is impossible to evaluate analytically (57) for the scheme
(51) due to high complexity of the expressions.

Let us consider a particular case of scheme (51), where ρ = 1 and θ = 0.
We are going to summarize received payoffs from the moment t = 1 to t = m
and compare results to the net benefits assigned to players at the moment t = 0,
when formation of the agreement structure and abatement goals takes place. We
are also going stepwise to increase the number of check-points (and thus increase
the number of periods [0, 1), . . . , [m− 1, m]) to observe changes in players’ payoffs
and provide assessment of the length of the abating period.

• If m = 1 then individual payoff of a player of type i, according to (1), is

πi(qS, qF) =
b
N

(aQ − 1
2

Q2) − 1
2

ci

(
qS(F)

i

)2
,

this is also the anticipated payoff for the player.

• If m = 2 then individual payoffs obtained by players over the intervals [0, 1)
and [1, 2], are

1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) =
b
N

(a
1
2

Q − 1
2
(

1
2

Q)2) − 1
2

ci

(
1
2

qS(F)
i

)2
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+
b
N

((a − 1
2

Q)
1
2

Q − 1
2
(

1
2

Q)2) − 1
2

ci

(
1
2

qS(F)
i

)2

=
b
N

(aQ − 1
2

Q2) − 1
4

ci

(
qS(F)

i

)2
= π

S(F)
i +

1
4

ci

(
qS(F)

i

)2
.

As one may see, the finally received payoffs of signatories and free-riders
are bigger than those anticipated during agreement formation. This occurs
due to model structure and split of the total abatement into two parts. At
the same time it serves as an incentive to follow the dynamic scheme.

• If m = 3 then individual payoffs over [0, 1),[1, 2) and [2, 3]

2

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) =
b
N

(a
1
2

Q − 1
2
(

1
2

Q)2) − 1
2

ci

(
1
2

qS(F)
i

)2

+
b
N

((a − 1
2

Q)
1
4

Q − 1
2
(

1
4

Q)2) − 1
2

ci

(
1
4

qS(F)
i

)2

+
b
N

((a − 1
2

Q − 1
4

Q)
1
4

Q − 1
2
(

1
4

Q)2) − 1
2

ci

(
1
4

qS(F)
i

)2

=
b
N

(aQ − 1
2

Q2) − 3
16

ci

(
qS(F)

i

)2
= πi(qS, qF) +

5
16

ci

(
qS(F)

i

)2
.

In this case, the final received payoffs of signatories and free-riders are
also bigger than those anticipated during agreement formation, which is
a stronger incentive for players to accept this scheme. At the same time one
may notice that additional profit for m = 3 is higher than the one for m = 1,
which is 5

16 ≥ 1
4 , and

2

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) −
1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) =
1

16
> 0.

• If m = 4 then individual payoffs over [0, 1), [1, 2), [2, 3) and [3, 4] are

3

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1))

=
b
N

(
a

1
2

Q − 1
2
(

1
2

Q)2
)
− 1

2
ci

(
1
2

qS(F)
i

)2

+
b
N

(
(a − 1

2
Q)

1
4

Q − 1
2
(

1
4

Q)2
)
− 1

2
ci

(
1
4

qS(F)
i

)2

+
b
N

(
(a − 1

2
Q − 1

4
Q)

1
8

Q − 1
2
(

1
8

Q)2
)
− 1

2
ci

(
1
8

qS(F)
i

)2

+
b
N

(
(a − 1

2
Q − 1

4
Q − 1

8
Q)

1
8

Q − 1
2
(

1
8

Q)2
)
− 1

2
ci

(
1
8

qS(F)
i

)2

=
b
N

(
aQ − 1

2
Q2

)
− 11

64
ci

(
qS(F)

i

)2
= πi

(
qS, qF

)
+

21
64

ci

(
qS(F)

i

)2
.
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When m = 4 total net benefits are higher than it was anticipated at the initial
moment and besides that

3

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) −
2

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1)) =
1

64
> 0.

• Individual payoffs over [0, 1), [1, 2), . . . , [m − 1, m] are

m−1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1))

=
m−1

∑
t=1

[
b
N

(
(a −

t−1

∑
j=1

1
2j Q)

1
2t Q − 1

2
1
4t Q2

)
−1

2
ci

1
4t (qS(F)

i )2
]

(58)

+
b
N

(
(a −

m−1

∑
j=1

1
2j Q)

1
2m−1 Q − 1

2
1

4m−1 Q2

)
− 1

2
ci

1
4m−1

(
qS(F)

i

)2
.

In order to obtain general form for individual total payoffs of the players
and assess properties of function π

S(F)
i (m), we bring the expression (58) to

the simplified presentation

m−1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1))

=
b
N

aQ
m−1

∑
t=1

1
2t︸ ︷︷ ︸

1) term

− b
N

Q2
m−1

∑
t=1

1
2t

t−1

∑
j=1

1
2j︸ ︷︷ ︸

2) term

− b
N

1
2

Q2
m−1

∑
t=1

1
4t︸ ︷︷ ︸

3) term

+
b
N

aQ
1

2m−1︸ ︷︷ ︸
4) term

− b
N

1
2m−1 Q2

m−1

∑
t=1

1
2t︸ ︷︷ ︸

5) term

− 1
2

1
4m−1 Q2︸ ︷︷ ︸
6) term

− 1
2

ci

(
qS(F)

i

)2 m−1

∑
t=1

1
4t︸ ︷︷ ︸

7) term

− 1
2

1
4m−1 ciq

S(F)
i︸ ︷︷ ︸

8) term

.

