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Preface

Recently I have been working in a project involving a design optimization platform

integrated to Catia V5 CAD system using the CAPRI interface. During the time in

the project I have gained some insight to design optimization and to the advantages

that our optimization system offers over traditional optimization systems, especially

if Multidisciplinary Design Optimization is required.

I was responsible for the technical implementation of the optimization system,

and so I needed to gain some knowledge about all of the subsystems included in the

optimization cycle. This includes CAD, surface (mesh) generation, volume mesh

generation, solving the state equation and optimization. The test platform is a sin-

gle discipline design optimization platform, but it was built from the start with the

idea that it will be expandable to use multiple disciplines, and to solve multidis-

ciplinary optimization problems (the difference between the two will be explained

in the thesis). A comprehensive introduction will be presented, and no previous

knowledge about design optimization is assumed.

ix



1 Introduction

The use of computers to simulate physical phenomena is a rapidly growing field

of research. Theoretically any physical process can be simulated by formulating

it to a mathematical model. For the most part, computational analysis is used in

engineering in order to improve a design or reduce costs. This is referred to as

Computer Aided Engineering (CAE). It is closely related to Computer Aided Design

(CAD), which is the standard way of creating a geometric definition of a physical

object that is aimed to be manufactured.

CAE analysis has developed from validation and failure analysis to an integral

part of the product design process [6]. This design methodology where simulation

drives the design is referred to as Simulation-Based Design (SBD). Over the years,

CAD systems and CAE analysis have evolved separately with distinct geometri-

cal models. CAD-CAE interoperability has been a well recognized issue for a long

time. A study conducted for the automotive industry in the United States estimated

that money wasted to re-entering or translating data between CAD systems and

downstream applications is around one billion dollars per year [64]. Alleviating

this bottleneck would therefore bring significant time and monetary savings.

The desire to do multidisciplinary design optimization (MDO) with geometries

obtained from CAD systems also requires the solution of this interoperability prob-

lem. In a process where hundreds or even thousands of designs are automatically

generated, interactive translation and repair of geometry is out of the question. The

design optimization platform has to be able to automatically generate new geome-

tries via a valid parameterization.

Multidisciplinary design optimization (also known as multidisciplinary system

design optimization) is a type of design optimization that incorporates a number of

engineering disciplines (and sometimes also nonengineering disciplines). The fact

that MDO incorporates various disciplines simultaneously allows it to more accu-

rately simulate physical phenomena that interact with other physical phenomena.

MDOoriginated from the needs of aerospace engineering. However, other engineer-

ing disciplines are following the path paved by aerospace engineers. The inherent

engineering origin of MDO makes it important to be able to integrate it with CAD

systems as closely as possible.

In this thesis, preliminary concepts needed to understand MDO are presented,
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and the challenges in implementingMDO are studied. The CAD-CAE interoperabil-

ity issue will be demonstrated and different approaches to solve it will be presented.

The optimization platform of our research group will also be presented, along with

its composition. Experimental data from test runs is shown from three optimiza-

tion runs. So far, only single discipline design optimization runs have been made.

Things are presented from an engineering viewpoint by focusing on computational

analysis that is done with geometries defined by CAD systems.
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2 Design Optimization

2.1 Introduction

The traditional way of designing includes costly and time consuming experiments

and their analysis. To some extent we can replace traditional way of designing with

computational analysis, saving considerable amount of time and money. Computa-

tional analysis can be thought of as a new tool in the design phase of a product, as

some physical phenomena are very hard or even impossible to study with experi-

ments, but rather easy to simulate with computational analysis [70]. This methodol-

ogy is kind of an intermediate between theory and experiment, in which synthetic

experiments are based on basic theoretical concepts.

The behavior of a phenomenon in a system depends upon the geometry of the

system, the property of the material or medium, and the boundary and initial condi-

tions [45]. With design optimization the goal is to find the optimal shape or topology

of this system, and sometimes also the optimal values of material and physics pa-

rameters. If only the shape of the system is optimized while other properties of the

system remain constant, we can use the term optimal shape design or shape opti-

mization [34].

2.2 Types of Design Optimization

Sizing and shape optimization (SSO) are the most mature and researched disciplines

of design optimization [7]. The difference between them is that with sizing opti-

mization we are only changing the sizes of parameterized components (e.g. thick-

ness), where as in shape optimization we can also have more complex parameter-

ized components such as splines.

The relative newcomer to design optimization is topology optimization. Topol-

ogy optimization defines the geometry with cells. The computational area is spec-

ified by the size and number of these cells, and within these limitations it is free to

form any conceivable geometry. Therefore, topology optimization is not confined

to the restrictions of the initial geometric shape of the design. For example, with

shape optimization no additional holes can be created during the optimization pro-

cess (see figure 2.1) [7]. However, the drawback of topology optimization is that it

3



Figure 2.1: The initial and final designs of three types of design optimization: a)

sizing optimization b) shape optimization and c) topology optimization.

Figure 2.2: Cells of a 2D topology optimization problem.

always leads to a nonsmooth structural geometry [62], as can be seen from figure

2.2. Most engineering applications require a smooth geometric shape, especially for

manufacturing. To overcome this, methods that convert the nonsmooth geometry

of topology optimization to a smooth geometry exist. To take this a step further,

topology and shape optimization can be combined by using topology optimization

to find an initial design that will be used as the starting point of shape optimization

[62]. However, the conversion process is the bottleneck of this kind of combined

optimization.
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2.3 Definition

Definition 2.1 We call a design optimization problem, the following optimization problem

[57]:
Find x ∈ Uad ⊂ Rd,

to minimize f(x),

subject to g(x) ≤ 0,

h(x) = 0,

(2.1)

where x = (x1, x2, ..., xd)
T is the design vector, x1, x2, ..., xd are the design variables, f :

Rd → R is the objective function, g is a vector of inequality constraints, h is a vector of

equality constraints, and Uad is the set of admissible designs.

The set Uad is also called design space. Design variables in size and shape optimiza-

tion are typically lengths and thicknesses of components and positions of control

points. In topology optimization the design variables define the density of each of

the cells.

UsuallyUad defines technical constraints in order that the design candidatemakes

sense (nonnegative thicknesses, nonintersecting parts in a CADmodel, etc). The im-

plicit constraint functions g and h usually depend on the performance of the design

(state constraints). If a design satisfies the constraints g and h, we can denote that it

belongs to the set of feasible designs x ∈ Ufs.

Furthermore, we can “artificially” restrict Uad or add constraints to confine the

optimization, as many times the complete design space is too large, and the com-

plete exploration of it would require unreasonable amounts of computation. For

example, we might already have a reasonably good solution and thus be only in-

terested in the exploration of the neighboring design space. Of course, this might

as well be a bad decision if we happen to exclude the best solutions. In practice,

design variables are either Boolean, discrete or continuous with a set or interval of

admissible values.

2.4 Parameterization

In the scope of design optimization, we want to solve a computational model for a

series of different geometries. Each of these is called a design and it is defined by

the design variables. In shape optimization the variables are used, for example, to

alter a parameterized CAD model in order to obtain different geometries. The way

the parameterization is done in the model dictates the shapes we can represent with
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Figure 2.3: A simple parameterized CADmodel of an ellipsoid in 2D and 3D views.

it. In figure 2.3 a simple parameterized Catia V5 model can be seen. The model has

two parameters: length and height. The 3D model is formed when the 2D ellipse is

rotated along its x-axis.

The design space parameterization has an important role in the performance of
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the design optimization process. As presented in [54], an ideal shape parameteriza-

tion of an automated design optimization platform should:

1. Be able to generate a large variety of physically realistic shapes with as few

design variables as possible.

2. Be robust meaning that a random perturbation of the design variables should

still provide a realistic design.

3. Be generic to be applied to a large variety of shape optimization problems and

able to be integrated or coupled with any existing CAD system.

4. Provide design variables that can easily be handled by an engineer in order to

define design variable bounds.

5. Provide an easy optimization problem by minimizing the skewness and im-

proving the conditioning of the design space.

2.5 Evaluating the Objective Function

2.5.1 The State Problem

The objective function f(x) of the design optimization problem is a function con-

structed to describe the fitness of a design. It gives a numeric fitness value to a ge-

ometry. The objective function needs to be formulated in a way that the smaller it is,

the better the design. The fitness value does not usually depend only on the design,

but also on the state of the system. For example, in aerodynamics the state can be

the lift and drag of our object, and in structural analysis the stresses and structural

deformations inside our object. Usually the state problem is a partial differential

equation (PDE).

Depending on analysis type (e.g. aerodynamic/structural) the PDE is solved

inside or outside the object. Either way, the geometry of our object influences the

computational domain Ω, and its boundary ∂Ω. The reason why the computational

area needs to be divided to the interior Ω and its boundary ∂Ω is because for the PDE

to have a unique solution inside domain Ω, we need to define boundary conditions

on the boundary ∂Ω. This PDE with additional restraints is called a Boundary-Value

Problem (BVP). The abstract BVP can be formulated as:
{

A(u) = 0 in Ω,

B(u) = 0 on ∂Ω
(2.2)
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where A and B are differential operators. A is the PDE that governs the solution in

the domain Ω and components of B are the boundary conditions.

As a concrete example, let us formulate the Navier–Stokes BVP. Navier–Stokes

equations (NS) describe themotion of viscous flows. Many interesting physical phe-

nomena can bemodeled by the Navier–Stokes equations (e.g. weather, water and air

flows). Unfortunately, little is known of the mathematical properties of the Navier–

Stokes equations. The existence and smoothness of a solution in three dimensions

has not been proved. In fact, the solution of these problems is one of the Millennium

Problems [25]. The mesh would need to contain an unreasonable amount of nodes

for any problem in 3D that contains amoderate amount of turbulence. Usually some

turbulence model is used to make the problem solvable (e.g. k-ǫ turbulence model).

The incompressible steady-state Navier–Stokes BVP can be formulated as follows:



















∇ ·
[

− ρI + η(∇u+ (∇u)T )
]

− ρ(u · ∇)u+ F = 0 in Ω,

∇ · u = 0 in Ω,

B(u) = 0 on ∂Ω

(2.3)

where ρ and η are the density and dynamic viscosity of the fluid (respectively). I is

the identity matrix, and F is the volume force affecting the fluid.

