Design and synthesis of non-peptide integrin inhibitors

Pro Gradu Thesis
Jyväskylä University
Department of Chemistry
Section of Organic Chemistry
8.6.2008

Sari Norrlund

Abstract

In the literature section journal articles involving the design and synthesis of nonpeptide inhibitors are presented. The articles were located by using the Internet and downloaded or retrieved from the libraries of Jyväskylä University and Oulu University.

The experimental section shows the attempted syntheses for a potential nonpeptide inhibitor for the integrin $\alpha_{\text {II }} \beta_{1}$. Professor Kari Rissanen designed 12 possible target molecules which were tested on a computer model of integrin $\alpha_{\text {II }} \beta_{1}$ by Bio-Tie Therapies. 10 molecules showed at least some binding potential due to their suitable size, flexibility and three branches with negative charges.

Due to the limited time available only syntheses of molecule $\mathbf{6 6 9}$ and modified versions of molecules 673 and 677 were attempted.

It was attempted to test the reduction reaction on the small molecule $\mathbf{6 8 0}$ with a cyano group and an ester bond in order to see whether the ester bond would tolerate the conditions without breaking. The synthesis of p-ethyl ester benzyl amine 682' was unsuccesfully attempted.

The synthesis of target molecule 669 failed.

Target molecule 673:

The synthesis of 4-cyano benzyl bromide $\mathbf{6 8 5}$ was succesful but the synthesis of diketone 688 failed.

Target molecule 677:

The synthesis of diol 690 was succesful but the synthesis of molecule 691, modified version of molecule 677, failed.

Foreword

The articles studied were located in the Internet using the SciFinder Scholar program and downloaded or retrieved from the libraries of Jyväskylä University and Oulu University.

The experimental section was carried out in the fall of 2001 at Jyväskylä University in co-operation with Bio-Tie Therapies

The counselor and supervisor for the thesis was professor Kari Rissanen (Department of Chemistry, Section of Organic Chemistry at Jyväskylä University).

Contents

Abstract. i
Foreword ii
Contents. iii
Abbreviations. vi
Literature section. 1
1 Preface 1
2 Benzodiazepine and benzazepine compounds 2
2.1 Compounds containing a benzamidine or p-cyanophenyl unit. 2
2.2 Compounds containing a piperazine unit. 15
2.3 Compounds containing a benzimidazole unit. 16
2.4 Compounds containing a piperidine unit 18
2.5 Compounds containing a pyridine unit 20
2.6 Other benzodiazepine compounds 23
3 Isoxazoline and oxazolidinone compounds. 24
3.1 Compounds containing a benzamidine unit 24
3.2 Other isoxazoline and oxazolidinone compounds. 35
4 Hydantoin compounds 44
4.1 Compounds containing a benzamidine unit. 44
4.2 Other hydantoin compounds 48
5 Benzimidazole, benzoxazole and imidazopyridine compounds. 55
5.1 Compounds containing a benzamidine or p-cyanophenyl unit. 55
5.2 Other benzimidazole, benzoxazole and imidazopyridine compounds 59
6 Indazole compounds 62
7 Azatide and azacarba-peptide compounds 71
8 Benzamidine compounds 80
8.1 Compounds containing a piperazine unit. 80
8.2 Compounds containing a piperidine unit 86
8.3 Other benzamidine compounds 90
9 Other piperazine compounds 103
9.1 2-Oxopiperazine compounds 103
9.2 2,5-Diketopiperazine compounds 107
10 Other piperidine compounds 112
10.1 Piperidine compounds containing a sulfonamide group 112
10.2 Remaining other piperidine compounds 134
11 Other pyridine compounds 146
12 Tricyclic compounds 147
13 Summary. 152
Experimental section 153
14 Preface 153
15 The plan for synthesis. 155
16 The syntheses 156
16.1 The synthesis of target molecule 699 156
16.1.1 4-Cyanobenzoyl ethyl ester 680 156
16.1.1.1 4-Cyanobenzoyl chloride 679 156
16.1.1.2 4-Cyanobenzoyl ethyl ester 680 157
16.1.2 p-Ethyl ester benzyl amine 682' 157
16.1.2.1 p-Methyl ester benzyl amine 681' 157
16.1.2.2 p-Ethyl ester benzyl amine in anhydrous THF 682' 158
16.1.2.3 p-Ethyl ester benzyl amine 682' in 1,4-dioxane. 159
16.1.2.4 p-Ethyl ester benzyl amine 682' in anhydrous THF 160
16.1.2.5 p-Ethyl ester benzyl amine 682' in acetone 161
16.1.2.6 p-Ethyl ester benzyl amine 682' in DMSO 161
16.1.2.7 p-Ethyl ester benzyl amine 682' in tert-butanol 162
16.1.3 Target molecule $\mathbf{6 6 9}$ in methanol. 163
16.2 The synthesis of a modified version of target molecule 673 164
16.2.1 4-Cyano benzyl bromide 685 164
16.2.2 Malonyl dianilide 688 165
16.3 The synthesis of a modified version of target molecule 677 165
16.3.1 N -(p-cyanobenzoyl)-2-amino-propan-1,3-diol 690 165
16.3.1.1 Serinol 689, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 4-cyanobenzoyl chloride 679
16.3.1.2 Serinol 689, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 4-cyanobenzoyl chloride $\mathbf{6 7 9}$ 1:3:1, no heating... 166 16.3.2 N -[2-(1,3-p-cyanobenzyloxy)]-p-cyanobenzoyl amine 691.......... 167
16.3.2.1 Diol 690, 4-cyanobenzyl bromide $\mathbf{6 8 5}$ and KOH
\qquad
16.3.2.2 Diol 690, 4-cyanobenzyl bromide $\mathbf{6 8 5}$ and KOH
1:4:8 in DMSO... 168

17 Summary.. 169
Reagents and equipment .. 170
Synthesized molecules.. 171

References

Appendices

Abbreviations

Ada	Adamant-1-yl
AIBN	α, α^{\prime}-azo-iso-butyronitrile
Arg	arginine
Asp	aspartate
Bn, Bzl	benzyl
Cbz	carbobenzoxy group
DMAP	dimethylaminopropylamine
DMF	dimethyl formamide
DMSO	dimethyl sulfoxide
d	duplet
Fmoc	N[(9H-fluoren-9-ylmethoxy)carbonyl]oxysuccinimide
Gly	glycine
GP	glycoprotein
m	multiplet
MS	mass spectrum
NBS	N-bromosukkinimide
NMR	nuclear magnetic resonance
PPA	polyphosphoric acid
ppm	parts per million
Pth	phthalimide
RLE	rabbit liver esterase
s	singlet
t	triplet
TAB	tert-butylamine borane
TCP	trityl chloride polystyrol
TFA	trifluoro acetic acid
THF	tetrahydrofuran
Tr	triphenylmethyl
Cbz, carbobenzoxy group	

1 Preface

For the literature section of the thesis scientific journals were investigated to find synthesis routes for non-peptide integrin inhibitors. The inhibitors were then divided into several subsidiary groups according to their chemical structure. Since many molecules could have been listed under two or more groups, there is some overlapping. Most of the research conserning non-peptide integrin inhibitors is focused on the RGD (Arg-Gly-Asp) sequence which is recognized by the platelet fibrinogen receptor $\alpha_{\text {IIb }} \beta_{3}(\mathrm{GPIIb} / \mathrm{IIII})$ and the vitronectin receptor $\alpha_{V} \beta_{3} .{ }^{5}$

Figure 1. ${ }^{1}$ RGD sequence.

The RDG sequence plays a key part in aggregation of platelets causing vaso-occulsive disorders such as unstable angina, myocardial infarction, transient ischemic attacks, stroke and thrombosis $\left(\alpha_{\text {IIb }} \beta_{3}\right) .{ }^{32,36}$ Also, it's involved in osteoclast-mediated bone resorption $-\alpha_{V} \beta_{3}$ is present in osteoclasts but not bone forming osteoblasts. ${ }^{39}$ Cyclic peptides with RGD are potent inhibitors, which has led to the search for non-peptidomimetic inhibitors. ${ }^{34}$ There are significant structural differences between RGDcontaining cyclic peptides which makes it very difficult to design a single molecular pharmacophore for fibrinogen or vitronectin receptor binding. ${ }^{4}$

The less studied $\alpha_{\mathrm{IV}} \beta_{1}$, VLA-4 (very late antigen 4) found in stimulated monocytes and lymphnotes binds to cytokine-activated endothelial cells and to finbronectin causing diseases such as asthma and multiple sclerosis. ${ }^{43}$

2 Benzodiazepine and benzazepine compounds

2.1 Compounds containing a benzamidine or \boldsymbol{p}-cyanophenyl unit

Ku et al. have designed a high-affinity, potent, non-peptide GPIIb/IIIa antagonist 2 based on the stucture of a constrained RGD-containing cyclic peptide. ${ }^{2}$

Scheme 1. The synthesis of molecule 2. ${ }^{2}$

Ku et al. found that the 1,4-benzodiazepine nucleus helps mimic the C-7 turn around Asp and the extended Gly residue thus providing conformational rigidity.

Robarge et al. have synthesized several potent tricyclic GPIIbIIIa antagonists. ${ }^{3}$ According to retrosynthetic analysis the required precursors for the benzyloxy, ethynyl and amide series of tricyclic GPIIb/IIIa antagonists were secondary amines 9a-c, Schemes 3, 4 and 16.

(a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $p-\mathrm{NC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{Br}, 104 \%$; (b) $\mathrm{KMnO}_{4}, \mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 45 \%$ (ratio of $5 / p$ $\mathrm{NC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}_{2} \mathrm{H}$, ca. $5 / 1$); (c) $(\mathrm{COCl})_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{DMF}, 65^{\circ} \mathrm{C}$; (d) $\mathrm{ClH}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaHCO} 3$, THF/H2O (1/2), 94%; (e) $\mathrm{SnCl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOAc} / \mathrm{EtOH}$; (f) $\mathrm{BrCOCH} \mathrm{C}_{2} \mathrm{Br}, \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, triturate w/ EtOH to purify (or recrystallize from EtOH), $50-70 \%$; (g) powdered $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}(0.018-0.026 \mathrm{M}), 50^{\circ} \mathrm{C}, 2-3 \mathrm{~h}, 53-77 \%$; (h) MeI, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, rt, 75%; (i) pyridine/ $\mathrm{Et}_{3} \mathrm{~N}(1 / 1), \mathrm{H}_{2} \mathrm{~S}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (j) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeI}(5 / 1)$, sealed tube, $50^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (k) $\mathrm{NH}_{4} \mathrm{OAc}(\mathrm{xs}), \mathrm{MeOH}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{RP}$ HPLC, 64% (overall from 10); (l) THF/NaOH (aq. 4.2 equiv.), RP HPLC, 75%.

Scheme 2. Synthesis of benzodiazepinediones. ${ }^{3}$

(a) $\mathrm{Cl} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{~N}, 40^{\circ} \mathrm{C} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$, KPhos pH 7.0, $\mathrm{BrCH}_{2} \mathrm{COBr}, 5-25^{\circ} \mathrm{C} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DBU, $\mathrm{rt}, 93 \%$ from N -methyl isatoic anhydride; (b) $\mathrm{HNO}_{3}, 0-25^{\circ} \mathrm{C}, \mathrm{NaHCO}_{3} / \mathrm{EtOAc}, 73 \%$; (c) $\mathrm{CH}_{3} \mathrm{CN}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Pd}-\mathrm{C} . \mathrm{HCO}_{2} \mathrm{H}, 5-25^{\circ} \mathrm{C}$, then reflux, 98%; (d) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, p-\mathrm{CN}\left(\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{COCl}, 0-25^{\circ} \mathrm{C}, 73 \%$; (e) pyridine/ $\mathrm{Et}_{3} \mathrm{~N}(1.4 / 1), \mathrm{H}_{2} \mathrm{~S}, 70 \%, 24 \mathrm{~h} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$, MeI (xs), reflux; $\mathrm{NH}_{4} \mathrm{OAc}(\mathrm{xs}), \mathrm{EtOH}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h}, 24 \%$ (three steps); (f) THF 50% aq. NaOH (xs), 57%.

Scheme 3. Synthesis of benzodiazepinedione 12c. ${ }^{3}$

(a) $\mathrm{H}_{2}, 5 \%$ Pd-C, DMA; (b) $p-\mathrm{NC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COCl}, \mathrm{NEt}_{3}$, DMAP; (c) $\mathrm{Cl}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, NEt_{3}, DMAP; 56% overall for the three steps; (d) 2,6-lutidine, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Ph}_{2} \mathrm{CHBr}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86 \%$; (e) $\mathrm{BrCH}_{2} \mathrm{COBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$; (f) $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, 93% overall for the two steps; HF , anisole, $\mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{SCH}_{3}$, $-196-0^{\circ} \mathrm{C}, 56 \%$

Scheme 4. Synthesis of benzodiazepinedione 9c. ${ }^{3}$

(A) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH ; ii. propargyl amine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{PhCH}_{3}$, reflux, 5 h ; (B) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH ,; ii. $\mathrm{H}_{3} \mathrm{CCONHNH}_{2}$ or $\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{CONHNH}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 5 h ; (C) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH ; ii. methyl anthranilate, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 6 h ; (D) i. MeI, $\mathrm{CH}_{3} \mathrm{CN}$ (anhyd.), sealed tube, charge w/ MeI at $\mathrm{t}=6,7$, and 8 h after reflux. Reflux for 8.5 h ; ii. propargyl amine, , $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 6 h .

Scheme 5. Synthesis of thioamides 20a-c and tricyclic intermediates 21a-g. ${ }^{3}$

Table 1. Synthesis of thioamides 20a-c (Scheme 5) and tricyclic intermediates 21a-g. ${ }^{3}$
Thioamide \quad Method \quad Product
(A) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH ; ii. propargyl amine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{PhCH}_{3}$, reflux, 5 h ; (B) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH , ; ii. $\mathrm{H}_{3} \mathrm{CCONHNH}_{2}$ or $\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{CONHNH}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 5 h ; (C) i. MeI, $\mathrm{H}_{2} \mathrm{O}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (cat.), NaOH ; ii. methyl anthranilate, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 6 h ; (D) i. MeI, $\mathrm{CH}_{3} \mathrm{CN}$ (anhyd.), sealed tube, charge w/ MeI at $\mathrm{t}=6,7$, and 8 h after reflux. Reflux for 8.5 h ; ii. propargyl amine, , $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{HCl}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, reflux, 6 h .

Scheme 6. Synthesis of benzonitriles 22 and 23. ${ }^{3}$

9a: $\mathrm{Y}-\mathrm{X}=\mathrm{CH}_{2} \mathrm{O}$
9b: $\mathrm{Y}-\mathrm{X}=\mathrm{CONH}$
22: $\mathrm{Y}-\mathrm{X}=$ =
24a: $\mathrm{Y}-\mathrm{X}=\mathrm{CH}_{2} \mathrm{O}$
24b: $\mathrm{Y}-\mathrm{X}=\mathrm{CONH}$
24c: $\mathrm{Y}-\mathrm{X}=$ —

Scheme 7. Synthesis of tricyclic tetrazoles 24a-c. ${ }^{3}$

Table 2. Synthesis of tricyclic tetrazoles 24a-c. ${ }^{3}$

Reactant	Method	Product	Y - X	Het	Yield
8a	E	24a	$\mathrm{CH}(2) \mathrm{O}$		72 \%
8c	F	24b	CONH		52 \%
22	G	24c			68 \%

(E) i. DEAD (1.0 equiv.), TMSiN $_{3}$ (1.0 equiv.), THF (anhyd.), rt, 24 h ; ii. charge rx. with additional 1.0 equiv. of reagents, $\mathrm{rt}, 48 \mathrm{~h}$; (F) DEAD (2.0 equiv.), TMSiN_{3} (2.0 equiv.), glyme (anhyd.), $\mathrm{rt}, 16 \mathrm{~h}$.

It was found that the linker at C-7 can be modified to an ether with retention of antiaggregatory potency, and to an amide for increased potency in comparison with the ethynyl linker.

Scheme 8. Selective alkylation of 9c. ${ }^{3}$

21a-c, g
23 24b

26: $R=E t$
27: $R=H$
(G) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N}$ or $\mathrm{Et}_{2} \mathrm{NH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1)$, rt, 2 h ; ii. MeI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii. $\mathrm{NH}_{4} \mathrm{OAc}$, EtOH or $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (H) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1), 50^{\circ} \mathrm{C}, 90 \mathrm{~min}$; ii. MeI, $\mathrm{CH}_{3} \mathrm{CN}$ (anhyd.) sealed tube, $85^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii. $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{EtOH}$, rt, 18 h ; (I) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1), 50^{\circ} \mathrm{C}, 90 \mathrm{~min}$; ii. MeI, N-Me pyrrolidinone (anhyd.), rt, 24 h;iii. $\mathrm{NH}_{4} \mathrm{OAc}$ (anhyd.), $\mathrm{EtOH}, 18 \mathrm{~h}$; (J) NaOH (aq.), EtOH or MeOH , rt; (K) $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}$, THF/ $\mathrm{H}_{2} \mathrm{O}$, rt; (L) 50% TFA $/ \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$, 3 h ; (M) $\mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 / 2 / 1), \mathrm{rt}, 18$ h; (N) LiOH, THF/ $\mathrm{H}_{2} \mathrm{O},(3 / 1)$, rt, 40 h .

Scheme 9. Conversion of tricyclic benzonitriles 21a-c, 24g, 23 and 24b into amidino acids $\mathbf{2 6 c - i}$. 3

Table 3. Conversion of tricyclic benzonitriles 21a-c, 24g, 23 and 24b into amidino acids $26 \mathrm{c}-\mathrm{i}^{3}{ }^{3}$

NCAr	Y-X	Het	Method*	Prod.	Yield	Method**	Prod.	Yield
21a	$\mathrm{CH}(2) \mathrm{O}$		G	26c	nd	$\mathrm{J}(\mathrm{MeOH})$	27c	5% overall from 21a
21b	CH(2)O		G	26d	26 \%	J (EtOH)	27d	10% overall from 24b
21c	$\mathrm{CH}(2) \mathrm{O}$		G	26e	71 \%	K,L	27e	$\begin{aligned} & 10 \% \quad \text { and } \\ & 39 \%, 46 \% \end{aligned}$
21g	CONH		H	26 f	24 \%	M	27f	24 \%
23	-		G	26 g	16%	J (MeOH)	27g	85 \%
24a	$\mathrm{CH}(2) \mathrm{O}$		G	26h	66 \%	J (MeOH)	27h	83
24b	CONH		I	$26 i$	18 \%	N	27 i	65 \%
24c	$=$		G	26j	34 \%	J (MeOH)	27j	95%

*(G) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N}$ or $\mathrm{Et}_{2} \mathrm{NH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1)$, rt, 2 h ; ii. MeI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii. $\mathrm{NH}_{4} \mathrm{OAc}$, EtOH or $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (H) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1), 50^{\circ} \mathrm{C}, 90 \mathrm{~min}$; ii. MeI, $\mathrm{CH}_{3} \mathrm{CN}$ (anhyd.) sealed tube, $85^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii. $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{EtOH}$, rt, 18 h ; (I) i. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1 / 1), 50^{\circ} \mathrm{C}, 90 \mathrm{~min}$; ii. MeI, N-Me pyrrolidinone (anhyd.), rt, 24 h;iii. $\mathrm{NH}_{4} \mathrm{OAc}$ (anhyd.), EtOH, 18 h .
${ }^{* *}(\mathrm{~J}) \mathrm{NaOH}$ (aq.), EtOH or MeOH , rt; (K) $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, rt; (L) $50 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (M) $\mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 / 2 / 1)$, rt, 18 h ; (N) LiOH, THF/H2O, (3/1), rt, 40 h.

Robarge et al. found that a tricyclic scaffold may be optimal for steric reasons since the tetracyclic quinazoline $\mathbf{2 7 e}$ exhibited a dramatic decrease (100 -fold) in activity. ${ }^{3}$

Scheme 10. Synthesis of triazole tricyclic compounds 27a and 27b. ${ }^{3}$

The most potent antagonist of the series was tricyclic $27 i$ with an amide linker at C^{7} and a tetrazole heterocycle. Tricyclic antagonists 27a, 27b, 27d and 27f-j exhibited a retention of potency (i.e. less than a twofold decrease) relative to the comparative bicyclic progenitor. ${ }^{3} \mathbf{2 7 c}$ was the exception exhibiting a fourfold loss in potency relative to 12 a .

$$
\mathrm{d}\left[\begin{array}{c}
30: Z=\mathrm{NH}_{2} \\
R^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \\
\rightarrow 31 \cdot 7=\mathrm{BocNH}
\end{array}\right.
$$

$$
\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}
$$

31: $\mathrm{Z}=\mathrm{BocNH}$
$R^{1}=E t, R^{2}=C H\left(C_{6} H_{5}\right)_{2}$

(a) $\mathrm{Cl} \mathrm{NCH} 2 \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NEt}_{3}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 39%; (b) 2,6-lutidine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Ph}_{2} \mathrm{CHBr}$, $83^{\circ} \mathrm{C}, 91 \%$; (c) $\mathrm{NEt}_{3}, \mathrm{HCO}_{2} \mathrm{H}, 5 \%$ Pd-C (4% by wt), rt, 81%; (d) $\mathrm{BOC}-\mathrm{ON}=\left(\mathrm{CH}_{3}\right) \mathrm{COCO}_{2} \mathrm{~N}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CN}$, DMAP, THF, reflux, 90%; (e) $\mathrm{BrCH}_{2} \mathrm{COBr}$, KPhos/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 71%; (f) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 71% from 30; (g) $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{HOAc}, 40$ psi. $60^{\circ} \mathrm{C}, 77 \%$; (h) PPh_{3}, DEAD, TMSiN_{3}, rt, 57%; (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$, 81%; (j) $p-\mathrm{CN}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{COCl}, \mathrm{NaHCO}_{3}, \mathrm{THF}, 50^{\circ} \mathrm{C}, 70 \%$: (k) $\mathrm{H}_{2} \mathrm{NOH}(\mathrm{HCl}), \mathrm{NaOEt}, 60^{\circ} \mathrm{C}, 79 \%$; (l) $\mathrm{Ac}_{2} \mathrm{O}$, HOAc, 5% Pd-C (6% by wt), $\mathrm{H}_{2}, 1 \mathrm{~atm}$, rt, 55%; (m) LiOH, THF/H2O (3/1), rt, 65%.

Scheme 11. Improved synthesis of tricyclic tetrazole 27i. ${ }^{3}$

Blackburn et al. have designed and synthesized a benzodiazepinedione group of GPIIb/IIIa antagonists derived from the RGD-containing cyclic peptide G4120. ${ }^{4}$ They studied the effect of chiral substitution at $\mathrm{C}-11$ by comparing compounds $\mathbf{3 9}$ and $\mathbf{4 0}$ in the protein-protein assay (ELISA) and physiologically relevant (PRP) platelet aggregation assay. They found 40 to be 10 -fold more potent than its enantiomer $39 .{ }^{4}$ The absolute configuration of 40 is in contrast to the stereochemical preference for peptidal and other non-peptidal GPIIb/IIIa antagonists. ${ }^{4}$

(a) DMF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP; (b) EDC, HOBT, $\mathrm{Et}_{3} \mathrm{~N}$,; (c) Cl_{2}, AcOH ; (d) i. $\mathrm{BrCH}_{2} \mathrm{COBr}$, ii. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF or DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$; (e) $\mathrm{Pd}(\mathrm{II}), \mathrm{Cu}(\mathrm{I}), \mathrm{Et}_{3} \mathrm{~N}, 48$, DMF; (f) LiOH ; (g) $\mathrm{Pd}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Et}_{3} \mathrm{~N}$, 49, EtOAc.