Consider the first term

1) :
b
N

aQ
m−1

∑
t=1

1
2t =

b
N

aQ
1
2(1 − 1

2m−1 )
1
2

=
b
N

aQ(1 − 1
2m−1 ).

Now sum it up with the forth term

1) + 4) :
b
N

aQ(1 − 1
2m−1 ) +

b
N

aQ
1

2m−1 =
b
N

aQ.
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Consider the second, the third and the fifth terms consequently

2) :
b
N

Q2
m−1

∑
t=1

1
2t

t−1

∑
j=1

1
2j =

b
N

Q2
m−1

∑
t=1

1
2t (1 − 1

2t−1 )

=
b
N

Q2
m−1

∑
t=1

1
2t −

b
N

Q2
m−1

∑
t=1

2
4t =

b
N

Q2
(

(1 − 1
2m−1 ) − (

2
3
− 2

3
1

4m−1 )
)

b
N

Q2
(

1
3
− 1

2m−1 +
2
3

1
4m−1

)
,

3) :
b
N

1
2

Q2
m−1

∑
t=1

1
4t =

b
N

1
2

Q2 1
3

(
1 − 1

4m−1

)
=

b
N

Q2
(

1
6
− 1

6
1

4m−1

)
,

5) :
b
N

1
2m−1 Q2

m−1

∑
t=1

1
2t =

b
N

1
2m−1 Q2

(
1 − 1

2m−1

)

=
b
N

Q2
(

1
2m−1 − 1

4m−1

)
.

Now we sum simplified expressions 2), 3), 5) and 6)

2) + 3) + 5) + 6) :

b
N

Q2
(

1
3
− 1

2m−1 +
2
3

1
4m−1

)
+

b
N

Q2
(

1
6
− 1

6
1

4m−1

)

+
b
N

Q2
(

1
2m−1 − 1

4m−1

)
+

1
2

1
4m−1 Q2

=
b
N

Q2

2
.

Consider the last two terms

1
2

ci

(
qS(F)

i

)2 m−1

∑
t=1

1
4t +

1
2

1
4m−1 ciq

S(F)
i

=
1
2

ci

(
qS(F)

i

)2
(

(
1
3
− 1

3
1

4m−1 ) +
1

4m−1

)

=
1
2

ci

(
qS(F)

i

)2
(

1
3

+
2
3

1
4m−1

)
.

Bringing all terms together we obtain that

m−1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1))

=
b
N

(
aQ − 1

2
Q2

)
− 1

2
ci

(
qS(F)

i

)2
(

1
3

+
2
3

1
4m−1

)
(59)



97

=
m−1

∑
t=0

πi(qS, qF) +
1
3

ci

(
qS(F)

i

)2
(

1 − 1
4m−1

)
.

When m is approaching infinity, players’ payoffs

lim
m→∞

m−1

∑
t=0

πi(qS[t, t + 1), qF[t, t + 1))

= πi(qS, qF) +
1
3

ci

(
qS(F)

i

)2
(

1 − lim
m→∞

1
4m−1

)
= πi(qS, qF) +

1
3

ci

(
qS(F)

i

)2
.

This occurrence of the additional term 1
3 ci

(
qS(F)

i

)2
can be explained by specifi-

cation of our model (quadratic structure of cost function) and the well-known

Cauchy-Schwarz inequality. Such positive surplus 1
3 ci

(
qS(F)

i

)2
can be treated as

an additional incentive towards multi-stage abatement process in comparison to
static case. On the other hand, assuming that players are uncertain about their
future and possible forthcoming events, this additional surplus will obviously
become extinct with total individual payoffs being brought to present value.

Material of the current section has been a consequent conclusion of Part
II, which main objective was to focus on dynamic framework of the environ-
mental agreement and in particular, to cover two crucial topics: reallocation of
emission reduction commitments over a number of time periods; and, analy-
sis of agreement stability upon pollution dynamics. We have suggested a time-
consistent abatement reallocation scheme that corresponds to the optimality con-
cept of Stackelberg equilibrium, applied in the game Γ0(S). It assigns emission
reductions so that choice of abatement efforts during each time period is adjusted
according to the emission reduction undertaken previously, plus taking into ac-
count the current environmental settings.

While analyzing time-consistency of a self-enforcing agreement, we have
mainly concentrated our attention on time-conistency of internal stability, assum-
ing that after formation of an agreement further accession of new members is
prohibited. We have shown that internal stability is time-consistent upon the
time-consistent abatement scheme and no signatory has incentives to leave the
agreement as collaboration develops. This result can successfully be applied for
the case when during the IEA formation all the players are attracted into the
agreement (the grand coalition) or the most relevant players access the coalition.