The domainΩ and the solution u of the BVP (the state problem) depend of course

on the design x. Therefore their dependence is often emphasized by writing them

as Ωx and ux. The dependence of f on x is implicit, i.e.

x → Ωx → F (ux) =: f(x) (2.4)

where F is a functional that measures the fitness (cost) related to the state ux

For an engineering system, the geometry can be very complex. Furthermore, the

boundary conditions can also be complicated. It is therefore generally impossible

to solve the governing differential equation analytically [45]. In practice, most of

the problems are solved using numerical methods. There are several methods to

achieve that. The most popular and the one that we are using in this thesis is the

Finite Element Method (FEM), but also worthy of a mention are the Finite Differ-

ence Method (FDM), the Boundary Element Method (BEM) and the Finite Volume

Method (FVM). All of these methods give us an approximation of the analytic solu-

tion.

The reason why FEM is so popular is probably because it is computationally

very effective, it has a solid theoretical foundation, and it can be applied virtually to

any geometry. In consequence, to reduce computational effort adaptive schemes are
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applicable and popular. This is especially useful in problems where we have critical

points of interest. It is also important to note that FEM uses the variational (weak)

formulation of the BVP. For more information about FEM see [37].

2.5.2 Mesh generation

The finite element method requires the computational area to be split up to small

elements. This way we can discretize the equations of the BVP. Mathematically

speaking, we replace continuous differential equations with a system of simultane-

ous algebraic equations [67]. We call the discretized computational area a mesh (or

grid). A mesh is usually generated with automatic mesh generation software (i.e.

mesher). A mesher requires a surface representation of the geometry as its input.

This input can be either an analytic boundary representation (B-rep) or a discrete

representation consisting of sets of faces. In case of the latter, we lose some preci-

sion as curved surfaces will be approximated by a finite amount of faces (or lines in

2D).

The job of the mesh generator is then to produce a volume mesh that conforms to

the boundary representation as closely as possible. Themore elements themesh has,

the more accurately it can represent the original geometry, but it also requires more

memory and computational time to generate and use such a mesh. The require-

ments for the mesh vary depending on the state problem. For example, structural

analysis does not usually require a very fine mesh, whereas Computational Fluid

Dynamics (CFD) does. Therefore a balance of accuracy and performance needs to

be found for each particular problem.

Meshes can be divided into three categories: structured, unstructured, and hy-

brid meshes [28]. Structured meshes have a logical and repeating structure, and

the elements always have the same number of neighbors. When speaking of struc-

tured meshes we are usually referring specifically to meshes with only rectangular

or parallelepiped elements. Unstructured meshes, which are used with FEM, can

have elements of any type. The most common element used is a tetrahedron (3D)

or triangle (2D). Probably the most popular unstructured mesh generation methods

are the Delaunay methods, which provide elements that are isotropic in nature. A

mesh which is partly structured and partly unstructured is called a hybrid mesh.

An unstructured 3D mesh generated with TetGen [66] can be seen in figure 2.4. For

more about mesh generation see [67, 28].
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Figure 2.4: An unstructured 3D mesh with ellipsoidal cavities in boundary and cut

plane views.

2.5.3 Solving the State Problem

When the mesh is ready and the mathematical model has been chosen, we have ev-

erything we need to solve the problem. We want to find a solver that is the most
10



capable of doing this. Knowing which methods are best for each specific problem

requires experience and theoretical knowledge. The computational model is fed to a

solver, which is to solve the discretized system. Different solvers use different algo-

rithms depending upon the physical phenomenon being simulated. The resulting

algebraic equations can be solved either with a direct or an iterative method. Direct

methods are well suited for small problems as they operate with the fully assembled

equation matrix. Iterative methods are better suited for larger problems where the

fully assembled equation matrix is too large to be handled at once.

Figure 2.5: Solution of a 2D Navier–Stokes BVP.

When a solution has been found, using our objective function we get a numeric

fitness value for the solution. Usually it involves integrating over certain parts of

the domain, with respect to some physical quantity obtained from the solution of

the state problem. For example, we could integrate the pressure over the boundaries

of a wing to get information about its lift.

An example solution of the Navier–Stokes BVP can be seen from figure 2.5. An

inflowwith an x-component of 100m/s and y-component of 20m/s is set on the left

boundary of the domain. The ellipses have the no slip (u = 0) boundary condition,
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and the rest of the boundaries are set as neutral. The parameters were set as F = 0,

η = 1 and ρ = 1. The value of dynamic viscosity η = 1 is very high, which causes

the flow to have minimal turbulence. Therefore, the solution is easy to obtain. For

example, the dynamic viscosity of air is around η = 1.5·10−5 (depending on pressure

and temperature). The velocity field of the solution is plotted in the figure.

2.5.4 Errors in Finite Element Approximation

The mathematical model is always a simplification of the real world, and much con-

sideration needs to be used when creating the mathematical model. The results are

worthless if the model is created erroneously or does not correspond to the physical

reality. This simplification always results in modeling error e0. To be sure that we

are getting results that are correct, a group of controlled test problems should be

solved. These problems are such that we already know the answer, and we are only

solving them to know if the mathematical model is valid [70].

The mathematical model is usually an infinite dimensional problem and to solve

it, we need to approximate it with a finite dimensional problem. This introduces

another error e1 (discretization error). A third and final error e2 (numerical error) is

induced when the discrete problem is solved with iterative methods using floating

point arithmetic [42]. Thus to insure that results correspond to what we want to

know, care needs to be taken so that all of these errors remain small.

Figure 2.6: Errors involved in finite element approximation.

The control and identification of errors in finite element approximation is a broad

and active research topic. For more on the subject see [1, 35, 50]

2.6 Optimization and Design of Experiments

To find increasingly better designs, we need someway of exploring the design space.

The traditional approach is to test out different designs interactively. They could be

defined by an experienced engineer for example. However, when a design opti-

mization problem has tens or hundreds of design variables, the deduction of their

impact on the state problem become impossible. Therefore, this trial-and-error type
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exploration of the design space is not sufficient. A systematic methodology of con-

ducting experiments is called Design of Experiments (DOE) [2]. A set of designs are

randomly or systematically generated using a DOE algorithm to try to cover the de-

sign space. However, usually an optimization algorithm is used instead in order to

find the best designs more efficiently. The optimization algorithm can also be used

in conjunction with the DOE sequence. For example, a DOE sequence can be used

as a starting population of a genetic algorithm (GA). A DOE sequence can also be

used to construct a response surface (RS) model.

The design optimization problem (2.1) is generally a d-dimensional nonlinear

constrained optimization problem, and we can exploit the theory of nonlinear pro-

gramming to find the best designs with as few function evaluations as possible. The

complete process of evaluating the objective function is often computationally very

expensive, and only a single objective function evaluation can take anywhere from

minutes to hours. Therefore, the optimization algorithm should converge rapidly

with a low number of function evaluations.

However, in worst case engineering problems the objective function is multi-

modal, high-dimensional and nondifferentiable [40], and the approximation meth-

ods used in its evaluation it cause it to be noisy [68]. These kind of difficult functions

that cannot be analyzed with the usual mathematical tools are referred to as black-

box functions. Finding an optimal solution to such a design optimization problem is

difficult. For example, gradient-based methods have difficulties because of numer-

ical noise caused by e1 and e2. The noise creates artificial local optima and causes

gradient-based optimization algorithms to converge slowly or even fail to converge.

There are some methods to try to circumvent this problem, such as the afore-

mentioned Response Surface Methodology (RSM) [31]. A response surface method-

ology can be loosely thought of as “d-dimensional curve fitting”, and the result is a

response surface model fitted to the available data. For detailed information about

the response surface methodology see [49].

High-dimensionality causes the design space to be very large. We can restrict it

with constraints, but doing so risks ruling out optimal solutions. Moreover, because

of multimodality we can have multiple basins of attraction, and local optimization

methods will risk getting stuck in local optima. To summarize, an optimization

method of a design optimization problem should ideally have the following quali-

ties:
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1. Global properties1

2. Gradient free

3. Fast convergence

4. Minimal amount of function evaluations

5. Ability to cope with high-dimensional black-box functions

Unfortunately a perfect method that would fill all these requirements does not

exist [23, 24, 39]. Evolutionary algorithms (EA) and Simulated Annealing (SA) are

popular in design optimization because of their ability to deal with high-dimensional

functions, and because they do not need any gradient information. Evolutionary al-

gorithms [4] can cope with multimodal, noisy and high-dimensional objective func-

tions, they are gradient free and with some probability they are able to find the

global optimum. The downside of EAs is that generally they require many function

evaluations and converge rather slowly [54]. Various types of EAs (e.g. memetic

algorithms) have adaptations to get rid of the slow convergence. For examples see

[12, 52].

Simulated annealing [41] is also gradient free and can cope with black-box func-

tions. The behavior of SA depends on the cooling schedule. With a slow cooling

schedule it should have a higher probability of finding the global optimum, but a

slow convergence, and with a fast cooling schedule the opposite is true.

2.7 Multiobjective Design Optimization

In (2.1) definition of a single objective (design) optimization problem was presented.

However, many real world optimization problems have multiple objectives that are

conflicting. A simple example could be: buy a good and cheap car. Generally, the

cheapest car is not the best, but it is not probably worth it to pay a fortune for the

best car either. A compromise would have to be found. First we would of course

need to define what is a “good” car. Then we can rule out some cars that are clearly

too expensive for their quality. We would be left with cars that have the most attrac-

tive price/quality ratio. We call these cars Pareto optimal solutions if a better quality

car always costs more, and a cheaper car is always of lower quality. In other words,

1i.e. ability to escape or avoid local optima and therefore have some probability of finding the

global optimum. No method is guaranteed to find the global optimum of a general optimization

problem [32].