Scheme 12. Synthesis of benzodiazepinediones 39-46, S(-)47 and $\mathbf{R}(-) 47 .{ }^{4}$

Compound 43 was found to be a conformationally rigid and potent GPIIb/IIIa antagonist.

(a) $\mathrm{Pd}(\mathrm{II}), \mathrm{Cu}(\mathrm{I}), \mathrm{Et}_{3} \mathrm{~N}$, trimethylsilylacetylene, EtOAc ; (b) i. $\mathrm{H}_{2} \mathrm{~S}$, pyridine, ii. MeI, iii. $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{EtOH}$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.

Scheme 13. Synthesis of 4-ethynylbenzamidine 48 and 4-ethynylbenzonitrile $49 .{ }^{4}$

Keenan et al. have synthesized potent and selective $\alpha_{v} \beta_{3}$ antagonists. ${ }^{5}$ Compounds 50 and 51 (Fig. 2), 56 and 57 (Fig.4) and 58-63 (Fig.5) were synthesized by coupling of the appropriate amine to the 1,4-benzodiazepine-7-carboxylic acid as seen in Scheme 18. Keenan et al. gathered evidence that the lengh required for optimal binding to $\alpha_{\vee} \beta_{3}$ is shorter than for $\alpha_{\mathrm{II}} \beta_{3}{ }^{5}{ }^{5}$

51

Figure 2. Benzamidine-containing $\alpha_{v} \beta_{3}$ antagonists. ${ }^{5}$

Having a shorter distance between the carboxyl terminus and the amidine terminus, m benzamidine 50 showed greater affinity for $\alpha_{\mathrm{V}} \beta_{3}$ than for $\alpha_{\mathrm{II}} \beta_{3}$, and p-benzamidine 51 was found to be a potent $\alpha_{I I b} \beta_{3}$ antagonist. ${ }^{5}$

Samanen et al. have investigated and synthesized potent, selective 3-oxo-1,4benzodiazepine GPIIb/IIIa integrin antagonists. ${ }^{6}$

Configuration of benzodiazepine at position 2

Configuration of benzodiazepine at position 2
2: R = H
52: $\mathrm{R}=\mathrm{CH}_{3}$
R, S
53: $\mathrm{R}=\mathrm{H}$
R, S
R, S
54: $\mathrm{R}=\mathrm{CH}_{3}$
R, S

Figure 3. 3-oxo-1,4-benzodiazepine GPIIb/IIIa antagonists. ${ }^{6}$

2.2 Compounds containing a piperazine unit

55

56

Figure 4. Piperazine-containing $\alpha_{V} \beta_{3}$ antagonists. ${ }^{5}$

Keenan et al. discovered that the pyridyl nitrogen in 55 was responsible for the much greater affinity for $\alpha_{\mathrm{IIb}} \beta_{3}$ compared to that of $56 .{ }^{5}$ The affinities of the two compounds for $\alpha_{V} \beta_{3}$ were comparable, caused by the central anilino nitrogen. ${ }^{5}$

2.3 Compounds containing a benzimidazole unit

Keenan et al. have synthesized a highly potent and selective $\alpha_{\nu} \beta_{3}$ antagonist $\mathbf{6 2 .}{ }^{5}$

57

59

58

60

62

61

Figure 5. Benzimidazole-containing $\alpha_{\vee} \beta_{3}$ antagonists. ${ }^{5}$

Keenan et al. found 57 to be a potent and selective $\alpha_{\nu} \beta_{3}$ antagonist partly due to its optimal length. ${ }^{5}$ They also found the (S)-enantiomer 60, identical to the natural configuration of Asp, to be almost entirely responsible for the affinity thus providing further evidence of the 1,4-benzodiazepine acting as a Gly-Asp mimic. ${ }^{5}$ In their previous work Keenan et al. had discovered increased affinity due to amide N methylation. Based on this information they synthesized 62, a highly potent and selective $\alpha_{v} \beta_{3}$ antagonist. ${ }^{5}$

(a) 2-(methylaminomethyl)benzimidazole • TFA, DCC, (i-Pr) 2 NEt , DMF (100\%); (b) $2 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$; (c) HCl to pH 6.0 (71\%).

Scheme 14. Synthesis of $\alpha_{v} \beta_{3}$ antagonist 62. ${ }^{5}$

Miller et al. have synthesized a series of highly potent, orally active small molecule $\alpha_{\nu} \beta_{3}$ antagonists (Fig. 6, 8 and) based on a 2-benzazepine Gly-Asp. ${ }^{7}$

63

Figure 6. A potent $\alpha_{v} \beta_{3}$ antagonist. ${ }^{7}$

2.4 Compounds containing a piperidine unit

$$
\begin{aligned}
& \text { Configuration of } \\
& \text { benzodiazepine } \\
& \text { at position } 2
\end{aligned}
$$

$64 R, S$

		Configuration of benzodiazepine		
$\mathbf{6 5}$	R			at position 2
:---	:---			

Figure 7. 3-oxo-1,4-benzodiazepine GPIIb/IIIa antagonists by Samanen et al. ${ }^{6}$

Compound 64 was found to have high affinity for GPIIb/IIIa and high potency in the platelet aggregation assay. Also 65 is a potent GPIIb/IIIa antagonist. ${ }^{6}$ Compound 67 is a potent, orally active antiaggregatory agent. Its R-enantiomer $\mathbf{6 8}$ has considerably lower affinity.

71

$$
\begin{aligned}
& \mathrm{d}^{\boxed{ }} \mathbf{7 3}: \mathrm{X}=\mathrm{Boc}, \mathrm{Y}=\mathrm{CH}_{3} \\
& \mathrm{e} \rightarrow 74: X=\text { Boc, } Y=\mathrm{H} \\
& \rightarrow \text { 67: X }=\mathrm{H}, Y=\mathrm{H}
\end{aligned}
$$

(a) 0.1 M 69 in anhydrous DMSO, $125^{\circ} \mathrm{C}$ (47% of $\mathbf{7 0}, 28 \%$ of 71); (b) $1: 1 \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, anisole (95%); (c) 1-Boc-4,4'-bipiperidine, EDC, ($i-\operatorname{Pr})_{2} \mathrm{NEt}, \mathrm{DMF}(94 \%) ; 2.0 \mathrm{~N} \mathrm{NaOH}$ (2 equiv.), $1: 1 \mathrm{MeOH} / \mathrm{THF}$, then $\mathrm{AcOH}(81 \%)$; (e) 4 M HCl in dioxane, CHCl_{3}, then neutralization of excess reagent with ca. 1.0 N KOH in EtOH to give $\mathbf{6 7 - \mathrm { HCl }}(75 \%)$ and precipitation from aqueous solution at pH 6.8 (83\%).

Scheme 15. Homochiral synthesis of 3-oxo-1,4-benzodiazepine 67. ${ }^{6}$

2.5 Compounds containing a pyridine unit

Figure $8 . \alpha_{\vee} \beta_{3}$ antagonists synthesized by Miller et al. ${ }^{7}$

The S-enantiomer of 76, compound 77 has greater affinity for $\alpha_{v} \beta_{3}$ than the R enantiomer 78. Miller et al. also discovered compounds 77 and 79 to have great affinity for $\alpha_{v} \beta_{5}$, and minimal affinity for both $\alpha_{\mathrm{II}} \beta_{3}$ and $\alpha_{\mathrm{V}} \beta_{1}{ }^{7}$

Miller et al. found proof that in vitro biological activity and oral bioavailability of benzazepine-based antagonists may be improved by increasing lipophilicity by appropiate manipulation of the 2-position substitute. ${ }^{7}$

80
(a) NBS, (BzO) $)_{2}, h v, \mathrm{CH}_{2} \mathrm{Cl}_{2}(81 \%)$; (b) $\mathrm{NaN}(\mathrm{Boc}) \mathrm{CH}_{2} \mathrm{CF}_{3}, \mathrm{DMF}$ (77\%); (c) dimethyl itaconate, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(o-\mathrm{tol})_{3},(i-\mathrm{Pr})_{2} \mathrm{NEt}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$, reflux (92\%); (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAc (90\%); (e) TFA, anisole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(86 \%)$; (f) $(n-\mathrm{Pr})_{3} \mathrm{~N}$, TFA, xylenes, reflux (81%); (G) chiral HPLC ($46 \%, 99+\%$ ee); (h) BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (99\%).

Scheme 16. The synthesis of starting material $\mathbf{8 0}{ }^{7}$

(a) 3-Amino-1-propanol, NaHCO_{3}, tert-amyl alcohol, reflux (96\%); (b) $\mathbf{8 0}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{DIAD}$, THF (75\%); (c) cyclohexene, $10 \% \mathrm{Pd} / \mathrm{C}, i-\mathrm{PrOH}$, reflux (76%); (d) 1.0 N NaOH , dioxane, then $1.0 \mathrm{~N} \mathrm{HCl}(86 \%)$.

Scheme 17. The synthesis of highly potent $\alpha_{\vee} \beta_{3}$ antagonist 77. ${ }^{7}$

(a) $(\mathrm{Boc})_{2} \mathrm{O}$, neat, $50^{\circ} \mathrm{C}(99 \%)$; (b) $\mathrm{NaH}, \mathrm{CH}_{3} \mathrm{I}$, DMF (87\%); (c) LDA, (EtO) $)_{2} \mathrm{C}=\mathrm{O}, \mathrm{THF}, 0^{\circ} \mathrm{C}(100 \%)$;
(d) $\mathrm{LiBH}_{4}, \mathrm{THF}$, reflux (100%); (e) $4 \mathrm{~N} \mathrm{HCl} /$ dioxane, anisole, then aq. NaOH ; (f) $\mathrm{HCO}_{2} \mathrm{H}$, EtOAc; (g) aq. $\mathrm{NH}_{4} \mathrm{OH}\left(52 \%\right.$ from 81); (h) 80, $\mathrm{Ph}_{3} \mathrm{P}$, DIAD, THF (91%); (i) $1.0 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$, then acetic acid (82\%).

Scheme 18. The synthesis of highly potent $\alpha_{V} \beta_{3}$ antagonist 79. ${ }^{7}$

2.6 Other benzodiazepine compounds

As reported in $2.1, \mathbf{9 b}$ is one of the required precursors for the benzyloxy, ethynyl and amide series of tricyclic GPIIb/IIIa antagonists portrayed by Robarge et al. ${ }^{3}$

(a) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, \mathrm{COCl}_{2}, 84 \%$; (b) $\mathrm{ClH}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DMF, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP (cat.), 90%; (c) $\mathrm{Ph}_{2} \mathrm{CHCl}, 2,6$-lutidine, DMF, $50^{\circ} \mathrm{C}, 56 \%$; (d) $\mathrm{BrCH}_{2} \mathrm{COBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, rt; (e) NaH , DMF, $48^{\circ} \mathrm{C}$ from 83; (f) HF (g), anisole, $\mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{SCH}_{3},-196^{\circ} \mathrm{C}, 80 \%$ or $\mathrm{TFA} / \mathrm{Et}_{3} \mathrm{SiH}(3 / 1)$, reflux, $16 \mathrm{H}, 40 \%$.

Scheme 19. Synthesis of benzodiazepinedione $\mathbf{9 b}{ }^{3}$

3 Isoxazoline and oxazolidinone compounds

3.1 Isoxazoline and oxazolidinone compounds containing a benzamidine unit

Xue et al..have designed a series of potent GPIIb/IIIa antagonists based on XR299 (85a). They studied the effect on activity of lipophilic α - and β-substitution of the carboxylate moiety. ${ }^{8}$

85a: $R=H$
85b: $R=E t$

Figure 9. A selective GPIIb/IIIA antagonist. ${ }^{8}$

Figure 10. Starting material for the synthesis of substituted β-alanines. ${ }^{8}$

(a) $\mathrm{NHR}^{1} \mathrm{R}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, TBTU, EtOAc; (b) 4 M HCl -dioxane.

Scheme 20. Preparation of aspartic acid β-amides. ${ }^{8}$

91
(a) $\mathrm{NHR}^{1} \mathrm{R}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{TBTU}$, EtOAc; (b) BH_{3}-THF; (c) 4 M HCl -dioxane.

Scheme 21. Synthesis of β-(aminomethyl)- β-alanines. ${ }^{8}$

(a) 86, 87, 90, or 91, TBTU, DMF, $\mathrm{Et}_{3} \mathrm{~N}$; (b) $\mathrm{HCl}($ anhyd $), \mathrm{MeOH}, 0^{\circ} \mathrm{C}$, then $\mathrm{NH}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$.

Scheme 22. Early method for synthesis of isoxazolinylacetamides. ${ }^{8}$

(a) Clorox, THF; (b) $\mathrm{HCl}\left(\right.$ anhyd), $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$, then $\mathrm{NH}_{3}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; (c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMF; (d) $\mathrm{LiOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$; (e) 86, 87, 90, or 91, TBTU, DMF, $\mathrm{Et}_{3} \mathrm{~N}$, DMF; (f) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) ester hydrolysis: saponification using lithium hydroxide in aqueous methanol, acidic hydrolysis using aqueous 6 M HCl in dioxane or 40% conc. $\mathrm{HCl} /$ formic acid, or esterase hydrolysis using rabbit liver esterase.

Scheme 23. Convergent method for preparation of isoxazolinylacetamides. ${ }^{8}$

Xue et al. found that lipophilic substituents placed α (97a-z, Table 4) or β (98a-g,Table 5 and 99a-m, Table 6) to the carboxylate moiety resulted in increased potency in most cases. ${ }^{8}$

Table 4. Diaminopropionates $97 .{ }^{8}$

Table 5. Aspartic acid β-amides $98 .{ }^{8}$

Table 6. β-Substituted β-alanines 99. ${ }^{8}$

		Stereochemistry			
Compd	R^{1}	R^{2}	5	3	HX
99a	gem-dimethyl	H	(R, S)		TFA
99b	$\mathrm{CH}_{2} \mathrm{CH}_{2}$-2-Py	H	(R, S)	(R)	TFA
99c	$\mathrm{CH}_{2} \mathrm{CH}_{2}-3-\mathrm{Py}$	H	(R, S)	(R)	TFA
99d	$\mathrm{CH}_{2} \mathrm{CH}_{2}-4$-Py	H	(R, S)	(R)	TFA
99e	$\mathrm{CH}_{2} \mathrm{Ph}$	H	(R, S)	(R)	TFA
99 f	$\mathrm{CH}_{2} \mathrm{Ph}$	H	(R, S)	(S)	HCl
99g	$3-\mathrm{Py}$	H	(R)	(R)	TFA
99h	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	H	(R, S)		TFA
99i	Et	H	(R)	(R)	TFA
99j*	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	(R) or (S)	(R)	TFA
99k	$\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}$	CH_{3}	(R, S)	(S)	TFA
991*	$\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	(R) or (S)	(S)	TFA
99m*	$\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	(S) or (R)	(S)	TFA

* Stereochemistry at the 5-position indicates a single, but unassigned, stereoisomer.

Figure 11. A potent GPIIb/IIIa antagonist. ${ }^{8}$

Compound $\mathbf{1 0 0}$ was prepared in a fashion similar to that depicted in Scheme 20.

(a) $\mathrm{TBTU}, \mathrm{Et}_{3} \mathrm{~N}$, DMF; (b) 1,4-cyclohexadiene, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; (c) $\mathrm{RSO}_{2} \mathrm{Cl}$, etc., $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}$; (d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}$; (e) $\mathrm{LiOH}, \mathrm{THF}(\mathrm{aq})$; (f) $\mathrm{RSO}_{2} \mathrm{Cl}, \mathrm{RCOCl}$, etc., $\mathrm{NaHCO}_{3}, \mathrm{MeCN}(\mathrm{aq})$.

Scheme 24. Selective functionalization of the α-amino group. ${ }^{8}$

Xue et al. expected to increase potency by fluoro-substitution but $\mathbf{1 0 4}$ showed almost a 2-fold decrease in in vitro potency when compared to $\mathbf{9 7 u} .^{8}$

(a) $\mathrm{SOCl}_{2}, \Delta$; (b) $\mathrm{NH}_{3}\left(\right.$ aq); (c) $\mathrm{ClCOCCl}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{NBS}, \mathrm{CCl}_{4}$; (e) $\mathrm{Me}_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}(\mathrm{aq}), \Delta$; (g) route analogous to that depicted in Scheme 20.

Scheme 25. Synthesis of fluoro-substituted benzamidine 104.

Reverse-orientation isoxazoline $\mathbf{1 0 6}$ proved to have almost complete lack of antiplatelet activity. ${ }^{8}$

(a) $\mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$; (b) $\mathbf{1 0 5}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{THF}(\mathrm{aq})$; (c) HCl (anhyd), $\mathrm{MeOH}, 0^{\circ} \mathrm{C}$, then $\mathrm{NH}_{3}, \mathrm{MeOH}$, $0{ }^{\circ} \mathrm{C}$; (d) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, dioxane; (e) $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$; (f) 87u, TBTU, $\mathrm{Et}_{3} \mathrm{~N}$, EtOAc; (g) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 26. Synthesis of reverse-orientation isoxazoline 106. ${ }^{8}$

Compared to the secondary amides $\mathbf{9 7 l}$ and $\mathbf{9 7 u}$ the N-methylated compounds 107a-b showed reduced potency. The carbamate N-methylation (107c) resulted in further loss of potency. ${ }^{8}$

Table 7. N-methylated diaminopropionates $107 .{ }^{8}$

Compd	R^{1}	R^{2}	R^{3}	R^{4}
107a	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	CH_{3}	CH_{3}
107b	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	H	CH_{3}	H
107c	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	CH_{3}	CH_{3}	H

Wityak et al. designed phosphoramidate-containing high affinity GPIIb/IIIa antagonists 112a-f based on antagonists 85a and $108 .{ }^{9}$

108

Figure 12. Isoxazolinylacetamide GPIIb/IIIa antagonist XV459, 108. ${ }^{9}$

112a: Et
112b: Me
112c: $\mathrm{CH}_{2}=\mathrm{CHCH}$
112 d : $n-\mathrm{Bu}$
112 e : $i-\mathrm{Pr}$
112f: H
(a) $\mathrm{P}\left(\mathrm{OR}^{2}\right)_{3}, \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then 109; (b) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) RLE, HEPES, pH 7.0 .

Scheme 27. Synthesis of phosphoramidates 112a-f. ${ }^{9}$

Xue et al. have designed an active GPIIb/IIIa antagonist XU065, 116, based on a potent in vitro GPIIb/IIIa antagonist XU057, 113. ${ }^{10}$ Compound 113 showed poor in vivo potency in dogs, but the replacement of the phenyl ring with an isoxazole ring to yield 116 resulted in significant improvement in in vivo potency. ${ }^{10}$ When administered to dogs, the inactive 116 is hydrolyzed to the corresponding carboxylic acid 117, an active platelet aggregation inhibitor. ${ }^{10}$

113
Figure 13. A potent in vitro GPIIb/IIIa antagonist XU057. ${ }^{10}$

Scheme 28. Synthesis of XU065, 116, and the corresponding acid 117. ${ }^{10}$

Gante et al. have synthesized a series of GPIIb/IIIa antagonists based on the oxazolidinonemethyl scaffold. ${ }^{11}$

(a) 2:1 (molar ratio), $\mathrm{MeOH}, 20 \mathrm{~h}$ refl., 70%; (b) 1:6:0.05, $2 \mathrm{~h} 100^{\circ} \mathrm{C}, 85 \%$; (c) 1:3:4, $\mathrm{MeOH}, 6 \mathrm{~h}$ refl., 80%; (d) $\mathrm{Ac}_{2} \mathrm{O}$ as solvent, $4 \mathrm{~h} 120^{\circ} \mathrm{C}$, evaporated; (e) $1: 1.2, \mathrm{MeOH}, 6 \mathrm{~h}$ refl., 80% total; (f) $1: 1.25$, pyridine, $0.5 \mathrm{~h} 5^{\circ} \mathrm{C}, 12 \mathrm{~h} \mathrm{rt}, 94 \%$; (g) 1:2, acetonitrile, 16 h refl., $70-90 \%$; (h) a) EtOH/acetic acid (2:1) b) add. of $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 80-90 \%$.

Scheme 29. Synthesis of oxazolidinone compounds 118. ${ }^{11}$

118a

118b

Figure 14. Oxazolidinone compounds 118a-b.

Compounds 118a-b showed negligible activity in the guinea pig. ${ }^{11}$

3.2 Other isoxazoline and oxazolidinone compounds

Xue et al. found that the absence of the benzamidine moiety in $\mathbf{1 2 5}$ resulted in significant loss of potency when compared to 97 u but the phenyl derivative $\mathbf{1 2 2}$ retained much of the in vitro potency of $\mathbf{9 7 u} .{ }^{8}$ This is believed to be caused by the beneficial hydrophobic shielding effect of the aryl group on the amidino group. ${ }^{8}$

(a) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{EOH}$; (b) NCS, DMF; (c) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathbf{1 1 9}$, THF(aq); (d) LiOH , THF(aq), then HOAc; (e) 87u, TBTU, Et ${ }_{3} \mathrm{~N}$, EtOAc; (f) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) 121, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{HgCl}_{2}$, DMF; (h) LiOH, THF(aq).

Scheme 30. Synthesis of N-formamidinoaniline 122. ${ }^{8}$

(a) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathbf{1 1 8}, \mathrm{THF}(\mathrm{aq})$; (b) $\mathrm{LiOH}, \mathrm{THF}(\mathrm{aq})$; (c) $\mathbf{8 7} \mathbf{u}, \mathrm{TBTU}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOAc}$; (d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) 123, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{LiOH}, \operatorname{THF}(\mathrm{aq})$.

Scheme 31. Preparation of alkylguanidine 125. ${ }^{8}$

Table 8. Piperidines 126. ${ }^{8}$

126

Compd	R	n	m
$\mathbf{1 2 6 a}$	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	0	1
$\mathbf{1 2 6 b}$	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	1	1
$\mathbf{1 2 6 c}$	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	1	2
$\mathbf{1 2 6 d}$	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	2	1
$\mathbf{1 2 6 e}$	$\mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	2	1
$\mathbf{1 2 6 f}$	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	2	1
$\mathbf{1 2 6 g}$	$\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	3	1

Piperidines 126a-g were prepared in a fashion similar to that depicted in Scheme 23.

Xue et al. found that the replacement of the 4 -amidinophenyl group of 127 with the N -amidinopiperidin-4-yl group in $\mathbf{1 2 8}$ resulted in a fourfold loss in the platelet aggregation inhibitory activity. ${ }^{10}$

Scheme 32. Synthesis of N-amidinopiperidine 127. ${ }^{10}$

Pitts et al.studied the effects of structural changes in the guanidine mimetic and the substituent α to the carboxylate in order to find a highly selective integrin $\alpha_{V} \beta_{3}$ antagonist. ${ }^{12}$

128
85c: $\mathrm{R}^{1}=\mathrm{NHCO}_{2} n-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$

Figure 15. Lead compounds for a selective $\alpha_{v} \beta_{3}$ antagonist. ${ }^{12}$

(a) $\mathrm{NaHCO}_{3}(\mathrm{aq})$, THF, $0^{\circ} \mathrm{C}$-rt; (b) p-TsCl, pyridine; (c) NaN_{3}, DMF; (d) $\mathrm{NaOH}, \mathrm{H}^{+}$; (e) BOP, 133a, Hunig's base; (f) $\mathrm{Ph}_{3} \mathrm{P}$, dioxane, $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$; (g) 135, $80^{\circ} \mathrm{C}$, dioxane; (h) TFA; (i) TMSNCO; (j) $\mathrm{ClSO}_{2} \mathrm{NCO}, t-\mathrm{BuOH}$.