Here we came to a conclusion that, in dynamic framework, external stability
never holds over the whole accounted period, which means that after a threshold
stage the coalition can be accessed by new members. This signals about both pos-
itive and negative perspectives. On the one hand a larger coalition can result in
bigger emission reduction and thus bigger environmental benefit. On the other
hand time-inconsistency of the agreement means vulnerability of agreement sta-
bility in dynamic framework and may also lead to the opposite results, such as
full or partial decomposition of the agreement and low environmental benefit.
In the following part we are going to continue time-consistency analysis of the
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self-enforcing coalition and suggest renegotiation mechanisms, which targets to
enliven the agreements, whose stability is in jeopardy.
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7 MECHANISMS OF DYNAMIC REGULARIZATION

7.1 Renegotiation of Self-Enforcing Agreement

As Lemma 6.2.1 and Theorem 6.2.1 point out, we can guarantee that internal
time-consistency of a self-enforcing coalition holds under assumptions of envi-
ronmental efficiency (28). Lemma 6.3.1 and Theorem 6.3.1 state that external time-
consistency is violated after a certain threshold stage t∗, which means that at the
stage t∗ the agreement requires renegotiation. Material, presented in Part III, is
based on publications [Pavlova 2008], [Pavlova et al. 2008]. Here we consider the
renegotiation process, which occurs in the dynamic game Γt∗

(
S, qS[0, t∗), qF[0, t∗)

)
and can be interpreted as repetition of a one-shot game Γ0(S) but with different
environmental setting a(t∗).

Let us further suppose that emission reduction process goes along with the
time-consistent abatement scheme (51). At t∗ players simultaneously and volun-
tary choose their status towards the IEA (signatory/free-rider). Agreement sig-
natories n∗ =

(
n∗

1, . . . , n∗
i , . . . , n∗

K
)

make decisions about their emission reduction
commitments qSt∗

i , which must be fulfilled during [t∗, m], by maximizing aggre-
gate coalition net benefit ∑i∈St∗ πi(qSt∗ , qFt∗ ). Free-riders from set Ft∗ = N \ St∗

adjust their abatement levels, taking the choice of signatories as given, and each
of them maximizes its net benefit πi(qSt∗ , qFt∗ ), i ∈ F, non-cooperatively.

As before we suppose parameters ci and b constant. Current environmental
situation is characterized by parameter a(t∗)

a(t∗) = a(t∗ − 1) − 1
2t∗ Q = a − 2t∗ − 1

2t∗ Q;

this formula follows from (38) and (51). In order to identify structure of the self-
enforcing coalition St∗ , it is necessary to redefine abatement strategies

(
qSt∗ , qFt∗

)
.

In the two level game Γt∗ (St∗) Stackelberg equilibrium is unique and con-
stituted by the following strategies of the leader (the coalition St∗)

qSt∗
i =

a(t∗)λi(1 − g∗)2(1̄, n∗)
(1̄, N) + (1 − g∗)2(1̄, n∗)(λ, n∗)

, i = 1, . . . , K, (60)
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and the followers (the free-riders from set Ft∗),

qFt∗
i =

λia(t∗)(1̄, N)
[(1̄, N) + (1 − g)2(1̄, n∗)(λ, n∗)][(1̄ + λ, N) − (λ, n∗)]

, i = 1, . . . , K,

(61)
where

g∗ =
(λ, N − n∗)

N + (λ, N − n∗)
.

Functions
(
qSt∗ , qFt∗

)
should be placed into conditions of a self-enforcing

coalition, which can be rewritten as follows

πi(qSt∗ , qFt∗ ) ≥ πi(qSt∗\{i}, qFt∗∪{i}), i ∈ St∗ ,

πi(qSt∗∪{i}, qFt∗\{i}) ≤ πi(qSt∗ , qFt∗ ), i ∈ Ft∗ .

Solution of this system under the found expressions (60), (61) describes
structure of the self-enforcing agreement St∗ . Renegotiation process possesses
the following properties:

• Set of self-enforcing coalitions, determined upon Stackelberg solution
(qSt∗ , qFt∗ ) (60), (61) during renegotiation process at the stage t∗ in the game
Γt∗ (St∗), is equivalent to set, obtained upon Stackelberg solution (qS, qF)
(19), (20) of the game Γ0(S).

Identity of two sets of self-enforcing coalitions follows from the similar
structure of abatement solutions

(
qSt∗ , qFt∗

)
at stage t∗ and

(
qS, qF)

at stage
0, where the main difference is in parameter a(t), which characterizes en-
vironmental situation. In case there are two or more self-enforcing coali-
tions possible, it is possible that the appeared IEA has the same structure
n = (n1, . . . , ni, . . . , nK) of the coalition as it was at the initial stage t = 0.

Redefined coalition continues abatement process. We suppose that the emis-
sion reduction dynamics is held according to the time-
consistent abatement scheme (51), suggested in Section 6.1 and described
as a geometric progression with 0.5 as a common ratio and

(
qSt∗ , qFt∗

)
as an

initial element, i.e. for t∗ ≤ t ≤ m − 1

ΔqSt∗
i [t, t + 1) =

1
2t−t∗+1 qSt∗

i ,

ΔqFt∗
i [t, t + 1) =

1
2t−t∗+1 qFt∗

i .

• In the multistage game, renegotiation is a regular process, occurring with a
period t∗ starting from the initial moment 0.

