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ABSTRACT

Mönkölä, Sanna
Spectral element method and controllability approach for time-harmonic wave propaga-
tion
Jyväskylä: University of Jyväskylä, 2008, 112 p.
(Jyväskylä Licentiate Theses in Computing
ISSN 1795-9713; 10)
ISBN 978-951-39-3131-5
Finnish summary

The objective of this work is to develop efficient numerical techniques for solving time-
harmonic wave equations. In particular, we consider a controllability technique for the nu-
merical solution of the Helmholtz and the Navier equations. The original time-harmonic
equation is represented as an exact controllability problem for the time-dependent wave
equation. This problem is then formulated as a least-squares optimization problem, which
is solved by conjugate gradient method. Such an approach was first suggested and devel-
oped in the 1990s by French researchers and we introduce some improvements to its
practical realization. We derive a new way to compute the gradient of the least-squares
functional and use algebraic multigrid method for preconditioning the conjugate gradient
algorithm. We discretize the wave equation in space domain with higher order spectral
elements. The degrees of freedom associated with the basis functions are situated at the
Gauss-Lobatto quadrature points of the elements, and the Gauss-Lobatto quadrature rule
is used so that the mass matrix becomes diagonal. The method is combined with the sec-
ond order central finite difference or the fourth order Runge-Kutta time discretization. As
a consequence of these choices, only matrix-vector products are needed in time-dependent
simulation, which makes this controllability method computationally efficient.

Keywords: exact controllability, linear wave equation, Helmholtz equation, Navier equa-
tion, spectral element method



Author Sanna Mönkölä
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Tuomo Rossi
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Docent Erkki Heikkola
Numerola Oy
Finland

Examiners Professor Kazufumi Ito
Department of Mathematics
North Carolina State University
USA

Assistant professor Dirk Pauly
Department of Mathematics
University of Duisburg-Essen
Germany



ACKNOWLEDGEMENTS

This licentiate thesis is a result of studies and research at the Department of Mathemati-
cal Information Technology of University of Jyväskylä. During this work, funding from
various sources was used to make full-time research and international contacts possible.
Thus, the financial support from Finnish Foundation for Technology, Jyväskylä Graduate
School in Computing and Mathematical Sciences, National Graduate School in Engineer-
ing Mechanics, Alfred Kordelin Foundation, Finnish Cultural Foundation, and Ellen and
Artturi Nyyssönen Foundation is gratefully acknowledged.

I would like to express my gratitude to professor Tuomo Rossi, Dr. Erkki Heikkola
and Dr. Timo Männikkö for their help and useful advice during my research. I am thankful
to MSc. Anssi Pennanen and Dr. Janne Martikainen for providing the AMG solver.
I would like to thank the examiners, professor Kazufumi Ito and Dr. Dirk Pauly, for
carefully reviewing the thesis and giving valuable comments. I would also like to thank
my colleagues for their inspiring company and friendship. Finally, I wish to take the
opportunity to thank my family and friends.

Jyväskylä, January 2008

Sanna Mönkölä



NOTATIONS

Derivatives f ′(t, y(t)) = d f (t,y(t))
dt

Partial derivatives fxy(x, y, z) = ∂
∂y ( ∂ f (x,y,z)

∂x )

f (i,j)(x, y) = ∂j

∂yj (
∂i f (x,y,z)

∂xi )

Partial integration
∫ b

a f ′gdx = f g−
∫ b

a g′ f dx

Nabla operator ∇ = ex
∂

∂x + ey
∂

∂y + ez
∂
∂z ,

where ei is unit vector pointing in the
direction i of the basis coordinates.

Gradient of u ∇u = ex
∂

∂x + ey
∂

∂y + ez
∂
∂z u

= ∂u
∂x ex + ∂u

∂y ey + ∂u
∂z ez

= ( ∂u
∂x , ∂u

∂y , ∂u
∂z )

Divergence operator ∇·

Divergence of u ∇ · u =
(
ex

∂
∂x + ey

∂
∂y + ez

∂
∂z
)
· (uxex + uyey + uzez)

= ∂ux
∂x + ∂uy

∂y + ∂uz
∂z

Laplace operator 4 = ∇ · ∇
= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Laplacian of u ∇2u = ∇ · (∇u)
= ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2

Double dot product u : v = ∑i ∑j uijvji
of tensors u and v

From the divergence theorem
∫

Ω ∇ · f dΩ =
∫

∂Ω f · n dΩ and by use of the product
rule ∇ · (v∇u) = ∇v · ∇u + v∇2u we get the Green’s first identity

∫
∂Ω

v
∂u
∂n

dS =
∫
Ω

∇v · ∇u dΩ +
∫
Ω

v∇2u dΩ,

where ∂u
∂n = n · ∇u and n is the unit outward pointing normal vector on the boundary

∂Ω. This is valid for any region Ω and any functions u and v.
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1 INTRODUCTION

Wave equations are partial differential equations which describe the propagation of var-
ious types of waves such as acoustic, elastic and electromagnetic waves. They are im-
portant in the modelling of important processes and phenomena in almost any field of
science and engineering. When small oscillation amplitudes are considered, linear mod-
els are allowed. In this study, we focus in particular on two time-harmonic linear wave
equations: the scalar valued Helmholtz equation concerning the propagation of acoustic
waves and the vector valued Navier equation describing the propagation of waves in an
elastic medium. These fundamental equations for time-harmonic wave propagation occur
in a number of physical applications such as underwater acoustics, medicine, and geo-
physics. They can also be used to model the scattering of time-harmonic acoustic waves
by an obstacle. In this thesis, we concentrate on scattering problems but the same method
can be used for other types of Helmholtz and Navier problems as well.

A wide range of numerical methods have been used for solving time-harmonic wave
equations. These methods can be divided into boundary and domain based methods. We
are especially interested to solve problems with varying material parameters. For such
problems, boundary based methods are not directly applicable whereas domain based
methods are more flexible in this respect. Thus, we focus our attention to domain based
methods.

Domain based formulations can be discretized, for instance, by finite difference
(FDM) or Galerkin finite element methods (FEM) (see, e.g., [48, 57]). Especially the
FEM approximation and solution of time-harmonic wave equations has received much
attention during the past two decades (see, e.g., [97]). Many efficient solution tech-
niques have been developed for the finite element equations such as domain decomposi-
tion methods [7, 8, 17, 23, 30, 33, 34, 77], fictitious domain (domain embedding) methods
[6, 32, 52, 53] and multigrid methods [12, 27, 45, 62, 98]. These methods are typically
used when the solution is based directly on the complex valued time-harmonic equations
and low order finite elements (see e.g. [10, 37, 46]).

In the FEM solution of the time-harmonic wave equation, the discretization mesh
needs to be adjusted to the wavelength of the wave. Higher frequencies require finer
meshes to reach sufficient accuracy and a typical rule is to keep a fixed number of grid
points in a wavelength. This means keeping the quantity κh fixed, where κ is the wavenum-
ber and h the mesh step size. Therefore, high frequency problems often lead to large-scale
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linear systems to be solved for which conventional solution method can not be used.

In addition to approximation error, an important consideration in the finite element
solution of time-harmonic wave problems is the so called pollution effect (see e.g. [4, 5,
57, 58] and references there in). In [58], it is shown that the relative error of the hp-version
[1] of finite element solutions in the H1 -seminorm consists of two parts. One of these
is the approximation error, which is of order

(
κh
2p
)p and the other is the pollution error,

which is of order κ
(

κh
2p
)2p, where p is the order of the basis functions. Consequently,

the relative error increases as the wavenumber increases, even if κh is kept constant. The
pollution part becomes the dominant source of the relative error at high wavenumbers.
It is known that the pollution effect can not be avoided in two- and three-dimensional
problems [4]. Thus, fixed error level would require keeping the quantity κ2h fixed, which
leads to unacceptable computational costs for high frequency problems.

To reduce the pollution error, especially in large scale problems, modifications of
the classical FEM are needed. These are, for instance, Galerkin generalized least-squares
[47], discontinuous enrichment [105], and spectral collocation [20] methods. One way to
decrease the pollution effect is to modify the polynomial basis of standard FEM so that
the local basis will consist of nonpolynomial shape functions. This is done in discontin-
uous Galerkin method [21, 31, 35, 36, 60]. Ultra weak variational formulation (UWVF)
[19, 55, 56] uses standard finite element meshes and a new kind of variational formulation
on the interfaces between the elements. It reduces the memory requirement compared to
the standard FEM, but might suffer from numerical instability. Also spectral [18, 86] and
collocation methods [5] are used to reduce the pollution effect. Higher order approxima-
tions, which are used to reduce the influence of the pollution effect, are considered on
a general level, for example, in [93]. We apply specifically the spectral element method
(SEM), which is considered in [22, 65]. This method combines the geometric flexibility
of finite elements with the high accuracy of spectral methods. The basis functions are
higher order Lagrange interpolation polynomials, and the nodes of these functions are
placed at Gauss-Lobatto (GL) collocation points. The integrals in the weak form of the
equation are evaluated with the corresponding Gauss-Lobatto quadrature formulas. As
a consequence of the choice, spectral element discretization leads to diagonal mass ma-
trices which significantly improves the computational efficiency. Moreover, when using
higher order elements, same accuracy is reached with less degrees of freedom than when
using lower order finite elements.

The discretization and solution methods mentioned above are based on handling
directly the time-harmonic equation. They all lead to large-scale discrete problems with
indefinite linear equations for which it is difficult to develop efficient iterative methods.
Furthermore, the dimension of the system increases rapidly as the wavenumber increases,
which makes the accurate solution even more challenging. An alternative is to simulate
the time-dependent equation with respect to time until time-harmonic solution is reached
(asymptotic approach). However, this approach suffers from poor convergence at least in
the case of large wavenumbers and complicated domains. In this thesis, we use the idea of
Bristeau, Glowinski, and Périaux, presented in [13, 14, 15, 16, 42], to formulate the time-
harmonic wave problem as an exact controllability problem for the time-dependent wave
equation. In other words, we try to find such initial conditions that after one time-period
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the solution and its time derivative coincide with the initial conditions. This controllability
problem is reformulated after discretization as a least squares problem, which is solved
with the preconditioned conjugate gradient (CG) algorithm. Computation of the gradient
of the function to be minimized is an essential stage of the method. In [16], the gradient
was derived on the continuous level, and the same formula was used also on the discrete
level. We discretize first the wave equation and the function to be minimized. Then, we
compute the gradient directly for the discretized problem.

Previously [50], we have used the central finite difference scheme for time dis-
cretization. That scheme is second order accurate and with a diagonal mass matrix also
fully explicit in time; the values for each time step are determined from the values of the
previous time steps. These are essential properties for computational efficiency. Only
matrix-vector products are needed in time-dependent simulation, but the scheme needs
to satisfy the CFL condition, which limits the length of the time step (see [22] for de-
tails). Now, we compare the central finite difference scheme with the fourth order ac-
curate Runge-Kutta method. While using fourth order Runge-Kutta method, explicity of
the method can be maintained with diagonal mass matrices, but still, the method is only
conditionally stable (see also [51, 81]).

The rest of the thesis is organized as follows: First, the mathematical formulations
of linear wave equations and some preliminaries are considered in Chapter 2. Then, we
present Helmholtz and Navier equations for scattering problems in Chapter 4. The formu-
lation of the exact controllability problem is considered in Chapter 5. The discretization
of the exact controllability problem is described in Chapter 6. The time discretization
is presented in Section 6.3. More precisely, for time discretization we use central finite
differences in Section 6.3.1 and fourth order Runge-Kutta scheme in Section 6.3.2. In
Chapter 7, we present the least-squares problem and consider its conjugate gradient so-
lution in Chapter 8. Computation of the gradient of the functional, which is an essential
point of the method, we have done with the adjoint state technique in Sections 7.2-7.2.2.
Algebraic multigrid method [78] (see also [2]) is used for preconditioning the conjugate
gradient algorithm (see Section 8.2). Finally, in Chapter 9, we show the performance of
the method with numerical experiments.



2 LINEARIZED WAVE EQUATIONS

Assuming that changes in velocity, density and deformation are small, it is possible to de-
scribe the propagation of mechanical waves by linear wave equations. In this chapter, we
introduce the mathematical model of linearized equations for acoustic and elastic waves
in two dimensional isotropic media. Since the material is isotropic, material parameters
are independent on the coordinate system and the material has identical properties in all
directions at a point. First we derive the Helmholtz equation in Section 2.1 and then the
Navier equation in Section 2.2.

2.1 Acoustic wave equation

Fluids are composed of moving and colliding molecules, but the fluid flow is assumed to
be a macroscopic flow with properties expressed as averages of the molecular properties.
Acoustic waves are small oscillations of pressure, which are associated with local motions
of the particles of the fluid. That is why differential equation of acoustic pressures are used
for modelling the fluid domain. The acoustic wave equation in fluid media can be derived
as a simplification of the basic equations of fluid dynamics [102]. We concentrate on fluids
which are incompressible and irrotational. We assume also the fluid to be isothermal,
i.e. temperature is constant, which implies constant viscosity. The steady-state values of
the velocity and density are denoted by v0 = 0 and ρ0. Taking these assumptions into
account, we obtain the equation of continuity

∂ρ f

∂t
+∇ · (ρ0v f ) = 0, (1)

where v f is the velocity of fluid particles, t is time, and ρ f denotes the density of fluid.
This equation is known also as the equation of mass conservation telling that mass is
neither created nor destroyed within a volume element.

Neglecting the gravity and supposing that spatial distributions of the pressure are
negligible, the momentum conservation can be expressed as
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∇p f = −ρ0
∂v f

∂t
, (2)

where p f is the pressure. After dividing the equation (2) by ρ f , approximating ρ f ≈ ρ0,
and taking divergence, we get the form

∇ ·
(

1
ρ f
∇p f

)
= −∇ ·

∂v f

∂t
. (3)

Acoustic equation of state in fluid can be written, with the adiabatic condensation
κ =

∂ρ f
ρ f ∂p f

= 1
c2ρ f

depending on the speed of sound c, in the form

∂p f

∂t
=

1
κρ0

∂ρ f

∂t
. (4)

Then, we substitute the time derivative of density from equation (1) to the equation of
state (4), and get

1
ρ f c2

∂p f

∂t
= −∇ · v f . (5)

By taking time derivative, we yield to

1
ρ f c2

∂2p f

∂t2 = −∇ ·
∂v f

∂t
. (6)

From equations (3) and (6), we form the wave equation. After adding a body force f , it
reads

1
ρ f c2

∂2p f

∂t2 −∇ ·
(

1
ρ f
∇p f

)
= f . (7)

Substituting v f = ∇φ to equation (5) and eliminating the pressure in terms of velocity
potential φ results in the another form of the acoustic wave equation

1
c2

∂2φ

∂t2 −∇ · (∇φ) = fφ. (8)

We are going to solve the time-harmonic problem with spatial variable x = (x1, x2)T

∈ R2. The time-dependence of the pressure is in the form exp(iωt). Replacing p f (x, t)
by p f = Pf (x) exp(iωt) and f (x, t) by f = F(x) exp(iωt) in equation (7), and mak-
ing an assumption of time-harmonic values of frequency ω, we get the time-harmonic
Helmholtz equation

−κ2

ρ f
Pf −∇ ·

(
1
ρ f
∇Pf

)
= F (9)

where κ = ω
c is physical parameter, called wavenumber, which describes how many

waves there is for a 2π unit. It characterizes the oscillatory behaviour of the solution and
increases, if the frequency of the waves increases.
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2.2 Elastic wave equation

The linear theory of elasticity [68] models mechanical properties of solids assuming small
deformations. With this theory several phenomena, such as seismic waves in the earth and
ultrasonic waves used to detect flaws in materials, can be described. In this section, we
will present the fundamental equations of the theory of linearized elasticity assuming
constant temperature and derive the Navier equation, which governs the propagation of
time-harmonic waves in elastic solids [44, 67].

An elastic material responds to an applied force by deforming and returns to its
original shape upon the removal of the applied force. Thus, there is no permanent defor-
mation within elastic behaviour. Elasticity can be linear or non-linear. In the linear case,
which we concentrate on, the deformation is proportional to the force used to make the
deformation. Geometric deformation of the solid is called strain and forces that occur in
the solid are described as stresses. In the case of thin solid, we have plane stress situation.
If the solid is thick, we can examine plane strain.

In 1678, Robert Hooke, on the basis of experiments with springs, stated a rule
between extension and force. This rule, commonly referred to as generalized Hooke’s law,
says that stress is a linear function of strain, where the stress assumes small displacements,
and has the following form:

σ(us) = Cε(us), (10)

where vector field us denotes the displacement, σ(us) is the stress tensor, C is the elastic
moduli tensor and ε(us) is strain tensor. In isotropic media, the elastic moduli tensor C
is invariant under rotations and reflections.

Diagonal components of σ(us) present normal stresses and the other components
present shear stresses [59]. The strain tensor is defined through the derivatives of the
displacement vector usi such that

ε(usik) =
1
2

(
∂usi
∂xk

+
∂usk
∂xi

+
∂usl
∂xi

∂usl
∂xk

)
. (11)

For infinitesimal strains (small deformations), | ∂ui
∂xi
| � 1, the strains are related to the

displacements by the linearized strain tensor ε, which is defined by

ε(us) =
1
2

(
∇us + (∇us)T

)
(12)

=

(
∂us1
∂x1

1
2( ∂us1

∂x2
+ ∂us2

∂x1
)

1
2( ∂us1

∂x2
+ ∂us2

∂x1
) ∂us2

∂x2

)
, (13)

where ∇us is the Jacobian matrix of us. Normal strain εxixi = ∂ui
∂xi

is the change of
length in xi-direction divided by the length in xi-direction and shear strain εxixj = εxjxi =
1
2( ∂ui

∂xj
+ ∂uj

∂xi
) tells that the angle between xi and xj axis would be diminished by 2εxixj .
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This approximation does not apply in situations of discontinuities (e.g. deformations
involving large angle shears) in properties of the physical medium.