14



improvement of one objective always leads to the deterioration of another objec-

tive. A trade-off needs to be made between quality and price to ultimately choose

which car to buy. Therefore, the objective space of a Multiobjective Optimization

(MOO) problem is often referred to as trade space. Let us define the multiobjective

optimization problem, along with some other necessary MOO concepts:

Definition 2.2 We call a multiobjective design optimization problem, the following opti-

mization problem [47]:

Find x ∈ Uad ⊂ Rd,

to minimize {(f1(x), f2(x), ..., fk(x)},

subject to g(x) ≤ 0,

h(x) = 0,

(2.5)

where we have k (≥ 2) objective functions fi : Rd → R. We can denote the vector of

objective functions by f(x) = (f1(x), f2(x), ..., fk(x))
T .

Definition 2.3 The feasible objective space (or trade space) Y of an MOO problem is the

image of the feasible region Ufs. That is Y = f(Ufs) ⊂ Rk.

Definition 2.4 A design vector x∗ ∈ Ufs ⊂ Uad is Pareto optimal iff there does not exist

another design vector x such that fi(x) ≤ fi(x
∗) for all i = i, ..., k and fj(x) < fj(x

∗) for at

least one index j.

An objective vector y∗ ∈ Y is Pareto optimal iff there does not exist another objective

vector y ∈ Y such that yi ≤ y∗

i for all i = 1, ..., k and yj < y∗

j for at least one index j.

Definition 2.5 An objective vector y∗ = (y∗

1
, ..., y∗

k) ∈ Rk is ideal, if it solves the problem:

Find x ∈ Uad ⊂ Rd,

to minimize fi(x)

subject to g(x) ≤ 0,

h(x) = 0,

for i = 1, ..., k

note that x can be different for each i.
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We can assume that at least some of the objectives are conflicting2. In conse-

quence, it is not possible to find a solution to an MOO problem that would simulta-

neously be optimal for all objective functions fi. Therefore, the ideal objective vector

y∗ is never a feasible solution3, but it is useful as a point of reference. An illustration

of the ideal objective vector and the Pareto front can be seen in figure 2.7.

Figure 2.7: Ideal objective vector y∗ and the Pareto front (bold).

The objective function f is vector valued, and ordering of vectors is ambiguous.

For example, (1, 1)T can be said to be less than (3, 3)T , but how to compare (1, 3)T

and (3, 1)T? Methodologies to obtain a single optimal solution always involve some

sort of decision making. The most common approach is to use a scalarizing function

to convert the MOO problem to a single objective optimization problem. Methods

to solve an MOO problem can be divided in the following categories [47]:

• No-Preference Methods

• A Posteriori Methods

• A Priori Methods

• Interactive Methods

2if this is not the case, the problem returns to the single objective design optimization problem

(2.1)
3i.e. ∄x ∈ Ufs such that f(x) = y∗
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Detailed description of methods falling in these categories goes beyond the context

of this thesis. A comprehensive description and comparison of manyMOOmethods

can be read from [47]. Let us describe the categories briefly with some examples.

2.7.1 No-Preference Methods

No-Preference methods return the MOO problem to a single objective optimization

problem using some simple scalarizing function. The decision maker is then left

with the option to either accept or reject the solution. As an example, the Method of

the Global Criterion reformulates the MOO problem as follows [47]:

Find x ∈ Uad ⊂ Rd,

minimize (
k

∑

i=1

|fi(x) − y∗

i |
p)1/p

subject to g(x) ≤ 0,

h(x) = 0,

The idea is to find the Pareto optimal solution that has the minimal distance to the

ideal objective vector y∗ (using Lp-metrics). All objectives are equally important.

2.7.2 A Posteriori Methods

A Posteriori methods generate a set of Pareto optimal solutions. The decision maker

then has to choose the preferred solution. The difficulty is that generating a set

of Pareto optimal solutions is usually computationally expensive and sometimes

difficult [47]. The most well-known A Posteriori method is the Weighting method.

The problem is scalarized using a weighted sum of the objective functions:

Find x ∈ Uad ⊂ Rd,

to minimize
k

∑

i=1

wifi(x)

subject to g(x) ≤ 0,

h(x) = 0,

where wi ≥ 0 for all i = 1, ..., k and
∑k

i=1
wi = 1.

The decision maker uses the weights wi to prioritize the objectives. Objective

functions should be scaled so that higher valued objective functions do not get un-

wanted advantage. The Weighting method can find all Pareto optimal solutions of a
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convexMOO problem [47]. However, the properties of objective functions are rarely

known beforehand, and if the objective space is nonconvex, the Weighting method

can only find a part of the Pareto optimal solutions. Therefore, an MOO problem

should be considered to have non-commensurable objectives, unless it is known to be

convex [27].

Recently Multiple Objective Genetic Algorithms (MOGAs) or more generally

Multiple Objective Evolutionary Algorithms (MOEAs) have sparked a lot of interest

[17]. They are claimed to robustly find a diverse Pareto optimal set of a nonconvex

MOO problem [22]. For examples see [17, 27, 22].

2.7.3 A Priori Methods

With A Priori methods the decision maker has to make his or her preferences before

the actual solution process. The difficulty is that the decision has to be made before

additional information of the problem can be deducted from solutions of the state

problem. As an example, let use formulate the Value Function Method:

Find x ∈ Uad ⊂ Rd,

to maximize U(f(x))

subject to g(x) ≤ 0,

h(x) = 0,

where U : Rk → R is a value function that provides a complete ordering in the

objective space.

The Value FunctionMethod is an excellentmethod if the decisionmaker happens

to know an explicit mathematical formulation for the value function, and if it truly

represents the decision maker’s preference [47]. However, usually this is not the

case, and the formulation of the value function U is the difficulty of this method.

2.7.4 Interactive Methods

Interactive methods are designed to overcome the weaknesses of other MOO meth-

ods. A set of feasible solutions is generated, after which the decision maker is re-

quired to answer some questions. This cycle is repeated until an acceptable solution

is found. Obviously, in a design optimization platform the interaction needs to be

planned so that it is not needed constantly (e.g. a few times per day). Interactive

methods are very versatile, and can be expected to produce satisfactory results. The

formulations of interactive methods are rather long, but they can be read from [47].
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2.8 Summary

To conclude this chapter, let us recapitulate the design optimization process. When

a design optimization process is started, an initial guess or population of designs is

generated using a DOE sequence (e.g. random generation). Next, the fitness of the

designs is evaluated by the usual computer simulation cycle, which includes at least

the following:

1. Surface generation

2. Mesh generation

3. Solving

4. Post processing and evaluation

Finally, the optimization algorithm generates a new design (or set of designs) that

are to be evaluated. This process is repeated until a satisfactory design has been

found. In Multidisciplinary Design Optimization the design optimization process is

somewhat more complicated.
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3 Multidisciplinary Design Optimization

3.1 Introduction

Real-world engineering systems are rather complicated, and to accurately simulate

them in a computer environment, various different aspects should be taken into ac-

count. Advances in computer hardware and parallel computing methods have pre-

pared the way for the construction of more complex optimization systems. Instead

of optimizing only one subsystem of an engineering system, it is becoming possible

to optimize an entire engineering system as a whole, including also a number of

non-engineering disciplines (e.g. manufacturing, economics) [31].

The traditional way has been to analyze different disciplines sequentially one

at a time with teams of people specialized in their own field of expertise. This ap-

proach has its problems. For example, if an aerodynamics teams finds an optimal

shape in their perspective, this could leave the structural analysis teamwith a shape

that is structurally unstable. Objectives of different disciplines are much of the time

conflicting and all objectives should be considered simultaneously to achieve opti-

mality.

More importantly, many physical phenomena in the real world are interacting.

To accurately simulate them in a computer environment this interaction should be

taken into account as well. In MDO the idea is to include all the necessary disci-

plines to the optimization simultaneously. An MDO method can exploit the inter-

actions between disciplines and this is why a solution found by MDO is superior to

the traditional method. The ideology of MDO seems intuitive, but the problem is

in implementation. Simultaneous solving of disciplines significantly increases the

complexity of the problem. That is not the only problem: the requirements for the

tools and the organizational challenge of constructing an MDO system are also sig-

nificantly higher.

3.2 Definition

A general definition of MDO was presented in [59] by J. Sobieszczanski-Sobieski as

“MDO can be described as a methodology for the design of complex engineering

systems that are governed by mutually interacting physical phenomena and made
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up of distinct interacting subsystems”. I would like to emphasize the word inter-

acting in the definition. According to this definition, optimization of a system with

multiple disciplines but no interaction among these disciplines is not MDO. Never-

theless, such systems are sometimes called multidisciplinary. Systems that share in-

formation in only one direction are mathematically equivalent to systems that have

completely separated disciplines. They use multiple disciplines, but are not coupled

and therefore depend implicitly only on design variables. The formal definition of

MDO requires that disciplines are coupled. For simplicity, let us define the MDO

problem with only 2 disciplines.

Definition 3.1 The 2-discipline MDO problem [71]:

Find x = (x1, x2, xc)
T ∈ Uad ⊂ Rd, (3.1a)

to minimize f(x, z) =







f1(x1, xc, z1)

f2(x2, xc, z2)

fc(x1, x2, xc, z1, z2)






, (3.1b)

subject to g(x, z) =







g1(x1, xc, z1)

g
2
(x2, xc, z2)

gc(x1, x2, xc, z1, z2)






≤ 0, (3.1c)

h(x, z) =







h1(x1, xc, z1)

h2(x2, xc, z2)

hc(x1, x2, xc, z1, z2)






= 0, (3.1d)

z1 = w1(x1, xc, z
c
2
) (3.1e)

z2 = w2(x2, xc, z
c
1
) (3.1f)

where x is the design vector, which is divided into discipline specific local design variables x1

and x2, and the common design vector xc. The objective function vector f(x) is also divided

into local (f
1
, f

2
) and common (fc) objective functions. g(x) and h(x) are the inequality and

equality constraint vectors, and their components are the local constraint vectors (g
1
, g

2
)

and (h1, h2), and the common constraint vectors gc and hc. w1 and w2 are the analyzers

of disciplines 1 and 2 respectively, and z1 and z2 are state variable vectors. z
c
1
and zc

2
are

coupling variable vectors.

