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Abstract

This thesis considers extended theories of gravity as a possible solution to the
dark energy problem and in particular studies the impact of Solar System con-
straints on scalar-tensor theory and f(R) gravity. The present observational
status in cosmology and the basic properties of scalar-tensor theory and f(R)
gravity are reviewed. The main work is then presented in four appended papers.
In summary, Solar System observations put strong constraints on both scalar-
tensor theory and f(R) gravity, in particular via the post-Newtonian parameter
~vppn Which is the main focus of this thesis.

The scalar-tensor theory discussed in the first paper is a model inspired by
large extra dimensions. Here, two large extra dimensions offer a possible solution
to the hierarchy problem and the effective four-dimensional theory is a dilatonic
scalar-tensor theory exhibiting a cosmological behaviour similar to quintessence.
It was shown that this model can also give rise to other types of cosmologies,
some more akin to k-essence and possibly variants of phantom dark energy.
The observational limits on yppyn strongly constrain the scalar field coupling to
matter, which together with the cosmological constraints nearly determine the
model parameters.

The work presented in the three latter papers considered static, spherically
symmetric spacetimes in f(R) gravity. The generalized Tolman-Oppenheimer-
Volkoff equations were derived both in the metric and in the Palatini formalism
of f(R) gravity. By solving these equations for the configuration correspond-
ing to the Sun, it was shown that metric f(R) gravity will in general fail the
strong constraint on yppy, whereas Palatini f(R) gravity will yield the observed
value, vppny =~ 1. However, the non-standard relation between the gravitational
mass and the density profile of a star in f(R) gravity will constrain the allowed
forms of the function f(R) also in the Palatini formalism. Although solutions
corresponding to vppny & 1 do exist in the metric formalism, a study of the
stability properties of the spherically symmetric solutions reveals a necessity for
extreme fine tuning, which affects all presently known metric f(R) models in
the literature.
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Chapter 1

Introduction

Einstein’s theory of General Relativity is one of the greatest successes in 20th
century physics. From theoretical considerations alone, it famously predicted
gravitational red shift, bending of light by the Sun and the precession of the
perihelion of Mercury. Moreover, it forecasted the expansion of the Universe
before it was observed by Hubble in 1929 [1]. General Relativity is so rich in
applications that modern astrophysics and cosmology would not exist without
it. However, the discovery that the expansion rate of the Universe seems to be
accelerating [2,3] leaves standard cosmology with a serious problem. What is the
origin of the perceived dark energy component which drives the acceleration?
For a homogeneous and isotropic Universe containing only baryons, dark matter
and radiation, the only possible solution in General Relativity is to invoke a
nonzero cosmological constant A. While this so-called ACDM scenario is in very
good agreement with current observations, the theoretical difficulties associated
with a pure cosmological constant makes it an unappealing solution. Instead,
one often adds some new exotic component of matter, such as quintessence,
which only behaves like a cosmological constant close to present times. An al-
ternative explanation could be that we are using an overly simplistic description
of the Universe and that we need to further take into account the effects from
inhomogeneities at late times.

In this thesis we will follow a different approach and instead examine exten-
sions to General Relativity. We will consider a flat, homogeneous and isotropic
Universe containing only baryons, dark matter and radiation, but where modi-
fications to gravity at large scales will yield the observed accelerating expansion
at present. In particular, we will focus on scalar-tensor theory and f(R) gravity
and study how such theories are constrained by Solar System measurements.
The thesis is divided into two parts, where Chapters 2-6 review the background
to the research presented in the second part, Papers [-IV. We begin with a gen-
eral overview of cosmology in Chapter 2 where we also discuss the Solar System
constraints relevant for the work in Papers I-IV. Chapter 3 discusses the basic
features of scalar-tensor theory and reviews how they affect cosmology and the
Solar System. The relation between scalar-tensor theory and extra-dimensional



scenarios is discussed in Chapter 4, where we in particular focus on the possibility
of solving the hierarchy problem via large extra dimensions (LED). This provides
further background to the research in Paper I, where we study a scalar-tensor
theory for dark energy motivated by LED. Chapter 5 continues by discussing
f(R) gravity theories, both in the metric and in the Palatini formalism. We
review both cosmological implications and the Solar System constraints which
we explore in detail in Papers II-IV. We also review the connection between
f(R) gravity and Jordan-Brans-Dicke theory. Finally, Chapter 6 contains our
conclusions and provides a summary of Papers I-IV.

On notation: our metric has signature (—, +, +, +). All equations are written
in natural units (A = ¢ = kg = 1) unless the fundamental constants are explicitly
displayed, and we employ the reduced planck mass Mp, = (87G)~Y? where G
is Newton’s constant.



Chapter 2

Background and motivation

2.1 Basic cosmology

The framework for modern cosmology is the Hot Big Bang scenario, a picture
which arose when Hubble discovered the expansion of the Universe [1]. Since
the Universe is expanding today, becoming colder and less dense, reversing time
will make it hotter and more dense. Extrapolated far enough back in time we
will ultimately reach an extremely small, dense and hot state. The event which
at this point set off the expansion is simply referred to as the Big Bang.

The expansion of the Universe is only one of many observations that makes
us believe in the Hot Big Bang model. Indeed the main observations in favour
of Big Bang are the following:

e The Universe is expanding. Or more specifically stated: Redshift of galax-
ies are proportional to their distance away from us (Hubble’s law).

e The sky is filled with uniform electromagnetic radiation. This cosmic
microwave background is isotropic and has a black-body spectrum with
temperature 7'~ 2.73 K.

e Relative abundances of light elements; 99% of all baryonic matter is made
up of hydrogen and helium. The mass fraction of He:H ~ 0.25.

In addition, the Hot Big Bang model also provides a good framework for ex-
plaining the baryon assymmetry in the Universe and the observed number of
baryons to photons ny,/n, ~ 107 agrees well with nucleosynthesis. The well-
known Standard Model of particle physics and its various extensions make the
history of the early Universe a very rich field of study and it provides us with
concrete evidence for the Hot Big Bang model dating back to 1-100 s after the
Big Bang (see e.g. [4]). In particular, nucleosynthesis provides both the earliest
and perhaps most convincing test of the Hot Big Bang model (for a review see
Ref. [5]).



While the overall evolution of the Universe is described by gravitation, the
dynamics of the matter content can roughly be divided into four different eras,
each one dominated by specific types of interactions:

e (-1 min. — Electroweak and strong interactions.

e 1-30 min. — Nuclear interactions.

e 30 min. - 100,000 years — Electromagnetic interactions.
e 100,000 years to present — Gravitational interactions.

In this thesis we will mainly be concerned with late times where the overall
dynamics of the Universe is determined by gravity alone. Although earlier epochs
provide us with important observational constraints, they will not play an active
role in our discussion. The canonical theory of gravity is General Relativity
(GR), which can be defined via the following action:

Sen = i / de/=g[R — 2A] (2.1)

where K = 87(, ¢ is the determinant of the metric tensor g,,, R = g" R, is
the Ricci scalar, and R, is the Ricci tensor built from g,,. From a classical
point of view, the cosmological constant A is not expected, but it can be added
and indeed shows up in the most general formulation of GR. When Einstein
formulated the theory of General Relativity, the Universe was thought to be
static. Therefore, he eventually included the cosmological constant, making
static solutions possible by tuning a repulsive A so that it exactly balances
the gravitational attraction of matter. This idea along with the constant was
however dropped with the discovery of the expanding Universe. Nevertheless,
since the cosmological constant shows up in the most general formulation, a
complete cosmological theory must either explain its value or show why it should
be exactly zero.

Taking the action (2.1) together with the matter action S, and varying with
respect to the metric, we obtain the equations of motion for g,, in the presence
of matter:

1
Guw =R, — §guvR = kT, — Agu (2.2)

where G, is the Einstein tensor and the stress-energy temnsor 7}, is defined
via /=g T,y = —265/0g". These are of course the familiar Einstein equa-
tions whose phenomenology is quite simple; spacetime (represented by G, ) gets
curved by matter (7},,) and possibly a cosmological constant (A). The bare value
of the cosmological constant is identified as the vacuum energy density. Since
vacuum energies show up over and over again in quantum field theory, the Ein-
stein equations would be in fact somewhat unsactisfactory if they did not allow
for a corresponding term A.



2.1.1 The cosmological principle

Relativistic cosmology is based on two assumptions, where the first one is the
cosmological principle. The cosmological principle states that the Universe is
both homogeneous and isotropic. It is based on the compelling idea that we
should not live in a special place in the Universe and it greatly simplifies the
highly nonlinear structure of the Einstein equations (2.2). Observations have
now given strong evidence that the cosmological principle indeed holds and it
has come to serve as the central premise of modern cosmology. The nearly
identical temperature of the cosmic microwave background (CMB) across the
sky tells us that the Universe was extremely homogeneous at earlier times and
observations such as the 2dF Galaxy Redshift Survey show that it still holds at
large scales today. See Figs. 2.1 and 2.2.

For a homogeneous and isotropic space the most general spacetime interval
is the Friedmann-Robertson-Walker line element. It can be written in the form

dr?

1 —Ekr?

ds® = g, datdz” = —dt* + a(t)? { + 7"2sz] : (2.3)
where the curvature £ = —1,0,41, represents a hyperbolic, Euclidean and
spherical geometry, respectively, more commonly referred to as the open, flat
and closed Universe. The most striking property of the Friedmann-Robertson-
Walker line element is that the bracketed part is independent of time. These
comoving coordinates remain constant for a specific point in space, while the
expansion of the Universe is encoded in one single parameter, the scale factor

a(t).

2.1.2 Matter as a perfect fluid

The second assumption typically made in relativistic cosmology is that the mat-
ter in the Universe can be treated as a perfect fluid. The stress-energy tensor
for a perfect fluid is given by

T,uzz - (P + p)u,uuu + P9 (2'4)

where p represents its energy density, p is the pressure and u, is the normal-
ized four-velocity of the fluid. The equation of state for a perfect fluid can in
many cases be described by p = wp where w is independent of time. From the
conservation of energy (more precisely the v = 0 component of the conservation
of stress-energy, V, T'* = 0), it is straightforward to show that this gives the

following density evolution
1

q31+w)

p X (2.5)

Obviously w is zero for pressureless matter (dust), corresponding to p oc a=3.

For relativistic matter (radiation) w equals one third, corresponding to p o< a™*.
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Figure 2.1: Foreground-reduced temperature fluctuations in the CMB across the
sky as measured by WMAP (displayed in Galactic coordinates) [6]

. Note that the
amplitude of the temperature fluctuations is very small AT /T ~ 1074,
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Figure 2.2: Coneplot of the full 2dF Galaxy Redshift Survey [7], illustrating the
cosmological principle at present. The figure shows the distribution of galaxies across

the sky, where the radial coordinate is distance from earth and the angular coordinate
is angle on the sky.



Hence, even though the Universe is matter dominated at present, it must have
been radiation dominated at sufficiently early times.

From Eqn. (2.5) it also follows that w = —1, corresponding to negative pres-
sure, is an interesting special case. All states of matter with w > —1 gets diluted
when the Universe expands, but for w = —1 the energy density remains con-

stant. This peculiar value does of course correspond to a cosmological constant
which we will discuss further below.

2.1.3 The Friedmann equations

The Einstein equations together with the cosmological principle and the assump-
tion that matter behaves as a perfect fluid yield the Friedmann equations:

L\ 2

a k 8rG A

ey Lo A 2.
(a)+a2 AR (2.6)
a e A
- - 3 — 2.7
» 5 (P +3p)+ 3, (2.7)

where a dot represents a derivative with respect to time ¢. Here, terms containing
p and p correspond to regular matter (which we define as matter with p > 0),
whereas A corresponds to a matter state with negative pressure p = —p trying
to expand the Universe. The discovery that the expansion of the Universe seems
to be accelerating (for a recent update see Ref. [8]), have thus once again put
A in the limelight. However, one should note that all states of matter with
w < —1/3, i.e. densities which dilute slower than curvature, act to accelerate
the expansion.

The expansion rate of the Universe is measured via the Hubble parameter
H = a/a. In general, H < 1/t and sets the timescale for the evolution of a. The
Universe roughly doubles its size during the time H 1. Although the parameter
is not constant in time, its present day value Hj is generally referred to as the
Hubble constant. The actual value of Hy isn’t known very well and it is usually
written as Hy = 100h km/s Mpc™'. One of the most reliable results for the
parameter h comes from direct measurement via the Hubble Space Telescope
Key Project, giving h = 0.72 £ 0.08 [9].

By definining a total energy density piyor = p + A/87G, the first Friedmann
equation (2.6) yields the following expression for the curvature

k ptot
PP 328G fhot =1, (2:8)
where S
Ptot
Q ot = s erit = T - 2.9
ot Perit Pt 87TG ( )

Observations have shown that the present value of the density parameter (2
is very close to 1 [8]. This is also a prediction from inflation in the very early

7



Universe (see e.g. Refs. [11,12] and [13]). If £ = 0 then by definition Qi = 1.
In other words, if the present Universe is flat, its total energy density is very
close to the critical density perit-

The acceleration/deceleration of the Universe is measured via the decelera-
tion parameter ¢ = —ai/(aH?). Putting this into Eqn. (2.7) and using the fact
that the present Universe is dominated by pressureless matter (p < p), one
obtains the following expression for the present deceleration:

1
@ = 5% — ., (2.10)

where (), is the present value of the matter density parameter and 2, =
A/ perit = (A/8TG)/peris. Hence, whether the present Universe is accelerating
or decelerating is completely determined by €2, and 4.

2.2 Cosmological observations

We will in this section briefly review the present observational status in cos-
mology, with focus on matter content and the observational evidence for dark
energy. The accelerating expansion of the Universe was discovered only in the
late nineties [2, 3], but the evidence has been steadily growing during the past
decade. Today, the observed acceleration has become one of the most important
problems in modern cosmology.