Tensor C is a fourth order tensor of elastic constants of the medium with compo-
nents Cijkl = λsδijδkl + µs(δikδjl + δilδjk), where δij is the Kronecker delta and i, j, k, l =
1, . . . , 2. In general, Cijkl would have 34 = 81 independent components in R3. Because
of symmetry of stress and strain tensors Cijkl = Cjikl = Cijlk, and Cijkl = Cklij by
energy considerations. This reduces the number of material constants to 21 in the three-
dimensional case and to 6 in the two-dimensional case. For isotropic two dimensional
material, the number of essential elastic constants reduces to two and the equation (10)
can be written in the form

σ(us) = λs(∇ · us)I + 2µsε(us) (14)

=

(
(2µs + λs) ∂us1

∂x1
+ λs

∂us2
∂x2

µs( ∂us1
∂x2

+ ∂us2
∂x1

)
µs( ∂us1

∂x2
+ ∂us2

∂x1
) (2µs + λs) ∂us2

∂x2
+ λs

∂us1
∂x1

)
, (15)

where I is identity matrix and λs and µs are the Lamé parameters. The Lamé parameters
λs = C1122 and µs = C1212 can be expressed also as

µs =
E

2(1 + ν)
, λs =

Eν

(1 + ν)(1− 2ν)
, (16)

where E is the Young modulus and ν is the Poisson ratio 0 < ν < 1
2 . Young modulus E

is a measure of the stiffness of the solid. It describes how much force is needed to attain
the given deformation. Poisson ratio is a measure of the compressibility of the solid. It is
the ratio of lateral to longitudinal strain in a uniaxial tensile stress.

When the mass is constant, conservation of linear momentum can be presented in
the form:

ρs

(
∂v
∂t

+ v · ∇v
)
−∇ · σ(us) = f, (17)

where ( ∂v
∂t + v · ∇v) is the material derivative of velocity and f is the source function.

For small deformations, we can assume, that v · ∇v ≈ 0 and v ≈ ∂us
∂t . Supposing that

the body is subject to a body force f, the equation of motion can be presented in the form:

ρs
∂2us

∂t2 −∇ · σ(us) = f, (18)

where component ij of the stress tensor σ(us) is

σij =
E

1 + ν
εij +

Eν

(1 + ν)(1− 2ν)
εkkδij

= 2µsεij + λsεkkδij.

In general, we assume the medium to be heterogeneous. So, the partial derivatives in
∇ · σ apply to λs and µs as well as to the displacement. In homogeneous medium, the
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formula is not so complicated, and the equation (18) can be presented in component form
as follows:

 −(2µs + λs) ∂2u1
∂x2

1
− µs

∂2u1
∂x2

2
− (µs + λs) ∂2u2

∂x1∂x2
+ ρs

∂2u1
∂t2 = f1,

−(2µs + λs) ∂2u2
∂x2

2
− µs

∂2u2
∂x2

1
− (µs + λs) ∂2u1

∂x1∂x2
+ ρs

∂2u2
∂t2 = f2.

We will consider the propagation of time-harmonic waves with angular frequency
ω > 0 such that the time-dependence is exp(iωt). So we get the time-harmonic version
of the equation (18) by replacing us(x, t) by us = Us(x) exp(iωt) and f(x, t) by f =
F(x) exp(iωt). Then, the stress tensor σ(us) is

σ(us) = (λs(∇ ·Us)I + µs(∇Us + (∇Us)T)) exp(iωt) = σ(Us) exp(iωt), (19)

or, in component form

σjk(us) = λs

(
∂u1 exp(iωt)

∂x1
+

∂u2 exp(iωt)
∂x2

)
δij + µs

(
∂uj exp(iωt)

∂xk
+

∂uk exp(iωt)
∂xj

)
,

where j = 1, 2. Now, we have got the time-harmonic elasticity equation

−ρsω
2Us −∇ · σ(Us) = F. (20)

which has the components

−ρsω
2Us j +

2

∑
k=1

∂σjk(Us)
∂xk

= Fj, j = 1, 2. (21)

Inserting the time-harmonic stress tensor as given by (19) into the time-harmonic equation
of motion (20) and assuming constant material parameters we yield to the following form
of the Navier equation:

−ρsω
2Us − µs∇2Us − (µs + λs)∇(∇ ·Us) = F, (22)

which can be written in the component form

 −(2µs + λs) ∂2u1
∂x2

1
− µs

∂2u1
∂x2

2
− (µs + λs) ∂2u2

∂x1∂x2
− ρsω

2Us1 = F1,

−(2µs + λs) ∂2u2
∂x2

2
− µs

∂2u2
∂x2

1
− (µs + λs) ∂2u1

∂x1∂x2
− ρsω

2Us2 = F2.
(23)

The wave equation in fluid media can also be derived as a special case of the elas-
ticity equation (18). The displacement vector in fluid domain uf can be replaced by the
corresponding pressure p f = −λ f∇ · uf. Then we have to take account, that in the solid
media µs > 0 whereas in the fluid media µ f = 0. Taking the divergence of equation
(18) and substituting equation (14) into equation (18) yields to the wave equation in fluid
media
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1
ρ f c2

∂2p f

∂t2 −∇ ·
(

1
ρ f
∇p f

)
= f , (24)

where wave speed c =
√

λ f
ρ f

and source term f = −∇ · f f .



3 EXTERIOR DOMAIN PROBLEMS

Acoustic and elastic wave problems are formulated in unbounded, i.e. exterior, two-
dimensional domains. The mathematical formulation of exterior problems, including the
conditions of existence and uniqueness of the solution, are presented, for instance, in
[24, 69, 88, 100, 101, 103]. In this chapter, we briefly describe this theory in the case of
acoustic waves, which are modeled by the Helmholtz equation. The elastic wave problem
can be treated in a similar manner.

We consider the scattering of a time-harmonic acoustic plane wave by a bounded,
open obstacle Θ ⊂ RN. We denote the boundary of the scattering obstacle by Γ0. Further-
more, we define the weighted function spaces in the exterior domain G = RN \ (Θ ∪ Γ0)
for a, b ∈ R and k ∈ N as follows:

L2
loc(G) = { f ∈ L2(D) for all compact sets D ⊂ G},

L2
a(G) = { f ∈ L2

loc(G) such that ρa f ∈ L2(G)},

L2
<a(G) =

⋂
b<a

L2
b(G), L2

>a(G) =
⋃
b>a

L2
b(G),

Hk
loc(G) = { f ∈ Hk(D) for all compact sets D ⊂ G},

Hk
a(G) = { f ∈ Hk

loc(G) such that f , f ′, . . . , f (k) ∈ L2
a(G)},

H̊k
a(G) = {the closure of C∞

0 (G) in the norm of Hk
a},

Hk
<a(G) =

⋂
b<a

Hk
b(G), H̊k

<a(G) =
⋂
b<a

H̊k
b(G),

where ρ(x) = (1 + r2)1/2 is a weight function with r = ‖x‖2. Then, we discuss the
exterior Dirichlet problem for the Helmholtz equation with constant coefficients

−κ2Pf (x)−∇2Pf (x) = F, in G, (25)

Pf (x) = 0, on Γ0, (26)
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Γ 0
incident

wavescattered
waveΘ

G

FIGURE 1 Scattering by the obstacle Θ in the exterior domain G = RN \ (Θ ∪ Γ0).

where F ∈ L2
loc(G) and κ > 0. In addition, we need the Sommerfeld radiation condition

−iκPf +
∂Pf

∂r
∈ L2

>−1/2(G) (27)

where i is the imaginary unit, and the radial derivative is defined by

∂

∂r
=

x · ∇
r

. (28)

Definition 3.1 The outgoing solution to the exterior Dirichlet problem for the equation
(25) with F ∈ L2

loc(G) is the function Pf ∈ H̊1
<−1/2(G) which satisfies the condition

(27) and ∫
G

(
∇Pf · ∇φ̄− κ2Pf φ̄

)
dx =

∫
G

Fφ̄ dx, ∀ φ ∈ C∞
0 (G). (29)

The spectrum of the negative Laplace operator, −∇2, for an exterior domain G is given
by the set [0, ∞). By self-adjointness of the operator and using Rellich’s estimate, it can
be seen that this spectrum is continuous. Thus, the operator −

(
κ2 +∇2) is injective and

its range is dense in L2(G), but its inverse is not continuous. Since there does not exist a
solution for all F ∈ L2(G), we need to both reduce the set of admissible right-hand sides
and extend the solution space.

It is known that the exterior Dirichlet problems for Helmholtz equation are uniquely
solvable if κ2 ∈ C \ [0, ∞). Since all the complex numbers with nonzero imaginary part
belong to this resolvent set (complement of the spectrum), there exists a unique solution
for (25)-(26), in H̊1(G) for all F ∈ L2(G), where κ2 is replaced by (κ2 + iτ) ∈ C with
τ > 0. Thus, we put the Helmholtz equation in the form

−
(

κ2 + iτ
)

Pf τ
−∇2Pf τ

= F, (30)

and use the limiting absorption principle [25] to show that Pf = limτ→0 Pf τ
exists in

some weaker topology. This principle is well defined for all F ∈ L2
>1/2(G), and we

obtain a unique solution to the Dirichlet problem for the Helmholtz equation for any
κ > 0.

Although the elastic wave problem is more complicated, it can be treated basically
in the same way as the Helmholtz problem (see, e.g., [101]). Proving the existence and
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uniqueness of the solution for the exterior problems with varying coefficients, such as

−κ(x)2

ρ f (x)
Pf −∇ ·

(
1

ρ f (x)
∇Pf

)
= F, in G,

Us = 0, on Γ0,

and

−ω2ρs(x)Us −∇ · σ(Us) = F, in G,
Us = 0, on Γ0,

is more challenging than for the problem with constant coefficients, but it can be done by
using an approach related to the methology described above.

To solve the scattering problem numerically, we need an artificial boundary con-
dition that is an approximation of the Sommerfeld radiation condition. This boundary
condition is set on the exterior artificial boundary, and it ensures that the solution approx-
imates the restriction of the solution in the original unbounded region. In what follows,
we consider acoustic and elastic problems with varying coefficients in bounded domains.



4 TIME-HARMONIC EQUATIONS WITH BOUNDARY
CONDITIONS

The equations need to be completed by boundary conditions to get a well-posed and phys-
ically meaningful problem. The boundary conditions can be divided to the conditions on
physical boundaries and artificial boundaries. Dirichlet and Neumann boundary condi-
tions are examples of the physical boundary conditions. Because of their simplicity, they
are also the most common boundary conditions imposed on a model problem. Dirichlet
boundary conditions give the value of the unknown at the given boundary whereas Neu-
mann boundary conditions give the value of the gradient of the unknown at the boundary.
Neumann boundary condition models a free boundary, where no external forces are act-
ing. Robin boundary condition is a combination of Dirichlet and Neumann boundary
conditions. Absorbing boundary condition is an example of the artificial boundary con-
ditions (see, e.g. [3, 9, 10, 28, 39, 46, 64]). These conditions are used to truncate the
original unbounded domain.

4.1 Helmholtz problem in bounded domains

The Helmholtz equation is a fundamental equation for time-harmonic wave propagation.
It occurs in a number of physical applications such as underwater acoustics, medicine,
and geophysics. It can also be used to model the scattering of time-harmonic acoustic
waves by an obstacle.

We consider the scattering of a time-harmonic acoustic plane wave by a bounded
obstacle in a two-dimensional domain. The scattering can be modelled by the Helmholtz
equation with an absorbing boundary condition

−κ(x)2

ρ f (x)
Pf −∇ ·

(
1

ρ f (x)
∇Pf

)
= F, in Ω, (31)

Pf = 0, on Γ0, (32)

−iκ(x)Pf +
∂Pf

∂n
= Yext, on Γext, (33)
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Γext

Γ0

Ω
Θ

FIGURE 2 Obstacle Θ, domain Ω, and the two parts of the boundary ∂Ω = Γ0 ∪ Γext of the
domain Ω.

where Pf (x) denotes the (complex-valued) total acoustic pressure field. The total field
is sum of the scattered wave Pf scat and the incident plane wave Pf inc. The Dirichlet
boundary condition sets the value for the pressure on Γ0, and F and Yext are source terms
due to the incident plane wave.

The problem setting is illustrated in Figure 2, where Θ ⊂ R2 denotes the obstacle
and Ω ⊂ R2 is the domain between the obstacle and the absorbing boundary Γext. The
boundary of the obstacle is denoted by Γ0. On the absorbing boundary Γext, we impose the
conventional absorbing boundary condition [28]. This is the simplest alternative and not
accurate in approximating the Sommerfeld radiation condition. However, it is sufficient
for the presentation of the controllability method of this thesis. Vector n denotes the
outward normal vector to Ω, and wavenumber and density of the material are denoted by
κ(x) and ρ f (x), respectively. The wavenumber is related to the angular frequency ω and
to the speed of sound c(x) by the formula κ(x) = ω

c(x) . The corresponding wavelength is

given by `(x) = 2π
κ(x) .

The time-harmonic incident plane wave is given by Pf inc(x) = exp(iω · x), where
i is the imaginary unit and the vector ω gives the propagation direction. The angular
frequency equals the euclidean norm of ω, that is ω = ‖ω‖2. Then, the functions F and
Yext, in the equations above, are of the form

F = −κ(x)2

ρ f (x)
Pf inc(x)−∇ ·

(
1

ρ f (x)
∇Pf inc(x)

)
, (34)

Yext = −iκ(x)Pf inc(x) +
∂Pf inc(x)

∂n
. (35)

4.2 Navier problem in bounded domains

In an elastic and isotropic body Ω ⊂ R2 with density ρs(x), the propagation of time-
harmonic waves with angular frequency ω is governed by the Navier equation
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−ω2ρs(x)Us −∇ · σ(Us) = F in Ω, (36)

where Us denotes the displacement field Us(x) = (u1(x), u2(x))T, which depends on
the spatial variable x = (x1, x2)T ∈ R2.

The boundary of the domain Ω, marked as ∂Ω, is divided into two distinct parts (see
Figure 2). The boundary Γ0 is assumed to be rigid, whereas on the artificial boundary Γext
we impose an absorbing boundary condition

Us = 0 on Γ0, (37)

iωρs(x)BUs + σ(Us)n = Gext on Γext, (38)

where B is a matrix [28, 87] such that

B =
(

n1 n2
n2 −n1

)(
cp 0
0 cs

)(
n1 n2
n2 −n1

)
. (39)

The vector n = (n1, n2)T is the outward pointing normal vector on Γext. Coefficients
cp and cs represent the speed of the pressure waves (P-waves) and the speed of the shear
waves (S-waves), respectively, and are formulated as

cp =

√
λs(x) + 2µs(x)

ρs(x)
, cs =

√
µs(x)
ρs(x)

. (40)

The P-waves move in a compressional motion, while the motion of the S-waves is per-
pendicular to the direction of wave propagation [99].

If the time-harmonic incident plane wave is given by Usinc(x) = exp(iω · x), the
functions F and Gext, in the equations above, are of the form

F = −ω2ρs(x)Usinc(x)−∇ · σ(Usinc(x)), (41)

Gext = iωρs(x)BUsinc(x) + σ(Usinc(x))n. (42)



5 EXACT CONTROLLABILITY PROBLEM

Exact controllability is well-known and extensively researched topic within classical wave
equations [16]. The basic idea of exact controllability is to have preassigned initial and
final states such that beginning from the initial state, the final state can be achieved by
some control. Exact controllability can be boundary [26, 40, 83, 89], internal [49, 74, 75]
or pointwise controllability depending on where the control has been set. Since pointwise
controllability can be handled as a special case of internal controllability near one point
[29], both internal and pointwise controllability are also known as distributed controlla-
bility [72].

With exact controllability concept, control can be applied to initial conditions. Thus,
it is possible to find time periodic solutions to wave equations without solving the Helmholtz
or Navier problem. This can be done by applying a method, introduced in [13], to the orig-
inal time-dependent wave equation. The main idea of this method is ispired by the Hilbert
Uniqueness Method (HUM) which was introduced by Lions [71] as a systematic method
to address controllability problems for partial differential equations.

By exact controllability of the problem we mean that there is a system in a given
initial state (u(0), ∂u

∂t (0)) and a control e = (e0, e1) such that the given final state
(u(T), ∂u

∂t (T)) can be achieved [73]. To achieve the time-harmonic solution, we mini-
mize the difference between inital conditions and the corresponding variables after one
time period. Proceeding this way, the problem of time-harmonic wave scattering can be
handled with time-dependent equations as a least squares problem, which can be solved
by a conjugate gradient algorithm. The exact controllability approach has been shown
to be robust but quite CPU time demanding since the solution of forward and backward
wave equations and preconditioning are required at each iteration [16]. There is, how-
ever, strong experimental evidence that the minimization process is independent of certain
problem parameters which leads to optimal order of computational cost in corresponding
problem configurations. Numerical examples indicate this feasibility of the method in
Chapter 9.
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5.1 Helmholtz problem

Instead of solving directly the time-harmonic equation, we return to the corresponding
time-dependent equation and look for time-periodic solution. Direct time-integration of
the wave equation can be used to reach the time-periodic case, but convergence is usually
too slow to be useful in practice. As the results in [16] indicate, the convergence can be
vastly improved by control techniques.