Scheme 33. Synthesis of the guanidine mimetics 136a, 136b, 136i and 136j. ${ }^{12}$

(a) Jones reagent; (b) oxalyl chloride, cat. DMF; (c) diazomethane; (d) $\mathrm{HBr}(\mathrm{g}$); acetylguanidine; (f) $\mathrm{NaOH}, \mathrm{HCl} ;(\mathrm{g}) \mathrm{BOP}, \mathbf{1 3 3 a}, N$-methylmorpholine; (h) $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$.

Scheme 34. Synthesis of imidazole 136c. ${ }^{12}$

(a) 138, BOP, Hunig's base, $70^{\circ} \mathrm{C}$; (b) LiOH , dioxane(aq), H^{+}; (c) BOP, 133a, N-methylmorpholine; (d) TFA.

Scheme 35. Synthesis of the acylaminoimidazole 136g. ${ }^{12}$

Table 9. Isoxazolines 136. ${ }^{12}$

Compd	R^{1}	R^{2}	n
136d	imidazol-2-ylNH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
136e	pyridin-2-ylNH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
$136 f$	2-aminopyridin-6-yl	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	3
136h	imidazol-2-ylNHCONH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	2
136k	isoquinolin-1-ylNH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
1361	isoquinolin-3-ylNH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
136m	imidazol-2-ylNH	2,6-(Cl) $2_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SO}_{2}$	4
136n	imidazol-2-ylNH	2-Cl-6-($\left.\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SO}_{2}$	4
1360	imidazol-2-ylNH	2,6-(Cl)2-4-(Ph) $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
136p	imidazol-2-ylNH	2,6-($\left.\mathrm{CH}_{3}\right)_{2}-4-(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
136q	imidazol-2-ylNH	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}$	4
136r	pyridin-2-ylNH	2,6-($\left.\mathrm{CH}_{3}\right)_{2}-4-(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4
136s	pyridin-2-ylNH	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}$	4
136t	imidazol-2-ylNH	$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{SO}_{2}$	4
136u	pyridin-2-ylNH	$1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{SO}_{2}$	4
136v	imidazol-2-ylNH	3,5-($\left.\mathrm{CH}_{3}\right)_{2}$ isoxazol-4-ylSO 2	4
136w	imidazol-2-ylNH	$4-(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$	4
136x	pyridin-2-ylNH	$4-(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$	4
136y	pyridin-2-ylNH	$4-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$	4
136z	imidazol-2-ylNH	H	4
136aa	pyridin-2-ylNH	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{CO}$	4
136bb	imidazol-2-ylNH	2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	2
136cc	imidazol-2-ylNH	$\mathbf{1 3 6 s}$ isomer 1	4
136dd	imidazol-2-ylNH	136s isomer 2	4
136ee	imidazol-2-ylNH	(R)-2,4,6-($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$	4

Compounds $\mathbf{1 3 6} \mathrm{g}$ and $\mathbf{1 3 6}$ demonstrated high potency and selectivity towards integrin $\alpha_{v} \beta_{3} .{ }^{12}$ Pitts et al. found that the α-substituent was required for potent activity and that 2,6-substituted arylsulfonamides were optimal. ${ }^{12}$

(a) Oxalyl chloride, $\mathrm{DMSO}_{2}, \mathrm{Et}_{3} \mathrm{~N},-70^{\circ} \mathrm{C}$; (b) sodium triacetoxyborohydride, 2-aminopyridine; (c) $\mathrm{Boc}_{2} \mathrm{O}$, pyridine, cat. DMAP; (d) LiOH, dil H^{+}; (e) BOP, tert-butyl N^{2}-benzyloxycarbonul-2(S)-2,3diaminopropionate 133b, N-methylmorpholine; (f) TFA; (g) $\mathrm{H}_{2}, 40 \mathrm{psi}, \mathrm{Pd} / \mathrm{BaSO}_{4}$; (h) arylsulfonyl chloride, pyridine.

Scheme 36. Synthesis of 2-aminopyridines 136aa, 136e, 136r, 136s,
136u, 136x and 136y. ${ }^{12}$

(a) $\mathrm{Boc}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$; (b) LDA, $-78^{\circ} \mathrm{C}$, then 4-bromobutene; (c) $\mathbf{1 3 0}, \mathrm{NaHCO}_{3}, \mathrm{THF}(\mathrm{aq}), 0^{\circ} \mathrm{C}$-rt; (d) NaOH , dil H^{+}; (e) BOP, 133a, N-methylmorpoline; TFA.

Scheme 37. Synthesis of the 2-aminopyridin-6-yl 136f. ${ }^{12}$

(a) $\mathrm{NaOCH}_{3}, \quad-78^{\circ} \mathrm{C}-\mathrm{rt}$; (b) phthalic anhydride, melt; (c) triphenylmethyl chloride, pyridine; (d) $\mathrm{N}_{2} \mathrm{H}_{4}$, EtOH , reflux; (e) 139, toluene, reflux; (f) sodium triacetoxyborohydride; (g) $\mathrm{LiOH}, \mathrm{H}^{+}$; (h) TBTU, 133, N -methylmorpholine; (i) TFA, reflux.

Scheme 38. Synthesis of 2-aminoimidazoles 136d, 136m-q, 136t, 136v, 136w and 136bb. ${ }^{12}$

(a) 1:1.2:2.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} 0,1 \mathrm{~h} 5-8^{\circ} \mathrm{C}, 75-80 \%$.; (b) TFA as solvent, $2 \mathrm{hrt}, 90-95 \%$.

Scheme 39. Synthesis of oxazolidinone compounds 143 and $144 .{ }^{11}$

Figure 16. Oxazolidinone compounds 144a-b.

Compounds 144a-b showed negligible activity in the guinea pig whereas compounds 143d, 143n, 1430 and 143v (Table 10) showed high activity. ${ }^{11}$

Table 10. Oxazolidinone compounds 143a-v. ${ }^{11}$

Compd.	R^{1}	R^{2}	X	n	config.
143a	phenyl	Et	CH	0	(RS)
143b	phenyl	Et	CH	1	(RS)
143c	phenyl	Et	$\mathrm{CH}(\mathrm{OH})$	1	(RS)
143d	phenyl	Et	N	1	(R)
143e	phenyl	Et	N	1	(S)
143f	phenyl	Et	N	2	(R)
143g	phenyl	Et	N	2	(S)
143h	phenyl	tBu	N	1	(R)
143i	phenyl	tBu	N	2	(RS)
143j	4-MeO- phenyl	Et	N	1	(R)
143k	3-CF3-phenyl	Et	N	1	(R)
1431	3-pyridyl	Et	N	1	(RS)
143m	2-furyl	Et	N	1	(RS)
143n	MeO	Me	N	1	(R)
1430	MeO	Et	N	1	(R)
143p	MeO	Et	N	1	(RS)
143q	MeO	Et	N	2	(RS)
143r	MeO	tBu	N	1	(RS)
143s	EtO	Et	N	1	(R)
143t	BnO	Et	N	1	(R)
143u	iPr	Et	N	1	(R)
143v	phenoxy	Et	N	1	(RS)

4 Hydantoin compounds

4.1 Compounds containing a benzamidine unit

Stilz et al. synthesized a series of active GP IIb/IIIa antaganonists based on the hydantoin scaffold. ${ }^{13}$

hydantoin building block

Scheme 40. Preparation of the hydantoin scaffold. ${ }^{13}$

Amino acids (route A), ketones/aldehydes (route B) and unsubstituted hydantoins (route C) were used as precursors for the hydantoin scaffold (Scheme 37). ${ }^{13}$
route B

(a) CuCN , DMF, reflux; (b) $\mathrm{KCN},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$; (c) $\mathrm{Cl}^{-} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{KI}, \mathrm{NaOCH}_{3}$; (d) HCl , ethanol; (e) NH_{3}, isopropanol; (f) HCl , reflux.
route C

(a) CuCN , DMF, reflux; (b) KCN , $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$; (c) $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{KI}, \mathrm{NaOCH}_{3}$; (d) HCl , ethanol; (e) NH_{3}, isopropanol; (f) HCl , reflux.

Scheme 42. Synthesis of compound 150c. ${ }^{13}$

Table 11. Arginine replaced GP IIb/IIIa inhibitors. ${ }^{13}$

Comp

The suitability of benzamidine for substituting arginine is suggested by the 36 -fold greater activity of compound 153 compared to the parent compound 179 (Scheme 44). ${ }^{13}$

Table 12. C-terminal variation of GP IIb/IIIa inhibitors. ${ }^{13}$

Compounds 158, 160, 161 and 162 showed good fibrinogen receptor binding activity. ${ }^{13}$

The ethyl ester prodrug 171 (Figure 18) is an orally active antithrombotic agent. ${ }^{13}$

Figure 17. Stereoisomeres of $\mathbf{1 6 2} .^{13}$

Figure 18. Maleic acid salt 171. ${ }^{13}$

(a) $\mathrm{NaOH}, 145^{\circ} \mathrm{C}, 10 \mathrm{bar}$; (b) HCl , ethanol; (c) R-mandelic acid, isopropanol, diisopropyl ether; (d) ethoxycarbonylmethyl isocyanate, DMF, N-ethylmorpholine; (e) 6 N HCl ; (f) CuCN , DMF; (g) HCl , ethanol; (h) NH_{3}, ethanol.

4.2 Other hydantoin compounds

(a) Ethoxycarbonylmethyl isocyanate, N-ethylmorpholine, DMF, reflux; (c) DCC, HOBt, DMF; (d) TFA.

Scheme 44. Synthesis of compounds 179-184. ${ }^{13}$

Compounds 181, 182 and 184 exhibited greater potency than 179, 180 and 183 showing that aliphatic or aromatic residues are favorable compared to the carboxy terminal serine. ${ }^{13}$

(a) Ethanol, acetic acid, $10 \% \mathrm{Pd} / \mathrm{C}, 2 \mathrm{~h}, 3$ bar; (b) conc. $\mathrm{HCl}, 100^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (c) dioxane, $\mathrm{H}_{2} \mathrm{O}$, di-tert-butyl dicarbonate; (d) DCC, HOBt, DMF; (e) TFA, methanol, Pd/C, rt, 2h.

Scheme 45. Synthesis of compound 185. ${ }^{13}$

(a) Isoamylnitrite, methanol, NaOCH_{3}; (b) HCl , methanol, DMF, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; (c) ethoxycarbonylmethyl isocyanate, N-ethylmorpholine, DMF, $-20^{\circ} \mathrm{C}$; (d) 1-benzyloxycarbonyl-2-methyl-isothiourea, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, methanol; (e) $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}$.

Scheme 46. Synthesis of compound 186. ${ }^{13}$

187

188
189

Figure 19. Arginine replaced GP IIb/IIIa inhibitors 187-191. ${ }^{13}$

Compounds 185, 189 and 190 showed much greater potency compared to compounds 187 and 188 which suggests that p-substitution of the rigid phenyl ring is favored over m-substitution and a more flexible phenylmethylene. ${ }^{13}$

Peyman et al. have designed a series of $\alpha_{v} \beta_{3}$ antagonists containing a hydantoin scaffold. ${ }^{14}$

Scheme 47. Synthesis of integrin antagonists 193-196. ${ }^{14}$

Compound 197 (Figure 20) is synthesized by treatment of 192 with 2-methylthio-2imidazoline, and 198 (Figure 20) by reaction of 192 with 2-bromopyrimidine, followed in each case by the last two steps from Scheme 47.

Peyman et al. found compound $\mathbf{1 9 3}$ to have the optimal distance (12 bonds) between the C-terminal carboxyl group and the N -terminal guanidino group for an $\alpha_{\mathrm{V}} \beta_{3}$ antagonist whereas for $\alpha_{\text {IIb }} \beta_{3}$ compound 194 with its 13 bonds showed higher affinity. ${ }^{14}$ They also found cyclic guanidines to be preferred over non-cyclic guanidines as arginine mimetics for both $\alpha_{\vee} \beta_{3}$ and $\alpha_{\text {IIb }} \beta_{3}$ selectivity. When comparing the effect of the lipophilic side
chain Peyman et al. found compound 193 to clearly have the most favorable one (Cbz), compound 195 having the least favorable lipophilic side chain. ${ }^{14}$

197

198

Figure 20. Integrin antagonists 197 and 198.

Compound 199 is reacted further as in Scheme 36 to yield antagonist 200.

Scheme 48. Synthesis of benzimidazole containing integrin antagonist 200. ${ }^{14}$

HOOBt, DCCI, DMF

Scheme 49. Synthesis of benzimidazole containing integrin antagonist 201. ${ }^{14}$

Compound 202 (Figure 21) was prepared in a similar way to that depicted in Scheme 46 using (4,5-dihydro-imidazol-2-yl)-hydrazine instead of 2-aminomethyl-benzimidazole. ${ }^{14}$

Figure 21. Integrin antagonist 202.

Compounds 203-207 (Figure 22) were prepared by catalytic hydrogenation of 193 to remove the Cbz group and coupling of the appropriate side chain to the free amino function. ${ }^{14}$

Figure 22. Integrin antagonists 203-207.

5 Benzimidazole, benzoxazole and imidazopyridine compounds

5.1 Benzimidazole, benzoxazole and imidazopyridine compounds containing a benzamidine or \boldsymbol{p}-cyanophenyl unit

Xue et al. have designed a series of potent GP IIb/IIIa antagonists having a benzamidine as the basic moiety and an α-carbamate or sulfonamide substituted β-alanine as the acidic moiety. ${ }^{15}$

$$
\begin{aligned}
& \text { 208a: } R=H, R^{\prime}=4 \text {-aminomethyl)benzyl } \\
& \text { 208b: } R=H, R^{\prime}=4 \text {-amidinobenzyl } \\
& \text { 208c: } R=C_{3}, R^{\prime}=4 \text {-amidinobenzyl } \\
& \text { 208d: } R=H, R^{\prime}=4 \text {-piperidinepropyl }
\end{aligned}
$$

(a) β-AlaOMe, TBTU, DIEA, DMF, 80-90\%; (b) 4-cyanobenzyl bromide or N-Cbz-4-piperidinepropyl bromide, NaH , DMF, 40-60\%; (c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, DMF, $80-90 \%$ (208a and 208d) or (1) $\mathrm{HCl}, \mathrm{MeOH}$, (2) NH_{3}, $\mathrm{MeOH}, 40-60 \%$ (208b and 208c); (d) $\mathrm{NaOh}, \mathrm{MeOH}, 80-90 \%$.

Scheme 50. Synthesis of compounds 208a-d. ${ }^{15}$

Compound 208a was found to be the least active of the four compounds in the inhibition of platelet aggregation showing that a benzamidine or a 4-piperidinepropyl group is preferred over a 4-aminomethylbenzyl group.

(a) (1) DMF, molecular sieves (2) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, reflux, 25%; (b) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, reflux, 30%; (c) TBTU, DIEA, DMF, 70-90\%; (D) H_{2}, Pd/C, DMF, $\mathrm{HCl}, 80-90 \%$; (e) $\mathrm{NaOH}, \mathrm{MeOH}, 80-90 \%$.

Scheme 51. Synthesis of compounds 210 and 211a-c. ${ }^{15}$

(a) Boric acid, xylene, reflux, $30-40 \%$; (b) $\mathrm{NaOH}, \mathrm{MeOH}, 80-90 \%$.

Scheme 52. Synthesis of compounds 212. ${ }^{15}$

(a) $\mathrm{MeOH}, 4 \mathrm{~N} \mathrm{HCl} /$ dioxane, 90%; (b) $(\mathrm{Boc})_{2} \mathrm{O}$, DIEA, $\mathrm{CHCl}_{3}, 85 \%$; (C) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 100 \%$; (d) n butyl chloroformate or p-toluenesulfonyl chloride, DIEA, $\mathrm{CHCl}_{3}, 60-80 \%$; (e) $4 \mathrm{~N} \mathrm{HCl} /$ dioxane, 100%.

Scheme 53. Synthesis of compounds 213. ${ }^{15}$

(a) TBTU, DIEA, DMF, $80-85 \%$; (b) (1) $\mathrm{HCl}, \mathrm{MeOH}$ (2) $\mathrm{NH}_{3}, \mathrm{MeOH}, 40-60 \%$; (c) $\mathrm{NaOH}, \mathrm{MeOH}$, 80-90\%.

Scheme 54. Synthesis of compounds 214a-e. ${ }^{15}$

Compounds 214a-e were found to be very potent GP IIb/IIIa inhibitors, 214a being the least active.

Figure 23. Benzimidazole/benzoxazole analogs 214a-e.

5.2 Other benzimidazole, benzoxazole and imidazopyridine compounds

Carceller et al. have designed a series of 1-[(1-acyl-4piperidyl)methyl]-1H-2methylimidazo $[4,5-c]$ pyridine derivatives as potent, orally active platelet-activating factor (PAF) antagonists. ${ }^{16}$

(a) $\mathrm{BOC}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$, room temperature, 18 h ; (b) 4-chloro-3-nitropyridine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{Cl}$, reflux for 18 h , 64% (two steps); (c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 18 \mathrm{~h}$; (d) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, pyridine $/ \mathrm{H}_{2} \mathrm{O}$, room temperature, 18 h ; (e) ethyl acetimidate hydrochloride, EtOH, reflux, $18 \mathrm{~h}, 62 \%$ (two steps); (f) $6.5 \mathrm{~N} \mathrm{HCl}_{\mathrm{g}} /$ dioxane, MeOH , room temperature, $18 \mathrm{~h}, 78 \%$; (g) $\mathrm{R}^{1} \mathrm{COOH}, \mathrm{DCC}, \mathrm{HOBT}$, DMF , room temperature, 18 h ; (h) $\mathrm{Ph}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2} \mathrm{SO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3}$, room temperature, 18 h ; (i) $\mathrm{R}^{2} \mathrm{COOH},(\mathrm{PhO})_{3}, \mathrm{Et}_{3} \mathrm{~N}$, benzene, $90^{\circ} \mathrm{C}$, 2 h and then 215 was added, $90^{\circ} \mathrm{C}$, 18 h ; (j) $\mathrm{R}^{2} \mathrm{NHCOOPh}, \mathrm{pyr}, 130^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (k) $\mathrm{Ph}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right) \mathrm{CH}_{2} \mathrm{OCOOPh}$, pyr, $130^{\circ} \mathrm{C}, 18 \mathrm{~h}$.

Scheme 55. Synthesis of imidazopyridines 216-242. ${ }^{16}$

Table 13. Imidazopyridines 216-242. ${ }^{16}$

Comp R	Comp	R	Comp	R
	225		234	
217	226			
218	227		236	
219	228		237	
220	229		238	
221	230		239	
222	231		240	
223	232		241	
224	233			

According to Carceller et al. having three coordination centers is beneficial to this type of PAF antagonist: an sp^{2} nitrogen at a given distance from and orientation to an amide or other isosteric groups, and another coordination center such as a cyano group close to the sp^{2} nitrogen. Carceller et al. also found that branched substitution of the acyl moiety and a methoxy group at the 2-position of the aromatic ring increased activity. Compound 224 was found to be the most potent PAF antagonist. ${ }^{16}$

Miller et al. have synthesized potent vitronectin receptor antagonists. ${ }^{17}$

(a) $\mathrm{Tf}_{2} \mathrm{O}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to RT (96\%); (b) (allyl) $\mathrm{SnBu}_{3}, \mathrm{LiCl},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}$ (99\%); (c) $\mathrm{RuCl}_{3}, \mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to RT (74\%); (d) PPA, $100-110{ }^{\circ} \mathrm{C}\left(48 \%\right.$); (e) $(\mathrm{COCl})_{2}$, benzene, reflux; (f) $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT (71\%) for two steps); (g) EtOAc/LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$ (73\%); (h) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, conc $\mathrm{HCl}, \mathrm{AcOH}\left(91 \%\right.$); (i) $\mathrm{EtSH}, \mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT (95%); (j) $\mathrm{Tf}_{2} \mathrm{O}$, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT (92\%); (k) CO, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOAc}$, dppf, DMSO, $70{ }^{\circ} \mathrm{C}$ (95%); (l) 2(methylamino)methylbenzimidazole dihydrochloride, EDC, $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$, ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{NEt}$, DMF (95%); (m) $1.0 \mathrm{~N} \mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$; (n) $1.0 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$; (o) $5 \% \mathrm{NaHCO}_{3}$, MeOH (45% for three steps).

Scheme 56. Synthesis of compound 244. ${ }^{17}$

Compound 244 has good affinity for $\alpha_{V} \beta_{3}$ and poor affinity for $\alpha_{\text {IIb }} \beta_{3}$. Significant improvement of activity was achieved with the similar ether-linked compound 647 (Scheme 133, chapter 11). ${ }^{17}$

6 Indazole compounds

Batt et al. have synthesized a series of indazole-containing $\alpha_{\vee} \beta_{3}$ integrin antagonists. ${ }^{18}$

Scheme 53. Preparation of diaminopropionate derivatives. ${ }^{18}$

(a) $\mathrm{HCl}, \mathrm{NH}_{4} \mathrm{BF}_{4}, \mathrm{NaNO}_{2}, 0^{\circ} \mathrm{C}$; (b) $\mathrm{KOAc}, \mathrm{CHCl}_{3}$; (c) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{KOAc}^{2} \mathrm{CHCl}_{3}$; (d) nAmONO, 18-crown-6, $\mathrm{CHCl}_{3}, \Delta$; (e) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$.

Scheme 57. Preparation of indazolecarboxylate esters. ${ }^{18}$

(a) $\mathrm{KN}(\mathrm{TMS})_{2}, \mathrm{PhthN}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Br}, \mathrm{THF}, \Delta$; (b) $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{EtOH}$; (c) 2-MeS-4,5-dihydroimidazole•HI,
pyridine, Δ; (d) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \Delta, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$; (e) 245, DCC, HOBT , DMF; (f) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 58. Initial synthetic approach by Batt et al. ${ }^{18}$

Batt et al. used 249a as the lead compound due to its good binding to integrin $\alpha_{v} \beta_{3}{ }^{18}$

251

252a: (2-pyridyl-1-oxide)

252b: (2-pyridyl)
253a: $(R=B o c)$
253b: $(R=H)$

254s-t
(a) $\mathrm{CH}_{2}=\mathrm{CHCN}, \mathrm{NaN}(\mathrm{TMS})_{2}$ (cat.), EtOH, Δ; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{CHCl}_{3}, \mathrm{EtOH}$; (c) 2-chloropyridine 1-oxide, $\mathrm{NaHCO}_{3}, \mathrm{nBuOH}, 100{ }^{\circ} \mathrm{C}$; (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{CHCl}_{3}$; or $\mathrm{HCOONH}_{4}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \Delta$; (e) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DMAP}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, EtOH, then $\mathrm{H}_{3} \mathrm{O}^{+}$; (g) 245, 246, or related amine, DCC, HOBT, DMF; (h) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; optionally followed by NaOH in $\mathrm{H}_{2} \mathrm{O}$ for methyl esters.