2.2.1 Type Ia supernovae

The accelerating expansion of the Universe was first discovered by two indepen-
dent collaborations studying type Ia supernovae (SN Ia) [2,3]. A large subsample
of the type la supernovae are (at least close to) good standard candles since they
have large and nearly uniform intrinsic luminosity, M ~ —19.5 [14]. This ex-
treme brightness allow them to be detectable at high redshifts, up to z ~ 1,
which is needed for observing deviations from a linear Hubble flow. A type Ia
supernova is generally believed to be a white dwarf, accreting mass from a com-
panion star until it reaches the Chandrasekhar mass of 1.4M. After this the
white dwarf collapses and thermonuclear pressure in the core rips it apart in the
observed explosion. Since an accreting white dwarf always explodes at roughly
1.4M, most type la supernovae have very similar characteristics.

A convenient measure for astronomical distances is the distance modulus
m — M, where m is the apparent magnitude and M is the absolute magnitude.
The distance modulus is related to the luminosity distance dj, via

m— M =5lgd, + 25, (2.11)

where d; is measured in units of Mpc. Additionally, the luminosity distance
depends on cosmological parameters, d;, = dp(z,Qm, Qa, Hp). For example, in a

8
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Figure 2.3: The luminocity distance d;, measured i units ¢/Hy versus the redshift z in
a flat cosmological model. The black data points correspond to the Riess et al. “gold”
data set and red points show data from the Hubble Space Telescope. Solid lines show
theoretical curves for different matter compositions in the Universe where (2, Q2) =
(0.31,0.69) is the best fit and (2, Q24) = (1,0) and (0,1) for the lower and upper
curve, respectively. From Ref. [15].

flat Universe one has
1+ 2

? d
d - )
= )| VL S F 2

where (2; is the present relative amount of matter with an equation of state w;.
In summary, mapping the magnitude-redshift relation for distant supernovae
will effectively measure the energy content of the Universe, albeit with some
obvious degenaracy between different species. Under the assumption that the
Universe is flat, supernovae measurements points towards a matter density €2, ~
0.3 and favour a positive cosmological constant [3,15,16]. Fig 2.3 shows the
luminosity distance versus redshift for the Riess et al. “gold” data sets [16]

(2.12)
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which strongly disfavor the traditional flat Universe filled with ordinary matter,
(Qm, 24) = (1,0). The best fit value of €, in the joint analysis performed in
Ref. [15] is Q,, = 0.31 £ 0.04. One should however note that the systematic
errors in supernovae cosmology are still under debate and we refer to Ref. [17]
and references therein for further discussion.

2.2.2 The cosmic microwave background

Along with the expansion of the Universe, the observation of the cosmic mi-
crowave background [18] is the most important evidence for the standard Hot
Big Bang model. The CMB is almost perfectly isotropic, but small anisotropies
were detected in 1992 by the COBE satellite [19], later by several balloon exper-
iments and most recently by the WMAP satellite [20]. These small temperature
variations are caused by primordial density fluctuations and acoustic oscilla-
tions between baryons and photons at recombination (i.e. when atoms form and
the Universe becomes transparent for electromagnetic radiation). Moreover,
the detailed form of these fluctuations depend intricately on the cosmological
parameters. By measuring the CMB anisotropies to a high accuracy it is thus
possible to obtain very detailed information about almost all of the fundamental
cosmological parameters.

The anisotropies in the CMB are closely related to the origin of structure
in the Universe. Indeed, the primordial density perturbations causing the tem-
perature fluctuations in the CMB will continue to evolve and form the galaxies,
clusters and superclusters observed today. This also means that in order to give
a theoretical description of the measured CMB anisotropies, we first need to
determine the primordial perturbations and then evolve them to present times
by taking into account the specific matter content of the Universe. In the sim-
plest model, one assumes that the primordial density fluctuations are described
by Gaussian statistics so that their properties are completely described by the
power spectrum AZ?. It is convenient to describe the perturbations in terms of
the curvature perturbations R, which measure the spatial curvature of a co-
moving slice of spacetime, and one often approximates the corresponding power
spectrum with a power law:

AR (k) = A% (k) <kﬁ)nl : (2.13)

where the constant k, is an arbitrarily chosen scale and ng is the spectral indece.
This spectrum is in accordance with most inflationary models which predict a
nearly scale-invariant power spectrum, ng =~ 1. The constant power spectrum,
ns = 1, is known as the Harrison—Zel’dovich spectrum. Although the above
power spectrum of the primordial perturbations is remarkably simple, it will
undergo a complex evolution to present times and give rise to a highly non-
trivial power spectrum for the CMB. Moreover, the fact that this evolution is
very sensitive to the underlying cosmological model and specific matter content

10



of the Universe, is what makes the CMB such a rich source for observational
constraints.

A map of the temperature fluctuations across the sky was shown in Fig. 2.1.
In this picture one has already removed a lot of foreground contamination coming
in particular from the Galaxy. This is possible since the spectra of foreground
sources differs from the CMB signal, and can be removed by use of several
independent maps from measurements at different frequencies. The resulting
map of temperature fluctuations can then be expanded in spherical harmonics
Yim:

AT
—(0.9) = % i Yim (9, ) - (2.14)

The most commonly studied quantity is however the angular two-point correla-
tion function:

C(9) = <ATT(ﬁ‘) M;ﬁ)> => 22—;1011%08 0), (2.15)

where 6 is the angle between the unit vectors m and n, and P, are the Legendre
polynomials. Note that physics is independent of m since there is no preferred
direction in the Universe. The angular power spectrum C is usually plotted
with [(I + 1)C; as a function of I, where [ roughly corresponds to an angular
scale Af ~ 7t/l.

The angular scale for the largest anistropies are determined by the size of
the largest connected regions at recombination, i.e. the horizon. This roughly
corresponds to an angle of one degree in the sky today. Thus, at [ ~ 10% the
angular power spectrum starts to show Doppler peaks corresponding to the den-
sity fluctuations in the early Universe (for a detailed account on the underlying
mechanisms see e.g. Ref. [21]). However, the apparent angular size of the above
regions is naturally affected by the geometry of the Universe. Compared to a
flat Universe, the angle appears larger for a closed geometry and smaller for an
open geometry. Hence, the first peak of the spectrum will appear at different
values of [ depending on the curvature of the Universe.

Fig. 2.4 shows the angular power spectrum for the WMAP five-year data.
The insert illustrates the difference in the spectrum for one flat and one open
Universe, with otherwise identical parameters. It is clear that the first Doppler
peak is situated around [ ~ 200 for a flat geometry, while it is shifted towards
larger values for an open Universe. Data from the Boomerang [22,23], MAX-
IMA [24,25] (for a joint analysis see Ref. [26]), and WMAP [20] experiments
have in this manner shown that the Universe is very close to being flat. By
combining CMB data from WMAP together with distance measurements from
type Ia supernovae and the baryon acoustic oscillations in the distribution of
galaxies, one gets [8]

—0.0175 < 1 — Q4op < 0.0085 (95% CL) (2.16)

11
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Figure 2.4: The angular power spectrum for the WMAP five-year data with a the-
oretical curve corresponding to the WMAP-only best-fit ACDM model. The black
dots correspond to the binned data with 1o error bars whereas grey dots represent
the unbinned data. From Ref. [20]. The insert shows the angular power spectrum for
a flat Universe, 2, = 0.3 and 2, = 0.7, and an open Universe, 2, = 0.3 and 25 = 0.
We see that the open Universe with first Doppler peak around [ ~ 400 is conclusively
ruled out by the data. Adapted from Ref. [28].

lending very strong support to the standard inflationary Hot Big Bang model.

Other cosmological parameters influence the height and positions of various
peaks in characteristic ways. By making a fit to the observed angular power
spectrum one obtains the preferred values for a specific set of parameters. The
WMAP best-fit cosmological model gives [27]:

Qnh® = 0.1326 + 0.0063
Qph? = 0.02273 4 0.00062 (2.17)

where h = 0.719f:8§$. That is, in summary, the Universe is flat and, according to
the standard ACDM fit, composed of roughly 4.4% baryons, 21% non-baryonic
matter (i.e. dark matter) and 74% dark energy. Note that the above value of h is

in perfect agreement with the value measured by the Hubble Space Telescope [9].

12



2.2.3 Other observations

While high precision measurements of the CMB alone put strong constraints on
cosmological parameters, there is a wealth of data from other recent cosmological
observations. These can either be used for consistency tests or in order to
break the many degeneracies in the parameter space of the CMB angular power
spectrum. We have already discussed the type Ia supernovae which measure the
accelerating expansion of the Universe, proportional to %Qm — Q. Since the
CMB effectively measures the total amount of energy Q¢ ~ Q, + 25 via the
position of the first peak in the the angular power spectrum, these methods are
highly complementary in the (£, Q2x)-plane. This feature pointed towards a
positive cosmological constant already before CMB data was accurate enough
to independently measure the cosmological parameters. Today, CMB data alone
finds 24 = 0.742 £ 0.030 (within ACDM) [20] which is in good agreement with
SN Ia observations.

Cold dark matter. The discrepancy between the amount of matter 2, and
the amount of baryons {2, necessitates a large amount of cold dark matter in the
Universe. Dark matter can be defined as matter which does not emit, absorb
or scatter light and its presence is hence inferred from gravitational effects on
regular baryonic matter. The traditional method is to measure the luminosity
of a galaxy cluster which corresponds to the total amount of baryons in the
system. By comparing the baryonic mass to the total mass needed for obtaining
the observed gravitational dynamics of the cluster (using the virial theorem),
one receives an estimate on the amount of dark matter which is roughly five
times larger than the baryonic mass. The existence of dark matter is also sup-
ported by the observed rotation curves of individual galaxies, which revolve much
faster than expected from estimates based on visible baryonic matter alone. In
summary, measurements have long indicated that 0.1 < Q,, < 0.4 [29], which
is notably larger than the amount of baryons inferred from nucleosynthesis,
O,h? = 0.017-0.024 [30]. Recently, dark matter has also been observed separate
from ordinary matter through measurements of two colliding galaxy clusters, the
so-called Bullet Cluster. Here gravitational lensing provides compelling evidence
for that the majority of the mass is in the form of collisionless dark matter [31].
The exact nature of dark matter is unknown, but the majority of current can-
didates are elementary particles such as axions and weakly interacting massive
particles (WIMPS). Analysis and simulation of structure formation shows that
most dark matter should be non-relativistic, cold dark matter (CDM) in order
for galaxies to form. A small fraction of relativistic, hot dark matter is allowed
however [32, 33].

Galazy distribution. In addition to their impact on the CMB, density fluc-
tuations can also be measured by mapping the large scale structures in the
Universe. The baryon acoustic oscillations (BAO) in the distribution of galaxies
are of particular notice for breaking degeneracy in the CMB parameter space.
BAO occur during structure formation when pressure terms dominate the ef-
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Figure 2.5: Constraints on the vacuum energy density Q5 and the curvature £ of the
Universe. The contours show the 68% and 95% confidence levels. Left: the WMAP-
only constraint (light blue) compared with WMAP+BAO+SN (purple). This figure
shows how powerful the extra distance information is for constraining 2. Right:
a blow-up of the region within the dashed lines in the left panel, showing WMAP-
only (light blue), WMAP+HST (Hubble Space Telescope) (gray), WMAP+SN (dark
blue), and WMAP+BAO (red). The BAO provides the most stringent constraint on
Q. Adapted from Ref. [8].

fect of gravity on baryons. The corresponding scale is given by the Jeans length
Aj = 2mcs/+/4nGp, where ¢ is the baryonic sound speed. Above the Jeans scale,
the baryon density contrast grows to match cold dark matter, but below this
scale it will instead oscillate as a standing wave. These “acoustic” oscillations
show up in the galaxy distribution power spectrum and were first detected by the
Sloan Digital Sky Survey (SDSS) [34]. They are particularly useful for breaking
the degeneracy between curvature € and €25. Fig. 2.5 shows constraints in the
(Qa, Q)-plane from CMB data alone and together with BAO data. It is clear
that the data sets are highly complimentary, giving (4, ) ~ (0.7,0.0). The
best fit model from CMB data alone is also in good agreement with both the
BAO and general features in the shape of the galaxy power spectrum [20].
Weak lensing. Images of galaxies get distorded via gravitational lensing from
mass fluctuations along the line of sight. For a flat Universe, the probability for
a source to be redshifted increases dramatically when {25 gets close to 1 so that
absence of lensing will place an upper bound on the amount of dark energy [29].
The map of deformed galaxy shapes can also be analyzed to yield the matter
power spectrum, which amplitude og and corresponding value of €2, provide a
good complement to the constraints given by CMB data [20]. The parameter
og is defined as the root mean square of the linear density fluctuations in the
mass distribution on a scale 8h~! Mpc. This is the characteristic length scale
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for galaxy clustering and the measured root mean square fluctuation in galaxy
numbers within a sphere of 84~ Mpc is close to unity [35]. Therefore, oy is
often taken as a measure of the amplitude of the density fluctuations.

Age of the Universe. Let us finally mention an interesting aspect concerning
the age of the Universe. Some of the oldest objects in the Universe are globular
clusters. For example, the age of globular clusters in the Milky Way has been
determined as 13.5 + 2 Gyr [36] and the age of the Messier 4 globular is con-
strained to 12.7 + 0.7 Gyr [37,38]. This puts a conservative lower bound on the
age of the Universe ¢y > 11-12 Gyr. Now, for a flat Universe which contains
only pressureless matter it is straightforward to show that to = 2/3H,. However,
since direct measurement of the Hubble paramater yields H, ' ~ 12-15 Gyr [9],
this would imply that ¢, is only 8-10 Gyr which is in serious conflict with the
age of the globular clusters. A simple cure would be to assume that the we live
in an open Universe (2 ~ {2, < 1, since in this case it would take longer time
for the gravitational attraction to slow down the expansion rate to its present
value. However, given that the Universe is flat, it is remarkable that the simplest
solution to the age problem is instead to add a positive cosmological constant
Q which will also counteract the decelerating effect of regular matter.