Solution of the time-harmonic equation (31)-(33) is equivalent to finding a periodic
solution for the corresponding time-dependent wave equation. The period T correspond-
ing to the angular frequency ω is given by 2π

ω , and the T-periodic solution can be achieved
by controlling the initial conditions such that the solution at time T coincides with the ini-
tial conditions. To describe the approach in detail, we introduce the Hilbert space Z f for
the initial conditions e = (e0, e1) ∈ Z f by

Z f = V × L2(Ω), (43)

where

V = {v ∈ H1(Ω) such that v = 0 on Γ0}. (44)

Then, we have the following exact controllability problem: Find initial conditions
e ∈ Z f such that equations

1
ρ f (x)c(x)2

∂2p f

∂t2 −∇ ·
(

1
ρ f (x)

∇p f

)
= f , in Q = Ω× [0, T], (45)

p f = 0, on γ0 = Γ0 × [0, T], (46)

1
c(x)

∂p f

∂t
+

∂p f

∂n
= yext, on γext = Γext × [0, T], (47)

p f (x, 0) = e0 in Ω, (48)
∂p f

∂t
(x, 0) = e1 in Ω, (49)

p f (x, T) = e0 in Ω, (50)
∂p f

∂t
(x, T) = e1 in Ω, (51)

hold with

f (x, t) = −κ(x)2

ρ f (x)
p f inc(x, t)−∇ ·

(
1

ρ f (x)
∇p f inc

)
, (52)

yext(x, t) =
∂p f inc(x, t)

∂n
− Re(iκUinc exp(−iωt)), (53)
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where p f inc(x, t) = Re(Uinc(x) exp(−iωt)).
The spectral element discretization of the problem is based on the weak formulation

of the classical wave equation (45)-(47): Find p f satisfying p f (t) ∈ V for any t ∈ [0, T]
and

∫
Ω

1
ρ f (x)c(x)2

∂2p f

∂t2 v dx+
∫
Ω

1
ρ f (x)

∇p f · ∇v dx +
∫

Γext

1
c(x)ρ f (x)

∂p f

∂t
v ds (54)

=
∫
Ω

f v dx +
∫

Γext

1
ρ f (x)

yextv ds

for any v ∈ V and t ∈ [0, T].

5.2 Navier problem

Solving of the time-harmonic equation (36),(37)-(38) is equivalent to finding a time-
periodic solution for the corresponding time-dependent wave equation

ρs(x)
∂2us

∂t2 −∇ · σ(us) = f, in Q = Ω× [0, T], (55)

us = 0, on γ0 = Γ0 × [0, T], (56)

B
∂us

∂t
+ σ(us)n = gext, on γext = Γext × [0, T], (57)

where us = (U1, U2)T, f = (F1, F2), g0 = (G01, G02), and gext = (Gext1, Gext2)T. In
addition to the system (55)-(57), we take into account the initial conditions

us(x, 0) = e0, in Ω, (58)
∂us(x, 0)

∂t
= e1, in Ω. (59)

For the weak formulation of the problem (55)-(59), we introduce the function space
V by V = {y ∈ H1(Ω)×H1(Ω) such that y = 0 on Γ0}. After introducing the Hilbert
space Zs for the initial conditions e = (e0, e1)T ∈ Zs by

Zs = V× (L2(Ω)× L2(Ω)), (60)

we formulate the exact controllability problem as follows: Find initial conditions e =
(e0, e1)T such that equations (55)-(59) hold with the terminal conditions

us(x, T) = e0 in Ω, (61)
∂us(x, T)

∂t
= e1 in Ω. (62)
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The time period corresponding to the angular frequency ω is given by T = 2π
ω , and

the T-periodic solution can be achieved by controlling the initial conditions such that the
terminal conditions (61)-(62) are equal to the initial conditions (58)-(59) at the end of the
computation.

By multiplying the equation (55) with any test function v in the space V, using
the Green’s formula and substituting the boundary conditions we get the following weak
formulation: Find us satisfying us(t) ∈ V for any t ∈ [0, T] and∫

Ω

ρs(x)
∂2us

∂t2 · v dx+
∫
Ω

σ(us) : ε(v) dx +
∫

Γext

B
∂us

∂t
· v ds (63)

=
∫
Ω

f · v dx +
∫

Γext

gext · v ds

for any v ∈ V and t ∈ [0, T].



6 DISCRETIZATION

This section is about the numerical approximation of the wave equation. In order to
produce an approximate solution of partial differential equations, the given domain is dis-
cretized into a collection of elements. The elements are associated with a mesh, which
defines the geometry of the domain. In two-dimensional domain, the mesh is built, for ex-
ample, from triangular or quadrilateral elements. In three-dimensional domain, which is
the most natural domain to solve physical phenomena, volume elements such as tetrahedra
or hexahedra are used. The accuracy can be increased by using appropriate elements [38].
The size of the used elements depends on the problem and different sizes of elements can
be used in a domain. The error of the approximation decreases as the size of elements
decreases while the number of elements increases. Neighboring elements are connected
by particular points, which are called nodes. The elements and nodes are numbered both
locally and globally and geometric properties, such as coordinates, are generated.

Basis functions consist of sets of polynomials and are used to give the discrete val-
ues of the approximated solution. In particular, the geometry of the elements is described
by a mapping of a reference element onto a possible deformed element in the physical
coordinates. When the mapped basis functions coincide with the geometry functions, the
element is referred to as isoparametric.

Discretization methods play a big role in efficiency of the controllability method.
The key factor in developing efficient solution methods is the use of high order approx-
imations without computationally demanding matrix inversions. We have made a move
towards meeting these requirements by using the spectral element method [22] for the
spatial discretization of the wave equation. It allows convenient treatment of complex ge-
ometries and varying material properties. The basis functions are higher order Lagrange
interpolation polynomials, and the nodes of these functions are placed at Gauss-Lobatto
collocation points. The integrals in the weak form of the equation are evaluated with the
corresponding Gauss-Lobatto quadrature formulas. As a consequence of the choice, spec-
tral element discretization leads to diagonal mass matrices which significantly improves
the computational efficiency of the explicit time-integration used. Moreover, when using
higher order elements, same accuracy is reached with less degrees of freedom than when
using lower order finite elements.

Since the spectral element method can be described as a finite element method, in
which higher order spectral method is used within each element, we first briefly consider
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the finite element method in Section 6.1. Another reason for presenting some background
of the finite element method is the fact that the special case of the lowest order spectral
element corresponds to the bilinear finite element. In Section 6.2, the spectral element
method is applied to the weak form of the equations in the space domain. Then, finite
difference and Runge-Kutta schemes are used to advance the system in time in Section
6.3.

6.1 Finite element method

The Finite element method (FEM) is a general technique for the numerical solution of
PDEs in structural engineering [106], which originates in the 1950’s in the field of struc-
tural analysis in aircraft industry. It was thought to be a generalization of methods used
earlier for beams, frames and plates by subdividing the structure into smaller parts. FEM
has become one of the main computing tools of scientists and engineers. It has been used
in solid and fluid mechanics to solve, for instance, elasticity, plasticity and fluid-structure
interaction problems. In a higher order finite element method, which is called p-FEM, the
basis functions are higher order Lagrange polynomials, and the nodes of these functions
are placed at regular uniform nodal points in each element. According to [70], with this
kind of distribution of the nodal points, the accuracy is not as good as the one achieved
with the spectral element method. Also mass lumping (i.e. creating diagonal mass matri-
ces) might be a computationally inefficient operation with FEM.

6.2 Spectral element method

The spectral element method (SEM) was pioneered in the mid 1980’s by Anthony Patera
[85] and Yvon Maday [76], and it combines the geometric flexibility of finite elements
[59, 66] with the high accuracy of spectral methods [18]. When using SEM, the physical
domain is typically divided into nonoverlapping quadrilateral elements, but also triangular
elements can be used [63, 11]. Contrary to quadrilateral spectral elements, mass matrices
are not generally diagonal with triangular elements [95]. Whether mass matrices are diag-
onal or not, the computational effort is larger on triangular elements than on quadrilateral
elements. The reason for this is that triangles are not tensor-product elements, and hence
the computation of the derivatives involves all collocation point values on elements. Con-
sequently, the cost of computing derivatives is higher on triangles than on quadrilaterals.
Moreover, accuracy is slightly better on quadrilaterals than on triangles, and condition
number of the stiffness matrices grows faster for triangles than quadrilaterals [84]. At
present, it seems that triangle based SEM is competitive with the quadrilateral one only
if the domain Ω has a curved shape. These are the reasons why we have chosen to use
quadrilateral elements and the associated polynomial spectral basis. A detailed compar-
ison of SEM on quadrilaterals and triangles is made in [84], and quadrature formulas
needed for quadrilateral and triangle based methods are recently presented, for instance,
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in [22] and [96], respectively.
After the domain is decomposed into elements, a local polynomial basis is intro-

duced in each element. These basis functions are explained in the next section. The
degrees of freedom associated with the basis functions are situated at the Gauss-Lobatto
quadrature points of the quadrilateral. This is the main difference between SEM and
p-FEM.

The computational efficiency of the method is based on the use of the Gauss-Lobatto
quadrature rule in the computation of the finite element matrices. It provides lumped mass
matrices without reducing the order of accuracy and leads to efficient time-dependent
simulation.

FIGURE 3 Spectral element of order r = 1. FIGURE 4 Spectral element of order r = 4.

6.2.1 Basis functions

The spectral element method has polynomial basis functions of degree r in each spatial
dimension, and integrals over the elements are evaluated using numerical quadrature. On
a reference element [0, 1]2, we introduce a set of local basis functions consisting of La-
grange polynomials of degree r. More precisely, we first map each element back to the
reference domain using the invertible local mapping Gi : Ωre f = [0, 1]2 → Ωi.

In each direction of the reference element, we introduce a set of Gauss-Lobatto
(GL) points ξi, i = 1, . . . , r + 1,∈ [0, 1]. The rth order GL quadrature points in the one-
dimensional reference element [0, 1] are the zeroes of x(1− x)L

′
r(2x − 1), x ∈ [0, 1],

where

L
′
r(x) =

2r− 1
r

(
Lr−1(x) + xL

′
r−1(x)

)
− r− 1

r
L
′
r−2(x) (64)

is the derivative of rth degree Legendre polynomial Lr. The sequence of polynomials Lr
is given by the recursion formula
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L0(x) = 1,
L1(x) = x,
Lr(x) = 2r−1

r xLr−1(x)− r−1
r Lr−2(x), r > 1.

(65)

The rth order basis functions on the interval [0, 1], constructed as a set of Lagrange inter-
polants,

ϕ̂j(ξi) =
r+1

∏
p=1,p 6=j

(
ξi − ξp

ξ j − ξp

)
, j = 1, . . . , r + 1 (66)

are uniquely determined by the requirement that each function has the value one at one
Gauss-Lobatto quadrature point and zero at the remaining quadrature points

ϕ̂j(ξi) =
{

1 if i = j
0 if i 6= j.

(67)

Quadrature points and the set of basis functions of the reference element in higher
dimensions are achieved by products of the (r + 1) one-dimensional Lagrange inter-
polants ϕ̂j(ξi), j = 1, . . . , r + 1. For example in the two-dimensional case, the Lagrange
interpolant associated with the ijth grid node, is defined as

ϕ̂ij(ξ, ζ) = ϕ̂i(ξ)ϕ̂j(ζ) =
r+1

∏
p=1,p 6=i

(
ξ − ξp

ξi − ξp

) r+1

∏
q=1,q 6=j

(
ζ − ξq

ξ j − ξq

)
, j = 1, . . . , r + 1.

The coordinate system in the reference element is formed by ξ and ζ. The coordinate of
the ith grid node in the direction of ξ is marked as ξi, whereas ζ j is the coordinate of the
jth node in the direction of ζ.

By definition, these polynomials have the fundamental property that they vanish at
all but one of the GL points. The mapping between the reference element and ith element
is defined such that Gi(ξ, ζ) = x ∈ Ωi.

6.2.2 Discrete weak formulation

The spectral element method (as well as the finite element method) adds contributions
from all individual elements to the global solution. Therefore, each element is calculated
independently and needs a local numbering. The first discretization step consists in divid-
ing the domain Ω into Ne disjoint quadrilateral elements. We denote the elements by Ωi,
i = 1, . . . , Ne, and assume that Ω =

⋃Ne
i=1 Ωi, i.e., the mesh coincides with the domain

exactly. After the domain Ω is divided into a finite number of elements, each element is
associated with a finite number of nodes. Each of Ne elements is individually mapped to
a reference element Ωref = [0, 1]2. The use of reference elements is based on affine map-
pings Gi : Ωref → Ωi such that Gi(Ωref) = Ωi. We make use of this mapping to make
transformations from the physical domain to the reference domain, and on the contrary.
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The spectral element method is obtained from the weak formulations (54) and (63)
by restricting the problem in the infinite dimensional spaces V and V into finite dimen-
sional subspaces Vr

h ⊂ V and Vr
h ⊂ V, respectively. First, we define the finite dimen-

sional space Vr
h by

Vr
h = {vh ∈ V such that vh|Ωi ◦ Gi ∈ Qr}, (68)

where

Qr(Ωi) = {v(ξ, ζ) =
r

∑
p=0

r

∑
q=0

apqξ pζq, apq ∈ R} (69)

is the set of polynomials of order r in R2. The quadrilateral mesh is assumed to satisfy
the usual regularity assumptions for a finite element mesh [66].

The basis functions ϕn for the space Vr
h are constructed with the help of the basis

functions ϕ̂jk, j, k = 1, . . . , r + 1, on the reference element Ωref. These functions are
Lagrange interpolants of the Gauss-Lobatto integration points in Ωref and can be writ-
ten as a product of two one dimensional basis functions which are polynomials of order
r. Then, for each basis function ϕn for Vr

h we can identify a basis function ϕ̂jk such
that ϕn|Ωi ◦ Gi = ϕ̂jk (see [22] for details). Based on these definitions we can write
the semidiscrete weak formulation of the wave equation (45)-(47): Find p f h satisfying
p f h(t) ∈ Vr

h for any t ∈ [0, T] and

∫
Ω

1
ρ f (x)c(x)2

∂2p f h
∂t2 vh dx+

∫
Ω

1
ρ f (x)

∇p f h · ∇vh dx +
∫

Γext

1
c(x)ρ f (x)

∂p f h
∂t

vh ds (70)

=
∫
Ω

f vh dx +
∫

Γext

1
ρ f (x)

yextvh ds,

for all vh ∈ Vr
h and t ∈ [0, T]. The dimension of the space Vr

h is the number of Gauss-
Lobatto points of the quadrilateral mesh and we denote this number by Ndof.

The finite element subspace Vr
h of V is given by

Vr
h = {y = (y1, y2) ∈ V such that yk|Ωi ◦ Gi ∈ Qr, k = 1, 2}, (71)

where Qr is the set of polynomials of order r in each variable in space. The semidiscrete
weak formulation of the wave equation (55)-(57): Find ush satisfying ush(t) ∈ Vr

h for
any t ∈ [0, T] and∫

Ω

ρs(x)
∂2ush

∂t2 · vh dx+
∫
Ω

σ(ush) : ε(vh) dx +
∫

Γext

B
∂ush

∂t
· vh ds (72)

=
∫
Ω

f · vh dx +
∫

Γext

gext · vh ds

for any vh ∈ Vr
h and t ∈ [0, T]. The dimension of the space Vr

h is two times the number
of Gauss-Lobatto points of the quadrilateral mesh, i.e. 2Ndof.
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6.2.3 Semidiscretized equation

After the spectral element discretization of the discrete variational problems (70) and (72),
the both wave equations can be presented as semidiscrete equations of the form

M∂2u
∂t2 + S ∂u

∂t
+Ku = F , (73)

where M is the mass matrix, S is a damping term due to the absorbing boundary condi-
tion,K is the stiffness matrix, and F the source term. Only terms along the boundary Γext
contribute to the nonzero entries of the matrix S . The time-dependent vector of unknowns
u determines the global solution at each Gauss-Lobatto point in the mesh.

Acoustic wave equation

In the case of the acoustic wave equation, we denote by u ∈ RNdof the vector containing
the values of the function p f h (total pressure) at the Gauss-Lobatto points of the quadri-
lateral mesh. The entries of the Ndof × Ndof matrices M, S , and K are given by the
formulas

Mij =
∫
Ω

1
ρ f (x)c(x)2 ϕi ϕjdx, (74)

Sij =
∫

Γext

1
ρ f (x)c(x)

ϕi ϕjds, (75)

Kij =
∫
Ω

1
ρ f (x)

∇ϕi · ∇ϕjdx, (76)

and the components of the vector F are of the form

Fi =
∫
Ω

f ϕidx +
∫

Γext

1
ρ f (x)

yextϕids. (77)

Elastic wave equation

When the elastic wave equation is considered, u ∈ R2Ndof contains the nodal values of
the displacement us(x, t) at time t. Then, M, S , and K are 2× 2 block matrices and F
is a block vector as follows:

M =
(
M11 0

0 M22

)
, S =

(
S11 S12
S21 S22

)
, K =

(
K11 K12
K21 K22

)
, F =

(
F1
F2

)
.