This statement can be straightforwardly obtained by placing t = t∗ as the
initial moment of time-consistency analysis, and obtaining that the new
threshold level is equal to t∗. It implies that the following renegotiations
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will take place at stages 2t∗, 3t∗, 4t∗ and so on until m − 1, and emission
reduction during time period [jt∗, (j + 1)t∗] will be held as follows

ΔqSt∗
i [t, t + 1) =

1
2t−t∗+1 qSt∗

i , (62)

ΔqFt∗
i [t, t + 1) =

1
2t−t∗+1 qFt∗

i ,

when jt∗ ≤ t ≤ (j + 1)t∗ − 1. Here j = 1, 2, 3, . . ., so that (j + 1)t∗ − 1 ≤ m.
Strategies (qSt∗ , qFt∗ ) are given in (60), (61).

• Specifying abatement dynamics according to (62), a self-en-
forcing coalition S, which is self-enforcing in the game Γ0(S) upon Stack-
elberg equilibrium concept, is time-consistent.

Example 7.1.1

Let us consider the example, given in [Barrett 1994a], describing the process of
coalition formation among homogeneous players, which results in a single self-
enforcing IEA. According to [Barrett 1994a] parameters of the game Γ0(S) are as
follows: N = 10, a = 100, b = 1, and c = 0.25. The process of identifying
a self-enforcing coalition, described in Section 3.3.3, delivers a single stable IEA
composed of four signatories (see Table 22).

TABLE 22 Example 7.1.1 Self-Enforcing Coalitions.

n qS
i qF

i πS πF Q Π
0 0 8 0 472 80 4720
1 1.855 8.534 476.809 468.135 78.664 4690.022
2 4.158 8.732 474.012 466.643 78.170 4681.169
3 6.652 8.426 472.284 468.941 78.936 4699.436
4∗ 8.909 7.572 472.160 474.913 81.069 4738.121
5 10.526 6.316 473.684 482.548 84.211 4781.163
6 11.342 4.915 476.371 489.431 87.713 4815.949
7 11.457 3.6 479.542 494.328 90.998 4839.776
8 11.096 2.497 482.663 497.273 93.759 4855.85
9 10.477 1.63 485.448 498.838 95.925 4867.872

10 9.756 0 487.805 0 97.56 4878.049

Let the agreement commitments (qS, qF) = (8.909, 7.572) be fulfilled over
five steps. Following the time-consistent abatement scheme, players perform
emission reduction during each time period according to Table 23.

The coalition S, composed of four players, satisfies property of environmen-
tal efficiency (28) since aggregate emission reduction Q = 81.069 is larger than
total emission reduction Q−i = 78.936 for the coalition, composed of only three
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TABLE 23 Example 7.1.1 Emission Reduction Scheme.

Time period → [0, 1) [1, 2) [2, 3) [3, 4) [4, 5]
Individual abatements↓

ΔqS
i [t, t + 1) 4.455 2.227 1.114 0.557 0.557

ΔqF
i [t, t + 1) 3.786 1.893 0.947 0.473 0.473

players. Using the abatement scheme (51) guarantees time-consistency of inter-
nal stability of the coalition S (Theorem 6.2.1) but fails to sustain time-consistency
of external stability of the coalition after a threshold moment t∗, determined ac-
cording to (56) and equal to 1 in the current example. It implies that the renegoti-
ation process, described in Section 7.1, will occur after the first abatement period.
Model parameters at t = 1 are described in Table 24. Pollution flow evolves
according to (38) and a(1) = a − 1

2 E = 60.4655.

TABLE 24 Example 7.1.1 Model Parameters at the First Renegotiation.

b = 1
a(1) = 60.4655

c = 0.25
N = 10

TABLE 25 Example 7.1.1 Self-Enforcing Coalition after the First Renegotiation.

n qS
i qF

i πS πF Q Π
0 0 4.837 0 172.567 48.372 1725.668
1 1.122 5.160 174.325 171.154 47.565 1714.708
2 2.514 5.28 173.303 170.608 47.266 1711.471
3 4.022 5.095 172.671 171.448 47.729 1718.15
4∗ 5.387 4.579 172.625 173.632 49.019 1732.293
5 6.365 3.819 173.183 176.423 50.918 1748.03
6 6.858 2.972 174.165 178.94 53.036 1760.748
7 6.927 2.177 175.324 180.73 55.023 1769.459
8 6.709 1.51 176.465 181.807 56.692 1775.336
9 6.335 0.985 177.484 182.379 58.002 1779.731

10 5.899 0 178.345 0 58.991 1783.452

Renegotiating agreement condition at moment t = 1 requires reconcider-
ing conditions of internal/external stability and choice of abatement commit-
ments. Calculations presented in Table 25 show that though the stable coalition
is still composed of four players, S1 = S, Stackelberg equilibrium (qS1 , qF1) =
(5.387, 4.579) in the game Γ1(S1) differs from the restricted over the period [1, m]
Stackelberg equilibrium in the game Γ0(S) (4.455, 3.786).
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Continuing our reasoning in such a manner, we find that renegotiation takes
place at t = 2, 3, . . . , m − 1 and causes an increase of abatement commitments,
keeping the coalition structure S unchanged. In Fig. 12 step-wise emission re-
duction under renegotiation in the present example is illustrated. Underlined
values correspond to Stackelberg equilibrium in the current game after the rene-
gotiation (i.e. realization of the scheme (62)), non-underlined values correspond
to the previous game and describe restriction of Stackelberg equilibrium to the
remaining period of time.