2.2.4 The ACDM model

In summary, observations has led to a cosmological concordance model known
as the ACDM model, according to which

Qn ~ 028, (2.18)
O, ~ 0.046,
QA ~ 072,

and h =~ 0.70 [39]. That is, the Universe is flat, contains a lot of non-baryonic
cold dark matter and is dominated by a dark energy component, causing the
Universe to accelerate:

1
@~ 50.28 - 0.72 < 0. (2.19)

Given that the Universe is homogeneous and isotropic, this dark energy is either
in the form of a true cosmological constant or some exotic matter with an equiv-
alent equation of state. The minimal ACDM model with adiabatic and nearly
scale-invariant Gaussian density fluctuations, fits current observations with only
six parameters [8]: Quh?, Qcpmh?, Qa, ns, 7, and A%, where ng and A% de-
scribe the tilt and overall shape of the power spectrum of primordial curvature
perturbations, and 7 is the optical depth to reionization. From this set one can
derive for instance the bare values of €)},, Qcpy and b, as well as the age of the
Universe ¢y and the amplitude of the matter power spectrum os.
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2.3 The cosmological constant problem

The present observations leave us with an unsolved problem: why and how
is 2y > 07 The simplest solution would be a bare cosmological constant Ag
corresponding to true vacuum,

Pry = 0.72peie ~ (1072 eV)* . (2.20)

This approach has two serious problems. First of all, estimating the vacuum
energy expected from quantum field theory yields

Prac ~ (10" GeV)*. (2.21)

Comparing this density to Eqn. (2.20) results in the infamous discrepancy of
about 120 orders of magnitude between the theoretical and the observed value
of the cosmological constant. Although this discrepancy more conservatively
becomes of 45 order of magnitude if one replaces Mp; by the QCD scale ~ 150
MeV, it is needless to say that this is unacceptable.

The theoretical vacuum energy density is is a sum of contributions from the
potential energy of possible scalar fields in the very early Universe. One could
imagine these terms to cancel and just leave the tiny observed value, but this
seems, to put it mildly, unlikely. Even if one did believe this to be the case, one
still has to face the second problem. While regular matter density has decreased
many orders of magnitude since early times, a bare cosmological constant Ag is
truly constant. For them to be of the same order today is an amazing coincidence
that would require an extreme amount of fine-tuning. Although string theory
has recently begun to address these questions (for a review see Ref. [17]), the
magnitude of the bare cosmological constant remains an unsolved problem.

2.4 Dark energy

The minimal ACDM model is in very good agreement with current observations
but the problems associated with a pure cosmological constant makes it an
unappealing solution from the theoretical point of view. Furthermore, although
the high accuracy of present data allows us to put constraints on a model within
a certain paradigm, one can not stress enough that changing the underlying
assumptions might point at an entirely different cosmological scenario. However,
the ACDM model remains a useful tool in that it provides us with a baseline
from which we can search for anomalies. It is the simplest approximation we
can get away with at the present level of cosmological tests.

Barring a true solution to the cosmological constant problem, one can divide
the possible ways to solve the dark energy problem into three categories, each
one associated with one of the main underlying assumptions in section 2.1. From
now on, we will simply assume that the bare cosmological constant is set to zero
(perhaps by some unknown symmetry principle), but we offer no insight as to
why this should be the case.
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2.4.1 Exotic fluids

The last main assumption made in section 2.1 concerned the matter content of
the Universe. So far, we have only considered constant equations of state cor-
responding to radiation and pressureless matter, but it is entirely possible that
the Universe also contains some more exotic component. Suggestions for such
fluids include quintessence [40-43], k-essence [44-48], phantom matter [49-58],
and chaplygin gases [59-66]. Although some of these scenarios may be moti-
vated by higher-dimensional physics and/or extensions to gravity, the majority
of the models are described as a fluid with only minimal coupling to gravity. A
non-trivial equation of state makes it possible for the exotic fluid to emulate a
cosmological constant at late times.

By analogy with inflation, a tempting solution for the dark energy problem
would be a scalar field y with a suitable potential causing an effective cos-
mological constant at present. This is what we refer to as quintessence. The
corresponding Lagrangian is given by

1 174
Lo =—59"0x0x ~V(X), (2.22)
which for a Friedman-Robertson-Walker background leads to the familiar equa-
tion of motion

ov
X +3Hy+ ——=0. 2.23
X+ 3HY + 5o (2.23)
Using the definition of the stress-energy tensor of the quintessence field, \/—g T’ /ff,
= —2035q/dg"", it is straightforward to obtain the equation of state:

lv2 v
w, =2 = = V) (2.24)

e X2PHV(X)]

with the field acting as an effective cosmological constant when x? < V(x). Note
however that all states with w, < —% act to accelerate the Universe. While the
matter density py, is steadily decreasing, the quintessence field y is slowly rolling
down its potential. Eventually p, will begin to dominate and start to accelerate
the Universe.

In its basic form, the quintessence scenario does not avoid the problem of
fine-tuning. We still have to adjust initial conditions so that p, end up slightly
larger than p,, at present. However, it has been shown that a wide range of
potentials exhibit so-called tracker solutions where the quintessence field tracks
the dominant energy density component [67,68], thus alleviating the fine-tuning
in the initial conditions. Nevertheless, the model still needs to be adjusted so
that the quintessence field starts to dominate only at very late times. This
is related to the problem of explaining why p, ~ puit today, which typically
translates into explaining the presence of an extremely small mass scale ~ pir/;t
in the potential V(x). A possible way to address this problem is to consider
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exponential forms of the potential,

V(x) o< exp (=Ax) , (2.25)

and these have been investigated to great extent in the litterature [40,42,69-75].
A desirable feature of exponential potentials is that small deviations in y can
lead to a substantial change in the energy density of the field. In other words,
X does not need to change many orders of magnitude for p, to evolve in a
cosmologically interesting way. For potentials of the above form, the evolution
of the field will often approach a scaling solution, defined as a solution where the
kinetic and potential energy of y maintain a fixed ratio. That is, w, = const.
and the energy density of the scalar field scales exactly as a power of the scale
factor, p, oc a™".

The naturalness of quintessence models has been discussed further in Refs. [76,
77], which also considered the possibilities of a non-canonical kinetic term in the
Lagrangian of the quintessence field: k?()(dx)?. Given a suitable choice of the
function k(x), it was shown that together with an exponential potential, such a
model can create the desired amount of dark energy at present without the need
for a small mass scale. In this “natural quintessence” scenario, all parameters
are instead of the order of the Planck mass. Note however that this model is
different from the aforementioned k-essence scenario, where the potential only
plays a negligible role.

2.4.2 Non-homogeneous cosmologies

The second possible way to solve the dark energy problem is to abandon the
cosmological principle and also take into account effects from nonlinear inho-
mogeneities. As exhibited by the CMB, the early universe was very close to
homogeneous and isotropic. However, although this remains true as a first ap-
proximation also at late times, it is obvious from Fig. 2.2 that the Universe
exhibits significant structure also at very large scales. The standard assump-
tion is that nonlinear effects on the detectable light average out at cosmological
distances. This assumption was critized already in the ‘60s [78-81] and it was
later suggested that structure formation has effects on the observed distance-
redshift relation which the Friedmann-Robertson-Walker description fails to cap-
ture [82,83]. At the time, observations were nevertheless far too inaccurate for
distinguishing any features beyond the standard homogeneous and isotropic sce-
nario.

The discovery of the apparent acceleration has once again made the above
issues relevant. Two of the more widely considered non-homogeneous scenar-
ios are Lemaitre-Tolman-Bondi cosmologies [84-96] and gravitational backreac-
tion [97-111]. Recently, a novel and particularly interesting scenario has been
suggested in Ref. [112], which expands on the ideas presented in Refs. [82,83].
Here one takes into account the opaque lumps in the Universe and that the re-
gions which detectable light traverses become emptier and emptier compared to
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the average energy density. Since space expands faster with lower density, the
observed expansion is then perceived to accelerate along our line of sight.

2.4.3 Extended gravity

Our final option is to alter the theory of gravity. This may seem to be a radical
approach but it is important to remember that, unlike in quantum field theory,
the GR gravitational action is not uniquely set by some underlying symmetries
and theoretical arguments (renormalizability). Instead, the Einstein-Hilbert ac-
tion only corresponds to the simplest possible covariant action which can be
built from the metric so that it gives non-trivial equations of motion for g,,.
This makes extensions to the Einstein-Hilbert action interesting in their own
right, since they allow us to explore which features are special to GR and which
are more general properties of covariant theories.

Of particular interest as candidates for dark energy are scalar-tensor theo-
ries and f(R) gravity. They are the main concern of this thesis and we will
discuss these theories in detail in the two upcoming chapters. In addition to the
metric, scalar-tensor theories of gravity also include a non-minimally coupled
scalar field. Here, unlike in in the case if quintessence, the new scalar field is
really a part of the gravity sector. Scalar-tensor theories include both extended
quintessence [113-120] and chameleon models [121-123], even though these sce-
narios are sometimes discussed from a fluid description point of view. However,
the explicit non-minimal coupling in these theories indeed makes the associated
scalar field part of the gravity sector. One can also consider more complicated
scalar-tensor theories where the scalar field couples to dark (non-baryonic) mat-
ter only [124-126].

Extended theories of gravity come in many different flavours and include for
example non-Riemannian cosmologies [127-129], Gauss-Bonnet dark energy [130—
136], and Tensor-Vector-Scalar theory (TeVeS) [137-142]. Another scenario
which has received much attention (see [143-145] and references therein) is
the DGP model (Dvali-Gabadadze-Porrati) [146-148] and a related proposal
by Deffayet et al. [149-151]. In these models our four-dimensional spacetime, a
so-called brane, is assumed to be embedded in a higher dimensional Minkowski
bulk spacetime. All Standard Model fields are confined to the brane whereas
gravity propagates also in the Minkowski bulk. Unlike in many other brane-
world scenarios, gravity remains four-dimensional at small distance scales but
leaks into the bulk at large distances. Gravity may hence become diluted at
cosmological scales, leading to the observed accelerating expansion at present.

2.4.4 The dark energy equation of state

Constraining the nature of dark energy is one of the most important challenges
in cosmology today. Given the severe problems associated with a cosmological
constant, it would be a tremendous success if one would find evidence for that
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the dark energy equation deviates from —1. Indeed, most dark energy models
can be parametrized in terms of an effective equation of state, including both
scalar-tensor theory and f(R) gravity [152,153].

The most direct constraints on the dark energy equation of state wpg comes
from type la supernovae, galaxy redshifts surveys (via BAO), weak lensing ef-
fects, and galaxy clustering [154], where CMB data and independent measure-
ments of the Hubble parameter are often used to break the degeneracy between
dark energy and other cosmological parameters. Despite recent advances, the
quality of the data is nevertheless not yet good enough to warrant any real study
of the evolution of wpg. In particular, it is not possible to detect any devia-
tions from a cosmological constant, either at present or in the past. One of the
most stringent constraints on wpg comes from the ESSENCE Supernova Survey;,
which combined with BAO data constrains a constant dark energy equation of
state to

wpg = —1.05713 (stat. 10) 4 0.13 (syst.) (2.26)

at present in a flat ACDM model [155].

The central value of wpg is slightly smaller than —1 and even more negative
values used to be preferred in the past. This has lead several authors to also
consider dark energy with an equation of state wpg < —1, so-called phantom
matter [49-58]. The most basic approach is to propose a scalar field with nega-
tive kinetic term, —% x2+ ..., but it is perhaps more interesting to note that the
same effect can come from interactions in the dark sector. A coupling between
dark energy and dark matter, as appears in for example extended quintessence,
will alter the redshift dependence of the dark matter density. As a result, an
observer who fits data using non-interacting dark matter may indeed obtain
wpg < —1 despite that no such exotic matter component is present [156].

2.5 Solar System constraints and the PPN for-
malism

Let us finally review the constraints on gravity coming from Solar System obser-
vations. We will only mention constraints which are relevant for our upcoming
discussion and we refer to Ref. [157] for further details. Some aspects related to
scalar-tensor theories and f(R) gravity will be discussed in the corresponding
chapters.

The high precision of Solar System measurements allows us to put strong
constraints on the relativistic corrections to Newtonian gravity. The standard
treatment is the parametrized post-Newtonian (PPN) formalism containing 10
parameters describing the possible deviations from Newtonian gravity, all of
which are constrained to be very close to the values predicted by GR [157].
For the extensions to gravity discussed in this thesis, only two of these param-
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eters may differ from their corresponding GR values.! These are the famous
Eddington parameters vppy and (ppn, which are both identical to 1 in GR.

The PPN formalism is valid for any gravity theory which respects the Ein-
stein equivalence principle. It is defined in the slow motion, weak-field limit
where the metric can be expanded around a Minkowski background 7,,. To
obtain the Newtonian limit for a particle moving on a time-like geodesic one
only needs to know the term O(1/c¢?) in the goo component of the metric. Con-
sequently, the post-Newtonian limit is given by expanding goo to O(1/c*), go; to
O(1/¢*), and g;; to O(1/c?). For a spherical and non-rotating body centered in
an otherwise empty space, go; will vanish and the PPN metric reduces to

2GM 1 /2GM\? 1
goo = —1+ el ﬁPPN§ ( 2 ) +0 (0—6) , (2.27)
2GM 1
9ij = 0y (1 + PPN 2 > +0 <§> : (2.28)

where M is the gravitational mass of the body and ry belongs to a nearly glob-
ally Lorentz covariant coordinate system?. Described in words, yppy measures
the amount of spatial curvature (g;;) produced by a unit rest mass and SGppy
measures the amount of nonlinearity in the superposition law for gravity (goo).
The strongest constraint on yppy comes from the Cassini spacecraft [160],

yppy — 1 = (2.142.3) x 107, (2.29)

and the parameter Fppy is constrained via lunar laser ranging, which together
with the Cassini data yields Bppy — 1 = (1.2 +1.1) x 10~* [161].