The components of these block forms are
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(M11)ij =
∫
Ω

ρs(x)ϕj ϕi dx, (78)

(M22)ij =
∫
Ω

ρs(x)ϕj ϕi dx, (79)

(S11)ij =
∫

Γext

(
cpn2

1 + csn2
2

)
ϕj ϕi ds, (80)

(S12)ij =
∫

Γext

(cp − cs)n1n2ϕj ϕi ds (81)

(S21)ij =
∫

Γext

(cp − cs)n1n2ϕj ϕi ds (82)

(S22)ij =
∫

Γext

(
cpn2

2 + csn2
1

)
ϕj ϕi ds, (83)

(K11)ij =
∫
Ω

(
λs(x)

∂ϕj

∂x1

∂ϕi

∂x1
+ 2µs(x)

(
∂ϕj

∂x1

∂ϕi

∂x1
+

1
2

∂ϕj

∂x2

∂ϕi

∂x2

))
dx, (84)

(K12)ij =
∫
Ω

(
λs(x)

∂ϕj

∂x2

∂ϕi

∂x1
+ µs(x)

∂ϕj

∂x1

∂ϕi

∂x2

)
dx, (85)

(K21)ij =
∫
Ω

(
λs(x)

∂ϕj

∂x1

∂ϕi

∂x2
+ µs(x)

∂ϕj

∂x2

∂ϕi

∂x1

)
dx, (86)

(K22)ij =
∫
Ω

(
λs(x)

∂ϕj

∂x2

∂ϕi

∂x2
+ 2µs(x)

(
1
2

∂ϕj

∂x1

∂ϕi

∂x1
+

∂ϕj

∂x2

∂ϕi

∂x2

))
dx, (87)

(F1)i =
∫
Ω

f1ϕi dx +
∫

Γext

gext1ϕi ds, (88)

(F2)i =
∫
Ω

f2ϕi dx +
∫

Γext

gext2ϕi ds, (89)

where i, j = 1, . . . , Ndof. By Ndof we denote the number of degrees of freedom (DOF) in
each space variable, which is also the total number of Gauss-Lobatto points in the space
discretization.

The computation of element matrices and vectors involves the integration over ele-
mentwise subregions. Evaluating these integrals analytically is usually complicated, even
impossible. That is why numerical integration is used. In practice, we replace integrals
by finite sums, in which we use Gauss-Lobatto weights and nodal points. The values of
these sums are computed element by element with the Gauss-Lobatto integration rule.
Collocation points are now the nodes of the spectral element. All but one of the shape
functions will be zero at a particular node. Thus, Mij = 0 for i 6= j, which means that
the matrix M is diagonal.
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6.3 Time discretization

The time interval [0, T] is divided into N timesteps, each of length ∆t = T/N. After
replacing the time derivatives in the semidiscretized form (73) by the appropriate approx-
imations and taking into account the initial conditions we obtain the fully discrete state
equation.

The time discretization of the semi-discrete equation is performed with the cen-
tral finite differences (CD) in Section 6.3.1 and with the fourth order Runge-Kutta (RK)
method in Section 6.3.2. The CD method is second order accurate, while the RK method
is fourth order accurate, with respect to the timestep ∆t. Both methods lead to an explicit
time stepping scheme. These properties are essential for computational efficiency. Only
matrix-vector products are needed in time-dependent simulation, but the scheme needs to
satisfy the stability condition, which limits the length of the time step.

6.3.1 Central finite difference method

The time discretization is based on second order centered finite difference method such
that the time derivatives are, for i = 0, . . . , N, replaced by the following approximations:

∂u
∂t

=
ui+1 − ui−1

2∆t
(90)

=
u(x, ti+1)− u(x, ti−1)

ti+1 − ti−1
, (91)

∂2u
∂t2 =

ui+1 − 2ui + ui−1

∆t2 (92)

=
u(x, ti+1)− 2u(x, ti) + u(x, ti−1)

(1
2(ti+1 − ti−1))2

, (93)

where ti = i∆t.
After time discretization and taking into account the initial conditions (48)-(49) or

(58)-(59), we get

Mui+1 − 2ui + ui−1

∆t2 + S ui+1 − ui−1

2∆t
+Kui = F i, (94)

u0 = e0 (95)

u1 − u−1

2∆t
= e1. (96)

With central finite differences, the fully discrete state equation can be represented
in the matrix form
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I
C0 M
B C D

. . . . . . . . .
B C D

B C D





u0

u1

...

...
uN

uN+1


−



I 0
0 ∆tB
0 0
...

...
...

...
0 0


(

e0
e1

)
− ∆t2



0
1
2 F 0

F 1

...

...
FN


= 0,

(97)

where ui and F i are the vectors u and F at the time instant i∆t, and e0 and e1 are the
initial conditions. The matrix blocks C0, B, C and D are given by the formulas

C0 =
∆t2

2
K−M, (98)

D = M+
∆t
2
S , (99)

C = ∆t2K− 2M, (100)

B = M− ∆t
2
S , (101)

while I is the identity matrix. The form (97) is further used to derive the adjoint state
equation in Section 7.

Next, we denote by n̂ the number of diagonal elements in the matrix M and con-
sider the time complexity of computing the state equation. When solving the state equa-
tion (97), inversion of the mass matrix M and some matrix-vector products are needed at
each timestep. Because of the diagonality of the matrix M, its inverse M−1 is obtained
simply by inverting each diagonal element. Since also the matrix S contains only diag-
onal blocks, a matrix-vector product with matrix M, M−1, S , or S−1 (or some linear
combination of these) takes only order of n̂ operations. The matrix-vector multiplication
involving the sparse stiffness matrix K is more demanding. Even if only non-zero ma-
trix entries are multiplied, the operation count is proportional to the number of nonzero
elements in K, which is of order r2n̂. This means that the computational cost for each
timestep of the state equation with the CD time stepping is of order O(r2n̂).

It is worth mentioning that the spatial discretization with SEM is very accurate since
it is based on high-degree polynomials. If the time discretization is of low order, it reduces
the global accuracy of the scheme. In this respect, we present also a Runge-Kutta method
which is fourth order accurate.

6.3.2 Fourth order Runge-Kutta method

The state equation of the form (73) can be presented as a system of differential equations

y′(t) = f (t, y(t)), (102)

where y′(t) =
(

∂u
∂t , ∂2u

∂t2

)T
, y = (u, v)T is a vector of time stepping variables u and v,

and the function f (t, y(t)) = ( f1(t, u, v), f2(t, u, v))T has components
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f1(t, u, v) = v, (103)

f2(t, u, v) = −M−1 (Sv +Ku−F ) . (104)

The fourth order Runge-Kutta method is a Taylor series method. In general, Taylor se-
ries methods have a feature to keep the errors small, but there is also a disadvantage
of requiring the evaluation of higher derivatives of the function f (t, y(t)). The advan-
tage of Runge-Kutta method is that explicit evaluations of the derivatives of the function
f (t, y(t)) are not required, but linear combinations of values of f (t, y(t)) are used to
approximate y(t).

The fourth order Runge-Kutta algorithm is

yi+1 = yi +
1
6

((
k11
k12

)
+ 2

(
k21
k22

)
+ 2

(
k31
k32

)
+
(

k41
k42

))
(105)

where ui and vi are the first and second components of yi =
(

ui, ∂ui

∂t

)T
, i = 1, . . . , N.

The initial condition is set as y0 = (e0, e1)T, and k j = (k j1, k j2)T, j = 1, 2, 3, 4, are the
gradient estimates (one for each substep) as follows:(

k11
k12

)
=
(

∆t f1(ti, ui, vi)
∆t f2(ti, ui, vi)

)
(106)(

k21
k22

)
=

(
∆t f1(ti + ∆t

2 , ui + k11
2 , vi + k12

2 )
∆t f2(ti + ∆t

2 , ui + k11
2 , vi + k12

2 )

)
(107)

(
k31
k32

)
=

(
∆t f1(ti + ∆t

2 , ui + k21
2 vi + k22

2 )
∆t f2(ti + ∆t

2 , ui + k21
2 vi + k22

2 )

)
(108)(

k41
k42

)
=
(

∆t f1(ti + ∆t, ui + k31, vi + k32)
∆t f2(ti + ∆t, ui + k31, vi + k32)

)
. (109)

In other words, at each timestep i the function f is evaluated four times by using the
formulas (103)-(104) to get the gradient estimates (106)-(109), and then the successive
approximation of y is calculated by the formula (105). Because of the diagonality of
the matrix M, the only matrix inversion needed in time stepping (e.g M−1 in equation
(104)) is computed simply by inverting each diagonal element in the matrix M. This
requires only n̂ floating point operations, which is the number of diagonal elements in the
matrix M, and known as the number of degrees of freedom in the space discretization.
Since the matrix S contains only diagonal blocks, also the operation count of the matrix-
vector product Sv is of order n̂. In the matrix-vector multiplication involving the sparse
stiffness matrix K, only non-zero matrix entries are multiplied, which requires order of
r2n̂ operations. Besides these, 2n̂ additions and 3n̂ multiplications are needed for a single
evaluation of the function f . According to (105), computation of yi needs 14n̂ floating
point operations. Thus, the computational cost for each timestep of the state equation is
of order O(r2n̂) also with RK time stepping. Although the computational demand is of
the same order for both CD and RK time steppings, the number of floating point operators
needed for RK is nearly four times that of CD.
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In practice, the solution yi at t = i∆t is achieved by first solving k = (k1, k2, k3, k4)T

from the equation


I
D̂ I

D̂ I
2D̂ I




k1
k2
k3
k4

+


2D̂
2D̂
2D̂
2D̂

 yi−1 −


Hi−1

Hi− 1
2

Hi− 1
2

Hi

 = 0, (110)

where I is the identity matrix, F i is the vector F at time t = i∆t, and the matrix block
D̂ and the vector blocks Hi, are given by the formulas

D̂ =
(

0 −∆t
2 I

∆t
2 M−1K ∆t

2 M−1S

)
, (111)

Hi =
(

∆tM−1F i

0

)
. (112)

Then, yi is solved from the equation

yi = yi−1 −
(

R̂ 2R̂ 2R̂ R̂
)

k1
k2
k3
k4

 , (113)

with

R̂ =
(
−1

6I 0
0 −1

6I

)
. (114)

When using the fourth order Runge-Kutta method, the state equation can be represented
in the simplified form:


I
N I

. . . . . .
N I

N I




y0

y1

...
yN−1

yN

−


I
0
...
0
0

 y0 −


0
F̂1

...
F̂N−1

F̂N

 = 0, (115)

where N = −(B̂Â−1Ĉ + I) and F̂i = −B̂Â−1Ĥ such that

Â =


I
D̂ I

D̂ I
2D̂ I

 , Ĉ =


2D̂
2D̂
2D̂
2D̂

 ,

B̂ =
(

R̂ 2R̂ 2R̂ R̂
)

, ĤT = ∆tM−1
(
F i−1 0 F i− 1

2 0 F i− 1
2 0 F i 0

)
.
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In the next section when describing the control algorithm we use for the state equa-
tion the short form

s(e, u(e)) = 0, (116)

where e = (e0, e1)T contains the initial values and u the vectors ui. We denote the state
equation by s0(e, u(e)) = 0 in the special case with F i = 0 for all i.



7 CONTROL PROBLEM

The exact controllability problem for computing T−periodic solution for the wave equa-
tion involves finding such initial conditions e0 and e1 that the solution u and its time
derivative ∂u

∂t at time T would coincide with the initial conditions. For the numerical so-
lution, this problem is formulated as a least-squares optimization problem with the cost
function

J(e, u(e)) =
1
2

∫
Ω

∣∣∣∂u(x, T)
∂t

− e1

∣∣∣2 +
∣∣∣∇(u(x, T)− e0)

∣∣∣2dx

 (117)

where e = (e0, e1) ∈ Z and u is the solution of the initial value problem [16]. After the
spatial discretization, the cost function to be minimized is of the form

J(e, u(e)) =
1
2

(
uN − e0

)T
K
(

uN − e0

)
+

1
2

(
∂uN

∂t
− e1

)T

M
(

∂uN

∂t
− e1

)
,

(118)

where ∂uN

∂t are replaced by appropriate approximations and ui are given by equation (97)
or (115). When we find e ∈ Z such that J(e, u(e)) = 0 the conditions (50) and (51) in
the case of Helmholtz equation, or (61) and (62) in the case of Navier equation, are also
satisfied and we have the time-harmonic solution.

The least squares formulation is given by

min
e∈Z

J(e). (119)

The solution of the minimization problem is equivalent to finding such e∗ ∈ Z that
∇J(e∗, u(e∗)) = 0, which is actually a linear system because J is a quadratic func-
tional. We use the preconditioned conjugate gradient (CG) method for this system (see,
e.g., [41, 42, 104]). Each iteration step involves computation of the gradient of J, which
is an essential stage of the algorithm.

In [16], the gradient was derived for the continuous cost function (117) and the same
formulas were used also on the discrete level. This approach does not lead exactly to the
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gradient of the function to be minimized. That is why we proceed in different order and
discretize the problem before deriving the gradient formulas (see Section 7.2). To com-
pare the two ways to compute the gradient, we represent in Section 7.1 the formulas in
[16] by using the same discerete notation as in Section 7.2. However, our experiments in-
dicate that the two ways to compute the gradient lead to practically the same convergence
for the CG method (see also [107]).

7.1 Gradient of the continuous cost function with central finite
difference method

Starting from the continuous cost function (117), the state equation is just the one ex-
pressed in (97), and the adjoint state equation can be presented in the matrix form



D C B
D C B

. . . . . . . . .
D C B

M CN
I





p−1

p0

...
pN−2

pN−1

pN


=



0
0
...
0

aN−1
aN


, (120)

where

CN = C0 + ∆tSM−1, (121)

aN =
∂uN

∂t
− e1, (122)

aN−1 = ∆tBM−1K(uN − e0). (123)

Solutions of the adjoint state equation (120) are p0 and ∂p0

∂t = p1−p−1

2∆t . Gradient compo-
nents are then computed by the formulas

dJ(e, u(e))
de0

= K(e0 − uN)−M∂p0

∂t
+ Sp0, (124)

dJ(e, u(e))
de1

= M
(

p0 + e1 −
∂uN

∂t

)
. (125)

which can be compared to the formulas (132)-(133) below.

7.2 Gradient of the discretized cost function

State equations (97) and (115) can be represented in the residual form (116), and by the
adjoint equation technique we see that
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dJ(e, u(e))
dek

=
∂J(e, u)

∂ek
− pT ∂s(e, u)

∂ek
, k = 0, 1, (126)

where p is the solution of the adjoint equation

(
∂s(e, u)

∂u

)T

p =
(

∂J(e, u)
∂u

)T

. (127)

The state equation (116) is also called the forward equation because it is solved by
advancing forward in time. The adjoint equation (127) requires advancing backward in
time, so it is called the backward equation [16].

7.2.1 Adjoint equation with the central finite difference method

In the matrix form, the adjoint equation corresponding to the state equation (97) is given
by



I C0 B
M C B

D . . . . . .
. . . . . . B

D C
D





p0

p1

...

...
pN

pN+1


=



0
...
0
∂J

∂uN−1
∂J

∂uN
∂J

∂uN+1


, (128)

where

∂J
∂uN−1 =

1
2∆t

M(e1 −
∂uN

∂t
), (129)

∂J
∂uN+1 =

1
2∆t

M(
∂uN

∂t
− e1), (130)

∂J
∂uN = K(uN − e0). (131)

The gradient components are then the following:

dJ(e, u(e))
de0

= K(e0 − uN) + p0, (132)

dJ(e, u(e))
de1

= M
(

e1 −
∂uN

∂t

)
+ ∆tBp1. (133)

7.2.2 Adjoint equation with the fourth order Runge-Kutta method

The adjoint equation corresponding to the state equation (115) is
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I N T

I N T

. . . . . .
I N T

I




q0

q1

...
qN−1

qN

 =


0
0
...
0

∂J(e,u(e))
∂yN

 , (134)

where qi =
(

pi, ∂pi

∂t

)
, i = N − 1, . . . , 0, the transpose of the matrix N is N T =

−(ĈT(ÂT)−1B̂ + I), and

∂J(e, u(e))
∂yN =

 ∂J(e,u(e))
∂uN

∂J(e,u(e))
∂
(

∂uN
∂t

)
 =

(
K(uN − e0)
M( ∂uN

∂t − e1)

)
. (135)

So, the starting value for qi, at time t = T = N∆t, is

qN =

(
K(uN − e0)
M( ∂uN

∂t − e1)

)
.

At each time step, k = (k1, k2, k3, k4)T is solved from the equation


I D̂T

I D̂T

I 2D̂T

I




k1
k2
k3
k4

 =


−R̂
−2R̂
−2R̂
−R̂

 qi+1, (136)

and qi is computed by the formula

qi = qi+1 −
(

2D̂T 2D̂T 2D̂T 2D̂T )


k1
k2
k3
k4

 . (137)

After this, we get the gradient components, which are

dJ(e, u(e))
de0

= K(e0 − uN) + p0, (138)

dJ(e, u(e))
de1

= M
(

e1 −
∂uN

∂t

)
+

∂p0

∂t
. (139)



8 OPTIMIZATION ALGORITHM

The purpose is to minimize functional J, which depends on the initial conditions both
directly and indirectly through the solution of the wave equation. Since vector u depends
linearly on the initial conditions e0 and e1, J is a quadratic function. Hence, (118) can be
minimized by solving the linear system∇J(e0, e1) = 0. We solve this linear system with
an optimization method, which requires the gradient of the functional J with respect to
the control variables e0 and e1. Computation of the initial approximation for the method
is described in Section 8.1.