What sets an MDO problem apart from an ordinary design optimization problem

is that in an MDO problem two or more analyzers are coupled. Therefore, they

need the results of each other as their input. In other words, the objective and/or

constraint functions of an MDO problem are not only functions of design variables,

but they also depend on state variables. The state variables z1 and z2 are divided into
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coupling variables (zc
1
, zc

2
) and noncoupling variables (znc

1
, znc

2
). Coupling variables

of a discipline are input of the other discipline (e.g. zc
2
is an input variable vector

of the first discipline). Note that if no coupling between analyzers exists, the MDO

problem (3.1) returns to the ordinary design optimization problem (2.1).

3.3 MDOMethods

To solve an MDO problem we not only have to find the optimal value for f(x) and

satisfy the constraints (3.1c) and (3.1d), but we also need to satisfy (3.1e) and (3.1f).

Because z1 and z2 are interdependent, they need to be solved iteratively, beginning

with some initial given values that do not need to satisfy (3.1e) and (3.1f). Therefore,

we have the following situation:

z1 = w1(x1, xc, s2) (3.2a)

z2 = w2(x2, xc, s1) (3.2b)

where (s1, s2) are the initial “guesses” of coupling variable vectors (zc
1
, zc

2
). At this

stage, if the disciplines satisfy the constraints (3.1c) and (3.1d), the disciplines are

said to have reached single discipline feasibility [20]. Furthermore, if all the disciplines

of an MDO problem have reached single discipline feasibility, the situation is called

individual discipline feasibility. The goal of the MDO method is to ultimately achieve

multidisciplinary feasibility, which is attained when:

1. Each discipline has achieved individual discipline feasibility.

2. (3.1e) and (3.1f) are satisfied (i.e. the inputs correspond to the outputs of the

other discipline).

In this situation the states of the coupled disciplines are in equilibrium. This entire

process that aims to achieve multidisciplinary feasibility is called multidisciplinary

analysis (MDA).

MDO methods can be divided into two categories: single-level and multilevel

methods. Single-level methods generally have a single optimizer and directly use

the inherent nonhierarchical structure of anMDOproblem, whereasmultilevel meth-

odsmodify the nonhierarchical structure to a hierarchical structure. Each level of the

hierarchical structure has an optimizer. The following seven MDO methods were

presented in [3]:

• Single-level MDO methods
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– All-at-once (AAO) [20]

– Individual-discipline-feasible (IDF) [20]

– Multiple-discipline-feasible (MDF) [20]

– Multidisciplinary optimization based on independent subspaces (MDOIS)

[53]

• Multilevel MDO methods

– Concurrent subspace optimization (CSSO) [63]

– Bi-level integrated system synthesis (BLISS) [60]

– Collaborative optimization (CO) [10]

In [71] the aforementioned sevenMDOmethods were benchmarked with twomath-

ematical test cases, and the multilevel methods were proven overall inferior. How-

ever, the benchmarks were done sequentially with a single computer, even though

disciplines of a multilevel method can be run parallel. Further details of the mul-

tilevel methods can be read from [71, 63, 60, 10]. Moreover, a comparison of MDF,

IDF and AAO can be read from [38]

Note that the classification of constraints and the objective function to discipline

specific components is only necessary with the multilevel methods and the MDOIS

method, and is therefore redundant with AAO, IDF and MDF. Let us briefly go

through the AAO, IDF and MDF methods.

3.3.1 Multiple-Discipline-Feasible

MDF is probably the simplestMDOmethod. It uses the basic formulation (3.1) of the

MDO problem. During each optimization iteration, a system analysis is performed

in order to achieve multidisciplinary feasibility. This is usually done by using the

fixed point iteration method to achieve equilibrium for equations (3.1e) and (3.1f).

This process converges to a mathematical optimum, and MDF is therefore used as a

standard solution when MDO methods are compared [3].

MDF maintains multidisciplinary feasibility throughout the optimization pro-

cess. This usually results in a large number of function calls, particularly if the

couplings are complex. However, MDF is practical due to its simple formulation.
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3.3.2 Individual-Discipline-Feasible

IDF uses an alternative formulation of the MDO problem. The coupling vectors

(zc
2
, zc

1
) of (3.1e) and (3.1f) are replaced by surrogate vectors, and the coupling rela-

tionship is maintained by setting new equality constraints [3]:

Find x1, x2, xc, s
c
1
, sc

2
, (3.3a)

to minimize f(x1, x2, xc, z1, z2), (3.3b)

subject to g(x, z) ≤ 0, (3.3c)

h(x, z) = 0 (3.3d)

sc
1
− zc

1
= 0 (3.3e)

sc
2
− zc

2
= 0 (3.3f)

z1 = w1(x1, xc, s
c
2
) (3.3g)

z2 = w2(x2, xc, s
c
1
) (3.3h)

Multidisciplinary feasibility is not required during every optimization iteration.

This drastically reduces the amount of needed function calls. Furthermore, analyz-

ers of different disciplines do not need to wait for each other and they can be run

simultaneously.

Individual discipline feasibility is achieved by doing simulations using the sur-

rogate vectors sc
1
and sc

2
. Optimization is being done on the surrogate vectors (sc

1
, sc

2
)

as well, and the equality constraints (3.3e) and (3.3f) should eventually force the

optimization process to achieve multidisciplinary feasibility.

3.3.3 All-At-Once

Also called the Simultaneous Analysis andDesign (SAND)method, the AAOmethod

requires neither individual nor multidisciplinary feasibility during an optimization

iteration. The whole system analysis is eliminated by converting the system analysis

equations into equality constraints, and treating state variables as design variables.

Therefore, the responsibility of multidisciplinary feasibility is passed on to the opti-

mizer. The AAOmethod uses a following formulation [71]:
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Find x1, x2, xc, s
c
1
, snc

1
, sc

2
, snc

2
(3.4a)

to minimize f(x1, x2, xc, s
c
1
, snc

1
, sc

2
, snc

2
), (3.4b)

subject to g(x, s) =







g1(x1, xc, s
c
1
, snc

1
)

g
2
(x2, xc, s

c
2
, snc

2
)

gc(x1, x2, s
c
1
, snc

1
, sc

2
, snc

2
)






≤ 0, (3.4c)

h(x, s) =







h1(x1, xc, s
c
1
, snc

1
)

h2(x2, xc, s
c
2
, snc

2
)

hc(x1, x2, xc, s
c
1
, snc

1
, sc

2
, snc

2
)






= 0, (3.4d)

w1(x1, xc, s
c
2
) − s1 = 0 (3.4e)

w2(x2, xc, s
c
1
) − s2 = 0 (3.4f)

The downside is that this reformulated optimization problem is significantly more

challenging than the basic MDO problem. In other words, although system analysis

is not needed with AAO, the optimization problem itself becomes more difficult.

Moreover, multidisciplinary feasibility is attained only at the absolute end of the

optimization process, thus designs attained during the optimization process are not

feasible [38].

3.4 Practical Implementation

The definitions can be generalized to more than two disciplines. In that case, more

complex couplings are possible. Even with only two disciplines, the need for func-

tion evaluations is vastly greater in anMDO problem due to the increase in problem

size (e.g. AAO, IDF) or due to system analysis (e.g. MDF). Therefore, it is common

to use adaptive optimization algorithms that use low fidelity meshes in the early

stages of the optimization and gradually increase the fidelity when nearing an op-

timum. It is also more worthwhile to spend time to obtain sensitivity information

from an MDO problem to enable the use of gradient based algorithms.

An approach presented in [31] argues why it is worthwhile to use time and effort

to create a response surface model, and then solve the optimization problem using

the response surface model. Sensitivity analysis and function evaluations can then

be made using the response surface model, and time consuming simulations are not

needed. However, the construction of an accurate response surface model might be

an equally challenging task as solving the actual MDO problem.

In practice, the complex nature of MDO problems usually causes their objectives
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to be conflicting, and thus MDO problems are usually multiobjective. The formula-

tion of a single objective MDO problem is still useful, as most of the multiobjective

methods ultimately return the MOO problem back to a single objective optimiza-

tion problem [47]. We can have a total of four different types of design optimization

problems. Their key properties are presented in table 3.1.

Single Discipline

Single Objective

Single or multiple nonconflicting objectives

Single or multiple noninteracting disciplines

Has an unambiguous solution (not necessarily unique)

Multiobjective

Multiple conflicting objectives

Single or multiple noninteracting disciplines

Pareto front of optimal solutions

Multidisciplinary

Single Objective

Single or multiple nonconflicting objectives

Multiple interacting disciplines

Has an unambiguous solution (not necessarily unique)

Multiobjective

Multiple conflicting objectives

Multiple interacting disciplines

Pareto front of optimal solutions

Table 3.1: Characteristics of different types of design optimization problems.
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4 CAD-CAE Interoperability

4.1 Multidisciplinary Requirements

The MDO problem was presented as a coupled problem, but organizational diffi-

culties of having multiple disciplines in an optimization platform are present even

if the disciplines are not coupled. In practice, different disciplines operate on differ-

ent meshes, and there is no guarantee that mesh nodes exist in identical locations.

Therefore, to obtain multidisciplinary analysis information on a single point inΩ, in-

terpolation routines are needed. Furthermore, different analyzers and CAD system

have their strengths and weaknesses, and the use of various CAD systems and/or

analyzers in a single organization is not uncommon. Data transfer among CAD

systems and analysis softwares (i.e. downstream applications) is problematic.

File standards have been created, but they are deficient for the needs of MDO. In

order for the interpolation routine to function with at least some accuracy, it is cru-

cial that the underlying B-rep is identical among downstream applications. Addi-

tionally, the requirements for the geometry vary according to discipline. For exam-

ple, a complete CADmodel of a car is not necessary (and in fact is too complicated)

for aerodynamic simulations. Only the exterior is needed. However, in crash test

simulations the interior is essential, whereas some small details of the exterior that

are significant for aerodynamics might have a nonexistent impact on the crash test

simulations (e.g. small chamfers).