A related constraint concerns the gravitational field strength and the New-
tonian potential. For a test particle following a metric geodesic given by g,.,
it is straightforward to show that in the slow motion (v < 1), weak-field limit,
Guv = My + hyw with |k, | < 1, the spatial part of the geodesic equation reduces
v 2z 1

d—tf = Vo (2.30)
in Galilean coordinates. Thus, we see that the geodesic world line of a test
particle is identical to the Newtonian equation of motion if one makes the iden-
tification hgy = —2®y, where ®y is the Newtonian gravitational potential. In
other words, the temporal component of the metric is given by

goo = —(1+2dy), (2.31)

in the slow motion, weak-field limit in Galilean coordinates. Now, Birkhoff’s
theorem states that the exterior vacuum solution for a spherically symmetric

!Please note that we are referring to the set of parameters defined in Ref. [157], which
differs from the one used in for example Ref. [158]

ZNote that all arbitrariness in the coordinates has been removed by choosing the so-called
PPN gauge [159].
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star in GR is given by the Schwarzschild metric, for which gog = —(1 —2GM/r)
in Schwarzschild coordinates. The mass parameter M is determined by matching
with the interior solution and one obtains

M M "o
Oy = oM R~ _GM —g/ drdnr?p (2.32)
0

N r T

where we have neglected pressure (p < p), and rq is the radius of the star,
e.g. the Sun. The last step in the above equation is crucial. Matching with the
interior solution tells us that the gravitational mass M of an object is simply
given by the flat spatial volume integral over its density profile p, just like in
Newtonian theory. Note that this is an exact result, which has nothing to do
with either the approximations related to obtaining the Newtonian potential,
or the uniqueness of the vacuum solution. It simply follows from the particular
form of the 00 component of the Einstein equations in the spherically symmetric
case. Thus, any extended theory of gravity which alters this form may exhibit a
non-standard relation between the density profile and the gravitational mass of
the Sun. As pointed out in Papers II, III, and IV, this will put strong constraints
on the allowed f(R) models, both in metric f(R) gravity (which suffers from a
non-unique vacuum) and in Palatini f(R) gravity (where the vacuum solution
is unique).

2.6 Concluding remarks

The standard Hot Big Bang scenario is a remarkably succesfull description of
our Universe. However, present observations indicate that the expansion of the
Universe is accelerating, implying the existence of a dark energy component
with negative pressure. Although a pure ACDM model gives a very good fit to
current data, the severe problems associated with a true cosmological constant
encourages us to seek for a dynamical explanation of dark energy. We reviewed
the possible inclusion of exotic fluids such as quintessence, which may act as a
cosmological constant at late times. Abandoning the cosmological principle may
also cause effects that will be perceived as an accelerating expansion.

In this thesis we will follow a different approach. We will study a flat (k = 0),
homogeneous and isotropic Universe filled with radiation and regular matter
only, but where extensions to the theory of gravity may alter the behaviour
at cosmological scales, causing the observed acceleration at present. In par-
ticular, we will consider scalar-tensor theory and f(R) gravity. Both of these
scenarious can be constructed in such a way that they yield the desired accel-
eration. For example, scalar-tensor theories can give rise to a behaviour very
similar to quintessence, but also k-essence and possibly phantom matter [I]. In
f(R) gravity theories the accelerating expansion is instead caused by an inher-
ent positive curvature of spacetime, Ry ~ A, obtained via the (relaxed) vacuum
solution to the gravitational field equations. However, any extended gravity
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theory which has a modified behaviour at cosmological scales can potentially
yield non-standard dynamics also at much smaller distances. Some of the most
accurate measurements of gravity come from the Solar System and these obser-
vations are highly useful when testing alternative theories of gravity. The tight
limits on the post-Newtonian parameter vyppy is particularly restrictive and it
will be the main constraint studied in this thesis. In summary, we will see that
after fixing the desired cosmological behaviour, Solar System observations puts
very strong constraints on the models, both in scalar-tensor theory [I] and in
f(R) gravity [II,1II,1V].
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Chapter 3

Scalar-tensor theory

Scalar-tensor theories of gravity are perhaps the most widely considered exten-
sion to General Relativity. Here the gravititational Lagrangian also includes a
scalar field ¢ with non-minimal coupling, i.e. it couples explicitely to the met-
ric via the Ricci scalar R. Thus, the scalar field does not describe gravitating
matter, but is instead an additional degree of freedom for the gravitational field.
The gravitational sector hence contains both a spin 2 field (the metric g,,) and a
spin 0 field (the scalar ), where the latter influences only the coupling strength
between matter and the space-time geometry is described by g, .

The prototype scalar-tensor theory is the Jordan-Brans-Dicke theory of grav-
ity [162,163], defined via the action

1
S = 5 [ d'ev=g |67 - 299,000 - U] + Sulgwr vl (31)

where w is a constant, dimensionless parameter and v, corresponds to standard
model matter fields. Although the original scenario did not include a potential
U(¢), most modern versions use the above form. One should nevertheless be
aware of the fact that the presence of a potential will usually have significant
impact on the theory, and results derived in the trivial case U(¢) = 0 are often
no longer valid.

A more general scalar-tensor theory can be written in the following commonly
used form for the gravitational part of the action:

Ssr6 = 55 [ AlaVTGIF@R- 29" de - U . (32)

where F(¢), Z(¢), and the potential U(p) are arbitrary functions of ¢. Note
however that these functions are not truly independent since it is always pos-
sible to redefine the scalar field via either F(p) — ¢, |Z(9)|(0p)* — (0¢)?,
or U(p) — ¢. Although more general forms of scalar-tensor theories exist (see
e.g. Ref. [164]), the action (3.2) describes a very large class of models, including
the one considered in Paper 1. Below, we will review some basic properties of
scalar-tensor theories and discuss how they relate to cosmology and Solar System
measurements. More thorough expositions can be found in Refs. [165, 166].
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3.1 Conformal frames

Conformal transformations provide a convenient technique for studying singu-
larities and the global structure of spacetime via Penrose diagrams [167]. In
scalar-tensor theory they are also related to the concept of conformal frames. A
conformal transformation, also referred to as Weyl rescaling, is a local rescaling
of the metric tensor:

G — (1) gy - (3.3)

This transformation is said to bring us from one conformal frame (or gauge) to
another. However, most theories of gravitation with massive matter fields are not
invariant under the transformation (3.3) and the above notation and terminology
can be somewhat confusing. It is often more convenient to explicitely keep track
of the metrics associated with different conformal frames:

G = 92(x)glw ) (3.4)

which by definition is just a simple change of variables. It corresponds to a local
change of length scales (i.e. units):

ds® = g, dztdz” = Q7% (1), dztdz” = §,,di"di"” (3.5)

where dz# = da*/Q(x). At the classical level, different conformal frames de-
scribe the same physics albeit in different manners [168, 169].

The so-called Jordan frame can be defined as the conformal frame where
matter fields couple only to the metric defining the invariant volume element
in the action. For a scalar-tensor theory of the Jordan-Brans-Dicke type, the
action in the Jordan frame is indeed of the form given in Eqn. (3.1):

SJBD = /d4x\/__g[£G(g;wa¢) +£m<guwwm)] ) (36)
Lo = 5 (qug — 59" 00,0 U(cb)) 7 (37)

where Ry, = R, i.e. the Ricci scalar defined in terms of the metric g,,. Since the
matter Lagrangian depends on the matter fields vy, and the metric g, only, the
Jordan frame corresponds to a choice of units where the rate of clocks and length
of rods (made of matter), remain constant in spacetime so that all observations
have their standard interpretation. That is, £, is indeed of the canonical form
used in quantum field theory.

Although the rate of clocks and length of rods are constant in the Jordan
frame, the gravitational coupling may vary in spacetime. Indeed, in a JBD type
theory the Ricci scalar comes multiplied with a scalar field ¢ so that one has an
effective gravitational coupling Gz = G/¢. It may hence be convenient to define
a conformal frame where the effective gravitational coupling remains constant.
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This is the Einstein frame.! Any scalar function multiplying a term linear in the
Ricci scalar can always be absorbed by defining a metric g, conformally related
to guu. For a JBD theory this corresponds to a conformal change of variables

QW = QZgW — ¢gw ’ (3.8)

which results in the following form of the action:

71/\
Sipp = / d*z/—9 {EG,¢(§W,¢)+£“1(¢ qbg;‘”’%)} : (3.9)
U
Lag = i <Rg— 3;;ng 00,0 — ;?) : (3.10)

where R; is the Ricci scalar defined in terms of the metric g,,. The apparent
strength of gravity is now constant and the action takes the form of an Einstein-
Hilbert term with matter and a scalar field. However, the matter Lagrangian is
no longer of the canonical form since it explicitely couples to the scalar field ¢.
Hence, the corresponding system of units now depends on the scalar field so that
a change in ¢ will also change the rate of clocks and length of rods. Although this
does not pose any problems in principle, observables require special attention
when ¢ changes during the course of an experiment. For example, when working
in Einstein frame units, the mass of a Hydrogen atom on Earth is not necessarily
the same as the mass of a Hydrogen atom in a distant Cepheid if ¢ varies on
cosmological scales. Let us nevertheless once again stress that the actions given
in Eqn. (3.6) and Eqn. (3.9) correspond to the exact same physics and that they
are completely equivalent at the classical level. The Einstein frame coincides
with the Jordan frame in General Relativity.

Although different conformal frames only correspond to different choices of
units, the form of the gravitational action in a particular frame obviously mat-
ters. That is, if we for example choose the system of units where the rate of
clocks and length of rods remain constant so that our matter Lagrangian is
of the canonical form, an action corresponding to L 4(guw: @) + Lm(Guw, ¥m)
will of course give different physics than the action (3.6). Nevertheless, this
has been the source of some confusion and we refer to the original debate for

details [170-173].

3.2 Cosmology in scalar-tensor theory

Adding a scalar field to the gravity sector introduces a host of novel features
relevant for astrophysics and cosmology. For example, gravitational waves in
scalar tensor-theories contain monopole radiation whereas in GR the lowest or-
der is a quadrupole [174]. The main departures in cosmology originate in the

LA more strict definition of the Einstein frame is to say that it is the conformal frame where
the action contains a pure Einstein-Hilbert term [ d4ac\/ngg.
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modified expansion rate of the Universe. Nucleosynthesis in particular puts
strong constraints on the time variation of the effective gravitational coupling
Geg = G/F (), since a non-standard expansion rate would change the produced
amounts of different elements during nucleosynthesis [166].? A modified expan-
sion rate can naturally affect both supernovae measurements and the CMB, but
it is also possible for the effects to remain hidden from standard cosmological ob-
servations while still having an impact on the dark matter relic abundance [175].
Below, we will review some more general properties and focus on the possibility
of obtaining dark energy via extended quintessence.

3.2.1 Equations of motion

The general scalar-tensor theory defined via Eqn. (3.2) gives the following equa-
tions of motion in the Jordan frame:

Flp)Guw = 81GT, + (V,V, —9,0)F(¢)

1 1
+ Z(p) (@chawp - §gw(8¢)2> —5owU(p),  (3.11)
oU 9z OF
22(p)0¢ = 52— 5,0 ) — T (3.12)

where T}, is the canonical stress-energy tensor and all quantities are defined in
terms of the Jordan frame metric g,,, e.g. 0 = ¢"*V,V,. The last term in
Eqn. (3.12) manifests the scalar field coupling to matter and the Ricci scalar R,
can be replaced by T = ¢**T), via the trace of Eqn. (3.11).

Although the stress-energy tensor 7}, has the canonical form in the Jordan
frame, the complicated structure of the equations of motion makes it more con-
venient to study cosmology in the Einstein frame. By employing the conformal
transformation §,, = F(¢)g,, and defining

(32) _ 2(31%5()) % (3.13)

26V (x) = P[’];(fp))’ (3.14)

it is straightforward to show that the action (3.2) together with matter is equiv-
alent to the following form in the Einstein frame:

/d41’ V — |: R - _gMV MXaVX V( ) + Em(guw X 77Z)m) ’ (315)
where the Einstein frame matter Lagrangian is defined via

~ L vy ¥m
B ) = ZnlE G ) (3.16)

2Note however that the strength of gravity measured in a Cavendish type experiment is
different: Gcay = Gesr(1+a?). The factor a? is defined in Eqn. (3.18) and can be interpreted
as the exchange of scalar field particles between two bodies.
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That is, the Lagrangian reduces to the familiar Einstein-Hilbert form with a
canonical scalar field xy. One important difference from GR remains however:
the matter Lagrangian in the Einstein frame explicitely couples to x. Thus,
although the above action will yield the regular Friedmann equations in the
Einstein frame, the corresponding stress-energy tensor and hence density and
pressure, will not only depend on the Einstein frame scale factor, but also on
the scalar field x. Furthermore, the equation of motion for the scalar field will
explicitely couple to the trace of the stress-energy tensor since L, is not constant
under variation with respect to x. Despite these complications, the Einstein
frame remains advantageous in many applications and we refer to Paper I for
further details.