Conjugate gradient (CG) method is a numerical method for solution of systems of
linear equations with a symmetric and positive definite matrix. If the unpreconditioned
CG algorithm is used, solution of the least-squares problem is slow, and the number of
iterations grows rapidly with the order of elements [76]. For preconditioning the con-
jugate gradient algorithm, we use a modification of Kickinger’s [61] algebraic multigrid
(AMG), which is introduced in [78]. That is why we first present a brief overview of
multigrid methods in Section 8.2, and then consider the preconditioned conjugate gradi-
ent algorithm in Section 8.3.

8.1 Computation of the initial approximation

It is important to have smooth initial approximations for e0 and e1, which satisfy the
boundary conditions. In [16], a special procedure suggested by Mur in [82, p. 950] was
used, which leads to faster convergence to the time-harmonic solution. We apply the same
procedure, and first define a smooth transition function θ(t), which increases from zero
to one in the time interval [0, Ttr]:

θ(t) =
{ (

2− sin
(
πt/2Ttr

))
sin
(
πt/2Ttr

)
, if 0 ≤ t ≤ Ttr,

1, if t ≥ Ttr.
(140)

The length of the time interval should be chosen as a multiple of the period T, i.e.,
Ttr = nT with n a positive integer. Then, for example in the case of the acoustic wave
equation, we solve the following initial value problem:
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1
ρ f (x)c(x)2

∂2w
∂t2 −∇ ·

(
1

ρ f (x)
∇w

)
= θ(t) f , in Q = Ω× [0, Ttr], (141)

w = 0, on γ0 = Γ0 × [0, Ttr], (142)
1

c(x)
∂w
∂t

+
∂w
∂n

= θ(t)yext, on γext = Γext × [0, Ttr], (143)

w(x, 0) = 0 in Ω, (144)
∂w
∂t

(x, 0) = 0 in Ω. (145)

The initial approximations for the control variables e0 and e1 are now the solution
w and its time derivative at time Ttr. If the obstacle Θ of the scattering problem is convex,
there are no interacting reflections, and already this initial procedure may converge rapidly
to the time-harmonic solution. However, in general the convergence is slow and we need
to continue with the control algorithm.

8.2 Multigrid methods

Multigrid methods [45, 98] are well known as efficient solution techniques for solving
linear systems of the form

Kw̃ = g̃, (146)

where w̃ is an unknown vector, and g̃ and K are known vector and matrix, respectively.
These methods can be used as stand-alone solvers or as preconditioners for iterative
solvers. The key idea of multigrid methods is to accelerate the solution by transfering
the residuals from fine to coarse grids, computing corrections on a coarser grid and then
interpolating them back to the fine grid problem. This procedure is applied recursively
such that a hierarchy of fine and coarser grid levels is used to seek the solution for the
finest mesh. In practice, the equation (146) is solved iteratively from an approximation
w̃0. For a particular level l, the residual is given by r̃l = g̃−Kw̃l. This is used as the
basis of a correction equation w̃l+1 = w̃l + ẽl. The error ẽl is related to the residual by
Kẽl = r̃l.

In algebraic multigrid (AMG) methods [79, 90, 91, 94], the central idea is to develop
a sequence of problems

Klw̃l = g̃l, (147)

corresponding to grid levels l = 0, . . . , k̃, where k̃ represents the coarsest level. Contrary
to classical geometric multigrid methods, actual coarsenig of the given mesh is not needed
for finding coarser grid levels. This requirement is loosened in graph based algebraic
multigrid methods (see e.g. [61, 78]) so that the finest discretization mesh is used to
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construct the coarser level components. Instead of actual values stored in the matrix K,
the topological graph of this matrix is used to form a coarser graph. This coarsening
process operates in a geometric fashion by sequentially choosing a coarse level node and
eliminating the neighboring nodes of the graph. We use a modification of Kickinger’s
[61] algebraic multigrid method which is introduced in [78]. In selecting the unknowns
for coarser levels, the primary criterion is to take the node with minimum degree when
eliminations have taken into account. The secondary criterion is to follow the original
node numbering.

The use of AMG methods for spectral elements has recently been studied in [54].
The number of connections between unknowns of the problem increases when higher
order elements are used. In that case, the coarsening strategy described above leads to
unacceptably coarse systems and convergence factor of AMG degrades rapidly as the
order of the approximation polynomials increases. We have overcome this problem by
employing a graph that is constructed so that unknowns are connected to each other as
if low order finite elements would have been used in the discretization process. Only the
unknowns corresponding to the nearest neighbouring Gauss-Lobatto points are connected
to each other. Additionally, in vector valued problems it is necessary to prevent mix-
ture of various types of unknowns also on coarser levels. This is achieved by giving the
method an initial graph where the sets of graph nodes corresponding to different types of
unknowns are not interconnected. These settings ensure fast computation of coarser level
components and constitute an essential part of graph based coarsening for higher order
elements.

Matrices, which are used at multigrid levels, are set as an initialization step of the
AMG algorithm by using restriction operators. The restriction operator R̃l+1

l from fine
level l to coarse level l + 1 is

R̃l+1
l =

(
Rl+1

l 0
0 Rl+1

l

)
, (148)

where the components of the restriction matrices Rl+1
l are

(
Rl+1

l

)
ij

=


1 for a fine grid point j which is a coarse grid point i,
1
k for a fine grid point j which is a neighbor of coarse grid

point i and has k neighboring coarse grid points,
0 otherwise.

(149)

The algebraic multigrid, which we use, employs a Galerkin projection for the con-
struction of the coarse grid equations. When the fine level matrix Kl is known, the coarse
grid operator is given by the Galerkin formula Kl+1 = R̃l+1

l Kl(R̃l+1
l )T. The finest level

matrix K0 is actually the matrix K, and the minimum size of the coarse system is prede-
termined.

By coarsening the fine grid, the low oscillation error on the fine grid is interpolated
into high frequency error on the coarse grid. The key to dealing with high oscillation
error is the smoothing process. As a smoother of the AMG we have used successive over
relaxation (SOR), with overrelaxation parameter 1.2, unless other mentioned. One itera-
tion of SOR is used for both pre- and post-smoothing. Additionally, in the beginning of
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every multigrid iteration, four iterations of SOR are used to smooth the solution initially.
Through successive coarsening levels, the low oscillation error increases, which makes
possible to identify and remove the error at a fast rate. Three main cycling strategies of
AMG are V-cycle, W-cycle, and full multigrid scheme [45, 92]. At this stage, we utilize
the W-cycle until the residual norm of the solution is smaller than 10−6.

Each AMG iteration starts with the finest level matrix K0, right hand side vetor g̃0
and an approximation w̃0. For a particular level l, the residual is given by r̃l = g̃l −Klw̃l.
This is used as the basis of a correction equation w̃l = w̃l + ẽl. The error ẽl is related
to the residual by Kl ẽl = r̃l. After pre-smoothing the approximation, the residual is
computed and mapped from the fine level l to a coarser level l + 1 by using the restriction
operator R̃l+1

l . At the coarsest level k̃, a coarse level problem Kk̃ ẽk̃ = r̃k̃ is solved with
LU-factorization. The error ẽl+1 of the coarse level l + 1 is mapped to a finer level l
by the prolongation operator P̃l

l+1, which is chosen to be the transpose of the restriction
operator, i.e.

P̃l
l+1 = (R̃l+1

l )T. (150)

Prolongated errors are added to the approximate solution to correct the solution on a finer
grid. This procedure is known as coarse grid correction.

On the way to the finest level, post-smoothing is utilized, and the W-cycle ends with
post-smoothing on the finest level. AMG cycles are repeated until the solution converges,
i.e. the residual of the approximation of w̃ is sufficiently small.

8.3 Preconditioned conjugate gradient algorithm

To improve the convergence rate of the CG algorithm, we use the block-diagonal precon-
ditioner

L =
(
K 0
0 M

)
, (151)

where the first and second blocks are associated with the first and second terms in (118),
respectively. Solution of a linear system with the preconditioner requires the solution of
systems with the stiffness matrixK and the diagonal mass matrixM. Efficient solution of
linear systems with the matrixK is critical for the overall efficiency of the control method.
At this stage, we use the algebraic multigrid method, which is presented in Section 8.2.

Our practical realization of the preconditioned CG algorithm differs from the one
in [16] with respect to the spatial discretization, the preconditioning method, and the
gradient computation. Each CG iteration requires computation of the gradient ∇J, which
involves the solution of the state equation (116) and the corresponding adjoint equation
(127). Also solution of one linear system with the preconditioner L and some matrix-
vector operations are needed. Values of the control variables e at the ith iteration are
denoted by ei

0 and ei
1. Solution of the adjoint state equation is p, and the gradient variable
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is g = (g0, g1). By s0(e, u(e)) = 0 we denote the state equation (97), where F i = 0 for
all i. Then, the CG algorithm for solving the least-squares problem is the following:

Algorithm 1 Preconditioned CG algorithm

Use method of Section 8.1 to compute the initial values e0
0 and e0

1.

Solve the state equation s(e0, u(e0)) = 0.

Solve the adjoint state equation
(

∂s(e0,u(e0))
∂u(e0)

)T
p =

(
∂J(e0,u(e0))

∂u(e0)

)T
.

Compute the gradient vectors g0 and g1 by the formulas (132)-(133) or (138)-(139).
Solve linear system with the preconditioner Lw = −g.

Set c0 = −(w, g), c = c0 and i = 1.

Repeat until
√

c
c0

< ε

Solve the state equation s0(w, u(w)) = 0.

Solve the adjoint state equation
(

∂s(w,u(w))
∂u(w)

)T
p =

(
∂J(w,u(w))

∂u(w)

)T
.

Compute the gradient updates v0 and v1 by the formulas (132)-(133) or (138)-(139).
Compute ρ = c

(w,v) .

ei = ei−1 + ρw.

g = g + ρv.

Solve linear system with the preconditioner Lv = −g.

γ = 1
c , c = −(v, g), γ = cγ.

w = v + γw, i = i + 1.

As discussed in Section 6.3, solving the state equation needs O(r2n̂) floating point oper-
ations at each timestep in CD and RK time steppings. From this, we can conclude that the
computational demand for computing the solution for the state equation with N timesteps
is O(Nr2n̂). The order of computational operations needed for solving the adjoint state
equation is of the same order than for solving the state equation. On the whole, the com-
putational cost for one iteration of the CG algorithm is of order O(Nr2n̂). Assuming that
the number of timesteps N is fixed, number of iterations is approximately constant, and
the element order r has small integer values, the computational demand for the overall
CG algorithm is O(n̂).



9 NUMERICAL EXPERIMENTS

The main goal of these numerical experiments is to study the accuracy of the spatial
discretization and its effect on computational complexity. The overall accuracy of the
discrete solution given by the controllability method depends on the following factors:

- spatial discretization, which is performed by the spectral element method with mesh
density h and element order r,

- time discretization, which is performed by central finite differences or the fourth
order Runge-Kutta scheme with timestep ∆t,

- stopping criterion ε of the CG method,

- approximation of the geometrical boundaries,

- approximation of the radiation condition.

In what follows, we describe how the numerical experiments are defined to eliminate and
isolate the error factors.

Numerical experiments are divided into four parts. First, we consider the acoustic
wave equation with incident plane wave p f inc(x, t) = cos(ω · x) cos(ωt) + sin(ω ·
x) sin(ωt) in Sections 9.1 and 9.2. The two ways to compute the gradient are compared
in Section 9.1, while the comparison between CD and RK time discretizations is presented
in Section 9.2. The last two sections are devoted to solving the elastic wave equation with
incident plane wave

usinc =

(
ω1 cos(ωt− ω

cp
x ·ω) + ω2 cos(ωt− ω

cs
x ·ω)

ω2 cos(ωt− ω
cp

x ·ω)−ω1 cos(ωt− ω
cs

x ·ω)

)
. (152)

In Section 9.3, elastic wave equation is solved with CD time discretization, and RK time
discretization is applied to the elasticity solver in Section 9.4. In majority of the examples,
we use 300 timesteps per one time period [0, 2π/ω], and the stopping criterion works
with the relative norm

√
c/c0 and ε = 10−5. Unless other mentioned, we have set the

propagation direction ω = ω(−
√

2
2 ,

√
2

2 ), densities ρ f (x) = 1 and ρs(x) = 1, and speed
of the sound c(x) = 1. The numerical model of Algorithm 1 is implemented in Fortran
95. The tests presented in Section 9.1 have been performed on an HP 9000/785/J5600
workstation at 552MHz PA-RISC 8600 CPU. Computations reported in Sections 9.2 and
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(a) Square obstacle.

0.25

1.0

1.0

(b) Two non-convex semi-open cavities.

1.25

5.0

1.75

(c) Non-convex semi-open cavity.

FIGURE 5 Geometrical shapes of the obstacles.

9.3 have been carried out on a PC with an AMD Athlon XP 2200+ CPU at 1.8 GHz, and
an AMD Opteron 885 at 2.6 GHz have been used to get the results which are presented in
Section 9.4.

In all the experiments, the infinite domain is truncated by the boundary Γext. Mesh
generator provided by Numerola Oy is used to divide the computational domain into
square elements, each having a side length h. Since geometries with curved boundaries
can not be represented exactly by a rectangular mesh, we use only polygonal boundaries
(see Figures 5(a)-5(c)). The domain Ω with a square obstacle with side length 2 (see
Figure 5(a)) is defined such that the surrounding boundary Γext coincided with the border
of the square [0, 0] × [4, 4]. Scattering by two semi-open cavities (see Figure 5(b)) is
solved in a domain with the artificial boundary Γext coinciding with the perimeter of
the rectangle [0, 5] × [0, 4]. Internal width and height of each cavity is 3/4 and 5/4.
Thickness of the wall is 1/4, and distance between cavities is 1. In simulations with one
non-convex semi-open cavity (see Figure 5(c)), the lower left corner of the rectangular
computational domain surrounding the obstacle is at the point (0, 0) and the upper right
corner is at the point (7.25, 3.75). Internal width and height of the cavity are 5 and
5/4, and thickness of the wall is 1/4. All the obstacles are surrounded by the boundary
Γ0, centered in the computational domain Ω, and located at perpendicular distance of 1
from the boundary Γext. Thus, the lower left corner of the cavity is at the point (1, 1) in
each cases. With these geometries, we present also examples of varying speed of sound
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c(x). For this, we use coated obstacles, in which c(x) is different than in the surrounding
domain. Thickness of the coating material parallel to the surface of the obstacle is 1/4.

In essence, outlines of Sections 9.1-9.4 are similar to each other. The first test
problem in each section is chosen to test the accuracy of the approximation. For this
purpose we construct an artificial problem, the solution of which is known to be the
plane wave. This type of test problem could be constructed with any test geometry
described above, but we choose to use the square geometry (see Figure 5(a)) with the
associated outer boundary. In the acoustic case, we introduce function ŷ ∈ H1(Ω)
such that p f inc(x, t) = cos(ωt − ω · x), ŷ|Γ0 = p f inc, ŷ|Γext = ∂ŷ

∂n |Γext = 0, and

yext =
∂p f inc

∂t +
∂p f inc

∂n . Then, the function p̂ f defined by p̂ f = p f inc − ŷ satisfies equation

(45) with the nonzero right-hand side f = − ∂2ŷ
∂t2 +∇2ŷ as well as equations (46) and

(47). After solving p̂ f we get the actual solution by p f inc = p̂ f + ŷ, which approximates
the plane wave. This modification eliminates the error caused by the absorbing boundary
condition, and allows us to study the effect of the spatial discretization. For the elastic
case, we can construct a corresponding test problem by introducing an auxiliary function
ĝ ∈ H1(Ω)× H1(Ω) such that

ρ
∂2ûs

∂t2 −∇ · σ(ûs) = −ρ
∂2ĝ
∂t2 +∇ · σ(Ĝ), in Q = Ω× [0, T],

ûs = 0, on γ0 = Γ0 × [0, T],

B
∂ûs

∂t
+ σ(ûs)n = gext on γext = Γext × [0, T],

ûs(x, 0) = usinc(x, 0)− ĝ(x, 0), in Ω,
∂ûs(x, 0)

∂t
=

∂usinc(x, 0)
∂t

− ∂ĝ(x, 0)
∂t

, in Ω,

ĝ|Γ0 = usinc, ĝ|Γext = 0,
∂ĝ
∂n
|Γext = 0,

the solution of which is ûs = usinc − ĝ. Accuracy tests (in Sections 9.1.1, 9.2.1, 9.3.1
and 9.4.1) consist mainly of results discussing approximation error of the spatial dis-
cretization and pollution effect arising with frequency. When RK time discretization is
considered (in Sections 9.1.1 and 9.4.1), we also show how to define the size of time
step which eliminates the temporal error. After accuracy tests we present wave propaga-
tion and scattering problems (in Sections 9.1.2, 9.2.2, 9.3.2, 9.4.2, and 9.4.3). In acous-
tic scattering experiments, we consider the ordinary scattering problem (45)-(48), where

f = 0 and yext =
∂p f inc

∂n +
∂p f inc

∂t . Respectively, for elastic scattering problems f = 0 and
gext = B ∂usinc

∂t + σ(usinc)n. These problems are solved with three different scatterers
(see Figures 5(a)-5(c)). Elastic wave propagation, discussed in Section 9.4.3, is simulated
in the rectangle [0, 0]× [4, 4].
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9.1 Comparison between the two ways to compute the gradient

In this section, we present results of the acoustic scattering problem with central finite
difference time discretization. To show that with stopping criterion ε = 10−5 the two
ways to compute the gradient, presented in Sections 7.1 and 7.2, lead essentially to same
results, computations are carried out with gradient of the discretized cost function and
with gradient of the continuous cost function. On the other hand, with smaller stopping
criteria the discrete approach gives more precise minimization result than the continuous
one. We also compare the conventional finite element method with higher order spec-
tral element discretizations. In the end of the section, we show illustrations of acoustic
scattering solutions.