Traditionally, different CADmodels have been used for the analysis of each disci-

pline. It is hard, if not impossible, to do multidisciplinary analysis if the underlying

CAD models are different. However, if the CAD model is constructed correctly, the

CADmodel can be stripped down by suppressing some of its features to specifically

suit a discipline. Using such a CAD model it is possible to use a single CAD model

for all the disciplines.

4.2 CAD System Geometry Representation

Traditionally data between CAD and CAE applications has been transferred via the

neutral IGES, STL or STEP file formats, or through proprietary formats [9]. This ap-

proach is referred to as the CAD-centric approach [43] (illustrated in figure 4.1). The
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IGES file format stores geometry in form of separate curves and surfaces, whereas

STL is a discrete representation of the geometry consisting of only faces, neither of

these two file formats store topological information. The STEP file format supports

topology as well as geometry, and is therefore a preferable format over IGES and

STL.

Figure 4.1: The CAD-centric approach to CAD-CAE integration.

CAD systems that support solid modeling have a properly closed solid repre-

sentation of the geometry with a defined topology. As such, it should be a sufficient

representation for the needs of computational analysis. However, closed solid ob-

jects of CAD systems are actually only “almost” closed. Nodes bounding an edge

or edges bounding a face do not necessarily sit on each other [33]. They are only

required to be inside a certain tolerance in order for them to be interpreted as being

connected. Moreover, this tolerance is different for different CAD systems, and it

is generally much larger than the precision of double precision floating point arith-

metic.

When CAD geometry is saved to a file and imported to another application, the

solid objects that used to be interpreted as being closed often have gaps because of

the tolerances in CAD systems geometry representation. To create a proper volume

mesh, the mesher requires a closed boundary representation. To achieve that, the

gaps in the geometry need to be repaired. Therefore, it is necessary to deduce the

topology of the geometry to identify the gaps, and then patch them up. This process

is described in [5, 69]. The patching process usually introduces “sliver” surfaces that

are problematic for meshers [33]. Because of these “sliver” surfaces, the mesh needs

to be interactively repaired so that it is of sufficiently high quality for the analysis.

This is clearly out of the question if we are planning on doing automated design

optimization with hundreds of simulations.

For historical reasons, modern commercial CAD systems create a dual model,

consisting of a procedural shape model and a secondary boundary representation

model [56]. The procedural model is a set of instructions on how to construct the

CAD model from a set of primitives using operations and features such as extru-

sions, revolutions, holes, lofting, chamfers, fillets, etc., whereas the B-rep model is a

28



snapshot of the procedural model. It only records the resulting geometry, topology

and tolerances, while details of the construction process are lost.

The B-rep model is easier to read and interpret as it is an explicit representation

of the geometry, but the downside is that it is very hard to change a B-rep model

after it has been created. To keep the B-rep model up to date, the old B-rep model is

discarded and a new one is created every time the procedural model is changed. The

B-rep model is used mostly for visualization and geometric computations. Usually

this “dumb” B-rep model is the one used when exporting the CAD model for the

use of computational analysis. This is unfortunate because in design optimization

new variations of the geometry are needed constantly. There have been various

attempts to overcome the problems created by CAD system tolerances and “dumb”

B-rep models.

One approach is to initially eliminate CAD from the analysis by creating the ge-

ometry in the CAE application, and export the geometry to the CAD system when

the analysis is complete. This approach is referred to as the CAE-centric approach

[43] (illustrated in figure 4.2). The problem with this approach is that usually the

geometry creation tools of CAE application are vastly inferior to the ones of a CAD

system. In order to construct a fully functional CAD model based on a CAE model,

one needs to create it from scratch or use semi-automatic (detail addition) conver-

sion tools. Even if this could be done automatically, it involves updating and main-

taining two separate models.

Figure 4.2: The CAE-centric approach.

An extension to the STEP file format standard introduced in [56] proposes the

addition of complementary generative model information to the STEP file format

based on the theory by Leyton [44]. The article claims that the STEP file format could

be retrofitted to interpret the low level procedural shape representation presented

by Leyton as higher level construction operators, and could therefore be used for a

formal generative shape representation. However, this technology is described only

at a conceptual level and only a proof of concept demonstration is presented. More-

over, before it could be considered as a viable solution, the majority of CAD systems

would need to adopt the file format, and additionally they should also strictly con-
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form to the standard, as historically this has been a problem with the STEP standard

[56].

4.3 Direct Coupling to CAD Systems

Some analysis suites couple directly to the CAD system [33]. First, this allows the

surface discretization procedure to communicate directly with the CAD system and

verify that the resulting surface discretization is a close match to the CAD model

(i.e. does not contain unwanted gaps and follows the geometry accurately). Sec-

ond, it makes available the use of the high-level CAD geometry representation, and

therefore modifying features and parameters is possible. These two factors facilitate

the modification of the CAD model and eliminate the need of interactive repairing,

and thus enable the construction of integrated CAD-CAE design optimization plat-

forms.

The coupling can be done in twoways: originating from the CAD system or from

the downstream application. Unfortunately, analysis initiated by the CAD system

is simply too limiting for the needs of MDO. Modules would have to exist for all of

the desired downstream applications. Moreover, we want the control of the analysis

process to be maintained by the optimization platform. Usually this is not possible

when the analysis is initiated from a CAD system.

Modules that couple from the downstream application to the CAD system such

as the Comsol CAD Import Module [18], are better suited for design optimization,

but from an MDO perspective, it is still not an ideal solution. Multiple downstream

applications would need to have a CAD import module for the used CAD system

(or in worst case, multiple CAD systems). Furthermore, the modules most likely

would not interpret the geometry in an identical manner, and thus would create

a problem of inconsistency. To address this problem, a neutral solution would be

needed, that would translate geometry identically regardless of used CAD systems

and analysis softwares.

Several existing projects are developing or have developed CAD neutral Ap-

plication Programming Interfaces (API). These are the Common Geometry Module

(CGM) [65], Simulation Environment for Engineering Design (SEED) [58], Compu-

tational Analysis PRogramming Interface (CAPRI) [13], GeomSim [30] and OMG

CADServices [15]. The common goal for these projects is to serve as an intermediate

between CAD systems and downstream applications. Regardless of CAD system,

the neutral API should provide the CAD topology and geometry to all its clients in

an identical manner. Furthermore, direct coupling allows the modification of pa-
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rameters and defeaturing of the CAD model. In [6] CAD neutral APIs were shown

to be the most flexible approach to access CAD geometry for analysis.

However, although direct coupling allows access to the CAD system, the low-

level geometry construction of CAD systems differs. Direct construction of geome-

try through an API is not always possible. Only the CAD systems that are based on

geometry kernels (and allow the use of the kernel) can perform direct construction

(Parasolid, ACIS, OpenCASCADE, Granite) [33]. For design optimization purposes,

direct construction is not generally required. It is sufficient if one can change shapes

and suppress features. Usually the API connects to the Master Model [36] of the

CAD system to offer a CAD vendor neutral approach.

The Master Model is basically a tree of features used in the construction of a

solid. It allows the suppression of features and modification of exposed parameters

of the CADmodel. After the Master Model has been modified, the CAD model can

be regenerated to reflect the changes. By using theMaster Model, a family of geome-

tries can be generated from a single CAD model. Therefore, the discipline specific

geometry requirements of MDO problems can be met. The Master Model architec-

ture is supported by all major CAD systems. GeomSim on the other hand uses a

combined approach by offering access to the Master Model and additionally to the

geometry kernel whenever available. Unfortunately, GeomSim does not currently

support Catia.

4.4 CAPRI

The CAPRI [13] CAD neutral API is used in the optimization platform of our re-

search group. Instead of the usual CAD-centric or CAE-centric approaches to CAD-

CAE integration, CAPRI uses a geometry centric approach. CAPRI’s approach to

CAD-CAE integration is illustrated in figure 4.3. For another geometry centric ap-

proach see [43].

CARPI has its own geometry definition, which combines geometry and topology.

CAPRI makes accessible the actual geometry (instead of a discretized version) to all

its clients. The geometry that resides in the CAD system is still considered as the

“correct” geometry, CAPRI merely offers a common interface to the geometry. The

geometry representation is therefore consistent among all downstream applications.

In practice, the geometry representation of CAPRI has to be converted to a format

that the mesher(s) can read. It is up to the user of CAPRI if he or she wants to

write an interpreter to convert the CAPRI’s B-rep to the mesher’s B-rep. However,

most meshers can use discretized geometries as their input (such as STL). For this
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Figure 4.3: CAPRI’s (geometry centric) approach to CAD-CAE integration.

purpose CAPRI includes a surface triangulator that can create a discretization of the

geometry. CAD systems can often save their geometries in such a format as well.

Moreover, analysis suites that utilize direct coupling can simultaneously provide

the actual geometry and its discretized version. CAPRI provides the same, but the

difference is that CARPI’s representation is identical to all downstream applications,

regardless of CAD system. The discretization of CAPRI is also said to be high quality

and “watertight” [33].

CAPRI is intended to be used from within a (multidisciplinary) analysis suite,

and for this purpose it supports the C and FORTRAN programming languages. An

example CAPRI application written in C can be seen from appendix A. Note that

when utilizing CAPRI in a program, the used CAD system always needs to be spec-

ified. Currently CAPRI supports the following CAD systems:

• Catia V5

• OpenCASCADE

• Parasolid

• Pro/ENGINEER

• SolidWorks

• UGS UG NX

As an additional feature, CAPRI offers a client/server architecture. CAPRI server

is located on a computer server along with the CAD system. Computers that do

simulations have the CAPRI client component and connect to the server when they
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need to make geometry queries. This approach has several benefits when dealing

with large computational analysis platforms. First, it allows the centralization of

the CAD systems so that cumbersome CAD installations are not needed on every

workstation, and thus CAD licenses are required for the servers only. Second, if

the simulations are done in a distributed environment, the geometry definition can

have a central repository. For an optimization example using CAPRI see [29].