Scheme 59. Preparation of aminopropyl intermediate 251 and aminopyridine derivatives. ${ }^{18}$

Table 14. Compounds 254a-k, m, \mathbf{n} and \mathbf{p}-t. ${ }^{18}$

Compd	X	R
254a	-CONH-	α-(S)- NHSO_{2} mesityl
254b	- $\mathrm{CON}(\mathrm{Me}$)-	α-(S)-NHSO ${ }_{2}$ mesityl
254c	-CONH-	H
254d	-CONH-	α-(S)- $\mathrm{NHSO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
254e	-CONH-	β-(S)-CONH $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
254f	-CONH-	β-(S)-CONHmesityl
254g	-CONH-	α-(S)-NHCOOiBu
254h	-CONH-	α-(S)-NHCONHPh
254i	-CONH-	α-(S)-NHCONHCH2 ${ }_{2} \mathrm{Ph}$
254j	-CONH-	$\alpha-(\mathrm{S})-\mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
254k	-CONH-	α-(S)- $\mathrm{NHCOCH}_{2} \mathrm{iBu}$
254m	-CONH-	$\alpha-(\mathrm{S})-\mathrm{NHSO}_{2} \mathrm{Ph}$
254n	-CONH-	$\alpha-(\mathrm{S})-\mathrm{NHSO}_{2} \mathrm{nBu}$
254p	-CONH-	α-(S)- $\mathrm{NHSO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
254q	-CONH-	$\alpha-(\mathrm{S})-\mathrm{NHSO}_{2} \mathrm{NHiBu}$
254r	-CONH-	α-(S)- $\mathrm{NHSO}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}$
254s	-CONH-	$\alpha-(\mathrm{S})-\mathrm{NHSO}_{2} \mathrm{NHPh}$
254t	-CONH-	α-(S)- $\mathrm{NHSO}_{2} \mathrm{NHmesityl}^{\text {d }}$

257: ($\mathrm{R}^{\prime}=\mathrm{Cbz}$)
258: $\left(R^{\prime}=H\right)$

259a: ($R^{\prime \prime}=3,4$-dihydro-2-imidazole)
259b: (R" = 3,4,5,6-tetrahydro-2-pyrimidine)
(a) $\mathrm{BzOOCCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}$, THF; (c) 246, DCC, HOBT , DMF; (d) $\mathrm{Pd}(\mathrm{OH})_{2}, 1,4-$ cyclohexadiene, MeOH, Δ; (e) 259a: (1) 258, 2-methylthio-4,5-dihydroimidazole hydroiodide, pyridine, Δ, (2) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 259b: (1) 258, 2-methylthio-3,4,5,6-tetrahydropyrimidine, pyridine, Δ, (2) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}$.

Scheme 60 . Variation of the basic group late in the synthesis. ${ }^{18}$

260a: $\mathrm{X}=1$ 1-trityl-2-imidazolyl, $\mathrm{R}=\mathrm{Et}$
260b: X = 1-Cbz-3-pyrazolyl, R = Et
261a: $X=1$-trityl-2-imidazolyl, $\mathrm{R}=\mathrm{H}$
261b: $X=3$-pyrazolyl, $R=H$

262: ($X=$ 2-imidazolyl)
263: ($\mathrm{X}=3$-pyrazolyl, $\mathrm{R}^{\prime}=\mathrm{NHSO}_{2} \mathrm{Ms}$)
(a) $\mathrm{NaN}(\mathrm{TMS})_{2}$, 2-(2-bromoethyl)-1,3-dioxolane, THF, Δ; (b) $\mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}, \Delta$; (c) (for 262:) 1-trityl-2-amino-imidazole, toluene, $\Delta\left(-\mathrm{H}_{2} \mathrm{O}\right), \mathrm{NaBH}(\mathrm{OAc})_{3}$; (d) (for 263:) 1-Cbz-3-aminopyrazole, $\mathrm{NaBH}(\mathrm{OAc})_{3}$, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$; (e) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \Delta$; (f) 245, 246, or related amine, DCC, HOBT, DMF; (g) see text.

Scheme 61. Basic group introduction by reductive amination. ${ }^{18}$

Step g in Scheme 61 is as follows (compounds 262 are prepared from 261a, compound 263 from 260b):

For 262a [from 246 ($\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=$ mesityl)]: (1) $\mathrm{MeOH}, \mathrm{HOAc}, \Delta$, (2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA.

Compounds 262b-g, 262p and 262r-t are prepared using the procedure for preparing 262a:

For 262b: from 246 ($\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=$ mesityl),
262c: from 245,
262d: from 246 ($\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=$ mesityl),
262e: from N-mesitylenesulfonylethylenediamine trifluoroacetate,
262f: from β-alanine tert-butyl ester,
262g: from $246(\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=$ phenyl),
262p: from 246 ($\mathrm{R}=$ methyl, $\mathrm{Ar}=$ 4-biphenyl),
262r: from 246 ($\mathrm{R}=$ methyl, $\mathrm{Ar}=2,6$-dichlorophenyl),
262s: from 246 ($\mathrm{R}=$ methyl, $\mathrm{Ar}=2,6$-dimethylphenyl),
262t: from 246 ($\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=4$-phenyl-2,6-dimethylphenyl).
For 262u [from 246 ($\mathrm{R}=$ methyl, $\mathrm{Ar}=1$-naphthyl)]: (1) $\mathrm{EtOH}, \mathrm{NaOH}, \Delta$, then HCl
(2) TFA, Δ.

263 [from 246 ($\mathrm{R}=$ tert-butyl, $\mathrm{Ar}=$ 2,4,6-trimethylphenyl)]: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA.

Table 15. Compounds 262a and c-f. ${ }^{18}$

Compd	X	R
262a	-CONH-	α-(S)-NHSO ${ }_{2}$ mesityl
262c	-CONH-	α-(S)- $\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
262d	-CONH-	$\alpha-(\mathrm{R})-\mathrm{NHSO}_{2}$ mesityl
262e	-CONH-	NHSO
2	mesityl	
262f	-CONH-	H

Compound 262a exhibited good affinity for $\alpha_{\vee} \beta_{3}$ with nine-fold selectivity over GPIIbIIIa. ${ }^{18}$

Table 16. Compounds $\mathbf{2 6 2 g - k}, \mathbf{m}, \mathbf{n}$ and $\mathbf{p}-\mathbf{v} .{ }^{18}$

Compd	Ar	Compd	Ar
262g	Ph	262p	4-Ph-Ph
262h	4-Me-Ph	262q	$3,4-\mathrm{Cl}_{2}-\mathrm{Ph}$
262i	4-Cl-Ph	262r	2,6- $\mathrm{Cl}_{2}-\mathrm{Ph}$
262j	4-MeO-Ph	262s	2,6-Me2-Ph
262k	$4-\mathrm{CF}_{3}-\mathrm{Ph}$	262t	2,6-Me ${ }_{2}-4-\mathrm{Ph}-\mathrm{Ph}$
262m	4-AcNH-Ph	262u	1-naphtyl
262n	4-t-butyl-Ph	262v	2-naphtyl

264
(a) Methyl acrylate, $\mathrm{tBuOH}, \mathrm{KOtBu}, \mathrm{THF}, \Delta$; (b) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$; (c) 2-aminoimidazole sulfate, $\mathrm{iPr}_{2} \mathrm{NEt}, \mathrm{BOP}, \mathrm{DMF}, 7{ }^{\circ} \mathrm{C}$; (d) LiOH, $\mathrm{H}_{2} \mathrm{O}$, THF; (e) $246(\mathrm{R}=\mathrm{tBu}, \mathrm{Ar}=$ mesityl), DCC, HOBT, DMF; (f) $\mathrm{CF}_{2} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 62. Imidazole amide preparation. ${ }^{18}$

a: $X=2$-pyridyl
b: $\mathrm{X}=2$-imidazolyl
(a) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; (b) see text; (c) TFA, $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 63. Variation of α-substituent late in the synthesis. ${ }^{18}$

Step b in Scheme 63 is as follows (compounds 254 are prepared from 266a, compounds 262 from 266b):
For $\mathbf{2 5 4 g}$: pyridine, 4-(dimethylamino)pyridine, DMF, isobutyl chloroformate,
254a: pyridine, 4-(dimethylamino)pyridine, DMF, mesitylenesulfonyl chloride,
254h: $\mathrm{iPr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, phenyl isocyanate,
254i: $\mathrm{iPr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzyl isocyanate,
254j: hydrocinnamic acid, DCC, HOBT, THF,
254k: 4-methylvaleric acid, DCC, HOBT, THF.

The following compounds are prepared using the procedure for preparing $\mathbf{2 5 4 g}$:
254m: from benzenesulfonyl chloride,
254n: from 1-butanesulfonyl chloride,
254p: from phenylmethanesulfonyl chloride,
254q: from 2-methylpropanesulfamyl chloride,
254r: from phenylmethanesulfamyl chloride,
254s: from benzenesulfamyl chloride,
254t: from mesitylenesulfamyl chloride.

The following compounds are prepared from 266b using the procedure for preparing 262h:

262h: pyridine, 4-(dimethylamino)pyridine, DMF, p-toluenesulfonyl chloride,
262i: from 4-chlorobenzenesufonyl chloride,
262j: from 4-methoxybenzenesulfonyl chloride,
262k: from 4-trifluoromethylbenzenesulfonyl chloride,
262m: from 4-acetamidobenzenesulfonyl chloride,
262n: from 4-tert-butylbenzenesulfonyl chloride,
262q: from 3,4-dichlorobenzenesulfonyl chloride,
262v: from 2-naphtalenesulfonyl chloride.

268 : $\mathrm{R}=\mathrm{CHO}$
269: R = $\mathrm{CH}_{2} \mathrm{NH}-2$-pyridyl

270 : R = Cbz, $\mathrm{R}^{\prime}=$ tert-butyl
271 : R = mesitylSO ${ }_{2}, \mathrm{R}^{\prime}=\mathrm{H}$
(a) See Scheme 57; (b) Fe, HOAc, $90^{\circ} \mathrm{C}$; (c) DCC, HOBT, DMF; (d) see Scheme 59.

Scheme 64. Preparation of retro-amide 271. ${ }^{18}$

Basic groups 2-aminopyridine and 2-amino-imidazole increased the potency of the indazole series compared to 2-aminoimidazoline. Batt et al. found aryl sulfonamides to be the most potent exosite-binding groups with mesitylenesulfonamide analogue 262a demonstrating excellent potency and nine-fold selectivity with respect to GPIIbIIIa.

7 Azatide and azacarba-peptide compounds

Figure 24. Comparison of a peptide, azapeptide and azatide. ${ }^{18}$

Figure 25. Azacarba-peptide. ${ }^{20}$

Han and Janda have developed an efficient method for the solution and liquid phase syntheses of an azatide oligomer consisting of monomeric α-aza-amino acids. ${ }^{19}$

Scheme 65. Preparation of Boc-protected alkylhydrazine monomers. ${ }^{19}$

Reagents p-nitrophenyl chloroformate, carbonyldi-imidazole, bis(2,4-dinitrophenyl) carbonate, and trichloromethyl chloroformate were found to be unsuccessful in coupling two aza-amino acids together. Bis(pentafluorophenyl) carbonate 272 (Scheme 66) was chosen for the following reasons: the powerful electron-withdrawing ability of the
pentafluorophenol group, the minimizing of steric problems by the fluoro substituents, easy preparation and the easy-to-handle crystalline form.

1. Starting from 1-R¹-hydrazine carboxylic acid, 1,1-dimethylethyl ester:

2. Starting from 2-R¹-hydrazine carboxylic acid, 1,1-dimethylethyl ester:

274

272

Scheme 66. Routes for solution phase diazatide synthesis. ${ }^{19}$

Coupling procedure 1 in Scheme 66 proved successful in producing a good yield of diazatides with few side reactions. Coupling procedure 2 was not successful.

Table 17. Preparation of diazatides starting from 1-R'-hydrazinecarboxylic acid, 1,1dimethylethyl ester. ${ }^{19}$

Compd	R^{1}	R^{2}	R^{3}	R^{4}	yield (\%)
$\mathbf{2 7 5}$	H	H	H	H	92
$\mathbf{2 7 6}$	methyl	H	H	methyl	91
$\mathbf{2 7 7}$	H	methyl	H	methyl	90
$\mathbf{2 7 8}$	H	methyl	H	benzyl	85
$\mathbf{2 7 9}$	H	methyl	H	isobutyl	84
$\mathbf{2 8 0}$	H	isobutyl	H	isobutyl	82
$\mathbf{2 8 1}$	H	isopropyl	H	isopropyl	84

Han and Janda also used polymer-supported liquid phase synthesis to prepare a small well-defined α-azatide with poly(ethylene glycol) monomethyl ether (MeO-PEG) functioning as a terminal-protecting group for the product (Scheme 67). Methyl p(hydroxymethyl)benzoate was O-protected as the tert-butyl ether by treatment with isobutylene and acid. ${ }^{19}$ The methyl ester was then hydrolyzed by lithium oxide providing 282 (Scheme 67).

283

1) $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; DIPEA
2)

3) Repeat a cycle of above 1) and 2) with Glya ${ }^{\text {a }}$ Phe ${ }^{\text {a }}$ and Leua .

Scheme 67. MeO-PEG supported Leu-enkephalin azatide synthesis. ${ }^{19}$

Sulyok et al. have synthesized a low molecular weight RGD mimetic library, including highly active and selective nonpeptide $\alpha_{\vee} \beta_{3}$ integrin antagonists based on lead
compound 285 (Figure 26). ${ }^{19}$ Compound 285 has good affinity and selectivity toward the $\alpha_{v} \beta_{3}$ integrin receptor ($\mathrm{IC}_{50}: 150 \mathrm{nM}$), but Sulyok et al. aimed at preparing a compound with greater lipophilicity in order to enhance the medical prospects of the product in comparison to compound 285.

Figure 26. Aza-RGD mimetics with various aromatic α-amino acids ($\mathrm{X}=\mathrm{NH}$) or glutaric acids $\left(\mathrm{X}=\mathrm{CH}_{2}\right)$ and different guanidine mimetics derived from compound 285. ${ }^{20}$

Figure 27. Retrosynthetic analysis of the RGD mimetic library obtaining four different building blocks: carboxylic acid A_{1} (α-amino acids) and A_{2} (glutaric acids), B_{1} (aza-glycine) and B_{2} (hydrazine), spacer C , and basic building block D. ${ }^{20}$

An aromatic (3-aminobenzoic acid) and an aliphatic (5-aminopentanoic acid) spacer were used as building block C . Guanidine was used as building block D and so were the more lipophilic methylamidine and 2-aminopyridine. Guanidine and methylamidine were used in connection with an aromatic spacer, and aminopyridine with an aliphatic spacer. ${ }^{20}$

Reagents: (a) $\mathrm{NH}_{4} \mathrm{OAc}$, malonic acid, EtOH (74-88\%); (b) $\mathrm{Fmoc}-\mathrm{Cl}, \mathrm{NaHCO}_{3}$, dioxane (76-98\%); (c) ethyl acetoacetate, piperidine (cat.) (42-85\%); (d) $20 \mathrm{M} \mathrm{KOH}, 85^{\circ} \mathrm{C}$ (68-99\%); (e) acetic anhydride (62$89 \%$); (f) N-Fmoc-hydrazine, THF (100%); (g) TCP resin, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{\text {a }}$ Compounds 287d, 287g and 288a were purchased from commercially available sources.

Scheme $68 .^{20}$ Synthesis of building blocks A_{2}.

$$
\begin{aligned}
& R=a) H \\
& \text { b) } 4-F \\
& \text { c) } 4-\mathrm{Cl} \\
& \text { d) } 4-\mathrm{Br} \\
& \text { e) } 4-\mathrm{OMe} \\
& \text { f) } 4-\mathrm{OCF}_{3} \\
& \text { g) (1-naphthyl) } \\
& \text { h) } 3-\mathrm{Cl}, 5-\mathrm{Cl}
\end{aligned}
$$

Reagents: (a) TCP resin, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) 20% piperidine/DMF; (c) 5-(9H-fluoren-9-ylmethoxy)-1,3,4-oxadiazol-2(3H)-one (293); (d) phosgene (1.9 M solution in toluene), sat. $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \%)$.

Scheme 69. ${ }^{20}$ Synthesis of the resin-bound Fmoc-protected aza-Gly- β-amino acid derivatives 294a-h (building blocks $\mathrm{A}_{1} \mathrm{~B}_{1}$).

Next is the coupling of building blocks C and D. 2-Aminopyridine was linked to the spacer molecule C in solution (Scheme 70), whereas guanidine or amidine are coupled on solid support. ${ }^{20}$

Reagents: (a) $100^{\circ} \mathrm{C}$ (23\%); (b) $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(64} \mathrm{\%);} \mathrm{(c)} \mathrm{NaH}, \mathrm{DMF}, 80^{\circ} \mathrm{C}(10 \%)$.

Scheme 70. ${ }^{20}$ Synthesis of building blocks CD 298 [5-(4-methylpyridine-2-yl)aminopentanoic acid] and 301.

After removing the Fmoc-protection from aza-compounds 290a-e,h,i $\left(\mathrm{X}=\mathrm{CH}_{2}\right)$ and 294a-h $(\mathrm{X}=\mathrm{NH})$ with piperidine, building blocks C and CD were coupled under standard solid-phase coupling conditions (Scheme 71). ${ }^{20}$

302a-e,h,i: $\mathrm{X}=\mathrm{CH}_{2}$
303a-h: $\quad X=N H$
a, e, $\mathrm{f}\left(\mathrm{X}_{1}=\mathrm{NH}_{2}\right)$
a, g, d ($\mathrm{X}=\mathrm{CH}_{3}$)

307a-e,h,i: $X=\mathrm{CH}_{2}$
304a-e,h,i: $X=\mathrm{CH}_{2}, \mathrm{X}_{1}=\mathrm{NH}_{2}$
308a-h: $\quad X=N H$

305a-e,h,i: $X=\mathrm{CH}_{2}, \mathrm{X}_{1}=\mathrm{CH}_{2}$
306a-h: $\quad \mathrm{X}=\mathrm{NH}, \mathrm{X}_{1}=\mathrm{NH}_{2}$

$$
\begin{aligned}
& R=\text { a) } H \quad \text { f) } 4-\mathrm{OCF}_{3} \\
& \text { b) 4-F g) (1-naphthyl) } \\
& \text { c) } 4-\mathrm{Cl} \\
& \text { d) } 4-\mathrm{Br} \\
& \text { h) } 3-\mathrm{Cl}, 5-\mathrm{Cl} \\
& \text { e) } 4-\mathrm{OMe}
\end{aligned}
$$

Reagents: (a) 20\% piperidine/DMF; (b) 3-(N-Fmoc-amino)benzoic acid, HATU, collidine, DMF;
(c) 5-(4-methylpyridine-2-yl)aminopentanoic acid (298), HATU, collidine, DMF; (d) AcOH/TFE/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1:3); (E) N, N^{\prime}-bis-Boc-1-guanolpyrazole, $\mathrm{CHCl}_{3}, 50^{\circ} \mathrm{C}$; (f) 95% TFA/ 5% TIPS; (g) S-2-naphthylmethyl thioacetimidate hydrobromide, DIEA, NMP.

Scheme 71. ${ }^{20}$ Synthesis of aza-RGD mimetics.

All compounds synthesized by Sulyok et al. show little or no activities to $\alpha_{\mathrm{IIb}} \beta_{3}\left(\mathrm{IC}_{50}>\right.$ $10,000 \mathrm{nM}$) with many showing good affinity to $\alpha_{\mathrm{v}} \beta_{3}$, hence constructing a library of highly active and selective RGD mimetics. ${ }^{20}$

8 Benzamidine compounds

8.1 Benzamidine compounds containing a piperazine unit

Pons et al. have synthesized a 2,5-diketopiperazine peptidomimetic (314, Scheme 69) which shows selective platelet-aggregation activity. Compound 314 shows selectivity towards inhibiting the binding of fibrinogen to its receptor GPIIb/IIIa.This selectivity may be caused by the benzamidine group and the rigidity brought on by the diketopiperazine group. ${ }^{20}$

(a) $\mathrm{ZCl}, \mathrm{NaOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}(50 \%)$; (b) (Boc Gly) ${ }_{2} \mathrm{O}$, DMAP, dichloromethane (42\%); (c) TFA, dichloromethane (74\%); (d) DCC, DMAP, dichloromethane (31\%); (e) NaOH , dioxane, $\mathrm{H}_{2} \mathrm{O}$ (73\%); (f) $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}(49 \%)$.

Scheme 72. ${ }^{21}$ Synthesis of compound 314.

Sugihara et al. have synthesized several benzamidine compounds containing a 2 oxpiperazine unit, one of which is a potent and orally active GPIIb/IIIa antagonist (316, Table 18). See also compounds $415 d$ and $\mathbf{4 1 5 h}$ in 9.1,Table $23 .{ }^{21}$

Table 18. The substituents of compounds 316-326. ${ }^{22}$

Compound	R^{1}	R_{2}	R^{3}	R^{4}	n
$\mathbf{3 1 6}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$	H	0
$\mathbf{(R) - 3 1 6}$	$\mathrm{CO}_{2} \mathrm{H}$	H	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$	0
$\mathbf{3 1 7}$	$\mathrm{CO}_{2} \mathrm{H}$	H	H	H	0
$\mathbf{3 1 8}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\mathrm{CH}_{2} \mathrm{CONH}_{2}$	H	0
$\mathbf{3 1 9}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\mathrm{CH}_{2} \mathrm{Ph}_{2}$	H	0
$\mathbf{3 2 0}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	H	0
$\mathbf{3 2 1}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$	H	0
$\mathbf{3 2 2}$	$\mathrm{CO}_{2} \mathrm{H}$	H	$\mathrm{CH}_{2} \mathrm{COH}_{2}$	H	1
$\mathbf{3 2 3}$	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	H	$\mathrm{CH}_{2} \mathrm{COH}_{2}$	H	0
$\mathbf{3 2 4}$	CONH_{2}	H	$\mathrm{CH}_{2} \mathrm{COH}_{2}$	H	0
$\mathbf{3 2 5}$	$\mathrm{CO}_{2} \mathrm{H}$	CH	$\mathrm{CH}_{2} \mathrm{COH}_{2}$	H	0
$\mathbf{3 2 6}$	$\mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH} \mathrm{P}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{COH}_{2}$	H	0

(a) tert-butyl N-(2,2-dimethoxyethyl)glycine, EDC; (b) p - TsOH in toluene; (c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ in MeOH ; (d) N -Cbz-Gly-OH, EDC; (e) 4-aminobenzoyl chloride, NaHCO_{3} in dioxane $/ \mathrm{H}_{2} \mathrm{O}$; (f) TFA.

Scheme 73. ${ }^{22}$ Synthesis of compounds 316-321.

(a) $\mathrm{N}-\mathrm{Cbz}-\mathrm{Asp}(\mathrm{O}-\mathrm{t}-\mathrm{Bu})-\mathrm{OH}, \mathrm{EDC}$; (b) $p-\mathrm{TsOH}$ in toluene; (c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ in MeOH ; (d) N -Cbz-Gly-OH, EDC; (e) 4-amidinobenzoyl chloride, NaHCO_{3} in dioxane $/ \mathrm{H}_{2} \mathrm{O}$; (f) TFA.