9.1.1 Accuracy of space discretization

These tests concentrate mainly on the accuracy of the spatial discretization. First, we
use a mesh with constant resolution `/h, where ` = 2πc(x)/ω. Then, several mesh
resolutions are tested to find a good combination of element order and mesh stepsize. In
the tests considering the pollution effect, we keep ωh constant, run the tests with several
wavenumbers and use lower mesh resolution with higher order elements.

Constant resolution

In the first experiment, we construct a mesh with h = 1/4 in the computational domain.
This mesh is used to solve the test problem with wavenumbers ω = π and ω = 2π,
which implies that the mesh resolution has values 8 and 4. Figure 6 shows the error when
the order of the spectral basis is increased. As the order increases, the error decreases
until the error level of the time discretization or the stopping criterion is achieved. Results
achieved by using the preconditioned CG algorithm with gradient of the discretized and
continuous cost functions are marked in Figure 6 as disc and cont, respectively. The two
ways to compute the gradient lead to practically the same errors.

Since the number of optimization variables is two times the number of degrees of
freedom (DOF), we extend the first experiment by studying the error in terms of DOF.
The results of Figure 6 are repeated in Figure 7 as spectral basis order refinement (r-
refinement). The error curves of the mesh step refinement (h-refinement) corresponding
to the classical FEM discretization are obtained by keeping the order fixed (r = 1) and
using mesh stepsizes h = 1/4i, where i = 1, . . . , 5. As the order of the polynomial basis
increases, the maximum error between the numerical solution and the analytical solution
decreases until the error of the time discretization or the stopping criterion is achieved.
The error becomes smaller also with mesh step refinement, but the convergence rate is
higher for r-refinement than for h-refinement. Based on the results, it seems clear that it
is better to increase the order than the resolution to improve efficiency.

This conclusion is further supported by Figure 8, which shows the CPU times for
these experiments. Naturally the CPU time increases as the resolution or the order is
increased, but it also seems to depend linearly on the number of degrees of freedom. The
conclusion, that total CPU time for the SEM is much less than the total CPU time for the
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FIGURE 10 The values of residual and objective function J as functions of iteration number
with gradient of discrete and continuous cost function.
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FEM for same accuracy, follows from these findings.
Preconditioners play an important role in accelerating the convergence rate of the

CG method. To show the benefit of preconditioning, computations corresponding to h-
and r-refinement with ω = 2π are repeated without preconditioning, i.e. setting L = I
in Algorithm 1. The number of CG iterations required grows with the number of degrees
of freedom in the unpreconditioned case (see Figure 9) while in the preconditioned case,
the number of iterations remains approximately constant. In these computations, CPU
time required by the AMG preconditioner is only a few percents of the CPU time for the
whole algorithm. Thus, significant savings result from the AMG preconditioner.

To show how r-refinement affects the convergence history, we have computed the
values of residual and cost function by using the two ways to compute the gradient. In
this computation, we have used h = 1/10, ω = 2π and ∆t = 1/320 which implies 10
elements per wavelength and 320 timesteps per time period. The stopping criterion was
ε = 10−9, and the maximum number of iterations was limited to be 500. The results
for spectral orders r = 1, . . . , 5, in cases of discrete and continuous level gradient, are
presented with respect to iteration number in Figure 10. With small iteration numbers the
graphs for a particular element order seems to be almost identical whether the discrete or
continuous approach is used. When considering larger iteration numbers, we can observe
that the discrete version converges to smaller value of cost function. This means also that
with high number of iterations, the solution computed with the discrete approach is more
accurate than the one with the continuous approach. This was not recognized during
the earlier tests, since the stopping criterion ε = 10−5 of the CG method set a lower
bound for the error and stopped the simulations before smaller values of the residual were
reached. Now, we can say that using the continuous version of the gradient leads to yet
another error component setting the new lower bound for the error, which is noted only
with strict stopping criteria. Thus, using the discrete approach gives exactly the gradient
of the function to be minimized and leads to more precise minimization result.

Varying resolution

As we have seen in Figure 8, consumption of the CPU time increases linearly with respect
to the number of degrees of freedom. Moreover, we have observed rapid decrease in error
with respect to the order of the polynomial basis until the error level of time discretization
becomes dominant (see Figures 6 and 7). This is why we have tried to find a good com-
bination of order of the element and mesh stepsize by making computations with several
resolutions of the mesh for each order of the element. This experiment has been carried
out by keeping the wavenumber constant 4π. Various mesh stepsizes have been used such
that ωh had values π2r−4, π2r−5, and π2r−6 for each order of the element r.

Figure 11 presents the maximum error in the solution with respect to the number of
degrees of freedom. The purpose of this experiment is to show that certain error level can
be reached by smaller number of degrees of freedom by increasing the order of the basis
and adjusting the mesh stepsize accordingly. The difference is obvious when moving
from r = 1 to higher orders. The reduction of the error is blocked by the fixed stopping
criterion of the CG method and the fixed time discretization, which makes the comparison
of higher orders difficult.
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The results of Figure 11 are repeated in Figure 12, but attention is focused on the
number of AMG cycles. Since the number of AMG cycles stays approximately constant
for different mesh resolutions, the preconditioner is not restricting the mesh stepsize.
Because the resolution with ωh = π2r−6 gives good results for all orders of the basis,
we use it in next accuracy tests, when considering the situation with constant resolution
and changing wavenumbers.

Pollution effect

We performed another set of experiments by varying the resolution of the mesh with the
order of the basis. More specifically we used lower resolution with higher orders accord-
ing to the equation ωh = π2r−6. Figure 13 shows the error with respect to increasing
wavenumber for orders 1-5. Once again, we can notice that the difference between the
two ways to compute the gradient does not have remarkable effect on the results. The
effect of the pollution term is clearly visible in the error curves. We expected to see a
more pronounced reduction in the pollution effect with higher orders. Now it is almost
similar with all orders. Perhaps the difference could be observed by extending the test to
higher wavenumbers. Figure 14 shows the same errors in terms of the number of degrees
of freedom. These results support the conclusion that certain error level is reached more
efficiently by applying higher order spatial discretization.

9.1.2 Acoustic scattering

We use the propagation direction ω = ω
(
−

√
3

2 , 1
2

)
, angular frequency ω = 3π, and

mesh stepsize h = 1/8. There are slightly over five elements per wavelength. To guar-
antee demands for accuracy also for higher orders, we have chosen to use 600 timesteps
per one time period [0, T], and the stopping criterion works instead of the relative norm√

c/c0 with the absolute norm
√

c and ε = 10−3. Number of iterations with different
scatterers in both discrete and continuous cases of the gradient are shown in Table 1.

TABLE 1 The number of degrees of freedom (DOF) and the number of iterations (iter) of the
preconditioned CG algorithm in the case of discrete (disc) and continuous (cont) level
gradient with different scatterers.

r
Type of the obstacle 1 2 3 4 5
non-convex semi-open cavity DOF 2112 8064 17856 31488 48960

iter disc 152 123 122 122 122
cont 163 116 116 115 115

two non-convex semi-open cavities DOF 1221 4635 10241 18039 28029
iter disc 90 95 95 95 95

cont 90 96 95 95 96
convex obstacle (square) DOF 864 3264 7200 12672 19680

iter disc 45 65 45 45 41
cont 45 65 45 45 40
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(a) Non-convex semi-open cavity.

(b) Two non-convex semi-open cavities.

(c) Square obstacle.

FIGURE 15 Scattering solutions with discrete version of gradient.
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FIGURE 16 Maximum difference between scattering solutions corresponding to continuous and
discrete versions of gradient and maximum errors of the solutions corresponding to
continuous and discrete versions of gradient in the case of square scatterer.

As we can see, the number of iterations is substantially less in the case of convex
square scatterer than in the cases of non-convex scatterers. In all the experiments it ap-
pears that preconditioning keeps the number of CG iterations bounded with respect to r.
Contour plots of the numerical solutions with discrete version of gradient and r = 3 are
in Figures 15(a)-15(c).

From Table 1 we find also that the number of iterations fluctuates between discrete
and continuous cases of the gradient only in the experiment with a non-convex semi-open
cavity. In the other experiments, the two ways to compute the gradient lead to practically
the same number of iterations. Because of that, also the computational effort is of the
same order of magnitude in both two cases of computing the gradient.

In Figure 16, the difference is depicted with respect to the order of element in the
case of square scatterer. We have also compared the magnitude of this difference with
the error between exact solution and the computed one. This is why we have plotted in
Figure 16 also maximum errors with respect to the order of the polynomial basis for two
cases of computing the gradient. Although maximum difference seems to grow with the
order of polynomial basis, difference between the two solutions is substantially less than
the maximum error with the exact solution.

We illustrate the performance of the controllability method with varying speed of
sound by using two coated non-convex semi-open cavities as reflectors. Now, the time
interval [0, 1] is divided into 300 timesteps of equal size and angular frequency is ω = 4π.
In the first test, the speed of sound c(x) is varying such that it is equal to one outside the
obstacle and 0.5 in the coating, implying that outside the obstacle wavelength `(x) = 0.5
and in the coating `(x) = 0.25. Absorbing boundary is located at a distance of 1.5` from
the obstacle. Since rectangular mesh with element width h = 1/16 is used, there are 8
elements per wavelength outside the obstacle and 4 in the coating. In the second test case,
parameters are the same, expect c(x) = 0.25 in the coating of the right hand obstacle.
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FIGURE 17 Solution of the first test problem with varying speed of sound.

FIGURE 18 Solution of the second test problem with varying speed of sound.

TABLE 2 Number of iterations which is needed to reduce the relative euclidean norm of the
gradient of the functional J below 10−4.

number of iterations
order DOF test 1 test 2

1 4635 372 579

2 18039 289 695

3 40211 292 594

4 71151 292 596
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FIGURE 19 CPU time in seconds with respect to degrees of freedom, when c(x) is 0.5 in both
coatings and 1 outside the obstacles.

Both test examples are solved by increasing the order of the spectral element basis.
Contours representing the total field p f are plotted in Figure 17 and Figure 18 with order
of the spectral element basis equal to 4. The number of CG iterations needed to solve
the control problem in the case of discrete level gradient are given in Table 2, which also
shows the number of degrees of freedom (DOF) in the spectral element mesh. These
results show that, if the spatial discretization is accurate enough, the number of iterations
remains nearly constant while the number of optimization variables (i.e. two times DOF)
increases. CPU time (in seconds) used for solving the first test problem is depicted in
Figure 19, where DOF increases as the order of the spectral element basis increases from
1 to 5. The computational effort of the method seems to depend linearly on DOF.

9.2 Comparison between central finite difference and Runge-Kutta
time discretizations for the acousticity equation

We study the accuracy of the temporal discretization by comparing the method with
Runge-Kutta time discretization with the one with central finite difference time discretiza-
tion. In this context, we use abbreviation RK meaning the controllability method with
Runge-Kutta time discretization and CD standing for the method with central finite dif-
ference time discretization.

9.2.1 Accuracy of approximation

The test problem is solved with mesh stepsize h = 1/4 and angular frequencies ω =
π and ω = 2π with both Runge-Kutta (RK) and central finite difference (CD) time
discretization. The relaxation parameter of SOR is 1.4 in preconditioning. The time
interval [0, T] is divided into 300 timesteps in the case of CD time discretization and into
150 timesteps in the case of RK time discretization. Figure 20 shows the behaviour of
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error when the order of spectral basis increases. With both time discretization schemes,
error of spatial discretization dominates with low order elements. Thus, the difference
between maximum errors is negligible for spectral orders r = 1 and r = 2. When higher
order elements are used, results computed with RK version of the algorithm are more
accurate than the ones computed with the CD version.

The number of non-zero entries in the stiffness matrix is essential for computational
efficiency, since the time stepping scheme involves mainly matrix-vector multiplications.
This is why the comparison between h- and r-refinements is presented in terms of the
number of nonzero matrix entries in Figure 21. The error curves of the r-refinement are
achieved when the order of the spectral basis r is increased from 1 to 5 with mesh stepsize
h = 1/4. The h-refinement is obtained by keeping the basis order fixed (r = 1) and
doubling the resolution of the mesh, given by `/h, consecutively.

In conjunction with higher order elements, results computed with RK version of the
algorithm are more accurate than the ones computed with the CD version (see Figure 21).
This happens, because RK is higher order time scheme than CD. Apparently, the error
of time discretization limits the accuracy with basis orders r ≥ 3 in the case of CD time
discretization, whereas the stopping criterion causes the limiting error in the RK case.
Since the error of spatial discretization dominates with low order elements, the difference
between errors is insignificant for spectral orders r = 1 and r = 2.

When the order of the polynomial basis increases or the mesh stepsize becomes
smaller, systems to be solved become larger, which causes the increase in CPU time.
When ∆t is constant, the computational cost needed for one iteration is proportional to
the number of non-zero elements in the stiffness matrix. To be more precise, the compu-
tational effort of the method seems to depend linearly on number of non-zero elements
in the stiffness matrix (see Figure 22). According to Figure 22, the number of iterations
varies such that the CPU time required for the two refinements corresponding to SEM
and FEM are of the same order of magnitude. Convergence factor of AMG within these
computations is shown in Figure 23.

Most of the CPU time is used for solving state and adjoint state equations, and
only small amount of time is consumed for preconditioning. The proportion of CPU
time required by AMG per one iteration is shown in Figure 24. Figure 24 shows also the
computational efforts of state (i.e. forward, FWD) and adjoint state (i.e. backward, BWD)
equations in one CG iteration. Besides these computations, almost negligible amount of
CPU time is used for matrix-vector multiplications at each iteration.

Accuracy of time discretization

When higher order elements are used, good efficiency with high accuracy can be achieved
by using sufficiently large mesh stepsize [1]. This is why we have performed another set
of experiments by using coarser mesh with higher element order. In these computations,
the resolution of the spatial discretization, i.e. degrees of freedom per wavelength, is
approximately constant (r`/h ≈ 40). Since the accuracy of the state equation depends
only on spatial and temporal discretizations, we have first computed the accuracy of the
solution of the state equation with various lengths of timestep. Computations have been
carried out with the state equations (97) and (115) corresponding to the wave problem



68

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
 2

 3
 4

 5

Percentage of CPU time

O
rd

er
 o

f t
he

 p
ol

yn
om

ia
l b

as
is

 

A
M

G
F

W
D

B
W

D

(a
)

C
D

ve
rs

io
n

of
th

e
al

go
ri

th
m

w
ith

ω
=

π
an

d
30

0
tim

es
te

ps
.

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
 2

 3
 4

 5

Percentage of CPU time

O
rd

er
 o

f t
he

 p
ol

yn
om

ia
l b

as
is

 

A
M

G
F

W
D

B
W

D

(b
)

C
D

ve
rs

io
n

of
th

e
al

go
ri

th
m

w
ith

ω
=

2π
an

d
30

0
tim

es
te

ps
.

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
 2

 3
 4

 5

Percentage of CPU time

O
rd

er
 o

f t
he

 p
ol

yn
om

ia
l b

as
is

 

A
M

G
F

W
D

B
W

D

(c
)

R
K

ve
rs

io
n

of
th

e
al

go
ri

th
m

w
ith

ω
=

π
an

d
15

0
tim

es
te

ps
.

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
 2

 3
 4

 5
Percentage of CPU time

O
rd

er
 o

f t
he

 p
ol

yn
om

ia
l b

as
is

 

A
M

G
F

W
D

B
W

D

(d
)

R
K

ve
rs

io
n

of
th

e
al

go
ri

th
m

w
ith

ω
=

2π
an

d
10

0
tim

es
te

ps
.

FI
G

U
R

E
24

Pr
op

or
tio

n
of

C
PU

tim
e

(i
n

pe
rc

en
t)

re
qu

ir
ed

by
th

e
A

M
G

cy
cl

es
an

d
co

m
pu

tin
g

st
at

e
(F

W
D

)a
nd

ad
jo

in
ts

ta
te

(B
W

D
)i

n
on

e
C

G
ite

ra
tio

n.



69

(45)-(49). The right hand side functions are

f = 0 (153)

yext = ω sin(ω · x) +
∂ cos(ωt−ω · x)

∂n
, (154)

and the initial conditions are

e0 = cos(ω · x) (155)

e1 = ω sin(ω · x). (156)

We have started computations with a length of the timestep corresponding to 50
timesteps per one time period (T = 2π/ω). In the case of CD time discretization the
number of timesteps is multiplied by 1.5, whereas in the case of RK time discretization it
is multiplied by 1.25. Proceeding this way, we have achieved a series of numerical results
with various lengths of the timestep. Numerical solution is compared with the analytical
one, which is p f = cos(ωt−ω · x). Maximum errors between numerical and analytical
solutions with ω = {π, 2π, 4π} in the case of CD time discretization are seen in Figure
25(a). Since we notice from Figure 25(a) that the curve with a particular spectral order
has its characteristic shape, in the RK case only results with ω = π are shown in Figure
25(b). Results with ω = 2π and ω = 4π have the similar behaviour with respect to the
length of timestep.