4.5 Summary

Direct coupling is a decent approach to solve the CAD-CAE interoperability issue,

and can be recommended for analysis where only one solver is needed. Assum-

ing that the direct coupling is implemented well (e.g. no geometry exchange is-

sues). However, if anMDO platform is being built with multiple solvers, it is critical

that the B-rep can be provided to all solvers identically because of the interpolation

necessary for the interdisciplinary mappings. In such a case a neutral API such as

CAPRI is recommended. The downside to CAPRI can be said to be the fact that it

needs an additional license, but that is usually the casewith other coupling solutions

as well. CAPRI can also be said to be a bit hard to use, as it requires programming.

However, it can also be seen as an advantage because it allows exact control of the

geometry exchange. To conclude the chapter and to compare different geometry ex-

change method a summary of the pros and cons of different geometry is presented

below:

• File based explicit boundary representation (STL, IGES, STEP)

Pros:

+ Highly standardized

+ No license required

Cons:

− Can contain gaps and overlaps (i.e. “dirty” geometry)

− Hard/Impossible to parameterize (needs to be recreated every iteration)

• Generative file based representation (proposed new STEP)

Pros:

+ Easier to modify than explicit file formats

+ No license required

Cons:

− Not ready for use
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− Has to be adopted by major CAD systems

− Probably has still unknown issues

• Coupling from CAD to solver

Pros:

+ Access to high level CAD features and procedural representation of the geometry

Cons:

− Control of the analysis process usually needs to be maintained by the CAD system

− Relies on modules that likely do not exist for all needed solvers

• Comsol CAD Import bidirectional interface (Coupling from solver to CAD)

Pros:

+ Able to verify the topology from the CAD system

+ Access to the Master Model

Cons:

− Only works with SolidWorks (with other CAD systems operates like traditional file

transfer)

− Relies on a module that likely does not exist in other solvers

− Even if a module would exist in each solver there is no guarantee that they would

interpret geometry from the CAD system in an identical manner (inconsistency)

• CAPRI

Pros:

+ Access to the Master Model

+ Able to verify the topology from the CAD system

+ Modules exist for all major CAD systems

+ Able to provide a common B-rep for all downstream applications (consistent)

+ No geometry translation

Cons:

− License required for all used CAD systems and CAPRI itself
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5 Design Optimization Platform

5.1 Logical Structure and Data flow

Our research group has implemented a functioning design optimization platform.

The components of the optimization platform are:

• The CAD system and CAPRI

• Mesher

• Solver

• ModeFRONTIER

The CAD geometry is read from the Catia V5 [14] CAD system with the CAPRI

API. CAPRI is then used to defeature and prepare the geometry for analysis, and ul-

timately to create a discretization of the geometry. The discretization is then passed

to the mesher. The volume mesh is created with Tetgen [66]. Comsol Multiphysics

[19] or Elmer [26] is used to solve the BVP. ModeFRONTIER [48] controls the opti-

mization process.

The optimization system is launched from the Graphical User Interface (GUI) of

ModeFRONTIER. ModeFRONTIER allows the creation of a flow chart that is used

to control the optimization. The optimization problem is defined in the flow chart

using ModeFRONTIER components such as: input file, output file, external script,

variable, target and constraint. The flow of the optimization is controlled with this

flow chart by logical expressions. An example flow chart can be seen in figure 5.1.

Basically, it works like batch processing with a GUI. However, ModeFRONTIER

offers some additional features that are very valuable, like plotting the history of so-

lutions real-time in various different ways, and analyzing the optimization results.

The components can be distributed over several workstations/servers. Cur-

rently ordinary workstations are used to run all the software, but the plan has been

to move the solver and mesher to a server with more computational power in the

near future. Currently ModeFRONTIER and the solver are running on their ex-

clusive workstations, and the rest (CAPRI, CAD, Mesher) are running on a third

workstation. There were plans to have the CAD system run on its own exclusive
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Figure 5.1: ModeFRONTIER Flow Chart.

workstation, which should be easily achieved by using the client/server feature of

CAPRI.

The distribution of the components on different workstations is practical, if dif-

ferent people work on different parts of the system. For example, not all of the

workstations need to have all of the licenses, and files do not need to be moved back

and forth. The distribution does not help speed up the actual analysis process in

any way as it is still run sequentially. Parallel or distributed computing can be use-

ful in other circumstances. For example, with genetic algorithms (GA)we can divide

the population to several subpopulations and solve them simultaneously [11]. Also

the plan has been to exploit parallel computing in the future with multidisciplinary

problems.

The data flow of the system is illustrated in figure 5.2. The figure shows an

idealistic version, in which CAPRI has been separated to CAPRI client and server,

even though currently this is not the case in our system. We have CAPRI running

on only one workstation and so no client/server methodology is needed.
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Figure 5.2: Data flow of the system.

5.2 Detailed Process Description

The optimization process is iterative and during each iteration we are roughly:

1. (Re)constructing a CAD model with Catia V5 via CAPRI using parameters

given by the optimizer

2. Constructing a surface mesh with CAPRI

3. Building a volume mesh from the surface mesh

4. Solving the problem with the volume mesh

5. Using an optimization algorithm to determine new parameters for the CAD

model to try to find a better solution

5.2.1 Reconstruction of the CAD model

In this phase CAPRI is instructed to open the CADmodel and to create a newmodel

suitable for analysis. Usually this involves at least the creation of a bounding box,

cutting the model out of the bounding box and setting boundary conditions. Be-

cause this process can be different for each optimization problem, the program code

usually needs to be modified. Setting boundary conditions could be done as early

37



as in the CAD system, and this way we could reduce the amount of manual modifi-

cation of the code.

This can be done by first setting boundary conditions to the CADmodel in Catia

V5 as properties. Then they could be read, parsed and interpreted as boundary

conditions in CAPRI. This is something that was considered for a while, but the

idea was abandoned when it was realized that the other manual modifications need

to be made regardless (e.g. creation of a bounding box or suppression of features,

etc). These modifications will add new or change existing boundaries of the model,

so setting boundary conditions using Catia V5 is not always possible.

5.2.2 Construction of the surface and volume meshes

In this phase the model generated by the previous phase is opened and boundary

condition numbers are assigned to its boundaries. TetGen is then used to create the

volume mesh. TetGen accepts a variety of parameters, so a balance of accuracy and

performance for themesh can usually be found by tweaking these input parameters.

Although, the mesher is very easy to change if another mesher is needed.

First, CAPRI is called to open the CAD model and boundary conditions are as-

signed to it. Then CAPRI is instructed to create discretization of the geometry. The

discretization is then is stored in memory in TetGen format (piecewise linear com-

plex) with boundary conditions as additional information. Now we have a surface

mesh presentation of the CADmodel and we use it to create the volume mesh with

TetGen. The completed mesh with its boundary conditions is then stored in mem-

ory. Finally, depending on the solver, we usually need to convert the mesh to its

respective file format. In this case we are going to convert the mesh to either COM-

SOL’s or Elmer’s native file format.

5.2.3 Solving the State Problem

This phase is totally dependent on the solver we want to use. Generally, we want

to set up the problem and import the mesh with its boundary conditions. In order

to solve the problem automatically, we need to have some way to run the solver

without user interaction. So far two solvers have been used in our optimization

platform: Elmer and Comsol. Practically any solver can be used, providing that it

can be run without user interaction.

Comsol is an interactive multiphysics mesher-solver-analyzer. Comsol has a

script interface (Comsol Script) which is used to run the solver without user interac-

tion. Using the script file the mesh is imported along with boundary conditions, and
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then a problem setup is loaded from a template file. The script file then commands

Comsol to solve the problem, and the information needed for the objective function

evaluation are written to a file. A sample script file can be seen from appendix B.

Elmer is also a mesher-solver-analyzer whose solver component was found to

be very capable. However, Elmer did not provide such readily available tools for

integration. Therefore, Comsol was used in the actual design optimization test case.

Elmer is command-line driven and thus it is easy to have it run without user inter-

action.

5.2.4 Optimization and analyzing

In this phase the fitness of the design is analyzed based on the results given by

the solver. As usually in optimization, we want to have some rules to determine

when we want to stop the optimization. For example, we can have either maximum

number of iterations or some tolerance for the solution, or both. Also, we need some

way of choosing a new set of parameters for the parameterized CAD Model. The

amount of parameters, objective functions and the nature of the objective function

will dictate the optimization methods we can use. ModeFRONTIER provides some

ready-to-use optimization algorithms, but naturally additional algorithms can be

imported as well.

If the tolerance or maximum numbers of iterations has not been reached, the op-

timization algorithm gives a new set of parameters, which will be sent to CAPRI.

ModeFRONTIER then calls CAPRI to remodel the CAD model with the new pa-

rameters. This way the process is started from the beginning, and will be continued

until the tolerance or maximum iterations is reached. The performance of the ongo-

ing optimization can be monitored from ModeFRONTIER.
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6 Test Runs and Results

6.1 Test Case Description and Definition

The domain of the test case is a solid box of dimensions 2000×2000×2000with three

ellipsoidal cavities. The three ellipsoids are parameterized by six parameters each

(x, y, z, length, height, angle). The parameterization is illustrated in figure 6.2. The

original plan was that to do CFD with the platform at some point, and that is why a

geometry and parameterization was used that could be used with CFD analysis as

well. The domain is illustrated in figure 6.1.

Figure 6.1: The domain Ω and its boundaries S0, S1, S2 and S3.

However, CFD analysis in three dimensions is quite challenging, so with the

hardware that was available, a less computationally expensive problem was chosen

to start out with. Therefore, the Laplace’s equation was chosen, which the used
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workstations can solve with a direct solver in less than a minute.

Figure 6.2: Parameterization of a single ellipsoid.

Let S0 be the boundary of the solid box and S1, S2 and S3 the boundaries of the

three ellipsoids respectively. We formulate the state problem (or BVP) as follows:

Find u such that,

∆u(x, y, z) = 0 in Ω, (6.1a)

u(x, y, z) = x on S0, (6.1b)

∇u(x, y, z) · n = 0 on S1, S2, S3 (6.1c)

where n is the outward normal (at (x, y, z)) and ∆ is the Laplace operator (∆ =

∇ · ∇ = ∇2). The equation (6.1a) is called the Laplace’s equation and the boundary

conditions (6.1b) and (6.1c) are called the Dirichlet and Neumann boundary condi-

tions respectively.