Scheme 74. ${ }^{22}$ Synthesis of compounds 322-326.
J.H. van Maarseveen et al. have synthesized an orally active GPIIb/IIIa antagonist based on a N, N '-bisphenylpiperazine scaffold (338, Table 19) along with other phenylpiperazine compounds. ${ }^{22}$

Table 19. The substituents of compounds 329-341. ${ }^{23}$

Compound	R ${ }^{1}$	R_{2}	X	Y
329	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-$	H	- $\mathrm{CH}_{2}{ }^{-}$	-
330	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}{ }^{-}$	H	$-\mathrm{CH}_{2}$ -	-
331	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}{ }^{-}$	$-\mathrm{CH}_{2}$ -	-
332	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-$	H	-	$-\mathrm{CH}_{2}{ }^{-}$
333	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-$	H	-	$-\mathrm{CH}_{2}$ -
334	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-$	-	$-\mathrm{CH}_{2}$ -
335	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}$-O-	H	-	-
336	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-$	H	-	-
337	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}{ }^{-}$	-	-
338	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}$-O-	-	-
339	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$	-	-
340	H	$\mathrm{HO}_{2} \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ - $\mathrm{O}-$	-	-
341	H	$\mathrm{HO}_{2} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{3}$ - $\mathrm{O}-$	-	-

Compound 339 showed ten times less potency than 338 caused by the substitution of the carboxymethyleneneoxy group by a carboxyethyl group, and substitution by the carboxyisopropylideneoxy group in $\mathbf{3 4 0}$ caused a 1000-fold decrease in activity. ${ }^{23}$

342: $\mathrm{R}^{1}=\mathrm{HO}-, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{CHO}$
343: $\mathrm{R}^{1}=\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=-\mathrm{CH}_{2} \mathrm{Br}$
344: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{HO}_{2} \mathrm{C}-\mathrm{CH}_{2}-, \mathrm{X}=-\mathrm{CH}_{2} \mathrm{Br}$

329-331

b, g, c(346),
d, e, f

346: $\mathrm{R}^{1}=\mathrm{HO}-, \mathrm{R}^{2}=\mathrm{H}$
347: $\mathrm{R}^{1}=\mathrm{MeO}_{2} \mathrm{C}_{-\mathrm{CH}_{2}-, \mathrm{R}^{2}=\mathrm{H}}$
348: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{EtO}_{2} \mathrm{C}-\mathrm{CH}_{2}-$

353

332-334
h, $i(350,351), c(350,351)$,
j(351), k(351), l or m,
e or d, f
350: $\mathrm{R}^{1}=\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{H}$
347, 348
351: $R^{1}=H, R^{2}=\mathrm{MeO}$
352: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{tBuO}{ }_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$

335-341
(a) $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{NaCNBH}_{3}$; (b) $\mathrm{Et}_{3} \mathrm{~N}$, DMF; (c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, DMF; (d) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1$; (e) $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}=1 / 4$, reflux; (f) RP-18 preparative HPLC ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} / 0.1 \%$ TFA); (g) $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, reflux; (h) $\mathrm{K}_{2} \mathrm{CO}_{3}$, NMP, reflux; (i) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-75^{\circ} \mathrm{C}$; (j) $\mathrm{Br}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{CO}_{2} \mathrm{tBu}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (k) $\mathrm{Br}-$ $\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CO}_{2 \mathrm{t}} \mathrm{Bu}, \mathrm{KI}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (1) I: $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{Et}_{3} \mathrm{~N}$, pyridine. ii: MeI, acetone, reflux. iii: $\mathrm{NH}_{4} \mathrm{Oac}, \mathrm{MeOH}$, reflux; (m) i : $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KotBu}, \mathrm{MeOH} . ~ I i: \mathrm{H}_{2} \mathrm{Pd} /(\mathrm{C}), \mathrm{HOAc}$.

Scheme 75. ${ }^{23}$ Synthesis of compounds 329-341.

8.2 Benzamidine compounds containing a piperidine unit

Asari et al. synthesised a series of new GPIIb/IIIa inhibitors, NSL-95315 (355a-f, Scheme 76) and NSL-95317 (357, Scheme 77) with an (E)-double bond or an enone group adjacent to a benzamidine moiety. They found that molecules 355 a and 357 showed inhibitory activity for collagen-induced human platelet aggregation. ${ }^{23}$

356: $X=Y=O$
355f: $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{OH} \sim \mathrm{k}$
(a) LDA, THF, 4-cyanobenzaldehyde; (b) $\mathrm{MsCl}, \mathrm{Py}$; (c) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{CeCl}_{3}$; (d) NaH , THF, alkyl iodide; (e) TFA; (f) methyl piperidine-4-acetate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, BOP reagent; (g) $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Py}$, TEA; (h) MeI, acetone, reflux; (i) $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{MeOH}$, reflux; (j) aq. NaOH , MeOH ; (k) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$.

Scheme 76. The synthesis of inhibitor 355. ${ }^{24}$

357
(a) 4-cyanoacetophenone, LDA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) MsCl , Py; (c) TFA; (d) methyl piperidine-4-acetate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, BOP reagent, DIEA; (g) $\mathrm{H}_{2} \mathrm{~S}$, Py, TEA; (h) MeI, acetone; (i) $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{MeOH}$; (j) aq. $\mathrm{NaOH}, \mathrm{MeOH}$.

Scheme 77. The synthesis of inhibitor 357. ${ }^{24}$

Hayashi et al. have synthesized a highly potent fibrinogen receptor inhibitor NSL96184 (358, Scheme 78). ${ }^{24}$ The compound shows inhibition of collagen-induced platelet aggregation in human PRP.

HCl

(a) $(\mathrm{Boc})_{2} \mathrm{O}, 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane; (b) benzyl, methyl, or ethyl piperidine- 4-acetate, HATU, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) TFA, anisole, $0^{\circ} \mathrm{C}$; (d) 2-halo-4-cyanobenzoic acid, WSCD* $\mathrm{HCl}, \mathrm{HOBt}, \mathrm{DMF}$; (e) $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N}$, pyridine; (f) Mel, acetone, reflux; (g) $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{MEOH}$, reflux; (h) $\mathrm{Pd}(\mathrm{OH})_{2}$, 90% aqueous MeOH containing $2 \% \mathrm{AcOH}$; or $\mathrm{LiOH}, 80 \%$ aqueous MeOH ; (i) amine, MeOH , reflux; (j) $\mathrm{LiOH}, 80 \%$ aqueous MeOH .

Scheme 78. The synthesis of compound 358. ${ }^{25}$

Weller et al. have synthesized series of orally active prodrugs derived from potent and selective GPIIb/IIIa antagonists 359 (Scheme 79) and 362 (Scheme 80). ${ }^{25}$

$\square \quad \begin{aligned} & 360: R^{1}=H, R^{2}=E t \\ & \\ & 361:\end{aligned} \mathrm{R}^{1}=n-$ BuOCO, $\mathrm{R}^{2}=E t$
(a) $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$; (b) n - $\mathrm{BuOCOCl}, \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 79. Preparation of prodrug derivatives of 359. ${ }^{26}$

(a) EtOH, $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) EtOCOCl, $\mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) 2-propanol, $\mathrm{H}_{2} \mathrm{SO}_{4}$; (d) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$.

Scheme 80. Preparation of prodrug derivatives of $\mathbf{3 6 2} .^{26}$

8.3 Other benzamidine compounds

See also 3.1, 4.1 and 5.1.

Weller et al. have synthesized orally active prodrug derivatives of a potent GPIIb/IIIa antagonist $\mathbf{3 6 6}$ (Scheme 81) of which $\mathbf{3 7 0}$ is most potent. ${ }^{26}$

(a) 2-propanol, $\mathrm{H}_{2} \mathrm{SO}_{4}$; (b) EtOCOCl, $\mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Na}, \mathrm{MeOH}$.

Scheme 81. Preparation of prodrug derivatives of $\mathbf{3 6 6}{ }^{26}$

Kottirsch et al. have synthesized several highly potent and orally active GPIIb/IIIa antagonists based on a weak GPIIb/IIIa antagonist, ornithine sulfonamide 371 (Fig. 28), the most potent antagonist being 379 (Table 20). ${ }^{26}$

Figure $28 .{ }^{26} \mathrm{~A}$ weak GPIIb/IIIa antagonist.

Figure 29. GPIIb/IIIa antagonists.

The synthesis of compounds $\mathbf{3 7 2 - 3 7 4}$ is described in Scheme 79. Compound 372 is only a weak GPIIb/IIIa antagonist, but a drastic increase in activity was obtained by adding a methylene group to the side chain to yield $373 .{ }^{26}$ Compound 374 is also a potent GPIIb/IIIa antagonist.

Scheme 82. Preparation of beta-amino acid GPIIb/IIIa antagonists. ${ }^{26}$

Compound 382 was synthesized from 4 -azido-pentanoic acid by enentioselective α alkylation with tert-butyl bromo-acetate to give a Gly-Asp ethylene isostere which was converted to 382 using standard reaction conditions.

Figure $30 .{ }^{27} \mathrm{~A}$ weak GPIIb/IIIa antagonist.

Table 20. Beta-amino acid-type GPIIb/IIIa antagonists. ${ }^{27}$

No. m, n,

When comparing 382 and 375 Kottirsch et al. found that the inverted amide bond in 375 increases activity in the platelet aggregation and fibrinogen binding assay 7-9-fold. They also found the S-enantiomer of $\mathbf{3 7 9}$ to be greatly more active an antagonist than the R-enantiomer. ${ }^{27}$

Xue et al. have investigated RGD mimetics with a 3-substituted benzoic acid core and a benzamidine moiety, and a series of β - and α-substituted β-alanine derivatives as aspartic acid surrogates. β-Substitution of β-alanine with a methyl group was found to increase activity whereas a trifluoromethyl group decreased it. ${ }^{27}$

The replacement of β-alanine with N^{2}-substituted L-2,3-diaminopropionic acid derivatives caused a dramatic increase in activity.

Scheme $83 .{ }^{28}$ The synthesis of a β-alanine compound and its β-methyl derivative.

The β-methyl β-alanine compound yielded an improved inhibition of ADP-induced platelet aggregation in human PRP compared to the unsubstituted β-alanine compound.

384a-b

384a: $\mathrm{R}=\mathrm{CH}_{3}$
384b: $\mathrm{R}=\mathrm{CF}_{3}$

Scheme $84 .{ }^{28}$ The synthesis of a β-methyl β-alanine compound and its trifluoromethyl derivative.

The β-trifluoromethyl derivative $\mathbf{3 8 4 b}$ was found to have considerably lower inhibitory activity than the β-methyl compound 384a. N^{2}-substituted L -2,3-diaminopropionic acid derivatives (Scheme 85) afforded up to 100 -fold enhancement in potency over the β alanine.

387a: $\mathrm{R}=\mathrm{NHCbz}$
387b: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

388a: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$; 388b: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
Scheme $85 .{ }^{28}$ The synthesis of compounds containing diaminopropionic acid derivatives.

389a: $\mathrm{R}=p$-toluenesulfonyl
389b: $\mathrm{R}=$ n-butylsulfonyl

Scheme $86 .{ }^{27}$ The synthesis of GPIIb/IIIa antagonists 389a-b.

Preparation of 389a-b was first attempted similar to the synthesis shown in Scheme 85 using compound 385 as starting material, but this route failed. Both 389a and 389b are potent GPIIb/IIIa antagonists, 389a being slightly more active. ${ }^{27}$

The study of α-substituents (sulfonamide, carbamate and amide) showed no apparent preference with respect to in vitro potency. ${ }^{27}$

Zablocki, Miyano et al. prepared a series of benzamide derivatives and measured their inhibition of collagen-induced platelet aggregation in canine PRP. The group found there is a 1000 -fold increase in inhibitory potency over the natural RGDF ligand when the Arg-Gly of the RGDF sequence of the peptidomimetic has been replaced with 5-(4amidinophenyl)pentanoyl mimetic. Benzamide was chosen since it has the charge localized on two nitrogens, as opposed to three in guanidine, allowing for more favorable electrostatic interactions with a negatively charged receptor site. Also, the reinforced ionic interaction provides a favorable alignement of dipole moments. ${ }^{29}$

Target compound
Scheme 87. The general synthetic sequence for m - and p-amidinophenyl derivatives. ${ }^{29}$

Table 21. ${ }^{29}$ Target compound: Substituents of p-amidinophenyl based RGDF mimetics.

Compound	X
$\mathbf{3 9 0}$	CH_{2}
$\mathbf{3 9 1}$	$\mathrm{CH}_{2} \mathrm{CH}_{2}$
$\mathbf{3 9 2}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
$\mathbf{3 9 3}$	$\mathrm{CH}_{2} \mathrm{CO}$
$\mathbf{3 9 4}$	$\mathrm{CH}_{2} \mathrm{CHOH}$
$\mathbf{3 9 5}$	$\mathrm{t}-\mathrm{CHCH}$
$\mathbf{3 9 6}$	CC

Table 22. ${ }^{29}$ Target compound: Substituents of m-amidinophenyl based RGDF mimetics.

Compound	X
$\mathbf{3 9 7}$	$\mathrm{CH}_{2} \mathrm{CH}_{2}$
$\mathbf{3 9 8}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
$\mathbf{3 9 9}$	$\mathrm{c}-\mathrm{CHCH}_{2} \mathrm{CH}_{2}$

Molecule 391 was found to be a very potent inhibitor of ADP-induced platelet aggregation in canine PRP. The m-amidine derivatives were found to be dramatically less potent than the p-amidino series. ${ }^{29}$

Fisher, Gunn et al. have synthesized a series of disubstituted 3,4-dihydroisoquinolines that contain an ether-linked benzamidine at C_{6} and a β-substituted aspartate mimic at $\mathrm{C}_{2}{ }^{30}$

$$
\begin{aligned}
& d \rightarrow \text { 402a-I: } X=\text { Boc, } Y=t-B u \\
& \text { 403a-I: } X=H, Y=H
\end{aligned}
$$

(a) $\mathrm{H}_{2} \mathrm{Pd} / \mathrm{C}$; (b) p-cyanobenzyl bromide- $\mathrm{K}_{2} \mathrm{CO}_{3}$; (c) $\mathrm{H}_{2} \mathrm{~S}-\mathrm{Mel}-\mathrm{NH}_{4} \mathrm{OAc}-\mathrm{Boc}_{2} \mathrm{O}$; (d) TFA

Scheme 88. The synthesis of β-substituted isoquinolene propionates. ${ }^{30}$

Table $23 .^{30}$ The substituents of compounds 400-403.

Compound $\mathbf{4 0 0 - 4 0 3}$	R
\mathbf{a}	H
\mathbf{b}	$\mathrm{CH}_{2} \mathrm{CH}_{3}$
\mathbf{c}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
\mathbf{d}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
\mathbf{e}	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
\mathbf{f}	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$
\mathbf{g}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
\mathbf{h}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{3}$
\mathbf{i}	$\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}$
\mathbf{j}	Ph^{2}
\mathbf{k}	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{CH}_{3}$
\mathbf{l}	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$

Amidino analogues were also prepared by way of an α-substituted isoquinoline propionate and an α-substituted isoquinoline acetate (Scheme 89). The desired molecules 405 and 407 were obtained from the intermediates 404 and 406 by using the same procedure as for compounds 403 (Scheme 88).

Scheme 89. The synthesis of two α-substituted isoquinoline analogues. ${ }^{30}$

It was found that compared to the non-substituted isoquinoline propionate the alkyl substituents afforded a 10 -fold increase in intrinsic activity and aryl substituents yielded a 40-fold improvement in inhibiting ADP induced platelet aggregation in human PRP. ${ }^{30}$

Zablocki, Rico et al. have prepared a series of compounds with an (aminobenzamidino)succinyl (ABAS) Arg-Gly surrogate (Scheme 90). ${ }^{31}$ Both ester prodrug and acid forms of the compounds were prepared.

Scheme 90. The general synthetic sequence for the ABAS series. ${ }^{31}$

Several derivatives were prepared in which the amide bond adjacent to the benzamidine was modified or replaced (Scheme 91). Also, an ester/acid pair of aniline derivatives was prepared (Scheme 92).

Scheme $91 .{ }^{31}$ The synthesis of methylamino derivatives 410a-b.

Scheme $92 .{ }^{31}$ The synthesis of an ester/acid pair of aniline derivatives.

The most potent inhibitor of collagen-induced platelet aggregation in canine PRP was found to be an ABAS series molecule 414:

Figure $31 .{ }^{31}$ A potent inhibitor of platelet aggregation.

9 Other piperazine compounds

9.1 2-oxopiperazine compounds

Sugihara et al. have designed and synthesized two possible GPIIb/IIIa antagonists 415a and 416 based on the RGDF sequence, with (S)-1-(carboxymethyl)- and (S)-1-phenyl-ethyl-2-oxopiperazine-3-acetic acids as the Aso-Phe mimic and a \{trans-[4-(guanidinomethyl)cyclohexyl]carbonyl\}glycyl group as an Arg-Gly mimic. Compound 415a was used as the lead compound due to its significant antiaggregatory activity and binding affinity, whereas compound 416 showed no activity. ${ }^{22}$

415a

416

Figure 33. Two hypothetical candidates 415a and 416, incorporating the function of the RGDF peptide into a 2-oxopiperazine scaffold as a peptide mimic. ${ }^{22}$

(a) N-Cbz-Asp($O-t-\mathrm{Bu})-\mathrm{OH}, \mathrm{EDC}$; (b) $p-\mathrm{TsOH}$ in toluene; (c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ in MeOH ; (d) $\mathrm{N}-\mathrm{Cbz}-\mathrm{Gly}-\mathrm{OH}$, EDC; (e) trans-(guanidinomethyl)cyclohexanecarboxylic acid, HOSu, DCC in DMF; (f) TFA; (g) $\mathrm{R}_{2} \mathrm{~N}(\mathrm{HN}=) \mathrm{C}-\mathrm{X}-\mathrm{CO}_{2} \mathrm{H}, \mathrm{HOSu}, \mathrm{DCC}$.

Scheme 93.Synthesis of compounds 415a-i and 416. ${ }^{22}$

Table $24 .^{22}$ The substituents of compounds 415a-i.

Compound 415

423-431

(a) N -Cbz-Gly-OH, EDC; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ in MeOH ; (c) (N -Cbz-aminoalkyl)benzoic acid, $\mathrm{DEPC}, \mathrm{Et}_{3} \mathrm{~N}$ in DMF; (d) TFA. ${ }^{22}$

Scheme 94. ${ }^{22}$ The synthesis of compounds 423-431.

Table 25. ${ }^{22}$ The substituents of compounds 423-431.

Compound	R^{1}	R_{2}
423	$\mathrm{H}_{2} \mathrm{NCH}_{2}$	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
424	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
425	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
426	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	H
427	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
428	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$
429	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
430	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$
431	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$

Compound 427 showed significant activity on a guinea pig platelet aggregation assay, but the activity was lost 1 h after iv-administration to guinea pigs.

9.2 2,5-Diketopiperazine compounds

Pons et al. have synthesized a series of RGD mimetic molecules with the highly constrained bifunctional diketopiperazine 435 as a scaffold in search for potential $\alpha_{\text {IIb }} \beta_{3}$ or $\alpha_{\text {IIb }} \beta_{3}$ antagonists. 2,5-Diketopiperazines were chosen as the subject since they express stability to proteolysis, rigidity and are easily synthesized. ${ }^{21}$

Figure 34. General scheme of derivatives studied. ${ }^{21}$

(a) $\mathrm{SOCL}_{2}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$ (quantitative yield); (b) $\mathrm{NaH}, \mathrm{BrCH}_{2} \mathrm{COO} t \mathrm{Bu}, \mathrm{THF}, 25^{\circ} \mathrm{C}$ (75\%); (c) TFA, $25^{\circ} \mathrm{C}$ (quantitative yield).

Scheme 95. N-Alkylation of the diketopiperazine. ${ }^{21}$

$$
\text { 436a-e: } n=1-6
$$

a: $n=2 ; \mathbf{d}: n=5 ; \mathbf{e}: n=6$
435

$$
c \square \begin{aligned}
& \text { 438a,d,e: } R=B o c \\
& 439 a, d, e: R=H
\end{aligned}
$$

(a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{CHCl}_{3}$ (95\%); (b) DCC, DMAP, dichloromethane (438a 90\%, 438d 70\%, 438e 63\%); (c) TFA, dichloromethane (quantitative yields).

Scheme 96. Synthesis of compounds 439a,d,e. ${ }^{21}$

$b \square 440 a, b: R_{1}=B o c, R_{2}=M e$
\square 441a,b: $R_{1}=$ Boc, $R_{2}=H$
$\mathbf{c} \longrightarrow$ 442a,b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
$\mathbf{a}: \mathrm{n}=5 ; \mathbf{b}: \mathrm{n}=6$
(a) Boc-NH-C(=S)-NH-Boc, $\mathrm{HgCl}_{2}, \mathrm{NEt}_{2}$, DMF (440a 76\%, 440b 88\%); (b) $\mathrm{NaOH}(2 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}$, dioxane (441a quantitative yield, 441b 85\%); (c) TFA, dichloromethane (442a 63\%, 442b 56\%).

Scheme 97. Introduction of the guanidine function. ${ }^{21}$

Compounds 442a and \mathbf{b} showed no inhibitory activity on the fibrinogen or the fibronectin. ${ }^{21}$

443: $R=E t$
$b \square 444: R=H$

$d \square$ 445: $\mathrm{R}_{1}=\mathrm{Boc}, \mathrm{R}_{2}=\mathrm{Me}$

- 446: $R_{1}=B o c, R_{2}=H$
$\mathrm{e} \square$ 447: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
(a) Boc-NH-C(=S)-NH-Boc, $\mathrm{HgCl}_{2}, \mathrm{NEt}_{2}$, DMF (72\%); (b) $\mathrm{NaOH}(2 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}$, dioxane (83\%); (c) 439a, DCC, DMAP, dichloromethane (80\%); (d) $\mathrm{NaOH}(2 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}$, dioxane (75\%); (e) TFA, dichloromethane (78\%).

Scheme $98 .{ }^{21}$ Synthesis of compound 447.

Compound 447 showed no inhibitory activity on the fibrinogen or the fibronectin. ${ }^{21}$

$\mathrm{c} \square$ 449: $\mathrm{R}_{1}=\mathrm{Boc}, \mathrm{R}_{2}=\mathrm{Me}$
$\mathrm{d} \square$ 450: $\mathrm{R}_{1}=\mathrm{Boc}, \mathrm{R}_{2}=\mathrm{H}$
\square 451: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
(a) Boc-NH-C(=S)-NH-Boc, HgCl_{2}, pyridine, DMF (64\%); (b) 435, DCC, DMAP, dichloromethane (44\%); (c) $\mathrm{NaOH}(2 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}$, dioxane (quantitive yield); (d) TFA, dichloromethane (76\%).

Scheme 99. Synthesis of compound 451. ${ }^{21}$

Compound 451 showed no inhibitory activity on the fibrinogen or the fibronectin. ${ }^{21}$

a: $\mathrm{n}=2 ; \mathbf{b}: \mathrm{n}=3 ; \mathbf{c}: \mathrm{n}=4$
$\begin{aligned} & c \\ & \longrightarrow 452 a, b, c: R=B o c \\ & 453 a, b, c: R=H\end{aligned}$

Scheme 100. Synthesis of compounds 455a-c. ${ }^{21}$

Compounds 455a-c showed no no inhibitory activity on the fibrinogen or the fibronectin. ${ }^{21}$

See also Scheme 75 (8.1) and compound 511h (Table 30 in 10.1).

10 Other piperidine compounds

10.1 Piperidine compounds containing a sulfonamide group

Egbertson, Hartman et al. have synthesized a series of alkyl or aryl sulfonamide GPIIb/IIIa antagonists which show high activity for activated and unactivated platelet receptors. It appears the sulfonamide group such as that in 456 interacts with a binding site region cyclic inhibitors can't reach. Compound $\mathbf{4 5 6}$ shows excellent in vivo efficacy but its activity after oral administration is short-term. Analog 457 was chosen as the lead compound due to its favorable central constraint and active platelet inhibition in dogs. The aim was a more to find a more potent antagonist with a smaller required dosage. ${ }^{28}$

456 (L-700,462; MK-383, AGGRASTAT ${ }^{\top M}$

457 (L-709,780)

Figure 35. Small molecule fbrinogen receptor antagonists. ${ }^{32}$

461
(a) 1.1 equiv. $\mathrm{CH}_{3} \mathrm{MgBr} / 0^{\circ} \mathrm{C}$, then 2 equiv. n - $\mathrm{BuLi} /-65^{\circ} \mathrm{C}$, solid CO_{2}, (85%); (b) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCl},(95 \%)$;
(c) 1 equiv. NBS, 5 mol-\% dibenzoyl peroxyl, CCl_{4}, reflux (80%); (d) 460, $\mathrm{C}_{6} \mathrm{H}_{6}$, 1 equiv. TEA, reflux, (80\%); (e) 5 equiv. $\mathrm{LiOH} / 1: 1: 1 \mathrm{MeOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, quant; (f) BOP / DMF / N-methyl morpholine (50$80 \%$); (g) $6 \mathrm{~N} \mathrm{HCl} /$ dioxane or $\mathrm{HCl} / \mathrm{EtOAc}(90 \%)$.