FIGURE 12 Example 7.1.1 Emission reduction scheme under renegotiation.

7.2 Free-riding from IEA Compliance

Here we analyze time-consistency of an internally stable agreement assuming
possible free-riding from IEA compliance. In this case a signatory considers pos-
sible deviation from the coalition S and abating less during [t, t + 1), knowing
that such deviation can be detected at the following stage t and causes exclusion
from the coalition. A player decides to defect the agreement during [t, t + 1) if
its payoff over periods [t, t + 1) and [t + 1, m) is bigger than its payoff when it
follows the agreement. Upon such scenario condition of time-consistency of a
self-enforcing coalition receives the following, different in comparison to Defini-
tion 5.0.2, presentation.
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Definition 7.2.1 A self-enforcing coalition S, characterized by n = (n1, . . . , nK) of
players of K types, is time-consistent under a given abatement scheme, if for every time t,
t = 0, . . . , m − 1, the following conditions hold simultaneously

1) internal time-consistency

πi(qS[t, t + 1), qF[t, t + 1)) + πi(qS[t + 1, m], qF[t + 1, m]) (63)

≥ πi(qS\{i}[t, t + 1), qF∪{i}[t, t + 1))+ πi(qS\{i}[t + 1, m], qF∪{i}[t + 1, m]), ∀i ∈ S,

where (qS[t + 1, m], qF[t + 1, m]) is restriction over the period [t + 1, m] of an optimal
solution of the game Γ0(S) and (qS\{i}[t + 1, m], qF∪{i}[t + 1, m]) is a restriction over
the period [t + 1, m] of an optimal solution of the game Γ0(S \ {i});

2) external time-consistency

πi(qS[t, m], qF[t, m]) ≥ πi(qS∪{i}[t, m], qF\{i}[t, m]), ∀i ∈ F,

where (qS∪{i}[t, m], qF\{i}[t, m]) is restriction over the period [t, m] of an optimal solu-
tion of the game Γ0(S ∪ {i}).

Theorem 7.2.1 Let condition (28) of environmental efficiency hold. Then internal stabil-
ity of an agreement, which is self-enforcing in the game Γ0(S) upon Stackelberg equilib-
rium concept, is time-consistent in terms of Definition 7.2.1 under the abatement scheme
(51).

P r o o f. Let us consider an agreement, which is self-enforcing at t = 0. Since free-
riders are forbidden to join the agreement after it has been formed, external time-
consistency holds. Hence it is necessary to prove that internal stability satisfies
conditions of time-consistency (40), that is

πi(qS[t, t + 1), qF[t, t + 1)) + πi(qS[t + 1, m], qF[t + 1, m])

≥ πi(qS\{i}[t, t + 1), qF∪{i}[t, t + 1)) + πi(qS\{i}[t + 1, m], qF∪{i}[t + 1, m]),

for all i ∈ S and t = 1, . . . , m − 1. Net benefit of a signatory of type i,
i = 1, . . . , K, is

πi(qS[t, t + 1), qF[t, t + 1))

=
b
N

(
a(t)Q[t, t + 1) − 1

2
Q2[t, t + 1)

)
− 1

2
ci

(
qS∪{i}

i [t, t + 1)
)2

=
b
N

(
(a − 2t − 1

2t Q)
1

2t+1 Q − 1
2

1
4t+1 Q2

)
− 1

2
ci

1
4t+1 qS

i

=
1

4t+1 πi(qS, qF) +
2t+1 − 1

4t+1
b
N

(a − Q)Q +
1

4t+1
b
N

Q2,

πi(qS[t + 1, m], qF[t + 1, m])

=
b
N

(
a(t + 1)Q[t + 1, m] − 1

2
Q2[t + 1, m]

)
− 1

2
ci

(
qS

i [t + 1, m]
)2

,

=
b
N

(
(a − (1 − 1

2t+1 )Q)
1

2t+1 Q − 1
2

1
22(t+1)

Q2
)
− 1

2
1

22(t+1)
ci

(
qS

i

)2

=
1

4t+1 πi(qS, qF) +
2t+1 − 1

4t+1
b
N

Q(a − Q).
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Lets now assume that a signatory of type i makes a decision to defect the
agreement S at a certain moment t. It is assumed that a player knows that the
withdrawal will be detected not earlier than at the next moment t starts "cheating"
and acts as a free-rider during [t, t + 1), reducing qF∪{i}

i /2t+1 instead of qS
i /2t+1.