3.2.2 Extended quintessence

Non-minimally coupled scalar fields as a possible solution to the dark energy
problem has been studied to great extent in the litterature [I,57,58,113-120,175—
182] (see Ref [17] for a review). In general, the scenario behaves very similar to
regular quintessence, exhibiting both tracking and scaling solutions for a suitable
choice of the potential. The main advantage of extended quintessence is that
it can provide a natural origin for the scalar field, with strong motivation from
higher-dimensional theories. The perhaps best developed cosmology along these
lines is the SLED scenario [183-190] which we will discuss further in Chapter 4.
The scenario was first introduced in the model by Albrecht, Burgess, Ravndal
& Skordis [191,192], and it was also the subject of our study in Paper I.
Although the detailed cosmological evolution in extended quintessence will
of course depend on the specific choice of the coupling function and the poten-
tial, the overall behaviour remains the same for most models. Fig. 3.1 shows a
typical evolution of the energy density in such a scenario. The particular model
displayed here corresponds to the scalar-tensor theory explored in Paper I, where
we also discuss many of the relevant cosmological constraints. However, in this
study we did not include the possible effects on the CMB and there exist at
least three characteristic features of non-minimally coupled models in the re-
sulting angular power spectrum [116,117,119,166]. First of all, the non-minimal
coupling will lead to a curvature/matter dependent effective potential in the
equation of motion for the scalar field. The additive contribution of this term
will alter the cosmic equation of state and enhance the Integrated Sachs-Wolfe
effect. That is, the amplitude for low multipoles [ will be enhanced in the CMB
angular power spectrum. Second, since a dark energy model based on extended
quintessence will in general expand faster than GR at early times, the Hubble
length is smaller in the past so that perturbations enter the horizon at com-
paratively later times. This will slightly reduce the amplitude of the acoustic
oscillations. Finally, since the reduced Hubble length at decoupling corresponds
to smaller angular scales, the Doppler peaks in the angular power spectrum will
be shifted towards larger multipoles [. Altogether, these features might make

29



_70 T T T T T

—80

-90

log p

—100

—110

—120

—12 —10 -8 —6 —4 -2 0

—130

logg @

Figure 3.1: Cosmological evolution in the scalar-tensor theory studied in Paper I,
where the presence of large extra dimensions leads to extended quintessence and also
solves the hierarchy problem. Shown are different components of the Einstein frame
energy density p (in Planck units) as a function of the Einstein frame scale factor
a (normalized to one at present). The various curves represent pressureless matter
(dashed), radiation (dotted) and scalar field energy density (solid). Note that since
the conformal factor Q? = F(p) evolves very little after log;,a ~ —10 in the above
solution, the Einstein frame simply corresponds to a constant scaling of units compared
to the Jordan frame for these times [I].

it possible to distinguish coupled dark energy from regular quintessence or a
cosmological constant. However, one should remember that quantitatively these
effects depend on the particular model. Furthermore, the majority of all current
cosmological data is interpreted in the ACDM framework, and given an extended
theory of gravity not only CMB aspects of cosmology needs to be reevaluated.
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3.3 Solar System constraints in scalar-tensor
theory

Solar system constraints on scalar-tensor theories are conveniently studied via
the equation of motion for the Einstein frame scalar field:

By =2 ezal0)T, (3.17)

where a hat indicates that the quantity is defined in terms of the Einstein frame
metric g, e.g. T = ¢g"'T,, is the trace of the Einstein frame stress-energy

V=g T\W = —205u/0g"". The scalar field coupling to matter is given by

) 1 dlogF
aly) = ——= .
X V2, dx

The impact of the above coupling becomes apparent in the conservation law
for stress-energy. While the canonical Jordan frame stress-energy is indeed con-
served in scalar-tensor theory, V,T* = 0, the corresponding conservation law

does not hold in the Einstein frame: @Hfﬂy = \/T/Qa(x)f&,x # 0. This is
a direct consequence of the fact that Einstein frame particle masses depend on
the scalar field y.

The coupling « is strongly constrained by Solar System measurements since
it is in direct correspondence with the Eddington parameters in the PPN for-
malism:

(3.18)

_ 20°
TPPN = 1t a2
« 14w
= - 3.19
24w’ (3.19)
1 o?  da
- 1y =
Peex V2k (14 a2)2dyx
= 1, (3.20)

where the second steps hold for the Jordan-Brans-Dicke field only, for which
a? =1/(3+42w). In other words, the only parameter which is different from GR
in JBD theory is vppny and we obtain the following constraint from Eqn. (2.29):

1o <1070, (3.21)
w

However, one should note that the above expressions for the Eddington param-
eters are valid only in the massless limit V(x) = U(yp) = 0, where the “fifth
force” associated with the scalar field has infinite range. For a massive field,
mi ~ 02V /0x?, the effect of the scalar field coupling to matter is effectively
cut off at distances 2 1/m, and the above bound may no longer be applicable.
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Furthermore, it is also possible for the scalar field to gain additional mass via
an effective potential arising from the local matter distribution; the chameleon
effect [121-123]. In such a case, one needs to obtain at least an approximate so-
lution to the full field equations in order to determine if the theory is compatible
with Solar System constraints.

Note that the modified source term for the 00 component of the Einstein
tensor in the Jordan frame, Eqn. (3.11), indeed leads to a non-standard relation
between the gravitational mass and the density profile of a star in scalar-tensor
theory. In other words, the perceived gravitational mass is in general differ-
ent from the total baryonic rest mass also in the Newtonian limit. It should
nevertheless be stressed that scalar-tensor theories do respect the equivalence
principle, the above effect is just a consequence of the fact that the strength of
gravity is environment dependent.

3.4 Concluding remarks

This chapter reviewed some basic properties of scalar-tensor theory and how
they relate to the type of cosmologies studied in this thesis. In particular,
we stressed the equivalence of different conformal frames and how conformal
transformation provides a powerful tool for simplifying the equations of motion.
This was especially useful for our study in Paper I. We also discussed the impact
of extended quintessence models on the cosmic microwave background and finally
reviewed Solar System constraints in terms of the PPN parameters.

As mentioned, scalar-tensor theories typically arise in the context of extra
dimensions and we will discuss such scenarios further in the next chapter. In the
final chapter of this thesis, we will also see that the Jordan-Brans-Dicke theory
is mathematically equivalent to f(R) gravity.
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Chapter 4

Brane-worlds, the hierarchy
problem, and dark energy

The idea that we live on a brane (corresponding to regular four-dimensional
space-time) in a higher-dimensional bulk space dates back to the pioneering
works of Nordstrom, Kaluza and Klein [193-196]. In Kaluza-Klein theory one
considers General Relativity living in five dimensions where the extra spatial
dimension is small and compact. For the effective four-dimensional theory, the
additional degrees of freedom in the 5D metric will yield Maxwell’s electromag-
netic field and a scalar field corresponding to the size of the extra dimension.
The scalar field, commonly known as the radion, is non-minimally coupled and
Kaluza-Klein theory provides the prototypical scenario for how extra dimensions
may lead to a scalar-tensor theory in four dimensions.

In the modern context, standard model fields are often confined to the four-
dimensional brane while gravity (representing the dynamics of spacetime itself)
propagates also in the higher-dimensional bulk. These scenarios arise mainly in
the context of supergravity and string theory, and brane-worlds have become
one of the most active areas of research in modern high energy physics. A
very famous example is the Randall-Sundrum model [197,198] where our brane
is embedded in a five-dimensional anti de Sitter bulk. By warping the extra
dimension it is possible to create the observed high energy scale of gravity (~
Mp) on our brane while the true gravity scale is much lower in the bulk. A review
of the present status of brane-world gravity is certainly beyond the scope of this
thesis however, and we refer to Refs. [199,200] for an overview of the subject.
Below, we will review some of the more basic concepts which are relevant for
our work in Paper I. In particular we will focus on large extra dimensions as a
possible solution for the hierarchy problem.

4.1 The hierarchy problem

There seems to exist at least two fundamental scales in nature. The electroweak
scale mgw ~ 100 GeV, where particles become massive, and the Planck scale
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Mp) ~ 10*® GeV, where gravity has the same strength as the other fundamental
interactions. That is, Mp; is the maximum energy scale where the standard
model of particle physics could apply. The hierarchy problem arises due to the
presence of a scalar field in the standard model, the Higgs boson. Quantum
corrections to a scalar mass diverge and therefore the Higgs boson should have
mass at the natural cutoff of the theory, Mp,. This is why a fundamental scale
much higher than the electroweak scale is problematic.

Explaining the hierarchy between the above scales, i.e. why mgw/Mp; ~
1071%, has been perhaps the greatest motivation for exploring physics beyond the
standard model. The most common way to solve the problem is by postulating
supersymmetry (SUSY), where each standard model particle has a superpartner
with spin that differs by half a unit. Supersymmetry may solve the hierarchy
problem because the non-logarithmic quantum corrections to the scalar mass
no longer diverge due to cancellations between fermionic and bosonic Higgs
interactions. However, it is only a solution if supersymmetry is broken close to
the electroweak scale.

It is worth noticing that while the electroweak interaction has been probed
at distances ~ 1/mgw, gravity has not been tested nowhere near ~ 1/Mpy; in
fact, Newtonian gravity has only been examined down to about 0.1 mm. Hence,
interpretating Mp, as the fundamental scale of gravity is based on the assumption
that the interaction remains unchanged for the 30 orders of magnitude down to
1/MP1 ~ 1073" mm.

4.2 Large extra dimensions

Arkhani-Hamed et al. [201-203] have proposed a solution to the hierarchy prob-
lem using large extra dimensions. In this picture gravity is effectively much
weaker than the other forces because it gets diluted when propagating in the
extra dimensions, and the approach is totally different from considering a new
effective field theory being responsible for a connection between the scales. In-
stead, the problem is solved by postulating that mgw is the only fundamental
scale in nature, setting the scale for gravitational interactions as well. This gives
a trivial solution to why the electroweak scale is in fact ~ 100 GeV, since this
scale now becomes the natural cut-off for the theory.

Suppose there exist n compactified extra dimensions of radius ~ R. Further,
let all standard model fields be confined to the usual (3 + 1)-dimensional brane,
while the graviton is propagating freely in (4 + n) dimensions. Now, the grav-
itational potential V' (r) for two test masses my, my follows from Gauss law in
(4 4+ n) dimensions [201]:

mimeo 1
M2+n pl+n

V(r) « forr < R, (4.1)

where M is the (4 + n)-dimensional “Planck mass”, i.e. the true scale of gravity.
However, if the masses are separated by a distance r > R, their gravitational
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flux lines will effectively no longer penetrate the extra dimensions and we obtain
the usual, apparently much stronger 1/r dependence

m1Mmse 1

V(T) X M2+n Rn ;

forr > R. (4.2)

Hence, comparing with the traditional V (r) oc mymsy/(MEr) yields the following
expression for the effective four-dimensional Planck mass:

M3, ~ M*™™R™, (4.3)

By assuming that the only fundamental scale in the (4 + n)-dimensional theory
is roughly the electroweak scale, i.e. M ~ 1 TeV, one receives the following
solution for the radius

(4.4)

1 TeV 1+
i )

R~ 10717 c¢m x <

From the above relation we see that a single extra dimension is ruled out im-
mediately, since the corresponding radius, R ~ 10 cm, would imply deviations
of Newtonian gravity at solar system scales, which obviously is not the case.
Nevertheless, for n > 2 one enters yet unfamiliar territory and the case n = 2
is particularly interesting. While a fundamental scale at exactly 1 TeV yields a
slightly too large radius for the extra dimensions, an M ~ 10 TeV have a cor-
responding radius R ~ 1-10 pm which is not yet excluded. However, upcoming
gravity experiments may soon probe these scales.

The simple scheme above is remarkably successful. By providing a natural
cut-off for the electroweak interaction one simultaneously explain the order of
the Planck mass Mp;. The observed gravitational strength is just an effective
coupling stemming from the natural scale witnessed in (4 4+ n) dimensions. Since
particle physics have been probed down to distance scales ~ 1/mgw ~ 10716
cm, it appears very likely that standard model fields indeed are confined to a
(3 + 1)-dimensional brane (unless of course the number of extra dimensions is
very large, n 2 30). However, to realize this framework in terms of localizing the
standard model fields onto the brane is a different question. One possibility is to
embed the framework in string theory. Additionally, one needs to stabilize the
extra dimensions at the desired scale. These issues have been discussed further
in for example Refs. [201-206].

4.3 Dark energy and (S)LED

The hierarchy problem and the stabilization of large extra dimensions (LED)
has also been considered in a six-dimensional brane-world scenario by Albrecht,
Burgess, Ravndal & Skordis [191,192]. Here, the presence of a bulk scalar field
with cubic self-interaction (which is renormalizable in 6D) induces a Casimir
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potential for the radion. Furthermore, the bulk scalar also induces logarithmic
corrections to both the kinetic terms and the potential, which are crucial for the
stabilization mechanism. The scale of physics on the brane is imagined to be
My, ~ 1 TeV, while the size of the compactified dimensions r can be as large as
~ 1 mm.!

The corresponding effective four-dimensional action in the LED scenario is
given by the following form in the Jordan frame [I,192]:

M2(Myr)? 2
SLED = /d4l’\/ —g [% (A(T)Rg +2B(r) (&) )
r
Uo
- C<T)T_4 + Em(f]ul/a wm) ) (45)
where U, is a dimensionless constant on the order of one and

A(r) =~ 1+alogM,r, (4.6)
B(r) ~ 1+ blog Myr, .
C(r) ~ 1+ clogMyr, (4.8)

represent the logarithmic corrections coming from the bulk scalar field. Here a,
b, and ¢ are small parameters (< 1) proportional to the dimensionless coupling
constant of the bulk scalar field. In the original scenario, the stabilization of the
compactified dimensions is based on the observation that large extra dimensions
are obtainable if the potential restraining their radius has a logarithmic correc-
tion. This is possible since that for a negative value of ¢ the potential of the ra-
dion develops a minimum at exponentially large distances: r ~ M ' exp (1/]c|).