Scheme 101. Preparation of α-sulfonylamido isoindolinones. ${ }^{32}$

Table 26. Sulfonamide derivatives of lead compound 456. ${ }^{32}$

Compound	R
462	$\mathrm{SO}_{2} \mathrm{CH}_{3}$
463	$\mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
464	$\mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
465	$\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
466	$\mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
467	$\mathrm{SO}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
468	$\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
469	$\mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
470	$\mathrm{CONHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
471	$\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
472	$\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
473	$\mathrm{SO}_{2} 2$-thienyl
474	$\mathrm{SO}_{2} 3$-pyridyl
475	$\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
476	$\mathrm{SO}_{2} 4-\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}_{6} \mathrm{H}_{4}$
477	$\mathrm{SO}_{2} 2-\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}_{6} \mathrm{H}_{4}$

In general, the aryl sulfonamides $472-477$ showed more potential than the alkyl sulfonamides. ${ }^{32}$

Compounds 463-477 demonstrated ten to thirty-fold improvements in potency over 457 with compound 474 showing both very good in vivo potency and 20 -fold improvement in oral activity compared to compound $457 .{ }^{32}$

Prugh et al. designed and synthesized two series of potent GPIIb/IIIa inhibitors derived from compounds 478 and $\mathbf{4 7 9}$ by using compound $\mathbf{4 5 6}$ as a lead compound. Compound 487 shows excellent oral activity in the dog. ${ }^{29}$

Figure 36.Compounds 478 and $479 .{ }^{33}$

Scheme 102. ${ }^{33}$ Synthesis of intermediates 481 and 482.

Scheme $103 .{ }^{33}$ Synthesis of compound 479.

Scheme 104. ${ }^{33}$ Synthesis of intermediate 484.

Compound 479a was synthesized by coupling intermediate 484 with compound 483 followed by deblocking. ${ }^{33}$

Table 27. α-Substituted thienol(2,3-b)thiophene analogs of $\mathbf{4 7 9}^{33}$

Compound	R
485	$\mathrm{NHSO}_{2}-\frac{11}{}$
486	$\mathrm{NHSO}_{2}-1-\mathrm{Cl}$
487	$\mathrm{NHSO}_{2}-\square$
488	$\mathrm{NHSO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$
489	H
490	$\mathrm{NHCONHCH2-1)}$

Table 28. α-Substituted thienol(3,2-b)thiophene analogs of 478. ${ }^{33}$

Compound	R
491	$\mathrm{NHSO}_{2}-\mathrm{S}$
492	NHSO_{2}
493	NHSO_{2}
494	$\mathrm{NHSO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$
495	NHCONHCH

Askew, Bednar et al. have synthesized several analogues of compound 501, including a potent and selective GPIIb/IIIa inhibitor 508 (L-738,167). ${ }^{30}$

(a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, toluene; (c) $\mathrm{NaN}_{3}, \mathrm{DMSO}$; (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$.

Scheme 105. ${ }^{34}$ Synthesis of intermediate 498.

501
(a) $\mathrm{HCl}, \mathrm{MeOH}$; (b) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}$ or $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{K}_{2} \mathrm{CO}_{3}$: (c) 498, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{3} \mathrm{~N}$; (d) LiOH , THF/ $\mathrm{H}_{2} \mathrm{O}$; (e) β-alanine t-Bu ester • $\mathrm{HCl}, \mathrm{EDC}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) HCl, EtOAc.

Scheme $106 .{ }^{34}$ Synthesis of pyrazolopiperazinone analog 501.

(a) $\mathrm{NaN}_{3}, \mathrm{DMSO}$; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; (c) NaOH , 497, DMF; (d) $\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$.

Scheme 107. ${ }^{34}$ Synthesis of compound 502b.

(a) $\mathrm{RSO}_{2} \mathrm{Cl}, \mathrm{NaOH}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}$; (b) $\mathrm{Br}_{2}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$.

Scheme $108 .{ }^{34}$ Synthesis of α-sulfonamido- β-alanines 504a-b.

During the synthesis of described in Scheme 109, the coupling of 504a and \mathbf{b} with 500b and 502b was done without carboxylate protection using the mixed anhydride method in order to avoid racemization. ${ }^{34}$

$$
\begin{aligned}
& \text { 505a: } \mathrm{n}=1, \mathrm{R}=n-\mathrm{Bu} \\
& \text { 505b: } \mathrm{n}=2, \mathrm{R}=n-\mathrm{Bu}^{\text {505c: }} \mathrm{n}=2, \mathrm{R}=4-\mathrm{CH}_{3}-\mathrm{Ph}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 506: } \mathrm{n}=1, \mathrm{R}=n-\mathrm{Bu} \\
& \text { 507: } \mathrm{n}=2, \mathrm{R}=n-\mathrm{Bu}^{-} \\
& \text {508: } \mathrm{n}=2, \mathrm{R}=4-\mathrm{CH}_{3}-\mathrm{Ph}
\end{aligned}
$$

(a) i - $\mathrm{BuOCOCl}, \mathrm{N}$-methylmorpholine, THF; (b) 504a or 504b, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; (c) HCl, EtOAc.

Scheme 109. ${ }^{34}$ Synthesis of compound 508.

Brashear et al. have synthesized a series of potent GPIIb/IIIa inhibitors including 511a which demonstrates great oral activity in the rhesus monkey. ${ }^{31}$

(a) $\mathrm{CH}_{2} \mathrm{~N}_{2} \mathrm{EtOAc}$; (b) $\mathrm{BBr}_{3}, \mathrm{THF}$; (c) NaH , MeI or BnBr ; (d) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOH ; (e) X-OH, DEAD, PPh_{3} in THF or $\mathrm{X}-\mathrm{Cl}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (f) $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH}$; (g)) β-alanine ester, BOP, $\mathrm{NM}, \mathrm{CH}_{3} \mathrm{~N}$; (h) HCl (gas), EtOAc.

Scheme $110 .{ }^{35}$ Synthesis of compound 511.

Boc-protection of the N-terminus was applied in the syntheses of compounds 511a, 511b, 511h and 511j. ${ }^{35}$

Table 29. ${ }^{35}$ Analogues a-g of compound 511.

Compound n

The greater potency of compounds 511a and 511b shows that the 2 -position on the indole ring is the preferred position of the acid terminus. The difference in potency between a one-carbon linker and a two-carbon linker was found not significant. ${ }^{35}$

Table $30 .{ }^{35}$ Analogues h-l of compound 511.

Compound	R
511h	
511i	
511j	
511k	$\stackrel{N-}{\sim}$
5111	

The more basic compounds $\mathbf{5 1 1 h}$ (as well as 511a and 511b) showed more potency than the less basic compounds 511i-I. ${ }^{35}$

Table 31. ${ }^{35}$ Analogues $\mathbf{m}-\mathbf{q}$ of compound 511.

Compound	R^{1}	R^{2}
$\mathbf{5 1 1 m}$	H	H
$\mathbf{5 1 1} \mathbf{n}$	(R, S)-pyrid-3-yl	H
$\mathbf{5 1 1 0}$	H	$\mathrm{NHSO}_{2} \mathrm{Ph}$
$\mathbf{5 1 1 p}$	H	NHSO_{2}
$\mathbf{5 1 1 q}$	H	NHSO_{2}

Compounds 511p and 511q showed excellent affinity in platelet aggregation but could not sustain it for long as opposed to 511a. ${ }^{35}$

Askew, McIntyre et al. have synthesized a series of pyrazolopiperazinone fibrinogen receptor antagonists including an orally active and selective GPIIb/IIIa inhibitor, compound 517 (L-734,115). ${ }^{32}$

a

515: $\mathrm{R}=\mathrm{Cbz}$
516: $R=H$
517: $\mathrm{R}=\mathrm{SO}_{2} \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$
518: $\mathrm{R}=\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
519: $\mathrm{R}=\mathrm{SO}_{2} \mathrm{CH}_{3}$
520: $\mathrm{R}=\mathrm{COCH}_{3}$
521: $\mathrm{R}=\mathrm{NHCONHCH}_{2} \mathrm{Ph}$
(a) $\mathrm{HCl}, \mathrm{MeOH},\left(100 \%\right.$); (b) 512a, EDC, $\mathrm{HOBt}, \mathrm{DMF}$, (95%); (c) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, (100%); (d) $\mathrm{RSO}_{2} \mathrm{Cl}, \mathrm{RCOCl}$, or $\mathrm{RNCO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},(65-100 \%)$; (e) $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O},(100 \%)$; (f) HCl, EtOAc, $0^{\circ} \mathrm{C}$, (85-98\%).

Scheme $108 .{ }^{36}$ Synthesis of compounds 515-521.

A high yield of compounds 515-521 was obtained by the synthesis described in Scheme 108. However, because of the $10-15 \%$ racemization during the ester hydrolysis an alternate route was developed (Schemes 109-110). ${ }^{36}$

(a) $n-\mathrm{BuSO}_{2} \mathrm{Cl}, 50 \%$ aquaeous dioxane, (65\%); (b) $\mathrm{Br}_{2}, \mathrm{NaOH}$; (c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{THF},(85 \%)$; (d) $\mathrm{HCl}, \mathrm{EtOAc}$, (98\%).

Scheme $109 .{ }^{36}$ Synthesis of compound 522.

(a) i - $\mathrm{BuCOCl}, \mathrm{N}$-methylmorpholine, THF, $0^{\circ} \mathrm{C}$, (98%); (b) 522, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C},(83 \%$); (c) $\mathrm{HCl}, \mathrm{EtOAc}$, $0^{\circ} \mathrm{C},(100 \%)$; (d) ion exchange chromatography, Dowex 50XB-200, (85\%).

Scheme $110 .{ }^{36}$ Non-racemizing synthesis of compound 517.

Liverton et al. have synthesized a series of 3,6-substituted quinazolinedione and quinazolinone fibrinogen receptor antagonists with good in vitro activity. The activity after i.v.infusion in dogs was however short-term. ${ }^{33}$

523a: R = H
523b: $R=M e$
523c: $\mathrm{R}=\mathrm{PhCH}_{2}$
523d: $\mathrm{R}=4$-pyridyl $-\mathrm{CH}_{2}$

524

Figure $37 \cdot{ }^{37}$ Target compounds 523a-d and 524.

528

(a)EDC, HOBt, Net_{3}, DMF, rt, 56%; (b) carbonyldiimidazole, THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 70 \%$; (c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CO}$ (balloon), toluene, slow addition of $\mathrm{Bu}_{3} \mathrm{Sn}, 50^{\circ} \mathrm{C}$; (d) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaClO}_{2}$, phosphate buffer pH 4.3 , rt; (e) 528 , EDC, HOBt, Net_{3}, DMF, rt; (f) LiOH, THF, $\mathrm{H}_{2} \mathrm{O}$; (g) $\mathrm{HCl}, \mathrm{EtOAc}, 0^{\circ} \mathrm{C}$.

Scheme $111 .{ }^{37}$ Synthesis of compound 529.

Compound 529 shows potency toward platelet aggregation inhibition but the substitution of C-terminal amide linkage with an acetylene gives compound 523a 17fold increase in activity. ${ }^{37}$

(a) 530, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{HNEt}_{2}, 40^{\circ} \mathrm{C}$; (b) $\mathrm{LiOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; (c) $\mathrm{HCl}, \mathrm{EtOAc}, 0^{\circ} \mathrm{C}$; (d) $\mathrm{H}_{2}, 50 \mathrm{psi}, \mathrm{Pd} / \mathrm{C}$, EtOAc.

Scheme 112. ${ }^{37}$ Synthesis of compounds 523a-d and 532a-d.

The reduction of the acetylene as in compounds 532a-d resulted only in slight decrease in activity as did the N 1 -substitutions (compounds 523b-d and 532b-d). ${ }^{37}$

524
(a) $(\mathrm{EtO})_{3} \mathrm{CH}, 160^{\circ} \mathrm{C}, 3 \mathrm{~h}, 93 \%$; (b) steps a,b,c from Scheme 110.

Scheme 113. ${ }^{37}$ Synthesis of compound 524.

Misra et al. have synthesized a group of human α-thrombin inhibitors based on the potent and selective thrombin inhibitor Argatroban (compound 533) ${ }^{34}$

533 (Argatropan)

534

Figure $38 .{ }^{38}$ Thrombin inhibitor 533 and its structurally simplified analog 534.

Table $32 .{ }^{38}$ The substituents of arylsulfonamides 535a-b, 536a-b, 537 and 538.

Compound

The decreasing basicity of the compounds (535a-b>536a-b>537>538) also translated into decreasing potency, making compounds 535a and 535b the most potent human α thrombin inhibitors of the group. ${ }^{38}$

(a) 4-Methylpiperidine/EDAC/HOBt/NMM/DMF, 0 to $25^{\circ} \mathrm{C}, 100 \%$; (b) (tBoc$)_{2} \mathrm{O}$ (10 eq)/4-pyrrolidinopyridine $/ \mathrm{CH}_{3} \mathrm{CN}, 85^{\circ} \mathrm{C}, 72 \%$; (c) $\mathrm{LiCl} / \mathrm{NaBH}_{4} / \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 72 \%$; (d) $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{3} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 97 \%$; (e) $\mathrm{NaI}(5 \mathrm{eq}) /$ acetone, $25^{\circ} \mathrm{C}, 93 \%$; (f) $\mathrm{NaN}_{3} / \mathrm{DMF}, 25^{\circ} \mathrm{C}, 100 \%$; (g) $10 \% \mathrm{Pd}-\mathrm{C}^{2} / \mathrm{H}_{2}(1 \mathrm{~atm}) / \mathrm{CH}_{3} \mathrm{OH}, 100 \%$.

Scheme 114. ${ }^{38}$ Synthesis of intermediate 540.

(a) 2-Chloropyridine-N-oxide $\cdot \mathrm{HCl} / \mathrm{NaHCO}_{3} / 1$-butanol, $100^{\circ} \mathrm{C}, 47 \%$; (b)) $10 \% \mathrm{Pd}-\mathrm{C} / \mathrm{HCO}_{2} \mathrm{NH}_{4} / \mathrm{EtOH}$, reflux, 60%; (c) $\mathrm{HCl} /$ dioxane, $25^{\circ} \mathrm{C}, 100 \%$; (d) $\mathrm{ArSO}_{2} \mathrm{Cl}^{2} / \mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{eq}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 75-95 \%$.

Scheme $115 .{ }^{38}$ Synthesis of compound 535.

Duggan, Duong et al. have synthesized a series of potent vitronectin receptor $\alpha_{v} \beta_{3}$ antagonists based on the potent fibrinogen receptor $\alpha_{\vee} \beta_{3}$ antagonist 548 . ${ }^{35}$

(a) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, phenylsulfonyl chloride; (b) NaOH , dioxane, Br_{2}; (c) isobutylene, $\mathrm{H}_{2} \mathrm{SO}_{4}$ then 1 N HCl ether; (d) ethanol/ HCl .

Scheme 116.Preparation of 3-amino-2(S)-arylsulfonylaminopropionic acids and esters. ${ }^{39}$

$\mathrm{BOCCNH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$

545a: R = BOC-piperidin-4-yl
545b: $\mathrm{R}=\mathrm{BOC}-\mathrm{NH}-$

546a: R = BOC-piperidin-4-yl
546b: $\mathrm{R}=\mathrm{BOC}-\mathrm{NH}-$

(a) THF, $\mathrm{Ph}_{3} \mathrm{P}$, diethyl diazodicarboxylate, methyl 4-hydroxybenzoate; (b) NaOH ; (c) BOP reagent, DMF, 4.methylmorpholine, 541; (d) BOP reagent, $\mathrm{CH}_{3} \mathrm{CN}$, 4-methylmorpholine, 542; (e) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then aq DMF, $\operatorname{Net}(i-\operatorname{Pr})_{2}$, 3,5-dimethylpyrazole-1-carboxamidine nitrate.

Scheme 117. Preparation of compounds 548 and 549. ${ }^{39}$

(a) THF, PhP_{3}, diethyl diazodicarboxylate, methyl 4-hydroxybenzoate; (b) hydrazine, MeOH , then DMF , $\mathrm{Net}(i-\operatorname{Pr})_{2}$, 2-bromopyrimidine, $80^{\circ} \mathrm{C}$; (c) $\mathrm{NaOH}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$; (d) EDC, HOBT, 4-methylmorpholine, 542; (e) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{HOAc} / \mathrm{HCl}$.

Scheme 118. Preparation of compound 554. ${ }^{39}$

(a) $\mathrm{TMSC}=\mathrm{CH},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}, 100{ }^{\circ} \mathrm{C}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$; (c) 2-amino-6-bromopyridine, $\mathrm{Net}_{3},\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$; (d) $10 \% \mathrm{Pd} / \mathrm{C}$, then 6 N HCl ; (e) EDC, HOBT, DMF, 4methylmorpholine, 542; (f) EDC, HOBT, DMF, 4-methylmorpholine, 544; (g) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (h) 6 N HCl .

Scheme 119. Preparation of compounds 558 and 559. ${ }^{39}$

(a) 3-buten-2-ol, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Net}_{3}, \mathrm{CH}_{3} \mathrm{CN}, 100{ }^{\circ} \mathrm{C}$; (b) 2-amino-3-formylpyridine, EtOH , L-proline, reflux; (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \mathrm{H}_{2}$; (d) 6 N HCl ; (e) BOP reagent, $\mathrm{CH}_{3} \mathrm{CN}$, 4-methylmorpholine, 542; (F) 6 NHCl .

Scheme 120. Preparation of compound 563. ${ }^{39}$

The 5,6,7,8-tetrahydro[1,8]napthyridine moiety forms a lipophilic, moderately basic Nterminus which helps give $\alpha_{V} \beta_{3}$ antagonists excellent potency and selectivity thus making compound 563 a potent inhibitor of bone resorption in vitro and in vivo. ${ }^{39}$

10.2 Remaining other piperidine compounds

See also Scheme 80 (8.2) and compound 415c (Table 24 in 9.1).

Weller et al. have synthesized an orally active prodrug 447 derived from a potent and selective GPIIb/IIIa antagonist 358 (Scheme 76 in 8.2). With the oral bioavailability improved 20 -fold it was shown that an amidoxime group can serve as a prodrug functionality for an amidino group. ${ }^{26}$

(a) $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$; (b) n - $\mathrm{BuOCOCl}, \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $4-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{COCl}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{NH}_{2} \mathrm{OH} \cdot$ $\mathrm{HCl}, \mathrm{Na}, \mathrm{CH}_{3} \mathrm{OH}$; (e) HCOOH ; (f) 1-iodoethyl isopropyl carbonate, dicyclohexylamine, DMF.

Scheme $121 .{ }^{26}$ Preparation of prodrugs 565-567.

(a) $4-\mathrm{NH}_{2} \mathrm{C}(\mathrm{NH}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}$, pyridine; (b) $\mathrm{EtOCOCl}, \mathrm{NaOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) HCOOH ; (d) $4-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{COCl}$, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Na}, \mathrm{MeOH}$; (f) $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$.

Scheme 122. Preparation of compounds 569, 569a and 570. ${ }^{26}$

Compound 568 was derived from compound 362 (Scheme 80 (8.2) by coupling of N-Z-Tyr-OH with tert-butyl (4-piperidinyloxy)acetate followed by catalytic hydrogenation. ${ }^{26}$

Xue et al. have synthesized potent GPIIb/IIIa antagonists (see also 8.3) including 572. The N-amidinopiperidin-4-yl group proved to yield a higher potency than the smaller piperaxine or piperidine groups of 571a-c. ${ }^{28}$

$$
\begin{aligned}
& \text { 571a: } X=N, n=2, R=E t \\
& \text { 571b: } X=C, n=2, R=M e \\
& \text { 571c: } X=C, n=0, R=E t
\end{aligned}
$$

Scheme $123 .{ }^{28}$ Synthesis of compounds 571a-c and 572.

Egbertson, Naylor et al. have synthesized a group of m-phthalic acid analogs based on the fibrinogen receptor antagonist 573, and subsequently a potent, selective and orally active fibrinogen receptor antagonist, compound 579. ${ }^{36}$

573

Figure $39 .{ }^{40}$ Lead compound 573.

Table 33. Pyridine analogs of compound 573. ${ }^{40}$

575

576

577

Compounds 574-576 show relatively similar potency to each other, whereas compound 577 demonstrated a potency 100 -fold smaller. It was calculated that the position of the pyridine nitrogen causes the molecule to favor a rotational isomere in which dipole moments are opposed in stead of aligned, making compound 577 less potent than the other analogs. This lead to the design of the constrained isoindolinone compounds 578 and 579 in which the carbonyl groups are in the same plane as the phenyl ring. ${ }^{40}$

578

579

Figure 40. Constrained amide fibrinogen receptor antagonists. ${ }^{40}$

(a) 1.1 eq $\mathrm{CH}_{3} \mathrm{MgBr} / 0^{\circ} \mathrm{C}$, then 2 eq $n \mathrm{BuLi} /-65^{\circ} \mathrm{C}$, solid $\mathrm{CO}_{2}, 85 \%$; (b) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCl}, 95 \%$; (c) NBS , $\mathrm{CCl}_{4}, 80 \%$; (d) $\mathbf{5 8 3}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 80%; (e) $\mathrm{LiOH} / \mathrm{MeOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, quant.; (f) N-methylmorpholine, BOP reagent, $\mathrm{CH}_{3} \mathrm{CN}, 80 \%$; (g) $\mathrm{HCl}(\mathrm{gas}) / \mathrm{EtOAc}, 95 \%$.

Scheme 124. Preparation of compound 579. ${ }^{40}$

Duggan, Naylor-Olsen et al. have synthesized a potent and orally active fibrinogen receptor antagonist, compound 594 (L-734,217). ${ }^{37}$

$\mathrm{d} \longrightarrow$ 580: $\mathrm{R}=\mathrm{Et}$

586
(a) $\mathrm{Boc}_{2} \mathrm{O}$, DMF; (b) Swern oxidation, then (carbethoxymethylene)triphenylphosphorane; (c) $10 \% \mathrm{Pd} / \mathrm{c}$, H_{2}, EtOAC; (d) 1 N NaOH , ethanol; (e) EDC, HOBT, Net_{3}, DMF; (f) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme $125 .{ }^{41}$ Synthesis of compound 586.

$\begin{aligned} & c \\ & \square \text { 587: } \mathrm{R}=\mathrm{CN} \\ & \text { 588: } \mathrm{R}=\mathrm{CH}_{2} \mathrm{NH}_{2} \circ \mathrm{HCl}\end{aligned}$

$f \quad \begin{aligned} & \text { 589: } \mathrm{R}=\mathrm{Et} \\ & \text { 590: } \mathrm{R}=\mathrm{H}\end{aligned}$

(a) Pivaloyl chloride, THF, $\mathrm{Net}_{3},(S)$-4-benzyl-2-oxazolidinone; (b) $\mathrm{Ti}(\mathrm{O}-I-\mathrm{Pr}) \mathrm{Cl}_{3}, I-\mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, acrylonitrile; (c) $\mathrm{PtO}_{2}, \mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}$; (d) $\mathrm{NaHCO}_{3} ; \mathrm{CH}_{3} \mathrm{CN}$; (e) NaHMDS, THF, ethyl bromoacetate; (f) $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH}$.

Scheme $126 .{ }^{41}$ Synthesis of intermediate 590.

(a) Isobutyl chlorofoormate, EtOAc, NMM, diazomethane, then silver benzoate, $\mathrm{Net}_{3}, \mathrm{MeOH}$; (b) EtOAc , HCl .