Let us denote

q̃[t, t + 1) =
(
{qS

l [t, t + 1)}l∈S\{i}, {qF
l [t, t + 1)}l∈F, qF∪{i}

i [t, t + 1)
)

strategies of the players on the current stage. Then its net befit can be presented
in the following way

πi(q̃[t, t + 1))

=
b
N

(
a(t)(Q[t, t + 1) − qS

i [t, t + 1) + qF∪{i}
i [t, t + 1))

− 1
2
(Q[t, t + 1) − qS

i [t, t + 1) + qF∪{i}
i [t, t + 1))2

)
− 1

2
ci

(
qF∪{i}

i [t, t + 1)
)2

=
b
N

(
(a − 2t − 1

2t Q)
1

2t+1 (Q − qS
i + qF∪{i}

i ) − 1
2

1
4t+1 (Q − qS

i + qF∪{i}
i )2

)
− 1

2
ci

1
4t+1 qF∪{i}

i

=
1

4t+1 πi(qS\{i}, qF∪{i})

+
1

4t+1
b
N

(
2t+1aQ − 2t+1Q2 − aQ−i + 2Q2 − 1

2
(Q − Q−i)

)

− 1
4t+1

b
N

(qS
i [t, t + 1) − qF∪{i}

i [t, t + 1))
(

2t+1a − 2t+1 + Q +
1
2
(qS

i + qF
i )

)
,

πi(qS\{i}[t + 1, m], qF∪{i}[t + 1, m])

=
b
N

(
(a(t + 1) − qS

i [t, t + 1) + qF∪{i}
i [t, t + 1)))Q−i[t + 1, m] − 1

2
(Q−i[t + 1, m])2

)
− 1

2
ci

(
qF∪{i}

i [t + 1, m]
)2

.

By the moment t + 1 the rest of signatories from S recognize the deviator and act
further as if coalition structure is S \ {i}, by shifting to the correspondent abate-
ment path Q−i/2t+1, which is restriction over [t + 1, m] of a Stackelberg solution
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in the game Γ0(S \ {i}). Then

πi(qS\{i}[t + 1, m], qF∪{i}[t + 1, m])

=
1

4t+1 πi(qS\{i}, qF∪{i}) +
2t+1 − 1

4t Q−i(a − Q) +
1

4t+1 Q−i(qS
i − qF∪{i}

i ).

Then

(πi(qS[t, t + 1), qF[t, t + 1)) + πi(qS[t + 1, m], qF[t + 1, m]))

− (πi(qS\{i}[t, t + 1), qF∪{i}[t, t + 1)) + πi(qS\{i}[t + 1, m], qF∪{i}[t + 1, m]))

=
2

4t+1 ΔS
i +

1
4t+1

b
N

(qS
i − qF∪{i}

i )(2t+1(a − Q) + (Q − Q−i) +
1
2
(qS

i − qF∪{i}
i ))

+
1

4t+1
b
N

(Q − Q−i)((2t+1 − 1)(a − Q) − 1
2
(a − Q) − 1

2
(a − Q−i)) ≥ 0.

Hence during [0, m] internal time-consistency of a self-enforcing agreement
in terms of Definition 7.2.1 holds1 and no signatory has incentives to defect the
agreement. �

7.3 Potential Time-consistency

General definition of internal time-consistency (see Definition 5.0.2) imposes quite
strict conditions on the properties of the agreement, formed as a self-enforcing
coalition in the game Γ0(S), so that those requirements can not be held with some
coalitions. In this section we introduce a definition of potential internal stability
of a set of embedded coalitions. This definition proposes transfer mechanisms
among signatories to come into action during multistage emission reduction, al-
lowing coalition structure to evolute into another stable condition.

In order to do so, let us first consider a practical generalized notion of coali-
tion S surplus, available during period [t, m],

ΔS
i (t) = πi

(
qS[t, m], qF[t, m]

)
− πi

(
qS\{i}[t, m], qF∪{i}[t, m]

)
,

where ΔS
i [0, m] = ΔS

i .

Definition 7.3.1 Let S0 be a self-enforcing coalition upon Stackelberg solution in the
game Γ0(S0). A set {S0, S1, S2, . . . , Sm−1} of embedded coalitions (Sj ⊆ Sj+1,
j = 0, . . . , m − 2) is potentially internally stable if one of the following conditions hold

a)

∑
i∈St

ΔSt
i (t) ≥ 0, t = 0, . . . , m − 1, (64)

1 Here we assume that (qS
i − qF∪{i}

i ) > 0, otherwise there is no free-riding from compliance.
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b) if there exists τ ∈ [1, m − 1] : ∑i∈Sτ
ΔSτ

i (τ) < 0, then

T

∑
t=0

∑
i∈S

ΔSt
i (t) ≥ 0, (65)

where T is the closest to m − 1 integer number such that

∑
i∈St

ΔSt
i (t) ≥ 0, t ∈ [T + 1, m − 1].

Condition (64) has taken place when we were describing potential internal sta-
bility of a single coalition in the static game. It requires coalition surplus to be
non-negative at every step of the dynamic process, so that it is possible to share
∑i∈St ΔSt

i (t) among coalition members at every t or to reallocate ∑m−1
t=0 ∑i∈St ΔSt

i (t)
(which is positive) over all period [0, m − 1] according to a certain sharing rule.

Alternative condition (65) is less strict and does not require surplus
∑i∈St ΔSt

i (t) to be non-negative at every t, but that sum of both positive and neg-
ative elements should be non-negative. It means that if T, T � m − 1, is the last
step, when coalitional surplus is negative, then sum of coalitional surpluses over
[0, T] should be non-negative and thus make it possible to provide redistribution
of aggregate surplus over the steps. This approach can also be regarded as a de-
layed payment, which implies that we save some part of ∑i∈St ΔSt

i (t) � 0 unshared
at step t, to use it at later steps when surplus is negative.

So far we concentrated our attention on examining time-consistency of the
agreement structure and behavior of abatement dynamics. On the other hand
little has been said about how renegotiations affect the total amount of reduced
emission. The following section is going to answer that question.