From results shown in Figures 25(a) and 25(b), we can determine, for instance,
the stability conditions and orders of temporal and spatial accuracy. Vertical lines of
the curves represent the unstable situation. To examine the stability condition, we have
made also some computations with small numbers of timesteps. These computations are
carried out with 10i, for i = 1, 2, 3, . . . , timesteps per time period until a stable solution
is achieved. The first number of timesteps which leads to the stable solution, and the
corresponding value of ∆t/h, are shown in Table 3.

For large timesteps the error of temporal discretization dominates. Then, RK gives
more accurate results with larger timestep than CD (see Figures 25(a) and 25(b)). On the
left of Figures 25(a) and 25(b), curves turn to horizontal lines. The maximum error with
respect to the length of timestep is not decreasing even if smaller timesteps are used. This
means that the temporal error is eliminated. In the both Figures, the same error level is
achieved for a particular order of the element r (with constant h) when the temporal error
is eliminated. This is something that we expected, since the error remaining, after the
temporal error is eliminated, is the error of spatial discretization. Every curve represents
computations with a particular spectral order which has a characteristic discretization
error. Naturally, the order of the space discretization error decreases when higher order
elements are used.

According to the results shown in Figures 25(a) and 25(b), we can choose the
timestep to examine the spatial discretization such that the error of time discretization
is negligible. When using the control algorithm that small timesteps are not reasonable,
especially when concerning higher order elements. The reason for this is that we are using
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TABLE 3 Mesh stepsizes for different angular frequencies, stability conditions, and number of
timesteps for different spectral orders.

r 1 2 3 4 5

Mesh stepsizes for different
angular frequencies

ω = π 1/20 1/10 1/7 1/5 1/4
2π 1/40 1/20 1/14 1/10 1/8
4π 1/80 1/40 1/28 1/20 1/16

Number of timesteps to
satisfy the stability condition

CD 60 70 90 100 120
RK 60 70 90 120 140

Number of timesteps used in
computations

CD 90 270 300 320 320
RK 60 100 140 150 150

a constant stopping criterion ε, which limits the accuracy of the solution computed with
Algorithm 1. So, our aim is to choose the length of timestep for each spectral order so that
the temporal error is smaller than the error due to the stopping criterion of the algorithm.

To show how the stopping criterion of the algorithm influences accuracy, we have
solved the artificial problem presented in Section 9.2.1 for each spectral order with various
lengths of the timestep. These results are shown in Figures 25(c) and 25(d). Oscillations
in maximum error are noticed, when the error of stopping criterion becomes dominant.
Number of timesteps, chosen by a procedure discussed above, are shown in Table 3.

Pollution effect

The behaviour of the error with respect to the wavenumber, when time steps shown in
Table 3 are used, can be seen in Figure 26. In the case of classical finite element dis-
cretization, i.e. r = 1, the error increases to considerably large level as the wavenumber
increases. Error increases with wavenumber also for higher spectral orders. Thus, the
pollution effect is not eliminated with higher orders, but results are more accurate than
with r = 1.

Maximum error is plotted with respect to CPU time in Figure 27 with both time
discretizations. Better accuracy is achieved with less work, when higher order elements
are used. In the case of finite element discretization, the error is a little bit larger with RK
than with CD time discretization. With higher order elements the error in the CD case
seems to be an order of magnitude larger than the error in the RK case with the same CPU
time consumption.

From Figures 26 and 27 we can notice that CPU time for algorithm grows with
wavenumber. The reason for this is the increase in number of CG iterations (see Figure
28). Since amounts of CPU time used for AMG and for the whole algorithm grow nearly
at the same rate, the proportion of CPU time used for AMG at each iteration is almost
constant (see Figure 29). The percentage of CPU time required by the AMG cycles in one
CG iteration and number of CG iterations are presented in Figures 30 and 31 with respect
to the number of non-zero elements in the stiffness matrix.
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FIGURE 30 Proportion of CPU time (in percent) required by the AMG cycles in one CG itera-
tion with r`/h ≈ 40.
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FIGURE 31 Number of CG iterations with respect to the number of non-zero elements in the
stiffness matrix such that r`/h ≈ 40.

9.2.2 Acoustic scattering

In these experiments, we have used the angular frequency ω = 4π, which implies that
the artificial boundary is located at distance 2` from the scatterer. Mesh stepsizes and
number of timesteps are chosen as in the previous example, except for coated RK tests.
Because of stability conditions for RK, we need to use more timesteps when RK is used
with varying material parameters (see Table 4).
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TABLE 4 Mesh stepsizes and number of timesteps for different spectral orders with ω = 4π.

r 1 2 3 4 5

Mesh stepsize 1/80 1/40 1/28 1/20 1/16

Number of
timesteps

CD 90 270 300 320 320
RK non-coated 60 100 140 150 150
RK coated 120 200 280 300 350

TABLE 5 Number of elements per wavelength for different spectral orders.

r 1 2 3 4 5

Number of
elements per
wavelength

c = 1 40 20 14 10 8
3
4 30 15 10.5 7.5 6
1
2 20 10 7 5 4

FIGURE 32 Contourplot of scattering by a
convex obstacle with r = 3
and h = 1/28.

FIGURE 33 Contourplot of scattering by
a coated convex obstacle with
r = 3 and h = 1/28.
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FIGURE 34 Contourplot of scattering by a non-convex semi-open cavity with r = 3 and h =
1/28.

FIGURE 35 Contourplot of scattering by a coated non-convex semi-open cavity with r = 3 and
h = 1/28.

The speed of sound c(x) is equal to one outside the obstacle and 1
2 in the coatings

of square scatterer and non-convex semi-open cavity, implying that outside the obstacle
wavelength `(x) = 1

2 and in the coating `(x) = 1
4 . Since rectangular mesh with element

width h is used, there are 1/2h elements per wavelength outside the obstacle and 1/4h in
the coating (see Table 5). In the case of scattering by two non-convex semi-open cavities,
c(x) = 1

4 in the coating of the left hand obstacle, and c(x) = 3
4 in the coating of the

right hand obstacle. This implies that in the coating of left hand obstacle `(x) = 1
4 , and

there are 1/4h elements per wavelength, whereas in the coating of right hand obstacle
`(x) = 3

8 , which means 3/8h elements per wavelength (see Table 5). Numerical solutions
of these scattering problems with r = 3 and h = 1/28 are shown in Figures 32-37. The
Helmholtz equation is solved with non-convex semi-open cavities of similar shape e.g. in
[13, 16, 43].
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FIGURE 36 Contourplot of scattering by two non-convex semi-open cavities with r = 3 and
h = 1/28.

FIGURE 37 Contourplot of scattering by coated non-convex semi-open cavities with r = 3 and
h = 1/28.

Number of iterations with coated and non-coated scatterers is compared in Table 6. When
considering the algorithm with RK time discretization, we notice that computations with
coated scatterers need two and a half times the number of iterations needed with non-
coated scatterers. Convex obstacle is the simplest scatterer, and with it the smallest num-
ber of iterations is needed. For solving the scattering problem with two non-convex cavi-
ties, the number of iterations is twice as large as in the the case of convex scatterer. More
reflections are produced inside the obstacle with one non-convex cavity than with the sys-
tem of two non-convex cavities. That is why twice the number of iterations is needed to
solve the problem with one non-convex cavity than with two non-convex cavities. Hence,
the number of iterations depends strongly on the geometry of the scatterer.
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TABLE 6 The number of iterations of the preconditioned CG algorithm in the case of CD and
RK time discretization with different scatterers.

Type of the obstacle 1 2 3 4 5

convex obstacle (square) CD non-coated 216 208 142 143 178
CD coated 174 169 172 167 168
RK non-coated 59 75 74 76 75
RK coated 172 178 178 177 177

non-convex semi-open cavity CD non-coated 217 208 188 229 332
CD coated 589 732 732 727 727
RK non-coated 211 300 301 300 299
RK coated 851 738 736 735 735

two non-convex semi-open cavities CD non-coated 238 252 186 286 268
CD coated 374 340 341 338 338
RK non-coated 123 146 145 145 145
RK coated 367 347 347 347 347

The performance of the preconditioner for different scatterers is presented, with
respect to the order of the polynomial basis, in Figure 38. It is shown that the precondi-
tioner works similarly with the both time discretization schemes. The small number of
AMG cycles means that also the convergence factor is small and the preconditioner is
efficient. There is not significant difference between different kind of scatterers for r = 1
and r = 2. The best performance of the preconditioner is achieved with r = 2. In the
cases of non-convex scatterers, the element order r = 3 seems to need a remarkably large
number of AMG cycles, whereas in the case of convex scatterers the preconditioning is
done more efficiently.

The comparison of CPU consumption between CD and RK time steppings at the
first CG iteration is presented in Figures 39(a)-39(b). When the element order grows, the
percentage of CPU time required by AMG behaves similarly for all the geometries. In
the case of RK time stepping, this percentage is smaller and also the variations of in the
proportion of CPU time are smaller between different values of the element order. The
reason for this is that CPU time for the algorithm is larger in the case of RK time stepping.
This is seen also in Figures 39(c)-39(d), where CPU times of the scattering examples at
the first CG iteration are shown with respect to the number of non-zero elements in the
stiffness matrix.
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9.3 Elasticity solver with central finite difference time discretiza-
tion

In this section, we consider the elasticity problem in an isotropic homogeneous elastic
medium with E = 5.75, ν = 0.45, and ρs = 1. For angular frequency we use ω = 4π,
unless other mentioned.

9.3.1 Accuracy of space discretization

Accuracy of h- and r-refinements, computed with ω = 4π, is shown in Figure 40, and
percentage of CPU time required by the AMG cycles in one CG iteration is shown in
Figure 41. These results are in line with the results presented for acoustic wave equation
in previous sections. Again, most of the computation time is consumed for solving the
state and adjoint state equations. Although only small amount of time is used for precon-
ditioning with AMG, this proportion is larger than what we discovered with the acoustic
wave equation.

To show the benefit of preconditioning, computations with mesh step size h = 1/4
are performed both with and without preconditioning. CPU times in seconds for prendi-
tioned and unpreconditioned algorithms are depicted in Figure 42, where DOF increases
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FIGURE 40 Maximum error versus degrees of freedom.

TABLE 7 Number of timesteps for different spectral orders.

r 1 2 3 4 5

Number of timesteps 420 520 460 360 260
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as the order of the spectral element basis increases from 1 to 5. The preconditioned
minimization seems to be many times faster than the unpreconditioned one. CPU time
required by the AMG cycles in one CG iteration is only a small amount of the CPU time
for the CG iteration.

We performed test showing the pollution effect also for the elasticity problem. Once
again, we used coarser mesh with higher order elements according to the equation ωh =
π2r−6. In addition, we chose the number of timesteps to be twice the number of timesteps
needed to satisfy the stability condition (see Table 7 and Figure 43). As the wavenumber
grows, the error increases for all orders of the elements (see Figure 44). In the case of
FEM, this effect is most significant.
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FIGURE 44 Behaviour of the error with respect to the wavenumber for different orders of the
polynomial basis such that ωh = π2r−6.

9.3.2 Elastic scattering

Number of iterations with three different kind of rigid obstacles (see Figures 5(a)-5(c))
with mesh stepsize h = 1/8 are discussed in Table 8. It is shown that the number of
iterations needed to achieve the stopping criterion of the algorithm is not dependent on
the number of degrees of freedom. Displacement fields of the cattering solutions are
illustrated in Figures 45(a)-45(c). In these scattering experiments, CPU time required by
the AMG preconditioner is less than 10% of the CPU time for the whole algorithm (see
Figure 46).

TABLE 8 Number of iterations for scattering solutions with different geometries.

convex two non-convex non-convex
obstacle semi-open semi-open
(square) cavities cavity

r DOF iter DOF iter DOF iter

1 1728 61 2442 140 3472 115

2 6528 57 9270 167 13152 130

3 14400 93 20482 146 29040 132

4 25344 60 36078 129 51136 133

5 39360 72 56058 132 79440 138
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(a) Non-convex semi-open cavity.

(b) Two non-convex semi-open cavities.

(c) Square obstacle.

FIGURE 45 Real parts of the elastic scattering solution us illustrated in spectral element mesh
with r = 3.
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FIGURE 46 Percentage of CPU time required by AMG.

9.4 Comparison between central finite difference and Runge-Kutta
time discretizations for the elasticity equation

We apply higher order time discretization scheme to the elasticity solver and consider
the accuracy of spatial and temporal discretizations in Section 9.4.1 with several stopping
criteria ε. Sections 9.4.2 and 9.4.3 are devoted to wave scattering results. For angular
frequency we mainly use the value ω = 2π.

9.4.1 Accuracy of space and time discretizations

The accuracy and computational efficiency of the method is considered in an isotropic
homogeneous elastic medium with ρ = 2.7, cp = 2, and cs = 1.

Approximation error with constant angular frequency

In the first experiment we have used constant spatial discretization such that the ratio
between the order of elements r and the mesh stepsize h is r/h ≈ 20. We have also
compared the CD time discretization with the RK time discretization for element orders
r = 1, . . . , 5. In each cases, the number of timesteps needed for stability is first tested by

TABLE 9 Stability conditions.

r 1 2 3 4 5
Number of
timesteps

CD 50 60 80 90 100
RK 50 60 80 90 100

∆t/h
CD 0.40 0.17 0.09 0.06 0.04
RK 0.40 0.17 0.09 0.06 0.04



86

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(a) ε = 10−2

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(b) ε = 10−3

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(c) ε = 10−4

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(d) ε = 10−5

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(e) ε = 10−6

10-6

10-5

10-4

10-3

10-2

10-1

10-3 10-2 10-1

M
ax

im
um

 e
rr

or

∆t/h

CD, r=1
CD, r=2
CD, r=3
CD, r=4
CD, r=5
RK, r=1
RK, r=2
RK, r=3
RK, r=4
RK, r=5

(f) ε = 10−7

FIGURE 47 Maximum errors obtained in the case of CD and RK time stepping with six different
stopping criteria ε.
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using 10i timesteps per time period, for i = 1, 2, 3, . . . , until a stable solution is achieved.
Stability conditions corresponding to the largest stable timestep are given in Table 9.
According to our numerical tests, these values are the same with both the CD and the RK
time stepping. Moreover, ∆t satifies

∆t
h

=
αr

cp
√

2
, (157)

which is the well known CFL condition, where αr is a stability constant for element order
r [22].

We have started computations with the largest stable timestep and then multiplied
the number of timesteps N = T/∆t by two, until the problem for spectral order r is
solved with r + 3 different number of timesteps. Proceeding this way a series of numeri-
cal results with various lengths of the timestep is achieved. Errors between the analytical
solution and the experimental result are computed as L∞-norms. Accuracy of the numer-
ical solution is shown in Figure 47 as a function of the ratio between the time step ∆t and
the mesh step size h for both CD and RK time steppings with five element orders r and
six different stopping criteria ε.

From results shown in Figures 47(a)-47(f) we can make observations regarding, for
instance, the orders of temporal and spatial accuracy. As the order of the approximation
in space increases, the solution becomes more accurate until the effect of stopping cri-
terion or error of time or space discretization becomes dominant. In Figure 47(a), only
accuracy of the results with r = 1 (i.e. the special case of spectral elements which corre-
sponds to classical bilinear finite elements) is not limited by the stopping criterion. When
the stopping criterion is tightened (see Figures 47(a)-47(f)), more accurate solutions are
reached.

Depending on the accuracy of the time discretization, the error of temporal dis-
cretization might be dominating with large timesteps. This is shown especially in the case
of CD time discretization. For example in Figure 47(f), timestep refinement decreases
the error with CD time discretization for element orders higher than one until the level of
space discretization is achieved. This is because CD time discretization is only of second
order accuracy, and therefore the error of time discretization is larger than the other error
sources unless very fine time steps are used. With time steps fine enough, the maximum
error with respect to the length of timestep is not decreasing even if smaller timesteps are
used. This means that the temporal error is eliminated. In Figure 47(f), the curve with a
particular spectral order r converges to a characteristic error level when the temporal er-
ror is eliminated. This is something that we expected, since the error remaining, after the
temporal error is eliminated, is the error of spatial discretization. Every curve represents
computations with a particular spectral order which has a characteristic discretization er-
ror. Apparently, the order of the space discretization error decreases when higher order
elements are used.

Naturally, for each element order r the solution with RK time stepping is at least
as accurate as the one computed with CD time stepping. For the element order r =
1, the error of space discretization is dominant over the error of time discretization for
all stable lengths of the timestep. Then, using second order and fourth order accurate
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FIGURE 48 Comparisons of the computational efforts (CPU time in seconds) obtained in the
case of CD and RK time stepping with two different stopping criteria ε.

time schemes lead to equally accurate results. The residual stayed slightly over 10−7

for some values of ∆t in the algorithm with CD time discretization and r = 1. This
is why there is a blank space in the corresponding curve in Figure 47(f). When higher
order elements are used, we can see the benefit of RK time discretization. With RK time
discretization, the error is constant for r = 1, . . . , 4. These horizontal curves in Figure
47(f) represent the situation where space discretization is dominant. These error levels are
the ones which are typical for particular spectral elements. Only in the case where r = 5,
the accuracy is improved with timestep refinement. The trifling oscillation in the left part
of the curve presenting the error with RK time discretization and r = 5 is obviously
caused by stopping criterion since we have eliminated the errors of spatial discretization
and approximation of the radiation condition. These eliminations have been done by
using polygonal geometries and the modified right-hand side function which satisfies the
absorbing boundary condition. As we have seen, the reduction of the error is blocked by
the stopping criterion of the CG method and the fixed time discretization, which makes
the comparison of higher element orders difficult.