Scheme 127. ${ }^{41}$ Synthesis of compound 590.

(a) EDC, HOBT, Net_{3}, DMF, 591 or 591a; (b) EDC, HOBT, Net_{3}, DMF, β-alanine tert-butyl ester; (c) 1 N $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH}$; (d) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme $128 .{ }^{41}$ Synthesis of compounds 594 and 595.

Compound 594 shows 2-3-fold more potency at in vitro platelet aggregation than compound 595, but diastereomer 594a 10 -fold less than compound 595. ${ }^{41}$

Klein et al. have synthesized a series of compounds with excellent in vitro potency for inhibiting platelet aggregation, excellent selectivity, a high oral activity and extended duration of action, based on lead compound 596, the most potent being compound 628. ${ }^{38}$

Figure $41 .{ }^{42}$ Lead compound 596.

(a) Isopropyl chloroformate, N-methylpiperidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 80-90 \%$; (b) $1: 3 \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2$ h, then saturated $\mathrm{NaHCO}_{3}, 100 \%$; (c) 6-guanidinohexanoic acid (for 622), N - α-Boc-3-(4-piperidinyl)propionic acid (for 623), N - α-Boc-4-(4-piperidinyl)propionic acid (for 624 and 626-646), $N-\alpha$-Boc-5-(4piperidinyl)propionic acid (for 625); (d) BOP-Cl, $\mathrm{Net}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 70-80 \%$; (e) $\mathrm{H}_{2}, 25 \mathrm{wt}-\% 10$ $\% \mathrm{Pd} / \mathrm{C}, 9: 1 \mathrm{MeOH} / \mathrm{AcOH}, 55 \mathrm{psi}, 24 \mathrm{~h}, 95 \%$.

Scheme 129. Synthesis of compounds 622-646. ${ }^{42}$

623

625

Figure $42 .{ }^{42}$ Compounds 623 and 625.

Compounds 623 and 625 show considerable less potency than compound 624 implying the optimal chain length to be three carbons. Klein et al. also conclude that both the replacement of guanidine by piperidine and alkylation of the glycine nitrogen are needed to improve the oral activity of the parent peptide, as demonstrated in compound $624 .{ }^{42}$

Table $34 .^{42}$ The substituents of compounds $\mathbf{6 2 4}$ and 626-646.

Compd

Alkylation enhances both
potency and oral efficacy

Figure 42. Structure-oral activity relationships for peptide-based
fibrinogen receptor antagonists. ${ }^{42}$

11 Other pyridine compounds

See also Schemes 36 and 37 (3.2), Table 14 (6), compound 511i in Table 32 (10.1) and compounds 535a-b in Table 32 (10.1).

Miller et al. have synthesized a selective $\alpha_{\vee} \beta_{3}$ antagonist, compound 647. The (S)enantiomer 647a proved to be over 100 -fold more active than the (R)-enantiomer. ${ }^{17}$

243

647

(a) 2-[(3-hydroxy-1-propyl)amino]pyridine-N-oxide, DEAD, Ph ${ }_{3} \mathrm{P}$, DMF (75\%); (b) cyclohexene, 10% $\mathrm{Pd} / \mathrm{C}, i-\mathrm{PrOH}$, reflux (63%); (c) $1.0 \mathrm{~N} \mathrm{NaOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}$; (d) $1.0 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ (79% for two steps).

Scheme 130. Synthesis of compound 647. ${ }^{17}$

12 Tricyclic compounds

See also Schemes 10 and 11 (2.1).

Ho et al. have synthesized two tricyclic tetrahydrobenzo[ij]quinolines, weakly active integrin $\alpha_{\text {Iv }} \beta_{1}$ antagonists (compounds 663 and 665) based on the LDV sequence on the CS-1 fragment of the integrin. The syntheses were done using a Bischler-Napieraski reaction and Friedel-Crafts cyclization via an epoxide. ${ }^{39}$

Scheme 131. ${ }^{43}$ Lead compound 648 and tricyclic VLA-4 antagonist 649.

Scheme 132. ${ }^{43}$ Synthesis of intermediate 653.

1) 2-nitrophenylselenocyanate,

655: $\mathrm{R}=\mathrm{Bn}$

Scheme $133 .{ }^{43}$ Synthesis of compound 657.

1) $\mathrm{PCC}, \mathrm{NaOAc}$, celite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$
3) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ deg. C

657
4) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NEt}_{3}, \mathrm{CO}, \mathrm{MeOH}$,
 bis(diphenylphosphino)ferrocene, 60 deg.C

Scheme $134 .^{43}$ Synthesis of compound 661.

Scheme $135 .{ }^{43}$ Synthesis of compounds $\mathbf{6 6 3}$ and $\mathbf{6 6 5}$.

13 Summary

Most of the research conserning non-peptide integrin inhibitors is focused on the RGD (Arg-Gly-Asp) sequence which is recognized by the platelet fibrinogen receptor $\alpha_{\text {IIb }} \beta_{3}$ (GPIIb/IIIa) and the vitronectin receptor $\alpha_{\mathrm{v}} \beta_{3} .{ }^{5}$

12-18 Å

Figure 1. ${ }^{1}$ RGD sequence.

The RDG sequence plays a key part in aggregation of platelets causing vaso-occulsive disorders such as unstable angina, myocardial infarction, transient ischemic attacks, stroke and thrombosis $\left(\alpha_{\text {IIb }} \beta_{3}\right){ }^{32,36}$ Also, it's involved in osteoclast-mediated bone resorption $-\alpha_{V} \beta_{3}$ is present in osteoclasts but not bone forming osteoblasts. ${ }^{39}$

The less studied $\alpha_{\text {IV }} \beta_{1}$, VLA-4 (very late antigen 4) found in stimulated monocytes and lymphnotes binds to cytokine-activated endothelial cells and to fibronectin causing diseases such as asthma and multiple sclerosis. ${ }^{43}$

When evaluating the potency of non-peptide GPIIb/IIIa inhibitors tricyclic form seems to be favoured over tetracyclic form. ${ }^{3}$

Lipophilic substituents at α or β to the carboxylate moiety often result in increased potency. ${ }^{8,20}$ Aliphatic or aromatic residues are favorable compared to carboxy terminal serine. ${ }^{13}$ Benzamide and piperidine groups are highly beneficial N-terminal substituents, with benzamide having the positive charge localized on two nitrogens allowing for favorable electrostatic interactions with a negatively charged receptor site. ${ }^{29}$

EXPERIMENTAL SECTION

14 Preface

The aim of the experimental work was to synthesize a potential nonpeptide inhibitor for the integrin $\alpha_{\text {II }} \beta_{1}$. Twelve target molecules (fig. 43, molecules 666-677) were designed by professor Kari Rissanen based on the information gathered by Bio-Tie Therapies.

Figure 43. The target molecules.

Molecules 666-669. 671, 673, 676 and 677 showed binding potential on a computer model of the integrin $\alpha_{\text {II }} \beta_{1}$ due to their suitable size, flexibility and three branches with negative charges. Molecules $\mathbf{6 7 4}$ and $\mathbf{6 7 5}$ showed some binding potential.

15 The plan for synthesis

The plan was to try to synthesize as many of the target molecules as possible by constructing a neutral molecule of smaller molecules and then reducing it. Due to the limited time the syntheses of only molecule 669 and modified versions of molecules 673 and 677 were attempted.

First, the reduction reaction was to be tested on the small molecule $\mathbf{6 8 0}$ with a cyano group and an ester bond in order to see whether the ester bond would tolerate the conditions without breaking.

16 The syntheses

16.1 The synthesis of target molecule 669

16.1.1 4-Cyanobenzoyl ethyl ester 680

The synthesis was done by following the synthesis route for ethylvinyl acetate ${ }^{40}$.

16.1.1.1 4-Cyanobenzoyl chloride 679

Since the 4-cyanobenzoyl chloride needed as a starting material was in an opened container an ${ }^{1} \mathrm{H}$ NMR spectrum was obtained. According to the spectrum some of the chloride had turned into its acid form. It was estimated that the acid / acid chloride ratio in the starting material was $1: 1$.

Scheme 136. The synthesis of 4-cyanobenzoyl chloride 679.

A two-necked flask is equipped with a reflux condenser and a gas trap. Approximately 20 mL SOCl 2 is heated gently in the flask on a water bath with stirring and 1.29 g (8.28 mmol) acid 678 / acid chloride 679 mixture is added during 30 minutes. The mixture is heated gently for 30 minutes. The liquid is removed by a rotatory evaporator. The yield is $1.45 \mathrm{~g}(8.74 \mathrm{mmol})$.

16.1.1.2 4-Cyanobenzoyl ethyl ester 680

Scheme 137. The synthesis of 4-cyanobenzoyl ethyl ester $\mathbf{6 8 0}$.

Approximately 30 mL abs. ethanol is cooled on ice. All of the acid chloride 679 from 3.1.1.1 is added slowly with stirring. The ice bath is removed and the mixture is allowed to stand for 1 h . The liquid is removed by a rotatory evaporator. The yield is $1.37 \mathrm{~g}(7.8$ mmol).
${ }^{1} \mathrm{H}$ NMR (AC-d6): $\delta=8.19-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 2 \mathrm{H}), 2.78$ $(\mathrm{s}, 1 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (AC-d6): $\delta=206.30,206.15,205.99,165.56,135.40,133.45,130.92,118.72$, 117.16, 62.40, 30.47, 30.38, 30.32, 30.27, 30.17, 30.07, 29.92, 29.77, 29.61, 29.46, 14.55 ppm .

16.1.2 p-Ethyl ester benzyl amine 682'

16.1.2.1 p-Methyl ester benzyl amine 681'

Scheme 138. The synthesis of p-methyl ester benzyl amine ${ }^{41} \mathbf{6 8 1}{ }^{\prime}$ and its chloride salt 681.

Approximately 50 mL methanol, $0.37 \mathrm{~g}(2.89 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 1.00 \mathrm{~g}(11.52 \mathrm{mmol}) \mathrm{TAB}$ and 0.50 g (2.85 mmol) 4-cyanobenzoyl ethyl ester $\mathbf{6 8 0}$ are refluxed with stirring for 12.5 h . The liquid is removed by a rotatory evaporator. The amine 681' is extracted with approximately $50 \mathrm{~mL} \mathrm{CHCl}_{3}$ and the solid removed by filtering.

The amine is extracted from the chloroform as an amonium salt 681 by using 2 M HCl . The acidic solution is made basic with 2 M NaOH and the amine removed by filtering. The yield is 0.01 g . A mixture of products is obtained possibly due to intermolecular bonding.

The basic solution from 3.1.2.1 is condensed to 30 mL and made acidic with HCl in order to transform the possibly present 681' into an ammonium chloride. The solution is evaporated with a rotatory evaporator. No desired product is present.

16.1.2.2 p-Ethyl ester benzyl amine 682' in anhydrous THF

Scheme 139. The synthesis of p-ethyl ester benzyl amine 682' in anhydrous THF and its chloride salt 682.
$0.29 \mathrm{~g}(2.28 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 0.69 \mathrm{~g}(8.00 \mathrm{mmol}) \mathrm{TAB}$ and $0.38 \mathrm{~g}(2.20 \mathrm{mmol})$ ester 680 are ground to a powder and added to a flask containing 40 mL anhydrous THF. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator. The product is extracted with $40 \mathrm{~mL} \mathrm{CHCl}_{3}$ and the solid removed by filtering.

Extraction with $\mathrm{HCl}: 3 \mathrm{~mL}$ of 2 M HCl is diluted with water to 35 mL which is then used to extract the CHCl_{3} solution. The solution is evaporated with a rotatory evaporator.

The yield is 1.33 g . No desired product is detected.

16.1.2.3 p-Ethyl ester benzyl amine 682' in 1,4-dioxane

Scheme 140. The synthesis of p-ethyl ester benzyl amine 682' in 1,4dioxane and its chloride salt 682.
$0.29 \mathrm{~g}(2.28 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 0.70 \mathrm{~g}(7.99 \mathrm{mmol}) \mathrm{TAB}$ and $0.39 \mathrm{~g}(2.20 \mathrm{mmol})$ ester 680 are ground to a powder and added to a flask containing 40 mL 1,4-dioxane. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator. The product is extracted with $40 \mathrm{mLCHCl}_{3}$ and the solid removed by filtering.

Extraction with $\mathrm{HCl}: 3 \mathrm{~mL}$ of 2 M HCl is diluted with water to 35 mL which is then used to extract the CHCl_{3} solution. The solution is evaporated with a rotatory evaporator.

The yield is 1.24 g .

The removal of tert-butyl ammonium chloride from the solid is attempted by dissolving the possible desired product 682 in CHCl_{3} :

The solid is added to $40 \mathrm{mLCHCl}_{3}$. The solution is stirred and let stand for a while. The remaining solid is removed by filtering and the cloudy CHCl_{3} solution evaporated with a rotatory evaporator. The result is a fine white powder.

The yield is 0.08 g . No desired product detected.

16.1.2.4 p-Ethyl ester benzyl amine 682' in anhydrous THF

The attempted synthesis route is the same as in 16.1.2.2 (scheme 139).
$0.64 \mathrm{~g}(5.00 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 1.74 \mathrm{~g}(20.00 \mathrm{mmol}) \mathrm{TAB}$ and $0.88 \mathrm{~g}(5.00 \mathrm{mmol})$ ester 680 are ground to a powder and added to a flask containing 80 mL anhydrous THF. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator. The product is extracted with $90 \mathrm{~mL} \mathrm{CHCl}_{3}$ and the solid removed by filtering.

Extraction with 2 M HCl . The solution is made slightly basic (pH 8) with 2 M NaOH . Some white solid is formed.

The solution is concentrated to one half using a rotatory evaporator and filtered with suction. All of the solid remains in the pores of the filter and the change in mass isn't registered by the scale.
$50 \mathrm{mLCHCl}{ }_{3}$ is added to the filtrate for possible extraction. After filtering the solution is evaporated with a rotatory evaporator. No solid remains in the flask.

16.1.2.5 p-Ethyl ester benzyl amine 682' in acetone

Scheme 141. The synthesis of p-ethyl ester benzyl amine 682' in acetone and its chloride salt 682.
$0.64 \mathrm{~g}(5.00 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 1.74 \mathrm{~g}(20.02 \mathrm{mmol}) \mathrm{TAB}$ and $0.88 \mathrm{~g}(5.00 \mathrm{mmol})$ ester $\mathbf{6 8 0}$ are ground to a powder and added to a flask containing 80 mL acetone. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator. A black syrup-like residue remains.

Extraction with $90 \mathrm{~mL} \mathrm{CHCl}_{3}$ (the residue is dissolved), the solid is removed by filtering with suction (very slow). The solution is golden brown.

Extraction with 70 mL 2 M HCl . The CHCl_{3}-layer is coffee-colored, the HCl -layer golden brown.

The experiment is discontinued due to the fact that the formation of the desired product is highly unlikely.

16.1.2.6 p-Ethyl ester benzyl amine 682' in DMSO

Scheme 142. The synthesis of p-ethyl ester benzyl amine 682' in DMSO and its chloride salt 682.
$0.64 \mathrm{~g}(5.00 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 1.74 \mathrm{~g}(20.01 \mathrm{mmol}) \mathrm{TAB}$ and $0.88 \mathrm{~g}(5.01 \mathrm{mmol})$ ester 680 are ground to a powder and added to a flask containing 80 mL DMSO. The mixture is heated $\left(95^{\circ} \mathrm{C}\right)$ in an oil bath with stirring for eight hours. The DMSO is removed by vacume distillation. The residue is a black and white powder.

Extraction with $90 \mathrm{~mL} \mathrm{CHCl}_{3}$ (most of the residue isn't dissolved), the solid is removed by filtering. The solution is turquoise.

Extraction with 2 M HCl . The CHCl_{3}-layer turns yellowish and cloudy, the HCl -layer is pink.

The HCl solution is made slightly basic $(\mathrm{pH} 8)$ with 2 M NaOH . The purple solid is removed by filtering. The yield is 0.19 g . The presence of the desired product is highly unlikely.

16.1.2.7 p-Ethyl ester benzyl amine 682' in tert-butanol

Scheme 143. The synthesis of p-ethyl ester benzyl amine 682' in tert-butanol and its chloride salt 682.
$0.37 \mathrm{~g}(2.86 \mathrm{mmol}) \mathrm{Co}_{2} \mathrm{~B}, 1.00 \mathrm{~g}(11.46 \mathrm{mmol}) \mathrm{TAB}$ and $0.51 \mathrm{~g}(2.91 \mathrm{mmol})$ ester 680 are ground to a powder and added to a flask containing 50 mL tert-butanol. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator.

Extraction with $50 \mathrm{~mL} \mathrm{CHCl}_{3}$. The solid is removed by filtering with suction after $1 / 2 \mathrm{~h}$. Extraction with 2 M HCl . The CHCl_{3}-layer is cloudy, the HCl -layer clear.

The HCl solution is made slightly basic $(\mathrm{pH} 8)$ with 2 M NaOH . A small amount of white solid is formed. The solution is allowed to evaporate overnight to a half. The solid is removed by filtering. The presence of the desired product is highly unlikely.

16.1.3 Target molecule 669 in methanol

Scheme 144. The attempted synthesis of triamine 669' in methanol and its chloride salt, target molecule 669.
$0.43 \mathrm{mmol}(0.06 \mathrm{~g}) \mathrm{Co}_{2} \mathrm{~B}, 1.68 \mathrm{mmol}(0.15 \mathrm{~g}) \mathrm{TAB}$ and $0.43 \mathrm{mmol}(0.20 \mathrm{~g})$ diester 683 are ground to a powder and added to a flask containing $20 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}$. The mixture is refluxed in an oil bath with stirring for eight hours. The solution is evaporated with a rotatory evaporator.

Extraction with 20 mLCHCl$]_{3}$. The solid is removed by filtering with suction after $1 / 2 \mathrm{~h}$. Extraction with 6 mL 2 M HCl . Both the CHCl_{3}-layer and the HCl -layer are cloudy.

The HCl solution is made slightly basic $(\mathrm{pH} 8)$ with 2 M NaOH . The solution is allowed to evaporate overnight to a half. The solid is removed by filtering with suction. The presence of the desired product is highly unlikely.

16.2 The synthesis of a modified version 688 of target molecule 673

16.2.1 4-Cyano benzyl bromide 685

Scheme 145. The synthesis of 4-cyano benzyl bromide $\mathbf{6 8 5}$ in NBS. ${ }^{42}$
a) $20 \mathrm{~mL} \mathrm{CCl}_{4}, 1.01 \mathrm{~g}(8.61 \mathrm{mmol}) p$-tolunitrile 684 and $1.52 \mathrm{~g}(8.54 \mathrm{mmol}) \mathrm{NBS}$ in a two-necked flask are brought to a gentle reflux in an oil bath with stirring. The oil bath is removed and a 100 W light bulb aimed at the solution. Some AIBN is added quickly and the apparatus covered in tin foil. The refluxing stops. After three hours the white solution turns bright orange. The reaction is stopped after 4.5 h total. The solution has turned white. The solution is immediately filtered with suction and evaporated with a rotatory evaporator. The yield is 1.39 g .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.00-7.96(\mathrm{~d}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~d}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~d}$, $2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~d}, 2 \mathrm{H}), 7.27-7.25(\mathrm{t}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.42$ $(\mathrm{s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=146.07,143.62,142.78,132.83,132.51,131.98,129.81,129.77$, $129.65,127.34,118.27,117.77,113.49,112.15,109.27,77.51,77.21,77.00,76.49$, 68.12, 38.66, 31.41, 25.09, 21.76 ppm .
b) The experiment is repeated using $40 \mathrm{~mL} \mathrm{CCl}_{4}, 3.00 \mathrm{~g}(25.62 \mathrm{mmol}) p$-tolunitrile and $5.01 \mathrm{~g}(28.17 \mathrm{mmol}) \mathrm{NBS}$. The reaction is stopped after 3.5 h . The solution is immediately filtered with suction and evaporated with a rotatory evaporator.

40 mL CHCl 3 is added to dissolve the solid. The solution is washed with water, saturated NaHCO_{3} and water, then evaporated with a rotatory evaporator. The yield is 4.97 g .
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~d}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~d}, 2 \mathrm{H})$, $7.28-7.25(\mathrm{t}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

The solids obtained from the two experiments are combined and dissolved in 50 mL CHCl_{3}. The solution is dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated with a rotatory evaporator. 50 mL toluene is added to the flask which is heated to dissolve all of the solid. The solution is allowed to cool. No crystallization perceptible.

Half of the toluene is removed by distillation, still no crystallization perceptible. The solution is refridgerated overnight and the powdery white solid removed by filtering with suction. The yield is $2.26 \mathrm{~g}(11.53 \mathrm{mmol})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.68(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~d}, 2 \mathrm{H}, 7.51-7.48(\mathrm{~d}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H})$ ppm.

16.2.2 Malonyl dianilide 688

Scheme 146. The synthesis of malonyl dianilide 688 in toluene.

A mixture of 50 mL dry toluene, $1.56 \mathrm{~g}(11.81 \mathrm{mmol})$ dimethyl malonate $\mathbf{6 8 6}, 2.42 \mathrm{~g}$ (25.99 mmol) anilin 687 and 3 drops $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a flask is heated to $90^{\circ} \mathrm{C}$ for 8 h . White solid is formed almost instantly.

The cooled mixture is filtered with suction. The yield is 0.46 g . The solid won't dissolve in $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, MetOH, DMSO or acetone and only slightly in CHCl_{3}.

The filtrate is washed with water and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The toluene is removed by distillation. A dark brown viscous liquid with some solid remains in the flask. The yield is 2.26 g . No desired product detected.

16.3 The synthesis of a modified version 691 of target molecule 677

16.3.1 N-(p-cyanobenzoyl)-2-amino-propan-1,3-diol 690

Scheme 147. The synthesis of $\mathbf{6 9 0}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

16.3.1.1 Serinol 689, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 4-cyanobenzoyl chloride 679 1:1:1

A mixture of 30 mL acetonitrile $\mathrm{CH}_{3} \mathrm{CN}, 0.49 \mathrm{~g}(5.33 \mathrm{mmol})$ serinol 689 and 0.74 g $(5.35 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ in a flask is heated with stirring in an oil bath. $0.86 \mathrm{~g}(5.35 \mathrm{mmol})$ 4-cyanobenzoyl chloride 679 in 20 mL acetonitrile is added slowly with a dropping funnel. The mixture is brought to a reflux for four hours.

The yellow solution is filtered and the filtrate evaporated with a rotatory evaporator. The yield is 1.12 g (a syrup-like residue). No desired product detected.

16.3.1.2 Serinol 689, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 4-cyanobenzoyl chloride 679 1:3:1, no heating

A mixture of 20 mL acetonitrile $\mathrm{CH}_{3} \mathrm{CN}, 0.33 \mathrm{~g}(3.63 \mathrm{mmol})$ serinol 689 and 1.50 g $(10.87 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ in a flask is heated in an oil bath. $0.60 \mathrm{~g}(3.63 \mathrm{mmol})$ 4-cyanobenzoyl chloride 679 in 30 mL acetonitrile is added slowly with a dropping funnel. The mixture is stirred for $61 / 2 \mathrm{~h}$.

The white solution is filtered and the filtrate evaporated with a rotatory evaporator. The yield is 0.74 g (3.36 mmol , yellowish solid).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.01-7.97(\mathrm{~d}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~d}, 2 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.75-$ $3.72(\mathrm{~d}, 4 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

16.3.2 N-[2-(1,3-p-cyanobenzyloxy)]-p-cyanobenzoyl amine 691

The synthesis was attempted by way of alkylation of alcohols with an alkyl halide ${ }^{43}$.