One physical interpretation of (6.1) could be: fix the temperature on the bound-

ary and wait until the temperature of the interior does not change anymore. The

temperature distribution in the interior will then be given by the solution of the

BVP. The boundaries S1, S2 and S3 can be seen as thermally insulated obstructions

in the interior.

The solution of (6.1) also gives us the flow potential of a nonviscid, irrotational,

incompressible flow. In this case (6.1b) would define the direction and magnitude of

the flow, and (6.1c) specifies that the flow cannot enter the ellipsoids nor fluid is al-
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lowed to emerge from the ellipsoids. The velocity field of the flow can be calculated

from v = ∇u.

Now that we have defined the state problem, we can define the design prob-

lem. For simplicity, let us restrict the amount of design variables to only 5 of the

total 18 parameters, namely length(=: l1) and height(=: h1) of the first ellipsoid, and

length(=: l3), height(=: h3) and angle(=: α3) of the third ellipsoid. The second ellip-

soid will therefore remain constant, and also the positions of the ellipsoids will not

be changed. For simplicity, the bounds of the variables were set as follows:

l1 ∈ [28, 32]

h1 ∈ [4, 6]

l3 ∈ [48, 52]

h3 ∈ [4, 6]

α3 ∈ [0.4, 0.6]

and therefore the design space is:

Uad = [28, 32] × [4, 6] × [48, 52] × [4, 6] × [0.4, 0.6] ⊂ R5 (6.2)

Naturally, to test the optimization platform, we want to have a design problem

to which we already know an optimal solution. First, the state problem (6.1) was

solved with the default values of:

(l1, h1, l3, h3, α3)
T = (30, 5, 50, 5, 0.5)T =: x∗

and then from the numerical solution the boundary integrals of the expression (1−

|∇u|)2 over S1, S2 and S3 were calculated. Let us define this as the operator bi(x):

∫

Si

(1 − |∇u|)2dSi =: bi(x) (6.3)

The following results were obtained:

b1(x
∗) = 12.6019

b2(x
∗) = 537.186

b3(x
∗) = 36.867

42



We want the design x∗ to be optimal, so let us devise a reconstruction problem by

formulating the objective function as follows:

f(x) = (b1(x
∗) − b1(x))

2 + (b2(x
∗) − b2(x))

2 + (b3(x
∗) − b3(x))

2 (6.4)

No additional constraints are set on the optimization, so the test case design opti-

mization problem is simplified to:

Find x = (l1, h1, l3, h3, α3) ∈ Uad

to minimize f(x),
(6.5)

The objective function was defined f(x) using boundary integrals of the expres-

sion (1 − |∇u|)2. What does this expression mean intuitively? We can visualize it

by realizing that if we would not have any obstructions inside the box, ∇u would

be (1, 0, 0) with all u ∈ Ω. We can think this as a flow toward the positive x-axis.

More importantly, if there would be no obstructions, |∇u| would be identically 1.

Therefore, the expression (1 − |∇u|)2 would be identically 0.

Now if we think about adding an obstruction inside the box, the boundary con-

dition (6.1c) forces the gradients on the boundary to be orthogonal to the outward

normal n. We can expect that on locations of the boundary where the angle between

the x-axis and n is small, the value of |∇u| will largely differ from 1. A boundary

plot seen in figure 6.3 seems to conform to this idea. Therefore, (1 − |∇u|)2 was

chosen to be a heuristic to measure the disturbance an object creates in the flow po-

tential. All that really matters is that this quantity is dependent on the shapes of the

ellipsoids so that the shape optimization process has some sense.

Now we are ready to do some test runs using this problem. We are of course

hoping that the optimization platformwould find the optimal solution x∗. However,

there is no guarantee that this is a unique solution. First, let us go through the

practical implementation of the test case.

6.2 Practical Implementation

To create the geometry a CAD model of a single ellipsoid was created. This model

was illustrated earlier in figure 2.3. Then the following steps are executed (using

CAPRI) to create the geometry for analysis:

1. Create a Catia V5 model with a solid box of dimensions 2000 × 2000 × 2000

2. Open a connection to the ellipsoid model and its Master Model
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Figure 6.3: Boundary plot of the expression (1 − |∇u|)2.

3. Create an ellipsoidal cavity inside the box model by following these steps:

(a) Change the values of length and height parameters of the ellipsoid model

via the Master Model

(b) Regenerate the ellipsoid model

(c) Create a displacement/rotational matrix using parameters (xi, yi, zi, αi)
1

(d) Apply the matrix on the ellipsoid)

(e) Subtract the (current) ellipsoid from the box model (Boolean difference)

4. Repeat step 3 to create two more cavities

5. Save the box model geometry (box with three holes) to a Catia V5 file

Next, the procedure that was described in the previous chapter is followed to

solve the state problem (6.1) with the current geometry. TetGen was given an addi-

1In this test case (xi, yi, zi) are constants
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tional quality parameter q2.2 (minimum radius-edge ratio 2.2). A typical mesh had

around 70 000 elements and the solution of the state problem usually took around 50

seconds with the UMFPACK direct solver. From the solution the boundary integrals

b1(x), b2(x), b3(x) were then calculated using a Comsol script file. Finally, the fitness

of the design was evaluated in ModeFRONTIER by calculating (6.4). A sample so-

lution can be seen in figure 6.4.

Figure 6.4: A solution visualized.
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6.3 Optimization Runs

A total of three optimization runs were done with a different optimization algorithm

in each run. The algorithms used were the Nelder–Mead (or simplex) method [51],

a combined simplex-simulated annealing algorithm [16] and the Non-dominated

Sorting Genetic Algorithm II (NSGA-II)[22]. As there was no information about

the numerical accuracy of the solution, the runs were done with a fixed number

of iterations. For the third run the ellipsoid CAD model was slightly modified, so

unfortunately it is not directly comparable to the first two.

There is apparently some bug in TetGen, Comsol or the conversion code from

TetGen to Comsol. In some runs the geometry was missing a single tetrahedron.

Comsol could still read the geometry, but it was corrupted. Fortunately this was not

very common (only 5-10 designs per run). The computations were done on a PC

with a 2.8 GHz Pentium 4 processor.
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6.3.1 Optimization Run 1: The Nelder–Mead method

Nelder-Nead was the only fully deterministic algorithm used and it converged with

about 50 function evaluations (see figure 6.6). Interestingly, theNelder–Meadmethod

converged very close to the predefined optimal design x∗ (see figure 6.5). The initial

simplex was generated randomly so it might be just a coincidence, or more likely

because of the fact that x∗ is at the geometric center of the design space.

Also an interesting observation was made from this test run. Once the algorithm

had done about 150 iterations, the changes the algorithm made to the design vari-

ables were minimal. At this point many of the designs started to give exactly the

same objective function value. It therefore seems that the floating point precision of

Catia V5 was reached as 4 out of the 5 design variables were implemented via the

CAD system (lengths and heights).

Optimization Run Summary

Number of Designs 159

Number of Feasible Designs 154

Number of Error Designs 5

Total Run Time 2h 21min

Design id l1 h1 l3 h3 α3 f(x)

Best Design 106 30.079 5.099 48.998 4.979 0.4989 0.3276

Worst Design 3 28.024 5.927 51.759 5.894 0.5874 414.5

Table 6.1: Optimization Run 1 Summary.
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Figure 6.5: Optimization Run 1: Design variable convergence history.
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Figure 6.6: Optimization Run 1: Objective function convergence history.

6.3.2 Optimization Run 2: Simplex-Simulated Annealing

This algorithm combines the Nelder–Mead algorithm with a simulated annealing

type random variation. This gives the algorithm a chance to escape local optima.

The algorithm works by subtracting a logarithmically distributed (positive) random

variable from the objective function value associated with each of the vertexes of the

simplex. Additionally, a similar random variable is added to the objective function

value at every new replacement point. In both cases the perturbation is proportional

to the temperature t of the system [16]:

(fperturbed)k = fk − t ∗ ln(rnd) k = 1, ..., d + 1

(fperturbed)new = fnew + t ∗ ln(rnd)
(6.6)

The same initial simplex was used as in the previous run, and the objective func-

tion convergence history (in figure 6.7) seems quite similar to the previous run with

only a bit more variation (or noise) due to the random perturbation. However, the

design variable convergence (in figure 6.8) appears a lot more random than in the

first run. Therefore, this algorithm does seem to make a better job exploring the

design space, and if we had a highly multimodal objective function, this algorithm

probably would be a decent choice.
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Algorithm Parameters

Cooling Coefficient p = 1.0

Initial Temperature t0 = 10

Maximum Number of Designs n = 300

Annealing Schedule t = t0(1 − i/n)p

Optimization Run Summary

Number of Designs 302

Number of Feasible Designs 292

Number of Error Designs 10

Total Run Time 4h 27min

Design id l1 h1 l3 h3 α3 f(x)

Best Design 281 28.693 4.784 51.777 5.641 0.4511 0.3779

Worst Design 1 28.024 5.927 51.759 5.894 0.5874 435.8

Table 6.2: Optimization Run 2 Summary.
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Figure 6.7: Optimization Run 2: Objective function convergence history.
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Figure 6.8: Optimization Run 2: Design variable convergence history.
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6.3.3 Optimization Run 3: The NSGA-II Genetic Algorithm

This test run was by far the most extensive that was done totaling almost 12 hours

of computations. NSGA-II is an elitistic multiobjective optimization algorithm, and

therefore it is not really designed for an optimization problem of this type. Never-

theless, it was tested because the plan is to solve more difficult optimization prob-

lems in the future.

In retrospect, a larger population with fewer generations should have been used.

As can be seen from figure 6.10, the randomly generated population of 10 individu-

als degenerated quickly into a very homogeneous population. This is probably at-

tributed to the elitism of NSGA-II. On the other hand the algorithm also converged

surprisingly fast with only about 5 generations (see figure 6.9), and after that the

majority of newly generated designs were already existing, and thus only 324 de-

signs out of the 1000 were unique. Therefore, 100 generations was excessive with

only 10 individuals and a mutation probability of 0.05.