When stopping criterion ε is tightened, also the number of CG iterations needed to
attain the stopping criterion grows. This implies a larger computational effort (see Figure
48). As discussed in Section 7, the computational cost of the CG algorithm depends on
the number of timesteps N = T/∆t, the number of degrees of freedom, the order of
element r, and the number of CG iterations. At each curve, presenting the computational
cost with respect to ∆t/h in Figure 48, the number of degrees of freedom and the element
order are constants. The linear dependence between CPU time and the product of number
of timesteps and number of iterations tells that the order of number of iterations remains
constant, when timestep refinement is done.

According to Figures 47, 48, and 49 the spatial accuracy with FEM (r = 1) is
so poor that the most efficient solution strategy with FEM is to use a combination of
CD time discretization, the largest stable timestep, and rough stopping criterion. With
higher order elements, the best choise for time discretization depends strongly on the
stopping criterion and the length of timestep. With ε & 10−4 the CD time discretization
and sufficiently large time steps might be recommended, since these allow to compute
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FIGURE 49 Maximum errors with respect to CPU time (in seconds) obtained in the case of CD
and RK time stepping with six different stopping criteria ε.
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the solution utilizing only small amount of CPU time. It should be taken into account
that using such large stopping criteria involves an error which deteriorates the accuracy
of the method when higher order elements are used. To take full advantage of the high
accuracy provided by spectral elements, smaller stopping criteria should be used. Then,
the RK time discretization becomes more efficient than the CD time discretization. This
can be seen in Figure 49, where errors are presented as functions of CPU time. In the
case of RK time discretization with r = 4 and ε ≤ 10−5 the error of stopping critetion
has only a small influence (or no influence at all) on the solution. Moreover, the error of
time discretization is not affecting at this point, which makes possible to use the largest
stable timestep accurately. These properties induce the remarkable efficiency for r = 4 in
connection with RK time discretization and the largest stable timestep, which is seen in
Figures 49(d)-49(f).

Choosing the combination of time discretization scheme and order of space dis-
cretization can be considered as a multiobjective optimization task (see [80]). That is,
we have two criteria (error and computational cost), both of which are to be minimized.
Pareto optimal front, defined by the points offering the minimum computation time with
maximum accuracy, is drawn with blue color in Figure 49(f). As we can see, the Pareto
optimal set includes the points of the CD time discretization with r = 1 and r = 2 and
the points of the RK time discretization with r = 4 and r = 5. Also a point with the
RK time discretization and r = 2 is near the Pareto optimal front. We can decide which
of the points laying on the Pareto front suits best for our purposes. When solutions are
needed quickly, we compromize with accuracy, and the optimal choice is, for instance, the
CD time discretization with conventional finite elements (r = 1). When high accuracy
is needed and sufficient computational capacity is available, it is best to use the RK time
discretization with r = 4 or r = 5. It is worth mentioning that the Pareto point with the
RK time discretization and r = 5 is not achieved with the largest stable timestep.

Since we are interested in partular in the accuracy of spatial discretization, we here-
after concentrate on the case where the error of time discretion is negligible. By using the
results shown in Figure 47(f), we have chosen for each order of element the number of
time steps which eliminates the temporal error. These numbers of time steps are shown
in Table 10. It is noteworthy that with the CD time discretization the number of timesteps
needed to attain the given accuracy is at least ten times that of the RK time discretization
for r ≥ 3. This confirms the better efficiency of the RK time discretization with higher
order elements. The secret behind this behaviour, which is not in line with proportions
of arithmetic operations needed at each CG iteration, lies in the number of CG iterations.
This is seen in Figure 50, where the values of residual are presented with respect to num-
ber of iterations. Since the algorithm with RK time discretization solves the problem at

TABLE 10 Number of timesteps to attain the error level of spatial discretization for different
spectral orders.

r 1 2 3 4 5
Number of
timesteps

CD 50 140 800 1300 3600
RK 50 60 80 90 210
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FIGURE 51 Comparisons of the proportions of CPU time (in percent) required by AMG cycles
in the case of the CD and the RK time steppings with ε = 10−7.

each iteration in a more accurate manner than the algorithm with CD time discretization,
the RK version needs smaller number of iterations. This phenomenon is even empha-
sized, when the stopping criterion is tightened. We can see one exception of this rule in
Figure 50(e). The reason for this might be that the error of the RK time discretization is
eliminated by using considerably large number of time steps. In some cases of the CD
time discretization (see Figures 50(a) and 50(c)), the convergence rate becomes slow (or
convergence stops) when the value of residual is small enough. Of course, this can hap-
pen also in the case of the RK time discretization, but with the CD time discretization
this kind of limit is detected with rather small number of iterations and large value of the
residual. The proportion of CPU time required for different parts of the CG algorithm,
with number of timesteps shown in Table 10, is seen in Figure 51.

Pollution effect

Even though we have eliminated the main error sources, numerical dispersion deteriorates
the accuracy of solutions with small waves. The computed wavenumber differs from the
wavenumber of the exact solution, and with high angular frequencies this part of approx-
imation error becomes dominant. To show that using higher order elements alleviates this
inaccuracy, we have performed another set of experiments by varying both the angular
frequency and the resolution of the mesh such that ωh = rπ/10. Since the efficiency of
the method is not getting significantly better with ε = 10−7 than with ε = 10−6, and the
method with the CD time discretization had problems to converge to the stopping criterion
ε = 10−7 with certain lengths of the timestep, we, from now on, concentrate especially
on the case with ε = 10−6. Then, the stopping criterion is not significantly limiting the
accuracy of the numerical solutions computed with the CG algorithm.

The accuracy of the solution with respect to the angular frequency is presented in
Figure 52. As the wavenumber grows, the error increases for all orders of the elements.
In the case of classical finite element discretization, i.e. r = 1, the error becomes consid-
erably large as the wavenumber increases. This happens even if ωh is kept constant. With
higher orders, the pollution effect is not eliminated but the accuracy is significantly better
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also for high angular frequencies. As seen in Figure 52, the same level of accuracy is
attained with the CD and the RK time discretizations also for higher wavenumbers when
error of time discretization is eliminated. With the RK time discretization this level of
accuracy is achieved with lower computational cost than with the CD time discretization
(see Figure 53). From Figures 52 and 53 we further notice that CPU time for algorithm
grows with wavenumber. The reason for this is the increase in number of CG iterations.

9.4.2 Elastic scattering by a rigid obstacle

We now discuss elastic scattering by a rigid square obstacle of side length 2 in an isotropic
homogeneous elastic medium. The material parameters are the same as in the previous
test case, and the absorbing boundary Γext is located around the obstacle at a distance of
1 perpendicular to each side of the obstacle. Contours of the real parts of the solution
components us1(x) and us2(x) are presented with r = 3 in Figure 54 with ω = 2π,
ε = 10−7, ρ = 2.7, cp = 2, and cs = 1. Solution of the elastic displacement e0 is equal
to the real part of the time-harmonic wave us = (us1(x), us2(x)), which is illustrated in
Figure 55 with five different element orders. In this picture, also the structure of spectral
elements is shown.

To take closer look at the iteration numbers, computational effort, and accomplish-
ment of the preconditioner, we tested the above mentioned properties with respect to the
relaxation parameter for AMG (see Figure 56). The best performance of the AMG solver
is achieved when the value of the relaxation parameter, depending on the order of ele-
ments, is between 1.2 and 1.6 (see Figures 56(c)-56(d)). From Figure 56(b), we see that
the computational effort is considerably larger for r = 5 than for the other element orders.
This is because such a fine timestep is used with r = 5 to eliminate the temporal error.

(a) Re(us1) (b) Re(us2)

FIGURE 54 Components of the real part of the elastic scattering solution us in homogeneous
domain, where ρ = 2.7, cp = 2, and cs = 1.
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(a) r = 1 (b) r = 2

(c) r = 3 (d) r = 4

(e) r = 5

FIGURE 55 Real parts of the elastic scattering solution us in the case of RK time stepping with
ω = 2π and ε = 10−7 in homogeneous domain, where ρ = 2.7, cp = 2, and
cs = 1.
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The number of iterations is varying between different element orders more than expected
(see Figure 56(a)). The reason for this is probably the tightness of the stopping criterion ε.
Also our previous experiments show that when a very tight stopping criterion is used, the
convergence rate might become lower or the residual might converge to a level which is
higher than the stopping criterion. That is why the number of iterations is almost constant
for all element orders when ε & 10−4, but differs to a certain extent between the element
orders for stricter stopping criteria.

(a) Homogeneous domain. (b) Heterogeneous domain.

FIGURE 57 Displacement vector fields for the real part of the solution of elastic scattering in
homogeneous and heterogeneous domain.

(a) Homogeneous domain. (b) Heterogeneous domain.

FIGURE 58 Velocity vector fields for the real part of the solution of elastic scattering in homo-
geneous and heterogeneous domain.
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9.4.3 Wave propagation in homogeneous and heterogeneous materials

In this Section, we consider the wave propagation in homogeneous and piecewise het-
erogeneous media without rigid obstacles. Now, the boundary Γ0 is not involved, and
to avoid problems arising from the singularity of the stiffness matrix, we have used
K + M

106 instead of K in preconditioning. In the homogeneous case, the domain is a
square Ω = [0, 4]× [0, 4] surrounded by the boundary Γext and provided with material
parameters cp = 2, cs = 1, and ρ = 2.7. The piecewise heterogeneous material is con-
structed by fixing the above described material parameters in Ω \ ([1, 3]× [1, 3]) and the
material parameters cp = 0.6, cs = 0.4, and ρ = 7.19, into a square [1, 3]× [1, 3]. The
simulation results with homogeneous and heterogeneous material are shown in Figures
57 and 58 as displacement and velocity fields.

Convergence histories of simulations in homogeneous and heterogeneous media, in
which relaxation parameter 1.2 is used for AMG, are shown in Figure 59. In both of these
cases, where residuals are plotted with respect to the number of iterations, the convergence
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FIGURE 59 Convergence histories of elastic scattering in homogeneous and heterogeneous do-
main.
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FIGURE 60 Number of AMG cycles with respect to the number of CG iterations in homoge-
neous and heterogeneous domain.
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rate is equal for all element orders during the first iterations. As the residual becomes
smaller, the convergence rate might become lower for some element orders. Still, the
highest element order does not necessarily mean the poorest convergence rate. Insufficient
preconditioning is the most feasible explanation for this observation. As the residual
becomes smaller, the values in the right hand side vector g, appearing in preconditioning
(see Algorithm 1), become closer to zero. With small residuals, the stopping criterion of
the AMG solver is fullfilled with small number of AMG cycles (or without any AMG
cycles) as is seen in Figure 60.

It is seen that the best performance of the AMG solver is achieved, in both cases,
with the value of relaxation parameter 1.2− 1.6 (see Figures 61(c)-61(d) and 62(c)-62(d)).
The number of iterations is not dependent on the value of relaxation parameter (see Fig-
ures 61(a) and 62(a)), but too small value of relaxation parameter causes an increase in
the number of AMG cycles and decrease in the convergence factor of AMG. This induces
remarkably large CPU time requirements, which are seen in the left part of Figures 61(b)
and 62(b). Since smaller wavelengths are involved in the center of the domain in the het-
erogeneous case than in the homogeneous case, the larger number of iterations and the
larger amount of CPU time is needed for computations in the heterogeneous domain.



10 CONCLUSIONS

We considered the use of controllability techniques to solve the time-harmonic wave equa-
tions with spectral elements. The spectral element formulation used in this thesis results
in a global mass matrix that is diagonal by construction. No inversion of a mass matrix is
needed, which leads to a very efficient implementation. This is an advantage compared to
classical finite element method.

Spatial discretization based on spectral elements is very accurate since it is based on
high degree polynomials. To achieve the same accuracy, spectral element method requires
fewer grid points per wavelength than finite element method. Consequently, accurate
results are reached by solving smaller systems, i.e. fewer computational operations, which
saves CPU time. More precise results concerning expenditure of CPU time seems to show
linear dependence on the number of degrees of freedom. The number of preconditioned
CG iterations is independent of the order of the spectral element basis, which confirms the
efficiency of the AMG preconditioner, and makes the solver feasible for higher orders.

To make good use of higher order elements also the time discretization should be
done with a higher order scheme. As a rule of thumb we can say that the efficiency
of the overall method suffers from the error of time discretization if order of element is
greater than the order of the time discretization method used. The second order CD time
discretization method is efficient with finite elements, but when high accuracy is needed,
it is best to use the RK time discretization.



YHTEENVETO (FINNISH SUMMARY)

Tämä lisensiaatintutkimus käsittelee tehokkaiden ratkaisumenetelmien kehittämistä aika-
harmonisille aaltoyhtälöille. Tutkimus keskittyy akustisten ja elastisten aaltojen etenemis-
tä kuvaaviin Helmholtzin ja Navierin yhtälöihin. Näiden akustisia painekenttiä ja elastisia
materiaaleja kuvaavien osittaisdifferentiaaliyhtälöiden avulla voidaan mallintaa ja simu-
loida useita käytännön ilmiöitä, kuten vedenalaisten rakenteiden kestävyyttä, maanjäris-
tysaaltojen etenemistä sekä konserttisalien tai auton sisätilojen akustisia ominaisuuksia.
Monimutkaisissa käytännön sovelluksissa tarvitaan usein näiden kahden yhtälön muo-
dostamaa kytkettyä systeemiä, joka on kuitenkin rajattu tämän tutkielman ulkopuolelle.

Perinteisesti aikaharmonisten aalto-ongelmien ratkaisemisessa on käytetty komplek-
siarvoisia aikaharmonisia yhtälöitä, joiden diskretisointi on tehty äärellisten elementtien
menetelmällä. Tämä johtaa suuriin indefiniitteihin yhtälöryhmiin, joille on hankala ke-
hittää tehokkaita iteratiivisia ratkaisumenetelmiä. Erityisen haastavaksi aaltoyhtälöiden
ratkaiseminen tulee aallon pituuden lyhentyessä, jolloin numeerisen ratkaisun ja todel-
lisen ratkaisun välinen virhe kasvaa. Ratkaisun tarkkuuden takaaminen tässä tilanteessa
edellyttää erityisen tiheää diskretisointia, mikä puolestaan vaatii runsaasti laskentaresurs-
seja.

Edellä mainituista syistä johtuen tässä työssä käytetään säätöteoriaan perustuvaa
tekniikkaa sekä korkeamman asteen elementtimenetelmää. Tehtävän ratkaisemisessa ei
käytetä aikaharmonisia aaltoyhtälöitä, vaan aikaharmoninen tehtävä esitetään tarkan sää-
dettävyyden tehtävänä ajasta riippuvan yhtälön avulla. Tämän jälkeen tehtävä muotoil-
laan pienimmän neliön optimointiongelmaksi, joka ratkaistaan liittogradienttimenetel-
mällä. Gradientin laskenta, joka on menetelmän keskeinen osa, suoritetaan liittotilateknii-
kalla. Liittogradienttialgoritmin pohjustuksessa käytetään lohkodiagonaalista pohjustinta,
jonka yhteydessä muodostuvat jäykkyysmatriisin sisältävät yhtälöt ratkaistaan algebral-
lisella monihilamenetelmällä.

Paikkadiskretisoinnissa käytettävän spektraalielementtimenetelmän kantafunktiot o-
vat korkeamman asteen Lagrangen polynomeja, joiden nollakohdat sijoittuvat Gauss-
Lobatto -pisteisiin. Numeerisessa integroinnissa sovelletaan Gauss-Lobatto -integroin-
tisääntöä, joka tässä yhteydessä mahdollistaa diagonaalisten massamatriisien muodosta-
misen. Paikkadiskretisoinnin jälkeen saatava semidiskreetti yhtälöryhmä diskretisoidaan
ajan suhteen joko keskeisdifferensseillä tai neljännen kertaluvun Runge-Kutta -menetel-
mällä. Käänteismatriisien muodostaminen diagonaalisille massamatriiseille on helppoa,
mikä yhdessä edellä mainittujen eksplisiittisten aikadiskretisointimenetelmien kanssa mah-
dollistaa tehokkaan aikasimuloinnin. Koska tässä työssä aikaharmonisten yhtälöiden rat-
kaisemiseksi kehitetty menetelmä sisältää ajasta riippuvan aaltoyhtälön ratkaisemisen,
edellä mainittuja diskretisointimenetelmiä voidaan käyttää myös ajasta riippuvien aal-
tojen laskennallisesti tehokkaaseen simulointiin.

Esitettyjen menetelmien tehokkuutta vertaillaan numeeristen esimerkkien avulla.
Numeeriset tulokset osoittavat korkeamman asteen elementtimenetelmän käytöstä aiheutu-
van tehokkuuden. Spektraalielementtimenetelmän yhteydessä sama tarkkuus saavute-
taan vähemmällä määrällä laskentaoperaatioita kuin perinteisellä äärellisten elementtien
menetelmällä. Parhaan tehokkuuden saavuttamiseksi korkeamman asteen elementtime-
netelmän yhteydessä on syytä käyttää myös korkeamman asteen aikadiskretisointia.
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