Remarkably, the induced potential will not only stabilize the extra dimen-
sions but it will also be of a form suitable for addressing the dark energy problem.
This possibility becomes more apparent if we introduce a new scalar field

¢ = log Myr, (4.9)
giving the following form of the action (4.5):

Mgez‘f’
2

SLEp = /d4x\/—_g[ <A(<P)Rg + 23(‘%’)(890)2)
— MU (0)e™ + LG, wm)] , (4.10)

where we have redefined the functions A, B, and C according to A(¢) =1+ ayp
etc. The above action is indeed of the same form as the general scalar-tensor

!Note that extra dimensions with a size of 1 mm were not yet excluded when this model
was proposed.
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theory in Eqn. (3.2) with F(p) = A(p)e*?, Z(p) = —2B(p)e*?, and U(p) =
2M2UC(p)e™*#. Furthermore, the presence of an exponential potential for the
scalar field makes it an ideal candidate for extended quintessence. In particular,
the value of Myr ~ 10' needed in order to produce the observed gravitational
strength will naturally yield the correct magnitude of the potential, without the
presence of a small energy scale associated with the critical energy density. A
typical cosmological solution in this scenario was indeed shown in Fig. 3.1 where
the model gives rise to an accelerating expansion at present via a quintessence-
like behaviour. As will be discussed in Paper I, it is also possible for the model
to give rise to scenarios similar to k-essence and possibly phantom dark energy.

The Solar System constraints on the scalar field coupling to matter result in
a strong constraints on the function A(y). Roughly speaking, A(¢) < 1 which
requires that ap =~ —1. Remarkably, this requirement will also give rise to a new
stabilization mechanism for the radius of the extra dimensions. This becomes
clear when we consider the potential of the scalar field ¢ in the Einstein frame:

U(p) = ;iﬁi% — MU s (4.11)

(1 +ap)?

Now, as the scalar field rolls down the potential and gets closer to the value
required by the Solar System constraints, ap ~ —1, it will also get closer and
closer to the singularity in the potential at ¢ = —1/a. That is, the potential gets
steeper and steeper and it will in practise be impossible for the field pass this
point. Indeed, as was shown in Paper I, even of one shoots the scalar field with
a huge amount of kinetic energy, the potential will act as an unsurmountable
barrier confining the field. That is, the radion cannot evolve past Myr ~ 102,
Fig. 4.1 shows the corresponding potential for the canonically scaled scalar field x
in the Einstein frame, obtained via the definitions in Eqn. (3.13) and Eqn. (3.14).
Note that since the scale in ¢ is very strongly condensed with respect to x near
the singularity, the hill becomes extremely steep in the ¢ picture. We refer to
Paper I for further details.

The Albrecht et al. scenario has since received considerable further devel-
opment by Burgess et al. [183-190]. In this improved version, all fields in the
bulk are supersymmetric and the corresponding physics is hence described by
6D supergravity. Supersummetry is of course broken on our brane however. The
size of the extra dimensions are imagined to be ~ 10 pm (in good agreement
with current constraints, see below), setting the scale of 6D gravitational physics
to ~ 10 TeV. The presence of supersymmetric large extra dimensions (SLED)
provides a solid foundation for studying the naturalness issues, and many as-
pects of the scenario have been studied in detail (see references in Ref. [190] for
further details). In particular, the SLED scenario does not set the effective 4D
cosmological constant to zero, but predicts that it vanishes at tree level with
small corrections ~ peii /K. As a consequence, the resulting scalar-tensor theory
is of same the same form as in the LED scenario above, which is known to give
rise to realistic forms of extended quintessence. Finally, the size of the extra
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Figure 4.1: The Einstein frame potential V() as a function of x, both measured
in units of Planck mass. The dashed line represents log V' (x) which clearly shows
the minimum stabilizing the radius of the extra dimensions. Note that this minimum
arises solely from the A(p) correction and that the correction coming from C(yp) in
the potential (4.11) leaves no significant features in the above plot.

dimensions in the SLED model must be very large, which makes the scenario
unusually predictive for future precision tests of gravity and the upcoming high
energy experiments at the Large Hadron Collider (LHC).

4.4 QObservational constraints on large extra di-
mensions

Let us finally review the possible ways to constrain the size of large extra di-
mensions. The obvious way is to make precise measurements of gravity at small
distances. Such experiments have improved considerably in recent years and
high precision measurements of Newton’s square law constrains the size of large
extra dimensions to < 50 pm [207] (see also Ref. [189)]).

A complementary way to obtain constraints is via cosmology and astrophys-
ical processes. For each extra dimension, there exist a number of excitations of
the graviton, Kaluza-Klein (KK) modes, corresponding to available phase-space
in the bulk. A physical process involving the possible emission of a graviton could
therefore show significant differences from the standard picture. Nevertheless,
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processes involving KK modes are often highly model dependent. Therefore, we
will not discuss actual constraints, but instead focus on the ideas behind them.
In summary, the obtained upper bounds on the size of the extra dimensions are
typically ~ 100 pm and we refer to Ref. [30] for further details.

Cosmological constraints. Cosmology provides several ways to constrain the-

ories with extra dimensions. For example, the successfull prediction of light
element abundances requires that the expansion rate is very close to the stan-
dard one during nucleosynthesis. The extra dimensions must then be stabilized
at this time so that the strength of gravity is truly constant.
At early times, the energies are also high enough for creating KK modes in the
heat bath. A large number of KK modes are in general produced during reheat-
ing after inflation, and these can easily become the dominating component if the
extra dimensions are too large.

Constraints from supernovae. Supernovae can also be used to place limits
on the size of extra dimensions. Normally, most of the energy from a type
IT supernova core is carried away by neutrinos, but in the presence of extra
dimensions the energy can also be transported away by the KK modes. This
picture makes it possible to constrain the size of extra dimensions by using the
observed neutrino flux from SN 1987a [208, 209)].

Neutron star limits. In connection with supernovae observations, constraints
can also be obtained from gamma ray limits for nearby young supernovae rem-
nants and neutron stars. In this case the KK modes are created with relatively
small velocities and hence form a halo around the neutron star. An observable
flux of gamma rays should then be emanated from neutron stars as these states
decay into photons. At present, the EGRET satellite measurements provide lim-
its on the gamma ray flux, but the upcoming GLAST satellite may also detect
the actual decay of KK modes.

4.5 Concluding remarks

The possible existence of large extra dimensions offers a very attractive solution
to the hierarchy problem. What makes them of interest here is that extra dimen-
sions might naturally give rise to a scalar-tensor theory with suitable properties
for a realistic extended quintessence scenario. Although there are a number of
observational constraints on extra-dimensional models, they tend to be some-
what model dependent. Moreover, these constraints restrict the upper limit on
the scale of the extra dimension which does limit the utility of large extra di-
mensions as means to cure the hierarchy problem, but not so much their use
in obtaining an effective scalar-tensor theory of extended quintessence, which is
our main motivation here.

39



40



Chapter 5

f(R) gravity

Non-linear modifications to the Einstein-Hilbert action have a long history [210,
211] and have been of interest for a variety of reasons. They are for example
encountered in loop calculations in General Relativity (when considered as an
effective field theory) [212] and arise in effective actions derived from string the-
ory [213,214]. More recently, it was discovered that a suitable modification of
the Einstein-Hilbert action can result in an accelerating expansion at present
without the need for a cosmological constant [215-219]. Although these theo-
ries offer no insight to why the pure cosmological constant should vanish, they
provide a possible dynamical explanation for the dark energy problem and the
scenario has garnered much attention, with several hundred articles appearing
during the last few years.

The non-linear theories of gravitation considered in this thesis take the fol-
lowing form in the Jordan frame:

S = Sf+Sm
_ / d4x\/—_g{if(3)+ﬁm(gumwm) , (5.1)

which reduce to the familiar Einstein-Hilbert action for f(R) = R — 2A. The
underlying idea is that if the function f(R) modifies the behaviour of gravity in
the infrared, i.e. in the low curvature regime at late times, the above action may
provide a possible explanation for the dark energy problem. A simple extension
along these line is the modification presented in the original models [217,218]:
f(R) — R = —pu*/R where p? ~ A in order to explain the observed acceleration
at present.

A non-linear term f(R) in the gravitational Lagrangian introduces an ambi-
guity in the variation of the action. In GR, one assumes that the affine connec-
tion of the spacetime manifold is given by the Levi-Civita connection. This can
be justified by the fact that if one varies the Einstein-Hilbert action with the
metric g, and the affine connection I'/, as independent variables, the result-
ing equation of motion for the affine connection is just the metric compatibility
equation. In other words, the affine connection will coincide with the Levi-Civita
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connection. However, in f(R) gravity this is no longer the case and one has to
make an a priori choice of which variational principle to use. Thus, one speaks
of metric f(R) gravity where the affine connection is fixed by hand to the Levi-
Civita connection, and Palatini f(R) gravity where the affine connection is kept
as an independent variable. These two different variational principles will indeed
give different equations of motion and thus represent two separate theories. The
main difference is that metric f(R) gravity is a fourth order theory while Palatini
f(R) gravity remains second order. However, it should be noted that the equa-
tions of motion in both metric and Palatini f(R) gravity imply the canonical
conservation law for stress-energy in the Jordan frame, V, 7" = 0 [220], where
the covariant derivative is indeed defined in terms of the Levi-Civita connection

{5}

5.1 Metric f(R) gravity

By fixing the affine connection of the spacetime manifold to the Levi-Civita
connection,

1 loa
FZV = {;fl/} = §gp (a,ugau + az/gau - ao'glu,y) 9 (52)

and varying the action (5.1) with respect to g,,, we obtain the equations of
motion for metric f(R) gravity:

F(R)Ryy — %gu,, F(R) = (V¥ + g ) F(R) = 87GT,,  (53)

where F'(R) = 0f/OR and all covariant derivatives are defined in terms of the
Levi-Civita connection. Since the Ricci scalar contains second order derivatives
of g, the gradient terms in Eqn. (5.3) will yield fourth order derivatives of the
metric. The fact that metric f(R) gravity is a fourth order theory makes it hard
to determine the appropriate boundary condition for a given problem, which in
particular makes the study of Solar System constraints fairly complicated. The
main problem is that Birkhoff’s theorem does not hold in metric f(R) gravity
so that the spherically symmetric vacuum solution is no longer unique. Further-
more, it is not necessarily static and many configurations exhibit a violent time
instability due to the higher order derivatives in the equations of motion [221].
It is nevertheless clear that Eqn. (5.3) does reduce to the familiar second order
Einstein equations if (and only if) f(R) = R — 2A.

The possibility for metric f(R) gravity to explain the accelerating expansion
stems from the observation that the relaxed vacuum solution to the above equa-
tions is of de Sitter (dS) type. That is, for V,F' = 0 the equations of motion
(5.3) reduce to the Einstein equations with an effective cosmological constant A:

G = =9 % (R — %) = —guwA(R). (5.4)
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Hence, if the trace of the above equation, F(R)R — 2f(R) = 0, has a nonzero
positive root Ry = 4\(Ry) = 4/, spacetime will have an inherent positive
curvature which accelerates the expansion of the Universe. Note that for a
negative root Ry < 0, space-time is instead of anti de Sitter (AdS) type.

5.1.1 Cosmology in metric f(R) gravity

Non-linear corrections to the gravitational Lagrangian as a source of acceleration
was first discussed in the context of inflation [222-224]. In these scenarios one
considered a conformal term R? driving the acceleration at high curvatures.
Similar mechanisms has also been incorporated in some more recent models
which try to address both inflation and the dark energy problem by choosing
a function f(R), with corrections becoming important at both high and low
curvatures [225-227].

A vast number of models for late time acceleration in metric f(R) gravity
have been suggested and studied in the literature [215-217,219, 226-249, 268].
As discussed above, the origin of the acceleration can be thought of as due
to an inherent positive curvature Ry of spacetime. This picture is nevertheless
somewhat misleading since the effective equation of state is not necessarily equal
to —1 in an f(R) gravity theory. For example, by assuming that the evolution
of the scale factor is given by a power law a o t™, one can show that the
effective equation of state is given by the following expression in a f(R) — R =
— 2+ JR™ model (n > 1) [217]:

2(n+2)
32n+1)(n+1)"’

WDE — -1+ (55)

giving wpg = —2/3 for n = 1. In reality, the dark energy equation of state
will of course be time-dependent since the scale factor will have a more general
evolution, but the power-law remains a good approximation during a specific
era. Furthermore, the above example clearly shows that the effective equation
of state will in general differ from that of a pure cosmological constant, and it
tells us that the simple original scenario with n = 1 is ruled out by constraints
on wpg (see Eqn. (2.26)). The constraints on wpg in metric f(R) gravity have
been further explored in for example Ref. [250]. Here it was shown that the
present values of f(R) and its derivatives 0" f/OR"™ with n < 3 can be related
to the present values of the Hubble rate, the deceleration ¢, and the jerk, snap
and lerk parameters containing the third, fourth and fifth time derivative of
the scale factor, respectively. This shows that it is in principle possible to
distinguish metric f(R) gravity from a pure cosmological constant even if the
scenario predicts an equation of state very close to —1. Present observational
constraints are nevertheless much too weak to discriminate between any such
features. Note that the expansion history alone will not determine the function
f(R) in metric f(R) gravity, since the fourth order nature of the field equations
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requires time derivatives up to order n+2 of the scale factor in order to determine
o"f/OR".