Before the population degenerated, the algorithm seemed to explore the design

space very well. In [22] the algorithm is also claimed to accurately find a diverse

Pareto optimal set of a multiobjective optimization problem. Unfortunately, the test

problem is single objective so this claim could not be tested. Despite this, the NSGA-

II algorithm seems like a relatively fast genetic algorithm for multimodal multiob-

jective problems. For more about the NSGA-II see [22].
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Algorithm Parameters

Number of Generations 100

Individuals per Generation 10

Crossover Probability 0.9

Mutation Probability 0.05

Crossover Distribution Index 20

Mutation Distribution Index 20

Optimization Run Summary

Number of Designs 324

Number of Feasible Designs 314

Number of Error Designs 10

Total Run Time 11h 45min

Design id l1 h1 l3 h3 α3 f(x)

Best Design 224 30.759 4.963 50.213 5.954 0.4413 0.3660

Worst Design 1 28.024 5.927 51.759 5.894 0.5874 359.1

Table 6.3: Optimization Run 3 Summary.
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Figure 6.9: Optimization Run 3: Objective function convergence history.
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Figure 6.10: Optimization Run 3: Design variable convergence history.
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6.4 Remarks and Conclusions from the Optimization Runs

As can be seen from the optimization results, the predefined optimal solution x∗ is

not unique. Judging from the three optimization runs, the objective function (6.4)

seems to be linear. Therefore, we can guess to find a linear dependence between the

design vector x and the objective function f . We can also expect that b1(x) depends

only on (l1, h1) and b3(x) depends only on (l3, h3, α3). Figures 6.11 and 6.12 strongly

support this hypothesis.
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Figure 6.11: Optimization Run 1: Multivariable linear fitting of l1 and h1 versus

b1(x).
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Figure 6.12: Optimization Run 1: Multivariable linear fitting of l3, h3 and α3 versus

b3(x).

The set of optimal designs of (6.1) should therefore be a line in Uad. Statistical

proof of this claim will not be presented as this is not really the main concern of this
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thesis, but a response surface model (see figure 6.13) fitted to the data of the second

optimization run illustrates the impact of h1 and l1 on (b1(x
∗) − b1(x))

2.

From tables 6.1, 6.2 and 6.3 is evident that in each case the best solution is close

to around 0.35. This generally seems to be the best solution that can be acquired

with the used mesh fidelity. The use of an algorithm such as the NSGA-II is a bit

of overkill for such a simple problem, but what matters is that the optimization

platform works as intended and is capable of finding optimal solution(s) of a design

optimization problem.
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7 Expanding the Platform to an MDO Platform

How could we expand the optimization platform to anMDO platform? Let us take a

brief speculative glance on how to expand the platform, andwhat problems possibly

could arise from generalizing the presented optimization platform to encompass

multiple disciplines.

The type of anMDOmethod used obviously affects the waywe need to construct

the MDO platform. For instance, with the AAO formulation minimal changes to

the optimization platform are needed, whereas with multilevel methods a system

analysis with multiple optimizers is needed. It is also reasonable to assume that an

MDO problem has conflicting objectives and therefore multiobjective optimization

methods are needed. Let us assume that wewould have anMDO problem as shown

in figure 7.1.
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Figure 7.1: An example MDO problem with the MDF method.

The MDO problem has four disciplines from which disciplines one, two and
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three are coupled. With the MDF method, multidisciplinary feasibility is required

during each design optimization iteration. The simplest way to achieve feasibility

is to use the fixed point iteration method. The fixed point iteration method is ap-

plied every design optimization iteration until equilibrium is achieved (within an

acceptable tolerance). If we assume that on average with this MDO problem mul-

tidisciplinary feasibility would be achieved when i = N , we would need to do ap-

proximately 3·N ·M+M simulations, whereM is the number of design optimization

iterations.

How to implement such an MDO platform in practice with the tools that were

presented earlier? A sketch plan can be seen from figure 7.2. Only one CAPRI server

is depicted in the figure. However, there is no limitation on the amount of CAPRI

servers. It might be necessary to have more CAPRI server/CAD system combina-

tions if the CAPRI server becomes a bottleneck. Another added difficulty is that

running multiple solvers parallel requires the optimization process to be divided

into separate threads. Moreover, each solver probably needs parallel or distributed

computing to finish its respective computation in a reasonable time.
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Figure 7.2: A sketch of an example MDO platform.

The amount of simulations can rise high with the MDF method, but the good
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thing about using theMDFmethod is that multidisciplinary feasibility is maintained

after every optimization iteration. Therefore, conclusions can be made from the op-

timization results even if the process has not yet converged. This also means that

information can be gathered from multiple disciplines in the middle of optimiza-

tion, and via the CAPRI clients interpolation can be done to approximate values on

locations that do not contain a mesh node in the respective discipline.

The organizational difficulty of the example platform is already formidable. Var-

ious experts from different fields (e.g. programming, optimization, analysis experts)

are no doubt needed to operate and design such a platform. Research and planning

needs to be made to evaluate different approaches one can have to solve the orga-

nizational challenges of such a platform. For more information on integrating CAD

with an MDO platform see [21, 46].
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8 Concluding Thoughts and Future Work

A general framework for an MDO platform was presented, and challenges in the

practical implementation of MDO were studied. In design optimization the objec-

tive function is usually difficult and little is known of its properties beforehand.

Moreover, multiobjective optimization methods become more relevant than in sin-

gle discipline design optimization due to the more complex nature of MDO prob-

lems.

The MDO problem was formulated and methods to solve it were studied briefly.

A good starting point for anMDO platform is the MDFmethod due to its simplicity.

The IDF method is generally more efficient, and can also be adopted rather easily.

Other MDO methods can be considered when the MDO platform has been tested

with one of these two methods.

The CAD-CAE interoperability issue was presented. In an MDO environment

the easy parameterization and defeaturing of the geometry is essential. Moreover,

the geometry boundary representation should be identical to all the used meshers.

This way gaining information on a single point inΩ from several disciplines simulta-

neously is possible with at least some accuracy. A unified geometry access API such

as CAPRI was shown to be the most flexible approach to alleviate the interoperabil-

ity issue, but also direct coupling to CAD can be considered in some circumstances.

The CAD-CAE interoperability issue can be considered largely solved by CAPRI,

and probably by other neutral APIs in the future as well. However, the use of CAPRI

is still a bit troublesome. It is by no means attributed to design flaws of CAPRI, but

due to the fact that CAE applications have no standardized information exchange

protocol. Therefore, including several CAE applications to a single MDO platform

will always be troublesome if this does not change.

Optimization runs showed that the optimization platform of our research group

can solve single discipline design optimization problems. The next step would be

to solve test cases with multiple disciplines. Nokia has promised to provide an

industrial test case with a simplified CAD model and problem definition. There

was talk that the test case will have two or three disciplines, but no agreement was

made whether they are to be coupled or not. Regardless, it will be a chance to

test the platform with a significantly more challenging problem. The disciplines of

the test case will most likely be electromagnetic and thermal analysis, and perhaps
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structural analysis as well.

Practically any solver and mesher can be used with the approach that was used

in the optimization platform of our research group. Additionally, CAPRI supports

all of the major CAD systems and therefore a wide variety of CAD systems can be

used. Probably some time in the future, off-the-shelf MDO platforms will emerge

from major optimization software companies. It remains to be seen if they prove to

be as flexible as the approach that was presented in this thesis.
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A An Example CAPRI Program

#include <stdio.h>

#include "capri.h"

/* Hello -- An example CAPRI program

* Initializes CAPRI, loads a CAD model, prints the number of

* volumes in the model and finally closes CAPRI.

*/

int main(int argc, char *argv[])

{

int status;

if (argc != 2) {

printf(" Usage: hello Modeller Model\n");

return 0;

}

/* start CAPRI */

status = gi_uStart();

printf(" gi_uStart status = \%d\n", status);

if (status != 0) exit(1);

/* load the specified model */

status = gi_uLoadModel(NULL, argv[1], argv[2]);

printf(" Part \%s: gi_uLoadModel status = \%d\n", argv[2], status);

/* print the number of volumes */

printf(" Number of volumes = \%d\n", gi_uNumVolumes());

/* stop CAPRI */

gi_uStop(0);

return 0;

}
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B The Comsol Script

flclear fem

% COMSOL version

clear vrsn

vrsn.name = ’COMSOL 3.3’;

vrsn.ext = ’a’;

vrsn.major = 0;

vrsn.build = 511;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2007/02/02 19:05:58 $’;

fem.version = vrsn;

% Import mesh

marr = meshimport(’mesh001.mphtxt’);

fem.mesh = marr{1};

% Application mode 1

clear appl

appl.mode.class = ’Laplace’;

appl.assignsuffix = ’_lpeq’;

clear bnd

bnd.r = {0,’x’};

bnd.type = {’neu’,’dir’};

bnd.ind = [2,2,2,2,2,2,1,1,1];

appl.bnd = bnd;

fem.appl{1} = appl;

fem.frame = {’ref’};

fem.border = 1;

clear units;

units.basesystem = ’SI’;

fem.units = units;
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% Multiphysics

fem=multiphysics(fem);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

’solcomp’,{’u’}, ...

’outcomp’,{’u’});

% Save current fem structure for restart purposes

fem0=fem;

% Integrate over ellipsoid 1

press1=postint(fem,’(1 - absux_lpeq)^2’, ...

’unit’,’’, ...

’dl’,[8], ...

’edim’,2);

% Integrate over ellipsoid 2

press2=postint(fem,’(1 - absux_lpeq)^2’, ...

’unit’,’’, ...

’dl’,[9], ...

’edim’,2);

% Integrate over ellipsoid 3

press3=postint(fem,’(1 - absux_lpeq)^2’, ...

’unit’,’’, ...

’dl’,[7], ...

’edim’,2);

% Calculate residuals and print them to file output.dat

fid = fopen(’output.dat’,’wt’);

fprintf(fid,[’b1 = ’,num2str(press1),’\n’]);

fprintf(fid,[’b2 = ’,num2str(press2),’\n’]);

fprintf(fid,[’b3 = ’,num2str(press3),’\n’]);

fclose(fid);
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