Scheme 148. The synthesis of $\mathbf{6 9 1}$ in DMSO.

16.3.2.1 Diol 690, 4-cyanobenzyl bromide 685 and KOH 1:2:4 in acetone

$0.32 \mathrm{~g}(5.65 \mathrm{mmol})$ ground KOH and 3 mL acetone are stirred in a flask. KOH is partly dissolved. $0.30 \mathrm{~g}(1.36 \mathrm{mmol})$ diol 690 and $0.53 \mathrm{~g}(2.72 \mathrm{mmol})$ 4-cyanobenzyl bromide 685 are added. The mixture is stirred at $55^{\circ} \mathrm{C}$ in a water bath for one hour, turning from yellow to brown. The acetone is removed with a rotatory evaporator.

50 mL water is added to the brown viscous residue. After stirring for $1 / 2 \mathrm{~h}$ the brown residue is partly dissolved. Extraction with $60 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue is completely dissolved. The solution is washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated with a rotatory evaporator. The yield is 0.51 g (a very viscous yellow liquid). No desired product detected.

16.3.2.2 Diol 690, 4-cyanobenzyl bromide 685 and KOH 1:4:8 in DMSO

$0.61 \mathrm{~g}(10.90 \mathrm{mmol})$ ground KOH and 3 mL DMSO are stirred in a flask. 0.30 g $(1.36 \mathrm{mmol})$ diol 690 and $1.07 \mathrm{~g}(5.45 \mathrm{mmol}) 4$-cyanobenzyl bromide $\mathbf{6 8 5}$ are added. The mixture is stirred at $55^{\circ} \mathrm{C}$ in a water bath for one hour, turning from yellow to brown, then poured into 30 mL water. A gum-like residue remains on the magnet, the mixture turns yellow.

Extraction with $90 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The solution is washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated with a rotatory evaporator, leaving a yellow residue. The yield is 0.14 g . No desired product detected.

17 Summary

The aim was to synthesize a potential inhibitor for the integrin $\alpha_{\text {II }} \beta_{1}$. Twelve target molecules were designed. The plan was to try to synthesize as many of the target molecules as possible by constructing a neutral molecule of smaller molecules and then reducing it. Due to the limited time the syntheses of only molecule $\mathbf{6 6 9}$ and modified versions of molecules $\mathbf{6 7 3}$ and $\mathbf{6 7 7}$ were attempted.

The starting molecule 4-cyanobenzoyl ethyl ester $\mathbf{6 8 0}$ was synthesized successfully.

It was attempted to reduce the cyano group of the small molecule 680 (4-cyanobenzoyl ethyl ester) in order to see whether the ester bond would tolerate the conditions without breaking. The synthesis of p-ethyl ester benzyl amine 682' was unsuccesfully attempted in anhydrous THF, 1,4-dioxane, acetone, DMSO and tert-butanol. A suitable solvent wasn't found and only mixtures of unwanted products were obtained. Due to the diminishing time left, syntheses of target molecules were started.

The synthesis of target molecule 669 failed due to the breaking up of the starting molecule 683.

The synthesis of 4-cyano benzyl bromide 685, a "building block" for a modified version 688 of target molecule 673, was succesful but the synthesis of the other "building block", malonyl dianilide 688, failed due to unwanted bonding.

The synthesis of diol 690, a "building block" for a modified version 691 of target molecule 677, was succesful after increasing the relative amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and conducting the synthesis without heating. However, the synthesis of molecule 691 alternately in acetone and DMSO failed due to unwanted bonding.

Reagents and equipment

Table 34: The reagents used in the syntheses.

Reagent	Supplier	Purity
SOCl_{2}	Riedel-de Haën	$\geq 98 \%$
EtOH	Primalco	99.5\%
4-cyanobenzoic acid	Aldrich	appr. 50\% (orig. 98\%)
$\mathrm{Co}_{2} \mathrm{~B}$	K. Nätrilä	
TAB	Aldrich	97\%
$\mathrm{CH}_{3} \mathrm{OH}$	Riedel-de Haën	99.8\%
CHCl_{3}	Riedel-de Haën	99.0-99.4\%
HCl		2M
NaOH		2M
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Merck	$\geq 99 \%$
HCl	Riedel-de Haën	$\geq 37 \%$
THF		
1,4-dioxane		
CHCl_{3}	Riedel-de Haën	99.8\%
acetone	Riedel-de Haën	p.a.
DMSO	Rathburn Chemicals LTD	HPLC grade
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	Merck	p.a.
p-tolunitrile	Aldrich	98\%
CCl_{4}	Merck	$\geq 99.8 \%$
NBS	Riedel-de Haën	98\%
AIBN	Merck	
toluene		
dimethyl malonate	Aldrich	98\%
anilin	Merck	p.a.
2-amino-1,3- propandiol (serinol)	Aldrich	98\%
$\mathrm{K}_{2} \mathrm{CO}_{3}$		
$\mathrm{CH}_{3} \mathrm{CN}$	Mallinckrodt	HPLC grade

The equipment used for analyzing the products of the syntheses:
NMR spectrometers: Bruker Avance DPX 250 and Bruker Avance DRX 500.
MS spectrometer: VG AutoSpec HRMS spectrometer.

Synthesized molecules

679

680

690

References

1. Harada, T.; Katada, J.; Tachiki, A.; Asari, T.; Iijima, K.; Uno, I.; Ojima, I.; Hayashi, Y. Bioorg. Med. Chem. 1997, 7, 209-212.
2. Ku, T. W.; Ali, F. E.; Barton, L. S.; Bean, J. W.; Bondinell, W. E.; Burgess, J. L.; Callahan, J. F.; Calvo, R. R.; Chen, L.; Eggleston, D. S.; Gleason, J. G.; Huffman, W. F.; Hwang, S. M.; Jakas, D. R.; Karash, C. B.; Keenen, R. M.; Kopple, K. D.; Miller, W. H.; Newlander, K. A.; Nichols, A.; Parker, M. F.; Peishoff, C. E.; Samanen, J. M.; Uzinskas, I.; Venslavsky, J. W. J. Am. Chem. Soc. 1993, 115, 88618862.
3. Robarge, K. D.; Dina, M. S.; Somers, T. C.; Lee, A.; Rawson, T. E.;Olivero, A. G.; Tischler, M. H.; Webb, II, R. R.; Weese, K. J.; Aliagas, I.; Blackburn, B. K. Bioorg. Med. Chem. 1998, 6, 2345-2381.
4. Blackburn, B. K.; Lee, A.; Baier, M.; Kohl, B.; Olivero, A. G.; Matamoros, R.; Robarge, K. D.; McDowell, R. S. J. Med. Chem. 1997, 40, 717-729.
5. Keenan, R. M.; Miller, W. H.; Kwon, C.; Ali, F. E.; Callahan, J. F.; Calvo, R. R.; Hwang, S.-M.; Kopple, K. D.; Peishoff, C. E.; Samanen, J. M.; Wong, A. S.; Yuan, C.-K.; Huffman, W. F. J. Med. Chem. 1997, 40, 2289-2292.
6. Samanen, J. M.; Ali, F. E.; Barton, L. S.; Bondinell, W. E.; Burgess, J. L.; Callahan, J. F.; Calvo, R. R.; Chen, W.; Chen, L.; Erhard, K.; Feuerstein, G.; Heys, R.; Hwang, S.-M.; Jakas, D. R.; Keenan, R. M.; Ku, T. W.; Kwon, C.; Lee, C.-P.; Miller, W. H.; Newlander, K. A.; Nichols, A.; Parker, M.; Peishoff, C. E.; Rhodes, G.; Ross, S.; Shu, A.; Simpson, R.; Takata, D.; Yellin, T. O.; Uszinskas, I.; Venslavsky, J. W.; Yuan, C.-K.; Huffman, W. F. J. Med. Chem. 1996, 39, 4867-4870.
7. Miller, W. H.; Alberts, D. P.; Bhatnagar, P. K.; Bondinell, W. E.; Callahan, J. F.; Calvo, R. R.; Cousins, R. D.; Erhard, K. F.; Heerding, D. A.; Keenan, R. M.; Kwon, C.; Manley, P.J.; Newlander, K. A.; Ross, S. T.; Samanen, J. M.; Uzinskas, I. N.; Venslavsky, J.W.; Yuan, C. C.-K.; Haltiwanger, R. C.; Gawen, M.; Hwang, S.-M.; James, I. E.; Lark, M. W.; Rieman, D. J.; Stroup, G. B.; Azzarano, L. M.; Salyers, K. L.; Smith, B. R.; Ward, K. W.; Johanson, K. O.; Huffman, W. F. J. Med. Chem. 2000, 43, 22-26.
8. Xue, C.-B.; Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Batt, D. G.; Cain, G. A.; Sworin, M.; Rockwell, A. L.; Roderick, J. J.; Wang, S.; Orwat, M. J.; Frietze, W. E.; Bostrom, L. L.; Liu, J.; Higley, A.; Rankin, F. W.; Tobin, A. E.; Emmett, G.; Lalka, G. K.; Sze, J. Y.; Di Meo, S. V.; Mousa, S. A.; Thoolen, M. J.; Racanelli, A. L.; Hausner, E. A.; Reilly, T. M.; DeGrado, W. F.; Wexler, R. R.; Olson, R. E. J. Med. Chem. 1997, 40, 2064-2084.
9. Wityak, J.; Tobin, A. E.; Mousa, S. A.; Wexler, R. R.; Olson, R. E. Bioorg. Med. Chem. Lett. 1999, 9, 123-126.
10. Xue, C.-B.; Roderick, J.; Mousa, S.; Olson, R. E.; DeGrado, W. F. Bioorg. Med. Chem. Lett. 1998, 8, 3499-3504.
11. Gante, J.; Juraszyk, H.; Raddatz, P.; Wurziger, H.; Bernotat-Danielowski, S.; Melzer, G.; Rippmann, F. Bioorg. Med. Chem. 1996, 6, 2425-2430.
12. Pitts, W. J.; Wityak, J.; Smallheer, J. M.; Tobin, A. E.; Jetter, J. W.; Buynitsky, J. S.; Harlow, P. P.; Solomon, K. A.; Corjay, M. H.; Mousa, S. A.; Wexler, R. R.; Jadhav, P. K. J. Med. Chem. 2000, 43, 27-40.
13. Stilz, H. U.; Guba, W.; Jablonka, B.; Just, M.; Klinger, O.; König, W.; Wehner, V.; Zoller, G. J. Med. Chem. 2001, 44, 1158-1176.
14. Peyman, A.; Wehner, V.; Knolle, J.; Stilz, H. U.; Breipohl, G.; Scheunumann, K.H.; Carniato, D.; Ruxer, J.-M.; Gourvest, J.-F.; Gadek, T. R.; Bodary, S. Bioorg. Med. Chem. Lett. 2000, 10, 179-182.
15. Xue, C.-B.; Rafalski, M.; Roderick, J.; Eyermann, C. J.; Mousa, S.; Olson, R. E.; DeGrado, W. F. Bioorg. Med. Chem. Lett. 1996, 6, 339-344.
16. Carceller, E.; Merlos, M.; Giral, M.; Balsa, D.; García-Rafanell, J.; Forn, J. J. Med. Chem. 1996, 39, 487-493.
17. Miller, W. H.; Bondinell, W. E.; Cousins, R. D.; Erhard, K. F.; Jakas, D. R.; Keenan, R. M.; Ku, T. W.; Newlander, K. A.; Ross, S. T.; Haltiwanger, R. C.; Bradbeer, J.; Drake, F. H.; Gowen, M.; Hoffman, S. J.; Hwang, S.-M.; James, I. E.; Lark, M. W.; Lechowska, B.; Rieman, D. J.; Stroup, G. B.; Vasko-Moser, J. A.; Zembryki, D. L.; Azzarano, L. M.; Adams, P. C.; Salyers, K. L.; Smith, B. R.; Ward, K. W.; Johanson, K. O.; Huffman, W. F. Bioorg. Med. Chem. Lett. 1999, 9, 1807-1812.
18. Batt, D. G.; Petraitis, J. J.; Houghton, G. C.; Modi, D. P.; Cain, G. A.; Corjay, M. H.; Mousa, S. A.; Bouchard, P. J.; Forsythe, M. S.; Harlow, P. P.; Barbera, F. A.; Spitz, S. M.;Wexler, R. R.; Jadhav, P. K. J. Med. Chem. 2000, 43, 41-58.
19. Han, H.; Janda K. D. J. Am. Chem. Soc. 1996, 118, 2539-2544.
20. Sulyok, G. A. G.; Gibson, C.; Goodman, S.L.; Hölzemann, G.; Wiesner, M.; Kessler, H. J. Med. Chem. 2001, 44, 1938-1950.
21. Pons, J.-F.; Fauchére, J.-L.; Lamaty, F.; Molla, A.; Lazaro, R. Eur. J. Org. Chem. 1998, 853-859.
22. Sugihara, H.; Fukushi, H.; Miyawaki, T.; Imai, Y.; Terashita, Z:; Kawamura, M.; Fujisawa, Y.; Kita, S. J. Med. Chem. 1998, 41, 489-502.
23. van Maarseveen, J. H.; den Hartog, J. A. J.; Reinders, J.-H.; Brakkee, J.; Schön, U.; Kehrbach, W.; Kruse, C. G. Bioorg. Med. Chem. 1998, 8, 1531-1536.
24. Asari, T.; Ishikawa, S.; Sasaki, T.; Katada, J.; Hayashi, Y.; Harada, T.; Yano, M.; Yasuda, E.; Uno, I.; Ojima, I. Bioorg. Med. Chem. 1997, 16, 2099-2104. Bioorg. Med. Chem. 1997, 19, 2537-2542.
25. Hayashi,Y.; Katada, J.; Harada, T.; Tachiki, A.; Iijima, K.; Takiguchi, Y.; Muramatsu, M.; Miyazaki, H.; Asari, T.; Okazaki, T.; Sato, Y.; Yasuda, E.; Yano, M.; Uno, I.; Ojima, I. J. Med. Chem. 1998, 41, 2345-2360.
26. Weller, T.; Alig, L.; Beresini, M.; Blackburn, B.; Bunting, S.; Hadváry, P.; Hürzeler Müller, M.; Knopp, D.; Levet-Trafit, B.; Lipari, M. T.; Modi, N. B.; Müller, M.; Refino, C. J.; Schmitt, M.; Schönholzer, P.; Weiss, S.; Steiner, B. J. Med. Chem. 1996, 39, 3139-3147.
27. Kottirsch, G.; Zerwes, H.-G.; Cook, N. S.; Tapparelli, C. Bioorg. Med. Chem. Lett. 1997, 7, 727-732.
28. Xue, C.-B.; Roderick, J.; Jackson, S.; Rafalski, M.; Roockwell, A.; Mousa, S.; Olson, R. E.; DeGrado, W. F. Bioorg. Med. Chem. 1997, 5, 693-705.
29. Zablocki, J. A.; Miyano, M.; Garland, R. B.; Pireh, D.; Schretzman, L.; Rao, S. N.; Lindmark, R.J.; Panzer-Knodle, S. G.; Nicholson, N. S.; Taite, B. B.; Salyers, A. K.; King, L. W.; Campion, J.G.; Feigen, L. P. J. Med. Chem. 1993, 36, 1811-1819.
30. Fisher, M. J.;Gunn, B. P.; Harms, C. S.; Kline, A.D., Mullaney, J. T., Scarborough, R. M.; Skelton, M. A.; Um, S. L.; Utterback; Jakubowski, J. A. Bioorg. Med. Chem. Lett. 1993, 7, 2537-2542.
31. Zablocki, J. A.; Rico, J. G.; Garland, R. B.; Rogers, T. E.; Williams, K.;

Schretzman, L. A.; Rao, S. A.; Bovy, P. R.; Tjoeng, F. S.; Lindmark, R. J.; Toth, M. V.; Zupec, M. E.; McMacmins, D. E.; Adams, S. P.; Miyano, M.; Markos, C. S.; Milton, M. N.; Paulson, S.; Herin, M.; Jacqmin, P.; Nicholson, N. S.; PanzerKnodle, S. G.; Haas, N. F.; Page, J. D.; Szalony, J. A.; Taite, B. B.; Salyers, A. K.; King, L. W.; Campion, J. G.; Feigen, L. P. J. Med. Chem. 1995, 38, 2378-2394.
28. Egbertson, M. S.; Hartman, G. D.; Gould, R. J.; Bednar, B.; Bednar, R. A.; Cook, J. J.; Gaul, S. L.; Holahan, M. A.; Libby, L. A.; Lynch Jr., J. J.; Lynch, R. J.; Sitko, G. R.; Stranieri, M. T.; Vassallo, L. M. Bioorg. Med. Chem. Lett. 1996, 6, 2519-2524.
29. Prugh, J. D.; Gould, R. J.; Lynch, R. J.; Zhang, G.; Cook, J. J.; Holahan, M. A.; Stranieri, M. T.; Sitko, G. R.; Gaul, S. L.; Bednar, R. A.; Bednar, B.; Hartman, G. D. Bioorg. Med. Chem. Lett. 1997, 7, 865-870.
30. Askew, B. C.; Bedmar, R. A.; Bedmar, B.; Claremon, D. A.; Cook, J. J.; McIntyre, C. J.; Hunt, C. A.; Gould, R. J.; Lynch, R. J.; Lynch Jr., J. J.; Gaul, S. L.; Stranieri, M. T.; Sitko, G. R.; Holahan, M. A.; Glass, J. D.; Hamill, T.; Gorham, L. M.; Prueksaritanont, T.; Baldwin, J. J.; Hartman, G. D. J. Med. Chem. 1997, 40, 17791788.
31. Brashear, K. M.; Cook, J. J.; Bednar, B.; Bednar, R. A.; Gould, R. J.; Halczenko, W.; Holahan, M. A.; Lynch, R. J.; Hartman, G. D.; Hutchinson, J. H. Bioorg. Med. Chem. Lett. 1997, 7, 2793-2798.
32. Askew, B. C.; McIntyre, C. J.; Hunt, C. A.; Claremon, D. A.; Baldwin, J. J.; Anderson, P. S.; Gould, R.J.; Lynch, R. J.; Chang, C. C.-T.; Cook, J. J.; Lynch, J. J.; Holahan, M. A.; Sitko, G. R.; Stranieri, M. T. Bioorg. Med. Chem. Lett. 1997, 7, 1531-1536.
33. Liverton, N. J.; Armstrong, D. J.; Claremon, D. A.; Remy, D. C.; Baldwin, J. J.; Lynch, R. J.; Zhang, G.; Gould, R. J. Bioorg. Med. Chem. Lett. 1998, 8, 483-486.
34. Misra, R. N.; Kelly, Y. F.; Brown, B. R.; Roberts, D. G. M.; Chong, S.; Seiler, S. M. Bioorg. Med. Chem. Lett. 1994, 4, 2165-2170.
35. Duggan, M. E.; Duong, L. T.; Fisher, J. E.; Hamill, T. G.; Hoffman, W. F.; Huff, J. R.; Ihle, N. C.; Leu, C.-T.; Nagy, R. M.; Perkins, J. J.; Rodan, S. B.; Wesolowski, G.; Whitman, D. B.; Zartman, A. E.; Rodan, G. a.; Hartman, G. D. J. Med. Chem. 2000, 43, 3736-3745.
36. Egbertson, M. S.; Naylor, A. M.; Hartman, G. D.; Cook, J. J.; Gould, R. J.; Holahan, M. A.; Lynch Jr., J. J.; Lynch, R. J.; Stranieri, M. T.; Vassallo, L. M. Bioorg. Med. Chem. Lett. 1994, 4, 1835-1840.
37. Duggan, M. E.; Naylor-Olsen, A. M.; Perkins, J. J.; Anderson, P. S.; Chang, C. T.C.; Cook, J. J.; Gould, R. J.; Ihle, N. C.; Hartman, G. D.; Lynch, J. J.; Lynch, R. J.; Manno, P. D.; Schaffer, L. W.; Smith, R. L. J. Med. Chem. 1995, 38, 3332-3341.
38. Klein, S. I.; Molino, B. F.; Czekaj, M.; Gardner, C. J.; Chu, V.; Brown, K.; Sabatino, R. D.; Bostwick, J. S.; Kasiewski, C.; Bentley, R.; Windish, V.; Perrone, M.; Dunwiddie, C. T.; Leadley, R. J. J. Med. Chem. 1998, 41, 2492-2502.
39. Ho, W.-B.; Broka, C. J. Org. Chem. 2000, 65, 6743-6748.
40. Vogel. Vogel's Textbook of Organic Chemistry. $4^{\text {th }}$ edition.
41. Heinzman, S.W.; Ganem, B.J. Am. Chem. Soc., 1982, 104, 6801-6802.
42. Lahtinen, T. П-prismandit. niiden synteesit ja kompleksoituminen. Licentiate thesis, Jyväskylä University, Department of Chemistry, 1998, 48-49.
43. Johnstone, R.A.W.; Rose, M.E. A rapid,simple, and mild procedure for alkylation of phenols, alcohols, amids and acids.Tetrahedron, 1979, 35, 2169-2173.

Appendices

Appendix 1: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for 679.
Appendix 2: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for $\mathbf{6 8 0}$.
Appendix 3: MS spectra for attempted synthesis of 681'.
Appendix 4: ${ }^{1} \mathrm{H}$ NMR and MS spectra for attempted synthesis of $\mathbf{6 8 1}$.
Appendix 5: ${ }^{1} \mathrm{H}$ NMR spectra for attempted synthesis of 682.
Appendix 6: ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{6 8 0}$.
Appendix 7: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 8 2}$ '.
Appendix 8: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 669 .
Appendix 9: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for $\mathbf{6 8 5}$ a).
Appendix 10: ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{6 8 5} \mathrm{b}$).
Appendix 11: ${ }^{1} \mathrm{H}$ NMR spectrum for 685 (combined).
Appendix 12: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 8 8}$
Appendix 13: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 8 8}$ (filtrate).
Appendix 14: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 9 0}$ (16.2.3.1).
Appendix 15: ${ }^{1} \mathrm{H}$ NMR spectrum for 690 (16.2.3.2).
Appendix 16: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 691 (16.2.4.1).
Appendix 17: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 691 (16.2.4.2).

APPENDIX 1: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for 679.

APPENDIX 2: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for $\mathbf{6 8 0}$.

LEटTE
O

APPENDIX 3: MS spectra for attempted synthesis of 681'.

APPENDIX 4: ${ }^{1} \mathrm{H}$ NMR and MS spectra for attempted synthesis of 681.

APPENDIX 5: ${ }^{1} \mathrm{H}$ NMR spectra for attempted synthesis of 682.
a)

b)

APPENDIX 6: ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{6 8 0}$.

APPENDIX 7: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 682'.

APPENDIX 8: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 669'.

APPENDIX 9: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra for 685 a).

$66^{\circ} \angle \angle 8 \mathrm{C}$
加 $\angle 88$ ———

Gロ・216に— GE．656L

OE．9G6「
29•896「

とこ「ロ66に
99．2002

099 1 •邙——

9060 - CL

9900• 1 を

E899* 8ε _

LLU • 99—— wdd

APPENDIX 10: ${ }^{1} \mathrm{H}$ NMR spectrum for 685 b).

APPENDIX 11: ${ }^{1} \mathrm{H}$ NMR spectrum for 685 (combined).

 :

APPENDIX 12: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 688.

APPENDIX 13: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 688 (filtrate).

APPENDIX 14: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 9 0}$ (16.2.3.1).

APPENDIX 15：${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{6 9 0}$（16．2．3．2）．

690

APPENDIX 16: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of 691 (16.2.4.1).

APPENDIX 17: ${ }^{1} \mathrm{H}$ NMR spectrum for attempted synthesis of $\mathbf{6 9 1}$ (16.2.4.2).