A generic difficulty with studying cosmology in metric f(R) gravity is that
most constraints turn out to be model dependent. However, there exists at least
one particular obstacle that all models need to overcome: there must exist a
standard matter dominated epoch prior to the late time accelerating era. This
may seem like a trivial demand but it has been shown that a large class of models
fail this basic requirement, since their scale factor will grow as t'/? instead of
the standard law ¢¥/® during the matter dominated phase [236,238,244]. Such a
behaviour is grossly inconsistent with CMB data and excluded models include
for example all functions f(R) — R = aR™ where n > 1 or n < 0. It should
nevertheless be noted that the non-canonical evolution occurs simply due to the
fact that we require an accelerating expansion at present. The excluded models
can indeed give rise to the standard evolution t*2, but in this case the solution
corresponds to a stable point in the phase space so that it will never give away
to acceleration [238].

More general properties of cosmology in metric f(R) gravity have been con-
sidered in for example Refs. [251,252]. A recent paper has also pointed out that
there exists a curvature singularity appearing at the non-linear level in metric
f(R) gravity, which may plague any model which modify Einstein gravity in the
infrared [253]. The impact of this discovery on the viability of metric f(R) mod-
els is yet to be determined however. In summary, most simple metric f(R) mod-
els fail the cosmological tests, but more complicated models have been suggested
which claim to obey all observational constraints [226, 227, 239, 245, 247, 249].
However, as we will discuss in the next section, it appears that these scenarios
face a naturalness problem when placed under close examination in the Solar
System.

5.1.2 Solar System constraints in metric f(R) gravity

Solar System constraints have been a source of great debate in metric f(R)
gravity. An early paper by Chiba [254] used the fact that metric f(R) gravity is
equivalent to a Jordan-Brans-Dicke theory with w = 0, giving yppy = 1/2 which
is certainly ruled out by observations. However, this argument assumes that the
corresponding potential is negligible and many authors have argued both for [III,
255-262] and against [226,227,247,263-269] Chiba’s result. The ambiguity stems
from the fourth order nature of the field equations. As mentioned, the vacuum
solution is no longer unique so that even though the Schwarzschild-dS metric
is a solution to the field equations, there is no guarantee that it is the exterior
solution obtained in the Solar System. On the contrary, matching with the
interior of the Sun typically gives a solution corresponding to yppn = 1/2 [III,
IV, 257,260] and we refer to Paper III for further details. Fig. 5.1 shows a
typical solution for the metric components ggo and ¢;; in the Solar System and
the corresponding value of yppy is shown in Fig. 5.2.
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Figure 5.1: Shown are the temporal (lower curves) and radial (upper curves) compo-

nents of g,, in the Solar System for the metric f(R) = R — u*/R model (solid) and
for GR (dotted).
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Figure 5.2: Shown is a typical solution for yppyn in metric f(R) gravity (solid) and
the corresponding solution in GR (dashed).
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As was emphasized in Paper III, the exterior solution does however depend
on the higher order boundary conditions set at the center of the star. While
a large class of boundary conditions lead to solutions indistinguishable from
the one shown in Fig. 5.1 and Fig. 5.2, there exists a small region of boundary
conditions leading to yppy = 1. For the models studied in Paper III, these
solutions are nevertheless ruled out since they turn out to either be unstable in
time or produce a much too weak gravitational field due to the non-standard
relation between the gravitational mass and the density profile.

There exists a well-known time instability in metric f(R) gravity, commonly
referred to as the Dolgov-Kawasaki instability. In summary, perturbing around a
static solution for the Ricci scalar in the weak field limit, R(r) — R(r)+0R(r,t),
and expanding the field equations (5.3) to first order in small quantities, gives the
following equation for a perturbation around a constant curvature background:

(82 = V¥R = —m2%0R (5.6)

where the parameter m% depends on the background curvature R only. Expand-
ing in Fourier modes d Ry(k,t), we find the time dependence

SRy (K, t) ~ eFVE MRt (5.7)

so that if m% < 0, all modes with k& < |mg| are unstable. One can show
that in order to obtain a solution with vppy &~ 1, one needs R ~ kp [IV].
This typically gives a mass parameter |mg|™' < 1 second so that the system
is violently unstable for a negative mass squared. This indeed turns out to be
the case for the original scenario [217] and we refer to Paper IV for a detailed
discussion of the stability issues in metric f(R) gravity.

More complicated f(R) functions has also been suggested which claim to be
compatible with the Solar System constraints [226,227,247,269]. While these
models can indeed exhibit a stable solution with yppy = 1, they do not elaborate
on how such a configuration will be obtained. As discussed in Paper IV, a
possible way to address this problem is to study the collapse of a protostellar
dust cloud in order to determine which configurations are natural. While a
full dynamical computation was beyond the scope of this paper, we studied how
special the GR-like solutions are in the phase space. It turns out that the domain
of GR-like solutions typically shrinks to a point in the phase space, surrounded
by a continuum of equally acceptable solutions but with observationally excluded
values of yppn. Unless a physical reason to prefer such a particular configuration
can be found, this poses a serious naturalness problem for the currently known
metric f(R) models for accelerating expansion of the Universe [IV].

5.2 Palatini f(R) gravity

In Palatini f(R) gravity one considers both the metric g, and the affine con-
nection I'f, as independent variables. Since the Riemann tensor is defined solely
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in terms of the affine connection, the Ricci scalar becomes a composite object
in these theories, R(g,T') = ¢ R, (') = ¢"R;,,(I'). Varying the action (5.1)
with respect to both g, and I'f, results in the equations of motion for Palatini

f(R) gravity:

F(R)RW—%ng(R) = 8nGT,,, (5.8)
V,(V=gF(R)g") = 0, (5.9)

where a bar reminds us that an object is indeed defined in terms of the affine
connection and hence differs from the corresponding quantity in metric f(R)
gravity.

When deriving the above equations of motion we implicitely assumed that
the Riemann tensor is torsionless and that the matter Lagrangian is indepen-
dent of I'},. The first of these assumptions is also made in General Relativity
and it is in good agreement with the observational constraints on torsion [270].
The second assumption holds true for many applications in astrophysics and
cosmology, where one often only considers perfect fluids, scalar fields, and the
electromagnetic field. In these cases the matter Lagrangian will indeed only de-
pend on g, in addition to the matter fields. However, if one for example includes
particles with spin, one either needs to make an a prior: assumption that the
matter Lagrangian depends on the Levi-Civita connection only, or face a more
complicated theory. This issue has been discussed further in Refs. [173,271,272].

It is clear from the equation of motion for the affine connection, Eqn. (5.9),
reduces to the metric compatibility equation for g, if F(R) = const. In this
case, and only in this case does the free affine connection reduce to the usual
Levi-Civita connection, Eqn. (5.2). Now, by taking the trace of the equation of
motion for the metric, Eqn. (5.8), we immediately see that the Ricci scalar is
completely determined by the trace of the stress-energy tensor:

F(R)R—2f(R) = 87GT . (5.10)

Hence, if T is constant so is R and F(R). As a result, the full field equations in
vacuum reduce to the Einstein equations with a cosmological constant:

G/u/ = G/u/ = _guVAO ) (511)

where Ag = M(Ry) = MRy). Note that since Eqn. (5.9) now implies that the
affine connection is given by Eqn. (5.2), both the Ricci scalar and the Einstein
tensor will indeed depend on g,, only. The above reduced form of the field
equations once again implies that the vacuum solution is of de Sitter type if the
trace equation (5.10) has a nonzero positive root Ry. This makes the mechanism
for obtaining an accelerating expansion very similar to the one in metric f(R)
gravity. However, there is an important difference. In metric f(R) gravity
the vacuum solution is less restricted since the Ricci scalar R corresponds to
an additional degree of freedom, and the familiar Einstein equations are only
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obtained in the relaxed vacuum limit V,F — 0. In Palatini f(R) gravity the
second order nature of the field equations guarantees that R is always completely
determined by the trace of the stress-energy 7" and the vacuum equations always
reduce to Eqn. (5.11). In particular, the spherically symmetric vacuum solution
is unique and given by the Schwarzschild-dS metric (or the Schwarzschild-AdS
metric for Ry < 0).

Let us now return to the equation of motion for the affine connection. By
introducing a conformal metric h,,, = Fg,, we see that Eqn. (5.9) can be written
as a metric compatibility equation for hy,: V,(v/=hh*’) = 0. That is, the affine
connection corresponds to a Levi-Civita connection defined in terms of h,, and
it follows that

_ 3 1 1
BylT) = Bylo) + 5 (VP )ToF) — 1 (V,9, - 3000) Fo - (512

where the covariant derivatives are given in terms of g,, only. We can hence
rewrite the field equations, Eqn. (5.8) and Eqn. (5.9), as

811G _ 1
GHV = F Tuu - g;w)\(R) + F (V#VI, - gWD) F
3 1
Y <(VMF)(VVF) — §gW(VF)2> : (5.13)

Since f and F are still functions of the Ricci scalar R, and thus algebraic func-
tions of T" via the trace equation (5.10), the right hand side is indeed completely
determined by the stress-energy 7),,. That is, the above form explicitely sepa-
rates spacetime geometry and matter content. Although not as compact as the
original equations of motion, Eqn. (5.13) together with the trace equation (5.10)
form the most useful set of equations in many applications.

5.2.1 Cosmology in Palatini f(R) gravity

Cosmology in Palatini f(R) gravity has received considerable attention [218,248,
273-290] and is significantly different from the metric theory. For example, since
a conformal term will not affect the trace equation (5.10), an R? correction to the
gravitational action can not produce inflation in Palatini f(R) gravity [291-293].

The expansion history of the Universe serves as a good discriminator between
different models in Palatini f(R) gravity since it is possible to reconstruct H as
a function of z for an arbitrary choice of the function f(R) [280]. By combining
constraints from CMB, supernovae and baryonic acoustic oscillations, it is possi-
ble to put strong constraints on the allowed models. For f(R)— R = a(R/HZ)P,
the best fit value of the parameter 5 = 0.09 and the allowed values are confined
within a narrow band || < 0.2, so that only models similar to a cosmolog-
ical constant are allowed [280]. In particular, the simple —u*/R scenario is
ruled out also in Palatini f(R) gravity. In contrast with the corresponding
scenario in metric f(R) gravity, this model is nevertheless in good agreement
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with supernova data alone and it behaves like a cosmological constant also at
higher orders in the Taylor expansion of the scale factor a(t) around present
time ty. The first and second order terms are naturally proportional to the Hub-
ble rate Hy and deceleration ¢y, but also the third order term corresponding to
the jerk parameter j, = do JagH$ is almost identical to that of a cosmological
constant. The predicted value of the jerk parameter in the —u*/R model is
Jo = 1.01 £ 0.01 [284,287] which is very close to that of a flat ACDM model
where 7 = const. = 1. Note that all cosmological scenarios with a transition
from previous deceleration to acceleration at present have j, > 0 regardless of
origin.

Strong constraints on Palatini f(R) gravity can also be obtained from the
matter power spectrum. The contributions from F' in Eqn. (5.13) will introduce
a gradient term corresponding to effective pressure fluctuations in matter in the
equation governing the matter perturbations. In a sense, matter couples back on
itself in Palatini f(R) gravity, while no such term appears in the f(R) = R—2A
limit. However, while other modifications may be small when F is close to 1, the
gradient contribution will have significant impact on small scale structures also
in this regime [278]. This tightens the constraint on the R® model considerably
and one obtains |3] < 107° so that the scenario is virtually indistinguishable
from a cosmological constant [282]. The non-standard behaviour of the pertur-
bations will give rise to similar constraints also from the CMB angular power
spectrum [288].

In summary, cosmological observations and in particular the matter power
spectrum put very strong constraints on Palatini f(R) gravity, only allowing
models which are practically indistinguishable from a cosmological constant. It
should nevertheless be noted that this is under the assumption that the Universe
is filled with cold dark matter. In Ref. [290] it was shown that if one relaxes
the assumption that dark matter is a pressureless perfect fluid, non-trivial func-
tions f(R) may still be allowed. The corresponding scenario seems somewhat
contrived however.

5.2.2 Solar System constraints in Palatini f(R) gravity

Since the spherically symmetric vacuum solution in Palatini f(R) gravity is
unique and given by the Schwarzschild-dS/AdS metric, the Solar System con-
straints seem to be trivially fulfilled. Indeed, given the desired value of the
cosmological constant, yppy is indistinguishable from 1 in Palatini f(R) gravity.
However, as discussed in Papers II and III, the modified source term for Gy will
yield a non-standard relation between the gravitational mass and the density
profile of the Sun. This becomes especially transparent when one considers a
constant density object, for which the gravitational mass is given by [I1]:

o 4mr?p A, — A
M:/ drlt Py e~ 20,3 (5.14)
0 F,

6G @7
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Figure 5.3: Shown is the temporal (lower curve) and radial (upper curve) component
of g, in the Solar System for a Palatini f(R) model where F' =~ 1 inside the Sun. The
Palatini solution completely overlaps with the GR metric.

where F, and A, are the interior values determined by the density profile p
and Ag is the vacuum value of the cosmological constant. Although the small
mass shift due to A, — A is usually completely negligible, the first term will
strongly constrain the allowed forms of F. For example, while the original
—p*/R model gives an F, indistinguishable from 1, adding a conformal term
~ R?/u? results in F, ~ 103" at the center of the Sun. In such a case, the
resulting gravitational field is so weak that spacetime is indistinguishable from a
flat Minkowski background and no planets would revolve around the Sun. One
could in principle imagine that F' varies inside the Sun in such a way that it
still gives rise to the observed gravitational field strength, but since the local
density is what defines the local pressure and other thermodynamical properties
of a star, it is obvious that F' can not differ significantly from 1 inside the Sun
without changing the predictions of Solar physics. In summary, Solar System
observations demands that F'is very close to 1 in the interior of the Sun. It is
interesting to note that this constraint also applies to metric f(R) gravity, since
in order to obtain yppxy = 1 in these theories the solution must closely follow the
corresponding Palatini solution [III,IV]. Fig. 5.3 shows the metric components
goo and gy7 in the Solar System for a Palatini model where F' is very close to 1
and we see that the solution is indeed indistinguishable from GR.
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Finally, it should nevertheless be mentioned that Solar System constraints
have been a matter of some debate also in Palatini f(R) gravity [256,264,295—
299]. However, as was shown in Refs. [264,300], the analysis in some of these
papers suffered from serious problems and it is fair to say that there seems to be
no problems with the weak field limit in Palatini f(R) gravity. This conclusion
is also supported by Fig. 5.3 and the analysis in Paper III where we solved the
full field equations (5.13) in the Solar System. As can be seen from Fig. 5.3,
the metric in Palatini f(R) gravity completely overlaps with the corresponding
solution in GR so that vppy = 1, unlike in metric f(R) gravity where the metric
deviates from the GR solution and yield yppn = 1/2, see Fig. 5.1 and Fig. 5.2.