7.4 Total Emission Reduction

Let us now evaluate total emission reduction, which can appear under multistage
abatement (60) and (61) in the renegotiation game Γt∗(S). The following notation
will be practical for further analysis

α =
(1 − g)2(1̄, n)((λ, n)

(1̄, N) + (1 − g)2(1̄, n)(λ, n)
, (66)

so that with the help of (66) it is possible to write Q = αa and Q[t, m] = αa(t).

Theorem 7.4.1 In the renegotiation game Γt∗(St∗) total emission reduction can only
increase.

P r o o f. Using notation (66) we can represent parameter a(t), which describes
environmental situation during renegotiation in the following way

a(t) = a −
(

Q − 1
2t Q

)
= a

(
1 − 2t − 1

2t α

)
,
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where Q is total emission reduction in the game Γ0(S). According to the optimal
abatement scheme (51), emission reduction during [t, m] should be

Q[t, m] =
1
2t αa,

if at step t∗ occurs renegotiation, it would impose another abatement target

QRt∗ = αa(t) = αa
(

1 − α +
α

2t

)
.

Let us compare these results

QRt∗ − Q[t, m] =
(1 − α)(2t − 1)

2t ,

here 0 ≤ α ≤ 1, hence
QRt∗ − Q[t, m] ≥ 0.

Analogous reasoning can be made on further renegotiation steps. �

Corollary 7.4.1 Let, in the game Γt(S), renegotiation on emission reduction targets oc-
cur in each step, then total abatement is equal to

Qtotal = a (1 − (1 − α)( 1 − α

2

)
m−1

)
; (67)

where coefficient α is given in (66), and satisfies condition

Q ≤ Qtotal ≤ a,

where a is initial characteristics of global pollution. Moreover,

lim
t→∞

Qtotal = a.

P r o o f. To calculate total emission reduction, we should summarize abatements
achieved over m-steps.

Step 0 announced abatement target is Q = αa.

Step 1 emission reduction according to the proposed optimal abatement scheme
(51) during [0, 1) is

1
2

Q =
α

2
a;

current environmental setting is given by

a(1) = a − α

2
a = a

(
1 − α

2

)
;

announced renegotiated abatement target is

Q[1, m] = αa(1) = α(a − 1
2

Q) = α
(

1 − α

2

)
a.
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Step 2 emission reduction during [1, 2) is

1
2

Q[1, m] =
α

2

(
1 − α

2

)
a;

current state of environment is described by parameter a(2)

a(2) = a(1) − α

2

(
1 − α

2

)
a = a

(
1 − α

2

)2
;

announced renegotiated abatement target is

Q[2, m] = αa(2) = α
(

1 − α

2

)2
a.

step m − 1 emission reduction during [m − 2, m − 1) is

1
2

Q[m − 2, m] =
α

2

(
1 − α

2

)m−2
a;

α

2

(
1 − α

2

)
;

announced renegotiated abatement target is

Q[m − 1, m] = αa(m − 1) = α
(

1 − α

2

)m−1
a.

Thus total abatement during [0, m] is

α

2
a +

α

2

(
1 − α

2

)
a +

α

2

(
1 − α

2

)2
a + . . . + α

(
1 − α

2

)m−1
a

= a(1 − (1 − α)
(

1 − α

2

)m−1
). �

Dynamics of a stock pollutant is related to how countries decide to pro-
ceed with emission reduction during the life-cycle of the agreement. In order to
model countries’ realistic behavior, we constructed the time-consistent abatement
scheme. It appeared that such stepwise emission reduction leads to violation of
the IEA dynamic stability after a certain threshold moment of time, thus provid-
ing countries with incentives to withdraw or access the agreement.

Necessity to handle potential vulnerability of the agreement structure re-
sulted in repeated IEA negotiation, which implied reconsideration of countries’
membership status and emission reduction targets. Analysis of the situation re-
vealed that renegotiation eventually reassigned abatement commitments to the
agreement members but left the agreement structure unaffected. Moreover, it
also appeared that renegotiations would take place with regularity, sufficiently
increasing total emission reduction.



8 CONCLUSION

To perform this complex study of IEA formation and performance, we used game
theory to explain the strategic possibilities and incentives of countries when ne-
gotiation joint efforts on environmental issues such as transboundary pollution.
We accomplished this by linking the economic activity of the countries with the
physical state of the environment. This link was given by the social welfare func-
tion, and expressed via an economic-ecological model of the world. Representing
an IEA as a coalitional game of heterogeneous players allowed us to identify the
abatement targets of the countries and their agreement membership status. We
explored the relationship between the model parameters and cooperation lev-
els, and performed a sensitivity analysis of the agreement’s stability. It revealed
that large coalitions, including the grand coalition, are only stable if gains from
cooperation are small (coalition formation is rather insignificant). If gains from
cooperation are large, rather small coalitions are formed.

We specified mechanisms intended to enhance collaboration, including side
payments and emission trading, the latter being comprised of setting the price
and amount of tradeable pollution permits, and the initial reallocation of abate-
ment commitments. It was shown that such initiatives positively effect the size
and structure of a potentially stable coalition, making agreements with higher
abatement targets possible.

Next, we examined the dynamics of the agreement, and addressed the ques-
tion that if both members and free-riders have incentives to change their status
during the agreement life-cycle, is there a threat to compliance with the agree-
ment? The intuition behind this question comes from the idea that the dynamics
of the pollution flow puts continued agreement stability in jeopardy.

Pollution flow dynamics, and thus the potential for long-term multilateral
collaboration, is related to how countries perform emission reduction during the
life-cycle of the agreement. In order to realistically model countries’ behavior,
we suggest an algorithm for constructing an abatement scheme. The scheme as-
signs emission reductions so that the abatement effort during each time period
is adjusted according to the pollution reduction undertaken during the previous
stage, and takes into account any change in the environment.
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Following this scheme, internal dynamic stability of the IEA is achieved
with respect to free-riding in compliance and participation. However, external
dynamic stability is violated after a certain threshold moment in time, possibly
providing non-signatories with incentives to access the agreement and signato-
ries with incentives to leave. A renegotiation is required to stabilize the agree-
ment, in which membership status and emission reduction targets are reconsid-
ered. We showed that the renegotiation process enhances an IEA’s dynamic sta-
bility.

Finally, we examined compliance with the abatement targets and the effect
of the agreement on the global level of pollution and the welfare of countries.
This analysis revealed that following the time-consistent scheme of emission re-
duction would prevent free-riding from compliance, and in case of renegotiation,
the abatement efforts of the players would only increase.

There are many possibilities for the extension of this research, including the
following:

1. Softening the assumption of perfect information and considering incom-
plete information, where players of one type do not have information about
the benefit functions of players of another type, [Kolstad 2003], [Wirl 2004],
[Courtois & Haeringer 2005],[Kryazhimskii et al. 1998].

2. Calibration of the model parameters, which has a crucial role in applications
of this research. Using synthetic and real world data, one should observe
the relationship between input and output values to make estimations of
the model parameters.

3. The formation of multiple coalitions resulting in multiple IEAs. One could
study the coalition formation process as in [Finus 2001], [Alcalde & Revilla 2001],
[Cesar & De Zeeuw 1996], [Folmer et al. 1993].

4. The combination of the two major aspects of free-riding, namely free-riding
from membership and free-riding from compliance.

5. The study of methods to increase the size of a self-enforcing coalition.

The methodological approach, as well as the theoretical and numerical analysis,
presented in this thesis provides a formidable framework for future study of the
theory of IEA formation and sustainability.



APPENDIX 1

FIGURE 13 Example 3.2.1 Data Set.
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FIGURE 14 Example 3.2.1 Data Set.
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FIGURE 15 Example 3.2.1 Numerical Simulations with Two Types of Players.
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YHTEENVETO (FINNISH SUMMARY)

Ympäristöongelmien kehittyessä alati uhkaavammiksi ovat myös poliittiset
lähestymistavat tilanteen korjaamiseksi muuttuneet alati kansainvälisemmiksi.
Viimeisen vuosikymmenen kuluessa joukko monenkeskisiä sopimuksia ympä-
ristön suojelemiseksi on pantu alulle, vaikkakin niiden tehokkuus ja olemassaolon
jatkuvuus on suuressa vaarassa. Useat edellä mainittuihin sopimuksiin kohdis-
tuneet haasteet ovat selitettävissä positiivisen ulkopuolisuuden käsitteellä, joka
tarkoittaa että tietyt maat hyötyvät naapurimaidensa ympäristöystävällisistä toi-
mista ponnistelematta itse asian hyväksi. Näin ollen, jos sopimus asettaa oman
edun kannalta ristiriitaisia rajoituksia maiden teknologiselle ja ekonomiselle
kehittymiselle, johtaa tämä eräänlaiseen vapaamatkustukseen osallistumisen ja
sääntöjen noudattamisen suhteen. Monenkeskisen yhteistyön saavuttamiseksi
osapuolten strategiset intressit täytyy tuntea. Tässä työssä peliteoria on valittu
näiden intressien, ja sen kuinka ne vaikuttavat kansainvälisten ympäristösopi-
musten (international environmental agreement, IEA) muodostamiseen, suun-
nitteluun ja toimivuuteen, analyysin välineeksi. Luotuamme katsauksen peli-
teoreettisiin menetelmiin IEA-kentässä, tarkastelemme tiettyjä IEA:iin liittyviä
näkökulmia, kuten päästösupistusten tavoitteita, jäsenyyden asemaa (allekirjoit-
tajavaltio vs. vapaamatkustaja), sekä erilaisia mekanismeja, joilla maita voitaisiin
motivoida ottamaan osaa sopimuksiin. Tarkastelemme erityisesti seuraavaa
kysymystä: jos osanottajilla ja vapaamatkustajilla tietyssä IEA sopimuksessa on
kannustimena muuttaa statustaan sopimuksen voimassaoloaikana, muodostaako
tämä uhan sopimuksen noudattamiselle? Kehitämme metodologian IEA:n vakau-
den saavuttamiseksi, ja osoitamme että tätä metodologiaa hyödyntäen IEA:n sopi-
japuolet noudattavat päästösupistusten tavoitteita. Lisäksi, arvioimme sopimus-
ten vaikutuksia sopijamaiden hyvinvointiin, sekä globaalin tason saastumiseen.
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