5.3 Scalar-tensor equivalence

There exists a well-known classical equivalence between f(R) gravity and Jordan-
Brans-Dicke theory. Consider the gravitational part S of the action (5.1) and
rewrite it in terms of a new scalar field ¢ which is fixed by a Lagrange multiplier:

Sw=o- [ Ay =gf(®) + F@)(R - )] (5.15)

Varying the above action with respect to ® gives (0F/0®)(R — ®) = 0 so that
unless 0F/0® = 0 (corresponding to the Einstein-Hilbert action), ® = R as
desired and S is indeed equivalent to Sy. Note that the above holds regardless
of how we define the Ricci scalar. Now, by defining

¢=F(®), Ul¢)=09¢P—-[f(D), (5.16)

the action (5.15) can be rewritten as

So =5 / dz/~g[6R — U(9)] . (5.17)

That is, it takes the form of a Jordans-Brans-Dicke theory. In metric f(R)
gravity, the Ricci scalar is defined in terms of the metric g,, only and it hence
corresponds to a JBD theory with w = 0 as seen from above. However, in Pala-
tini f(R) gravity the Ricci scalar is instead a composite object, R = g"' R, (T),
which can be expressed in terms of the conformal metric h,, = ¢g,,. Thus, via
the relation

_ _ 3
R= 9" R = R+ 550" 0,00, (5.18)

where R = ¢g"” R, and we have dropped total derivatives, we see that Palatini
f(R) gravity corresponds to a JBD theory with w = —3/2.

When written as scalar-tensor theories, the only thing which differs between
metric and Palatini f(R) gravity is the kinetic term of the scalar field. At first
sight, the value w = 0 seems to imply a trivial behaviour for the scalar field
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corresponding to metric f(R) gravity. However, in the Jordan frame the kinetic
terms of the scalar field and the metric mix so that the dynamics is not very
transparent. It is easier to analyze the system in the Einstein frame where the
Hamiltonian of the gravitational sector is diagonalized so that the spin 0 and
spin 2 degrees of freedom separate. When the action is written in the Einstein
frame, the conformal transformation will generate an additional piece to the
kinetic term of the scalar field: —(3/2¢?)g"9,¢0,6. Thus, the scalar field in
metric f(R) gravity is indeed dynamic, just like expected from the equations of
motion (5.3) where F', i.e. R corresponds to an additional degree of freedom.
On the contrary, in Palatini f(R) gravity the contributions to the kinetic term
of the scalar field will instead cancel, showing that ¢ is not a dynamical field
in this theory. This can of course also be seen from the equations of motion in
both frames. In the Jordan frame, it becomes apparent if we use the trace of
Eqn. (3.11) to replace the Ricci scalar in the equation of motion for ¢:

0 = 2wD¢+¢R—%(3¢)2—¢U'(¢)

= (34 2w)0¢ — oU'(¢) + 2U(9) — KT, (5.19)

where U'(¢) = 0U/0¢. That is, for w = —3/2 the above equation of motion
will reduce to a purely algebraic relation between the scalar field and the stress-
energy, just like in the Palatini trace equation (5.10) where R is completely
determined by T

Let us finally note that while the equivalent scalar-tensor formulation of f(R)
gravity provides a useful alternative form of the equations of motion, it should
also be used with some caution. In particular, the expressions for the post-
Newtonian parameters in scalar-tensor theory, Eqn. (3.19) and Eqn. (3.20), are
not valid in Palatini f(R) gravity since the parametrization breaks down when
(3 4+ 2w) = 0. Also, the boundary condition problem in metric f(R) gravity is
not alleviated by mapping it to a scalar-tensor theory. The corresponding scalar
field has no straightforward physical interpretation and its boundary conditions
are no less obscure than the higher order derivatives of g, .
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Chapter 6

Summary and discussion

The main concern of this thesis has been the dark energy problem. We began
with an overview of basic cosmology and discussed how present observations
imply that the expansion rate of the Universe is accelerating. In a homogeneous
and isotropic Universe filled with only regular matter this requires the presence
of a nonzero positive cosmological constant A, assuming that gravitational dy-
namics is described by General Relativity also at very large scales. While there
is yet no need to go beyond the ACDM model from an observational point of
view, the severe theoretical problems associated with a cosmological constant
A ~ (1072 eV)? encourages us to seek for an alternative explanation. We re-
viewed the possibilities of including exotic fluids and effects from inhomogeneities
in the Universe, but continued to explore a different approach. We considered
a flat, homogeneous and isotropic Universe filled with regular matter but where
modifications to gravity at cosmological distances lead to the observed acceler-
ation at present. However, any extended theory of gravity may also alter the
dynamics at much smaller scales and Solar System observations put strong con-
straints on deviations from General Relativity. In particular, we have studied
these constraints in scalar-tensor theory and f(R) gravity.

Scalar-tensor theories provide an attractive alternative for dark energy with
good motivation from higher-dimensional theories. In particular, large extra di-
mensions (LED) not only offer a possible solution to the hierarchy problem but
the associated scalar field can also give rise to extended quintessence. Moreover,
when embedding the large extra dimensions in a supersymmetric bulk space, the
corresponding SLED model will also predict that the effective four-dimensional
cosmological constant vanishes at tree level so that this scenario offers a re-
markably complete solution to the cosmological constant problem. The LED
scenario of Albrecht et al. was explored in Paper I and we found that Solar
System observations put strong constraints on the model. However, since the
behaviour of an extended quintessence scenario can be very similar to that of
regular quintessence, there is still enough freedom in the model to pass the cos-
mological tests. This is indeed the case in many extended quintessence models,
but the solid theoretical foundation of the (S)LED model makes it an exception-
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ally well founded scenario.

Non-linear corrections to the Einstein-Hilbert action in the form of f(R)
gravity have received much attention despite several difficulties within the sce-
nario. The perhaps main criticism against f(R) gravity as a solution to the dark
energy problem is that models typically require the presence of a very small en-
ergy scale u ~ v/A.' Such a small scale also appears in many quintessence
models where it is considered a serious problem. However, this question has yet
not received much attention in f(R) gravity theories. Moreover, in metric f(R)
gravity, the small scale p typically introduces a time instability which causes se-
rious problems at Solar System scales. The most straightforward solution to the
instability problem would be to set . ~ Mp, or some other large scale where clas-
sical gravity might break down. However, this would bring us right back where
we started, since it would imply an asymptotic vacuum solution Ry ~ M3, which
is just the cosmological constant problem in disguise.

While cosmological observations put particularly strong constraints on Pala-
tini f(R) gravity, metric f(R) models should typically also behave similar to
a cosmological constant. This makes the observational situation more difficult
in f(R) gravity than in a scalar-tensor theories based on large extra dimen-
sions. Even if the corresponding extended quintessence scenario turns out to
be practically indistinguishable from a cosmological constant, it will still have
a characteristic behaviour at high energies so that constraints from particle ac-
celerators may be used to further probe the model. In f(R) gravity, the only
possible way to constrain a model is simply via gravitational interactions.

In summary, Solar System observations put strong constraints on both scalar-
tensor theories and f(R) gravity. While an extended quintessence scenario and
Palatini f(R) gravity can in many cases fulfill these requirements, the situation is
more problematic in metric f(R) gravity. Although solutions giving the desired
value vppny = 1 do exist for a suitable choice of the function f(R) also in the
metric theory, it seems highly unlikely that such a configuration will be reached
through the collapse of a protostellar dust cloud.

6.1 Summary of appended papers

Below is a brief summary of the work contained within the appended papers.
Note that although we have tried to keep notation consistent throughout the
first part of this thesis, it will sometimes depart in the appended papers. Most
notably, Paper I uses opposite signature (+, —, —, —) and the Jordan frame met-
ric is denoted by g, while the Einstein frame metric is given by ¢,,. In Papers
IT and III the quantities defined in terms of the affine connection in Palatini
f(R) gravity are not barred. Finally, in Paper IV the gravitational Lagrangian
is written in the form R + f(R) so that the function f(R) parametrizes the

'However, for an example of the contrary see the logarithmic toy model in Paper IV where
MQ > o100 A
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deviation from General Relativity without a cosmological constant.

6.1.1 Paper I

We studied the cosmology of a dilatonic scalar-tensor theory obtained from the
low energy limit of a six-dimensional brane world scenario, where large extra
dimensions address the hierarchy problem and offer at least a partial solution
for the naturalness problem in quintessence models. Our work was based on the
LED model by Albrecht et al. [191,192] which was later extended to the Super-
symmetric Large Extra Dimensions (SLED) scenario [183-190]. We showed that
the original scenario needs some correction when the Solar System constraints
are more carefully accounted for. At first sight one appears to conclusively rule
out the model. However, we also found that it is possible to salvage the overall
scenario by adding new fields to the six-dimensional bulk space, and that this
improved model also provides a new stabilization mechanism for the size of the
extra dimensions. We showed that the corresponding cosmology not only allows
for extended quintessence, but that it also can give rise to solutions similar to
k-essence and possibly also phantom dark energy. Finally, we also showed that
the observational imprint of the model is in principle detectable by the Super-
Nova/Acceleration Probe (SNAP) in the upcoming Joint Dark Energy Mission
(JDEM). While SNAP data alone will not be able distinguish it from a ACDM
model with about 5% less dark energy, this degeneracy should be lifted when
combining the data with constraints from the CMB.

Given the more recent developments of the SLED scenario, it would be inter-
esting to revisit the above analysis in this context. While the overall cosmological
evolution should remain the same since the effective four-dimensional action in
the SLED scenario has the same form as in the LED model, the cosmological
perturbations in this scenario are yet to be explored. Moreover, in the above
study we only used the cosmological background value of the scalar field in order
to estimate the matter coupling in the Solar System. A more proper analysis
would of course be to solve the full field equations also in the Solar System.

6.1.2 Papers I1I-1I11

In General Relativity, the Einstein equations together with a perfect fluid in
a static, spherically symmetric spacetime reduce to the Tolman-Oppenheimer-
Volkov equations. These equations are the starting point when solving the prob-
lem of a realistic star and in these two papers we considered the corresponding
problem in f(R) gravity. Paper II considered f(R) gravity in the Palatini formal-
ism and we derived the corresponding generalized Tolman-Oppenheimer-Volkov
equations. This showed that a large class of models in the Palatini formalism
indeed pass the Solar System tests. In particular, models where F(R) — 1 is a
decreasing function of R are typically compatible with the constraints. We also
brought attention to the fact that extended theories of gravity such as Palatini
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f(R) gravity have a non-standard relation between the gravitational mass and
the density profile of a star.

We extended the above study in Paper III, where we also included f(R)
gravity in the metric formalism. We derived the gravitational field in the New-
tonian limit for a Sun-like star (both in the metric and in the Palatini formal-
ism) and also obtained numerical solutions to the exact, generalized Tolman-
Oppenheimer-Volkov equations in both formalisms. To our knowledge, no in-
terior solutions of stars in f(R) gravity had previously been computed in the
literature. The numerical analysis performed in Paper III confirmed our earlier
results for Palatini f(R) gravity obtained in Paper II. In the metric case it was
shown that the boundary conditions set at the center of the star will determine
if metric f(R) gravity is compatible with Solar System measurements. For a
large class of boundary conditions, metric f(R) gravity grossly violates the ob-
servations. Furthermore, although there exists boundary conditions for which
the solution fulfills the constraints, these configurations typically turn out to be
unstable and decay in time. We also showed that including effects from dark
matter surrounding the star will not affect the predictions in either metric or
Palatini f(R) gravity.

6.1.3 Paper IV

Motivated by our findings in Paper III, we continued to study the exact re-
quirements needed in order to have a stable configuration compatible with So-
lar System constraints in metric f(R) gravity. We showed that the stability
properties not only depend on the model but also on the specific configuration.
Typically configurations giving the desired Post-Newtonian parameter yppy = 1
are strongly constrained by the stability arguments. Furthermore, we found that
even when these configurations are strictly stable in time, the domain of accept-
able static spherical solutions typically shrinks to a point in the phase space.
Unless a physical reason to prefer such a particular configuration can be found,
this poses a naturalness problem for the currently known metric f(R) models
for accelerating expansion of the Universe.

In summary, our analysis strongly suggest that the Solar System constraints
are not compatible with any form of metric f(R) gravity which is at the same
time designed to provide for the apparent acceleration of the Universe at present
withiout a cosmological constant. However, it should be noted that our result
do not rule out very small modifications to the Einstein-Hilbert action, such
as might arise from quantum gravity corrections. The inherent problem with
the models for accelerating expansion is that they typically introduce a very
small energy scale p which will either make the model violently unstable or
incompatible with the high precision measurements in the Solar System.
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